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Abstract
In this paper, we study the common distance between points and the behavior of a constant
length step discrete random walk on finite area hyperbolic surfaces. We show that if the
second smallest eigenvalue of the Laplacian is at least 1/4, then the distances on the surface
are highly concentrated around the minimal possible value of the diameter, and that the
discrete random walk exhibits cutoff. This extends the results of Lubetzky and Peres (Geom
Funct Anal 26(4):1190–1216, 2016. https://doi.org/10.1007/s00039-016-0382-7) from the
setting of graphs to the setting of hyperbolic surfaces. By utilizing density theorems of
exceptional eigenvalues from Sarnak and Xue (Duke Math J 64(1):207–227, 1991), we are
able to show that the results apply to congruence subgroups of SL2 (Z) and other arithmetic
lattices, without relying on the well-known conjecture of Selberg (Proc Symp PureMath 8:1–
15, 1965), thus relaxing the condition on the Laplace spectrum of a surface. Conceptually, we
show the close relation between the cutoff phenomenon and temperedness of representations
of algebraic groups over local fields, partly answering a question of Diaconis (Proc Natl Acad
Sci 93(4):1659–1664, 1996), who asked under what general phenomena cutoff exists.

Keywords First keyword · Second keyword · More · Hyperbolic surfaces · Random Walks ·
Cutoff

1 Introduction

Let H be the hyperbolic plane equipped with the standard metric d and the standard measure
μ. Let Γ ⊂ PSL2(R) be a lattice and let X = Γ \H be the quotient space, which is a
hyperbolic surface if Γ is torsion-free, and an orbifold in general. The measure μ descends
to a finite measure on X , and let dX : X × X → R≥0 be the induced distance on X . The
injectivity radius of a point x0 ∈ X is 1

2 inf1 �=γ∈Γ d (x̃0, γ x̃0), where x̃0 ∈ H is a lift of x0 to
H. Denote RX = acosh (μ(X)/2π + 1), this is the radius of the hyperbolic ball whose volume
equals the volume μ (X) of X .
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Definition 1.1 We say that X = Γ \H is Ramanujan1 if the non-trivial spectrum of the
Laplacian on L2 (X) is bounded from below by 1/4.

An equivalent condition, stated in terms of representation theory, is that every non-trivial
subrepresentation of G = PSL2(R) on L2 (Γ \G), which generated by its K = PSO2 (R)-
fixed vectors, is tempered (see Sect. 2 for an explanation of this notation).

We write C = C(t) if C is a constant depending only on t . We write a �t b if there is
C = C(t) such that a ≤ C · b holds, and a 	t b if both a �t b and b �t a take place.

1.1 Common distance

Theorem 1.2 Let Γ ⊂ PSL2(R) be a lattice, X = Γ \H, and denote RX =
acosh (μ(X)/2π + 1) ≥ 1 (this is the radius of the hyperbolic ball of volume μ(X)). Then
for every point x0 ∈ X and for all γ > 0, the following inequality holds

μ (x ∈ X : dX (x0, x) ≤ RX − γ ln (RX )) /μ (X) � R−γ

X .

If X is Ramanujan and x0 ∈ X has injectivity radius at least r0, then for all γ > 0, the
following inequality holds

μ (x ∈ X : dX (x0, x) ≥ RX + γ ln (RX )) /μ (X) �r0

(
1 + γ 2) R2−γ

X .

In other words, for a point x0 on a Ramanujan surface X , the distance from it to almost
every other point is within the window of size (2 + ε) ln (RX ) around RX . We emphasize
that the result is mainly interesting for a sequence of Ramanujan quotients with volume
increasing to infinity, which is not known to exist. However, the well-known conjecture of
Selberg asserts that the quotients defined by the congruence subgroups of SL2 (Z) form a
sequence of such quotients (see [31,33] and also Theorem 1.4 below). Alternatively, one may
conjecture that as in case of graphs, a “random” surface is almost Ramanujan with a proper
choice of the random model (see Conjecture 1.6 below).

1.2 Cutoff of randomwalks

In the second result, we consider the speed of convergence in the L1-norm of two different
randomwalks on X . The first one is the hyperbolic Brownianmotion on X , whichwe consider
as an operator Bt : C(X) → C(X) for t ∈ R≥0, where C (X) is the space of continuous
functions on X . The second one is the discrete time random walk with the step of a fixed
length, i.e., at each step the walker rotates at a uniformly chosen angle and makes a step of
some fixed length r1 > 0. The corresponding operator Ar1 : C(X) → C(X) is the distance
r1 averaging operator. By duality, we consider both random walks as acting on measures on
X .

Specifically, for a point x0 ∈ X we consider the continuous time random walk Btδx0 ,
and the discrete time random walk Ak

r1δx0 , both as measures on X . One can show that the
measures defined by the two random walks, for t > 0 or k ≥ 3, are represented by some
L1-functions, which converge in the L1-norm to the constant function π on X normalized
as π (x) = μ (X)−1 for all x ∈ X . The following theorem gives an exact estimate on the
rate of convergence for points with injectivity radius bounded away from 0. For simplicity

1 It seems that the notion of a Ramanujan surface (or more generally, a Ramanuajan manifold or a Ramanujan
orbifold) does not appear in literature, but is natural given the standard notions of a Ramanujan graph ([25])
and a Ramanujan complex ([26]).
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of notations we state it here for the discrete time random walk only. See Sect. 6 for a full
statement of the theorem.

Theorem 1.3 Fix r0 > 0, r1 > 0, λ > 0 and a point x0 ∈ X. Assume RX 
r0,r1,λ 1 and
write

α = 1

πr1

π∫

0

ln
(
er1 cos2 θ + e−r1 sin2 θ

)
dθ ∈ (0, 1).

Then there exist constants c = c(r1) > 0, and C = C (r0, r1), such that

1. If k satisfies kαr1 < RX − λ
√
RX then

∥
∥Ak

r1δx0 − π
∥
∥
1

> 2 − Ce−cλ2 ;

2. If k satisfies kαr1 > RX + λ
√
RX , if X = Γ \H is Ramanujan, and if x0 has injectivity

radius at least r0, then
∥
∥Ak

r δx0 − π
∥
∥
1 < Ce−cλ2 ;

The above behavior of the random walk is a cutoff phenomenon, which is defined in
general as follows (see [8]). Let

(
Pk
n (x, y), Xn

)
be a sequence of Markov random walks on

a probability space Xn , which converge as k → ∞ to the uniform probability πn on Xn . Let
f , g : N → R be functions such that f (n) → ∞ and g(n) = o ( f (n)) as n → ∞. We say
that the sequence

(
Pk
n (x, y), Xn

)
exhibits a cutoff at time f (n) with window of size g(n), if

for every 1 > ε > 0, the time

kn = inf

{
k | sup

x0

∥∥∥Pk
n (x0, ·) − πn

∥∥∥
1

< ε

}
(1)

satisfies kn = f (n) + Oε (g (n)).
Determining whether a sequence of random walks exhibit a cutoff is a fundamental prob-

lem (see [8]). Theorem 1.3 says that if a sequence of Ramanujan surfaces Xn have injectivity
radius at least r0 at every point of every surface then the discrete random walks on them
exhibit a cutoff at time RX/αr1 with window of size

√
RX/αr1.

1.3 Arithmetic subgroups

As said in the discussion after Theorem 1.2, Selberg’s conjecture implies that the quotients
X of H by congruence subgroups of SL2 (Z) satisfy the hypotheses of Theorems 1.2 and
1.3. Using the current knowledge, we can give a slightly weaker version of Theorem 1.2.

Theorem 1.4 Let Γ = SL2 (Z) or any cocompact arithmetic lattice in SL2 (R) and let X0 =
Γ \H be the corresponding quotient. For every q ∈ N, let Γ (q) the principal congruence
subgroup of Γ , let Xq = Γ (q) \H be the corresponding quotient, and let ρq : Xq → X0 be
the cover map.

Let x (q)
0 ∈ Xq be a point such that its projection ρq

(
x (q)
0

)
to X0 has injectivity radius at

least a constant r0. Then for every ε0 > 0

μ
(
x ∈ Xq : dXq

(
x, x (q)

0

)
≥ RXq (1 + ε0)

)
/μ
(
Xq
)→ 0

as q → ∞.

A similar theorem was proven independently by Sarnak in his letter [29].
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1.4 Methods of proof

The proofs of Theorems 1.2–1.4 exploit the following proposition:

Proposition 1.5 The surface X is Ramanujan if and only if for every r ≥ 0 the norm of Ar

on L2
0 (X) = { f ∈ L2 (X) : ∫ f (x)dx = 0

}
is bounded by (r + 1) e−r/2.

A similar proposition, but of greater generality, plays a crucial role in the work of Harish-
Chandra (see [12, Theorem 3]). Proposition 1.5 is the essential ingredient in the proof of
Theorem 1.2.

The proof of Theorem 1.3 combines Proposition 1.5 with two other results. The first
one, Lemma 5.4, says that after 3 steps the random walk measure A3

r1δx0 (respectively, the
Brownian motion measure Bt0δx0 at a fixed time t0 > 0) is represented an L2-function on
X , with a bounded L2-norm, depending only on the injectivity radius r0. The second result,
Corollary 4.7, may be described as a concentration of measure theorem for the rate of escape
of the random walk Ak

r1 on H. Informally, we may write Ak
r1

∼= ∫r fk(r)Ardr , where most

of the measure fk(r)dr is concentrated around kαr1 with deviation of size
√
kαr1.

The proof of Theorem 1.4 depends on the following facts:

– Γ (q) is normal in Γ ;
– There exists a lower bound on the smallest eigenvalue of Xq which is independent of q;
– The number of exceptional eigenvalues of Xq can be carefully bounded depending on

their distance from the non-exceptional spectrum and q (see below);

Surprisingly, the bound on the number of exceptional eigenvalues that is required for the proof
is exactly the “elementary” density bounddiscussed in thework of Sarnak andXue ( [32]). The
bound states the number of eigenvalues of Xq with corresponding matrix coefficients not in
L p for p > 2 is �ε [Γ : Γ (q)]2/p+ε (see also [30]). Note that while in [32] cocompactness
is assumed, this assumption was later removed in [15], and in any case stronger results for
SL2 (Z)were also proven earlier by different methods in [16,17]. Theorem 1.4 also holds for
SL2 (Z) for non-prime q , as a non-elementary bound on the smallest eigenvalue was proven
already by Selberg in [33]. See the discussion in Sect. 8 for full details.

This work is similar in spirit to the results of [23], and shows the general connection
between the common distance and cutoff phenomena in quotients of symmetric spaces (infi-
nite regular trees in [23] and the hyperbolic plane here) and temperedness of representations
(or the generalized Ramanujan conjecture).

1.5 Open questions

We expect that the results of this article can be extended to quotients of higher dimen-
sional symmetric spaces, and also to other contexts (e.g. the action of Hecke operators on
SL2 (Z) \SL2 (R) and its covers). Theorems analogous to Theorem 1.2 for quotients of
p-adic Lie groups, i.e., Ramanujan complexes, are proven in [18, Theorem 1.9], and [22,
Theorem 1.ii]. Theorem 1.2 is also closely related to the optimal covering properties of the
Golden-Gates of [28]. See also [29].

While we were unable to show it, we believe that it is possible to prove in the notations
of Theorem 1.4 that (at least for SL2 (Z)) there exists a constant C > 0 such that

μ
(
x ∈ Xq : dXq

(
x, x (q)

0

)
≥ RXq + C ln

(
RXq

))
/μ
(
Xq
)→q→∞ 0.

Selberg’s conjecture would give C = 2 + ε, ε > 0 by Theorem 1.2.
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The following conjectures are natural continuous analogs of well-known combinatorial
results, in the spirit of this article. Assume that the lattice Γ is a free group (for example, the

principal congruence subgroup Γ = Γ (2) = ker
{
PSL2 (Z)

mod→ PSL2 (Z/2Z)
}
, which is

freely generated by the images in PSL2 (Z) of

(
1 2
0 1

)
,

(
1 0
2 1

)
∈ SL2 (Z)). Then every

homomorphism φ : Γ → Sn whose image acts transitively on {1, . . . , n} defines an index n
subgroup Γ ′ ⊂ Γ , by Γ ′ = {γ ∈ Γ : φ(γ )(1) = 1}, and every index n subgroup of Γ can
be defined this way. Since each homomorphism is defined using the generators, there is a
finite number of such homomorphism, and it defines a probability measures on the index n
subgroups of Γ , or equivalently, the n-covers of X .

Conjecture 1.6 Assume that Γ is a free group. Then:

1. For every ε > 0, the probability that every new eigenvalue λ of an n-cover X ′ of X
satisfies λ ≥ 1/4 + ε is 1 − o(1) as n → ∞.
An analogous statement for graphs is called Alon’s conjecture, and was proved in [9].

2. There exists a 2-cover X ′ of X , such that every new eigenvalue λ of X ′ satisfies λ ≥ 1/4.
In the graph setting this statement is called Bilu-Linial’s conjecture, and was solved for
the bipartite case in [27]. A generalization to n-covers for every n ∈ N of bipartite graphs
was proved in [11].

Remark 1.7 Aweaker version of (1) in a slightly different random model were proved in [1].

1.6 Outline of the article

In Sect. 2 we set notations and discuss the harmonic analysis on H, and its relation to
the operator Ar and the Laplacian. We also prove Proposition 1.5. In Sect. 3 we prove
Theorem 1.2. In Sect. 4 we prove some versions of the central limit theorem for the random
walks. For the discrete random walk, we reduce the problem to the standard central limit
theorem. For the Brownian motion, this result is well known. In Sect. 5 we prove that after a
short time the random walks turns the delta measure on a point to an L2-function of bounded
norm. In Sect. 6 we prove Theorem 1.3.

In the rest of the article, we prove a generalized version of Theorem 1.4. In Sect. 7 we
generalize Proposition 1.5 which provides bounds for the spectrum to the non-Ramanujan
case. We also give a weak version of Theorem 1.2, which depends on the smallest non-
trivial eigenvalue of the Laplacian. In Sect. 8 we discuss covers of a fixed quotient X0,
and in particular normal covers. The condition on the spectra of normal covers is stated
somewhat abstractly in Theorem 8.1. However, we then discuss density theorems and known
results about them, and show that the density theorems satisfy this condition, thus proving
Corollary 8.3, which implies Theorem 1.4.

The paper contains two appendices. In Appendix I, we prove that for every fixed point
x0 on a surface X there exists a distance Rx0,X such that the distances from x0 to all the
other points are concentrated around Rx0,X , within a window of a constant size, where
the constant depends on the smallest non-trivial eigenvalue of the Laplacian. Theorem 1.2
implies that if X is Ramanujan and x0 has a lower bound on its injectivity radius, then
RX ≤ RX ,x0 ≤ RX + (2 + ε) ln RX . The proof involves some interesting isoperimetric
inequalities.

In Appendix II, we show that the Brownian random walk on the flat surfaces
(
aZ

2
) \R

2

does not exhibit a cutoff as a → ∞.
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2 Preliminaries

2.1 The hyperbolic plane

There are several models for the hyperbolic plane H of constant curvature −1, and we stick
to the upper half-plane model. That is the complex half-plane H = {z ∈ C | Im(z) > 0}
endowedwith themetric ds2 = dz2/(Im(z))2. The distance d(z, z′) between z = x+iy, z′ =
x ′ + iy′ ∈ H is

d
(
z, z′
) = acosh

(

1 +
(
x ′ − x
)2 + (y′ − y

)2

2yy′

)

.

The group G = PSL2(R) acts on H by Mobius transformations, i.e.,
(
a b
c d

)
· z = az + b

cz + d
,

and constitutes the group of orientation preserving isometries of H. Here and elsewhere we
identify an element g ∈ G = PSL2(R)with its preimage in G = SL2(R). The group G acts
transitively on the points of H, with the subgroup K = PSO2(R) ⊂ G being the stabilizer
of the point i , to which we refer as the origin of H. The subgroup K acts on H by rotations
around i . The plane H can be identified with the quotient G/K , and in particular, the circle

of radius r around i identifies with the double coset K

(
er/2 0
0 e−r/2

)
K . The Haar measure

on G which is normalized so that the measure of K is equal to 1 agrees with the standard
measure μ on H.

2.2 Harmonic analysis onH

For f ∈ L1 (H), its Helgason–Fourier transform f̂ (s, k) ∈ C (C × K ), is defined as

f̂ (s, k) =
∫

H

f (z)(Im(kz))
1
2+isdz,

for s ∈ C and k ∈ K = PSO2(R) whenever the integral exists.
In the case when f is K -invariant, i.e., f (kz) = f (z) for all z ∈ H and k ∈ K , its

transform is independent of k and can be written with the help of the spherical functions. For
every s ∈ C, the corresponding spherical function is a K -invariant function on H defined as

ϕ 1
2+is(z) =

∫

K
(Im (kz))

1
2+is−2dk.

Since ϕ 1
2+is is K -invariant, it depends solely on the hyperbolic distance from a point to the

origin i , and can be written as

ϕ 1
2+is(z) = ϕ 1

2+is(ke
−r i) = P− 1

2+is(cosh r),

where k ∈ K , r ∈ R≥0 is the distance from z to i , and Ps(r) is the Legendre function of the
first kind. We also denote φ(s, r) = ϕ 1

2+is(e
−r i), and note that for s ∈ R ( [6, Lemma 7], or

[34, Exercise 3.2.28])

φ(s, r) =
√
2

π
r
∫ 1

0

cos (sr x)√
cosh r − cosh r x

dx .
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The Helgason–Fourier transform of a K -invariant function f reads as

f̂ (s) =
∫

H

f (z)ϕ 1
2+is(z)dz =

∞∫

0

f (e−r i)P− 1
2+is(cosh r) sinh rdr .

For two functions f1, f2 ∈ L1 (H), their convolution is defined as

f1 ∗ f2(z) =
∫

G
f1(gi) f2(g

−1z)dg.

We exploit of the following properties of the Helgason–Fourier transform on H. For an
extensive presentation of the theory, see [13,34].

Proposition 2.1 ([34, Theorem 3.2.3])

1. (Plancherel Formula) The map f → f̂ extends to an isometry of L2 (H, dμ) with
L2
(
R × K , 1

4π s tanh πs dsdk
)
, where K is identified with R/Z.

2. (Convolution property) For f , g ∈ L1(H), where g is K -invariant,

f̂ ∗ g = f̂ · ĝ,
where ∗ stands for convolution, and · for pointwise multiplication.
The Helgason–Fourier transform can be extended to compactly supported measures on

H. Namely, for such a measure ν, its transform ν̂(s, k) ∈ C (C × K ), is defined for s ∈ C

and k ∈ K = PSO2(R) as

ν̂(s, k) =
∫

H

(Im(k(z)))
1
2+isdν,

and, if the measure is K -invariant, its transform is independent of k, and can be written as

ν̂(s) =
∫

H

ϕ 1
2+is(z)dν.

We will need the following claim, which follows from Proposition 2.1.

Corollary 2.2 Let ν be a compactly supported measure on H, and assume that ν̂ ∈
L2
(
R × K , 1

4π s tanh πs dtdk
)
. Then ν can be represented as an L2-function on H, i.e.,

there exists fν ∈ L2 (H) such that for every f ∈ Cc (H), ν ( f ) = ∫ fν(z) f (z)dz.

2.3 The averaging operator Ar

For r > 0, let Ar denote the operator on C(H) that averages a function over a circle of radius
r , i.e., for a function f ∈ C(H) and z = gi ∈ H (g ∈ G),

(Ar f ) (z) =
∫

K

f

(
gk

(
er/2 0
0 e−r/2

)
i

)
dk.

The operator Ar is bounded and self-adjoint with respect to the L2-norm on L2 (H)∩C (H),
so it extends to a self-adjoint operator Ar : L2 (H) → L2 (H). By duality, wemay also extend
Ar to an operator on the compactly supported measures on H. Note that the operator Ar can
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be written as a convolution from the right with a uniform K -invariant probability measure

δSr supported on the double coset K

(
er/2 0
0 e−r/2

)
K , i.e.,

Ar f = f ∗ δSr .

Also note that the Laplace-Beltrami operator Δ = −y2
(

∂2

∂x2
+ ∂2

∂ y2

)
can be written on

C∞ (H) as the limit

Δ = 2 lim
r→0

1

r2
(I − Ar ) ,

where I stands for the identity operator. However, we are mainly concerned with the behavior
of Ar when r is either fixed or tends to infinity.

The spherical functions ϕ 1
2+is on H are eigenfunctions of Δ and of Ar for every r > 0,

namely,

Δϕ 1
2+is =

(
1

4
+ s2
)

ϕ 1
2+is

Arϕ 1
2+is = ϕ 1

2+is(e
−r i) · ϕ 1

2+is .

In particular, the following lemma follows from Proposition 2.1:

Lemma 2.3 The L2-spectrum of Δ on H is
[ 1
4 ,∞
)
and the L2-spectrum of Ar on H is the

set
{
ϕ 1

2+is(e
−r i) | s ∈ R

}
=
{
P− 1

2+is(cosh r) | s ∈ R

}
.

2.4 Spectrum on the quotients and the Ramanujan condition

Consider the actions of Ar and of Δ on a dense subspace of L2
0 (Γ \H) = { f ∈ L2 (Γ \H) :∫

f = 0
}
, where Γ ⊆ PSL2(R) is a lattice. In both cases the spectrum is not necessarily

discrete, but one may still associate to every point of the spectrum a spherical function ϕ 1
2+is .

The value 1
2 + is ∈ C is called a “unitary dual parameter” and the union of all the unitary dual

parameters across the spectrum is call the unitary dual of X = Γ \H. Namely, if 1
2 + is ∈ C

appears in the unitary dual of X = Γ \H, then P− 1
2+is(cosh r) is in the spectrum of Ar and

1
4 + s2 is an eigenvalue of the Laplacian. It is well-known that, in general, the unitary dual
of X = Γ \H is contained in the set

{ 1
2 + is | s ∈ R

} ∪ { 12 + is | is ∈ (− 1
2 ,

1
2

)} ∪ {0, 1}
(see e.g., [24, Section 5.2]). The set

{ 1
2 + is | s ∈ R

}
is called the principal series, the set{ 1

2 + is | is ∈ (− 1
2 ,

1
2

)}
is called the complementary series, and {0, 1} is called trivial. The

trivial part corresponds to the constant function on X .
A quotient X = Γ \H is called Ramanujan if its non-trivial unitary dual is contained

solely in
{ 1
2 + is | s ∈ R

}
. Equivalently, X is Ramanujan if and only if all the non-trivial

eigenvalues of the Laplacian are greater or equal to 1
4 .

The Ramanujan condition can also be stated in terms of representation theory, and in
particular the representation of G on L2

0 (Γ \G), defined by (g f )(x) = f (xg), for f ∈
L2
0 (Γ \G) and g ∈ G. We avoid giving the full definitions and statements and refer the

reader to [24, Chapter 5] for the connection between representation theory and the spectrum
of the Laplacian, to [3] for the notion of temperedness, and also to [20, Section VII.11].

A (unitary) representation of G is (ρ, V ), where V is a Hilbert space and ρ : G →
U (V ) is a continuous group homomorphism into the group of unitary operators of V , with
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the topology defined by the operator norm. Given a representation (ρ, V ), we let V K =
{v ∈ V : ρ(k)(v) = v∀k ∈ K }. If ρ(G)V K is dense in V we say that (ρ, V ) is generated
by its K -fixed vectors. A representation (ρ, V ) that is generated by its K -fixed vectors is
tempered if for every v, v′ ∈ V which are K -fixed it holds that

∫

G

∣
∣〈v, ρ(g)v′〉∣∣2+ε

dg < ∞.

See [3] for the general definition of temperedness.
It is well-known (see, e.g., [24, Chapter 5, and Appendix, Proposition 2.4]) that X = Γ \H

is Ramanujan if and only if the subrepresentation of L2
0 (Γ \G) which is generated by the

K = PSO2 (R)-fixed vectors of L2
0 (Γ \G), is tempered.

Note that if f ∈ L2
0 (X) then it can be lifted to a K -fixed function f̃ ∈ L2

0 (Γ \G).
Moreover, every K -fixed function in L2

0 (Γ \G) can be generated this way.

Lemma 2.4 Let f , f ′ ∈ L2
0 (X), and let f̃ , f̃ ′ ∈ L2

0 (Γ \G) be their lifts. Let g ∈ G and let

k1

(
er/2 0
0 e−r/2

)
k2 be a Cartan decomposition of g. Then

〈
f̃ , g f̃ ′〉 = 〈 f , Ar f

′〉 .

Proof We first note that if f ′′ = Ar f ′, then the lift f̃ ′′ ∈ L2
0 (Γ \G) satisfies

f̃ ′′ =
∫

K
k

(
er/2 0
0 e−r/2

)
f̃ ′dk.

Since the representation is unitary and f̃ , f̃ ′ are K -fixed,

〈
f̃ , g f̃ ′〉 =

〈
f̃ , k1

(
er/2 0
0 e−r/2

)
k2 f̃

′
〉

=
〈
k−1
1 f̃ ,

(
er/2 0
0 e−r/2

)
f̃ ′
〉

=
〈
f̃ ,

(
er/2 0
0 e−r/2

)
f̃ ′
〉
.

Since f̃ is K -fixed we have f̃ = ∫K k−1 f̃ dk. Therefore

〈
f̃ , g f̃ ′〉 =

〈∫

K
k−1 f̃ dk,

(
er/2 0
0 e−r/2

)
f̃ ′
〉

=
〈
f̃ ,
∫

K
k

(
er/2 0
0 e−r/2

)
f̃ ′dk
〉

=
〈
f̃ , f̃ ′′〉 = 〈 f , Ar f

′〉 .

��
We therefore deduce:

Lemma 2.5 The surface X is Ramanujan if and only if for every f , f ′ ∈ L2
0 (X) and for

every ε > 0,
∫

r≥0
er
∣∣〈 f , Ar f

′〉∣∣2+ε
dr < ∞.
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Proof From the equivalent conditions of temperedness of representations with K -fixed vec-
tors, we know that the surface X is Ramanujan if and only if for every f̃ , f̃ ′ ∈ L2

0 (Γ \G), it
holds that

∫

G

∣
∣
∣
〈
f̃ , g f̃ ′〉

∣
∣
∣
2+ε

dg < ∞.

Now consider the Cartan decomposition G = ∪r≥0K

(
er/2 0
0 e−r/2

)
K , which corre-

sponds to the polar coordinates in H. The measure on the group in this coordinates reads as
dg = sinh rdkdr . If f , f ′ ∈ L2

0 (X) and f̃ , f̃ ′ ∈ L2
0 (Γ \G) are their lifts. Then

∫

G

∣
∣
∣
〈
f̃ , g f̃ ′〉

∣
∣
∣
2+ε

dg =
∫

r≥0
sinh r

∣
∣
∣
∣

〈
f̃ ,

(
er/2 0
0 e−r/2

)
f̃ ′
〉∣∣
∣
∣

2+ε

dr

=
∫

r≥0
sinh r
∣
∣〈 f , Ar f

′〉∣∣2+ε
dr .

Finally, using the fact that for r large sinh r 	 er , and the fact that every f̃ , f̃ ′ ∈ L2
0 (Γ \G)

are lifts of functions f , f ′ ∈ L2
0 (X), we arrive to the statement of the lemma.

��

2.5 Harish-Chandra bounds

Proposition 2.6 The spectrum of Ar on L2 (H) is bounded in absolute value by (r + 1) e−r/2.

Proof The L2-spectrum is composed of eigenvalues of Ar on the principal series spherical

functions, and hence is equal to the range of the function φ(s, r) =
√
2

π
r
∫ 1
0

cos(sr x)√
cosh r−cosh r x

dx ,

for s ∈ R. Since cosh r − cosh (r x) ≥ (cosh r − 1)
(
1 − x2
)
, for 0 ≤ x ≤ 1, (which follows

from the Taylor expansion of cosh), the following inequalities hold

|φ(s, r)| =
√
2

π
r

∣∣∣∣

∫ 1

0

cos (sr x)√
cosh r − cosh r x

dx

∣∣∣∣

≤
√
2

π
r

1√
cosh r − 1

∫ 1

0

1√
1 − x2

dx

= 1√
2
r (cosh r − 1)−1/2 = r

2

(
sinh

r

2

)−1 ≤ (r + 1)e−r/2.

��
Corollary 2.7 If X is Ramanujan then the norm of Ar on L2

0 (X) is bounded by (r + 1)e−r/2.

The inverse direction can be proven in a similar way, by analyzing the complementary
series. Let us present a more conceptual proof of it:

Proposition 2.8 If for every r ≥ 0 the norm of Ar on L2
0 (X) is bounded by (r + 1)e−r/2 then

X is Ramanujan.
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Proof If the bound on the norm of Ar holds then for every f , f ′ ∈ L2
0 (X) and every r > 0

it holds that
∣
∣〈 f , Ar f ′〉∣∣ ≤ (r + 1)e−r/2

∣
∣〈 f , f ′〉∣∣ , so

∫

r≥0
er
∣
∣〈 f , Ar f

′〉∣∣2+ε
dr ≤
∫

r≥0
er e(−1−ε/2)r (r + 1)2+ε

∣
∣〈 f , f ′〉∣∣2+ε

dr

= ∣∣〈 f , f ′〉∣∣2+ε
∫

r≥0
(r + 1)2+εe−εr dr < ∞,

and the proposition follows from Lemma 2.5. ��

3 Proof of theorem 1.2

Proof of Theorem 1.2. Let r ≤ RX − γ ln (RX ). The measure of

Y< = {x ∈ X : d (x, x0) < r}
is at most the volume of the ball of radius r in the hyperbolic plane, i.e.,

μ (Y<) ≤ μ (Br ) � er ≤ eRX e−γ ln(RX ) � μ (X) R−γ

X , (2)

which implies the lower bound of the theorem (note that we assume that μ (X) 	 eRX since
RX ≥ 1).

Now let r ′ = RX + γ ln (RX ) − r0, and Y> = {x ∈ X : dX (y, x0) > r ′}. Let bx0,r0 be
the characteristic function of Bx0 (r0) ⊂ X , normalized as follows

bx0,r0(x) =
{
1/μ
(
Br0
)
, x ∈ Bx0(r0);

0, x /∈ Bx0(r0).

It is well-defined since x0 has injectivity radius at least r0. Then Y> ⊂ Z where Z ={
x ∈ X : Ar ′bx0,r0 (x) = 0

}
. Denote by π ∈ L2(X) the constant function with π(x) =

1/μ(X) for every x ∈ X . For every point x ∈ Z , one has
∣∣(Ar ′bx0,r0 − π

)
(x)
∣∣ = π(x) =

1
μ(X)

, so μ (Z) μ−2 (X) ≤ ∥∥Ar ′bx0,r0 − π
∥∥2
2, and therefore

μ (Y>) ≤ μ (Z) ≤ μ2 (X)
∥∥Ar ′

n
bx0,r0 − π

∥∥2
2
.

Since bx0,r0 − π ⊥ π in the space L2(X), it holds that
∥∥bx0,r0 − π

∥∥
2 ≤ ∥∥bx0,r0

∥∥
2 = μ
(
Br0
)−1/2 �r0 1.

The bounds on the norm of Ar ′ of Proposition 1.5 imply the following inequality
∥∥Ar ′bx0,r0 − π

∥∥
2 = ∥∥Ar ′

(
bx0,r0 − π

)∥∥
2 ≤ (r ′ + 1

)
e−r ′/2 ∥∥bx0,r0 − π

∥∥
2

�r0

(
RX + γ ln (RX ) − r0 + 1

RX

)
RXe

− 1
2 RX− 1

2 γ ln(RX )+ 1
2 r0

�r0 (1 + γ ) e−RX /2R1−γ/2
X � (1 + γ )μ (X)−1/2 R1−γ/2

X .

The following inequality completes the proof

μ (Y>) ≤ μ2 (X)
∥∥Ar ′bx0,r0 − π

∥∥2
2 �r0 μ (X)

(
1 + γ 2) R2−γ

X .

��
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4 Deviations of the randomwalk

Let r1 > 0 be fixed. Consider the randomwalk onH, emanating from z0 = i and having zk+1

equidistributed on the sphere of radius r1 around zk . In other words, zk distributes according
to the measure Ak

r1δz0 , where δz0 is the Dirac delta-measure at z0. Write zk = xk + yki for
k ∈ N ∪ {0}.

Recall that in the upper half-plane model, the points at infinity of H are R ∪ {∞}. In the
following lemma we show that the random walk Ak

r1δz0 moves away from ∞ at a constant
speed.

Lemma 4.1 Let f : [0, π ] → [−1, 1] be the function defined as

f (θ) = − 1

r1
ln
(
er1 cos2 θ + e−r1 sin2 θ

)
.

Let m be the uniform probability measure on [0, π ] and let ν = f ∗m be the induced prob-
ability measure on [−1, 1] (i.e. for A ⊂ [−1, 1], ν(A) = m

(
f −1 (A)

)
). Then 1

r1
ln(yk)

distributes according to ν ∗ ν ∗ . . . ∗ v (k times). In other words, ln (yk) = ln (yk−1) + r1Y ,
where Y is a random variable, independent of yk−1, that distributes according to ν.

Proof One should show that for a given point z ∈ H, the logarithm of the imaginary part of the
measure Ar1δz is distributed according to ln

(
Imz′
) = ln (Imz)−ln

(
er1 cos2 θ + e−r1 sin2 θ

)
,

for 0 ≤ θ ≤ π equidistributed.
In the case of z = i , the sphere of radius r1 around z can be parameterized as

Sr1 (i) =
{(

e
r1
2 sin θ e− r1

2 cos θ

−e
r1
2 cos θ e− r1

2 sin θ

)

i = i + sin θ cos θ
(
e−r1 − er1

)

e2r1 cos2 θ + sin2 θ
| θ ∈ [0, π)

}

.

The logarithm of the imaginary part y′ of z′ = Ar1 z distributes according to ln(y′) =
− ln
(
er1 cos2 θ + e−r1 sin2 θ

)
.

To prove the claim for points other than z = i , notice that an isometry g of H maps Ar1δz

to Ar1δg·z . Since the action of
(
1 s
0 1

)
, s ∈ R does not change the imaginary coordinate of a

point and maps a point z ∈ H to z′ = z + s, if the claim holds for z, it also holds for z + s.

Similarly, the action of

(
et/2 0
0 e−t/2

)
, t ∈ R, maps a point z to z′ = et z, and, in particular,

multiplies its imaginary coordinate by et , hence if the claim is true for z, it is true for et z as
well. Therefore it is holds for every point z ∈ H. ��
Corollary 4.2 The random variables

√
k
−1 (

k−1r1 ln(yk) + αr1
)
converges in distribution to

the normal distribution N (0, σ 2
r1), where

αr1 = 1

πr1

∫ π

0
ln
(
er1 cos2 θ + e−r1 sin2 θ

)
dθ,

σ 2
r1 = 1

π

∫ π

0

(
1

r1
ln
(
er1 cos2 θ + e−r1 sin2 θ

)− αr1

)2
dθ.

Also, these numbers satisfies 0 < αr1 < 1 and that σ 2
r1 ≤ 4.

Moreover, the Hoeffding inequality holds: there exist c > 0 such that for every λ ≥ 0 and
k ≥ 0

Pr
(
|ln(yk) + αr kr1| ≥ λr1

√
k
)

� e−cλ2 .

123



Geometriae Dedicata (2019) 203:225–255 237

Proof The statement is a direct application of the central limit theorem and Hoeffding’s
inequality for independent bounded random variables. The expectancy is equal to αr1 and
the variance is equal to σ 2

r1 . The fact that 0 < αr1 < 1 follows from the fact that logarithm
is a concave function. ��
The random walk operator Ar1 commutes with the action by isometries on H. The stabilizer
of i acts transitively on the points at infinity of H. Therefore, just as the random walk Ak

r1δz0
moves away from ∞, it moves away from any other point at infinity.

Corollary 4.3 Let g ∈ G be an isometry of H fixing i , then Corollary 4.2 holds if we replace

yk = Imzk by Im (g · zk), i.e.,
√
k
−1 (

k−1r1 ln (Im (g · zk)) + αr1
)
converges in distribution

to the normal distribution N (0, σ 2
r1) with α1 and σ 2

1 as in Corollary 4.2.

In the following lemma, we make a particular use of the above corollary for the isometry
g : z �→ −1/z.

Lemma 4.4 There exists c > 0 such that Pr
(
x2k ≥ exp

(
λr1k1/2

))� e−cλ2 for all λ > 0 and
k ≥ 0.

Proof By Corollary 4.2 there exists c0 > 0 such that

Pr
(∣∣ln(yk) + αr1kr1

∣∣ ≥ λr1
√
k
)

� e−c0λ2 .

By Corollary 4.3 applied for −Imz−1
k = yk

x2k+y2k
, there exists c1 > 0 such that

Pr

(∣∣∣∣∣
ln

(
yk

x2k + y2k

)

+ r1αr1k

∣∣∣∣∣
≥ λr1

√
k

)

� e−c1λ2 ,

and hence

Pr
(∣∣ln
(
x2k + y2k

)∣∣ ≥ 2r1λ
√
k
)

� e−c0λ2 + e−c1λ2 .

Therefore there exists c > 0 such that

Pr
(
x2k ≥ exp

(
r1λ

√
k
))

≤ Pr
(
x2k + y2k ≥ exp

(
r1λ

√
k
))

� e−cλ2 .

��
Corollary 4.5 Let zk be distributed according to Ak

r1δz0 . Then there exists c = c(r1) > 0,
such that for every k ≥ 0 and λ ≥ 0

Pr
(∣∣d (zk, z0) − αr1r1k

∣∣ ≥ λ
√
k
)

�r1 e
−cλ2 . (3)

Proof Let us start by proving that there exists c > 0, such that for k ≥ 0, λ ≥ 0,

Pr
(∣∣d (zk, z0) − αr1r1k

∣∣ ≥ 1 + λr1
√
k
)

� e−cλ2 (4)

For any point z = x + iy ∈ H, the triangle inequality implies that

|d (z, i) − d (z, x + i)| ≤ d (x + i, i) = acosh

(
1 + x2

2

)

≤ max
{
1, 1 + 10 ln

(
x2
)}

.
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Hence by Lemma 4.4 there exists c0 > 0, such that

Pr
(
|d (z, i) − d (z, x + i)| ≤ 1 + λr1

√
k
)

� e−c0λ2 . (5)

And by Corollary 4.2 there exists c1 > 0, such that

Pr
(∣
∣ln y + αr1kr1

∣
∣ ≥ λr1

√
k
)

� e−c1λ2 .

Since
∣
∣d (z, x + i) − αr1kr1

∣
∣ = ∣∣|ln y| − αr1kr1

∣
∣, if
∣
∣|ln y| − αr1kr1

∣
∣ ≥ λr1

√
k then also∣

∣ln y + αr1kr1
∣
∣ ≥ λr1

√
k, and

Pr
(∣
∣d (z, x + i) − αr1kr1

∣
∣ ≥ λr1

√
k
)

� e−c1λ2 , (6)

which completes the proof.
Equation 3 follows from Eq. 4, as for λ ≥ r−1

1 and k > 0, 1+ λr1
√
k ≤ 2λr1

√
k, and we

can choose c′(r1) = 2c/r1 and choose the constant of �r1 in such a way that Eq. 3 holds for
λ ≤ r−1

1 . ��

Remark 4.6 One cannot hope to change
∣
∣d (zk, z0) − αr1kr1

∣
∣ ≥ 1 + λr1

√
k to
∣
∣d (zk, z0) −

αr1kr1
∣∣ ≥ λr1

√
k in Eq. 4 without assuming the dependency of � on r1, since for r1 → 0,

k → ∞ and kr1 → 0 the random walk behaves like the distance r1 random walk in R
2, and

in particular it will not diverge at a constant speed.

Note that for f ∈ L2 (H) ( f ∈ L2 (X), resp.), and for x ∈ H (x ∈ X , resp.), the following
equality holds

Ak
r1 f (x) =

∫ kr1

0
(Ar f ) (x)dmr1

k (r) ,

for some probability measure mr1
k supported on [0, kr1] and k ∈ N.

Corollary 4.7 There exists c = c(r1) > 0 such that for every k ≥ 0
∫

r :∣∣r−kr1αr1
∣∣≤λr1

√
k

dmr1
k (r) �r1 exp

(−cλ2
)
.

Proof Follows directly from Corollary 4.5. ��
In the next section we will prove that the measure mk for k ≥ 3 is actually defined by an
L2-function M (r1, r), and dm

r1
k (r) = M (r1, r) dr .

4.1 The Brownianmotion

The Brownian motion is the randomwalk onH defined by the operator Bt = exp (−Δt). The
Brownian motion was studied by many authors, and can be analyzed either by the Helgason–
Fourier transform, or by the “distance to infinity” approach used to study the discrete random
walk. In any case, based on [2,5], we may write Bt f (x) = ∫ p(t, r) (Ar f ) (x)dr , with

p (t, r) 	 t−1r√
1 + r + t

exp

(

− (r − t)2

4t

)

� t−1r exp

(

− (r − t)2

4t

)

.
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Proposition 4.8 There exist c > 0, t0 ≥ 0 such that for every λ > 0 and every t > t0
∫

r :|r−t |≥λ
√
t

p(t, r)dr �t0 e
−cλ2 .

Proof We have

∫

r :|r−t |≥λ
√
t

p(t, r)dr ≤
−λ∫

−∞
p(t, t + λ

√
t)dλ′ +

∞∫

λ

p(t, t + λ′√t)dλ′

For r = t − λ′√t ≤ t , we have

p (t, r) � e− λ′2
4 ,

so by the standard bound for λ ≥ 0

−λ∫

−∞
e−x2dx =

0∫

−∞
e−(−λ+x)2dx ≤ e−λ2

0∫

−∞
e−x2 � e−λ2 ,

we have

−λ∫

−∞
p(t, t + λ′√t)dλ′ � e− λ2

4 .

For r = t + λ′√t ≥ t

p (t, r) �
(
1 + λ′

√
t

)
e− λ′2

4 ,

so for t ≥ t0
∞∫

λ

p(t, t + λ′√t)dλ′ � e− λ2
4 + 1√

t0

∞∫

λ

λ′e− λ′2
4 dλ′

�t0 e
− λ2

4 +
(
e− λ′2

4

)∣∣∣∣

∞

λ

� e− λ2
4 .

��

5 Short time bound on the randomwalks

In this section we show that after a short time both random walks on X can be described by
an L2-function of bounded norm, given the injectivity radius of x0 is bounded away from 0.

It was shown in Sect. 2 that the L2-spectrum of the operator Ar constitutes of the values
of ϕ 1

2+is(e
r i) for s ∈ R. Recall that φ(s, r) = ϕ 1

2+is(e
−r i).

Lemma 5.1 For any r, the following inequality holds

|φ(s, r)| �r |s|−1/2 .
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Proof Up to a constant, the functionφ(s, r) is equal to
∫ 1
0

cos(sr(1−x))√
cosh r−cosh r(1−x)

dx . This function

is continuous in s, hence we may assume that |s| is large enough. Write

1∫

0

cos (sr (1 − x))√
cosh r − cosh r (1 − x)

dx

=
|s|−1∫

0

cos (sr (1 − x))√
cosh r − cosh r (1 − x)

dx +
1∫

|s|−1

cos (sr (1 − x))√
cosh r − cosh r (1 − x)

dx .

Then since limx→0+
√
x√

cosh r−cosh r(1−x)
= cr > 0, for |s| large enough we have

∣
∣
∣
∣
∣
∣
∣

|s|−1∫

0

cos (sr (1 − x))√
cosh r − cosh r (1 − x)

dx

∣
∣
∣
∣
∣
∣
∣

≤
|s|−1∫

0

1√
cosh r − cosh r (1 − x)

dx �r

|s|−1∫

0

1√
x
dx � 1√|s| .

Analogously,

1∫

|s|−1

1

(cosh r − cosh r (1 − x))3/2
dx �r

√|s|.

Write G(x) = − 1
sr sin (sr (1 − x)) and F(x) = 1/

√
cosh r − cosh r (1 − x), then by inte-

gration by parts,

1∫

|s|−1

G ′(x)F(x)dx = G(1)F(1) − G
(|s|−1) F(|s|−1) −

1∫

|s|−1

G(x)F ′(x)dx,

= −G
(|s|−1) F(|s|−1) −

1∫

|s|−1

G(x)F ′(x)dx

and hence,
∣∣∣∣∣∣∣

1∫

|s|−1

cos (sr (1 − x))√
cosh r − cosh r (1 − x)

dx

∣∣∣∣∣∣∣

�
∣∣∣∣
1

sr

∣∣∣∣

∣∣∣∣∣∣

1
√
cosh r − cosh r

(
1 − |s|−1)

∣∣∣∣∣∣
+

1∫

|s|−1

1

|s| r (cosh r − cosh r (1 − x))3/2
dx

�r |s|−1 |s|1/2 + 1

|s| ·√|s| � 1√|s| ,

which completes the proof. ��

123



Geometriae Dedicata (2019) 203:225–255 241

Lemma 5.2 For any x0 ∈ H, we have A3
r1δx0 ∈ L2 (H).

Proof By Theorem 2.1, the Helgason–Fourier transform of A3
r1 satisfies Â3

r1(s) =
(
Âr1(s)
)3 = φ3 (s, r1). Applying Lemma 5.1, and using the fact that tanh (πs) ≤ 1 implies

that
∞∫

−∞

∣
∣
∣ Â3

r1(s)
∣
∣
∣
2 s

4π
tanh (πs) ds =

∞∫

−∞
|φ (s, r1)|6 s

4π
tanh (πs) ds

�r 1 +
∫

|s|>1

|s|−3 |s| ds < ∞.

By the inverse Fourier transform we conclude by Corollary 2.2 that A3
r1 = ∫r f (r)Ardr ,

with f (r) an L2-function on R≥0. In particular,
∥
∥A3

r1δx0

∥
∥
2

= ∫r | f (r)|2 dr < ∞, as needed.
��

Remark 5.3 For k = 0, 1, 2 the analogous statement is not true. For k = 0, 1, Ak
r1δx0 cannot

be considered as a function. For k = 2, A2
r1 = ∫ r10 g(r)Ardr , where g(r) is a function on

R≥0, but not an L2-function.

Lemma 5.4 For k0 ≥ 3 (respectively for t0 > 0) there exists a constant C = C (r0, r1, k0)
(resp. C = C (r0, t0)) such that if x0 ∈ X has an injectivity radius at least r0 then Ak0

r1 δx0 ∈
L2 (X) and

∥∥∥Ak0
r1 δx0

∥∥∥
2

≤ C (resp. Bt0δx0 ∈ L2 (X) and
∥∥Bt0δx0

∥∥
2 ≤ C).

Proof We start with the discrete random walk Ak0
r1 δy0 . Since

∥∥Ar1

∥∥
2 ≤ 1 it is enough to

assume that k0 = 3.
Let y0 ∈ H be a fixed point covering x0 ∈ X . Let x1 ∈ X be a point different from x0.

Denote by B (y0, r) the ball of radius r around y, and by B(r) some ball of radius r . We claim
that it has a bounded number D �r0,k0,k1 1 of points z1, . . . , zD ∈ B (y0, k0r0) covering
x1. Since Ak0

r1 δy0 ∈ L2 (H), it is supported on B (y0, k0r0) and Ak0
r1 δx0 is the push-forward of

Ak0
r1 δy0 to X , this claimwill give the lemma for the discrete randomwalk.Wemay assume that

d0 = d (x0, x1) < k0r1. Let therefore z1, z2, . . . ,∈ B (y0, k0r0) be a sequence of different
points covering x1. Then each such point zi ∈ H can be associated with another point yi ∈ H,
covering x0, with d (yi , zi ) = d0. Moreover, wemay choose yi such that yi �= y j for zi �= z j .
By the injectivity radius assumption, d

(
yi , y j
) ≥ 2r0 for i �= j . All the yi ’s are contained

in the ball B (y0, 2k0r0), and their number is therefore bounded by μ(B(2k0r0))
μ(B(r0))

�r0,k0,k1 1.
Nowwe turn to the Brownianmotion. Since ‖Bt‖2 ≤ 1 and Bt+t ′ = Bt Bt ′ wemay assume

that t0 is small enough so that p2 (r , t0) is decreasing for r > r0 and Bt0δy0 (z) ≤ e−cd(y0,z)2

for some c = c (r0, t0) > 0 and d (y0, z) > r0.
Let y0 ∈ H be again a fixed point covering x0 ∈ X . Let x1 ∈ X be another point and let

d1 = d (x0, x1). Each point zi covering x1 satisfies d (y0, zi ) ≥ d1 and the number of points

zi covering x1 of distance d (y0, zi ) ≤ r is at most Dr ≤ μ
(
Br+d1

)

μ
(
Br0
) �r0 e

d1+r . Therefore we

get the bound:

Bt0δx0 (x) =
∑

zi

Bt0δy0 (zi ) =
∞∑

k=0

∑

zi :d1+r0k≤d(y0,zi )≤d1+r0(k+1)

Bt0δy0 (zi )
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≤
∞∑

k=0

Dd1+r0(k+1) · e−c(d1+r0k)2 �r0

∞∑

k=0

ed1+d1+r0(k+1)−c(d1+r0k)2

�r0,t0 e
2d1−c′d21 .

For some constant c′ > 0 depending on r0, t0. Finally, using the fact that the volume of
x ∈ X with d (x0, x) ≤ d1 is � ed1 ,

‖Bt0δx0‖22 =
∫

X

∣
∣Bt0δx0(x)

∣
∣2 dx �t0,r0

∫

d1≥0

e2
(
2d1−c′d21

)
· ed1dt �t0,r0 1,

and the lemma is proved. ��

6 Proof of theorem 1.3

The following theorem is the full statement of Theorem 1.3.

Theorem 6.1 Fix r0 > 0, r1 > 0, λ > 0 and a point x0 ∈ X. Assume RX 
r0,r1,λ 1 and
write

α = 1

πr1

π∫

0

ln
(
er1 cos2 θ + e−r1 sin2 θ

)
dθ ∈ (0, 1).

1. There exist constants c = c(r1) > 0, and C = C (r0, r1), such that

(a) If k satisfies kαr1 < RX − λ
√
RX then

∥∥Ak
r1δx0 − π

∥∥
1

> 2 − Ce−cλ2 ;

(b) If k satisfies kαr1 > RX +λ
√
RX , if X = Γ \H is Ramanujan, and if x0 has injectivity

radius at least r0, then
∥∥Ak

r δx0 − π
∥∥
1 < Ce−cλ2 ;

2. There exist constants c > 0, C = C(r0) such that

(a) If t satisfies t < RX − λ
√
RX then

∥∥Btδx0 − π
∥∥
1 > 2 − Ce−cλ2 ;

(b) If t satisfies t > RX + λ
√
RX , if X = Γ \H is Ramanujan, and if x0 has injectivity

radius at least r0, then
∥∥Btδx0 − π

∥∥
1 < Ce−cλ2 ;

for every λ > 0, assuming RX 
r0,λ 1.

We prove the theorem for the discrete random walk only. The proof for the Brownian
motion is analogous, and exploits Corollary 4.8 instead of Corollary 4.7 and the Brownian
motion part of Lemma 5.4 instead of its discrete part.

Proof Suppose that rkα < RX − λ
√
RX . Let Y = {y ∈ X : d (x0, y) > RX − λ

2

√
RX
}
. As

RX → ∞,

1 ≥ μ (Y ) /μ (X) ≥
(

μ (X) − μ

(
B

(
RX − λ

2

√
RX

)))
/μ (X) → 1,

so μ (Y ) /μ (X) → 1 (Recall that B(r) stands for the hyperbolic ball of radius r ).
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By Corollary 4.7, there exists c1(r1),C1 (r1) such that for RX large enough,
∫

Y

∣
∣
∣Ak

r δx0(x)
∣
∣
∣ dμ ≤ C1e

−c1λ2

∫

X−Y

∣∣
∣Ak

r δx0(x)
∣∣
∣ dμ ≥ 1 − C1e

−c1λ2 .

Therefore,
∥
∥
∥Ak

r bx0,r0 − π

∥
∥
∥
1

=
∫

Y

∣
∣
∣Ak

r δx0(x) − π(x)
∣
∣
∣ dμ +

∫

X−Y

∣
∣
∣Ak

r δx0(x) − π(x)
∣
∣
∣ dμ

≥
∫

Y

|π(x)| dμ −
∫

Y

∣
∣
∣Akn

r δx0(x)
∣
∣
∣ dμ +

∫

X−Y

∣
∣
∣Ak

r δx0(x)
∣
∣
∣−
∫

X−Y

|π(x)| dμ

≥ μ (X)−1 μ (Y ) − C1e
−c1λ2 + 1 − C1e

−c1λ2 − μ (X)−1 μ (X − Y )

= 2μ (X)−1 μ (Y ) − 2C1e
−c1λ2 ,

and the first bound follows by letting RX → ∞. Notice that it does not require the Ramanujan
assumption.

For the second bound, recall that we may write

Ak
r1bx0,r0(x) =

∫

r

(
Arbx0,r0

)
(x)dmk(r).

Assume that kr1α > RX + λ
√
RX . By Corollary 4.7, for some c2 (r1) > 0, for RX large

enough (depending on r1, λ),
∫

r<RX+ λ
2

√
RX

dmkr �r1 e
−c2λ2 .

As x0 ∈ X has an injectivity radius at least r0, by Lemma 5.4, there exists a constant
C3 = C (r0, r1) such that

∥∥A3
r1δx0

∥∥
2

≤ C3.
For every f ∈ L2 (X), Cauchy– Schwartz inequality implies that ‖ f ‖1 ≤ √

μ (X) ‖ f ‖2.
Writing R0 = RX + λ

2

√
RX , we therefore have,

∥∥∥Ak
r1 f − π

∥∥∥
1

≤
∫

r

∥∥Ar δx0 − π
∥∥
1 dmkr

=
∫

r<R0

∥∥Arbx0,r0 − π
∥∥
1 dmkr +

∫

r≥R0

∥∥Arbx0,r0 − π
∥∥
1 dmkr

≤
∫

r<R0

2dmkr +
∫

r≥R0

μ (X)1/2
∥∥Ar
(
bx0,r0 − π

)∥∥
2 dmkr

�r1 e
−c2λ2 +

∫

r≥R0

μ (X)1/2 (r + 1) e−r/2dmkr

� e−c2λ2 + μ (X)1/2 (R0 + 1) e− 1
2 (R0)
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� e−c2λ2 + μ (X)1/2 e− 1
2 RX (R0 + 1) e− 1

4

√
RX

→RX→∞ e−c2λ2 ,

and the second bound follows. ��

Remark 6.2 The theorem holds for λ > 0 such that RX 
r0,r1,λ 1. In other words, RX

has to be larger than some constant R(r0, r1, λ) that depends on r0, r1 and λ. By fixing
r0, r1, one can find the relation between this constant and λ, namely, it should hold that
λ = o
(√

R(r0, r1, λ)
)
and ln (R(r0, r1, λ)) = o

(
λ
√
R(r0, r1, λ)

)
.

7 Lp-bounds

The above results assume X to be Ramanujan. However, similar results can be proved in
a more general setting. In this section and the next one, we discuss Theorem 1.2 only, but
similarly one can elaborate on Theorem 1.3 as well.

The following lemma is well-known (see [21]):

Lemma 7.1 The spectrum of the Δ on L2
0 (X) below 1/4 is discrete, and corresponds to a

finite number of eigenvalues with multiplicities.

Eigenvalues of Δ strictly below 1/4 are called exceptional. A nice way to measure how
far is a representation V of G from being tempered is to ask what is the minimal p ≥ 2
such that the K -finite matrix coefficients of G on V lie in L p (G). The following proposition
relates this property to the spectra of the Laplacian and of the operators Ar . See [19] for the
corresponding result on graphs.

Proposition 7.2 The following are equivalent for p ≥ 2:

1. For every r ≥ 0, the norm of Ar on L2
0 (X) is bounded by (r + 1) e−r/p.

2. Every matrix coefficient of a subrepresentation of G on L2
0 (Γ \G) with K -fixed vectors

is in L p+ε (G) for every ε > 0.

3. The spectrum of Δ on L2
0 (X) is bounded from below by 1

4 − ( 12 − p−1
)2
.

The equivalence is also true for every Δ-invariant closed subspace V ⊂ L2
0 (X), where in

(2) we look at the G-subrepresentation generated by V .

Proof Let V be a Δ-invariant closed subspace of L2
0 (X).

The complementary series is determined by a real parameter t , 0 ≤ t ≤ 1, with corre-

sponding spherical function ϕt . Write t = 1
2 +s′

t and pt = ( 12 − ∣∣s′
t

∣∣)−1
(with the convention

that 0−1 = ∞). The corresponding eigenvalue of the Δ on ϕt is

λt = t (1 − t) = 1

4
− s′2

t = 1

4
−
(
1

2
− p−1

t

)2
.

The eigenvalue of Ar on ϕt is

ϕt (r) = 1√
2π

r

1∫

−1

exp
(
s′
t r x
)

√
cosh r − cosh r x

dx .
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Recall that for r > 0, cosh r − cosh (r x) ≥ (cosh r − 1)
(
1 − x2
)
holds. Hence

|ϕt (r)| = 1

π
√
2
r

∣
∣
∣
∣
∣
∣

1∫

−1

exp
(
s′
t r x
)

√
cosh r − cosh r x

dx

∣
∣
∣
∣
∣
∣
≤ 1

π
√
2
r

1√
cosh r − 1

1∫

−1

exp
(
s′
t r x
)

√
1 − x2

dx

≤ 1√
2π

r
exp
(∣∣s′

t

∣
∣ r
)

√
cosh r − 1

1∫

−1

1√
1 − x2

dx = 1√
2
r (cosh r − 1)−1/2 exp

(∣∣s′
t

∣
∣ r
)

≤ (r + 1) e
−r
(
1
2−|s′t |

)

= (r + 1) e−r/pt .

This proves an implication from (3) to (1).
We also want to give a lower bound on |ϕt (r)|. Let f (x) = cosh r − cosh (r(1 − x)). For

x ≥ 0, by the Taylor series

f (x) = xr sinh r − 1

2
r2x2 cosh

(
r
(
1 − x ′)) , for some 0 ≤ x ′ ≤ x,

so f (x) ≤ xr sinh r . Hence for a fixed ε > 0, and r ≥ 1,

ϕt (r) = 1√
2π

r

1∫

−1

exp
(
s′
t r x
)

√
cosh r − cosh r x

dx 
 r

2∫

0

exp
(
s′
t r (1 − x)

)

√
cosh r − cosh r (1 − x)

dx

≥ r

ε∫

0

exp
(
s′
t r (1 − x)

)

√
cosh r − cosh r (1 − x)

dx

≥
√
res

′
t r√

sinh r

ε∫

0

exp
(−s′

t r x
)

√
x

dx 
 es
′
t r(1−ε)

√
sinh r

√
ε 
 √

εe
−r
(
1
2−|s′t |(1−ε)

)

. (7)

This implies that if for every r ≥ 0, ϕt (r) ≤ (r + 1) e
−r
(
1
2−S
)

then
∣∣s′
t

∣∣ ≤ S. This proves
the implication from (1) to (3).

Arguing as in Lemma 2.5, we see that (2) is equivalent to:

– For every f , f ′ ∈ V and for every ε > 0,
∫

r≥0
er
∣∣〈 f , Ar f

′〉∣∣p+ε
dr < ∞ (8)

We can immediately see that as in Proposition 2.8, this proves the implication from (1) to
(2).

Assume now that (1) and (3) do not hold for p = p0 ≥ 2. By Lemma 7.1, there is an
eigenvector f ∈ V which satisfies 〈 f , Ar f 〉 = ϕt (r), for some ϕt , with pt > p0. By Eq. 7,
for some δ > 0 and for r large enough |〈 f , Ar f 〉| 
δ e−r(1/p0+δ). Then Eq. 8 does not hold,
and (2) does not hold. ��
By Lemma 7.1, for each X there is a minimal p0 satisfying the equivalent conditions of
Proposition 7.2. Denote it by p0 (X). For example, Selberg’s lower bound 3/16 implies that
for each X corresponding to a congruence subgroup of SL2 (Z), p0 (X) ≤ 4. Further progress
towards Selberg’s conjectrure (see, for example, [31]) improves this bound as well. Without
any additional assumption on X , we can say the following:
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Theorem 7.3 Let r0 > 0 be fixed. Let p = p0 (X) and assume RX ≥ 1. Let x0 ∈ X be a
point with injectivity radius at least r0. Then for every γ > 0

μX

(
x ∈ X : dX (x, x0) ≥ p

2
(RX + γ ln (RX ))

)
/μ (X) �p,r0

(
1 + γ 2) R2−γ

X .

Proof The proof is essentially the same as the proof of Theorem 1.2, and we only write the
differences. Insteadof choosing r ′ = RX+γ ln (RX )−r0, choose r ′ = p

2 (RX + γ ln (RX ))−
r0. Then:

∥
∥Ar ′bx0,r0 − π

∥
∥
2 = ∥∥Ar ′

(
bx0,r0 − π

)∥∥
2 ≤ (r ′ + 1

)
e−r ′/p ∥∥bx0,r0 − π

∥
∥
2

�r0

(
r ′ + 1
)
e− 1

2 RX− 1
2 γ ln(RX )+r0/p

�r0,p

p
2 (RX + γ ln (RX )) − r0

RX
μ (X)−1/2 e− 1

2 (γ−2) ln(RX )

�r0,p (1 + γ ) μ (X)−1/2 e− 1
2 (γ−2) ln(RX ).

The rest of the proof is the same as in Theorem 1.2. ��

8 Covers

Let X0 = Γ0\H. Then a finite index subgroup ΓX < Γ0 defines a cover X = ΓX\H of
X0, with cover map ρ : X → X0. The pull-back ρ∗ : L2 (X0) → L2 (X) defines a closed
subspace ρ∗L2 (X0) ⊂ L2 (X). Denote the orthogonal complement of ρ∗L2 (X0) in L2 (X)

by L2 (X/X0).
For p > 2, denote by m (X , p) the dimension of the space spanned by eigenvectors of

L2 (X/X0) whose matrix coefficients are not in L p′
for every p′ ≤ p but are in L p′

for
p′ > p. Denote also M(X , p) =∑p′≥p m

(
X , p′).

A cover ρ : X → X0 is called normal if ΓX � ΓX0 is a normal subgroup. Equivalently, a
cover ρ : X → X0 is normal if there exists a group H acting on X such that ρ (x) = ρ (y)
if and only if x and y are on the same H -orbit. We call H the cover group.

Our main result about covers is as the following theorem. Note that if X is an N -cover
of X0 (that is, [Γ0 : ΓX ] = N ) then μ (X) = N · μ (X0). Therefore, μ (X) 	X0 N and
RX = ln (N ) + OX0 (1).

Theorem 8.1 Let r0 > 0 be fixed, and let X0 be a fixed quotient. Let ρq : Xq → X0 be family
of normal Nq-covers, with Nq → ∞ as q → ∞.

Assume that g : R+ → R+ is non-decreasing function satisfying:

1. For some fixed δ > 2 and for R large enough, g(R) ≥ R + δ ln R;
2. and either

g3
(
ln
(
Nq
)) ∑

p:m(Xq ,p)�=0

e−2g(ln(Nq))/pi m
(
Xq , pi
) = o(1), (9)

or

g3
(
ln
(
Nq
))

∞∫

2

M
(
Xq , p
)
e−2g(ln(Nq))/p p−2dp = o (1) , and (10)

g2
(
ln
(
Nq
))

lim
p→2,p>2

M
(
Xq , p
)
e−g(ln(Nq)) = o(1); (11)
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For every q, let x (q)
0 ∈ Xq be a point such that its projection ρq(x

(q)
0 ) to X0 has injectivity

radius at least r0. Then

μ
(
x ∈ Xq : dXq

(
x, x (q)

0

)
≥ g
(
ln
(
Nq
)))

/μ
(
Xq
) = o (1) ,

where the implied constant depends on X0,
{
Xq
}
, r0 and g.

Before proving the theorem, let us study its corollaries.

Definition 8.2 We say that a family of covers
{
Xq
}
of X0 satisfies a density condition with

parameter A ∈ R if for every ε > 0, for each p > 2,

M (X , p) �ε,{Xq },X0 CN 1−A(p−2)/p+ε,

and furthermore

– The number of exceptional eigenvalues lim p→2,p>2 M (X , p) =∑p>2 m (X , p) of Xq

is �{Xq },X0 N .
– There exists pmax such that M (X , pmax) = 0.

The assumption that the number of exceptional eigenvalues is O(N ) is well-known to
hold in the arithmetic case (see [30]). There are two main instances of such density results:

1. The case A = 1: in this case we may simply write M (X , p) �ε,X0 N 2/p+ε . This is
known to hold for a wide range of cases, including the principal congruence subgroups
of SL2 (Z) and all cocompact arithmetic lattices in SL2 (R) (See [30,32] for the uniform
case and [15] for SL2 (Z)). In this case, for prime congruence, one may find pmax by
using lower bounds on the dimensions of representations of SL2

(
Fq
)
(see [32]). The

corresponding result for LPS graphs are implicitly contained in [4, Section 4.4]
2. The case A > 1: this case requires deeper results in analytic number theory and the

resultsmainly apply to congruence subgroups ofΓ = SL2 (Z). Iwaniec (see [17]) proved
density with A = 2, but only for, [14] and the references therein for recent results.

Corollary 8.3 Let ρ : Xq → X0 be family of normal Nq-covers, with Nq → ∞. Assume the
family satisfies a density condition with parameter A ≥ 1.

Let x (q)
0 ∈ Xq be a point such that its projection ρq(x

(q)
0 ) to X0 has injectivity radius at

least r0. Then for every ε0 > 0

μ
(
x ∈ Xq : dXq

(
x, x (q)

0

)
≥ RXq (1 + ε0)

)
/μ
(
Xq
) = o (1) .

Proof One should verify Inequalities 10 and 11 for g(R) = (1 + ε0)R. We may assume
A = 1.

For ε > 0 small enough with respect to ε0 it holds that

g3
(
ln
(
Nq
))

∞∫

2

M (X , p) e−2g(ln(Nq))/p p−2dp

�ε,{Xq},X0
(1 + e0)

3 ln3
(
Nq
)

pmax∫

2

N 2/p+ε
q e−2(1+ε0) ln(Nq)/p p−2dp

�ε0 ln
3 (Nq
)

pmax∫

2

N 2/p+ε
q N−2(1+ε0)/p

q p−2dp
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= ln3
(
Nq
)

pmax∫

2

N ε−2ε0/pmax
q p−2dp

� ln3
(
Nq
)
N ε−2/pmaxε0
q →Nq→∞ 0.

In addition,

g2
(
ln
(
Nq
))

lim
p→2,p>2

M
(
Xq , p
)
e−g(ln(Nq))

�{Xq},X0
(1 + ε0)

2 ln2
(
Nq
)
N 1−(1+ε0)
q

�ε0 ln
2 (Nq
)
N ε0
q →Nq→∞ 0.

��
Let us turn to the proof of Theorem 8.1. It will depend on the following two lemmas.

Lemma 8.4 Let ρ : X → X0 be an N-cover, U = ρ∗L2
0

(
X ′) ⊂ L2

0 (X) be the space of
functions pulled back from X0 to X and let PU be the orthogonal projection onto U. Let
x0 ∈ X be a point such that its projection to X0 has injectivity radius at least r0. Then

∥∥PU
(
bx0,r0
)∥∥

2 = N−1/2
∥∥bx0,r0
∥∥
2 .

Proof We have
∥∥PU
(
bx0,r0
)∥∥

2 = max
u∈U ,‖u‖2=1

〈
u, bx0,r0

〉 = max
u′∈L2(x ′),‖ρ∗u′‖2=1

〈
ρ∗u′, bx0,r0

〉
.

But
∥∥ρ∗u′∥∥2

2 = N
∥∥u′∥∥2

2 and
〈
ρ∗u′, bx0,r0

〉 = 〈u′, bρ(x0),r0

〉
. So

∥∥PU
(
bx0,r0
)∥∥

2 = max
u′∈L2(x ′),‖u′‖2=N−1/2

〈
u′, bρ(x0),r0

〉

= N−1/2
∥∥bρ(x0),r0

∥∥
2 = N−1/2

∥∥bx0,r0
∥∥
2 .

��
Lemma 8.5 Let ρ : X → X0 be a normal N-cover, with cover group H. Let W ⊂ L2 (X)

be a finite dimensional H-invariant subspace and PW the orthogonal projection onto this
subspace. Let x0 ∈ X be a point such that its projection to X0 has injectivity radius at least
r0. Then

∥∥PW
(
bx0,r0
)∥∥

2 ≤
√
dimW

N

∥∥bx0,r0
∥∥
2 .

Proof Let u1, . . . , udimW be an orthonormal basis of W . Then

∥∥PW
(
bx0,r0
)∥∥2

2 =
dimW∑

i=1

∣∣〈ui , bx0,r0
〉∣∣2 .

On the other hand, the points hx0, where h ∈ H , are all distinct, the balls Br (hx0) of
radius r0 around them are disjoint, and since W is H -invariant for each h ∈ H

∥∥PW
(
bhx0,r0
)∥∥2

2 = ∥∥PW
(
bx0,r0
)∥∥2

2 .
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so

N
∥
∥PW
(
bx0,r0
)∥∥2

2 =
∑

h∈H

dimW∑

i=1

∣
∣〈ui , bhx0,r0

〉∣∣2

≤
dimW∑

i=1

∑

h∈H

∥
∥ui |Br (hx0)

∥
∥2
2

∥
∥bx0,r0
∥
∥2
2

= ∥∥bx0,r0
∥
∥2
2

dimW∑

i=1

∑

h∈H

∥
∥ui |Br (hx0)

∥
∥2
2

≤ ∥∥bx0,r0
∥
∥2
2

dimW∑

i=1

‖ui‖22 = dimW
∥
∥bx0,r0
∥
∥2
2 .

��
Proof of Theorem 8.1. To avoid cumbersome notations we do not use the index q in the proof
below.

By the proof of Theorem 1.2 one should prove the following inequality for r = g (RX ),
∥∥Ar
(
bx0,r0 − π

)∥∥2
2 = o
(
N−1) .

Let {pi }Ti=1 be the set of p-values (without multiplicities) of exceptional eigenvalues of
L2 (X/X0), i.e., the p such that the corresponding matrix coefficient is not in L p′

for every
p′ ≤ p but are in L p′

for every p′ > p. Let Vi be the vector space of eigenvectors with
p-value pi . Let p0 = 2 and V0 the orthogonal complement of the Vi in L2 (X/X0). Then by
Proposition 7.2, for i = 0, . . . , T , the norm of Ar on Vi is bounded by (r + 1) e−r/pi .

We have the decomposition

L2 (X) = span {π} ⊕ ρ∗L2
0 (X0) ⊕ V0 ⊕ V1 ⊕ · · · ⊕ VT .

Decompose bx0,r0 = π +u+v0+· · ·+vT . For i = 1, . . . , T , denotem (X , pi ) = dim Vi .
We have

‖u‖22 = N−1
∥∥bx0,r0
∥∥
2 �r0 N−1

‖v0‖22 ≤ ∥∥bx0,r0
∥∥2
2 �r0 1

‖vi‖22 ≤ N−1m (X , pi )
∥∥bx0,r0
∥∥
2 �r0 N−1m (X .pi ) .

The first equality follows from Lemma 8.4, the second inequality is straightforward, and the
third inequality follows from Lemma 8.5.

Then for r = g
(
RXq

)
,

∥∥Ar
(
bx0,r0 − π

)∥∥2
2 = ‖Aru‖22 + ‖Arv0‖22 +

T∑

i=1

‖Arvi‖22 . (12)

Therefore one should prove that the RHS of Eq. 12 is O
(
N−1
)
.

Since ‖u‖22 �r0 N−1 and X0 has some p0 (X0) and the first summand of Eq. 12 is
o
(
N−1
)
.

Since ‖v0‖22 �r0 1 and for some δ > 2, and R large enough g(R) ≥ R + δ ln R, the
second summand of Eq. 12 is o

(
N−1
)
.
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For the third summand, we have

T∑

i=1

‖Arvi‖22 ≤ N−1 (r + 1)2
T∑

i=1

e−2r/pi m (X , pi ) .

This proves that if Inequality 9 holds then the third summand of Eq. 12 is o(N−1).
Notice that for 1 ≤ i ≤ T , m (X , pi ) = M (X , pi ) − M (X , pi+1), with M (X , pT+1) =

0. Then

T∑

i=1

‖Arv0‖22 ≤ N−1 (r + 1)2
T∑

i=1

e−2r/pi m (X , pi )

= N−1 (r + 1)2
T∑

i=1

e−2r/pi (M (X , pi ) − M (X , pi+1))

= N−1 (r + 1)2
(

M (X , p1) e
−2r/p1 +

T∑

i=2

M (X , pi )
(
e−2r/pi − e−2r/pi−1

)
)

≤ N−1 (r + 1)2
(

M (X , p1) e
−2r/p1 +

T∑

i=1

M (X , pi ) 2r (pi − pi−1) e
−2r/pi p−2

i−1

)

,

Where we used
(
e−2r/pi − e−2r/pi−1

) = 2r (pi − pi−1) e−2r/p′
p′−2, for some pi−1 ≤ p′ ≤

pi .
By adding arbitrary pi -s with m (X , pi ) = 0 we may conclude

T∑

i=1

‖Arv0‖22

≤ N−1 (r + 1)2

⎛

⎝ lim
pi→2,pi>2

M (X , pi ) e
−r + 2r

∞∫

2

M (X , p) e−2r/p p−2dp

⎞

⎠ .

This proves that if Inequalities 10 and 11 hold then the third summand in Eq. 12 is o
(
N−1
)
.

��

9 Appendix I: Isoperimetric inequalities and concentration of distance
from a fixed vertex

The boundswe have allows us to prove the following isoperimetric inequality. Similar bounds
are well-known (see [10, Theorem 4.1]).

Lemma 9.1 Let X = Γ \H be a quotient, and p = p0 (X) as defined in Proposition 7.2. For
r ≥ 0, denote κr ,p = (r + 1)2 e−2r/p. For a closed set Y ⊂ X, let

Yr = {x ∈ X | d (x, Y ) ≤ r} ,

and denote c = μ (Y ) /μ (X) and c′ = μ (Yr ) /μ (X). Then

c′ ≥ c
(
κr ,p(1 − c) + c

) , and hence also c ≤ κr ,pc′

1 − c′ + κr ,pc′ .
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Remark 9.2 For ck−1
r ,p small c′ 
 e2r/p

(r+1)2
c. So for p = 2, up to an (r + 1)−2 factor, the growth

of small sets is the best possible, i.e. the size of the radius r -ball.

Remark 9.3 The result of [10, Theorem 4.1], which ismore general andworks for all surfaces,
not necessarily hyperbolic, essentially replaces the exponent 2/p = 1−√

1 − 4λ by
√

λ, so
the results above are asymptotically better for the relevant domain 0 ≤ λ ≤ 1/4.

Proof We may assume μ (Y ) > 0. Let bY ∈ L1 (Y ) be defined by

bY =
{

μ−1 (x) x ∈ Y

0 x /∈ Y
.

Then ‖bY ‖1 = 1, ‖bY ‖22 = μ−1 (Y ),
∥∥Ar0bY

∥∥
1 = 1 and supp (ArbY ) ⊂ Yr , so ‖ArbY ‖−2

2 ≥
1

μ(Yr )
, i.e.

μ (Yr ) ≥ ‖ArbY ‖22 .

Decompose bY = π + b, with

‖b‖22 = ‖bY ‖22 − ‖π‖22 = 1

μ (Y )
− 1

μ (X)
= 1 − c

μ (Y )
.

We have
∥∥Ar0bY

∥∥2
2 = ‖Arb‖22 + ‖Arπ‖22

≤ (r + 1)2 e−2r/p ‖b‖22 + ‖π‖22
≤ (r + 1)2 e−2r/p(1 − c)μ−1 (Y ) + μ−1 (X)

= (κr ,p(1 − c) + c
)
μ−1 (Y ) .

Combining the two inequalities we get

μ (Yr ) ≥ ∥∥Ar0bY
∥∥−2
2 ≥ c
(
κr ,p(1 − c) + c

)μ (X) .

The other inequality in the theorem follows from the first one. ��
We may now state the following concentration of distance theorem:

Theorem 9.4 There exists a = a (p0 (X)) > 0 such that for each x0 ∈ X there exists RX ,x0
such that for every γ > 0:

μ
(
x ∈ X | ∣∣dX (x, x0) − RX ,x0

∣∣ ≥ γ
)
/μ (X) �p0(X) a

−γ .

Remark 9.5 By Theorem 1.2 if X is Ramanujan and x0 has injectivity radius r0 then RX ,x0
satisfies RX ≤ RX ,x0 ≤ RX + (2 + ε) ln RX .

Proof For r ≥ 0 denote

Y (r) = {x ∈ X | d (x, x0) ≤ r} .

Choose RX ,x0 to be such that

μ
(
Y
(
RX ,x0

)) = 1

2
μ (X) .
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Let Y = Y (RX ,x0 − γ ). Then Yγ = Y
(
RX ,x0

)
and

μ (Y ) μ (X)−1 ≤ kγ,p
1
2

1 − 1
2 + kγ,p

1
2

= kγ,p

1 + kγ,p
≤ kγ,p.

Let Z = Y (RX ,x0 + γ ). Then Y
(
RX ,x0

)
γ

= Z and

μ (Z) μ (X)−1 ≥
1
2(

κr ,p(1 − 1
2 ) + 1

2

) = 1

1 + kγ,p
.

Hence

1 − μ (Z) μ (X)−1 ≤ kγ,p

1 + kγ,p
≤ kγ,p

And finally,

μ
(
x ∈ X : ∣∣dX (x, x0) − RX ,x0

∣
∣ ≤ γ
)
/μ (X)

= 1 − μ (Z) μ (X)−1 − μ (Y ) μ (X)−1 ≤ 2kγ,p.

We finish by noting that there exists a = a (p) such that

kγ,p �p a−γ .

��

10 Appendix II: Comparison with the flat case

In [7, Section 3C], Diaconis analyzes the random walk on the Cayley graph of Z/NZ with
respect to the generators ±1, and shows that it does not have a cutoff. Namely, he shows that
the time t T0 until the random walk satisfies

∥∥pTN − π
∥∥
1 ≤ e−T is Θ

(
N 2T
)
.

Wewill similarly analyze the Brownian randomwalk on the torus aZ\Rwhere a > 0, and
show it does not have a cutoff as a → ∞. Namely, we will show that time until the time t T0
until the random walk satisfies

∥∥pTa − π
∥∥
1 ≤ e−T is Θ

(
a2T
)
. Similar analysis shows that

the Brownian random walk on quotients of R
n by aZ

n does not express a cutoff as a → ∞.
It is also worth mentioning that the “distance r1” discrete random walk on aZ\R does

not even converge in L1 to the uniform probability, since it remains discrete. For higher
dimensions the “distance r1” random walk does converge to the uniform probability (for
similar reasons as in Sect. 5), but does not express a cutoff by the central limit theorem and
comparison with the Brownian motion.

Let Xa = aZ\R and let x0 ∈ X . The distribution of the Brownian random walk starting
at x0 at time t for x ∈ X is pt (x, x0) = (δx0 ∗ ft

)
(x) = ∑n∈Z ft (x − x0), with ft (x) =

1√
2π t

exp
(−x2/2t

)
.

By normalizing and choosing λ = a2, we may consider a fixed space X = Z\R, a fixed
point x0 = Z0 and let f λ

t (x) = 1√
2πλ−1t

exp
(−x2λ/2t

)
. Then pλ

t (x) =∑n∈Z f ε
t (x + n).

Proposition 10.1 We have for every λ > 0, t ≥ 0.

exp
(−λ−1t

) ≤ ∥∥pλ
t − π
∥∥
1 ≤
√

2

1 − exp
(−2λ−1t

) · exp (−λ−1t
)
.
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The proposition says that the time until
∥
∥pλ

t − π
∥
∥
1 ≤ e−T takes place is Θ

(
T · λ−1

)
.

Therefore this random walk does not exhibit a cutoff.

Proof Let us calculate the Fourier series of pλ
t :

p̂λ
t (m) =

1∫

0

pλ
t (x) exp(2π imx)dx

=
1∫

0

∑

n∈Z
f λ
t (x + n) exp(2π imx)dx

=
∞∫

−∞
f λ
t exp (2π imx) dx

= f̂ λ
t (m),

where f̂ λ
t is the Fourier transform of f λ

t . By a standard computation f̂ λ
t (ω) =

exp
(−λ−1tω2

)
, so p̂λ

t (m) = exp
(−λ−1tm2

)
.

On the one hand,

∥∥pλ
t − π
∥∥
1 ≥

1∫

0

(
pλ
t (x) − 1

)
exp (2πx) dx =

1∫

0

pλ
t (x)exp (2πx) dx

= p̂λ
t (1) = exp

(−λ−1t
)
.

On the other hand,
∥∥pλ

t − π
∥∥2
2 =
∑

m∈Z

(
p̂λ
t (m) − π̂(m)

)2 =
∑

m∈N\{0}

(
p̂ε
t

)2
(m)

=
∑

m∈Z\{0}
exp
(−2λ−1tm2)

= 2
∞∑

m=1

exp
(−2λ−1tm

)

≤ 2

1 − exp
(−2λ−1t

) exp
(−2λ−1t

)
.

Cauchy-Schwartz inequality completes the proof by

∥∥pε
t − π
∥∥
1 ≤ ∥∥pε

t − π
∥∥
2 ≤
√

2

1 − exp
(−2λ−1t

) exp
(−λ−1t

)
.
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