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Abstract

This paper presents an efficient surrogate modeling strategy for the uncertainty quan-
tification and Bayesian calibration of a hydrological model. In particular, a process-based
dynamical urban drainage simulator that predicts the discharge from a catchment area during
a precipitation event is considered. The goal is to perform a global sensitivity analysis and to
identify the unknown model parameters as well as the measurement and prediction errors.
These objectives can only be achieved by cheapening the incurred computational costs, that
is, lowering the number of necessary model runs. With this in mind, a regularity-exploiting
metamodeling technique is proposed that enables fast uncertainty quantification. Principal
component analysis is used for output dimensionality reduction and sparse polynomial chaos
expansions are used for the emulation of the reduced outputs. Sensitivity measures such as
the Sobol indices are obtained directly from the expansion coefficients. Bayesian inference
via Markov chain Monte Carlo posterior sampling is drastically accelerated.

The quantification of uncertainty has become an integral aspect of computational science and
engineering in the last two decades [1, 2]. Algorithmic advances on the one hand and hardware
improvements on the other hand allow for an increasingly detailed simulation of complex systems.
That the underlying models are hardly perfect and the model parameters are barely known with
certainty prompts scientist and engineers to conduct an end-to-end analysis of the encountered
errors. This process, for which one commonly relies on probability theory, is known as uncertainty
quantification (UQ).
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Nowadays, the study and possible reduction of uncertainties are important to virtually all
engineering fields. Some UQ applications can be found in [3, 4] for instance. Due to the prevalence
of uncertainties in the mathematical modeling and numerical simulation of environmental and
water systems, UQ is of special importance to hydrological disciplines [5, 6]. Recent reviews of
UQ in the latter context are for example found in [7–9].

The overall goal of UQ is the fair assessment and subsequent improvement of the accuracy
of predictive models. This provides the basis for model-assisted decision making [10, 11] and
real-time control [12], which ultimately supports the effective management of engineered and
environmental systems. In this sense, the adequate representation, thorough analysis and
treatment of uncertainty is an ambitious project whose realization typically involves a variety of
sub-tasks. These standard UQ tasks encompass expert elicitation [13, 14], uncertainty propagation
[15, 16], sensitivity analysis [17, 18] and Bayesian analysis [19, 20].

In forward propagation, one starts by assigning a probability distribution to the uncertain
parameters of a predictive model. Afterwards, the goal is to determine the corresponding
distribution of the model response [21, 22]. While the input distribution reflects the degree as
to which one does not know the parameter values precisely, the output distribution quantifies
the lack of confidence that we must have in the model predictions. A standard method to
perform uncertainty forward propagation is Monte Carlo (MC) simulation [23]. Here, one
draws independent samples from the input distribution and computes the corresponding model
responses. Thereupon, the statistical moments and a histogram-based representation of the
output distribution can be obtained. MC sampling is very robust and rests on mild assumptions,
yet it is very expensive and suffers from a slow convergence rate.

The study of how important the various input parameters are with respect to the model response
is called sensitivity analysis [24, 25]. There are certainly different possibilities of defining and
analyzing sensitivity measures. In a global variance-based analysis one compares and ranks the
input variables according to their contribution to the total response variance [26, 27]. This does
not only provide valuable insight into the input-output relationship established by the model, it
also allows one to restrict the attention to the most influential parameters and to allocate the
available resources accordingly. Though, the practical computation of global sensitivity indices,
e.g. in a MC sampling framework, is usually expensive because it requires a moderate to high
number of model evaluations.

Bayesian inference is a probabilistic framework for statistical inference and uncertainty reduction
[28, 29]. The initial uncertainty of the parameters, before the data have been realized or at
least before they are analyzed, is formulated as the prior probability distribution. A conditional
statistical model of the observables given values of the unknown parameters, which for the actual
data gives rise to the likelihood function, is constructed. Eventually, the posterior distribution
ensues from Bayes’ law. This is a distribution of the unknown parameters conditioned on the
acquired observations, i.e. it represents the new state of knowledge and reduced uncertainty after
the information contained in the data has been processed. The mean or the mode of the posterior
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are often taken as point estimates of the parameters, whereas the spread of the posterior can
be regarded as a measure of the statistical estimation uncertainty. Bayesian inference does not
only establish a consistent foundation for parameter estimation and inverse modeling, it can
also provide solid answers to the delicate question of model discrepancy [30, 31]. Moreover,
model evidences can be judged, which in turn enables model comparison, selection and averaging
[32, 33].

The chief task in Bayesian inference is the computation of the posterior distribution. Sampling-
based approaches such as Markov chain Monte Carlo (MCMC) [34, 35] are by far the most
widespread techniques for computational Bayesian inference. Here, the idea is to construct an
ergodic Markov chain that exhibits the posterior as the stationary distribution. The posterior
can be sampled that way and all relevant conditional expectation values can be estimated.
Unfortunately, due to the sample autocorrelation, MCMC is less efficient than standard MC
simulation with independent samples. Therefore, the procedure usually calls for a large number
of algorithmic iterations and evaluations of the forward model. This causes an excessive computa-
tional cost which easily exceeds the available budget. A plethora of advanced sampling methods
exists, e.g. gradient-driven updating schemes with auxiliary variables [36, 37] or population-based
samplers resting on a tempering schedule [38, 39]. Beyond that, there are some fundamentally
different alternatives to MCMC sampling, e.g. based on variational strategies [40, 41], optimal
transportation theory [42, 43] or spectral likelihood expansions [44]. But despite these efforts,
Bayesian model calibration remains a costly endeavor. Additional costs are even occasioned
when the relative evidences of various competing models have to be assessed [45, 46].

Following these remarks, one has to recognize that UQ tasks are extremely computing-intensive,
especially for hydrological applications where the underlying processes are often studied by
reference to nonlinear and highly parametrized models. This brings about long computation
times and complicates all rigorous uncertainty analyses that require many model runs, i.e.
forward propagation, sensitivity analysis and statistical inference. In the worst case, hydrologists
would be precluded from carrying out important activities, e.g. the intelligent operation of
urban infrastructure through state-of-the-art model-based predictive control methods could
be completely prohibited thereby. It is also conceivable that, because the evidence-grounded
inference of physical parameters is rendered impossible, parameter values have to be chosen in
an ad-hoc fashion. This could lead to questionable predictions and results.

If one does not want to resort to oversimplified models or to discard some system analyses and
control strategies, one may consider employing a fast metamodel or surrogate model [47, 48].
This possibility has received much attention lately. A surrogate model is constructed so as to
emulate the input-output relation of the original simulator, i.e. it is a function approximation.
The most important behavioral characteristics should be reproduced and the emulator must be
cheap to evaluate. Very often, this goal can be achieved with Gaussian process regression [49, 50]
or a polynomial chaos expansion (PCE) [51, 52]. The former is an interpolation routine that is
predicated on the conditioning of a Gaussian process prior for the simulator. The latter approach
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bears on a basis decomposition of the response random variable into orthogonal polynomials in
the input variables. In a non-intrusive manner, a representative sample of model inputs and the
associated model responses can be used to train either of the mentioned emulators.

After a metamodel is constructed, it can replace the simulator in any of the discussed UQ
analyses, e.g. in MC simulation for uncertainty forward propagation. It turns out that UQ can
be significantly accelerated that way. The reason is that metamodeling allows one to exploit
structures and regularity properties of the forward problem. In Gaussian process regression
one can incorporate prior knowledge about the functional relationship through the mean and
covariance function of the Gaussian process. Physical understanding and expectations regarding
the smoothness can be integrated hereby. Polynomial expansions rest on the assumption that the
model response can be represented well in the global basis. They allow for finding and utilizing
compressibility (i.e. the spectrum of the coefficients decays fast) and sparsity (i.e. only a small
fraction of the terms contribute significantly).

Of course, in the construction of a sufficiently accurate and fast emulator one may also face
problems. The curse of dimensionality stands for a number of phenomena that form obstacles to
the study of high-dimensional systems. In the first instance, this relates to the high-dimensionality
of the input space, which impedes UQ analyses in general. For the computation of PCE-based
metamodels in particular, as mentioned above, one can alleviate the curse by seeking sparsity
with the aid of regularized regression [53–55] and its Bayesian variants [56–58]. Another problem,
that very often arises in the simulation of time-dependent hydrological processes, is related
to high-dimensional model outputs. In order to understand and eventually approximate the
functional relationship between the uncertain hydrological parameters and the corresponding
predictions at successive time instants, the latter have to be seen as different output variables.
Since current metamodeling techniques treat each of these scalar outputs separately, and long
time series may comprise some ten thousand points, this might become a critical problem in
hydrological applications.

Motivated by the preceding discussion, the goal of this paper is the development of efficient
surrogate models in the context of dynamical rainfall-runoff simulation, and the subsequent
facilitation of the sensitivity analysis and Bayesian calibration of a slow process-based urban
water simulator. The following regularity-exploiting strategy is pursued to that end. First,
principal component analysis is used for reducing the dimensionality of the combined model
output, that comprises the predicted runoffs at various time instants. This allows us to exploit
the fact that discharge is a rather well-structured phenomenon, i.e. as function of the random
inputs, the discharge at adjacent times is highly correlated. Second, the low number of principal
components obtained this way is metamodeled through sparse polynomial expansions. Thereby
we utilize the sparsity found in the basis decomposition of the hydrological model. Principal
component analysis and polynomial chaos expansions, each taken by itself, are well-established
tools. Their synergy potential, however, has attracted little to no attention so far.

Another novelty is that, third, we introduce a new estimator of time-variant variance-based
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sensitivity measures in connection with the chosen emulation approach. We show that one can
obtain the sensitivities of the original simulator outputs with respect to the uncertain inputs from
the expansion coefficients of the principal components. Last, a comprehensive Bayesian analysis
of the parametric uncertainties and modeling errors is conducted. An explicitly parametrized
term is introduced that represents the systematic model discrepancy as a function of time. This
term acts additively on the model predictions and it can be inferred together with the unknown
model parameters. In order to demonstrate the proposed methods, a case study is executed that
involves a drainage model of an urban catchment area in Switzerland and real experimental data.
Notwithstanding that all developed methods are explained and demonstrated on the basis of this
specific problem, they are more generally applicable and can be readily adapted to other water
resources or environmental applications.

The remainder of the paper is organized as follows. An overview of the forward problem setup
and the information available for the model calibration is provided in Section 1. The construction
of the multivariate emulator by means of output dimensionality reduction and sparse polynomial
chaos expansions is described in Section 2. Details on the estimation of global variance-based
sensitivity measures are given in Section 3. Bayesian parameter estimation and predictive model
correction are performed in Section 4. Finally it is summarized and concluded in Section 5.

1 Problem setup

In hydrology one distinguishes between physical process-based and purely data-driven modeling
approaches [59, 60]. Due to complicated interactions of the relevant compartments at several
spatial and temporal scales, the physics-oriented simulation of urban water systems is a peculiarly
uncertainty-prone procedure [61, 62]. This motivates a thorough error and uncertainty analysis.
In this paper, such an analysis is performed for a computer model which predicts the time-varying
runoff from an urban drainage basin that receives precipitation, see [63] for a more detailed
description. The dynamical simulation of the outflow is based on a series of rainfall intensity
measurements, and it requires knowledge of model parameters such as the Gauckler–Manning
roughness coefficients or the sub-catchment slopes. Unfortunately, the values of those parameters
are not precisely known, i.e. they are uncertain. Moreover, even if the input parameters could
be known perfectly, the predicted outputs would be still subject to inevitable model-immanent
errors and discrepancies.

For the analysis and eventual reduction of the aforementioned uncertainties, we have the following
pieces of information at hand. Bounds and prior distributions of the unknown hydrological
parameters are established. They represent the parametric uncertainties before the data are
analyzed. About six hundred measurements of the rainfall intensity during a precipitation event,
observed by a single rain gauge in the catchment, and the runoff at a single outlet are available.
Besides, we have the precomputed results of roughly two thousand training runs of the simulator.
They were performed for the recorded rainfall data, while the uncertain parameters had taken
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on different values in each of those runs. Before we begin with surrogate modeling, sensitivity
analysis and model calibration, this section contains a brief description of the urban drainage
model under consideration and the experimental data at our disposal.

The storm water management model (SWMM) is a dynamic rainfall-runoff simulation program
for urban areas [64]. It can be used to predict water levels in sewer manholes and the runoff
from catchment areas during dry and wet weather. A model of the drainage basin of Adliswil, a
municipality in the canton of Zürich in the northeast of Switzerland, was developed with the
SWMM at the Swiss Federal Institute of Aquatic Science and Technology. In Fig. 1 a map is
provided that shows the surrounding area of the size 5 km× 3 km. About 160 ha of this area, i.e.
approximately ten percent, are considered in the model. As very detailed land-use information is
available, the catchment is represented with approximately one hundred sub-catchments that are
drained by a network consisting of five hundred pipes.
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Figure 1: Adliswil, Switzerland (1:50000). From OpenStreetMap under CC BY-SA 2.0. ©
OpenStreetMap contributors.

All sub-catchments and sewer pipes are associated with their own set of unknown parameters.
This amounts to a fairly large number of unknowns which is reduced by considering spatial
averages only, i.e. physical quantities of the same type are averaged over the sub-catchments
or channels. The resulting averages thus relate to the catchment as a whole. Moreover, the
parameters are normalized so as to be dimensionless and to lie in between reasonable bounds. A
compilation of the so-obtained scaled parameters xi ∈ Dxi for i = 1, . . . , 8 and their bounded
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domains Dxi = [xi, xi] is presented in Table 1. Here, the lower and upper bounds are denoted as
xi and xi, respectively. The physical quantities described and their unscaled averages are also
provided in the table. While the first seven parameters relate to the sub-catchments, only the
last one characterizes the pipes.

Table 1: Hydrological model parameters.

xi Dxi Physical parameter Spatial average

x1 [0.5, 1.1] Percentage of the impervious area 36 %
x2 [0.5, 1.5] Characteristic width of the overland flow path 35.7 m
x3 [0.5, 1.5] Slope of the sub-catchments 11.4 %
x4 [0.5, 1.5] Depression storage height of the impervious area 2 mm
x5 [0.5, 1.5] Manning roughness coefficient of the impervious area 0.12 s ·m−1/3

x6 [0.5, 1.5] Depression storage height of the pervious area 2 mm
x7 [0.5, 1.5] Percentage of the impervious area without depression storage 19.04 %
x8 [1.0, 1.5] Manning roughness coefficient of the channels 0.012 s ·m−1/3

A single 15-hour rainfall event is considered that had occurred on May 28, 2013. Time is denoted
as t in the following. The experiment extends over a period with t/120 s ∈ [0, 600]. Measurements
of the varying rainfall intensity I and the catchment outflow Q are taken in regular intervals
of two minutes over the full duration. For i = 0, . . . , 600 the time instants of the observations
are denoted as ti. Both rainfall and outflow measurements were made at single locations within
the drainage basin, e.g. the outflow was measured at the outlet of the system, close to the
wastewater treatment plant. In Fig. 2 the available data are summarized. The observations of
the rainfall intensity I(ti) are indicated by the black dots in Fig. 2(a). Owing to the resolution
of the measurement device, the recorded intensity takes on discrete values only. The recorded
outflows Q(ti) at the sewage treatment plant are shown in Fig. 2(b).

Beyond the observational data just described, the results of approximately two thousand runs of
the SWMM simulator are available. These will constitute the training runs for the computation
of the surrogate model in the next section. They were conducted for the rainfall data shown
in Fig. 2(a) and uniformly distributed values of the uncertain hydrological parameters. The
runtime for a single SWMM simulation amounts to approximately twenty seconds. For the sake
of illustration, a hundred trajectories from these computer simulations are depicted in Fig. 2(b).
They can be compared to the actually measured runoffs in the same plot.

The model manages to capture the main trends and characteristics of the data. However, in the
time interval t/120 s ∈ [150, 200] the model systematically underpredicts the outflow. An even
stronger systematic discrepancy is detected for the time span t/120 s ∈ [250, 500] during which
the outflow is overpredicted. It is also noticed that the model predictions for different values of
the uncertain inputs do not differ significantly, i.e. they cannot be discriminated very well by their
ability to trace the data. The effect is especially obvious in the second half of the experiment
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(a) Rainfall intensity. (b) Catchment outflow.

Figure 2: Available data. Observations of the time-dependent rainfall intensity are shown in
Fig. 2(a). Their discrete values reflect the resolution of the measurement procedure. The actually
measured outflows during the event can be compared against an ensemble of one hundred
simulations in Fig. 2(b). While the simulations and measurements are in rough accordance with
each other, some systematic deviations can be identified in the time interval [150, 200] and, more
obviously, in [250, 500].

with t/120 s ∈ [300, 600]. Here, the mismatch between the data and the model predictions is
apparently dominated by systematic errors and random noise rather than by variations of the
model inputs. This motivates the study of model discrepancy as a function of time. While
random noise can be at least partially attributed to uncertainties in the measurement process,
the systematic errors are a consequence of the model simplifications. Especially the limitation to
spatial parameter averages only, instead of a more refined representation as spatially variable
fields for example, is believed to be a major factor contributing to the observed time-dependent
discrepancies.

2 Surrogate modeling

In computing-intensive studies it has become common practice to replace an expensive-to-run
simulator of the system by a cheap-to-evaluate surrogate [47, 48]. These so-called metamodels or
emulators try to mimic the originally defined input-output relationship as closely as possible.
Dynamic simulators can be emulated in a purely statistics-based manner, e.g. by conditioning a
Gaussian process prior on the experimental design. Mechanism-based approaches try to enhance
the emulation through an appropriate incorporation of the available physical understanding
[65, 66]. In particular, the solution of a simplified problem is incorporated into the prior and
subsequently corrected so as to emulate the full simulator. An application of this approach to
the Adliswil watershed can be found in [67].

Polynomial chaos expansions [68, 69] establish an alternative to Gaussian process–based metamod-
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els. In this context, structure-exploiting regression formulations [53, 56] do not only capitalize on
the smoothness of the forward model, they also allow one to seek for and eventually benefit from
sparsity in the expansions. At the same time, this promises high accuracy and good scalability
with the dimensionality of the input space and the size of the training data. Examples for the
use of sparse polynomial surrogates in hydrological applications are found in [70, 71] for instance.

In this section we pursue an integrated strategy that draws on both dimension reduction and
polynomial metamodeling. First, the dimensionality of combined model output, which consists
of all time-indexed predictions, is reduced through principal component analysis. This allows us
to minimize the degree of redundancy that is inherent in the simulation of a highly structured
process such as the time-variant outflow. Then, chaos expansions are computed for the main
components as functions of the uncertain inputs, which allows for revealing and leveraging certain
sparsity patterns of the forward model. Last, the obtained expansions are combined in order to
obtain a multivariate surrogate model for the full time series of the outflow. In so doing, the
regular properties of the forward problem can be fully taken advantage of. That the method
is fully non-intrusive, i.e. it is solely based on precomputed input-output pairs, allows for a
straightforward adaptation to other problems.

2.1 Training runs

The SWMM implementation of the catchment predicts a complete discharge time series at the
system outlet close to the wastewater treatment plant throughout the precipitation event. For
the given rainfall intensity record, the model only acts as a function of the uncertain input
parameters listed in Table 1. Thus we gather the unknown model input parameters in a vector
x = (x1, . . . , xM )> with M = 8. Similarly we proceed for the rainfall data d = (d0, . . . , dN )>

with N = 600. For i = 0, . . . , N we have introduced di = I(ti) for the observed rainfall intensities
at the measurement time instants ti.

The numerical model predicts the vector ỹ = (ỹ0, . . . , ỹN )> whose entries are the outflows
ỹi = Q̃(ti) at the times ti. All in all, ỹ = M(x,d) reflects the structure of the hydrological
simulations. Since we only consider a single precipitation event and disregard errors in the rainfall
data, we absorb the dependence on the rainfall into the definition of the forward modelMd by

ỹ =Md(x). (1)

Note that the dynamical nature of the original system is now completely captured through the
pooled multivariate output structure of the model in Eq. (1).

We now switch to a probabilistic formulation, where the inputs are modeled as independent
Dxi-valued random variables Xi ∼ U(xi|xi, xi) with uniform distributions over the intervals [xi, xi]
for i = 1, . . . ,M . The random vector X ∼ ∏M

i=1 U(xi|xi, xi) with values in Dx1×Dx2× . . .×DxM
then represents the input uncertainty. When the modelMd is applied to the random inputs X,
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the output uncertainty is described by the RN+1-valued random vector

Ỹ =Md(X). (2)

For later considerations, i.e. stochastic spectral expansions and variance decompositions, we will
assume from now on tacitly that all components of this random response vector have a finite
variance.

In order to construct a metamodel that allows us to cheaply predict to model response for
arbitrary values of the inputs, in total K = 2, 048 training runs were conducted. Realizations x(k)

of the input variables had to be obtained for k = 1, . . . ,K and the corresponding realizations
ỹ(k) =Md(x(k)) of Eq. (2) had to be computed. The inputs were created by Latin hypercube
sampling [72] in two chunks of 1, 024 samples each. Altogether they constitute the experimental
design X = (x(1), . . . ,x(K)). The computed model responses, some of which were already shown
in Fig. 2(b), are collected into the data matrix

Y =


ỹ(1)>

ỹ(2)>

...
ỹ(K)>

 =


ỹ

(1)
0 ỹ

(1)
1 . . . ỹ

(1)
N

ỹ
(2)
0 ỹ

(2)
1 . . . ỹ

(2)
N

...
... . . . ...

ỹ
(K)
0 ỹ

(K)
1 . . . ỹ

(K)
N

 . (3)

2.2 Principal component analysis

The coordinates of the model output with respect to a certain reference system, e.g. the canonical
basis, could now be metamodeled individually. In our case, this would require to handle about
six hundred different metamodels simultaneously. That is inconvenient and may even become
infeasible for problems with much longer time series. Also, it involves a high degree of redundancy,
i.e. the simulation outputs at contiguous times are highly correlated.

To find a remedy one can choose a basis that is qualified for purposes of dimension reduction
and data compression. Here we use principal component analysis (PCA) [73] to that end. While
this technique is mainly used for compressing big real-world data sets with many features, it can
be similarly used for reducing the model output in the context of computer simulations [74, 75].
A discussion of the population PCA for a random vector, which is the discrete variant of the
Karhunen–Loève (KL) expansion of a stochastic process [76], is found at the end of the paper in
Appendix A. The empirical sample PCA is recalled in the following.

Much in the same way as the population PCA works for a random vector, i.e. an orthogonal
transformation is applied such that linearly uncorrelated variables with decreasing variances are
obtained, a set of observed realizations from the random vector is processed in the sample PCA.
We consider the random vector Ỹ that represents the model output and a number of realizations
Y = (ỹ(1), . . . , ỹ(K))> from it. Instead of the exact mean µỸ = E[Ỹ ] and covariance matrix
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ΣỸ = Cov[Ỹ ], which cannot be determined exactly, one takes their empirical estimates

µỸ = 1
K

K∑
k=1

ỹ(k), ΣỸ = 1
K − 1

K∑
k=1

(ỹ(k) − µỸ )(ỹ(k) − µỸ )>. (4)

For i = 0, . . . , N the eigenvectors φi and eigenvalues λi of the empirical covariance fulfill
ΣỸ φi = λiφi. The eigenvalues are arranged in the descending order λ0 ≥ λ1 ≥ . . . ≥ λN .

Then one finds the smallest N ′ ≤ N for which the proportion ∑N ′
i=0 λi/

∑N
i=0 λi of the total

empirical variance is larger or at least equal than a prespecified threshold. The matrix ΦN ′ =
(φ0,φ1, . . . ,φN ′) is composed and for k = 1, . . . ,K one defines

z̃(k) = Φ>N ′(ỹ(k) − µỸ ). (5)

This is the reduced PCA representation of ỹ(k) in terms of the empirical principal components
z̃

(k)
i = φ

>
i (ỹ(k) − µỸ ) for i = 0, . . . , N ′. The data set is compressed while retaining most of the

total variation by

Z =


z̃(1)>

z̃(2)>

...
z̃(K)>

 =


z̃

(1)
0 z̃

(1)
1 . . . z̃

(1)
N ′

z̃
(2)
0 z̃

(2)
1 . . . z̃

(2)
N ′

...
... . . . ...

z̃
(K)
0 z̃

(K)
1 . . . z̃

(K)
N ′

 . (6)

The compression of the data is lossy, but one can reconstruct the originally observed samples for
k = 1, . . . ,K approximately as

ỹ(k) ≈ µỸ + ΦN ′ z̃(k) = µỸ +
N ′∑
i=0

z̃
(k)
i φi. (7)

Now we perform PCA to our sample of SWMM simulator responses Y = (ỹ(1), . . . , ỹ(K))>. Using
N ′ + 1 = 9 principal components captures 99 % of the total variance of the signal. Hundred
realizations contained in the compressed data set Z = (z̃(1), . . . , z̃(K))> are visualized in the
parallel coordinate plot in Fig. 3. These are the empirical principal components of the sample of
training runs that were already shown in Fig. 2(b). It can be seen that the main components are
centered around zero and ordered according to their individual contribution to the total variance.

2.3 Polynomial chaos expansions

In order to construct a surrogate model of the N + 1 components of the forward model response
Ỹ as a function of the unknown parametersX, we now only have to metamodel the first principal
components z̃p(X) = Z̃p for p = 0, . . . , N ′ in Eq. (35). This can be done through PCEs [51, 52].
Here, one starts with a family of polynomials {Ψ(i)

αi (Xi)}αi∈N in a single input variable Xi ∈ Dxi
that is indexed by the polynomial degree αi ∈ N. The polynomials are assumed to be orthonormal
in the sense that E[Ψ(i)

αi (Xi)Ψ(i)
βi

(Xi)] = δαiβi .
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Figure 3: Principal component analysis. The simulated outflows are compressed into the first
eight principal components. This is visualized for the hundred realizations that were already
depicted in Fig. 2(b).

This way, a couple of well-known probability distributions are associated with certain families
of orthogonal polynomials [77]. A list of four univariate distributions, their supports and the
corresponding polynomials is provided in Table 2. The first six members of the Legendre
polynomials {Ψα(x)}5α=0 in a single variable x ∈ [−1, 1], that are orthogonal with respect to
the uniform distribution π(x) = U(x | − 1, 1), are shown in Fig. 4. When the random model
parameters do not have a standard form, i.e. they do not follow a classical distribution, one has
to transform to standardized variables that follow such a distribution. As an alternative, one can
numerically construct a sequence of polynomials that are orthogonal with respect to an arbitrary
non-standard input distribution [78].

Table 2: Orthogonal polynomials.

Distribution Support Polynomials

Gaussian (−∞,∞) Hermite
Uniform [−1, 1] Legendre
Beta [−1, 1] Jacobi
Gamma [0,∞) Laguerre

Figure 4: Legendre polynomials.

Assuming that the input density factorizes as π(x) = π1(x1) . . . πM (xM ), one can construct a
family {Ψα(X)}α∈NM of multivariate polynomials by Ψα(X) = Ψ(1)

α1 (X1) . . .Ψ(M)
αM (XM ). The

multi-index α = (α1, . . . , αM ) ∈ NM characterizes the polynomials. This basis can be used to
expand the random variables z̃p(X) for p = 0, . . . , N ′ with finite variance as

z̃p(X) =
∑

α∈NM
ap,αΨα(X). (8)
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Here, the set of coefficients {ap,α}α∈NM is defined through the orthogonal projections ap,α =
E[z̃p(X)Ψα(X)]. The series in Eq. (8) has to be truncated in practice. This can be done by
limiting the total polynomial degree ‖α‖1 = ∑M

p=1|αp| ≤ γ to a certain γ ∈ N. Only terms with
α ∈ Aγ = {β ∈ NM : ‖β‖1 ≤ γ} are then kept in the truncated PCEs

z̃p(X) ≈
∑
α∈Aγ

ap,αΨα(X). (9)

The truncated expansion in Eq. (9) is optimal in the sense that E[(z̃p(X)−∑α∈Aγ ap,αΨα(X))2] =
inf z̃?∈span({Ψα}α∈Aγ )E[(z̃p(X) − z̃?(X))2]. Moreover, for γ → ∞ the series converges in mean
square, i.e. E[(z̃p(X) −∑α∈Aγ ap,αΨα(X))2] → 0. Another advantage of polynomial chaos–
based representations of black-box models is that they provide some interpretable insights. First
of all, one can classify the terms according to their polynomial degrees and input variables.
Furthermore, their statistical moments are intimately related to the coefficients of the expansions.
For example, due to the orthogonality of the polynomial basis, for the mean and variance one
has E[z̃p(X)] = ap,0 and Var[z̃p(X)] = ∑

α∈NM\{0} a
2
p,α, respectively.

For each expansion with p = 0, . . . , N ′, approximations {âp,α}α∈Aγ of the PCE coefficients
in Eq. (9) can be computed in non-intrusive fashion [79]. Pairs of input and output values
are processed to that end. Here we analyze the representative sample X = (x(1), . . . ,x(K)) of
input values, the experimental design, together with the corresponding values of the principal
components Zp = (z̃(1)

p , . . . , z̃
(K)
p )> = (z̃p(x(1)), . . . , z̃p(x(K)))>. The latter constitute the p-th

column of the matrix Z = (Z0, . . . ,ZN ′) in Eq. (6). In order to approximate the expansion
coefficients, one can then use linear regression analysis.

We employ least angle regression (LAR) [80, 81], a powerful regularized regression technique that
promotes sparsity in the PCE coefficient vectors. Regressors are penalized in such a way that
only the most dominant ones are retained. This allows us to mitigate the curse of dimensionality
and has been proven very efficient in the context of polynomial metamodeling [53]. We use our
own implementation of the LAR algorithm [82, 83] and separately compute PCEs of the principal
components z̃p(X) based on the available experimental design X and the reduced output data Z.
The parameters in Table 1 are linearly transformed so as to match the uniform standard form
in Table 2. Following this, normalized multivariate Legendre polynomials in the standardized
random inputs constitute the expansion basis for all PCEs. As it turns out, the hydrological
model is indeed approximately sparse in the polynomial basis used. Less than one percent of the
total number of regressors is retained in each of the nine expansions.

The mean squared prediction errors can be used in order to assess the emulation quality of
the sparse PCEs. However, their empirical estimation by the average of the squared errors
over the experimental design is overly optimistic. We therefore use cross validation during the
computations, see e.g. [84] for details. This protects from overfitting and allows us to adequately
estimate how well the surrogate models generalize beyond the experimental design. The leave-
one-out errors for expansions with K = 1, 024 (first batch of samples only) and K = 2, 048 (first
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and second batch combined) are reported in Table 3. They are normalized through division
by the sample variance pertaining to the experimental design. As expected, the PCE with the
richer experimental design generalizes better than the one with the poorer design for which the
error is approximately twice as high. One can observe the general trend that the accuracy of the
approximation decays with the order of the principal components. Moreover, the metamodeling
errors amount to, with only one exception, less than one percent of the response variance that is
caused by the input uncertainty. This is deemed accurate enough.

Table 3: Normalized leave-one-out errors.

K z̃0 z̃1 z̃2 z̃3 z̃4 z̃5 z̃6 z̃7 z̃8

1, 024 2.58× 10−5 1.42× 10−4 3.94× 10−4 2.22× 10−4 3.37× 10−3 2.70× 10−3 7.35× 10−3 7.37× 10−3 1.11× 10−2

2, 048 1.49× 10−5 6.87× 10−5 1.73× 10−4 1.06× 10−4 1.41× 10−3 1.23× 10−3 2.56× 10−3 2.97× 10−3 3.16× 10−3

After the computation of a PCE z̃p(X) ≈ ∑
α∈Aγ âp,αΨα(X) for each principal component

with p = 0, . . . , N ′, the random vector Ỹ = Md(X) containing the model outputs can be
approximated as

Ỹ ≈ µỸ +
N ′∑
p=0

z̃p(X)φp ≈ µỸ +
N ′∑
p=0

 ∑
α∈Aγ

âp,αΨα(X)

φp. (10)

This expansion is henceforth used as a metamodel of the original response vector.

Figure 5: Final metamodel predictions. Three simulations (solid lines) and their approximations
(dashed lines) are exemplarily shown. Solid and dashed lines that lie on top of each other
correspond to the same inputs. Hence, the metamodel is considered as sufficiently accurate.

In Fig. 5 the simulated and emulated outflows are shown for three different input values in
the experimental design that were randomly chosen. It is again ascertained that the obtained
metamodel is sufficiently accurate for uncertainty quantification purposes. Although our
regression approach does not explicitly guarantee the absence of negative outflow predictions,
that would be unphysical, such predictions are not observed in our experiments.
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3 Sensitivity analysis

Now we want to perform a global sensitivity analysis of the urban drainage simulator. Variance-
based sensitivity analysis is based on apportioning the variance of a model response quantity
among several uncertain input variables [26, 27]. This provides relevant insights into the model in
question and gives rise to model reduction schemes [17, 18], e.g. one could construct a simplified
model by fixing relatively unimportant parameters to their nominal values and varying only
the most influential parameters. For a single response quantity, sensitivity measures such as
Sobol’ indices can be efficiently computed with the aid of surrogate models [85], e.g. for a PCE
one can estimate the sensitivities by a postprocessing of the expansion coefficients [86]. In the
vector-valued case, one would have to estimate the sensitivity indices for each output quantity
separately. If the model predictions are high-dimensional, such as the time series in almost every
hydrological study, this would become inconvenient and time-consuming.

An original solution to this problem is proposed in this section. It is based on the combined
metamodeling approach presented in the last section. Instead of computing the desired Sobol’
indices for the time-variant outflows directly, we consider the indices of the principal components
first. Then we investigate how the obtained results can be reused for assessing the sensitivities
of the discharge. As it turns out, this is feasible through a multivariate extension of the PCE
coefficient postprocessing. This method for the global sensitivity analysis of high-dimensional
outputs is explained in the following.

3.1 Sobol’ indices

Recall that we assumed the input variables X ∼ π(x) = π1(x1) . . . πM (xM ) to be independent.
For now, we consider a scalar-valued model response Ỹf = f(X) with finite variance, e.g.
the catchment outflow Ỹt = f(X) at a time instant t ∈ {0, . . . , N} or a principal component
Z̃p = f(X) with p ∈ {0, . . . , N ′}. Variance-based global sensitivity analysis then rests on a
decomposition of the model response into functions with an increasing number of input parameters.
This so-called functional analysis of variance (ANOVA) or Hoeffding–Sobol decomposition [87, 88],
which is sometimes also referred to as a high-dimensional model representation (HDMR) [89, 90],
can be written as

f(X) = f0 +
∑

1≤i≤M
fi(Xi) +

∑
1≤i<j≤M

fij(Xi, Xj) + . . .+ f1,...,M (X1, . . . , XM )

= f0 +
∑

1≤p≤M

∑
1≤i1<...<ip≤M

fi1,...,ip(Xi1 , . . . , Xip) =
∑

u⊆{1,...,M}
fu(Xu).

(11)

Here, f0 is a constant and fi(Xi) with 1 ≤ i ≤ M are functions of a single variable. The
last-mentioned functions are called main effects. Functions of more than one variable, such
as fij(Xi, Xj) with 1 ≤ i < j ≤ M , are called interactions. An intuitive indexing scheme for
organizing the terms is introduced in the second line of Eq. (11). Here, fu(Xu) denotes the
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interaction of all variables Xiq with iq ∈ u that are contained in a certain set u ⊆ {1, . . . ,M}
and f∅ = f0 signifies the constant term.

The Hoeffding–Sobol decomposition is unique if one imposes the vanishing condition that
E[fu(Xu)] =

∫
fu(xu)πiq(xiq) dxiq = 0 for ∅ 6= u ⊆ {1, . . . ,M} and iq ∈ u. It follows that

all terms but the constant have zero mean and they are mutually uncorrelated, i.e. for u, v ⊆
{1, . . . ,M} with u 6= v one has E[fu(Xu)fv(Xv)] =

∫
fu(xu)fv(xv)π(x) dx = 0. Moreover, one

can easily express the unconditional and conditional expectation values of the model response as

E[Ỹf ] = f0, E[Ỹf |Xi] = f0 +fi(Xi), E[Ỹf |Xi, Xj ] = f0 +fi(Xi) +fj(Xj) +fij(Xi, Xj). (12)

Further conditional expectations are given analogously to Eq. (12). On this basis, one can obtain
the terms f0 = E[Ỹf ], fi(Xi) = E[Ỹf |Xi]− f0, fij(Xi, Xj) = E[Ỹf |Xi, Xj ]− f0 − fi(Xi)− fj(Xj)
and so on recursively. One often utilizes that a real system model can be well described by an
approximation where at most bivariate interactions are included, i.e. f(X) ≈ f0+∑1≤i≤M fi(Xi)+∑

1≤i<j≤M fij(Xi, Xj).

Note that the ANOVA/HDMR representation contains only finitely many summands, namely∑M
i=0

(M
i

)
= 2M , all of which feature a finite variance. This allows one to meaningfully par-

tition the variance of the model response Var[Ỹf ] = E[Ỹ 2
f ] − f2

0 . The variance Var[Ỹf ] =
Var[∑∅6=u⊆{1,...,M} fu(Xu)] of the sum of the uncorrelated random variables in Eq. (11) is the
sum of the individual variances

Var[Ỹf ] =
∑

1≤p≤M

∑
1≤i1<...<ip≤M

Var[fi1,...,ip(Xi1 , . . . , Xip)] =
∑

∅6=u⊆{1,...,M}
Var[fu(Xu)]. (13)

Here, Var[fi1,...,ip(Xi1 , . . . , Xip)] = E[f2
i1,...,ip(Xi1 , . . . , Xip)] with 1 ≤ p ≤ M is termed a partial

variance. It quantifies the contribution of the combination of variables (Xi1 , . . . , Xip) to the total
variance Var[Ỹf ]. One then defines the Sobol’ index as the corresponding fraction of the total
variance

Si1,...,ip =
Var[fi1,...,ip(Xi1 , . . . , Xip)]

Var[Ỹf ]
. (14)

The first-order indices Si = Var[fi(Xi)]/Var[Ỹf ] with 1 ≤ i ≤M measure the influence of the main
effects. Similarly, the second-order indices Sij = Var[fij(Xi, Xj)]/Var[Ỹf ] with 1 ≤ i < j ≤ M

quantify the effect of the bivariate interactions. In total, there are 2M − 1 sensitivity indices
specified this way. They are often summarized by reference to the total Sobol’ index of a variable
Xiq with 1 ≤ iq ≤M [91]. It is defined as

Tiq =
∑

1≤p≤M

∑
1≤i1<...<iq<...<ip≤M

Si1,...,iq ,...,ip =
∑

∅6=u⊆{1,...,M}
iq∈u

Su. (15)

One can interpret the total index as the total effect due to the input parameter Xiq , either
in isolation or in conjunction with other variables. While the indices in Eq. (14) satisfy∑

1≤p≤M
∑

1≤i1<...<ip≤M Si1,...,ip = 1, the total Sobol’ indices in Eq. (15) do not have to add up
to one. Instead one has 0 ≤ Tiq ≤ 1 and ∑1≤iq≤M Tiq ≥ 1 for the total indices.
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Note that the conditional expectations E[Ỹf |Xi] and E[Ỹf |Xi, Xj ] in Eq. (12) are actually
random variables. This follows from their dependence on Xi and Xj . Hence, one can consider
the variances of the conditional expectation values. These are given as

Var[E[Ỹf |Xi]] = Var[fi(Xi)], Var[E[Ỹf |Xi, Xj ]] = Var[fi(Xi)] + Var[fj(Xj)] + Var[fij(Xi, Xj)].
(16)

While the conditional expectations are related to the terms of the ANOVA/HDMR decomposi-
tion, their variances in Eq. (16) admit interesting interpretations of the partial variances and
Sobol’ indices. For instance, the first partial variances are given as Var[fi(Xi)] = Var[E[Ỹf |Xi]]
and Var[fij(Xi, Xj)] = Var[E[Ỹf |Xi, Xj ]] − Var[fi(Xi)] − Var[fj(Xj)], respectively. Conse-
quentially, the Sobol’ indices can be expressed as Si = Var[E[Ỹf |Xi]]/Var[Ỹf ] and Sij =
Var[E[Ỹf |Xi, Xj ]]/Var[Ỹf ]− Si − Sj . As a consequence of Eq. (13) and the law of total variance,
the total index can be written as Ti = 1− Var[E[Ỹf |X∼i]]/Var[Ỹf ] = E[Var[Ỹf |X∼i]]/Var[Ỹf ],
where we have defined X∼i = (X1, . . . , Xi−1, Xi+1, . . . , XM ).

Notice that for dependent input variables X ∼ π(x) 6= π1(x1) . . . πM (xM ), the model repre-
sentation in Eq. (11) contains terms of increasing input dimensionality and, hence, the vari-
ance decomposition in Eq. (13), is not unique anymore [92, 93]. Although one could still use
Si = Var[E[Ỹf |Xi]]/Var[Ỹf ] as the definition of a sensitivity measure, it would reflect both
the model structure and the input dependencies [94]. The interpretation is therefore not as
straightforward as in the case of independent inputs.

3.2 Multivariate output

So far we have discussed the sensitivity analysis of a scalar-valued response variable Ỹf = f(X)
only, but model responses such as Ỹ =Md(X) in Eq. (2) are often vector-valued. Two related
ways of defining sensitivity measures for multivariate outputs have been established in the
literature. First, in [95, 96] a multivariate generalization of the Sobol’ indices was proposed that
is based on the trace of a decomposition of the model output covariance matrix. Second, in [97]
it was suggested to expand the model outputs in a certain basis first, and then to determine the
standard Sobol’ indices of the expansions coefficients with respect to the uncertain model inputs.
A comparison of those approaches is found in [98].

Determining the Sobol’ indices of the principal components is a special case of the last-mentioned
output decomposition approach [99, 100]. It lends itself to the multivariate sensitivity analysis of
models with time-dependent [101, 102] or spatially distributed [103, 104] responses quantities.
However, the sensitivity measures of the principal components obtained this way, or of artificial
coefficients in general, are difficult to interpret. We therefore establish a link between the
sensitivities of the expansion coefficients and the ones of the physically meaningful model outputs.
This possibility has been often overlooked.

In our case, the principal components Z̃ and the actual model outputs Ỹ are related through the
orthogonal transformation Z̃ = Φ>(Ỹ −µỸ ) in Eq. (32), and vice versa through Ỹ = µỸ + ΦZ̃
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in Eq. (33). For t = 0, . . . , N the model outputs are given as Ỹt = µỸt +∑N
p=0 Z̃pφp,t. Here, µỸt is

the t-th entry of the mean vector µỸ and φp,t is the corresponding entry of the p-th eigenvector φp
of the covariance matrix in Eq. (30). One consequentially has E[Ỹt|Xi] = µỸt +∑N

p=0E[Z̃p|Xi]φp,t
for the conditional expectation of Ỹt with respect to an input Xi with i ∈ {1, . . . ,M}. The
variance of this conditional expectation is given as

Var[E[Ỹt |Xi]] =
N∑
p=0

Var[E[Z̃p |Xi]]φ2
p,t + 2

∑
p<q

Cov[E[Z̃p |Xi],E[Z̃q |Xi]]φp,tφq,t. (17)

One can now relate the first-order Sobol’ index of the output Ỹt with respect to the input Xi to
the corresponding indices of the principal components Z̃p for p = 0, . . . , N . From Eq. (17) one
obtains

SỸti = Var[E[Ỹt |Xi]]
Var[Ỹt]

=
N∑
p=0

S
Z̃p
i

Var[Z̃p]
Var[Ỹt]

φ2
p,t + 2

∑
p<q

Cov[E[Z̃p |Xi],E[Z̃q |Xi]]
Var[Ỹt]

φp,tφq,t. (18)

Here, SZ̃pi = Var[E[Z̃p |Xi]]/Var[Z̃p] denotes the Sobol’ index of a principal component Z̃p with
respect to an input variable Xi. Hence, Eq. (18) allows one to reuse these indices for the
sensitivity analysis of original outputs. It is noted that the covariances Cov[E[Z̃p |Xi],E[Z̃q |Xi]]
of the conditional expectations E[Z̃p |Xi] and E[Z̃q |Xi] for p, q = 1, . . . , N with p 6= q emerge
in the above expression. One can proceed similarly for the second-order and higher indices. In
practice, when instead of Eq. (33) a reduced number of principal components with N ′ ≤ N is
used in Eq. (35), one employs the induced approximations of Eqs. (17) and (18).

3.3 Practical computation

The practical computation of the discussed sensitivity measures in Eqs. (14) and (15) can be
based on Monte Carlo simulation [105, 106]. As it was originally proven in [86], however, one can
obtain the Sobol’ indices of an output quantity from an appropriate rearrangement of a PCE of
that quantity, too. This is usually more efficient and, in our case, it is also more convenient. Since
we employ a polynomial representation of the principal components, their Sobol’ indices can be
estimated right away. Besides, as it is demonstrated next, one can extract the corresponding
indices of the discharge. This allows for a time-variant global sensitivity analysis.

The terms of z̃p(X) = ∑
α∈NM ap,αΨα(X) in Eq. (8) can be reordered for all p = 0, . . . , N ′ so

as to match the structure of the Hoeffding decomposition in Eq. (11), i.e. the PCE terms are
grouped according to their input variables. To that effect, let us define the set of multi-indices
Au = {(α1, . . . , αM ) ∈ NM : k ∈ u⇔ αk 6= 0} for any non-empty set u ⊆ {1, . . . ,M}. Following
this, the rearrangement into terms with an increasing number of input variables is given as

z̃p(X) = ap,0 +
∑

∅6=u⊆{1,...,M}

∑
α∈Au

ap,αΨα(X) = ap,0 +
∑

∅6=u⊆{1,...,M}
z̃p,u(Xu). (19)
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Each summand z̃p,u(X) = ∑
α∈Au ap,αΨα(X) in Eq. (19) contains only the PCE terms with multi-

indices α ∈ Au. Since we have Var[z̃p(X)] = ∑
α∈NM\{0} a

2
p,α and Var[z̃p,u(Xu)] = ∑

α∈Au a
2
p,α,

the Sobol’ indices in Eq. (14) can be easily determined from the PCE coefficients. For instance,
the first-order Sobol’ index of the principal component Z̃p with respect to the input parameter
Xi is obtained for u = {i} as

S
Z̃p
i =

∑
α∈A{i}

a2
p,α∑

α∈NM\{0} a
2
p,α

. (20)

The first-order index SỸti of the time-variant output Ỹt with respect to an input Xi is given
by Eq. (18). This formula contains the covariances Cov[E[Z̃p |Xi],E[Z̃q |Xi]] of the conditional
expectations E[Z̃p |Xi] and E[Z̃q |Xi] with 1 ≤ p < q ≤ N . According to Eq. (12) one has
E[Z̃p |Xi] = ap,0 +∑

α∈A{i}
ap,αΨα(X) and an analogous expression for E[Z̃q |Xi]. Due to the

orthogonality of the polynomial basis, the covariance terms can then be written as

Cov[E[Z̃p |Xi],E[Z̃q |Xi]] =
∑

α∈A{i}

ap,αaq,α. (21)

The first-order index SỸti is eventually determined by Eq. (18) with Eqs. (20) and (21). In
practice, instead of the infinite series in Eq. (8), one uses the truncated one in Eq. (9) in order to
obtain approximations of the Sobol’ indices.

Following this discussion, we compute the Sobol’ indices SZ̃pi and SỸti for all principal components
Z̃p with p = 0, . . . , 8 and time-dependent discharges Ỹt with t = 0, . . . , 600, with respect to all
inputs Xi with i = 1, . . . , 8. The results are plotted in Fig. 6.

(a) Principal components. (b) Time-variant outflow.

Figure 6: First-order Sobol’ indices. The first Sobol’ indices of the principal components are
shown in Fig. 6(a). They are obtained by an analysis of the corresponding PCE coefficients. The
first Sobol’ indices of the time-variant outflow are plotted in Fig. 6(b) They can be reconstructed
from the sensitivity indices of the principal components. While the parameters X4 and X6 are
revealed to be the most influential, X7 contributes insignificantly.

First of all, Fig. 6(a) shows the first-order Sobol’ indices of the principal components Z̃p with
respect to the input variables Xi. On the basis of Eq. (20), the indices are straightforwardly
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extracted from the corresponding PCEs. Second of all, the first-order Sobol’ indices of the
time-variant outputs Ỹt with respect to the inputs are depicted in Fig. 6(b). They are computed
with the aid of Eqs. (18), (20) and (21) in a further postprocessing step.

Regarding the contribution to the variances of the principal components, Fig. 6(a) reveals that
the input parameters X4 and X6 are the most important. They describe the depression storage
height of the impervious and pervious areas, respectively. While X6 influences the first principal
components, X4 mainly impacts on the last. The model input parameter X7, describing the
percentage of the impervious area without depression storage, hardly contributes at all to the
variances of the principal components. While the sensitivities of the principal components with
respect to the input parameters are difficult to interpret, the time-evolution of the Sobol’ indices
in Fig. 6(b) may be more intuitive to grasp. In roughly the interval t/120 s ∈ [100, 400], which
corresponds to heavy rain and high outflow in Fig. 2, the parameters X4 and X6 are the most
dominant. In contrast, X7 is again the least influential parameter on the whole.

4 Bayesian calibration

We now turn towards probabilistic model calibration. The goal is to infer the unknown hydrological
parameters with the available outflow data. Bayesian inference establishes a principled framework
for data analysis and uncertainty reduction [28, 29]. Unknown parameters can be inferred from
indirectly related measurements. A prior probability distribution is assigned to the unknown
parameters, which reflects the epistemic uncertainty of the parameters before the data are
analyzed. The prior is then conditioned on the realized data, which gives rise to the posterior
distribution. It represents the reduced uncertainty after the data have been processed. Markov
chain Monte Carlo is usually used in order to numerically explore the posterior [34, 35]. Beyond
parametric uncertainties, Bayesian inference allows one to cope with model discrepancy as well
[30, 31]. This is especially important in hydrological applications where predictions are typically
uncertain and biased [107, 108].

In this section, two different Bayesian models are employed in order to account for the high level
of uncertainty and error in hydrological model predictions. The first model is a formulation of
nonlinear inverse modeling with an unknown level of additive noise. A residual term following a
multivariate Gaussian distribution with zero mean and unknown variance is used to represent
the deviation of the predicted outflows from the measured values. The deviations at different
times are assumed to be uncorrelated. Measurement uncertainty and modeling errors are lumped
together in this formulation. The unknown parameters as well as the unknown error variance
can be inferred with the first simple model.

A more complex Bayesian model is devised that allows us to additionally capture error correlation
and model discrepancy. The deviations between the model predictions and the data are now
represented as the sum of two terms. Similar as in the simple model, the first term represents
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Gaussian random errors, but now the errors at different times are allowed to be correlated. On
top of that, the second term represents a systematic model discrepancy as a low-order polynomial
function of time. This more realistic model does not only allow us to estimate the uncertain
parameters and the noise level and its correlation structure, it also enables us to learn the
discrepancy function. It is remarked that the discrepancy here pertains to both the model and
the analyzed rainfall event, i.e. it captures the systematic error of the model over the duration of
the event.

4.1 Independent random errors

Recall that the measurement data y = (y0, . . . , y600)> comprise the observations of the outflow
yi = Q(ti) for i = 0, . . . , 600. Assuming that random measurement errors act additively and
independently on the forward model predictions, in the first simple model the measured data are
represented as

y =Md(x) + ε. (22)

Here, ε is a realization of a random vector with a Gaussian distribution π(ε|σ) = N (ε|0, σ2I),
where the noise level σ > 0 is unknown. Consequently the following statistical model arises

π1(y |x, σ) = N (y |Md(x), σ2I). (23)

The likelihood function is simply L1(x, σ) = N (y |Md(x), σ2I). Instead of merely maximizing
the likelihood, a fully Bayesian approach is pursued. For any given prior distribution π1(x, σ),
the corresponding posterior is

π1(x, σ |y) ∝ L1(x, σ)π1(x, σ). (24)

In order to complete the setup, we specify a joint prior of the unknowns with the product
structure π1(x, σ) = π1(x)π1(σ) and π1(x) = π1(x1) . . . π1(x8). While the previously used
uniform marginals were motivated by coverage considerations, we now respect the following
expert recommendations. The priors for the hydrological parameters xi ∈ [xi, xi] are normal
distributions π1(xi) = N (xi |µxi , σ2

xi , xi, xi) truncated at the respective parameter bounds xi and
xi. Before the truncation, the distributions are centered around the midpoint µxi = (xi + xi)/2
and their standard deviations σi = (xi − xi)/6 are set to the sixth part of the admissible range.
Note that the prior for the hydrological parameters is different from the uniform distribution
that the experimental design was sampled from. A uniform distribution π1(σ) = U(σ |σ, σ) with
σ = 0× l/s and σ = 100× l/s is selected as the prior for the unknown noise level σ. The lower
bound emerges naturally, whereas the upper bound is chosen so that it is highly probable that
the true or best value is really contained in the supported interval.
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4.2 Systematic model discrepancy

The second model is more sophisticated in that it also acknowledges other sources of uncertainty
and error. In particular, model discrepancy and random error correlation are captured. We start
the discussion by representing the measurement data as

y =Md(x) + δ(b) + ε. (25)

This is the sum of the model responseMd(x) at the true x and two other terms that allow for a
refined treatment of discrepancy and noise. The systematic modeling errors are absorbed into
the term δ(b), whereas ε captures the noise. We assume that the discrepancy is an unknown
function of time that can be sufficiently well represented as

δ(b, t) =
γ∑

α=0
bαΨα(t). (26)

Here, {Ψα(t)}γα=0 is a function basis with Γ = γ + 1 elements and b = (b0, . . . , bγ)> denotes the
unknown coefficients. The values δi(b) = δ(b, ti) of the discrepancy function at the measurement
instants ti for i = 0, . . . , 600 generate the discrepancy vector δ(b) = (δ0(b), . . . , δ600(b))>.

The term ε is a realization of a random vector following a multivariate Gaussian distribution
π(ε|σ, τ) = N (ε|0,Σ(σ, τ)) with an unknown covariance matrix Σ(σ, τ). For i, j = 0, . . . , 600
the entries of the covariance matrix are represented as

Σi,j(σ, τ) = σ2 exp
(
−|ti − tj |

τ

)
. (27)

As before, the standard deviation σ determines the noise level. The additionally introduced
correlation length τ establishes a characteristic time scale of the error correlation. Both parameters
σ and τ describing the covariance structure of the error process are unknown. In total, we have
established the probabilistic data model

π2(y |x, b, σ, τ) = N (y |Md(x) + δ(b),Σ(σ, τ)). (28)

The likelihood function L2(x, b, σ, τ) = N (y |Md(x) + δ(b),Σ(σ, τ)) arises as a result. If one
has a joint prior π2(x, b, σ, τ), one obtains the posterior distribution by

π2(x, b, σ, τ |y) ∝ L2(x, b, σ, τ)π2(x, b, σ, τ). (29)

Some prior specifications are now overdue. We impose a joint prior distribution with the block-wise
independence structure π2(x, b, σ, τ) = π2(x)π2(b)π2(σ)π2(τ). While the priors π2(x) = π1(x)
and π2(σ) = π1(σ) are not altered, we only have to set π2(b) and π2(τ). The latter is chosen as
π2(τ) = U(τ |τ , τ) with the lower bound τ = 0× 120 s and a conservatively high upper bound
τ = 100× 120 s.

We believe that the discrepancy δ(b, t) is a rather smooth function of time. It is thus expanded
in terms of the first normalized Legendre polynomials {Ψα(t)}γα=0 up to rather low degree
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γ = 5. These are the polynomials shown in Fig. 4. The time variable is translated and stretched
such that it follows the standard uniform distribution in Table 2. In fact there is no need
to be picky while choosing the polynomial family here. Since the expansion coefficients b
are mere tuning parameters which do not correspond to physically interpretable quantities,
the specification of the prior π2(b) = π2(b0) . . . π2(b5) is a bit delicate. We opt for Laplace
distributions π2(bi) = Laplace(bi |µxi , sxi) = (2sxi)−1 exp(−|bi − µxi |/sxi) for all i = 0, . . . , 5.
They peak at the mean µxi = 0 and have the scale parameter sxi = 10 which leads to a standard
deviation σxi = sxi

√
2 ≈ 15.

The double-exponential density Laplace(bi |µxi , sxi) decays exponentially with the absolute
difference from the mean, whereas the bell-shaped density N (bi|µxi , σ2

xi) = (2πσ2
xi)
−1/2 exp(−(bi−

µxi)2/(2σ2
xi)) dies down with the squared difference. Accordingly, the Laplace distribution has a

spikier peak and fatter tails than the Gaussian at the same time. Both sparsity of the coefficient
vector and robustness with respect to the prior choice are promoted that way. While sparsity is
not our main concern at this point, robustness can be indeed adduced as an argument for the
Laplace prior. The specification of the scale parameter, however, remains more or less arbitrary
after all.

4.3 Posterior distributions

Now we perform fully Bayesian analyses by computing the two posterior distributions π1(x, σ |y)
and π2(x, b, σ, τ |y) by means of MCMC sampling. The obtained surrogate model M̂p(x) is used
in place of the original simulatorMd(x) throughout the analyses. A random walk Metropolis
algorithm with a Gaussian proposal distribution is deployed. Thirty parallel chains with 106

MCMC iterations are run for both Bayesian models. For the first model the parameters (x, σ)
are updated altogether, while for the second model x and (σ, τ, b) are updated in two separate
blocks. Roughly speaking, the posterior computations take half a day for the simple and about
a week for the more complex model. The non-diagonal covariance matrix and the block-wise
MCMC updates for the second model are responsible for the runtime difference.

Remember that a single run of the original SWMM simulator takes around twenty seconds to
terminate. Notwithstanding that this is actually quite fast, in case the original model would be
used in the MCMC algorithms described above, the total runtime would amount to more than
two hundred days. On top of the final runs, MCMC always demands the execution of preliminary
runs on the basis of which the algorithm is tuned and convergence is monitored. Since this would
be obviously infeasible with the original SWMM simulator, only the employment of the fast
surrogate model here enables us to carry out a Bayesian uncertainty analysis.

First of all, we discuss the posterior marginals of the uncertain hydrological parameters x. All
marginals shown in the following are obtained through kernel density estimation. For i = 1, . . . , 8
the marginals π1(xi |y) and π2(xi |y) of both Bayesian models are plotted in Fig. 7. Some
marginals of the simple model feature posterior modes close to their bounds, i.e. see Figs. 7(a),
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(a) Model parameter x1. (b) Model parameter x2.

(c) Model parameter x3. (d) Model parameter x4.

(e) Model parameter x5. (f) Model parameter x6.

(g) Model parameter x7. (h) Model parameter x8.

Figure 7: Posterior marginals for the hydrological model. The posterior marginals of the
parameters x1, . . . , x8 are shown above. While the marginal of x8 shown in Fig. 7(h) features a
distinct posterior structure, the posterior of x7 in Fig. 7(g) is hardly different from its prior. The
other marginals peak close to or directly at one of the parameter bounds.
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7(c) and 7(d) where the posteriors of x1, x3 and x4 are depicted. Other marginals peak directly at
the parameter bounds, i.e. the marginals of x2, x5 and x6 in Figs. 7(b), 7(e) and 7(f), respectively.
The posterior of x7 in their bounds, i.e. see Fig. 7(g) is hardly different from the prior. A more
complex structure is found in the marginal of x8 that is shown in their bounds, i.e. see Fig. 7(h).
It has two modes, one of which peaks at the lower parameter bound. As compared to the simple
model, the marginal posteriors of the second model with the discrepancy term are generally
flattened out and shifted towards the prior means.

The posterior marginals of the parameters describing the random error model are shown in Fig. 8.
As it can be seen from Fig. 8(a), the marginal π1(σ |y) suggests a higher value of the standard
deviation σ than the marginal π2(σ|y). The reason is that according to the first model all errors
are attributed to independent noise only. In the second model, those errors are also captured
by the error correlation and model discrepancy. The marginal π2(τ |y) of the correlation length
τ is plotted in Fig. 8(b). It concentrates around a surprisingly low value. We speculate that
the introduction and estimation of the discrepancy term effectively decorrelates the remaining
sources of random error, which would explain this observation. In Fig. 8(c) all marginals π2(bi|y)
of the coefficients bi with i = 0, . . . , 5 are shown. Their actual units are discarded for the sake
of simplicity. It is interesting to note that the parameters b of the discrepancy function are
estimated quite clearly. Especially the constant and the linear term with their coefficients b0 and
b1 have pronounced posterior shapes.

Some summaries of the posterior distributions π1(x, σ |y) and π2(x, b, σ, τ |y) are compiled in
Table 4. These are point estimates of the unknown parameters, e.g. the posterior mean vectors
(x̂, σ̂) = E[x, σ |y] and (x̂, b̂, σ̂, τ̂) = E[x, b, σ, τ |y]. Quantities whose dimension does not equal
one are expressed in comparison to the units that were previously adopted. Posteriors that peak
at the prior bounds are not summarized well by their mean values only. Therefore the modes
(x̂, σ̂)MAP = arg maxx,σ π1(x, σ|y) and (x̂, b̂, σ̂, τ̂)MAP = arg maxx,b,σ,τ π2(x, b, σ, τ|y) of the joint
posterior densities are shown, too. They have been obtained through maximizing the logarithms
of the unnormalized posterior densities, i.e. the log–likelihood function plus the log–prior density.
Note that the individual components of the joint posterior density mode do not have to coincide
with the maxima of the marginal densities.

Table 4: Posterior summaries.

x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8 σ̂ τ̂ b̂0 b̂1 b̂2 b̂3 b̂4 b̂5

π1(·|y)
Mean 1.05 0.54 0.63 0.62 0.59 1.48 1.04 1.09 33.63 - - - - - - -
Mode 1.06 0.50 0.55 0.62 0.50 1.49 0.99 1.00 33.04 - - - - - - -

π2(·|y)
Mean 0.79 0.56 0.70 0.85 0.84 1.18 1.02 1.13 22.78 2.53 −10.63 −17.97 16.33 47.05 −8.38 −44.31
Mode 0.71 0.50 0.50 0.71 0.59 0.91 1.01 1.03 19.95 1.80 −13.33 −20.25 19.39 46.70 −10.25 −42.72

After having explored the posterior distribution, one can check the obtained results for consistency
by comparing an ensemble of prior and posterior predictions with the data. We start by comparing
the posterior π1(x, σ |y) of the first model with the correspondent prior π1(x, σ) in this regard.
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(a) Noise level σ. (b) Correlation length τ .

(c) Discrepancy coefficients bi.

Figure 8: Posterior marginals for the error model. The posterior marginals of the error model
parameters σ, τ and b0, . . . , b5 are depicted. It can be understood from Fig. 8(a) that the posterior
estimate of the noise level parameter σ is higher for the first error model than for the second
one. The reason is that the latter involves further sources of uncertainty that are parametrized
through τ and b0, . . . , b5.

See Fig. 9 for that purpose. In Fig. 9(a) the forecasts of the discharge are shown for one hundred
input values that were randomly sampled from the prior. Likewise Fig. 9(b) shows the predictions
for the same number of posterior samples that were obtained from the MCMC chains by an
appropriate thinning. Moreover, the time trajectory for the posterior mode is highlighted. The
measurement uncertainty is not accounted for in those figures. As it can be seen, the prediction
ensemble for the prior contains more uncertainty than for the posterior.

The adjustment of the model parameters associated with the Bayesian update does not significantly
reduce the systematic discrepancy between the simulated and the measured outflows from the
drainage basin. The underlying reason is that varying the input parameters of the hydrological
simulator and the level of independent noise does not allow for establishing full consistency
between the simulations and the observations, especially in the second half of the covered time
interval. This was already clear after the discussion of Fig. 2(b) and actually led to the inclusion
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of a correlation and discrepancy term in the second model.

(a) Prior predictions. (b) Posterior predictions.

Figure 9: Stochastic model predictions. Ensembles of predictions pertaining to the prior and
posterior mode are shown in Figs. 9(a) and 9(b), respectively. As already seen in Fig. 2(b),
pronounced discrepancies between the predicted and observed outflow are found in the time
intervals [150, 200] and [250, 500].

We now investigate how well the posterior mode of π2(x, b, σ, τ |y) aligns with the data. The
mode estimate of the discrepancy function δ̂(t) = δ(b̂, t) is plotted in Fig. 10. It indicates a
trend that the model underpredicts the actual rainfall in roughly the interval t/120 s ∈ [100, 250]
and overpredicts in t/120 s ∈ [250, 500]. These mis-predictions occur more or less for the period
t/120 s ∈ [100, 450] of the precipitation event that was shown in Fig. 2(a). At the boundaries, say
for t/120 s ∈ [0, 100] and t/120 s ∈ [500, 600], the discrepancy vanishes as far as the low-degree
polynomial representation admits. The accordingly corrected predictions M̂p(x̂) + δ̂ are depicted
in Fig. 11. They align with the data reasonably well. One, two and three σ̂ prediction intervals
are added so as to visualize the posterior mode prediction uncertainty.

While the learned discrepancy term effectively captures the model errors as a function of time, it
is again noted that its specific form in Fig. 10 pertains to the model and the studied rainfall
event, i.e. it does not generalize to unseen events. The procedure, however, of separating and
representing random noise and systematic error can be applied more generally. It is further
remarked that, due to the additive and symmetric noise model, the prediction intervals in Fig. 11
extend to negative outflow values. Since these values are physically nonsensical, they shall be
ignored.

5 Discussion and conclusion

An efficient method for the non-intrusive emulation of time-dependent hydrological systems was
presented in this paper. The idea was to exploit typical characteristics of the system response
based on principal component analysis and sparse polynomial chaos expansions. First of all, the
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Figure 10: Model discrepancy. The posterior mode reveals the bias of the simulator, especially
in the time intervals [150, 200] and [250, 500], where mispredictions of the outflow occurred in
Fig. 2(b).

Figure 11: Corrected predictions. Incorporating the bias identified in Fig. 10 and the level of
random errors corresponding to the posterior mode in Fig. 8(a) leads to well-calibrated predictions
and uncertainty envelopes.

dimensionality of the output space was reduced by means of principal component analysis. This
takes advantage of a linear correlation of the different response quantities. Following this, the
reduced outputs were represented as polynomial chaos expansions. This enabled the utilization
of sparsity patterns in the basis decompositions. All in all, a very fast and accurate emulator
was constructed this way.

The availability of a fast metamodel facilitated the probabilistic uncertainty quantification of an
urban drainage simulator. Variance-based global sensitivity analysis and computational Bayesian
inference were accomplished for the dynamical simulation of a small catchment area. It was
shown how the Sobol’ indices of the predicted outflow at various time instants can be efficiently
computed based on the polynomial expansions of the principal components. The calibration
of the unknown hydrological parameters, random measurement uncertainties and systematic
model errors through Markov chain Monte Carlo sampling was made possible. In this context,
a significant speedup was achieved through the substitution of the original simulator with the
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developed surrogate model.

After all, it has to be said that the problem studied was rather simple. While the catchment
area under study had multiple outlets, only a single one at the wastewater treatment plant was
considered. A very coarse-grained parametrization of the unknowns based on crude averages over
hundreds of sub-catchments and channels was used. Besides, the whole case study was dependent
on a single precipitation event for which the rainfall record was taken as if it were measured
without error. It is therefore envisaged to address more complex and realistic problems in the
future. This may include problems that feature a finer-grained representation of the spatially
dependent input parameters and their uncertainties, and models that explicitly acknowledge errors
in the rainfall input data. This may also include the analysis of various different precipitation
events and longer time series data. The resulting increase of the input and output dimensionality
can be coped with on the basis of the proposed technique for structure-exploiting surrogate
modeling.

Software availability

The urban drainage simulator was implemented with the storm water management model
(SWMM) [64]. For further details the reader is redirected to the website https://www.epa.gov/water-
research/storm-water-management-model-swmm. A metamodel based on principal component
analysis and polynomial chaos expansions was computed with UQLab [82, 83], a Matlab-based
framework for uncertainty quantification (UQ). The software is free for academic use and can be
obtained from http://www.uqlab.com/.
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A Principal component analysis

Consider the random vector Ỹ with mean µỸ = E[Ỹ ] and covariance matrix ΣỸ = Cov[Ỹ ] =
E[(Ỹ − µỸ )(Ỹ − µỸ )>]. Since ΣỸ is symmetric and positive definite, one can find linearly
independent eigenvectors φi with positive eigenvalues λi > 0 for i = 0, . . . , N . The characteristic
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vectors and values satisfy
ΣỸ φi = λiφi. (30)

Eigenvectors corresponding to distinct eigenvalues are orthogonal anyway, while they can be
always chosen as such for degenerate eigenvalues. We assume that the eigenvalues are arranged in
decreasing order λ0 ≥ λ1 ≥ . . . ≥ λN and that eigenvectors are normalized such that φ>i φj = δij

for i, j = 0, . . . , N . Leaving degeneracy aside, this way the eigenvectors are uniquely defined up
to a multiplication by −1.

The set of eigenvectors constitutes an orthonormal basis of RN+1 = span({φi}Ni=0). One can
define the orthogonal matrix Φ = (φ0,φ1, . . . ,φN ) with Φ>Φ = ΦΦ> = I. It diagonalizes the
covariance matrix by

Φ>ΣỸ Φ = Λ =


λ0 0 . . . 0
0 λ1 . . . 0
...

... . . . ...
0 0 . . . λN

 . (31)

Vice versa, one obtains the spectral eigendecomposition of the covariance matrix ΣỸ = ΦΛΦ> =∑N
i=0 λiφiφ

>
i . Now consider the orthogonal transformation

Z̃ = Φ>(Ỹ − µỸ ). (32)

The linearly transformed random vector has mean zero E[Z̃] = 0 and the diagonal covariance
matrix Cov[Z̃] = E[Z̃Z̃>] = Λ, i.e. it has been centered and decorrelated. Independence is not
necessarily implied thereby. Though, the special case involving Gaussianity forms an exception.
The back-transformation reads

Ỹ = µỸ + ΦZ̃ = µỸ +
N∑
i=0

Z̃iφi. (33)

This is the discrete KL expansion of the random vector Ỹ . The random variables Z̃i = φ>i (Ỹ −µỸ )
for i = 0, . . . , N are called the principal components.

Define the total variance of Ỹ as the sum ∑N
i=0 Var[Ỹi] of the individual variances of Ỹi. The

orthogonal transformation preserves the total variance in the sense that
N∑
i=0

Var[Ỹi] = tr(ΣỸ ) = tr(Λ) =
N∑
i=0

Var[Z̃i] =
N∑
i=0

λi. (34)

This follows from the invariance of the trace under cyclic permutations. The KL expansion
is optimal with respect to compaction of the total variance. Consider keeping only the first
N ′ + 1 ≤ N + 1 terms in

Ỹ ≈ µỸ +
N ′∑
i=0

Z̃iφi. (35)

This is the expansion that contains most of the total variance with N ′ + 1 terms only. The
number of terms is normally chosen such that at least a predetermined fraction ∑N ′

i=0 λi/
∑N
i=0 λi

of the total variance is explained.
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