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Early drug discovery aims to identify new chemical entities 
(NCEs) as synthetically accessible and pharmacologically active 
lead compounds that can be developed into drug candidates1. 

Computer-assisted de  novo drug design supports this discovery 
process, utilizing a broad variety of techniques2. However, organic 
synthesis remains a rate-limiting factor in drug discovery projects3. 
Many de novo design methods therefore rely on predefined com-
pound design rules and building block libraries to enable the auto-
mated generation of synthesizable chemical structures4,5. Recently, 
certain machine learning approaches that do not require explicitly 
coded chemical transformation rules but rely on implicit chemi-
cal knowledge representation have been proposed6–9. Despite these 
promising developments, the often challenging synthetic accessibil-
ity of the computationally generated molecules remains a limitation 
of both rule-based and the contemporary ‘artificial intelligence’-
based structure generators. To enable efficient de  novo design of 
synthetically accessible NCEs, we developed the DINGOS (design 
of innovative NCEs generated by optimization strategies) approach, 
which unites certain aspects of rule-based and machine learning-
based structure generators (Fig. 1). DINGOS assembles drug-like 
NCEs through modular and synthetically feasible design schemes. 
It utilizes a rule-based growing strategy, in which sets of chemical 
building blocks are combined to form virtual products by employ-
ing chemical transformation rules. For the selection of the optimal 
fusion partners, DINGOS employs a data-driven neural network 
model trained on the reactions from the US patent and trade office 
(USPTO) chemical database10. In contrast to employing computer-
assisted retrosynthetic analysis for virtual product scoring11–14, this 
machine learning concept allows us to consider the synthetic feasi-
bility of each step already in the molecule assembly process, which 
results in a forward-oriented molecular construction process that 
emulates the approach of a synthetic chemist.

In four prospective applications, de  novo designs were auto-
matically generated with DINGOS to mimic structurally diverse 

approved drugs (‘templates’). The structural similarity between 
the molecular designs and the respective template served as the  
fitness function driving the algorithm towards the selection of  
synthesizable NCEs resembling the template. Each run of DINGOS 
resulted in a population of 300 designs with structural and  
physicochemical properties similar to the template. An example 
structure from each design run was successfully synthesized  
following the reaction schemes suggested by the software, cor-
roborating the design hypothesis.

Results and discussion
DINGOS assembles NCEs through the application of virtual syn-
thetic transformations. These transformation schemes encode all 
desired chemical logic, thus encouraging synthetic feasibility in the 
de  novo designs. For starting molecule and virtual reaction part-
ner selection, the technique implements a template-based ligand 
scoring method, meaning that virtual compounds are generated 
based on their similarity towards a target ligand of interest (tem-
plate). Thereby, DINGOS integrates the combinatorial approach 
with machine learning to provide a directed molecular assembly 
method where compounds are assembled from small molecular 
components, with the choice of fragments being made by a trained 
machine intelligence.

Algorithmic concept. DINGOS utilizes an iterative single-step mol-
ecule assembly method (Fig. 2). Building blocks are virtually com-
bined to form new molecules, which are then evaluated according 
to their similarity to the template compound. To quantify similar-
ity, molecules are represented as molecular descriptor vectors that 
encode certain structural aspects of a molecule, with the distance 
between descriptor vectors serving as the measure of similarity. 
The products of such building block combinations serve as the new 
starting points for the single-step assemblies (molecule growing 
steps). This process is continued until either the product converges 
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Chemical creativity in the design of new synthetic chemical entities (NCEs) with drug-like properties has been the domain of 
medicinal chemists. Here, we explore the capability of a chemistry-savvy machine intelligence to generate synthetically acces-
sible molecules. DINGOS (design of innovative NCEs generated by optimization strategies) is a virtual assembly method that 
combines a rule-based approach with a machine learning model trained on successful synthetic routes described in chemical 
patent literature. This unique combination enables a balance between ligand-similarity-based generation of innovative com-
pounds by scaffold hopping and the forward-synthetic feasibility of the designs. In a prospective proof-of-concept application, 
DINGOS successfully produced sets of de novo designs for four approved drugs that were in agreement with the desired struc-
tural and physicochemical properties. Target prediction indicated more than 50% of the designs to be biologically active. Four 
selected computer-generated compounds were successfully synthesized in accordance with the synthetic route proposed by 
DINGOS. The results of this study demonstrate the capability of machine learning models to capture implicit chemical knowl-
edge from chemical reaction data and suggest feasible syntheses of new chemical matter.
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to a locally optimal structure with minimal distance to the template 
(note that depending on the distance metric, multiple optimal struc-
tures may exist) or a stop criterion is met. The DINGOS algorithm 
can be broken down into four main steps (Fig. 3), as follows.

Step 1: Generation of the molecular building block library 
{mol}. The compound database can be any set of molecules, with 
the only requirement being that the molecular entries have a valid 
SMILES15 representation. De novo drug design by fragment grow-
ing involves the assembly of complex molecules from smaller more 
simplistic components. For this rationale to be reflected within 
DINGOS, the molecular weight of the building blocks should be 
considerably smaller than that of the template drug. To ensure 
this, a molecular weight range is specified and molecules outside 
of this mass range are not considered during the assembly proce-
dure. Additional filtering criteria based on molecular subgroups or 
properties can be applied.

Step 2: generation of the set of starting molecules {S}. The molec-
ular descriptor of each member of the molecular building block 

library {mol} is calculated, and the distance between those building 
blocks and the template descriptor is evaluated. Building blocks are 
then sorted according to their increasing distance to the template. 
A subset of the M closest molecules {S} is then selected from this 
sorted set. Each element of {S} is used as the starting molecule for 
an individual assembly procedure. The selection of several unique 
starting points for each NCE encourages a high degree of structural 
diversity within the product set and is meant to promote designs 
with scaffolds that differ structurally from that of the target ligand 
for the purpose of chemical scaffold-hopping16–18.

Step 3: construction of optimal intermediates and products Popt. 
The ith product molecule Pi is formed from the ith element Si of the 
start mol set {S}. Thereby, Si and the template T serve as inputs for 
the machine learning model M, which takes the descriptor values 
of Si and T and predicts a descriptor value. This predicted descrip-
tor corresponds to the building block fingerprint B* representing 
the ideal building block for transforming Si to T, which has been 
learned by the model M during training. A distance calculation 
between B* and {mol} is performed, and a subset {B} of the N most 
similar molecules is produced. All valid chemical transformations 
between Si and {B} are applied, generating a set of intermediate 
products {P1,..,Pk} of size K. The element most similar to T is chosen 
as the optimal intermediate product Popt. If none of the termination 
criteria is met (step 4), then Popt is selected as the starting molecule 
for the next growing step (Si = Popt).

Step 4: termination. The growing of Si is continued until at least 
one of the stop criteria is met. There are three conditions under 
which the construction is halted: (1) the molecular weight of the 
product exceeds the molecular weight limit, (2) the number of 
applied reaction steps exceeds that of the reaction step limit and (3) 
the distance of Popt to the template T is greater than that of the start-
ing molecule Si. On halting the construction process, the current 
optimal product Popt is saved as the ith final product (Pfinal ≡ Popt) and 
Pfinal is added to the output product set {P}. In the event of criterion 
(3) being met, the starting molecule of the current step is saved as 
the final product (Pfinal ≡ Si) instead of Popt. The current Popt is not 
considered for any further assembly steps, as it has been shown to 
be less similar to the target ligand than the starting molecule. Step 3 
is then repeated for the next element of {S}, Si + 1.
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Fig. 1 | Overview of the DINGOS software. DINGOS produces new chemical entities that are structurally similar to a provided template molecule through 
a hybrid of machine learning and rule-based methodologies. The machine learning model is used for the recommendation of molecular building blocks for 
virtual chemical synthesis. It was trained to recommend synthons that would produce products that are structurally related to the provided template under 
the given descriptor representation. The building blocks are then reacted using suitable chemical transformation rules to produce a set of intermediate 
products. This virtual assembly procedure is repeated until the intermediate products satisfy one or more of the user-defined stop criteria. The products 
produced are evaluated according to user-defined metrics, and the virtual products best satisfying these criteria are selected as the final molecule designs.
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Fig. 2 | Representation of the single-step molecule assembly procedure. A 
starting molecule is selected based on its similarity to the target ligand of 
interest. The corresponding building block is then selected by the machine 
intelligence, and the product molecule is formed in silico. If none of the stop 
criteria are met, then the product molecule is used as the start molecule 
for another iteration. This procedure is repeated until either the score 
converges or one of the stop criteria is met.
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Machine learning model. To assess the capabilities of the DINOGS 
method, a test predictive model was produced. This model was 
intended to be naïve, so as to emphasize the influence and capa-
bilities of the DINGOS algorithm, rather than to focus solely on the 
machine learning component. A multilayered perceptron model 
(MLP) was used for the building block descriptor prediction. Here, 
the 167 public MACCS (‘molecular access system’) substructure 
keys were used as molecular descriptors (binary fingerprints)19. 
MACCS keys encode local chemical structure (subgraphs) and were 
selected to capture reaction centres and functional groups, without 
considering the overall molecular shape or connectivity. The MLP 
was trained on the US Patent and Trademark Office (USPTO) reac-
tion dataset. After preprocessing (see Methods), the dataset was 
composed of 897,286 reactions. The MLP was trained to predict the 
correct fingerprint of each building block from the corresponding 
start and product molecules’ fingerprints. The respective building 
block was then selected from the molecular database, based on 
its fingerprint similarity to the predicted, virtually optimal build-
ing block fingerprint. Fingerprint similarity was computed as the 
Hamming distance of the binary fingerprint, that is, the fraction of 
incorrectly predicted bit positions. This incorporation of reaction-
based information into the building block prediction procedure 
aimed to bias the building block not only to be structurally related 
to the template, but also to be potentially synthetically compatible 
with the starting molecule.

DINGOS sorts the available building blocks according to the 
predicted building block fingerprint. From this sorted set, the 
top M (here, M = 20) molecules are selected as potentially viable 
building blocks. All common reactions between the starting mol-
ecule and each of these selected building blocks are performed to 

produce a set of virtual products. The similarity of each of these 
products to the template is used to rank them. The best-ranking 
product is selected as the intermediate product and used for fur-
ther assembly steps.

For MLP training, the Adam optimizer20 was used with binary 
cross-entropy as the loss function. The network was trained for 
50 epochs with a batch size of 256 at a learning rate of 0.001 with-
out decay. The sigmoid function was chosen for the activation. 
A network of 334 fan-out input neurons (size of the input space, 
2 × 167 MACCS keys), 167 output neurons and a single hidden 
layer with 334 neurons was selected by hyperparameter optimiza-
tion (Supplementary Fig. 3). The network had an average loss of 
0.0988 ± 0.0002 (mean ± s.d.) for the training set and 0.1029 ± 0.0006 
for the validation set.

Prospective validation. A prospective application was performed 
to validate DINGOS for practical applications. The goal was to 
interrogate the functionality of the design objective, namely gen-
erating molecules that are (1) synthetically feasible and (2) adhere 
to a given design hypothesis. A set of suitable reference ligands 
were selected and de novo design populations were generated using 
DINGOS with the above described settings. These populations were 
then analysed in silico, and a selection of designs were chemically 
synthesized and biochemically tested.

Case study. Four Food and Drug Administration (FDA)-approved 
compounds (alectinib (1), FDA approval, 2015; cariprazine (2), 
FDA approval, 2015; osimertinib (3), FDA approval, 2015; pima-
vanserin (4), FDA approval, 2016) were selected as the template 
compounds. These compounds represent a set of drug molecules 
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Fig. 3 | Flow chart summarizing the ith iteration of the DINGOS algorithm. Orange boxes, inputs; blue box, output. Step 1: the compound database is 
filtered according to a set of predefined criteria to obtain the set of building blocks {mol}. Step 2: this input molecule set {mol} is sorted according to its 
distance to the template molecule T. The most similar molecule S is selected as the starting molecule. The starting tuple [S,T] serves as the input for the 
trained machine learning model (here, a feedforward neural network). Step 3: the network predicts the descriptor value of the building block B*, and the 
N most similar molecules form the building block set {mol}. The set of possible reactions {rxn} between {B} and S is selected from the reaction database 
and all reactions are performed, thus generating a set of intermediate products {P}. From the intermediate product set, the top-ranking molecule Popt is 
selected. Step 4: if Popt is more dissimilar to the template T than the starting molecule S, then the starting molecule is selected as the final product. If Popt 
is more similar to T and none of the stop criteria are met, then Popt is selected as the new start molecule for a further iteration of the DINGOS molecule 
growing algorithm. Otherwise, if the stop criteria are met, then Popt is selected as the final product Pfinal.
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that are both diverse in structure as well as in their associated bio-
logical activity. Each drug was selected as the template compound 
for an independent de  novo design run by DINGOS. During the 
de novo assembly, the building block set was restricted to molecular 
weights less than 400 g mol−1. A product limit of 300 compounds 
and a product molecular weight limit of 600 g mol−1 was set, as this 
represented an upper limit of the templates’ molecular weights. The 
number of reaction steps was set to a maximum of four, and the 
number of building blocks considered at each assembly step was 
20. DINGOS was run successfully, producing four populations of 
300 de novo designed molecules per run. All parameters were kept 
consistent across each run, and all calculations were performed on 
a single CPU within 1 h.

Distance distributions. A key goal of DINGOS is to produce sets 
of molecules that are consistent with the design hypothesis. This 
hypothesis is explicitly implemented into DINGOS by the choice 
of molecular representation and similarity metric. For this present 
proof-of-concept study, the MACCS keys fingerprint was chosen, as 
it is a local structural fingerprint with a relatively low dimensional-
ity, thus reducing the amount of data required for successful train-
ing, and it reflects chemical thinking in terms of structural elements 
and functional groups. The distance values of the de novo gener-
ated populations, relative to their respective reference compounds, 
were calculated, and the populations were ranked according to 
distance. To determine whether or not DINGOS produced designs 
with improved similarity towards the target ligands, the distances 
were compared to those of the initial building block set (‘construc-
tion set’). It was also of interest how these designs compared to the 
ChEMBL database (ChEMBL22, 2016)21,22 as this represents a set 
of bioactive drug-like compounds. Neither the construction set nor 
the ChEMBL database is a focused library intended to be structur-
ally related to the target ligands considered here; hence, for a fair 
comparison to be made, only the top 20 most similar compounds 
were selected for comparison. A comparative plot of the distance 
distributions is shown in Fig. 4.

The median distance values of all of the de novo design popula-
tions were lower than those of the construction set (Supplementary 
Table 1). This observation indicates that the algorithm was able to 
generate compounds that improved upon the initial building block 
set’s similarity to the template compounds. Three of the de  novo 
populations (alectinib, cariprazine, osimertinib) had a median value 

that was greater than that of ChEMBL. This result is not surprising, 
considering that the ChEMBL database comprises known bioactive 
and drug compounds and the top 20 of these were employed for 
comparison; however, for the pimavanserin set, the median dis-
tance value was lower than that of ChEMBL, indicating that for this 
reference ligand, DINGOS was able to generate compounds that 
were more similar to pimavanserin than those found in ChEMBL. 
Overall, DINGOS was shown to be capable of producing structur-
ally focused new molecules through the assembly of less similar 
building blocks.

Scaffold analysis of the computer-generated molecule designs. 
DINGOS was designed to produce compounds that are structur-
ally related under a given metric; however, it was also of interest 
that the compounds have a high degree of inherent scaffold diver-
sity. This is of concern, as we wish to avoid producing near identical 
structures with only minor structural variations. As our objective 
function was similarity based, this situation would probably lead 
to high-performance scores that were not representative of a true 
novel design. This design objective was encouraged by construct-
ing (‘growing’) each generated product from a unique starting mol-
ecule. To quantify this diversity, the percentage of unique Murcko 
scaffolds (atom scaffolds) in the DINGOS products was evaluated. 
The diversity of the DINGOS designs was compared with that of the 
top 300 distance-ranked ChEMBL and construction set compounds 
(Table 1). For all four of the template ligands, DINGOS produced 
compounds of a comparable or greater scaffold diversity than that 
of the ChEMBL and construction sets.

Physicochemical properties and drug-likeness of the computer-
generated designs. The underlying assumption of the DINGOS 
design hypothesis is rooted in the chemical similarity principle, 
which states that molecules with a similar structure tend to have 
similar properties23. To investigate the overall drug-like nature of 
the design populations, we also looked into their pharmacophore 
similarity. To determine this, Lipinski’s original recommendations 
for orally bioavailable compounds (‘rule of 5’ properties) were 
evaluated24. To aid in estimating the potential drug-likeness of the 
designed compounds, the physicochemical properties were also 
compared to those of a compiled set of bioactive compounds taken 
from ChEMBL (see Methods). This analysis revealed that both the 
DINGOS designs and the bioactive compounds agreed well with the 
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Fig. 4 | Distance comparison of the DINGOS, ChEMBL bioactive and construction sets. a,b, Distance comparison of the top 20 ranking DINGOS designs 
(light blue) against the top 20 ranking molecules of the construction set (white) (a) and the ChEMBL database (white) (b). Comparisons were made for the 
four reference compounds (alectinib, cariprazine, osimertinib, pimavanserin) using the MACCS keys Hamming distance as the distance metric. The DINGOS 
designs were shown to be more similar to the template than the top 20 most similar compounds from the construction set. In comparison with the ChEMBL 
database, only the pimavanserin DINGOS designs were shown to have a lower median distance. Each plot in the figure represents the estimated probability 
distribution of the distance values with dots representing the explicit data points. These distributions are mirrored to aid in the readability of the plots.
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values of the template compounds, thus confirming the molecular 
construction process as viable for generating appropriate new scaf-
folds with the desired properties (Supplementary Fig. 5).

Target prediction. Template-based de  novo design ultimately 
intends to produce compounds that share the biological activity 
of the template. To virtually evaluate this in the compounds pro-
duced, we performed target prediction with the software SPiDER25, 
which has repeatedly shown accurate predictions of biological tar-
gets. Because SPiDER relies on the CATS26 topological pharmaco-
phore representation and on MOE27 physicochemical descriptors, 
this target prediction intentionally represents a clearly different 
approach to the MACCS keys-based ranking in our application of 
DINGOS. For all four sets, more than 50% of the generated mol-
ecules had a predicted bioactivity on the molecular target of their 
template drug. Of particular note is the case of pimavanserin, in 
which 270 of the 300 de novo designs were predicted to be active. 
The relatively high proportion, above 50%, of unique scaffolds 
found in the pimavanserin set indicates that this reported high 
proportion is not due solely to the reproduction of one privileged 
scaffold, but rather the overall structural characteristics of the  
generated molecules.

Synthesis of DINGOS designs. To be practically applicable, DINGOS 
needs to produce synthetically feasible designs. To investigate this, 
the de novo populations were reduced to a set of the 10 top-rank-
ing molecules under the distance metric for each template. This 
enriched set of molecules was further refined by filtering based 
on the SPiDER activity predictions. All compounds not predicted 
active were removed. From these final sets, one design from each 
was selected for synthesis. The designs were chosen based on the 
availability of the corresponding building blocks. The structures of 
these designs, along with the corresponding distance ranks and syn-
theses, are shown in Fig. 5. Compound 5 was obtained by reductive 
amination of 9 and 10 but turned out very sensitive to light and 
water and was too instable for further characterization. Reductive 
amination of 11 and 12 yielded design 6. Amide coupling of 13 with 
14 generated design 7 and reductive amination of 15 and isobutyric 
aldehyde to 16 followed by Suzuki coupling with boronic acid 17 
afforded design 8.

In vitro pharmacological characterization. To investigate the valid-
ity of the stated design hypothesis, compounds 6, 7 and 8 were 
evaluated in  vitro for potential pharmacological activity on the 
targets of their respective template (2–4) at a concentration of 
10 µM (Supplementary Fig. 7). Compound 6 revealed no ago-
nistic or antagonistic activity on dopamine receptors D2S, D2L or 
D3, and compound 7 was inactive on human epidermal growth  
factor receptor (EGFR) kinase. Pimavanserin mimetic 8, how-
ever, antagonized 5-HT2B activation by serotonin and the con-
centration–response characterization suggested dose-dependent  
partial antagonism.

Conclusions
The DINGOS method incorporates both structural and reaction 
information into its design considerations and relies on predefined 
rules as well as machine intelligence-based selection of structural 
building blocks. In the DINGOS procedure, virtual synthesis is facil-
itated through a set of predefined reaction rules, while the machine 
learning method is trained on existing reaction data, with the reac-
tants and products represented as molecular fingerprints. The fin-
gerprints of the start and product molecules serve as inputs, and the 
model produces a predicted fingerprint, representing the optimal 
building block molecule to convert the starting fragment into a close 
mimetic of the template measured by their similarity concerning a 
molecular descriptor. The building block molecule is then selected 
from a library of commercial compounds based on their distance to 
the predicted target fingerprint. The fact that the machine learning 
method is trained on structure-based reaction information simul-
taneously promotes the formation of both structurally similar and 
synthetically feasible designs. The fingerprints used for building 
block selection are based on a chosen molecular representations 
(descriptor). This representation can be freely customized to direct 
the designs towards desired properties of interest. Thus, the custom-
izability of the modular components in DINGOS is an advantageous 
feature of this technique. Both the reaction and building block set, 
as well as the machine learning model, can be changed or modi-
fied within the algorithm. This modular design allows for a greater 
degree of control over the chemotypes of designs produced and can 
tailor the approach towards specific project demands. For example, 
assembly procedures can be based entirely on in-house available 
resources, with reactions restricted to only those most amenable 
for simplified or fully automated synthesis.The advantage of the 
stepwise assembly procedure of DINGOS over conventional rule-
based de novo drug design methods is that each virtual synthetic 
step incorporates the structural optimization directly and relies on 
a machine learning model that in turn relies on the wealth of data 
available from patent data (USPTO chemical reactions). This combi-
nation of pre-encoded rules and data-driven, machine intelligence-
based building block selection allows for the optimization to occur 
simultaneously with the compound generation, preventing the need 
for further structural modifications. The similarity of the output 
molecules from DINGOS relies on similarity-based building block 
selection and prediction of the most suitable reactions for building 
block fusion following the assumption that compounds with similar 
synthesis also have high similarity themselves.

DINGOS was successfully run for four approved drugs (alectinib 
(1), cariprazine (2), osimertinib (3) and pimavanserin (4)) in a pro-
spective proof-of-concept study. The de novo designed molecules 
were found to be structurally similar to the reference compounds 
and in good agreement with their Lipinski rule-of-5 properties.

A de novo population of 300 molecules was generated for each 
template, and one compound from each de  novo population was 
selected for synthesis and biological testing. Importantly, all four 
compounds were successfully synthesized with yields ranging from 
33% to 76%, and all synthetic procedures were in accordance with 
those proposed by DINGOS. This preliminary result positively 
advocates the prospective applicability of the design algorithm.

Of the four compounds synthesized, three were tested in vitro on 
the respective biological targets of their templates (one compound, 
the alectinib de novo design, was unstable and hence not capable of 
being tested). In vitro testing of the three de novo designs showed 
modest activity on the intended target for one design (pimavanse-
rin), while the other two designs were inactive. These results refute 
the stated design hypothesis that the MACCS keys similarity is 
sufficient to produce biologically active designs. Importantly, the 
synthetic capabilities of DINGOS allowed for the rapid and effi-
cient evaluation of this design hypothesis. In future work, we aim 
to expand this study to different design problems and hypotheses.

Table 1 | Percentage of unique Murcko scaffolds from the 
DINGOS, ChEMBL and construction set populations

DINGOS 
designs (%)

ChEMBL 
dataset (%)

Construction  
set (%)

Alectinib 88 73 63

Cariprazine 43 45 25

Osimertinib 87 61 85

Pimavanserin 59 57 36

All Murcko scaffolds were calculated in RDKit with the GetScaffoldForMol() function.

Nature Machine Intelligence | VOL 1 | JULY 2019 | 307–315 | www.nature.com/natmachintell 311

http://www.nature.com/natmachintell


Articles Nature Machine Intelligence

The production of large numbers of synthetically accessible drug 
mimetics provides an efficient means of producing novel bioactive 
compounds to ensure innovation in early drug discovery. DINGOS 
has the potential to accelerate existing drug design projects by pro-
viding an alternative or complement to traditional high-throughput 
screening methods and overcoming a key issue of many available 
computational de novo design techniques, namely limited synthetic 
accessibility of the designs. As DINGOS has proved itself capable 
of efficiently producing de novo NCEs, this approach also appears 

suitable for implementation in automated experimental procedures 
owing to its simplification of the design strategies and its modu-
lar architecture that enables easy updating. Thus, DINGOS shows 
potential for automating efficient and cost-effective de novo drug 
design. The modular method design also enables rapid optimization 
of its individual components, such as replacement of the MACCS 
keys metric, which might be a reason for the limited number of 
actives identified in this first prospective application of DINGOS28. 
In the future, DINGOS can be adapted to incorporate multiple 

Pimavanserin
5-HT2A, 5-HT2C, 5-HT2B
K i = 0.087, 044, 330 nM

Osimertinib
EGF receptor (LOVO wild type)

IC50 = 0.0480 µM

Alectinib
ALK receptor tyrosine kinase

IC50 = 1.9 nM

Dopamine receptor
Cariprazine

D3, D2L, D2S
K i = 0.085, 0.49, 0.6 nM

4

DINGOS rank 3
SPiDER P value = 0.03

DINGOS rank 6
SPiDER P value = 0.01

DINGOS rank 4
SPiDER P value = 0.02

DINGOS rank 5
SPiDER P value = 0.03

81615

3 71413

2 61211

1 10 59

Fig. 5 | Selected de novo designs generated by DINGOS. Compounds were ranked according to the Hamming distance of the MACCS keys fingerprint of the 
respective template drug and filtered based on their SPiDER predicted activity against the intended targets. All of the selected de novo designs were within 
the top 10 distances and were predicted as active by SPiDER against the biological target of the respective template. All de novo designs were prepared 
in one to two synthetic steps from commercially available building blocks. Importantly, all synthetic strategies followed the procedures suggested by the 
software DINGOS. Synthetic reagents and conditions: aDCE (1,2-dichloroethane), NaB(OAc)3H, room temperature, 5 h, product instable; bDCE, NaB(OAc)3H, 
50 °C, 48 h, 64%; cCHCl3, EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), 4-DMAP (4-(dimethylamino)pyridine), reflux, 2 h, 51%; dDCE, 
NaB(OAc)3H, room temperature, 16 h, 76%; edioxane/DMF, Cs2CO3, Pd(PPh3)4, reflux, 12 h, 33%. IC50, half-maximum inhibitory concentration. Ki, inhibition 
constant; ALK, anaplastic lymphoma kinase; EGF, epidermal growth factor; LOVO, human LoVo cancer cells; 5-HT, 5-hydroxytrytamine (serotonin) receptor.
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different metrics as a means of tackling complex multi-objective 
molecular design problems.

Recapitulating, DINGOS fuses rule-based de novo design meth-
ods with those of machine learning. This hybrid approach combines 
the advantages of both expert knowledge and implicit machine 
intelligence to offer a ‘best-of-both-worlds’ solution to the prob-
lem of molecular design. The empirical rule-based strategy ensures 
synthesizability and an overall simplification in the compound 
assembly, while the machine learning methods provide a directed 
approach to incorporating molecular descriptor information into 
the designs and limiting the output molecules to compounds with 
desirable similarity to the template. By producing design popula-
tions with high similarity to the given templates, DINGOS confirms 
our assumption that compound similarity in automated molecular 
design can be achieved by the similarity of their synthetic routes. 
The versatility and modular nature of DINGOS allows for the cus-
tomizability of the method to a large number of potential drug 
design problems and for fully automated molecular design.

Methods
Chemical transformations. All in silico chemical manipulations were performed 
using the open-source cheminformatics software RDKit29 (version 2017.03.3). 
Reactions were performed using the RunReactants() function. Conversion of the 
molecules into a canonical SMILES format was achieved with MolToSmiles() and 
generation of the MACCS keys molecular fingerprints with MACCSkeys(). The 
template molecules used for the de novo design were washed using the KNIME 
implementation of the MOE ‘wash’ method (Molecular Operating Environment, 
version 2011.10, The Chemical Computing Group).

Molecular building blocks. Suitable, commercially available chemical compounds 
were identified through Reaxys (www.reaxys.com, version 2018.3.14)30. All 
molecular structures were converted into a standardized canonical SMILES format 
using RDKit’s molecule converter. Salts and minor components were removed as 
well as all incomplete and inaccurate structures. This yielded a dataset of 245,296 
molecules, which were used as the construction set.

Virtual reaction database. The virtual reactions were hand-coded in the SMARTS 
format. This included mappings of the reactive centres as well as side chain and 
substituent restrictions. The entire set was composed of 64 reactions and contained 
both one- and two-component reactions. The relation between a given SMILES 
molecule and the set of virtual reactions was determined by applying the reactions 
explicitly. For two-component reactions, the molecule was paired with a generic 
reactant template corresponding to the other reactant molecule. To determine the 
molecule’s position within a given chemical transformation sequence, the position 
of the molecule was interchanged with that of the generic reactant. The position 
resulting in a successfully generated product was recorded as the molecule’s 
reactive position.

Training data. Entries extracted from the USPTO database were used as the 
training data for the neural network. The initial set was composed of 1.8 million 
cases. This dataset contained cases that fell outside the bounds of our considered 
problem set (peptides, large molecules and so on). To remove these cases, the 
product molecules were filtered based on molecular weight. An upper molecular 
weight limit of 400 g mol−1 was enforced on each of the starting reactants. This 
ensured that all products were formed from a combination of small molecular 
building blocks. The same sanitation procedure used for the construction set was 
applied to remove salts, minor components and erroneous cases. Reactions were 
filtered by number of reactants; a limit of two reactants per reaction was imposed. 
To extend the data set, examples were generated in which reactant positions were 
exchanged. This yielded a dataset of 897,286 examples.

In silico analysis. The molecule sets used for the in silico analysis were prepared 
with the same procedure used for the construction set. Entries from the ChEMBL 
dataset that did not have valid activity data were omitted. A molecular weight limit 
of 1,000 g mol−1 was enforced for the two datasets to ensure that only small molecule 
drug structures were considered. Four sets of compounds were extracted from 
ChEMBL, each sharing the biological targets of the four template compounds. Only 
compounds with inhibition constants (Ki values) less than 10 nM were considered.

Target prediction. SPiDER software utilizes self-organizing maps to evaluate the 
probability of a given molecule to be active on 251 predefined targets. Predictions 
are reported with Pvalues, representing the probability of misclassification. For 
each population, the P value scores were calculated, and compounds with values 
less than 0.1 were considered as predicted active. SPiDER’s predictive accuracy was 
tested against the four sets of bioactive compounds extracted from ChEMBL that 

showed a Ki < 10 nM against the four corresponding template targets. It was shown 
capable of predicting the correct targets with an accuracy ranging from 86 to 100% 
(Supplementary Table 2).

Flexible molecule alignment. Flexible alignment was performed with LigandScout 
software (version 4.2)31. All ligands were prepared in LigandScout. Chemical 
structures were ionized with the ‘ionize acids/base’ tool and then minimized with 
the MMF94 force field. Three-dimensional conformations were generated with the 
iCON best settings (200 conformations).

General chemistry. All chemicals and solvents were reagent grade and used without 
further purification, unless specified otherwise. All reactions were conducted in oven-
dried glassware under an argon atmosphere and in absolute solvents. NMR spectra 
were recorded on a Bruker AV 400 spectrometer (Bruker Corporation). Chemical 
shifts (δ) are reported in ppm relative to TMS (tetramethylsilane) as reference; 
approximate coupling constants (J) are shown in Hz. Mass spectra were obtained on 
an Advion expression compact mass spectrometer (Advion) equipped with an Advion 
plate express thin-layer chromatography extractor (Advion) using electrospray 
ionization (ESI). High-resolution mass spectra were recorded on a Bruker maXis ESI-
Qq-TOF-MS (electrospray ionization quadrupole time-of-flight mass spectrometry) 
instrument (Bruker). Compound purity was analysed by high-performance liquid 
chromatography (HPLC) on a VWR LaChrom ULTRA HPLC (VWR) system 
equipped with an MN EC150/3 NUCLEODUR C18 HTec 5 µm column (Machery-
Nagel) using a gradient (H2O/MeCN 95:5 + 0.1% formic acid isocratic for 5 min to 
H2O/MeCN 5:95 + 0.1% formic acid after an additional 25 min and H2O/MeCN 
5:95 + 0.1% formic acid isocratic for an additional 5 min) at a flow rate of 0.5 ml min−1 
and UV detection at 245 nm and 280 nm. All final compounds for biological 
evaluation had a purity of >95% (area-under-the-curve for UV245 and UV280 peaks).

Compound synthesis. For 3-(((4-(2,2-dimethylmorpholino)-2-ethoxyphenyl)
amino)methyl)-1H-indole-5-carbonitrile (5), 4-(2,2-dimethylmorpholino)-2-
ethoxyaniline (9, 125 mg, 0.50 mmol, 1.00 equiv.) and 3-formyl-1H-indole-5-
carbonitrile (10, 85 mg, 0.50 mmol, 1.00 equiv.) were dissolved in dichloroethane 
(5 ml), a 4 Å molecular sieve and acetic acid (0.25 ml) were added and the mixture 
was stirred at room temperature for 60 min. Sodium triacetoxyborohydride 
(210 mg, 1.00 mmol, 2.00 equiv.) was then added and the mixture was stirred at 
room temperature for another 4 h. The mixture was filtered, water (25 ml) was 
added, the phases were separated, and the aqueous layer was extracted three 
times with ethyl acetate (3 × 25 ml). The combined organic layers were dried 
over magnesium sulfate and the solvents were evaporated in vacuum. The crude 
product was purified by column chromatography using methylene chloride/
methanol 98:2 as the mobile phase to obtain the title compound as yellow 
oil; MS(ESI+) m/z 405.4 ([M + H]+). Compound 5 was sensitive to water and 
especially light, and was not stable enough for in vitro characterization.

For N-(4-chlorophenyl)-4-(2-isopropylbenzyl)piperazine-1-carboxamide 
(6), N-(4-chlorophenyl)-piperazine-1-carboxamide hydrochloride (11, 138 mg, 
0.50 mmol, 1.00 equiv.) and 2-isopropylbenzaldehyde (12, 96 mg, 0.65 mmol, 
1.30 equiv.) were dissolved in dichloroethane, 4 Å molecular sieve was 
added and the mixture was stirred at room temperature for 30 min. Sodium 
triacetoxyborohydride (211 mg, 1.00 mmol, 2.00 equiv.) was slowly added and 
the mixture was stirred at 50 °C for 48 h. The reaction mixture was then filtered, 
added to saturated sodium carbonate solution (25 ml), the phases were separated, 
and the aqueous layer was extracted with ethyl acetate (3 × 25 ml). The combined 
organic layers were dried over magnesium sulfate and the solvents were evaporated 
in vacuum. The crude product was purified by column chromatography using 
methylene chloride/methanol (98:2) as the mobile phase to obtain the title 
compound as a colourless solid (119 mg, 64%). 1H NMR (400 MHz, chloroform-d) 
δ = 1.16 (d, J = 6.9, 6H), 2.37–2.44 (m, 4H), 3.28 (hept., J = 6.9, 1H), 3.35–3.40 
(m, 4H), 3.47 (s, 2H), 7.06 (td, J = 7.2, 1.6, 1H), 7.13–7.18 (m, 3H), 7.20–7.28 (m, 
4H) ppm. 13C NMR (101 MHz, chloroform-d) δ = 24.06, 28.51, 44.29, 52.62, 60.66, 
121.08, 125.67, 127.85, 128.04, 128.86, 130.42, 134.21, 137.61, 148.60, 154.68 ppm. 
MS(ESI+) m/z 372.3 ([M + H]+). HRMS(ESI+) m/z calculated 372.1837 for 
C21H27ClN3O, found 372.1841 ([M + H]+). HPLC, retention time: 2.740 min.

For N-(2-((2-(dimethylamino)ethyl)amino)benzyl)-2-(1-(5-methoxybenzo[d]
oxazol-2-yl)piperidin-3-yl)acetamide (7), 2-(1-(5-methoxybenzo[d]oxazol-2-yl)
piperidin-3-yl)acetic acid (13, 77 mg, 0.25 mmol, 1.00 equiv.), N1-(2-(aminomethyl)
phenyl)-N2,N2-dimethylethane-1,2-diamine (14, 58 mg, 0.30 mmol, 1.20 equiv.) 
and 4-DMAP (31 mg, 0.25 mmol, 1.00 equiv.) were dissolved in chloroform (abs., 
10.0 ml) and EDC (47 mg, 53 µl, 0.30 mmol, 1.20 equiv.) was slowly added. The 
mixture was stirred under reflux for 2 h. After cooling to room temperature, 15 ml 
saturated sodium carbonate solution was added, phases were separated, and the 
aqueous layer was extracted with ethyl acetate (2 × 15 ml). The combined organic 
layers were dried over magnesium sulfate and the solvents were evaporated in 
vacuum. The crude product was purified by column chromatography using 
methylene chloride/methanol (95:5) and acetone/triethylamine (98:2) as mobile 
phases to obtain the title compound as reddish oil (59 mg, 51%). 1H NMR 
(400 MHz, chloroform-d): δ = 1.34 (td, J = 8.8, 4.2, 1H), 1.50–1.69 (m, 2H),  
1.81–1.88 (m, 1H), 2.01 (dd, J = 13.1, 5.5, 1H), 2.11 (d, J = 0.5, 1H), 2.11–2.18  
(m, 1H), 2.22 (dd, J = 13.1, 7.8, 1H), 2.41 (s, 6H), 2.76 (t, J = 6.3, 2H), 3.15  
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(dd, J = 13.2, 7.8, 1H), 3.27 (t, J = 6.4, 2H), 3.28–3.35 (m, 1H), 3.71 (s, 3H), 
3.74–3.81 (m, 1H), 3.85 (dd, J = 13.2, 3.6, 1H), 4.28 (dd, J = 14.6, 5.5, 1H), 4.38 
(dd, J = 14.6, 6.2, 1H), 6.47 (dd, J = 8.7, 2.6, 1H), 6.56 (dd, J = 8.1, 1.2, 1H), 6.62 (td, 
J = 7.4, 1.1, 1H), 6.69 (d, J = 2.5, 1H), 7.00 (d, J = 8.7, 1H), 7.09–7.17 (m, 2H) ppm. 
13C NMR (101 MHz, chloroform-d): δ = 23.56, 29.28, 30.42, 30.93, 32.84, 39.87, 
40.60, 41.04, 44.81, 46.35, 50.44, 53.80, 55.96, 57.62, 101.11, 107.00, 108.54, 110.43, 
116.92, 129.36, 130.80, 143.14, 143.97, 146.05, 157.01, 163.14 ppm. MS(ESI+) m/z 
466.1 ([M + H]+). HRMS(ESI+) m/z calculated 466.2813 for C26H36N5O3, found 
466.2811 ([M + H]+). HPLC, retention time: 15.650 min.

For N-(4-bromophenyl)-4-(isobutylamino)piperidine-1-carboxamide (16), 
4-amino-N-(4-bromophenyl)-piperidine-1-carboxamide hydrochloride (15, 
100 mg, 0.33 mmol, 1.00 equiv.) and isobutyric aldehyde (40 µl, 32 mg, 0.43 mmol, 
1.30 equiv.) were dissolved in dichloroethane (5.0 ml), acetic acid (0.50 ml) and 4 Å 
molecular sieve were added and the mixture was stirred at room temperature for 
30 min. Sodium triacetoxyborohydride (95 mg, 0.43 mmol, 1.30 equiv.) was slowly 
added and the mixture was stirred at room temperature for 16 h. The reaction 
mixture was filtered, added to saturated sodium carbonate solution (25 ml), the 
phases were separated and the aqueous layer was extracted with ethyl acetate 
(3 × 25 ml). The combined organic layers were dried over magnesium sulfate 
and the solvents were evaporated in vacuum. The crude product was purified by 
column chromatography using methylene chloride/methanol (95:5) as the mobile 
phase to obtain the title compound as a colourless solid (89 mg, 76%). 1H NMR 
(400 MHz, DMSO-d6) δ = 0.97 (d, J = 6.7, 6H), 1.44–1.59 (m, 2H), 1.90–2.10 (m, 
3H), 2.73–2.86 (m, 4H), 4.20 (d, J = 13.6, 2H), 7.38–7.43 (m, 2H), 7.43–7.49 (m, 
2H), 8.55 (s, 2H), 8.78 (s, 1H) ppm. 13C NMR (101 MHz, DMSO-d6) δ = 20.59, 
26.07, 28.33, 42.83, 51.44, 55.42, 121.82, 131.53, 140.45, 144.62, 155.03 ppm. 
MS(ESI+) m/z 354.2, 356.2 ([M + H]+).

For N-(3′-fluoro-5′-isobutoxy-[1,1′-biphenyl]-4-yl)-4-(isobutylamino)
piperidine-1-carboxamide (8), 16 (65 mg, 0.18 mmol, 1.00 equiv.), 3-fluoro-5-
isobutyloxyphenylboronic acid (17, 78 mg, 0.37 mmol, 2.00 equiv.) and caesium 
carbonate (180 mg, 0.55 mmol, 3.00 equiv.) were dissolved in a mixture of dioxane 
(9.0 ml) and DMF (1.0 ml) and the mixture was stirred for 30 min at room 
temperature. Tetrakis(triphenylphosphine)palladium(0) (42 mg, 0.04 mmol, 
0.20 equiv.) was then added and the mixture was stirred for 12 h under reflux. After 
cooling to room temperature, the reaction mixture was filtered, water (25 ml) was 
added and the mixture was extracted with ethyl acetate (3 × 25 ml). The combined 
organic layers were dried over magnesium sulfate and the solvents were evaporated 
in vacuum. The crude product was purified by column chromatography using 
methylene chloride/methanol (9:1) as the mobile phase and recrystallized from 
chloroform/hexane to obtain the title compound as a colourless solid (26 mg, 33%). 
1H NMR (400 MHz, methanol-d4) δ = 0.95 (d, J = 5.0, 6H), 0.97 (d, J = 5.0, 6H), 
1.52 (qd, J = 12.5, 4.4, 2H), 1.88–2.02 (m, 3H), 2.06–2.12 (m, 2H), 2.83 (d, J = 7.2, 
2H), 2.85–2.92 (m, 1H), 3.25 (s, 1H), 3.70 (d, J = 6.4, 2H), 4.25 (dt, J = 13.8, 2.6, 
2H), 4.48 (s, 1H), 6.53 (dt, J = 10.8, 2.3, 1H), 6.79 (ddd, J = 9.9, 2.3, 1.5, 1H), 6.84 
(t, J = 1.9, 1H), 7.33–7.38 (m, 2H), 7.42–7.46 (m, 2H) ppm. 13C NMR (101 MHz, 
methanol-d4) δ = 12.38, 17.13, 18.11, 18.76, 18.93, 26.17, 27.96, 28.18, 42.42, 74.45, 
87.72, 98.97, 104.83, 116.50, 116.97, 120.70, 126.77, 155.41, 168.24, 171.31 ppm. 
MS(ESI+) m/z 442.4 ([M + H]+). HRMS(ESI+) m/z calculated 442.2864 for 
C26H37FN3O2, found 442.2865 ([M + H]+). HPLC, rentention time: 18.367 min.

Biological evaluation. The synthesized designs 6–8 were characterized in vitro 
for their biological activity on the target of their respective templates (2–4). All 
compounds were tested in 10 µM concentration and all assays refer to the human 
protein of interest. All experiments were conducted as two independent repeats. 
Compound 6 was studied on dopamine receptors D2L, D2S and D3. D2L activation 
and antagonism were studied in a functional assay using membranes containing 
human recombinant D2L receptors (expressed in Chinese hamster ovary (CHO) 
cells) wherein binding of radiolabelled [35S]GTPγS was determined. Results 
represent relative activity compared to 1 mM dopamine. Activity on D2S was 
assessed in a cell-based (HEK293 (human embryonic kidney) cells) impedance 
assay and a cellular (CHO cells) homogeneous time resolved fluorescence (HTRF) 
assay with cyclic adenosine monophosphate (cAMP) readout served for D3 testing. 
The inhibitory potency of compound 7 on EGFR was studied on recombinant 
enzyme (expressed in insect cells) with poly-Glu-Tyr as substrate in the presence of 
radiolabelled [γ32P]ATP (adenosine triphosphate). Substrate phosphorylation was 
quantified by scintillation measurements. The activity of compound 8 on serotonin 
receptors 5-HT2A, 5-HT2B and 5-HT2C was determined in cellular functional assays 
(HEK293 cells for 5-HT2A and 5-HT2C and CHO cells for 5-HT2B) with detection of 
IP1 by HTR fluorescence resonance energy transfer. Serotonin receptor activation 
and antagonism were assessed, and the results represent relative activity compared 
to 1 µM serotonin. Biological assays were performed by Eurofins (www.eurofins.
com) on a fee-for-service basis.

Data availability
The trained machine learning model, CAS numbers of the training data and 
reaction SMARTS used in this Article are provded in the Code Ocean capsule 
https://doi.org/10.24433/CO.6930970.v132. All molecules were preprocessed in 
accordance with the procedure stated in the Methods (see ‘Molecular building 
blocks’ section).

Code availability
The code for this Article, along with an accompanying computational environment, 
are available and executable online as a Code Ocean capsule: https://doi.
org/10.24433/CO.6930970.v132.
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