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Mind and machine in drug design
After a difficult start, medicinal chemists are now ready to embrace AI-based methods and concepts in drug 
discovery, explains Gisbert Schneider.

Gisbert Schneider

Commercial drug discovery faces 
a constantly decreasing return 
on investment. Among several 

challenges, this is due to increasing drug 
resistance and safety issues, and the desire 
of the industry to adjust to a new era of 
personalized healthcare, with shrinking 
target patient populations1,2. Only 10–14% 
of drug candidates entering clinical trials 
actually reach the market as medicines, 
with an estimated US$2–3 billion price tag 
for each new treatment3. Without question, 
there is a need for fresh thinking, new and 
revised conceptions of the drug discovery 
process, and innovative approaches to 
deliver higher quality drugs at a lower cost 
to market. Will artificial intelligence (AI) 
come to the rescue4,5? Already, a variety 
of machine learning methods have been 
used to design prototypical compounds 
with desired drug-like properties and 
bioactivities, and to search for solutions 
to various tough problems in medicinal 
chemistry6–9. While the immediate impact 
of these advances on drug approvals may 
be limited, there is proof of concept for 
early recognition of potential side-effects, 
successful drug repurposing, improved 
accuracy for drug property predictions, 
and the autonomous generation of drug 
candidates by machine intelligence.

In fact, we are witnessing a renaissance of 
AI technology in medicinal chemistry. The 
previous wave of excitement crested roughly 
30 years ago with the first applications 
of neural networks, inference systems 
and other machine learning models10–12. 
After much debate, and possibly too little 
in the way of convincing applications, 
enthusiasm faded. Instead, automated 
experimental approaches like combinatorial 
chemistry and high-throughput compound 
screening became the primary drivers of 
the industry13. Now AI is back — this time, 
apparently, for good. The combination 
of laboratory automation and innovative 
software solutions for process planning 
and drug design promises better drugs, 
discovered and delivered faster14,15. 
Medicinal chemists are now exploring, 
adopting and adapting this technology. It is 
a question worth pondering what took  
them so long.

At the edge of chaos
To answer this question from a scientific 
vantage point, one must concede our 
incomplete understanding of the domain. 
The world of chemistry is largely based on 
explicit knowledge as encoded in written 
text, molecular models and the formulation 
of underlying physical principles. Although 
the rules of chemistry and physics are 
equally valid in medicinal chemistry, we 
face a particularly challenging situation in 
drug discovery that, to date, has precluded 
the possibility of exhaustive problem 
representation using chemical terminology. 
The systemic pharmacological effect of a 
drug is governed by poorly defined, and 
highly nonlinear, relationships between 
many contributing factors, leading to often 
unpredictable system behaviour. In other 
words, medicinal chemists work ‘at the edge 
of chaos’16.

Consequently, drug design is 
largely based on heuristic approaches, 
accompanied by decision making based 
on ‘gut feeling’. The use of associative 
reasoning and pattern recognition for 
molecular structures, based on implicit 
knowledge, is commonplace. Prominent 
examples of such narratives are empirically 
derived guidelines for ‘drug-likeness’, and 
the notion of ‘privileged’ chemical (sub)

structures17. It takes years of on-the-job 
training to become a knowledgeable expert 
in medicinal chemistry. Still, there remain 
huge differences of opinion as to which 
compound from any given series should 
become the next drug candidate.

Only when confronted with a solvable 
task will a learning algorithm find causative 
input–output relationships. Therefore, 
applying machine learning to drug 
design requires further thought regarding 
the definition of the problem domain. 
While certain properties of molecules 
can be automatically learned from basic 
(sometimes referred to as ‘fundamental’) 
molecular representations, such as the atom 
connectivity and certain quantum chemical 
properties, the physicochemical patterns 
of a drug molecule alone rarely account for 
the observed pharmacological effect in a 
simple fashion. Most drugs have multiple 
biological targets and activities, and their 
relative importance is highly dependent on 
the individual genetic profile of patients, the 
impact of formulation and administration 
for a given drug’s bioavailability, and a range 
of other factors. In other words, in certain 
areas of drug design we are confronted with 
inherently ill-posed problems owing to 
unknown contributing factors and many-
to-many nonlinear relationships. Beyond a 

Fig. 1 | Cartoon representation of the drug design cycle as the interplay of inductive and deductive 
reasoning. The individual tasks along this process can be performed by humans or machines. 
Automating discovery processes with the aid of laboratory robots and artificial intelligence is a dynamic 
field of research and actively pursued in the biotech and pharmaceutical industries. Credit: Jack Burgess.
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certain level, the human mind struggles to 
retain and process such complex networks  
of variables.

Design, make, test, repeat
Consequently, drug design is non-
deterministic. The molecular design–make–
test cycle essentially represents an adaptive 
stochastic search. It alternates between 
the generation of new chemical matter 
by hypothesis-based deductive reasoning 
and inductive (or abductive) extraction of 
insights from the available data (Fig. 1)14,15. 
Machine learning can support chemists 
in situations of uncertainty by means of 
unbiased pattern recognition and feature 
extraction from chemical and biological 
data. However, machine intelligence — 
like human intelligence — often builds on 
implicit knowledge representations that 
elude our immediate understanding (‘black 
box’ models). The inherent difficulty in 
explaining the behaviour of a nonlinear, 
multiparameter model in terms of the 
established explicit chemical vocabulary has 
restricted more widespread use of advanced 
machine learning approaches in drug design 
to date. With good reason, chemists wish 
to understand why a certain suggestion is 
made and how it translates into the design 
of new molecules, in a manner consistent 
with their own understanding of the 
problem. Therefore, it is unsurprising that 
the majority of existing machine learning 
models deployed in chemical pursuits 
rely on molecular representations with an 
immediate, tangible basis in the substructural 
hierarchies, functional groups, molecular 
graphs and computed physicochemical 
properties familiar to chemistry. The field 
will unquestionably benefit from quantifying 
the uncertainty of deep models18. At the 
same time, we need to develop innovative 
molecular models that are sufficiently flexible 
to allow machine learning algorithms to 
find more intricate causative input–output 
relationships. Understanding the nature of 
the relationship between the structures and 
functions of bioactive compounds is key to 
successful drug design. The applicability 
domain of graph-based molecular models in 
AI-assisted drug design may thus be limited. 
Molecular pattern recognition could benefit 
from ‘low-level’ theoretical conceptions and 
approximations to describe, explain and 
predict a particular domain of phenomena19, 
for example molecule representations in terms 
of electron density and shape distributions. 
To quote Richard Feynman in this context, 
“There’s plenty of room at the bottom”.

toward the virtual chemist
Organic synthesis remains a rate-limiting 
factor in drug discovery projects20. 

Synthesis planning and chemical reactivity 
prediction, fast and accurate calculation of 
binding energies, and the de novo design 
of molecules with desired properties are 
examples of notoriously hard problems that 
might be addressable by a chemistry-savvy 
AI. The availability of representative training 
data, affordable high-performance computer 
hardware, and free access to software 
libraries has facilitated the straightforward 
application of machine learning algorithms 
in tackling these issues21–23. However, the 
decisive factors for the success of AI in 
drug design will be the ethos, attitude 
and willingness of chemists to apply these 
computational models and autonomous 
robots in their own research projects.

Importantly, the applicability of machine 
intelligence exceeds data analysis and model 
learning. Generative machine learning, 
which aims to find the distribution in the 
training dataset to generate new samples, 
can take the role of a chemist not only in 
the formulation of testable hypotheses, but 
also in the creative aspect, in the assembly 
of innovative molecules24. Prominent 
applications of generative models, which 
compose music or create new cooking 
recipes for today’s dinner, have inspired 
chemoinformaticians to adapt these 
underlying methodological frameworks 
to chemistry, for example with recurrent 
neural networks, variational autoencoders 
and generative adversarial networks25,26. 
Admittedly, these current realizations of 
somewhat antiquated ideas are baby steps 
considering the breadth and depth of the 
machine learning arsenal that is available 
today, and have already been applied to good 
effect in other fields, specifically in image 
and speech recognition and modelling. 
Many of the underlying methodological 
concepts that are productively applied in 
drug design today had their first heyday 
in the 1990s, for example autoencoders 
and adaptive deep networks27–29. Fruitful 
crosstalk between expert medicinal chemists 
and computer scientists will therefore be 
warmly welcome, because only subsequent 
prospective testing will decide whether the 
contemporary design concepts are practical 
and sustainable for their intended purpose. 
After all, there is no learning without 
feedback, and shortening the timelines for 
the delivery of these critical data will be key 
for sustainable drug design, as powered by 
machine intelligence14,30.

Integrating domain-specific machine 
intelligence in the pharmaceutical industry 
is the litmus [sic] test for AI in healthcare. 
The challenge is not only to generate novel 
drug candidates that are — practically — 
optimal in terms of their pharmacokinetic 
and -dynamic properties; the integration of 

AI will also require significant investment 
of time, money and the reorganization 
of laboratory structures and discovery 
processes. In consequence, the envisaged 
automated drug design engine may not only 
imitate but exceed human decision making 
as a core aspect of the drug discovery 
process. If successful in the long run, the 
approach will combine a continuously 
learning, chemistry-savvy AI with the 
synthesis and testing of pharmacologically 
relevant chemical matter. While many 
medicinal chemists are prepared for this 
transition, one should bear in mind that 
machine learning per se is neither a quick 
fix for the problems of the industry, nor 
does it provide immediate answers to the 
underlying scientific questions. We should 
be aware of the limitations of AI when it 
comes to modelling human cognition and 
avoid repeating the mistakes of the past31. 
Partial predictability in drug design is 
inevitable as a consequence of incomplete 
domain representation, and the fact that 
we are interfering with living organisms. 
Therefore, it would be wise not to place 
all one’s eggs in the machine learning 
basket, but to expect successful, creative 
solutions from the collaborative efforts 
of human experts, process automation 
and advanced computer-assisted decision 
making32,33. Academic institutions and 
not-for-profit organizations can offer the 
necessary leverage, and leeway, to explore 
unconventional thinking and challenge 
machine intelligence models to generate 
novel drug candidates. The prospects for 
this mixture of machine and mind in drug 
discovery are huge. ❐
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