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1 Introduction

The extraordinary detection of gravitational waves by the LIGO and Virgo collabora-

tions [1, 2] has opened a new window into the cosmos. Gravitational wave astronomy is

now a critical tool for answering longstanding questions in astronomy and cosmology, and

offers a test of gravity in violent environments never before probed by experiment.

The LIGO and Virgo detectors boast an exquisite precision which will grow in fu-

ture upgrades, thus demanding commensurately accurate theoretical predictions encoded

in waveform templates utilized for detection and extraction of source parameters. These

waveforms are constructed from an array of complementary approaches, including the

effective one-body (EOB) formalism [3, 4], numerical relativity [5–7], the self-force for-

malism [8, 9], and a number of perturbative methods for the inspiral phase, including the

post-Newtonian (PN) [10, 11] and post-Minkowskian (PM) [12–22] approximations, as well

as the nonrelativistic general relativity (NRGR) formalism [23] based on effective field the-

ory (EFT). For recent reviews see refs. [24–29] and references therein. In the coming years,

further improvements in high-precision theoretical predictions from general relativity will

be essential given expected improvements in detector sensitivity.

During the early inspiral phase, the gravitational field is weak and the constituents of

binary black hole system are non-relativistic. In the PN approximation, we organize the

interaction Hamiltonian as an expansion in

v2 ∼ Gm

|r| � 1 , (1.1)

where G is Newton’s constant and m is the total mass of the binary system, while v and

r are the relative velocity and position between the black holes in units with c = 1. The

PN expansion is a double expansion in the velocity squared and the inverse separation in

units of the Schwarzschild radius, which are of order each other due to the virial theorem.

The powers in G and v corresponding to each PN order are depicted in figure 1.

In the present work we focus on conservative dynamics. The PN perturbative frame-

work is well-established with a long history dating back to the leading 1PN correction to

the Newtonian gravitational potential, which was computed by Einstein, Infeld, and Hoff-

man [11]. Later pioneering work derived the full 2PN [30], 3PN [31–34], and 4PN [35–43]

expressions for the conservative potential. More recently, 5PN static contributions have

also been computed [44, 45].

In contrast, the PM expansion is organized differently, including instead contributions

to all orders in velocity at fixed order in G. So when we refer to the nPM correction,

we refer to a contribution which, when expanded in v, generates all PN terms at order

Gn. In particular, when expanded to v6 order, the 3PM result gives a previously unknown

contribution to the 5PN potential. The powers in G and v corresponding to each PM

order are shown figure 1. This expansion has recently received new attention [21, 46–63],

based in part on the connection of classical physics to quantum scattering amplitudes [64–

71]. Relativistic scattering amplitudes are naturally organized as a series in powers of

the coupling G, keeping all orders in the velocity, and for this purpose we define the PM

– 2 –
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0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

1PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + v14 + . . . ) G1

2PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + . . . ) G2

3PM ( 1 + v2 + v4 + v6 + v8 + v10 + . . . ) G3

4PM ( 1 + v2 + v4 + v6 + v8 + . . . ) G4

5PM ( 1 + v2 + v4 + v6 + . . . ) G5

6PM ( 1 + v2 + v4 + . . . ) G6

...

Figure 1. A summary of known results for the two-body potential for spinless black holes in

the PN and PM expansions, outlined in blue and green regions respectively. The new 3PM result

summarized in ref. [59] and discussed at length in this paper is highlighted in the shaded (red)

region. The overlap gives strong crosschecks on any calculations in either approach.

potential to be

V (p, r) =

∞∑

n=1

(
G

|r|

)n
cn(p2) , (1.2)

where the coefficients cn are functions of p ∼ v which contain arbitrarily high powers in the

velocity. Of course, whether the new information in PM dynamics can be directly used to

improve gravitational wave templates for inspiraling binary systems requires detailed study,

e.g. along the lines of ref. [72]. Nonetheless, at the very least, as can be seen from figure 1

the PM approximation is complementary to the PN approximation, providing results for a

subset of terms at each PN order.

The primary goal of this paper is to develop efficient methods for high-precision pre-

dictions of the dynamics of gravitationally bound compact objects. By using scattering

amplitudes as the starting point, we take advantage of the enormous progress in the past

decade for computing and understanding them in gravitational theories, with systematically

improvable precision. This includes applying generalized unitarity [73–80] and double-copy

constructions [81–83], which have enabled explicit (super)gravity calculations at remark-

ably high orders of perturbation theory [84, 84–91]. The double copy allows us to express

gravitational scattering amplitudes in terms of corresponding simpler gauge theory ampli-

tudes, while generalized unitarity gives a means for building loop amplitudes from simpler

tree amplitudes. As we shall see, these can also be combined with spinor-helicity meth-

ods [92–94] which then yield amazingly compact expressions for unitarity cuts that contain

all information required to build the classical potential at 3PM.

The central idea in relating scattering amplitudes to the orbital dynamics of com-

pact binaries is that both processes are governed by the same underlying theory. By

construction, the effective two-body potential in eq. (1.2) reproduces the same physics as

the full gravitational theory for kinematics defined by massive bodies interacting via a

classical long-range force. We can therefore extract the effective potential from scattering

amplitudes, which are convenient to calculate using modern field theory tools. This was

demonstrated long ago [64–68], and recently revived using EOB [22] and EFT [69, 70]

– 3 –
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methods, including those that incorporate corrections to all orders in velocity. The EFT

approach has led to new results for the PM potential at higher orders [58, 59]. As we shall

see, EFT methods are not only useful for systematically mapping scattering amplitudes to

classical potentials but also for efficiently dealing with the integrals encountered in the full

theory [58].

The combination of these key ingredients from the modern amplitudes program and

effective field theory led to a remarkably compact expression for the classical 3PM con-

servative two-body potential [59]. This result is state of the art. As shown in figure 1, it

provides new information not obtained previously by PN or effective one-body methods,

and a strong independent crosscheck of known terms in the PN expansion. Furthermore,

these results have already been examined by LIGO theorists [72] and compared against

lower order PM calculations, numerical relativity, and various effective one-body models.

The present paper is a companion to the Letter [59] summarizing our results for the

3PM conservative Hamiltonian. Our aim is to fill in the various technical details, and

the analysis will be divided into several parts. First, we introduce the basic tools for

extracting classical potentials from quantum scattering amplitudes. Quantum gravitational

amplitudes encode in principle the physics of both bound quasi-elliptic orbits and unbound

quasi-hyperbolic orbits in a relativistic manner that is well suited for the PM expansion.

They are however quite complicated, and important simplifications arise by truncating away

quantum contributions as early as possible in the calculation. In section 2, we discuss the

kinematics, hierarchies of scales, and power counting that allow us to identify a precise

demarcation between classical and quantum contributions to the scattering amplitude at

the integrand level. The latter distinction is crucial for the scalability of the method to

higher-loop orders since integration of full quantum integrands prior to classical expansion

is not viable with current technology.

Second, we use the double copy and generalized unitarity to obtain the relativistic

integrands relevant for one- and two-loop classical scattering of massive gravitationally

interacting scalars. As discussed in section 3, the starting point of our construction are

remarkably compact four- and five-point gauge-theory tree-level scattering amplitudes.

Using double-copy methods, these are converted to appropriate tree-level gravitational

scattering amplitudes, which are then combined into generalized unitarity cuts in order

to build loop integrands. By identifying terms that cannot contribute to the classical

potential, we are able to vastly reduce the complexity of these expressions. Details of the

construction using various helicity and double-copy methods as well as explicit results at

one and two loops are given in section 4, section 5, and section 6.

Third, to obtain the parts of the scattering amplitudes needed for building the classi-

cal potential, we integrate the relativistic integrands via an assortment of old and newly

developed tools. We consider both nonrelativistic and relativistic methods of integration,

which are discussed in section 7 and section 8, respectively. The former approach is an

adaptation of the method of regions [95, 96] and mimics the mechanics of NRGR [23] in

that integration occurs via a reduction to three-dimensional bubble integrals. While this

method obscures relativistic covariance, it is very efficient and by design scalable to high

loop order. The latter approach includes the methods of differential equations and Mellin-

Barnes integration which produce exact results to all orders in velocity for certain diagram

– 4 –
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topologies. In section 9 we give the integrated answers for the contributing diagrams, dis-

cuss the resummation of the results from nonrelativistic integration, and present the final

amplitude containing all contributions to the 3PM potential in eq. (9.3)

Fourth, in section 10 we use effective field theory to extract the classical conservative

potential from the resulting scattering amplitude. This procedure systematically imple-

ments the subtraction of infrared divergent iterated contributions in the amplitude, leaving

behind the desired new contribution to the potential. The 3PM coefficients for the classical

potential (1.2) are given in eq. (10.10). A convenient byproduct of the matching is that we

can choose a frame in which the potential is in a much more compact form compared to

previous expressions.

Lastly, in section 11 we validate our result through various checks against the exist-

ing literature. In the probe limit, our result reduces to the known potential from the

Schwarzschild solution. As shown in figure 1, our 3PM Hamiltonian overlaps with the

known 4PN result [36], and we confirm their physical equivalence by providing the canon-

ical transformation that maps the result of ref. [36] to ours. We also compare results for

scattering amplitudes and scattering angles computed from classical potentials. In sec-

tion 12, we discuss various features and subtleties. This includes the appearance of a

mass singularity in the 3PM two-body potential, that four-dimensional constructions of

the integrands are sufficient through 3PM order despite using dimensional regularization,

and the lack of contributions from radiation modes to the conservative potential through

3PM order.

We conclude in section 13, and provide several appendices. In appendix A, we collect

notation used in the paper. In appendix B we provide the gauge-theory amplitudes that

are necessary for constructing the gravitational amplitudes. In appendix C, we collect the

series that appear in our nonrelativistic integration and their resummation. In appendix D

we extract the classical limit of a two-loop Feynman integral by starting from the fully in-

tegrated result in ref. [97], and then take the limit in the final expression. This evaluation

matches the results obtained with our methods, confirming the presence of the mass singu-

larity. It also displays an imaginary part, connected to the presence of on-shell radiation,

which does not contribute to the 3PM conservative potential.

2 Classical versus quantum

The goal of this section is to introduce the basic ideas for efficiently identifying the parts

of quantum scattering amplitudes that contribute to the classical potential. We discuss

the kinematics, scale hierarchies, power counting, and truncation of graph structures that

allow us to drop quantum contributions at the integrand level. This leads to enormous

simplifications that are crucial for the scalability to high loop orders.

2.1 External matter kinematics

Gravitationally interacting spinless compact bodies with masses m1 and m2 can be de-

scribed by a system of two real scalar fields φ1 and φ2 minimally coupled to gravity:

SGR =

∫
dDx
√−g

[
− 1

16πG
R+

1

2

∑

i=1,2

(
DµφiDµφi −miφ

2
i

)
]
, (2.1)

– 5 –
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where the first term is the usual Einstein-Hilbert action. Here we consider the point-particle

approximation, although finite size corrections can be systematically included using higher-

dimension operators [23, 98].1 Moreover, we exclude local interactions between matter

fields, which violate the classical assumption that the inter-particle separation is larger

than their de Broglie wavelength.

The main focus of our analysis is the elastic-scattering amplitude of φ1 and φ2 in the

center of mass frame, where the incoming states have four-momenta (E1,p) and (E2,−p)

while the outgoing states have four-momenta (E1,p
′) and (E2,−p′). The energies are

defined in the usual way, e.g. E1 =
√

p2 +m2
1, and the conservation of energy for each

matter field implies p2 = p′2. We define the four-momentum transfer in the scattering

process as

q = (0, q) = (0,p− p′) . (2.2)

Classical physics applies whenever the minimal inter-particle separation is larger than

the de Broglie wavelength, λ, of each particle. For a scattering process we may take the

impact parameter |b| as a measure of the minimal separation, while for a bound state we

may take it to be the periastron or the average radius for quasi-circular orbits. Thus, in

the classical regime we have

|b| � λ =
1

|p| , (2.3)

in natural, ~ = 1, units. An immediate consequence is that, for any such two-body classical

system, the angular momentum is large

J ∼ |p× b| � 1 . (2.4)

Since the impact parameter is of order of the inverse momentum transfer in a scattering

process, |b| ∼ 1/|q|, the classical limit implies the kinematic hierarchy2

m1,m2, |p| ∼ J |q| � |q| . (2.5)

Classical and quantum contributions to scattering processes enter at different orders in

an expansion in large J , or equivalently, in small |q|. For example, from the form of the

effective potential in eq. (1.2), the classical term in scattering amplitudes at O(G), O(G2)

and O(G3) correspond respectively to the coefficient of 1/q2, 1/|q| and ln q2.

It is worth noting that at first sight eq. (2.5) appears to be in contradiction with usual

classical intuition that during the process of a closed orbit, the momenta of the two bodies

are deflected by an amount comparable to their original momenta. However, such long-time

classical processes, which are solutions of the classical equations of motion, are comprised

of a large number of elementary two-particle interactions mediated by graviton exchanges.

Each such interaction transfers a momentum |q| far less than the center-of-mass momentum

|p| of the bodies, while the complete classical solution transfers a momentum commensurate

1These effects are important, especially for neutron-star mergers [99–104].
2This hierarchy implies that our results should not be expected to be valid for massless particles; indeed

as we discuss in some detail in section 12, the classical and massless limits do not commute. This results

in the massless limit of the 3PM classical potential not being smooth.

– 6 –
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with |p|. In the case of scattering at linear order in G, this is concretely described by the

exponentiation of tree-level graviton exchange in the eikonal approximation [105].

While we are ultimately interested in relativistic classical dynamics, expanding in the

nonrelativistic limit is an important tool, and is defined by an expansion in small relative

velocity v, or equivalently by the hierarchy

|p| � m1,m2 . (2.6)

This limit is essential for comparing our PM Hamiltonian with known PN results, and for

the method of nonrelativistic integration described in section 7.

To summarize, the small parameters that define the classical and nonrelativistic

regimes are
O(1/J) ∼ O(q) (classical expansion) ,

O(v) ∼ O(p) (nonrelativistic expansion) .
(2.7)

Throughout the paper we will use the above power counting to expand in the appropriate

variables where convenient. The PM expansion, giving analytic results at fixed order in

G (or 1/J) and to all orders in velocity, will be defined as the resummation of the small

velocity expansion.3

2.2 Graviton kinematics

While the classical part of an integrated amplitude can be extracted by taking the small

q limit, we would like to truncate away quantum contributions already at the integrand

level in order to reduce the complexity of integration. This is especially important for the

scalability of the method to high orders in the PM expansion. We therefore require power

counting rules that implement the classical limit for loop momenta.

Consider an internal graviton line with four-momentum ` = (ω, `). Following the

method of regions [95, 96], we consider the possible scalings of its momentum components:

hard : (ω, `) ∼ (m,m) ,

soft : (ω, `) ∼ (|q|, |q|) ∼ J−1 (m|v|,m|v|) ,
potential : (ω, `) ∼ (|q||v|, |q|) ∼ J−1 (m|v|2,m|v|) ,
radiation : (ω, `) ∼ (|q||v|, |q||v|) ∼ J−1 (m|v|2,m|v|2) ,

(2.8)

where we take as reference scale m = m1 +m2, and we use eq. (2.5) to arrive at the second

set of scalings in the above equation. Note that we consider the nonrelativistic limit |v| � 1

to define these modes, and this is sufficient for determining the potential to arbitrary order

in the velocity expansion. The full PM result, containing all orders in velocity, is then

obtained through resummation (see section 9), and for some graph topologies we verify the

result using relativistic integration methods (see section 8).

The modes in eq. (2.8) identify the dominant contribution from each region, which is

computed by expanding a loop momentum about the given scaling then integrating over

3In principle, one may worry about exponentially small terms in velocity not captured by the PN

expansion, e.g. exp(−1/|v|2). However, such terms do not arise in any of the fully relativistic expressions

that we have computed. See ref. [106] for additional insight on the validity of perturbation theory.

– 7 –
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the full phase space using dimensional regularization. The method of regions is a powerful

tool that has close connections with effective field theory, and there is a large body of

literature dedicated to its formulation and various applications. For further details we

refer the reader to ref. [96]. Here we simply use it as a means for expanding the integrand

in the potential region to extract the classical potential.

Potential modes have several key properties that are characteristic of a classical force

mediator. First, as we already mentioned, the overall momentum scaling is parametrically

determined by the total momentum transfer q of the classical scattering process. In partic-

ular, it follows from the scaling |`| ∼ |q| ∼ |b|−1 that they mediate long range interactions

of the order of impact parameter. Second, following from the scaling ω ∼ |q||v|, with

|v| � 1, the graviton exchange only mediates a relatively small amount of energy com-

pared to spatial momentum. So the interaction is approximately instantaneous, consistent

with the description of the usual classical potential. In other words, because the potential

modes are off shell, ω � |`|, we can integrate them out to define an effective potential [23].

Finally, with exchanges of potential modes, internal matter lines in loops are close to being

on shell, conforming with the physical intuition that classical particles cannot fluctuate off

their mass shell. In particular, as we will see in section 7, restricting gravitons to be in

the potential region enforces that for each loop there is one matter line on shell. This is

also consistent with the underlying mechanics of various other methods for solving classical

binary dynamics, such as the use of equations of motion and worldline actions.

Gravitons with hard momenta lead to quantum-mechanical contributions because their

energy component is too large, causing the matter fields to be far off shell. Moreover,

the interaction length of a hard mode is of order the de Broglie wavelength of matter,

and therefore corresponds to a short-distance contact interaction and not a long-range

force. On the contrary, the other three regions have wavelength around or greater than

the impact parameter or orbital radius, |b| ∼ |q|−1, and therefore may contribute to the

classical potential.

The soft mode can be used to extract classical contributions [69, 107, 108], and plays

a central role in the eikonal approximation [105, 107, 108]. However, the contribution to

the classical nonrelativistic potential is actually dominated by the potential mode within

the soft region. After the overlap is subtracted, the residual is expected to be quantum

mechanical because the energy transfer is too large to keep the matter fields on shell. In

the following analysis, we focus on extracting the classical conservative dynamics from the

potential region.

Gravitons in the radiation region correspond to emitted radiation, which are of course

critical in the context of gravitational-wave physics. At 3PM order, which is the focus of

this paper, such modes cannot contribute to the conservative potential. We will therefore

only be interested in effects induced by potential-mode gravitons. As is well-known, this

distinction between potential and radiation modes, i.e. near zone and far zone dynamics,

becomes subtle at sufficiently high order due to radiation reaction effects. See section 12.3

for details.

The purpose of the method of regions is to identify the dominant contribution in loop

integration, given the external kinematics. To verify results obtained by restricting to

– 8 –
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(b)(a) (d)(c)

Figure 2. Examples of one- and two-loop diagram that contribute to the classical potential. Wiggly

lines represent gravitons and straight lines scalars. Here the diagrams are not Feynman diagrams,

but demonstrating the singularity structure from propagators in the graphs.

(a) (b) (c) (d)

Figure 3. Examples of one- and two-loop diagrams that do not contribute to the classical potential.

Wiggly lines represent gravitons and straight lines scalars. The meaning of diagrams here is the

same as in figure 2.

the potential region, we use fully relativistic integration methods when possible. For such

methods, the integration is over the full domain, i.e. effectively including all regions, and the

classical contribution can be retrieved by taking the classical limit given in eq. (2.5). Indeed,

for all available cases we find that relativistic integration confirms that the potential region

captures all contributions upon resummation to all orders in velocity. See more details in

section 8. A nontrivial two-loop example is also given in appendix D, based on the fully

integrated results of ref. [97]

To summarize, we can use the loop momentum scaling for the potential region given in

eq. (2.8) to consistently expand in the classical and nonrelativistic limits at the integrand

level. For example, the leading order contribution that leads to the 1PM potential has a

single graviton exchange with momentum q given in eq. (2.2), which obviously satisfies the

scalings in eq. (2.8). For the conservative potential at 3PM order, it is sufficient to take all

gravitons to be potential modes.

2.3 Truncation to potential region

A full quantum mechanical calculation of the scattering amplitude would require a proper

accounting of all contributing diagrams. However, when taking the classical limit only

a subset of diagrams survive and determine the contributions to the classical potential.

Examples of one- and two-loop diagrams that may contain classical contributions are shown

in figure 2. Others, such as those in figure 3, can be immediately discarded. By applying

classical truncation at every step — from the construction of the integrand to integration

— we can achieve massive simplifications, which are especially crucial for more challenging
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Figure 4. Generalized two-particle cuts for a elastic scattering of two distinct scalars φ1 and φ2
with masses m1 and m2. The pairs of legs (1,4) and (2,3) correspond to φ1 and φ2 respectively. The

blobs represent tree amplitudes, which can have several diagrams in a given blob, and exposed lines

are all on shell. Cut (a) separates the two matter fields by cutting graviton lines and contributes

to the classical potential. The top and bottom internal lines in cut (b) are scalar φ1 and φ2,

respectively. For cut (c) the internal lines are either both φ1 or φ2. Neither of the cuts (b) and (c)

contains any new classical potential contributions.

higher-loop calculations. Here we briefly outline the specific truncations we use. We will

elaborate on these points substantially throughout the rest of the paper.

Following arguments that led to the absence of matter contact terms in the classical

Lagrangian, an obvious contribution to discard is any diagram or part of a diagram in

which matter fields come together at a local contact interaction, as illustrated at one loop

in figure 3(a). Because the classical Lagrangian (2.1) does not contain such terms (since

classical physics requires that the particles are always sufficiently separated), such contact

interactions can appear only through some quantum processes, which are of no interest to

us. From the perspective of generalized unitarity, this amounts to building the integrand

only from those cuts that split the amplitude such that the two matter lines are on opposite

sides of cut gravitons. At one loop, for example, this requirement amounts to keeping those

terms that arise from the generalized unitarity cut (a) in figure 4, but not including any

new contributions from cuts (b) or (c). In figure 4, there are two pairs of distinct scalars,

(1,4) and (2,3), with masses m1 and m2.

Another contribution that can be discarded arises from any diagram or contribution to

a diagram that contains a closed loop of momentum ` that never flows through a matter line,

but only through graviton propagators, as illustrated in figure 3(b). The only singularities

in the closed loop come from graviton poles, when |`0| ∼ |`|, which is outside the potential

region that contributes to the classical potential. Conversely, this implies that classical

contributions only arise from diagrams in which all closed loops include at least one matter

line. Note however that diagrams that pass this criterion may still be quantum mechanical,

such as diagrams (c) and (d) in figure 3.

A third discarded contribution contains graviton lines which start and end on the same

matter line. This implies, for example, that diagrams (c) and (d) in figure 3 can be dis-

carded. One may intuitively understand this by noticing that these diagrams represent

quantum mechanically-induced gravitational form factors for the matter fields. Alterna-

tively, as we will discuss in section 7, from the mechanics of integration one finds that the

three-momentum component of such graviton exchanges is not parametrically set by the

momentum transfer q. From the perspective of generalized unitarity at one loop discarding
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Figure 5. Some generalized unitarity cuts for extracting the conservative two-body potential at

(a) 2PM order and (b) at 3PM order. The blobs represent tree amplitudes and exposed lines are all

on shell. Straight lines represent massive scalars and the wiggly lines are either gluons or gravitons,

depending on whether we are considering a gauge theory or a gravity cut.

such diagrams amounts to ignoring cuts that pass twice through the same matter line, such

as the one illustrated in figure 4(c). In this case, the two cut internal lines are the same

scalar, as identified by its mass and the Lagrangian (2.1).

As we have seen in section 2.2 and will further discuss in section 7, contributions to

the classical potential come only from the region where internal matter lines are close to on

shell or, mathematically, from regions where each energy integral is localized to a matter

pole [58, 69, 108]. This implies that we can effectively cut one matter line per loop. As

discussed in section 2.2, this is consistent with exchanged gravitons having momenta in

the potential region. At one loop the net effect is that instead of using the two-particle

cut in figure 4(a), all diagrams contributing to the classical potential are determined by

generalized unitarity cut in figure 5(a) and its relabelings, where an additional matter line

is cut, compared to figure 4(a). As usual, all exposed lines in the figure are placed on shell.

While this provides only a modest simplification at one loop, it is much more powerful at

higher loops.

Let us elaborate on how to apply the classical truncation via small |q| expansion for

loop-level integrands. Recall that, as summarized in the previous sections, classical power

counting implies the hierarchy of scales m1,m2, |p| � |q| ∼ |`|, where ` stands for the

spatial part of a generic loop momentum. We therefore scale q → αq and ` → α` by

α ∼ J−1 � 1, including the measure and propagators.4 For the amplitude at O(Gn), all

terms with αk>n−3 do not have classical contributions, cf. (1.2). In general, this simple

scaling argument implies that terms with many powers of loop momenta in the numerators

will have too high a power counting in α and can therefore be ignored. Such terms are

responsible for the UV properties of general relativity, so it is intuitively clear that they

must be quantum mechanical. For example, a consequence of this power counting is that

the relevant numerators for diagrams (a) and (b) in figure 2 scale at most as α and α0,

respectively. At two loops, this power counting implies that terms with more than four

powers of loop momentum in any diagram numerator cannot contribute to the classical

potential, and for some diagrams the bound is even tighter (see section 9.2 for a related

discussion). Although we keep these terms when building the integrands to make numerical

cross checks easier, we drop them prior to integration to take advantage of enormous

simplifications.

4For any matter propagators with mixed α counting, we only count the leading scaling and do not

expand the denominators.
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An important feature of this expansion is that the leading term of a diagram is not

always the classical one. Rather, there exist diagrams which exhibit terms larger than the

classical ones in the small α expansion, i.e. at O(Gn) they scale as αk<n−3. For example,

with a numerator that is independent of q or `, the one-loop diagram in figure 2(a) scales

as α−2, while that in figure 2(b) scales as α−1 and contributes to the classical potential.

The former is an example of terms with such enhanced α scaling, which we refer to as

“superclassical”. As we will see in sections 7 and 10, they have a natural interpretation as

iterations of terms determined at lower orders that do not contribute directly to the classical

potential at O(Gn). They are infrared divergent and cancel in the matching between full

theory and effective theory amplitudes so that the remainder is a classical contribution to

the potential.

To summarize, the guidelines for efficiently applying generalized unitarity for obtaining

integrands from which we can extract the classical potential are

1. Generalized unitarity cuts must separate the two matter lines to opposite sides

of a cut.

2. Every independent loop must have one cut matter line.

3. Contributions where both ends of a graviton propagator attach to the same matter

line are dropped.

4. Terms with too high a scaling in q or ` are dropped. At two loops this implies that

any term in a diagram numerator with more than four powers of loop momentum

yields only quantum mechanical contributions; some diagrams require fewer loop-

momentum factors.

We have confirmed these rules to be valid through two loops and will use them to

organize our 3PM calculation. They determine which generalized unitarity cuts need to

be included to obtain the classical potential, and which can be ignored. They also enable

enormous simplifications at the integrand level by truncating away quantum contributions.

3 Building integrands from tree amplitudes

3.1 General considerations

The first step towards obtaining the classical potential is to obtain an appropriate loop

integrand containing all desired classical contributions. To build the integrand we use the

generalized unitarity method [73–77, 109, 110]. This method meshes well with double-copy

relations [81–83] that allow us to express gravity tree amplitudes and loop integrands in

terms of the corresponding gauge-theory quantities. It has proven to be especially successful

for carrying out high-loop computations in gravity theories, including the determination of

the ultraviolet properties of extended supergravity theories at four and five loops [84, 84–

89] and of Einstein gravity at two loops [90, 91]. Further details of this methods may be

found in various reviews [78–80].
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The basic input into our construction are the gauge-theory tree-level scattering am-

plitudes collected in appendix B. They are then converted into gravity tree amplitudes

through the Kawai-Lewellen-Tye (KLT) and Bern-Carrasco-Johansson (BCJ) forms of the

double copy and are subsequently used to construct generalized unitarity cuts. The KLT

form of the double copy is convenient when using four-dimensional helicity states which

give remarkably compact expressions for tree amplitudes. The BCJ double copy is the

natural choice when organizing the calculation in terms of diagrams, as we do in our D-

dimensional constructions.

While a purely four-dimensional approach would not lead to the correct integrand in

the full quantum theory when using dimensional regularization for ultraviolet and infrared

singularities, for the purpose of extracting the classical potential we shall find that four

dimensional helicity methods are sufficient. While we do encounter infrared divergences,

we will see that in contrast to the full quantum theory, a simple continuation of the four-

dimensional expressions to D dimensions by extending the loop integration measure as

well as all momentum invariants regularizes infrared singularities and does not result in

any lost contributions.

While many strategies can be applied at one-loop (2PM) order, at two loops (3PM)

and beyond calculations become more challenging, and require methods that scale well

with increasing complexity. Our methods were designed with this in mind. For 3PM calcu-

lations both the four- and D-dimensional approach work well; we, however, anticipate that,

given the remarkable simplicity of tree-level helicity amplitudes, as the perturbative order

increases the four-dimensional helicity approach will be the method of choice. While we

do not have a general proof that four-dimensional helicity states are sufficient to all orders,

based on our investigations here, it seems plausible that it will continue beyond 3PM.

3.2 Building integrands using generalized unitarity

The generalized unitarity method gives us a means for constructing integrands of loop-

level amplitudes in terms of sums of products of tree amplitudes. Integrands are rational

functions with simple poles for momentum configurations where internal lines in Feynman

graphs go on shell. A propagator corresponding to such a particle is cut, i.e. it is replaced

with a delta function enforcing the corresponding on-shell constraint. The residues of these

poles — or generalized cuts — are given by sums of products of integrands of amplitudes

whose external lines are the totality of the initial external lines and the cut lines. An

important set of generalized cuts is that in which all factors are tree-level amplitudes;

then, the residue is:

C ≡
∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) . (3.1)

We will normalize the generalized cut to be the product over the tree amplitudes that

compose the cut. The sum runs over all intermediate physical states that can contribute, i.e.

for which all the tree-level amplitude factors are nonvanishing. The generalized unitarity

method assembles generalized cuts into complete amplitudes, by constructing a unique

function whose generalized cuts reproduce those of the amplitude’s integrand. An example

of generalized cut at one loop is shown in figure 5(a). In this figure the exposed lines
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are all on-shell delta functions and the blobs represent on-shell tree amplitudes. The

expression for this generalized cut is given by the sum over the intermediate states of the

product these two three-point amplitudes and one four-point amplitude. The full amplitude

satisfies a spanning set of generalized cuts, which determine all integrands of fixed loop

order and multiplicity.

The parts of amplitudes that contribute to the classical potential are determined by

a rather restricted set of generalized unitarity cuts, as explained in section 2.3. While the

advantage may not obvious at one loop, this restriction greatly simplifies the generalized

unitarity cuts at two loops.

3.3 Gravity tree amplitudes from the double copy

The generalized unitarity method is especially powerful in gravity theories because it

meshes well with double-copy constructions, allowing us to express gravity amplitudes

in terms of much simpler gauge-theory ones. The KLT relations [81], which were originally

derived in string theory, give us a simple means for obtaining gravity tree amplitudes in

terms of color-ordered gauge-theory partial amplitudes. Through five points, which is all

we need in this paper, these relations are5

M tree
3 (1, 2, 3) = iAtree

3 (1, 2, 3)Atree
3 (1, 2, 3) ,

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5) , (3.2)

where the M tree
n are tree-level gravity amplitudes, the Atree

n are gauge-theory partial am-

plitudes stripped of color factors and coupling constant, and sij = (pi + pj)
2. We have

suppressed a factor of the coupling (κ/2)m−2 at m points, where the coupling is given

in terms of Newton’s constant via κ2 = 32πG. These relations hold in any space-time

dimension. An extension valid for any number of external legs may be found in ref. [111].

The KLT relations are usually formulated in terms of massless amplitudes, but for the

tree amplitudes used in this paper, with a single massive scalar pair, dimensional reduction

shows they hold in this case as well. To show this we can start from, say, six dimensional

massless gauge or gravity amplitudes and dimensionally reduce them to a four-dimensional

ones with a massive scalar pair. To do so we can start with pure Yang-Mills amplitudes in,

say D = 6 and then choose the polarization vectors of legs we wish to be massive scalars,

say 1 and 2, to be

ε1 = ε2 = (0, 0, 0, 0, 0, 1) , (3.3)

and their momenta to be

pA1 = (pµ1 ,m, 0) , pA2 = (pµ2 ,−m, 0) , (3.4)

where the pAi are six dimensional momenta and pµi four-dimensional ones. From the four-

dimensional perspective, legs 1 and 2 are massive scalars with mass m in both the gauge

5Note that A,M here are defined as the amplitudes that include all factors of i from Feynman diagrams,

in contrast with M = iM used later.
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and gravity theories. The polarization vectors and momenta of the remaining legs live in

the four-dimensional subspace specified by the first four entries. Dimensional regularization

fits naturally into this framework by analytically continuing the four-dimensional subspace

to D = 4− 2ε dimensions, as usual. The conclusion is that we can directly apply the KLT

relations (3.2) to tree amplitudes with n external gravitons two external massive scalar.

Our calculation of the part of the two-loop amplitude that contributes to the 3PM

potential will require only up to five-point tree amplitudes. When evaluated using the

KLT relations, the gravity tree amplitudes automatically inherit the remarkable simplicity

of the gauge-theory helicity amplitudes presented in appendix B.

A subtlety of dimensional regularization which requires careful analysis, especially

beyond one-loop level and in non-supersymmetric theories, relates to finite terms of the

type ε/ε, where the 1/ε originates from an infrared singularity6 while the ε in the numerator

comes from the component of loop momenta or polarization states outside four dimensions.

While it seems unlikely that this could affect the classical potential, it is nevertheless

important to confirm this.

To cross-check our calculation and to confirm the absence of any dimensional regular-

ization subtleties, we also made use of BCJ form of D dimensional gauge-theory tree ampli-

tudes. While the BCJ approach generalizes to loop level integrands, here we only use it for

tree-level amplitudes that enter into unitarity cuts contributing to the classical potential.

Consider an m-point tree-level gauge-theory scattering amplitude with all particles in

the adjoint representation. We can write any such amplitude as a sum over diagrams with

only cubic vertices:

Atree
m = gm−2

∑

j

cjnj
Dj

, (3.5)

where g is gauge-theory coupling constant.7 The denominator 1/Dj is given by the product

of Feynman propagators of graph j. The sum runs over the (2m − 5)!! distinct, m-point

graphs with only cubic vertices. Such graphs are sufficient because the contribution of

any diagram with quartic vertices can be assigned to a graph with only cubic vertices by

multiplying and dividing by appropriate propagators. The nontrivial kinematic information

is contained in the numerators nj , which generically depend on momenta, polarizations,

and spinors. The color factor cj is obtained by dressing every vertex in graph j with the

relevant gauge-group structure constant,

f̃abc = i
√

2fabc = Tr([T a, T b]T c) , (3.6)

where the gauge-group generators are normalized via Tr(T aT b) = δab, which is different

than the textbook ones [112], so as to be compatible with ref. [82].

In a BCJ representation, kinematic numerators obey the same generic algebraic rela-

tions as the color factors [82–84]. For theories with only fields in the adjoint representation

6Ultraviolet 1/ε singularities do not need to be considered because these are of quantum origin and

should not contribute to the classical potential.
7The gauge-theory action is S = − 1

4

∫
dDxF aµνF

aµν , where F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν .
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Figure 6. The Jacobi relation for a group of three graphs. The graphs can represent color factors

or numerator factors and can be thought of as embedded in a larger graph.

there are two key properties that the kinematic numerators satisfy. The first is antisym-

metry under graph vertex flips:

cı = −ci ⇒ nı = −ni , (3.7)

where the graph ı has same graph connectivity as graph i, except an odd number of

vertices have been cyclically reversed. The second property is that we require that graph

numerators obey dual (kinematic) Jacobi identities whenever the color factors obey the

group theoretic Jacobi identities:

ci = cj − ck ⇒ ni = nj − nk . (3.8)

Here i, j, and k refer to three graphs which are identical except for one internal edge, as

illustrated in figure 6. The relative signs in the color Jacobi identity are dictated by the

particular way that we drew the four-point subgraphs. For any choice, the signs of the color

and kinematic Jacobi identities are identical. In general, beyond four point amplitudes,

Feynman diagrams do not immediately give tree amplitudes with kinematic numerators

obeying the duality. There are various systematic ways to reorganize them and manifest

the duality [113–117]. Low-point tree amplitudes are sufficiently simple to use an ansatz

to enforce desired properties, including the duality, locality and gauge invariance.

Once gauge-theory tree amplitudes or loop integrands have been arranged into a form

where the duality is manifest [82, 83], corresponding gravity tree amplitudes or loop in-

tegrands are given simply by replacing color factors of a the diagrams of a second gauge

theory with the kinematic numerators of the first gauge-theory:

ci → ni . (3.9)

This immediately gives the double-copy form of a gravity tree amplitude,

M tree
m = i

∑

j

ñjnj
Dj

, (3.10)

where ñj and nj are the kinematic numerator factors of the two gauge theories. As usual we

have not included factors of the gravitational coupling. In general, the two gauge theories

can be distinct; since however we are interested in Einstein gravity coupled minimally to

massive scalars, the two gauge theories will be identical and correspond to a Yang-Mills

gauge field coupled to scalar fields in the fundamental representation [118–120]. We will
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Figure 7. The two generalized unitarity cuts for extracting the conservative two-body potential at

2PM order. The blobs represent tree amplitudes and exposed lines are all on shell. Straight lines

represent massive scalars and the wiggly lines are either gluons or gravitons, depending on whether

we are considering a gauge theory or a gravity cut.

therefore have ñj = nj . Since, however, we will be interested only in the double copy of tree

amplitudes with two scalars, we may also take them to be in the adjoint representation.

Following the same dimensional reduction procedure as for the KLT relations, we

immediately see that the double copy relations eqs. (3.9) and (3.10) hold for the case of

tree amplitudes with a single massive scalar pair and the rest being gravitons. Remarkably,

these ideas extend to full integrands at loop level [83], though in this paper we will not

make use of this property. We will apply the duality and double copy only for tree-level

amplitudes used as input to generalized unitarity cuts.

Let us finish this section with a remark on obtaining pure Einstein gravity as a double

copy. Typically the double copy of two vector fields contains more than just the graviton.

For example, a gluon in four dimension has two helicities ±1, so the square has four states:

the ±2 correspond to graviton, and the zero-helicity states which are identified as the

dilaton and axion. The projection to pure Einstein gravity, which eliminates the dilaton

and axion, also meshes well with our generalized unitarity construction. We can simply

apply the projection to graviton on each of the massless cut legs, which are external lines

for tree-level blobs in a generalized unitarity cut. In any of the tree-level amplitudes, the

projection on the external legs ensures that the dilaton or axion do not appear internally

either, because they have to be produced in pairs when interacting with the gravitons.8

In practice, we use two approaches for the graviton projection depending on the details

of the unitarity construction. When using the four-dimensional helicity method, we simply

correlate the helicities of the two copies of gauge theory amplitudes.9 For D-dimensional

constructions, we often use the efficient projector in eq. (5.20), as opposed to the standard

one in eq. (5.18). Such simplification is made possible by choosing a special form of tree-

level amplitudes in gauge theory. See the discussion in section 5.

4 Integrands at one loop using four-dimensional helicity

To illustrate some essential features of our procedure for constructing amplitudes’ inte-

grands in the post-Minkowskian expansion, we first describe the 2PM order, discussed

8Note that a single dilaton can be generated by massive scalars. However, this dilaton has to appear as

an external state in a tree-level amplitude with only two massive external scalars.
9This may be also understood as orbifolding by the U(1) global symmetry whose charges are given by

the difference of helicities of fields in the two gauge theories entering the double copy.
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earlier in refs. [20, 22, 48, 58, 60–63, 108]. As discussed in section 2, the part of loop

integrands that contributes to the classical potential is determined by a restricted set of

generalized unitarity cuts: they separate the two matter lines and also they place on shell

one matter line per loop [58, 69, 108]. Thus, at one loop, corresponding to the 2PM case,

we need only compute the two generalized cuts illustrated in figure 7.

At one-loop the cuts can be evaluated in various ways. In particular, the calculation

is not simplified substantially by making use of on-shell conditions on the matter lines.

Similarly, its complexity is not affected much by judicious choices for the graviton physical

state projector. Beyond one loop, however, care is necessary to ensure that the calculation

scales well [58, 59]. This includes adjusting the tree-level amplitude factors so that the

physical-state projectors trivialize and also making sure that on-shell conditions are used to

their maximal extent. Therefore, to illustrate all subtleties of the amplitudes’ construction,

in our one-loop calculation below we will make use of the cut conditions on the matter lines,

even though it causes the slight additional complication that different cuts double count

certain terms. This must be taken into account when the cuts are combined into a single

integrand. Such double counts are natural beyond one loop, so the one-loop case offers a

simple illustration of this issue and its resolution.

4.1 Warm-up: gauge-theory integrands

As a warm-up, we consider gauge theory and construct the one-loop integrand for the

classical potential between two massive scalars due to gluon exchange. As we shall see,

once we have the gauge-theory integrand, obtaining the gravity one is quite straightforward.

We first evaluate the generalized cut in figure 7(a), for the case of a one-loop color-

ordered YM amplitude. In color-ordered amplitudes the external legs follow a cyclic order-

ing and are stripped of color factors. This generalized cut is,

C
(a)
YM =

∑

h5,h6=±
Atree

3 (3s, 6h6 ,−7s)Atree
3 (7s,−5h5 , 2s)Atree

4 (1s, 5−h5 ,−6−h6 , 4s) , (4.1)

where ± superscripts denote the gluon helicity and s stands for scalar, and the minus sign

on the label indicates that the sign of the momentum should be reversed when treated as

an outgoing momentum of the amplitude. The state sum runs over the gluon helicities.

Since each propagating scalar corresponds to a single state there is no sum associated with

it. In four dimensions each gluon can either be of positive or negative helicity, giving a

total of four helicity configurations in the state sum. We label them as follows:

{h5, h6} : {++}, {−−}, {−+}, {+−} , (4.2)

where the helicities of the gluon legs are labeled with an outgoing momentum convention.

In D dimensions each gluon has D− 2 states. At one-loop we will evaluate the cuts in four

dimensions and compare it to the result obtained via D dimensional methods. We show

that the two methods give same four-dimensional classical potential.

The four-point tree amplitudes appearing in the cut (4.1) are given in eq. (B.1). One

may evaluate the product of three-point tree amplitudes appearing in cuts by starting
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from Feynman three-point vertices and evaluating them on helicity states. Alternatively,

we may extract their product from the four-point amplitude (B.1), by removing the scalar

propagator and placing its momentum on shell. Below we use the second approach.

Starting with the two-scalar two-gluon amplitude in eq. (B.1) with the gluons in the

{++} helicity configuration and removing the scalar propagator i/τ36 we have

Atree
3 (3s, 6+,−5+, 2s)→ Atree

3 (3s, 6+,−7s)Atree
3 (7s,−5+, 2s) =

m2
2 [−5 6]

〈−5 6〉 , (4.3)

where we use the helicity notation of refs. [121, 122]. For simplicity, we only keep the

momentum label in spinor expressions, e.g. [−5 6] ≡ [(−`5) `6]. Using the on shell condition

for that propagator, p3 · `6 = 0, the cut for the {++} helicity configuration is

C
{++}
YM = Atree

3 (3s, 6+,−7s)Atree
3 (7s,−5+, 2s)Atree

4 (1s, 5−,−6−, 4s)

= i
m2

2 [−5 6]

〈−5 6〉
m2

1 〈−6 5〉
[−6 5] τ15

= i
m2

1m
2
2

τ15
, (4.4)

where

τij = 2pi · `j , (4.5)

and we again used the two-scalar two-gluon amplitude in eq. (B.1) for the second four-point

amplitude in the cut.

Similarly, for the {−−} helicity configuration we obtain the same expression,

C
{−−}
YM = Atree

3 (3s, 6−,−7s)Atree
3 (7s,−5−, 2s)Atree

4 (1s, 5+,−6+, 4s)

= i
m2

1m
2
2

τ15
. (4.6)

Next consider the {−+} helicity configuration. Evaluating it along the same lines of

taking the residue of the τ36 pole of a two-particle cut and evaluating the result at τ36 = 0,

we find

C
{−+}
YM = Atree

3 (3s, 6+,−7s)Atree
3 (7s,−5−, 2)Atree(1s, 5+,−6−, 4s)

= i
〈−5| 2 |6]2

(`5 − `6)2
× 〈−6| 4 |5]2

(`5 − `6)2τ15

=
i

t2
tr2

+[5462]

τ15
, (4.7)

where t ≡ (p2 + p3)2 = (`5 − `6)2 and

tr±[abcd] ≡ 1

2
tr[abcd]± 1

2
tr5[abcd] ≡ 1

2
tr[(1± γ5)/a/b/c/d] . (4.8)

The {+−} helicity configuration is identical except we have to switch angle and square

brackets, which has the effect of interchanging a tr− and a tr+. This gives

C
{+−}
YM = Atree

3 (3s, 6−,−7s)Atree
3 (7s,−5+, 2)Atree

4 (1, 5−,−6+, 4)

=
i

t2
tr2
−[5462]

τ15
. (4.9)
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Figure 8. The two particle cut at one loop containing classical potential. The blobs represent tree

amplitudes and exposed lines are all on shell.
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Figure 9. The one-loop box and triangle integrals. The top and bottom thick lines are massive

scalars 1 and 2, respectively, and the thin lines are massless.

The parity odd terms cancel, as expected, after summing the {−+} and {+−} helicities

configurations in eqs. (4.7) and (4.9).

Summing over the four helicity contributions in eqs. (4.4), (4.6), (4.7) and (4.9) to the

cut in figure 7(a) and simplifying the resulting expression, we find

C
(a)
YM = C

{++}
YM + C

{−−}
YM + C

{−+}
YM + C

{+−}
YM

=
i

τ15

(
1

t2
(tr2

+[5462] + tr2
−[5462]) + 2m2

1m
2
2

)
. (4.10)

The cut in figure 7(b) is given by a simple relabeling, (1, 4)↔ (2, 3), 5→ −5 and 6→ −6,

C
(b)
YM =

i

τ36

(
1

t2
(tr2

+[5163] + tr2
−[5163]) + 2m2

1m
2
2

)

=
i

τ36

(
1

t2
(tr2

+[5462] + tr2
−[5462]) + 2m2

1m
2
2

)
, (4.11)

where in the second equal sign we used that p2 = −p3 + `5− `6 and p4 = −p1− `5 + `6 and

that legs 5 and 6 are on shell.

The last step in the construction of the integrand requires that we combine the two

cuts in figure 7, with values given in eqs. (4.10) and (4.11), into a single function. This

needs to be done such that any double counting coming from the same terms appearing

in both cuts is eliminated. At two loops we will do this by constructing an ansatz whose

generalized cuts are constrained to match all required cuts. At one loop such an approach

is overly laborious. The overlap can be more easily seen by inspection. Because the two

cuts have identical numerator factors, it is straightforward to construct a function which

reduces to eqs. (4.10) and (4.11) upon imposing cut conditions on one of the propagators

i/τ15 and i/τ36, respectively. It is

CYM = − 1

τ15τ36

(
1

t2
(tr2

+[5462] + tr2
−[5462]) + 2m2

1m
2
2

)
. (4.12)
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It is worth stressing that this function needs not a priori be (and in fact it is not) the

two-gluon cut of the one-loop four-scalar amplitude displayed in figure 8 because it may

not contain all terms from which 1/τ15 and 1/τ36 are absent, corresponding to a graviton

bubble connected to the matter lines.10 It however does capture, by construction, all the

box and triangle contributions to the one-loop amplitude, which are the parts needed for

the extraction of the classical limit of the amplitude. See figure 9 for the diagrams that

correspond to the box and triangle integrals.

Restoring the loop integration and the graviton propagators while relaxing the on shell

condition for their momenta gives the part of the one-loop amplitude which contributes in

the classical limit of the gauge-theory four-scalar amplitude:

A1-loop
4 =

∫
dD`5
(2π)D

NYM

`25((`5 − p2)2 −m2
2)(`5 − p2 − p3)2((`5 + p1)2 −m2

1)
. (4.13)

This last step does not capture terms in which either one or both graviton propagators

are canceled; while such terms do appear in the complete quantum amplitude, which we

discuss in section 12.1, they do not contribute to its classical limit because they correspond

to contact rather than long-distance interaction of the matter fields. The gauge-theory

numerator is

NYM =
1

t2
(tr2

+[5462] + tr2
−[5462]) + 2m2

1m
2
2 . (4.14)

We also promoted the integration measure to D = 4− 2ε dimensions, dimensionally regu-

larizing the infrared divergences of the amplitude.

We can simplify somewhat eq. (4.14) by evaluating the γ-traces. Using standard γ-

matrix identities, they evaluate to

tr±[5462] = E ± O , (4.15)

where the parity even part is

E =
1

2
tr[5462]

= 2`5 · p4`6 · p2 − 2`5 · `6p4 · p2 + 2`5 · p2`6 · p4

=
1

2

(
−st+ tm2

1 + tm2
2 + t τ15 + tτ36 + 2τ15τ36

)
, (4.16)

which we simplified using the graviton cut conditions. The parity odd part is

O = 2iεµνρσ`
µ
5p

ν
4`
ρ
6p
σ
2 . (4.17)

This term integrates to zero because there are insufficient independent external momenta

to saturate all the indices of the Levi-Civita symbol. While the parity-odd term cancels

between the two traces in eq. (4.14),

tr2
−[5462] + tr2

+[5462] = 2(E2 +O2) , (4.18)

10It however turns out that eq. (4.12) is the complete two-graviton cut due to accidental features related

to the simplicity of the one-loop amplitude.
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its square does not; it gives a Gram determinant,

O2 = G4 ≡ 4 det




`5 · `5 `5 · p4 `5 · `6 `5 · p2

p4 · `5 p4 · p4 p4 · `6 p4 · p2

`6 · `5 `6 · p4 `6 · `6 `6 · p2

p2 · `5 p2 · p4 p2 · `6 p2 · p2


 . (4.19)

After being evaluated and simplified it becomes

O2 = E2 − (tm2
1 + t τ15 + τ2

15)(tm2
2 + t τ36 + τ2

36) , (4.20)

with E2 being the square of eq. (4.16).

We can rewrite the numerator (4.14) in terms of Mandelstam variables via eq. (4.18)

NYM =
2

t2
(
E2 +O2

)
+ 2m2

1m
2
2 , (4.21)

where E2 and O2 can be found from eqs. (4.16) and (4.20). After inserting this into

eq. (4.13) and keeping only the box and triangle integrals, as shown in figure 9, we find

that the one-loop four scalar amplitude is

A1-loop
4 =

∫
dD`5
(2π)D

1

`25(`5 − p1 − p2)2

[
(s−m2

1 −m2
2)2

((`5 + p1)2 −m2
1) ((`5 − p2)2 −m2

2)
(4.22)

+
2m2

1t− 2m2
2τ15 + τ15t− 2st

((`5 − p2)2 −m2
2) t

+
2m2

2t− 2m2
1τ36 + τ36t− 2st

((`5 + p1)2 −m2
1) t

]

+ quantum .

The integrals are to be evaluated in D = 4− 2ε dimensions.

Given that the integrand of eq. (4.22) is determined in four dimensions, yet when

integrated it is infrared divergent, one might worry that O(ε) terms which are dropped

from the integrand may actually contribute when multiplied by an infrared divergence.

In the full quantum theory a four-dimensional integrand evaluation would miss certain

rational pieces, as it happens in QCD [123]. However, as we shall see in section 12.2, for

extracting the classical potential it is sufficient to evaluate the integrand in four dimensions

not only at one loop, but also at two loops.

4.2 Gravity integrands

Using the double copy we now convert the above gauge-theory results for the integrand

into a corresponding gravity integrand. Given the simplicity of the gauge-theory helicity

amplitudes, it is natural to apply the KLT relations (3.2) for tree amplitudes in the cuts.

This strategy is used in ref. [124] to study PN and quantum corrections to the Newto-

nian potential.
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Using the KLT relations, the generalized unitarity cut in figure 7(a) for the gravity

amplitude is

C
(a)
GR =

∑

h5,h6=±
M tree

3 (3s, 6h6 ,−7s)M tree
3 (7s,−5h5 , 2s)M tree

4 (1s, 5−h5 ,−6−h6 , 4s)

=
∑

h5,h6=±
it[Atree

3 (3s, 6h6 ,−7s)Atree
3 (7s,−5h5 , 2s)Atree

4 (1s, 5−h5 ,−6−h6 , 4s)]

× [Atree
3 (3s, 6h6 ,−7s)Atree

3 (7s,−5h5 , 2s)Atree
4 (4s, 5−h5 ,−6−h6 , 1s)] ,

(4.23)

where we use the BCJ amplitude relation [82]

s12A
tree(1, 2, 4, 3) = s23A

tree(4, 2, 3, 1) , (4.24)

for all four-point tree amplitudes in this paper. So, in the end, the gravity cut is expressed

directly in terms of the four helicity components of the gauge-theory cut. We project out the

dilaton and axion ubiquitous in the double-copy relations and enforce that only gravitons

propagate across cuts simply by correlating the helicities in the two gauge-theory copies. As

in the gauge-theory calculation, some care is needed to ensure that the difference between

D and four dimensions does not affect the classical limit which we discuss in section 12.2.

Following the gauge-theory analysis, we step, one by one, through the four helicity

configurations (4.2) of the cut gravitons. For the {++} configuration we have

C
{++}
GR = M tree

3 (3s, 6+,−7s)M tree
3 (7s,−5+, 2s)M tree(1, 5−,−6−, 4)

= it [Atree
3 (3s, 6+,−7s)Atree

3 (7s,−5+, 2s)Atree
4 (1, 5−,−6−, 4s)]

× [Atree
3 (3s, 6+,−7s)Atree

3 (7s,−5+, 2s)Atree
4 (4, 5−,−6−, 1s)] . (4.25)

We simply read off the answer from the YM result in eq. (4.4) after appropriate relabeling.

It is

C
{++}
GR = −itm

2
1m

2
2

τ15

m2
1m

2
2

τ45
. (4.26)

We partial fraction the product of propagators, to make it compatible with a diagrammatic

interpretation,

1

τ15τ45
= −1

t

(
1

τ15
+

1

τ45

)
, (4.27)

where t = (`5 − `6)2 = (p1 + p4)2. In carrying out this partial fractioning we use the fact

that `5 and `6 are on-shell momenta and, as in the gauge-theory evaluation of cuts, we

have an all-outgoing convention for external momenta. The momentum flow of `5 and `6 is

indicated in figure 7. This gives the remarkably simple result for the generalized cut with

the {++} helicity configuration,

C
{++}
GR = im4

1m
4
2

(
1

τ15
+

1

τ45

)
. (4.28)
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As for gauge theory, the result for the (−−) helicity configuration is identical to that of

the {++} configuration:

C
{−−}
GR = im4

1m
4
2

(
1

τ15
+

1

τ45

)
. (4.29)

Next, we evaluate the cut with the {−+} helicity configuration for the cut gravitons.

We obtain

C
{−+}
GR =M tree

3 (3s, 6+,−7s)M tree
3 (7s,−5−, 2s)M tree

4 (1s, 5+,−6−, 4s)

= it [Atree
3 (3s, 6+,−7s)Atree

3 (7s,−5−, 2s)Atree
4 (1s, 5+,−6−, 4s)]

× [Atree
3 (3s, 6+,−7s)Atree

3 (7s,−5−, 2s)Atree
4 (4s, 5+,−6−, 1s)] . (4.30)

Reading off the YM result in eq. (4.7) and appropriately relabeling, we find

C
(−+)
GR = − i

t3
tr2
−[5462]

τ15

tr2
−[5462]

τ45
. (4.31)

In addition, partial fractioning the product of propagators using eq. (4.27) gives

C
(−+)
GR =

i

t4
tr4
−[5462]

(
1

τ15
+

1

τ45

)
. (4.32)

Following similar steps for the final (+−) helicity configuration (or simply conjugating the

result for the {−+} configuration), we have

C
(+−)
GR =

i

t4
tr4

+[5462]

(
1

τ15
+

1

τ45

)
. (4.33)

Combining eqs. (4.28), (4.29), (4.32) and (4.33) yields the cut in figure 7(a):

C
(a)
GR = C

(++)
GR + C

(−−)
GR + C

(−+)
GR + C

(+−)
GR

= i

(
1

t4
(
tr−[5462]4 + tr+[5462]4

)
+ 2m4

1m
4
2

)(
1

τ15
+

1

τ45

)
. (4.34)

Again the parity odd terms cancel in the integrand between the contributions of the various

helicity configurations. We obtain the second required cut, shown in figure 7(b), by a simple

relabeling and applying on-shell conditions, as in the gauge-theory case:

C
(b)
GR = i

(
1

t4
(
tr−[5462]4 + tr+[5462]4

)
+ 2m4

1m
4
2

)(
1

τ36
+

1

τ26

)
. (4.35)

Relaxing the on-shell condition for the cut momenta, restoring the cut propagators

and combining eqs. (4.34) and (4.35) into a single expression whose two cuts in figure 7

match eqs. (4.34) and (4.35) leads to

M1-loop(1, 2, 3, 4) =
1

2

∫
dD`5
(2π)D

NGR

[
1

`25((`5 − p2)2 −m2
2)(`5−p2−p3)2((`5+p1)2 −m2)

+ {2↔ 3}+ {1↔ 4}+ {2↔ 3, 1↔ 4}
]

+ quantum , (4.36)
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where `6 = `5 − p2 − p3 and we included an overall 1/2 for the two-graviton phase-space

symmetry factor. The numerator NGR is

NGR =
1

t4
(tr4
−[5462] + tr4

+[5462]) + 2m4
1m

4
2

=
2

t4
((E2 +O2)2 + 4E2O2) + 2m4

1m
4
2 , (4.37)

where E2 and O2 can be found from eqs. (4.16) and (4.20). The numerator is symmetric

under the relabelings indicated in eq. (4.36). We see that each integral appears twice, and

we can simplify the amplitude (4.36) to

M1-loop(1, 2, 3, 4) =

∫
dD`5
(2π)D

NGR

[
1

`25((`5 − p2)2 −m2
2)(`5 − p2 − p3)2((`5 + p1)2 −m2

1)

+ {1↔ 4}
]

+ quantum . (4.38)

This immediately can be reduced to the standard scalar box, triangle and bubble integrals.

The bubble integrals are all quantum and can be dropped without affecting the classical

potential. The box integral is obtained by setting τ15, τ36 → 0 since these factors cancel

matter propagators that would give us triangle or bubble integrals. This gives us the

box-integral contribution

− t2(M tree
4 )2

∫
dD`5
(2π)D

1

`25((`5 − p2)2 −m2
2)(`5 − p2 − p3)2

×
(

1

(`5 + p1)2 −m2
1

+
1

(`5 + p4)2 −m2
1

)
, (4.39)

where the four-dimensional tree amplitude is

M tree
4 = −i (s−m2

1 −m2
2)2 − 2m2

1m
2
2

t
. (4.40)

The appearance of the square of the tree amplitude in front of the box integral is not an

accident and is intimately connected to the fact that, from the effective field theory per-

spective, the box contribution is an infrared-divergent iteration of tree-level exchange. This

will be subtracted in matching with effective field theory and will not have an independent

contribution to the classical potential.

As a simple check, it is not difficult to add back the dilaton and axion (antisymmetric

tensor) contributions. To get these we simply sum over the contributions where, for at

least one cut leg, the helicities of two gluons corresponding to a particle in the double copy

theory are anti-correlated. Repeating the above steps for this case then gives the dilaton

and axion contributions to the numerator,

Nφa =
1

t4
(
2tr2

+[5462] tr2
−[5462]

)
+ 2m4

1m
4
2 +

4

t2
(
tr2

+[5462] + tr2
−[5462]

)
m2

1m
2
2 . (4.41)

Combining the graviton contribution to the numerator (4.37), with that of the dilaton and

axion (4.41) gives exactly the simple double-copy form for the numerator,

NGR +Nφa =

(
tr2

+[5462] + tr2
−[5462]

t2
+ 2m2

1m
2
2

)2

, (4.42)

which is the square of the gauge-theory numerator in eq. (4.14), as expected.

– 25 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
6

Although we calculated the integrand in four dimensions, the result in eq. (4.38) is

perfectly valid for extracting the classical potential, despite of the fact that we will use

dimensional regularization to regularize infrared divergences. The details can be found in

section 12.2.

5 Integrands at one loop using D-dimensional methods

When constructing scattering amplitudes we encounter infrared-divergent integrals. To

evaluate them we use dimensional regularization, where we continue the space-time dimen-

sion from four to D = 4−2ε. Infrared singularities appear as poles in ε, which can interfere

with O(ε) terms to produce finite contributions. Indeed, in the full quantum theory such

terms do occur and need to be kept, as described in e.g. ref. [123]. We therefore need to

confirm that O(ε) terms in the integrand do not alter our results for the classical potential

in some way.11

When applying dimensional regularization, the simplest scheme is the so-called conven-

tional dimensional regularization (CDR) scheme [125], where all states and loop momenta

are analytically continued from four to D dimensions. The four-dimensional helicity (FDH)

scheme [126, 127] is an alternative that meshes well with helicity methods. In this scheme,

we distinguish between the dimension of loop momenta and the space where physical states

live. We treat any factor of D arising in the integrand from contracting Lorentz indices,

Ds = η µ
µ = 4, differently from loop momenta which we take to live in D = 4− 2ε. We find

it useful to distinguish between these two sources of dimension dependence to help track

how dependence on the dimensional regularization prescriptions drop out in the classical

potential, as discussed in section 12.2. While a technical point, this is of some importance,

especially beyond two loops where four-dimensional helicity methods, which implicitly

choose both D = 4 and Ds = 4, are expected to be more efficient than D-dimensional ones.

In this section, as a warm-up for the more complicated two-loop case, we investigate the

dependence on regularization scheme by constructing a D-dimensional version of the one-

loop integrand which we compare to the one obtained in section 4 using four-dimensional

methods. Such a D-dimensional one-loop integrand has also been recently constructed

using similar methods in ref. [60]. The one-loop case is especially simple because, as we

shall see, the D- and four-dimensional integrands are identical up to differences in the

Ds state-counting parameters. As we discuss in section 6, at two loops the difference is

nontrivial because of the appearance of Gram determinants of momentum invariants that

vanish in four dimensions but not in D > 4 dimensions. Nevertheless, we will show that

they do not affect the classical potential.

5.1 Warm-up: gauge-theory integrands

Our D-dimensional construction makes use of BCJ duality, reviewed in section 3, so it is

natural to start with color-dressed amplitudes, instead of color-ordered ones. As in the

11Such interference terms also appear in certain integral identities used in section 8.1, where they are

crucial for obtaining the correct classical limit when evaluating the integrals via the differential equations

method.
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Figure 10. Feynman diagrams for the four-point amplitudes. Absorbing the four-point contact

term (c) into diagrams (s), (t), and (u) gives a BCJ representation of the amplitude.

four-dimensional discussion, once we obtain a D-dimensional gauge-theory integrand, the

double-copy construction gives the gravitational one with minimal additional effort.

An essential component of the evaluation of generalized unitarity cuts is the sum over

physical states. At two loops they can become quite involved so it is useful to devise

methods for simplifying them. The sum over the physical states of a gluon in general

dimension is less straightforward than summing over positive and negative helicities in

four dimensions. It is given by the so-called physical state projector,

Pµν(p, q) =
∑

pols.

εµ(−p)εν(p) = ηµν − qµpν + pµqν

q · p , (5.1)

where the sum runs over the physical gluon polarizations, p is the gluon momentum and

q is an arbitrary null reference momentum. We can use the projector to replace a pair of

polarization vectors with kinematic invariants. Note that there is a spurious propagator,

1/q · p, which must cancel out once all on-shell conditions on the cut are applied.

While including this projector in one-loop unitarity cuts poses no technical challenges,

by two loops using it becomes cumbersome, especially for gravity. However, as we now

explain, we can adjust the form of the tree amplitudes to automatically set to zero all

terms that depend on the reference momentum. The essential idea is to choose a form of

the tree-level amplitudes used in cuts such that, when a polarization vector is replaced by

the corresponding momentum (i.e. under a gauge transformation), the amplitude vanishes

without using the transversality of the remaining polarization vectors [60]. This signifi-

cantly cleans up D-dimensional unitarity cuts beyond one loop because it allows us to use

a simpler physical state projector.

To illustrate this idea, we start with the three-point tree amplitude with one gluon

and two massive scalars in the adjoint representation. It is given by the Feynman three-

point vertex,

Atree
3 (1s, 2, 3s) =

i√
2
f̃a1a2a3(p3 − p1) · ε2 . (5.2)

This amplitude automatically satisfies the on-shell Ward identity

Atree
3 (1s, 2s, 3)

∣∣
ε2→p2 = 0 , (5.3)

because p2 · (p3 − p1) = −(p3 + p1) · (p3 − p1) = 0.

At four points it is straightforward to obtain gauge-theory tree amplitudes that man-

ifest BCJ duality, because all representations of the amplitude in term of diagrams with
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only cubic vertices have this property [82]. We, however, also want that, simultaneously,

the amplitude satisfies the on-shell Ward identities

Atree
4 (1s, 2, 3, 4s)

∣∣
ε2→p2 = 0 , Atree

4 (1s, 2, 3, 4s)
∣∣
ε3→p3 = 0 , (5.4)

without using the transversality of the asymptotic state of the remaining gluon,

ε3 · p3 = 0 , ε2 · p2 = 0 , (5.5)

respectively. To find such a representation we can start, for example, with Feynman dia-

grams in Feynman gauge, illustrated in figure 10; for four-point trees there is no need for

more sophisticated approaches. We then rearrange the diagrams in two ways. First we

absorb the four-vertex into the diagrams with only three vertices by matching the color

factors and multiplying and dividing by the appropriate propagator. Then we add terms

that vanish on shell while demanding that the on-shell Ward identity hold automatically

on each gluon leg without using physical state conditions on the other external gluon. The

result is an amplitude of the form

Atree
4 (1s, 2, 3, 4s) =

ns cs
s−m2

+
nt ct
t

+
nu cu
u−m2

, (5.6)

where the Mandelstam invariants are

s = (p1 + p2)2 , t = (p2 + p3)2 , u = (p1 + p3)2 , (5.7)

and m2 = k2
1 = k2

4 is the mass of the scalar. The color factors are easily read off from the

diagrams in figure 10,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 , (5.8)

where the color group structure constants are defined in eq. (3.6). The color factors satisfy

the Jacobi identity

ct = cs − cu . (5.9)

The s-channel kinematic numerator is

ns = n(1s, 2, 3, 4s) =
i

2

{
(s−m2) ε2 · ε3 − 2(p1 · ε2) (p12 · ε3)− 2(p34 · ε2) (p4 · ε3)

}
,

(5.10)

with pij = pi + pj . The other two numerators follow from the above: the u-channel

numerator is obtained by swapping labels 2 and 3 in ns,

nu = n(1s, 3, 2, 4s), (5.11)

and the t-channel numerator follows from the kinematic Jacobi relation

nt = ns − nu . (5.12)

The duality between color and kinematics is manifest in eq. (5.9) and eq. (5.12).
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Compared to the result of a Feynman diagram calculation, we have added to the

numerators terms proportional to p2·ε2 and p3·ε3 that vanish for asymptotic physical states.

While this choice has no physical effect, it greatly simplifies the unitarity construction,

especially beyond one loop. Observe that the second term in the projector in eq. (5.1)

replaces one of the polarization vectors with its momentum, which resembles the left-hand

side of the on shell Ward identity. The only difference is that the rest of legs may not

satisfy physical state conditions, pi · εi = 0, after they have been sewed with other tree

amplitudes in the unitarity cut. However, if we can choose the amplitude to satisfy the on-

shell Ward identity without demanding physical state conditions, then the Ward identity

can be applied term by term in the state sum. So, with the numerators chosen as above,

we can simplify the projector to [59, 60]
∑

λ

εµ(−p)εν(p)→ ηµν , (5.13)

which not only reduces the number of terms, but also eliminates the appearance of the

reference momentum and the corresponding spurious propagator. While the propagator

numerator (5.13) is analogous to the one in Feynman gauge, there is no need for Fadeev-

Popov ghosts or physical-state projectors even when constructing full quantum amplitudes

via generalized unitarity. Although the one-loop case in gauge theory is simple enough

for the advantage of this reorganization to not be obvious, we will see that, at two loops,

the same technique enormously simplifies the D dimensional cut calculations, especially

in gravity.

Using the adjusted four-point amplitude, we now construct the one-loop color-dressed

gauge-theory cuts. We will then extract their color-ordered components and compare

them with the color-ordered four-dimensional cuts. The color-dressed cut in figure 7(a) is

given by

CYM =
∑

pols.

Atree
3 (3s, 6,−7s)Atree

3 (7s,−5, 2s)Atree
4 (1s, 5,−6, 4s)

=
∑

pols.

(
2f̃a3a6a7 f̃a7a5a2 (p2 · ε−5) (p3 · ε6)

)
×
(
c′t n
′
t

t
+
c′s n

′
s

τ15
+
c′u n

′
u

τ45

)
, (5.14)

where the color factors c′s,t,u are obtained from eq. (5.8) by swapping the labels (2, 3) into

(5,−6) while the kinematic numerator factors n′s,t,u are obtained from ns,t,u by the same

relabeling. Because the on-shell Ward identities are all automatically satisfied, the state

sum simplifies and we only need to replace the product of two polarization vectors by the

improved state sum in eq. (5.13). It is not difficult to simplify the resulting expressions

using the cut conditions on the gluon lines, τ55 = τ66 = 0, and on the matter line, τ36 = 0.

To compare with the four-dimensional color-ordered cut calculation discussed in sec-

tion 4 we need to extract the color-ordered components of (5.14). For example, the coeffi-

cient of Tr[T a1T a2T a3T a4 ] receives contributions from the numerators n′s and n′t; it is

C
(a)
YM =

∑

pols.

(
2(p2 · ε−5) (p3 · ε6)

)( n′s
τ15

+
n′t
t

)
. (5.15)
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Simplifying it using the on shell conditions for the cut lines and the improved gluon physical

state projector (5.13), gives

C
(a)
YM =

i

t τ15

(
t(s−m2

1 −m2
2)2 + τ15(2tm2

1 − 2τ15m
2
2 + τ15t− 2st)

)
. (5.16)

By relabeling we also obtain the cut in figure 7(b)

C
(b)
YM =

i

t τ36

(
t(s−m2

1 −m2
2)2 + τ36(2tm2

2 − 2τ36m
2
1 + τ36t− 2st)

)
. (5.17)

Combining the two cuts reproduces the amplitude obtained from four dimensional cuts in

eq. (4.22).

The match between one-loop integrands obtained from four- to D-dimensional methods

is not accidental. Discrepancies can arise from two sources: (1) Gram determinants involv-

ing five independent vectors, which vanish in four dimensions but not D dimensions and

(2) factors of dimension arising from the trace of the metric, ηµ
µ = Ds. The former cannot

appear, because the one-loop problem contains only four independent momenta. The latter

can occur only in bubble diagrams which do not contribute to the classical limit.

The color-dressed cut in eq. (5.14) immediately gives us the cut with the same topology

of the gravity amplitude by replacing each color factor by its corresponding numerator

factor, and taking into account the physical state projector that results from the sum over

graviton polarizations, which we discuss next.

5.2 Gravity integrands via BCJ double copy

Consider now the gravity generalized cuts in D = 4−2ε dimensions. We begin here with the

less involved 2PM case as a warm-up for 3PM. Given that the gauge-theory numerators in

eq. (5.10) respect BCJ duality, it is a simple matter to recycle the gauge theory generalized

cuts to gravity ones. It is nevertheless important to examine them because, similarly with

gauge theory, gravity also exhibits infrared singularities, so it is possible that interference

terms between O(ε) numerator pieces and 1/ε infrared singularities may yield finite terms

in addition to those found through a D = 4 cut calculation. The 2PM scattering amplitude

in D dimensions was recently presented in [60]. Here we discuss a similar analysis of the

integrand, focusing on the question of whether any dimensional regularization subtleties

can affect the four-dimensional cut construction.

Naively, it would seem that we need the graviton physical-state projector in order to

prevent the dilaton and antisymmetric tensor from contributing in double-copy construc-

tions. The D-dimensional graviton physical state projector is

Pµνρσ(p, q) =
∑

pols.

εµν(−p)ερσ(p) =
1

2

(
PµρP νσ + PµσP νρ

)
− 1

Ds − 2
PµνP ρσ , (5.18)

where Pµν is the gluon physical state projector in eq. (5.1) with momentum p and a

null reference momentum q. The sum runs over the Ds(Ds − 3)/2 physical states of the

graviton. As usual we denote any factor D associated with state count as Ds, so that we

may distinguish it from the dimension of the loop integration.
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We can simplify the cuts considerably, by using in the double copy construction gluon

amplitudes that automatically project out all longitudinal polarizations. In this way the

graviton generalized cuts inherit the simplicity of the gluon ones. Indeed, the net effect of

using such representations of tree amplitudes is that, in all unitarity cuts, we can replace

the physical state projectors with a much simpler one, equivalent to the projector in de

Donder gauge,

∑

pols.

εµν(−p)ερσ(p) =
1

2
ηµρηνσ +

1

2
ηνρηµσ −

1

Ds − 2
ηµνηρσ . (5.19)

We can simplify it even further by observing that the antisymmetric tensor does not couple

directly to scalar fields. This implies that, for external scalars, the antisymmetric tensor

can appear only in closed loops that do not contain a matter line. Since this violates the

rule that every loop needs at least one cut matter line, the antisymmetric tensor cannot, in

fact, contribute to the classical potential. We therefore do not need to explicitly symmetrize

the projector indices, leaving us with the remarkably simple projector

∑

pols.

εµν(−p)ερσ(p) = ηµρηνσ −
1

Ds − 2
ηµνηρσ . (5.20)

The first term is precisely the one of a naive double copy. The second term is a correction

needed to subtract out the dilaton or, alternatively, the trace of the metric fluctuation.

Because this projector preserves much of the double copy structure, it is much simpler to

use and makes more transparent the transference of gauge-theory properties to gravity.

Remarkably, with this reformulation, the propagator for sewing amplitudes is even simpler

than the standard de Donder gauge one.

To obtain the gravity cut, we apply the double-copy procedure (3.9) to eq. (5.14), i.e.

we replace the color factors by another copy of the kinematic numerator factors, and find

C(a)
GR =

∑

pols.

(
−4(p2 · ε−5)2 (p3 · ε6)2

)
× i
(
n′t n

′
t

t
+
n′s n

′
s

τ15
+
n′u n

′
u

τ45

)
. (5.21)

The sum over polarizations generates the simplified physical state projector given in

eq. (5.20).

We have explicitly verified that, when sewing tree amplitudes using the graviton

physical-state projectors with Ds = 4, we obtain precisely the result found by summing

over four-dimensional helicity states in cuts, given in eq. (4.34). The reason for this match

is the same as in gauge theory: at one loop there is no kinematic object that vanishes in

four-dimensions but not in D dimensions. The only source of dimensional dependence is

then the state-counting parameter Ds in the graviton propagator (5.20).

The dependence on Ds in the physical state projector does however imply that there

is a difference between the D dimensional integrand and the four-dimensional one. For the

cut in figure 7(a) this difference is

C(a)
GR − C

(a)
GR|Ds=4 =

4m2
1m

2
2(Ds − 4)

(Ds − 2)

[
t

τ45
(2s− 2m2

1 − 2m2
2 − τ15)− m2

2τ15τ45

2m2
1t

(5.22)

×
(

(s−m2
1 −m2

2)2 +m2
2(m2

1 t− τ15τ45)
Ds

t(Ds − 2)

)(
1

τ15
+

1

τ45

)]
.
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(a) (b) (c)

Figure 11. A spanning cuts that determine the full integrand other than quantum bubble on

external leg contributions. The complete set of cuts is given including all distinct labels and routing

of different particles through the cuts. The lines represent on-shell particles of any type.

(a)

1

3

4

65 7

2
8 9

(b)

9

8

1

3

4

65 7

2

(c)

1

3

4

5 6

8 7

2 9

10

Figure 12. The independent generalized cuts needed at two loops for the classical potential. The

remaining contributing cuts are given by simple relabeling of external legs. Here the straight lines

represent on-shell scalars and the wiggly lines correspond to on-shell gravitons or gluons.

Using τ15 + τ45 = −t on the cut, we can organize the above equation into standard cut

integrals. As before, the cut in figure 7(b) may be obtained by a simple relabeling. In

section 12 we will show that this difference between the results of the D-dimensional and

four-dimensional cut construction has no effect on the classical potential.

6 Integrands at two loops

In this section we describe the construction of the two-loop gravity integrand using both

four-dimensional helicity and D-dimensional methods and show explicitly that the four-

dimensional construction is sufficient to capture all contributions to the classical potential

in four space-time dimensions. As a warm-up, we first analyze the simpler case of color-

ordered gauge-theory four-scalar amplitude, pointing out various features of the construc-

tion that carry over to the gravity case.

As at one loop, we use the generalized unitarity method [73–77], briefly summarized

in section 3, to construct the two-loop integrand. The complete quantum integrand can be

obtained using a spanning set of cuts, which amounts to the set of cuts from which every

term in the loop integrand can be determined. For the two loop massless case such a set is

shown in figure 11, where all distinct labeling and routings of different particles need to be

included. In the massive case there are additional contributions not captured by these cuts,

related to bubbles on external legs, but these are purely quantum effects which we ignore.

The set of cuts needed to determine the classical potential is, in fact, a subset of

the spanning set. As explained in section 2, the only unitarity cuts that can contain
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1

2 3

4 1

2 3

4

Figure 13. Examples of cuts that are discarded because they have no further classical or iteration

contributions to the potential that are not already found in the cuts of figure 12.

pieces of the classical potential separate the two massive lines on opposite sides of the

cut and have one cut matter line in each loop. In addition there are no contributions

from diagrams containing a graviton propagator starting and ending on the same scalar

line. After dropping from the spanning set all unitarity cuts that do not contain any new

contributions that satisfy these criteria, we are left with the cuts in figure 12, together

with independent ones obtained from relabeling the external lines. The first two cuts, (a)

and (b), are just the three-particle cut shown in figure 11(a), where the three cut lines are

gravitons, but with the additional requirement that one matter line per loop should also

be cut. Similarly, the cut in figure 12(c) is just the iterated two-particle cut in figure 11(b),

with all cut lines being gravitons, but with the additional condition imposed that one

matter line per loop is cut. Any other cuts, such as the ones shown in figure 13, will

contain pieces either already determined by the cuts in figure 12, or diagrams that do not

contribute to the conservative potential. In particular, there are no new classical potential

pieces in any iterated two particle cut of the form in figure 11(c).

6.1 Warm-up: gauge-theory generalized cuts in four dimensions

Before turning to gravity, we first evaluate the cuts in figure 12 for a scalar-coupled gauge

theory. Once the gauge-theory cuts have been determined, the gravity ones are obtained

easily through double copy.

As in the four-dimensional one loop construction, we take the amplitude to be color

ordered so we preserve the cyclic ordering of legs when writing out the tree amplitudes

that compose the cut. The first two cuts in figure 12 are given by

C
(a)
YM =

∑

h5,h6,h7=±
Atree

3 (3s,−7−h7 ,−9s)Atree
3 (9s,−6−h6 ,−8s)

×Atree
3 (8s,−5−h5 , 2s)Atree

5 (1s, 5h5 , 6h6 , 7h7 , 4s) , (6.1)

C
(b)
YM =

∑

h5,h6,h7=±
Atree

4 (3s,−7−h7 ,−6−h6 ,−8s)Atree
3 (8s,−5−h5 , 2s)

×Atree
4 (1s, 5h5 , 6h6 , 9s)Atree

3 (−9s, 7h7 , 4s) . (6.2)

The helicity sums run over 23 = 8 possible configurations:

{h5, h6, h7} : {+++}, {−−−}, {+−−}, {−++}, {+−+}, {−+−}, {++−}, {−−+} . (6.3)
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Similarly, the cut in figure 12(c) is,

C
(c)
YM =

∑

h5,h6,h7,h8=±
Atree

3 (3s, 7h7 ,−9s)Atree
3 (9s,−8−h8 , 2s)Atree

4 (−5−h5 , 8h8 ,−7−h7 , 6h6)

×Atree
3 (1s, 5h5 ,−10s)Atree

3 (10s,−6−h6 , 4s) ,
(6.4)

where legs 5, 6, 7, 8 are cut gluon lines and 9 and 10 are cut matter lines. The sum over

helicity configurations runs over

{h5, h6, h7, h8} : {++++}, {−−−−}, {+−−+}, {++−−}, {−−++}, {−++−} . (6.5)

The helicity labels correspond to the momentum flow indicated in figure 12(c). All other

configurations give vanishing contributions, because the four-gluon amplitude represented

by the central blob vanishes except for configurations with two legs of positive helicity and

two of negative helicity for all outgoing momenta.

As we encountered at one loop, each cut contains both terms that do not appear in any

other cut and terms that do. For example, the cut in figure 12(a) contains a term in which

the lines 1, 4, 5, 6, 7 meet at a single five-point vertex which does not appear in any other

cut. It also contains a term corresponding to a two-loop planar double-box graph topology,

which also appears in the cut in figure 12(b). While we can simplify the cuts following

a similar strategy as at one loop, the process of organizing the result in terms of local

diagrams and removing such double-counted terms is more complex at two loops. Instead,

we will use the simple strategy where the cuts in eqs. (6.1), (6.2) and (6.4) are directly

matched onto the cuts of an ansatz for the integrand with the desired local properties. In

this way we simultaneously remove any overcount of terms in cuts and organize the result

in terms of Feynman integrals.

To illustrate some important features and to explain the terms that can be dropped

when evaluating the cuts in four dimensions, we will summarize the calculation of the cut

in figure 12(c). In particular, we explain in section 12.2 ambiguities in the integrand when

working in four dimensions and why they do not affect the classical potential.

Following similar algebraic steps as at one loop and using standard spinor manip-

ulations we evaluate the terms in the cut in figure 12(c) given by the different helicity

configurations in eq. (6.4). We find

C
{++++}
YM = − im

2
1m

2
2 t

(−τ58)
, C

{+−−+}
YM = − itr

2
−[728615]

t3(−τ58)
, C

{+−+−}
YM = − itr

2
−[827615]

t3(−τ58)
,

C
{−−−−}
YM = − im

2
1m

2
2 t

(−τ58)
, C

{−++−}
YM = − itr

2
+728615]

t3(−τ58)
, C

{−+−+}
YM = − itr

2
+[827615]

t3(−τ58)
.

(6.6)

While not necessary for the construction of the color-ordered two-loop scalar ampli-

tude with the ordering Tr[T a1T a2T a3T a4 ], to construct the gravity cut corresponding to

figure 12(c) using the KLT relations we also need the twisted color-ordered cut, obtained
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by exchanging {−5↔ 6} in the four-point tree-amplitude factor,

C
′(c)
YM =

∑

h5,h6,h7,h8=±
Atree

3 (2s, 9s,−8−h8)Atree
3 (7h7 ,−9s, 3s)Atree

4 (6h6 , 8h8 ,−7−h7 ,−5h5)

×Atree
3 (1s, 5h5 ,−10s)Atree

3 (10s,−6−h6 , 4s) .
(6.7)

The sum runs over the helicity configurations in eq. (6.5). Using the BCJ amplitudes

relation in eq. (4.24),

Atree
4 (6h6 , 8h8 ,−7−h7 ,−5h5) = −τ58

τ68
Atree

4 (−5h5 , 8h8 ,−7−h7 , 6h6) , (6.8)

it is not difficult to find that the twisted cut and its helicity-labeled components are simply

C
′{h5,h6,h7,h8}
YM =

(−τ58)

τ68
C
{h5,h6,h7,h8}
YM , C

′(c)
YM =

(−τ58)

τ68
C

(c)
YM . (6.9)

The rational factor effectively replaces the −1/τ58 propagator with the 1/τ68 one, corre-

sponding to the relabeled four-point amplitude in the middle blob in figure 12(c).

Next, we evaluate the two remaining traces in eq. (6.6). We split them into parity-even

and parity-odd parts, as at one-loop, resulting in

tr2
±[827615] = E2

1 +O2
1 ± 2O1E1 , (6.10)

tr2
±[728615] = E2

2 +O2
2 ± 2O2E2 . (6.11)

It is however clear that, in the complete cut, the parity-odd part cancels out, so we only

need to compute O2
i . Evaluating the trace using standard gamma-matrix identities we find

E2
1 =

1

4
t2
(
τ12τ58 − τ18τ25

)2
, O2

1 = E2
1 − τ2

58m
2
1m

2
2 t

2 . (6.12)

E2
2 =

1

4
t2
(
τ24τ57 + τ17τ57

)2
, O2

2 = E2
2 − τ2

57m
2
1m

2
2 t

2 , (6.13)

where t = (p2 + p3)2 and τij = 2pi · `j .
Adding up the contributions of the six helicity configurations, we find that the complete

four-dimensional cut in figure 12(c) is given by

C
(c)
YM = −2i

1

(−τ58)

[
m2

1m
2
2t+

1

t3
(
E2

1 +O2
1 + E2

2 +O2
2

)]
(6.14)

= −2i
1

(−τ58)

[
m2

1m
2
2t+

1

2t

(
(τ12τ58 − τ18τ25)2 − 2τ2

58m
2
1m

2
2

+ (τ24τ57 + τ17τ57)2 − 2τ2
57m

2
1m

2
2

)]
.

The twisted cut is simply obtained through eq. (6.9).

If naively continued outside of four dimensions, the expression (6.14) contains a spuri-

ous singularity. To expose this issue we construct the maximal cut obtained by imposing

the additional cut condition

τ58 = 0 . (6.15)
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Together with the initial six cut conditions, this corresponds to cutting the maximum

number of propagators for a four-point two-loop amplitude; consequently, the result should

be local, as can be checked by solving the seven cut conditions in four dimensions. However,

with this additional cut condition, we get the maximal cut interpreted as a D-dimensional

expression

Cmaxcut
YM = −1

t
τ2

18 τ
2
25 . (6.16)

It contains a 1/t pole. Maximal cuts should be local, since they are nothing more than

sums of products of three vertices. This strongly suggests that the correct D dimensional

expression is missing a term proportional to a Gram determinant that vanishes in four

dimensions but not in D dimensions.

This is indeed the case. To remove the spurious 1/t singularity we add a term propor-

tional to the Gram determinant

G5 = 16 det




p1 · p1 p1 · p2 p1 · p3 p1 · `5 p1 · `8
p2 · p1 p2 · p2 p2 · p3 p2 · `5 p2 · `8
p3 · p1 p3 · p2 p3 · p3 p3 · `5 p3 · `8
`5 · p1 `5 · p2 `5 · p3 `5 · `5 `5 · `8
`8 · p1 `8 · p2 `8 · p3 `8 · `5 `8 · `8



, (6.17)

which vanishes in four dimensions. By adjusting the coefficient of G5 we can remove the

spurious singularity. This results in a cut that is now valid in D-dimensions,

CYM = −2i
1

(−τ58)

[
m2

1m
2
2t+

1

t3

(
E2

1 +O2
1 + E2

2 +O2
2 − tG5

)]
, (6.18)

where the state-counting parameter is Ds = 4. An alternative way to arrive at the same

result is to match an ansatz written in terms of local diagrams (which by definition have

no spurious singularities) onto C
(c)
YM. The twisted cut can be obtained from eq. (6.18) via

eq. (6.9).

6.2 Gravity generalized cuts in four dimensions

The KLT relations (3.2) provide a simple path for assembling the gauge-theory cut com-

ponents constructed above into analytic expression for the three gravity cuts in figure 12.

Those corresponding to figure 12(a,b) are

C
(a)
GR =

∑

h5,h6,h7=±
M tree

3 (2s, 8s,−5−h5)M tree
3 (−6−h6 ,−8s, 9s)

×M tree
3 (7h7 ,−9s, 3s)M tree

5 (1s, 5h5 , 6h6 , 7h7 , 4s) , (6.19)

C
(b)
GR =

∑

h5,h6,h7=±
M tree

3 (2s, 8s,−5−h5)M tree
4 (−7−h7 ,−6−h6 ,−8s, 3s)

×M tree
4 (1s, 5h5 , 6h6 , 9s)M tree

3 (−9s, 7h7 , 4s) , (6.20)

where the helicity configurations run over the eight possibilities in eq. (6.3), except that

here the ± refer to the spin states of gravitons instead of those of gluons. The gravity tree
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amplitudes can be simply evaluated using the KLT relations (3.2). Similarly, the remaining

cut in figure 12(c) is

C
(c)
GR =

∑

h5,h6,h7,h8=±
M tree

3 (2s, 9s,−8−h8)M tree
3 (7h7 ,−9s, 3s)M tree

4 (−5−h5 , 6h6 ,−7−h7 , 8h8)

×M tree
3 (1s, 5h5 ,−10s)M tree

3 (10s,−6−h6 , 4s)

= −it
∑

h5,h6,h7,h8=±

[
Atree

3 (2s, 9s,−8−h8)Atree
3 (7h7 ,−9s, 3s)Atree

4 (−5−h5 , 6h6 ,−7−h7 , 8h8)

×Atree
3 (1s, 5h5 ,−10s)Atree

3 (10s,−6−h6 , 4s)
]

×
[
Atree

3 (2s, 9s,−8−h8)Atree
3 (7h7 ,−9s, 3s)Atree

4 (6h6 , 8h8 ,−7−h7 ,−5h5)

×Atree
3 (1s, 5h5 ,−10s)Atree

3 (10s,−6−h6 , 4s)
]
, (6.21)

where legs 5, 6, 7, 8 are cut graviton lines and 9 and 10 are cut matter lines. As for the gluon

case, some helicity configurations have vanishing contributions because of the properties

of the four-graviton amplitude factor, so the sum over helicities in eq. (6.21) effectively

runs over the configurations in eq. (6.5). As at one loop, we project out the dilaton and

axion simply by requiring that the helicities of gluons in the two gauge-theory factors in

eqs. (6.19), (6.20) and (6.21) be identical.

Upon using the gauge-theory tree amplitudes given in appendix B we find compact

expressions for the three types of cuts in figure 12, which can subsequently be assembled

into a single integrand, as we discuss below. It is instructive to inspect in some detail the

cut in figure 12(c), in order to understand potential issues with carrying out the calculation

in four dimensions compared to D dimensions. In general, we prefer the four-dimensional

expressions because their complexity at higher loops increases slower than that of their

D-dimensional counterparts.

The cut components, labeled by the helicities of the cut graviton lines in figure 12(c) are

obtained through the KLT relations in terms of the direct and twisted YM cut components

in eqs. (6.6) and (6.7)

C
{h1h2h3h4}
GR = −i t C{h1h2h3h4}YM C

′{h1h2h3h4}
YM . (6.22)

As explained above, by identifying the helicity labels in the two gauge-theory amplitudes

we project out the dilaton and axion contributions to cuts. Using the relation in eq. (6.9),

we can read off the results in different helicity configurations as

C
{++++}
GR = i

m4
1m

4
2t

3

(−τ58)τ68
, C

{+−−+}
GR = i

tr4
−[728615]

t5(−τ58)τ68
, C

{+−+−}
GR = i

tr4
−[827615]

t5(−τ58)τ68
,

C
{−−−−}
GR = i

m4
1m

4
2t

3

(−τ58)τ68
, C

{−++−}
GR = i

tr4
+[728615]

t5(−τ58)τ68
, C

{−+−+}
GR = i

tr4
+[827615]

t5(−τ58)τ68
. (6.23)

Summing over all helicity configurations of gravitons crossing the iterated two-particle cuts,

we find

C
(c)
GR = − i

[
2t2m4

1m
4
2 +

1

t6

(
tr4
−[728615] + tr4

−[827615] + tr4
+[728615] + tr4

+[827615]
)]

×
[

1

(−τ58)
+

1

τ68

]
, (6.24)
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where we used the partial fractioning identity (recall that momenta are flowing as indicated

in figure 12(c))

1

(−τ58)τ68
= −1

t

[
1

(−τ58)
+

1

τ68

]
. (6.25)

By inspecting eq. (6.24) it is easy to see that all parity-odd terms cancel out. We can

evaluate the traces using eqs. (6.10) and (6.11)

C
(c)
GR = −2i

[
t2m4

1m
4
2 +

1

t6

(
E4

1 +O4
1 + 6O2

1E2
1 + E4

2 +O4
2 + 6O2

2E2
2

)][ 1

(−τ58)
+

1

τ68

]
,

(6.26)

where the even-squared and odd-squared terms are given in eqs. (6.12) and (6.13).

As for the YM cut with the same topology, if we naively extend eq. (6.26) to D

dimensions we encounter a spurious singularity in the maximal cut, which we can remove

by adding in eq. (6.17) a term proportional to the Gram determinant, that vanishes in four

dimensions. Doing so gives,

C
(c)
GR = − 2i

[
t2m4

1m
4
2 +

1

t6

(
E4

1 +O4
1 + 6O2

1E2
1 + E4

2 +O4
2 + 6O2

2E2
2

− 2tG5(E2
1 +O2

1 + E2
2 +O2

2) + t2G2
5

)][ 1

(−τ58)
+

1

τ68

]
. (6.27)

As we will see, further terms that vanish in four dimensions (and therefore proportional

to G5) are necessary to obtain the complete D-dimensional cut. Nevertheless, all terms

proportional to G5 do not contribute to the classical potential, as we discuss in section 12.2.

For comparison, the cut in figure 12(c) for the scattering of scalars coupled to a gravi-

ton, dilaton and antisymmetric tensor (or axion) is given by the simple double copy:

C
(c)
GR + C

(c)
φa = −4i

[
tm2

1m
2
2 +

1

t3

(
E2

1 +O2
1 + E2

2 +O2
2 − tG5

)]2[ 1

(−τ58)
+

1

τ68

]
. (6.28)

This expression holds for kinematics in general dimension, but with Ds = 4.

6.3 D-dimensional generalized cuts

The evaluation of the D-dimensional version of the generalized cuts in figure 12 is similar

to the evaluation of the one-loop D-dimensional cuts in section 4, except that the relevant

gauge-theory trees are somewhat more complicated. Besides the two-scalar three-gluon

tree-level amplitude needed for the cut in figure 12(a), we also need the four-gluon ampli-

tude in a BCJ form that also satisfies the on-shell Ward identity eq. (B.13) without use

of transversality of the external states. These tree amplitudes are given in appendix B.

By using a good basis choice and BCJ duality, the amplitudes are determined by specify-

ing a single numerator. Because BCJ duality is manifest, the desired gravity cuts follow

immediately from the gauge-theory ones through the double-copy substitution in eq. (3.9).

As at one-loop, we exploit the compact physical-state projector in eq. (5.20), which is

a consequence of the on-shell Ward identities holding without imposing the transversality
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Figure 14. The eight independent diagrams with only cubic vertices showing the propagator

structure of integrals which contribute to the classical potential. The thick lines correspond to

massive particles. All other diagrams are given by relabeling the external legs. In the main text,

we will denote each diagram using bold label, e.g. diagram 1 for the first diagram.

of gluon and graviton asymptotic states and of the decoupling of antisymmetric tensor.

This trick simplifies the two-loop calculation enormously. We will not include the details

since the calculations are straightforward extensions of the one-loop ones. We will however

comment on the result for the cut in figure 12(c) and compare it with the four-dimensional

expression in eq. (6.26).

Taking Ds = η µ
µ = 4, the cut in figure 12(c) evaluates to the rather compact expression

C
(c)
GR =− 2i

[
t2m4

1m
4
2 +

1

t6

(
E4

1 +O4
1 + 6O2

1E2
1 + E4

2 +O4
2

+ 6O2
2E2

2 − 2tG5(E2
1 +O2

1 + E2
2 +O2

2) + t2G2
5

)

− 1

t
(2m2

1m
2
2 + (τ12 − τ18 + τ25 − τ58)2)G5

](
1

(−τ58)
+

1

τ68

)
, (6.29)

where G5 is the Gram determinant in eq. (6.17). We note that, apart from the G5 terms we

found by requiring absence of a spurious pole in the maximal cut of the naive D-dimensional

continuation of the four-dimensional result in eq. (6.27), the complete D-dimensional cal-

culation yields additional terms linear in G5. The other cuts are also straightforward to

evaluate, although we have not obtained compact D-dimensional expressions for them.

6.4 Merging the cuts into an integrand

Once the cuts have been evaluated, the next step is to reorganize them into an integrand.

We do this for both their four and D-dimensional versions. While obtaining the integrand

from the four-dimensional cuts turns out to be sufficient, it is nevertheless important to

verify that no subtleties arise from truncating the integrand to four dimensions, given the

fact that the integrated amplitude is infrared divergent.

In general, different unitarity cuts contain information about the same terms in the

integrand. For example, contributions to diagram 1 in figure 14 are found in both cuts (a)

and (b) of figure 12 while contributions to diagram 7 in figure 14 appear both in cuts (b)

and (c) of figure 12. Such double counting can be removed either during the construction
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of the integrand [110, 128] or after integration [129]. We will choose the former approach,

as it meshes well with our integration methods described in the next sections.

To determine the numerators for the diagrams in figure 14 we construct an ansatz for

each of them. While contact diagrams with four- or higher-point vertices can be included

in the ansatz, we choose to minimize the number of independent graphs by instead us-

ing diagrams that have only cubic vertices as shown in figure 14, and capturing contact

terms by multiplying and dividing by appropriate propagators. The highest number of

loop-momentum factors in each term of the ansatz follows from the two-derivative nature

of gravity couplings, counting two such factors for each three-point vertex. As we will

see, it is not necessary to saturate the maximal power counting for all diagrams. After

including relabelings of external lines, the eight diagram topologies shown in figure 14 are

the minimal set needed for matching the three unitarity cuts in figure 12. We impose the

natural requirement that the symmetries of a diagram are also symmetries of its numerator

factor. The parameters of the ansatze are then fixed by computing their generalized cuts

(including contributions from the relabelings) and match to those in figure 12 computed

earlier via multiplying tree amplitudes. Once this is done, the merged integrand simulta-

neously satisfies all other generalized unitarity cuts related to figure 12 by exchanging the

external legs, because the relabeling is built-in explicitly.

An observation that leads to simplifications when imposing diagram symmetries is that

on-shell conditions may be imposed on a given leg in a given diagram if that leg is on shell

in all cuts that contribute to that diagram. For example, the on-shell conditions for the

three gravitons can be applied to the numerator of diagram 1 because these gravitons are

on shell in both cuts (a) and (b) in figure 12. The four gravitons that connect to matter

lines in diagram 7 must however be treated off shell because they are off shell in cut (b) in

figure 12. On the other hand, we can use the on shell condition for the two matter lines in

diagrams 7 and 8 without affecting the classical potential because only cuts (b) and (c) in

figure 12 source them and they both place the matter lines on shell.

In the construction of the ansatz for each diagram’s numerator, we only require a

sufficiently high power of loop momenta such that a solution exists and matches either to

four-dimensional cuts or to D dimensional cuts. For example, diagram 1 in figure 14 does

not require any powers of loop momenta in the numerators, while the numerator of diagram

6 requires the maximum of 12 powers of loop momenta to match the cuts, prior to dropping

quantum terms containing more than 4 powers of loop momenta in the numerator.

In general, the numerators contain free parameters because of the possibility of assign-

ing the same contact term to different diagrams without changing the value of integrand.

We choose the remaining undetermined parameters to simplify the matching with the ef-

fective field theory amplitudes in section 10. For example, we chose diagram (1) to have

a numerator proportional to the third power of the numerator in tree-level four-scalar

amplitude, i.e.

N
(1)
GR(1, 2, 3, 4) =

(
(s−m2

1 −m2
2)2 − 4

Ds − 2
m2

1m
2
2

)3

. (6.30)

By imposing diagram’s symmetry on all numerators, simple relabeling gives us the value
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Graph External relabeling

1 (1 2 3 4), (1 3 2 4)

2 (1 2 3 4), (1 3 2 4), (4 3 2 1), (4 2 3 1), +{1, 4} ↔ {2, 3}
3 (1 2 3 4), (1 3 2 4), +{1, 4} ↔ {2, 3}
4 (1 2 3 4), (1 3 2 4), (4 3 2 1), (4 2 3 1)

5 (1 2 3 4), (4 2 3 1), +{1, 4} ↔ {2, 3}
6 (1 2 3 4), +{1, 4} ↔ {2, 3}
7 (1 2 3 4), (1 3 2 4)

8 (1 2 3 4)

Table 1. List of 27 cubic diagrams from relabeling of the eight graphs in figure 14. The right

column gives all independent labels by exchanging the original external legs (1234) in each graph

in figure 14. Here {1, 4} ↔ {2, 3} means swapping 1, 4 with 2, 3 in all the previous labels. For

example, this yields (2 1 4 3) and (2 4 1 3) for graph 5.

of the numerators with swapped legs. For example, the numerator corresponding to the

case where legs 1 and 4 are swapped is simply,

N
(1)
GR(1, 3, 2, 4) =

(
(u−m2

1 −m2
2)2 − 4

Ds − 2
m2

1m
2
2

)3

. (6.31)

The numerators of the other diagrams are more involved. The free parameters also provide

a nontrivial check since they should cancel out in the final integrated amplitude. We have

performed extensive checks to confirm this property.

Once a valid set of numerators with the properties described above has been deter-

mined, we can treat the diagrams as if they were ordinary off-shell Feynman diagrams. In

particular, the diagram numerators are functions of the external labels and can be taken

as respecting diagram symmetry. While on-shell conditions have been used in their con-

struction, we can view their use as merely affecting terms with no contributions to the

classical potential.

We write the part of the two-loop four-scalar amplitude necessary for the extraction

of the complete 3PM conservative potential as a sum over 27 diagrams,

M2-loop = (4E1E2) iM3 = i(8πG)3

∫
dD`5
(2π)D

dD`6
(2π)D

27∑

i=1

I(i) , (6.32)

where M3 is the 3PM amplitude including a nonrelativistic normalization 1/4E1E2. We

will use this normalization for the amplitudes Mn presented in section 9 and section 10.

The sum runs over 27 distinct diagrams arising from the independent relabelings of the

external legs of the eight diagrams in figure 14, which are taken to correspond to i = 1, . . . , 8

and are found in the supplementary material. The relabelings are listed in table 1. The

integrands are expressed in terms of numerators and denominators, in the usual way:

Ii =
N (i)

D(i)
. (6.33)
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The denominators are simply the Feynman propagators of the corresponding diagram. For

example, for diagram (1) of figure 14,

D(1) = `25`
2
6(`5 + `6 − p2 − p3)2(`5 − p2)2(`5 + `6 − p2)2(`5 + p1)2(`5 + `6 + p1)2 , (6.34)

where we have suppressed the standard Feynman iε prescription, which should be included

for each propagator. The numerators in this file are valid in D dimensions, but with the

state-counting parameter Ds = 4 for simplicity.

We have also constructed several alternative integrands starting both from cuts con-

structed in four and D dimensions, as described above. As already noted, expressions

obtained with these two starting points differ by terms proportional to the Gram determi-

nant G5 in eq. (6.17), which vanishes in four dimensions. In addition, when we use helicity

methods, the state-counting parameter is automatically taken to be Ds = 4. We have

explicitly checked that integrands extracted from four dimensions and D dimensions and

using Ds = 4 or Ds = 4− 2ε lead to identical final results for the potential.

The independence of the potential on the details of the dimensional regularization

prescription is not accidental. In section 12.2, we explain why any two-loop integral con-

taining a Gram determinant that vanishes in four dimensions cannot contribute to the

classical potential and why the results are independent of the choice of prescription for the

Ds parameter. The net effect is that, analogous to the way as it works at one loop, the

difference between constructing the integrand in four and in D dimensions does not affect

the classical potential. This, of course, agrees with naive expectations.

7 Nonrelativistic integration

In the previous sections we constructed fully relativistic expressions for the integrands

relevant to classical potential scattering. It would then seem natural to integrate these

objects using fully relativistic methods. While such a strategy is straightforward and

efficient at one loop, see e.g. section 12.1, it becomes considerably more difficult at two-

loop order. Indeed from the point of view of scalability to high loop orders, the situation

is even more dire. To match the current state of the art in the PN expansion requires

computational power at 5PN order, corresponding to full integration at five loops [44, 45].

This is a tall order, already extending far beyond the capabilities of any known fully

relativistic loop integration method.

Clearly, a simpler method of integration must exist. After all, conventional methods

using equations of motion or NRGR have already achieved results up to 5PN, and these

calculations certainly did not necessitate the evaluation of difficult relativistic integrals.

The simple fact that these existing formalisms are by construction nonrelativistic and

classical suggests an alternative path to integration.

In this section, we describe such a method, which we dub “nonrelativistic integration”.

This approach is by design as similar as possible to the method of integration which appears

in NRGR [23]. Roughly speaking, it involves performing all energy integrations first, and

then integrating spatial (D − 1)-momenta.

We begin with a brief summary of the complete procedure. We then go through the

details carefully by working through several explicit examples at one and two loops.
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7.1 General procedure

Our integration procedure is constructed to extend mechanically to arbitrary loop orders.

In this section we outline the core strategy of this method, which has been tested explicitly

at one and two loops. We believe that this basic approach should apply beyond this order,

though as past experience suggests, subtleties may arise due to new topologies and certain

physical phenomena which only appear at higher orders, e.g. the tail effect [130–135]. See

section 12.3 for further comments.

Consider a general multi-loop integral characterizing the scattering of matter fields

through graviton exchange:

I =

[
nL∏

i=1

∫
dD−1`i

(2π)D−1

][
nL∏

i=1

∫
dωi
2π

]
I =

[
nL∏

i=1

∫
dD−1`i

(2π)D−1

]
Ĩ, (7.1)

where i runs over nL loop momenta `i = (ωi, `i) and we have split the integration over the

energy and (D− 1)-momentum components. For convenience, we will typically choose the

`i to be a subset of the momenta flowing through internal graviton lines. We follow the

standard dimensional regularization prescription for the spatial directions only.

We pause to define notation which will be employed for the rest of the paper. From here

on, the script quantity I will denote a full relativistic integrand, e.g. as computed earlier in

section 6. The integrand I is a function of nL loop energies and nL loop (D−1)-momenta,

and will appear below with subscripts labeling the particular diagram. Meanwhile, the

tilded script quantity Ĩ =
∏nL
i=1

∫
dωi
2π I will denote a spatial integrand, which is defined to

be the energy integral of a corresponding full relativistic integrand. The spatial integrand

is a function of nL loop (D− 1)-momenta. Throughout, the spatial integration will appear

with subscripts labeling the corresponding diagram.

The process of integration has three key steps which we now discuss broadly. The

detailed mechanics will be illustrated with one-loop examples in section 7.2 and two-loop

examples in section 7.3.

Step 1: determine the effective numerator. The integrand takes the general form

I =

[
nM∏

i=1

1

ε2
i − k2

i −m2
i

][
nG∏

j=1

1

ω2
j − `2

j

]
N , (7.2)

where i runs over nM internal scalar field lines whose energy, (D − 1)-momentum, and

mass are εi, ki, and mi, and j runs over nG internal graviton lines whose energy and

(D − 1)-momentum are ωj and `j . Of course, these energies and (D − 1)-momenta are

not independent. All kinematic parameters depend implicitly on the external masses m1

and m2, external (D − 1)-momenta p and p′, as well as nL independent loop energies and

(D − 1)-momenta.

We can factorize the scalar propagators into matter and antimatter poles,

1

ε2
i − k2

i −m2
i

=
1

εi −
√
k2
i +m2

i

1

εi +
√
k2
i +m2

i

. (7.3)

– 43 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
6

The matter poles occur at positive energy values and correspond to singularities which

can genuinely appear in the low-energy scattering of interest. On the other hand, the

antimatter poles occur at negative energy values. These states are never on shell in the

nonrelativistic regime and correspond to high-energy modes. Note that even though the

antimatter poles never become singular for low energy kinematics, they still have an effect

since these factors should still be expanded in the nonrelativistic limit, yielding classical

velocity corrections.

Next, we combine all contributions from the original numerator, the force-carrier

(graviton) propagators, and the antimatter poles into an “effective numerator”,

Ñ =

[
nM∏

i=1

1

εi +
√

k2
i +m2

i

][
nG∏

j=1

1

ω2
j − `2

j

]
N , (7.4)

so the integrand takes the form

I =

[
nM∏

i=1

1

εi −
√

k2
i +m2

i

]
Ñ . (7.5)

The above representation manifests the structure of all matter poles, while treating every-

thing else in the integrand as a regular, nonsingular function of the matter poles. Of course

Ñ has poles in εi, but none of these singularities contribute to the conservative potential.

Consequently we are justified in series expanding Ñ in loop energies and (D−1)-momenta

where needed.

Step 2: energy loop integration. To evaluate the energy integrals we have devised

two independent and equivalent methods. The first approach we dub “energy-integral

reduction”. This procedure is analogous to the reduction of relativistic tensor integrals

down to a basis of scalar integrals, except in this context it is applied to energy integration.

It exploits the fact that all energy integrals with no matter poles are scaleless integrals in

the classical limit, and can thus be effectively set to zero:
∫
dω ωn → 0 , n ≥ 0 , (7.6)

for some loop energy ω. Said another way, these integrals do not have support in the

potential region.

For example, consider a diagram that yields a scaleless loop integral which has no

matter particle propagators when we pinch some combination of matter propagators. Then

any term in the numerator which is proportional to this combination is effectively zero,

and we can freely apply constraints of the form

∏

i

[
εi −

√
k2
i +m2

i

]
→ 0 (7.7)

on the effective numerator Ñ . Recall that each εi denotes the energy flowing through a

matter line, and is a linear function of the energies ωi flowing through internal gravitons.
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Here i runs over a particular subset of matter propagators which varies depending on the

precise structure of the diagram. In particular, this subset is defined such that if all matter

propagators labeled by i are canceled, e.g. due to compensating factors in the numerator,

then the resulting integral either vanishes or does not contribute classically. A typical

higher-loop diagram exhibits several constraints of the type (7.7) We will elaborate on the

mechanics of this at length when we consider specific examples.

Importantly, the above replacement does not imply that we are permitted to set to

zero a single one of the linear factors in eq. (7.7). Instead, the statement is that when the

full product in eq. (7.7) appears in a numerator, it can be zeroed out.

By repeated application of replacements like eq. (7.7) and by canceling matter poles

in the denominator, we can systematically reduce the degree of the numerator in all loop

energy variables until we are left with a sum over integrals with no loop energy dependence

in the numerator. We identify these integrals as master energy integrals and they take

the form of eq. (7.5) with Ñ set to unity, i.e. they are comprised entirely of simple matter

energy poles.

We then directly evaluate the master energy integrals, crucially keeping track of the

contour prescriptions dictated by iε factors. If the integrals are convergent we can simply

do them explicitly. However, many of the integrals naively diverge due to contributions

from poles at infinity. As we will see, by averaging over routings of the loop energies,

we obtain finite answers which automatically incorporate various computable symmetry

factors. A similar approach is discussed in refs. [107, 108] and developed in refs. [58, 59].

However, in the previous relativistic approaches, symmetrization occurs via summing over

reroutings of the full relativistic momenta. In our case, we symmetrize purely over the

energy components.

All of our examples in sections 7.2 and 7.3 will employ this method of energy-integral

reduction. However, there is a second simpler approach which we dub the “residue method”.

In this case, we evaluate the energy integral as a weighted sum over residues on the matter

poles. The residues are reweighted by various symmetry factors that can be derived system-

atically and are actually equal to the corresponding master energy integrals encountered

in the method of energy-integral reduction. We present the details of the residue method

in section 7.5.

Step 3: momentum loop integration. Our last step is to perform the (D − 1)-

momentum integration. The spatial integrand Ĩ is a complicated nonanalytic function

of the loop (D − 1)-momenta. Its functional form involves square roots coming from the

evaluation of the energy integrals. Direct evaluation of these integrals is nontrivial. Our

approach is instead to expand Ĩ in the nonrelativistic limit, |p| � m1,m2 (cf. see eq. (2.6)),

up to some order. As we will see, each term in the series is a simple rational function of

the loop (D−1)-momenta, and in fact, the form of these objects is identical to those which

appear in NRGR.

Upon expansion, every integral — in some cases after straightforward integration by

parts (IBP) reduction [136, 137] — can be written in the form

Ĩ =
∑

α

∑

β

∑

γ

f (αβγ)(`)

[`2]α [(` + w)2]β [2z` + `2]γ
, (7.8)
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where ` is one of the loop (D− 1)-momenta, w and z denote vectors built from other loop

(D − 1)-momenta or the external (D − 1)-momenta, and z` is a shorthand for z · `. Here

α and β can take positive fractional values but γ is one or zero. The function f (αβγ) is a

polynomial in `. The `2 and (`+w)2 poles are generated by internal graviton propagators

while the 2z` + `2 poles arise from internal matter propagators.

Remarkably, sequential integration of each loop (D − 1)-momentum is sufficient to

evaluate all two-loop integrals. To begin, we check whether there exists a loop (D − 1)-

momentum ` such that Ĩ takes the form in eq. (7.8) with γ = 0. This occurs whenever

a diagram contains a triangle subdiagram. In this case we trivially evaluate the integral

using the following analytic formula for an arbitrary tensor numerator [96],

∫
dD−1`

(2π)D−1

`µ1`µ2 · · · `µn
[`2]α[(` + w)2]β

=
(−1)n(4π)

1−D
2

[w2]α+β−D−1
2

bn/2c∑

m=0

A(α, β;n,m)

[
w2

2

]m {
[δ]m[w]n−2m

}µ1µ2···µn , (7.9)

where the quantity in curly brackets denotes a fully symmetric tensor built from m powers

of the spatial metric, i.e. the (D − 1)-dimensional Kronecker delta function, and n − 2m

powers of w. This tensor is normalized so that each distinct term has unit coefficient. Here

we have also defined

A(α, β;n,m) =
Γ(α+ β −m− D−1

2 )Γ(n−m− α+ D−1
2 )Γ(m− β + D−1

2 )

Γ(α)Γ(β)Γ(n− α− β +D − 1)
. (7.10)

Note that starting at two loops, it is necessary to use dimensional regularization in order

to properly deal with ultraviolet divergences encountered in spatial integrals.12 We will

discuss this aspect in detail in section 12.2.

We identify and evaluate all triangle subdiagrams sequentially until the only remaining

loop integrals take the form of eq. (7.8) with γ = 1. These contributions correspond

to box subdiagrams, are infrared divergent, and scale with additional factors of |q|−1

relative to classical contributions. As mentioned in section 2, we refer to such terms as

“superclassical”. In principle, one can evaluate these integrals. We will see, however, that

this is unnecessary because they are infrared artifacts that exactly cancel between the full

theory and EFT contributions to the matching.

Before working through explicit examples, we first offer a note of caution on interpret-

ing and comparing results from nonrelativistic integration discussed here and relativistic

integration discussed in section 8. Nonrelativistic integration runs over the momentum

configurations of potential gravitons, so no internal gravitons are ever on shell. Typi-

cally, relativistic methods run over the soft region, which also includes on-shell graviton

contributions. In the classical limit, these methods will produce the same final answer,

however, only after summing all contributions. Separate graph contributions which are

not individually gauge invariant will in general produce different answers depending on

12As usual in the method of regions, the contribution from a particular region (here the potential region)

may be ultraviolet or infrared divergent even though the full relativistic integrand is finite.
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Figure 15. The triangle diagram. The thick and thin lines represent massive and massless particles,

respectively.

which integration method is applied. For this reason, when we make comparisons later

between nonrelativistic and relativistic integration, we will always compute certain sums

of graph topologies.

7.2 One-loop examples

In this section we consider the explicit example of classical scattering at one loop in order

to illustrate the methods we use at two loops. As per our previous discussion in section 2.3,

the classical contributions come from triangle and box type diagrams, which we consider

in turn below. While the calculation presented here is less familiar than other approaches

to one-loop integration, the methodology has the crucial advantage that it scales well to

higher-loop orders.

7.2.1 Triangle diagram

As a warm up, we study a general triangle diagram, defined here to be a one-loop integral

comprised of an arbitrary numerator together with one φ1 propagator and two graviton

propagators arranged as in figure 15. In the notation of eq. (7.1), the corresponding

integrand takes the form

IT =
1

(E1 + ω)2 − (p + `)2 −m2
1

1

ω2 − `2

1

ω2 − (` + q)2
NT . (7.11)

First we determine the effective numerator. The scalar propagators can be factored

into matter and antimatter components,

1

(E1 + ω)2 − (p + `)2 −m2
1

=
1

(ω − ωP1)(ω − ωA1)
, ωP1 , ωA1 = −E1 ±

√
E2

1 + 2p` + `2 .

(7.12)

Thus, the spatial integrand is given in terms of the effective numerator by

ĨT =

∫
dω

2π

ÑT(ω)

ω − ωP1

, ÑT(ω) =
1

ω − ωA1

1

ω2 − `2

1

ω2 − (` + q)2
NT(ω) , (7.13)

where for emphasis we have made explicit all dependence on ω.

Second we use energy-integral reduction to evaluate the energy integral. From

eq. (7.13), we see that any numerator term which cancels the ω − ωP1 pole leads to a

scaleless integral. Thus, the general constraint in eq. (7.7) for this example is simply

ω − ωP1 → 0 . (7.14)
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Applying this replacement is of course equivalent to sending

ÑT(ω)→ ÑT(ωP1) . (7.15)

The spatial integrand then takes the form

ĨT = ÑT(ωP1)

∫
dω

2π

1

ω − ωP1

. (7.16)

The energy integral has no more energy dependence in the numerator, and we identify this

as the triangle master energy integral.

The triangle master energy integral can be computed in various ways which will be

instructive when we eventually encounter more complicated objects. The first option is to

compute the integral by direct evaluation on a symmetric interval:

∫
dω

ω − ωP1 + iε
≡ lim

R→∞

∫ R

−R

dω

ω − ωP1 + iε
=

1

2
× (−2πi) , (7.17)

where on the left hand side we have reintroduced the appropriate iε to regularize the integral

coming from the original propagators, following the standard Feynman iε prescription in

eq. (7.12). A heuristic for the sign in front of the iε is that it designates whether positive

ω increases or decreases the energy of the matter particle corresponding to this pole. We

have expressed our answer in terms of a 1/2 symmetry factor multiplying the quantity one

would naively extract from computing the residue on the matter pole including signs.

One approach is to compute the master energy integral directly via residues. At one

loop there is a single integration variable and the analysis is straightforward [58]. This

is not the case for multivariable integration. Pushing the contour of integration into the

upper half complex plane, we pick up the residue at ω = ωP1−iε as well as the contribution

from the upper half arc at infinity. Pushing the contour down, there are no residues to pick

up but we include the contribution from the lower-half arc at infinity. Averaging over the

two equivalent prescriptions, the half-arc contributions cancel and we are again left with

the 1/2 symmetry factor relative to the residue on the matter pole.

The following approach will be our standard method of choice since it scales nicely to

higher loop. First we assign to each graviton a unique energy component ωi with i = 1

to nG. Then we introduce delta functions to rewrite the expression as an integral over a

subset of the nG loop energy variables. Finally, we average over permutations of the loop

energies that preserve isometries of the delta functions. If the resulting integrand is such

that it vanishes in the iε→ 0 limit, then we have a convergent integral that can be directly

performed. Applying this to the triangle gives

∫
dω

ω − ωP1 + iε
≡
∫
dω1 dω2 δ(ω1 + ω2)

1

2!

[
1

ω1 − ωP1 + iε
+

1

ω2 − ωP1 + iε

]

=
1

2

∫ (
dω

ω − ωP1 + iε
+

dω

−ω − ωP1 + iε

)
=

1

2
× (−2πi) ,

(7.18)

where in the final equality we have evaluated the integral over the real domain, which is

well-defined and yields the 1/2 symmetry factor.
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The purpose of the symmetrization procedure is to make the integrand manifestly

convergent. Without symmetrization, the original integrand scales as 1/ω at large ω and

thus receives boundary contributions at infinity. By symmetrizing over two equivalent

energy routings, we obtain a new integrand that falls of manifestly as 1/ω2 and has no

contribution at infinity. The same feature will emerge in all of our other examples which

include triangle subdiagrams. In the soft eikonal expansion, it is known that this type of

averaging over graviton permutations effectively eliminates the singular “principal value”

contribution that arises when iε is set to zero [107, 108].

Finally, we evaluate the spatial integral. After carrying out the energy integral

we obtain

ĨT(p, q, `) = − i
2

1

ωP1 − ωA1

1

ω2
P1
− `2

1

ω2
P1
− (` + q)2

NT(ωP1) . (7.19)

Note that ĨT is a quite complicated function of p, q, and ` since ωP1 and ωA1 contain

square root functions. As a result, direct integration would be difficult. We therefore first

expand the spatial integrand in the nonrelativistic limit, |p| � m1,m2. In this limit the

various denominators become

1

ωP1 − ωA1

=
1

2m1
+ · · · ,

1

ω2
P1
− `2

= − 1

`2
+ · · · ,

1

ω2
P1
− (` + q)2

= − 1

(` + q)2
+ · · · .

(7.20)

Thus we see that, in the nonrelativistic expansion of ĨT, the only singularities arise from

powers of `2 and (` + q)2 in the denominator. Consequently ĨT takes exactly the form of

eq. (7.8) with γ = 0 and can thus be evaluated straightforwardly using eq. (7.9).

As a concrete illustration, consider the scalar triangle integral for which NT = 1. From

relativistic considerations it is obvious that the scalar triangle integral is only a function of

q2 and m2
1 since these are the only invariants that can be formed. Hence the scalar triangle

integral must be a series expansion in |q|/m1, and the classical contribution is entirely

given by the first term

ĨT(p, q, `) = − i

4m1`2(` + q)2
. (7.21)

By direct integration with eq. (7.9), we obtain the known result for the classical part of

the one-loop triangle diagram

IT = − i

32m1|q|
. (7.22)

Note that this result is not the full relativistic scalar triangle integral, but rather the leading

classical contribution arising from exchanges of potential gravitons. This is derived as well

using Mellin-Barnes integration in section 8.2.
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Figure 16. The one-loop box diagram. The thick and thin lines represent massive and massless

particles, respectively.

7.2.2 Box diagram

The next simplest example is the box diagram, defined as an arbitrary numerator together

with one φ1 propagator, one φ2 propagator, and two graviton propagators as shown in

figure 16. Since the numerator is arbitrary, this example has as a subcase the triangle

diagram. The box integrand is

IB =
1

(E1 + ω)2 − (p + `)2 −m2
1

1

(E2 − ω)2 − (p + `)2 −m2
2

1

ω2 − `2

1

ω2 − (` + q)2
NB .

(7.23)

As before, we split the scalar propagators into matter and antimatter components, obtain-

ing eq. (7.12) together with the analogous formula for the second massive propagator

1

(E2 − ω)2 − (p + `)2 −m2
2

=
1

(ω − ωP2)(ω − ωA2)
, ωP2 , ωA2 =E2 ∓

√
E2

2 + 2p` + `2 .

(7.24)

The spatial integrand is then given in terms of the effective numerator by

ĨB =

∫
dω

2π

ÑB(ω)

(ω − ωP1)(ω − ωP2)
, (7.25)

where

ÑB(ω) =
1

ω − ωA1

1

ω − ωA2

1

ω2 − `2

1

ω2 − (` + q)2
NB(ω) . (7.26)

Next, we apply energy-integral reduction to recast the integrand in terms of a set of

master energy integrals. Since simultaneously eliminating both poles in ĨB produces a

scaleless energy integral, the general constraint in eq. (7.7) for this example is given by

(ω − ωP1)(ω − ωP2)→ 0 . (7.27)

The constraint in eq. (7.27) defines the zero locus for a certain quadratic polynomial in

ω. Note how this contrasts with the simpler linear constraint we saw earlier in eq. (7.14).

Previously, to evaluate the effective numerator on the linear constraint it sufficed to triv-

ially plug in for the single solution for ω. However, imposing the quadratic constraint in

eq. (7.27) is more involved. In particular, eq. (7.27) does not indicate that we can set

either ω = ωP1 or ω = ωP2 in the numerator. Instead, the claim is that any time the full
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quadratic function in eq. (7.27) appears in the effective numerator, we can drop it. This is

required because only if both matter poles, ω − ωP1 and ω − ωP2 , are canceled do we have

a scaleless integral that can be dropped, cf. eq. (7.6).

To apply energy reduction on the effective numerator we simply compute the remainder

of ÑB under modular division by the quadratic polynomial in eq. (7.27). If ÑB were a

polynomial, e.g. obtained by expanding eq. (7.27) as a series expansion in ω up to some

high order, then it is obvious how to perform this modular division, i.e., simply by repeated

application of eq. (7.27). However, if we want to retain eq. (7.25) to all orders, then the

effective numerator is not simply a polynomial in ω but has complicated denominator

poles. Nevertheless, we can still perform modular division by the following procedure.

First we shift the integration variable ω such that the constraint in eq. (7.27) is of the form

ω2− ζ = 0, where ζ is a constant. Then we express ÑB in terms of even and odd functions

in ω, whose denominators are even in ω. Then all appearances of ω2 can simply be set

to ζ. In particular, the even functions become constants, while the odd functions become

linear in ω. In this way, an arbitrary numerator is reduced to the form

ÑB(ω)→ f0 + f1ω . (7.28)

Next, we consider further expanding this linear function for ÑB(ω) about the point

ωP1 , so there is a term proportional to ω − ωP1 and a remainder term. The former will

cancel one of the matter poles, yielding an expression of the form of the triangle diagram

tackled in the previous section. Meanwhile, the latter is a new ingredient since it does not

cancel any of the matter poles. This contribution yields the box master energy integral.

As before, we evaluate it by averaging over the two permutations of the graviton labels,
∫

dω

(ω − ωP1 + iε)(ω − ωP2 − iε)
=

1

2

∫ (
dω1dω2δ(ω1 + ω2)

(ω1 − ωP1 + iε)(ω1 − ωP2 − iε)
+ {ω1 ↔ −ω2}

)

=
1

ωP1 − ωP2

× (−2πi) , (7.29)

where again we use the standard Feynman iε prescription. This agrees with the heuristic

mentioned earlier, which assigns opposite signs to each iε factor since for the box, increasing

ω will increase the energy of one matter line and decrease that of the other. Here we have

symmetrized over routings of the loop energies to parallel our earlier analysis, but since

the original integrand falls off as 1/ω2 it is also straightforward to evaluate it via contour

integration without symmetrization.

In the above discussion we made the choice of expanding ÑB(ω) about ωP1 , and we

obtained contributions from the master triangle and master box energy integrals. Both

contributions must be included to obtain the correct answer. Alternatively, we could have

chosen to expand about the point ωP2 instead, in which case the various integrals would

slightly change but yield the same final answer.

The important feature of eq. (7.29) is that it introduces a new kind of singularity

coming from the (ωP2 − ωP1) denominator factor. For example, expanding in the classical

limit using the scaling (`2 + 2p`) ∼ O(q), this pole becomes

1

ωP1 − ωP2

=
2E1E2

E1 + E2

1

2p` + `2
+ · · · , (7.30)
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Figure 17. The crossed-box diagram.

which is singular when the internal φ1 and φ2 particles are on shell. The ellipsis here

denotes terms higher order in (`2 + 2p`), which may contribute to the final classical result.

As an example consider the scalar box integral for which NB = 1. Applying the

procedure described above, we obtain the spatial integrand

ĨB =
i

2E`2(` + q)2(`2 + 2p`)
+
i(E2

1 − 3E2
2)
(
`2(` + q)2 − (`2 + (` + q)2)(`2 + 2p`)

)

16E2
1E

2
2E`4(` + q)4

− i(E4
1 − 3E4

2)
[
(`4 + `2(` + q)2 + (` + q)4)(`2 + 2p`)− 3`2(` + q)2(`2 + (` + q)2)

]
(`2 + 2p`)2

64E4
1E

4
2E`6(` + q)6

+ · · · , (7.31)

where the asymmetry in the labels 1 and 2 is due to the choice of expanding about ωP1 .

The final answer below is symmetric in the labels 1 and 2, as it should be. To obtain

eq. (7.31) we performed two expansions. First, we expanded in the classical limit of large

angular momentum J , or equivalently small momentum q, using the scalings ` ∼ (`+q) ∼
(`2 + 2p`) ∼ O(q). Second, we expanded in the nonrelativistic limit, but keeping existing

energy factors intact. By direct integration of eq. (7.31) using eq. (7.9), we obtain

IB =

∫
dD−1`

(2π)D−1

i

2E`2(` + q)2(`2 + 2p`)
, (7.32)

where the classical terms vanish order by order in the nonrelativistic expansion. The

terms in eq. (7.31) that are antisymmetric in the labels 1 and 2 have vanished. The above

remaining integral has the form of eq. (7.8) with γ = 1. It is infrared divergent and

superclassical, having an additional factor of |q|−1 relative to the classical scaling. As

noted previously, we choose not to evaluate these quantities explicitly since they are IR

artifacts that are guaranteed to subtract exactly with matching contributions from the

EFT amplitude.

7.2.3 Crossed-box diagram

Next, consider the crossed box diagram, defined as an arbitrary numerator together with

one φ1 propagator, one φ2 propagator, and two graviton propagators as shown in figure 17.
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The integrand of the crossed-box diagram is

IB =
1

(E1 + ω)2 − (p + `)2 −m2
1

1

(E2 + ω)2 − (p− `− q)2 −m2
2

× 1

ω2 − `2

1

ω2 − (` + q)2
NB . (7.33)

The analysis here is almost identical to the box integral. We again apply energy-integral

reduction, exploiting the fact that when the energy denominators for both the φ1 and φ2

propagators are canceled, then the resulting scaleless energy integral is quantum and can be

discarded. As for the box integral, we will obtain contributions proportional to the master

triangle energy integral. The only difference from the box is that upon energy-integral

reduction, we obtain another new crossed box master energy integral,

∫
dω

(ω − ωP1 + iε)(ω − ωP2 + iε)
=

1

2

∫ (
dω

(ω − ωP1 + iε)(ω − ωP2 + iε)
+ {ω ↔ −ω}

)

= 0 . (7.34)

Note the same sign in front of each iε factor. This occurs because for the crossed box,

increasing ω will increase the energy flow through both matter propagators. Crucially, this

slight difference means that the crossed-box master energy integral is zero.

This vanishing can be understood by deforming the integration contour. The integrand

in eq. (7.34) obviously vanishes at infinity, so by closing the contour of integration into

the upper half plane, we obtain zero. This type of cancellation is the calling card for

contributions which vanish due to causality in nonrelativistic field theory. There is a

simple diagrammatic diagnostic to determine which energy integrals are zero. Since every

graviton of interest is a potential mode, it connects two points of equal time. We can

then divide all topologies according to whether they are connected or disconnected after

cutting all matter lines. For connected diagrams, like the triangle, all vertices connected

to a graviton are simultaneous interactions. Meanwhile, disconnected diagrams like the

box and crossed box can be thought of describing a series of two simultaneous events,

corresponding to each graviton exchange. Any two events must occur in some time order.

If we then draw the worldlines of the scalar fields for the box and crossed box, we then see

that the latter requires backwards in time propagating matter particles, i.e. antimatter, to

be consistent. Consequently these diagrams vanish by causality.

We now briefly discuss the scalar example, setting NB = 1. Applying energy-integral

reduction gives a contribution proportional to the crossed-box master integral and a contri-

bution proportional to the triangle master integral. The former vanishes since the crossed-

box master integral is zero, while the latter vanishes by direct integration of the spatial

integrand, order by order in the velocity expansion. Hence, the scalar crossed-box diagram

has no classical contribution.

The vanishing of classical contributions from the sum of the box and crossed-box dia-

grams can be shown to all orders using other integration methods, such as direct integration

of the soft region or the use of differential equations. Our focus here is to illustrate the

application of our nonrelativistic integration procedure.
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Figure 18. The double-triangle diagram.

7.3 Two-loop examples

We are now prepared to consider some examples at two loops. As advertised, our method-

ology will be identical to the one-loop cases, only here applied sequentially to each loop.

7.3.1 Double-triangle diagram

To begin, consider the general double-triangle diagram, which is a two-loop integral with

an arbitrary numerator together with two φ1 propagators and three graviton propagators

arranged as in figure 18. The integrand corresponding to this diagram is

ITT =
1

(E1 + ω1)2 − (p + `1)2 −m2
1

1

(E1 + ω1 + ω2)2 − (p + `1 + `2)2 −m2
1

× 1

ω2
1 − `2

1

1

ω2
2 − `2

2

1

(ω1 + ω2)2 − (`1 + `2 + q)2
NTT .

(7.35)

Both φ1 propagators can be factored into matter and antimatter components,

1

(E1 + ω)2 − (p + `)2 −m2
1

=
1

(ω1 − ωP1)(ω1 − ωA1)
,

1

(E1 + ω1 + ω2)2 − (p + `1 + `2)2 −m2
1

=
1

(ω1 + ω2 − ωP ′1)(ω1 + ω2 − ωA′1)
.

(7.36)

The spatial integrand is then given in terms of the effective numerator by

ĨTT =

∫
dω1

2π

dω2

2π

ÑTT(ω1, ω2)

(ω1 − ωP1)(ω1 + ω2 − ωP ′1)
, (7.37)

where

ÑTT(ω1, ω2) =
1

ω1 − ωA1

1

ω1 + ω2 − ωA′1
1

ω2
1 − `2

1

× 1

ω2
2 − `2

2

1

(ω1 + ω2)2 − (`1 + `2 + q)2
NTT(ω1, ω2) . (7.38)

Next, we use the fact that canceling either energy denominator will produce a scaleless

integral in either ω1 or ω2. Consequently, we can freely send

ω1 − ωP1 → 0 , ω1 + ω2 − ωP ′1 → 0 , (7.39)
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so we can effectively evaluate the numerator

ÑTT(ω1, ω2)→ ÑTT(ωP1 , ωP ′1 − ωP1) . (7.40)

Upon this replacement, the spatial integrand becomes

ĨTT = ÑTT(ωP1 , ωP ′1 − ωP1)

∫
dω1

2π

dω2

2π

1

(ω1 − ωP1)(ω1 + ω2 − ωP ′1)
. (7.41)

Here the last factor is the double-triangle master energy integral. We evaluate it by aver-

aging over permutations of labelings of the three exchanged gravitons,

∫
dω1 dω2

(ω1 − ωP1 + iε)(ω1 + ω2 − ωP ′1 + iε)

≡ 1

3!

(∫
dω1 dω2

(ω1 − ωP1 + iε)(ω1 + ω2 − ωP ′1 + iε)
+ {perm.}

)

=
1

6
× (−2πi)2 ,

(7.42)

where we include all permutations of ω1, ω2, and ω3, and we set ω3 = −ω1 − ω2 by energy

conservation in the end. Again we use the standard Feynman iε prescription, which agrees

with the same heuristic as before: we include the same sign in front of each iε factor since

increasing ω1 increases the energy flowing through each matter line. By explicit calculation

we have obtained a 1/6 symmetry factor relative to the naive expression one would obtain

by sequential application of the residue theorem on each pole.

As before, the original integrand scales as 1/ω2 at infinity, but the symmetrization

improves the asymptotic behavior to 1/ω2
2 so there is no boundary term to consider and

integration is mechanical.

Having evaluated the energy integral, we obtain the spatial integrand

ĨTT(p, q, `1, `2) =
1

ωP1 − ωA1

1

ωP ′1 − ωA′1
1

ω2
P1
− `2

1

1

(ωP ′1 − ωP1)2 − `2
2

1

ω2
P ′1
− (`1 + `2 + q)2

×NTT(ωP1 , ωP ′1 − ωP1)×
(
−1

6

)
.

(7.43)

As before, consider for illustration the simple case of the scalar double-triangle integral, for

which NTT = 1. Expanding the spatial integrand in the nonrelativistic limit, p � m1,2,

implemented here as m1 →∞, we obtain

ĨTT(p, q, `1, `2) =
1

24m2
1`1

2`2
2(`1 + `2 + q)2 . (7.44)

As in the case of the one-loop triangle, the scalar double-triangle integral is only a function

of q2 and m2
1, since these are the only rotational invariants that can be constructed from

the momenta flowing into the integral. For this reason, we know that the integral is a series

expansion in q2/m2
1, and we have kept only the classical term in eq. (7.44).
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Figure 19. The double-triangle prime diagram.

We immediately see that the dependence on both `1 and `2 is of the form of eq. (7.8),

which follows trivially since the double triangle is made entirely of triangle subdiagrams.

Applying eq. (7.9) sequentially to each integral, we obtain our final result for the classical

contribution from the scalar double-triangle integral to all orders in velocity,

ITT = − 1

768π2m2
1

ln q2 . (7.45)

This is also derived using Mellin-Barnes integration in section 8.2.

In obtaining eq. (7.45) we used the general formula in eq. (7.9) applied to this example,

∫
dD−1`

(2π)D−1

1

|`|(` + q)2
=

1

4π2ε
− 1

4π2
ln

q2

µ2
, (7.46)

where we employ dimensional regularization in D = 4− 2ε and the MS scheme. The ln q2

term is the classical contribution at two-loop order since its Fourier transform to position

space is
[
G3 ln q2

]
FT

= − 1
2π

(
G
|r|

)3
. Crucially all terms that are constant in q, such as

the 1/ε and lnµ2 terms, are contact terms whose Fourier transforms to position space

yield δ(|r|). Hence they do not contribute to the long-distance classical potential. These

ultraviolet-sensitive contributions are quantum mechanical, and can be absorbed into an

appropriate counterterm.

7.3.2 Double-triangle prime diagram

Consider next the double-triangle-prime diagram, which is a two-loop integral with an ar-

bitrary numerator together with one φ1 propagator, one φ2 propagator, and three graviton

propagators arranged as in figure 19. The integrand corresponding to this diagram is

ITT′ =
1

(E1 + ω1 + ω2)2 − (p + `1 + `2)2 −m2
1

1

(E2 − ω1)2 − (p + `1)2 −m2
2

× 1

ω2
1 − `2

1

1

ω2
2 − `2

2

1

(ω1 + ω2)2 − (`1 + `2 + q)2
NTT′ .

(7.47)
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Both φ1 and φ2 propagators can be factored into matter and antimatter components,

1

(E1 + ω1 + ω2)2 − (p + `1 + `2)2 −m2
1

=
1

(ω1 + ω2 − ωP1)(ω1 + ω2 − ωA1)
,

1

(E2 − ω1)2 − (p + `1)2 −m2
2

=
1

(ω1 − ωP2)(ω1 − ωA2)
.

(7.48)

The spatial integrand in terms of the effective numerator is then

ĨTT′ =

∫
dω1

2π

dω2

2π

ÑTT′(ω1, ω2)

(ω1 − ωP2)(ω1 + ω2 − ωP1)
, (7.49)

where

ÑTT′(ω1, ω2) =
1

ω1 − ωA2

1

ω1 + ω2 − ωA1

1

ω2
1 − `2

1

× 1

ω2
2 − `2

2

1

(ω1 + ω2)2 − (`1 + `2 + q)2
NTT′(ω1, ω2).

(7.50)

Next, we use the fact that canceling either energy denominator will produce a scaleless

integral in either ω1 or ω2. Consequently, we can freely send

ω1 − ωP2 → 0 and ω1 + ω2 − ωP1 → 0 , (7.51)

so we can effectively evaluate the numerator

ÑTT′(ω1, ω2)→ ÑTT′(ωP2 , ωP1 − ωP2) . (7.52)

Upon this replacement, the spatial integrand becomes

ĨTT′ = ÑTT′(ωP2 , ωP1 − ωP2)

∫
dω1

2π

dω2

2π

1

(ω1 − ωP2)(ω1 + ω2 − ωP1)
. (7.53)

Here the last factor is the double-triangle prime master energy integral. As before, we

evaluate it by averaging over permutations of labelings of the three exchanged gravitons,

∫
dω1 dω2

(ω1 − ωP1 + iε)(ω1 + ω2 − ωP ′1 − iε)
(7.54)

≡ 1

3!

(∫
dω1 dω2

(ω1 − ωP1 + iε)(ω1 + ω2 − ωP ′1 − iε)
+ {perm.}

)

= −1

3
× (−2πi)2 . (7.55)

Note the sign difference in the iε compared to the double-triangle master integral. By ex-

plicit calculation we have obtained a −1/3 symmetry factor relative to the naive expression

one would obtain by sequential application of the residue theorem on each pole.

Having evaluated the energy integral, we obtain the spatial integrand,

ĨTT′(p, q, `1, `2) =
1

3
ÑTT′(ωP2 , ωP1 − ωP2) . (7.56)
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As before, we consider the simple case of a scalar integral for which NTT′ = 1. We proceed

by expanding the integrand in the classical limit and dropping the quantum contributions.

Then to put the integrand in the form of eq. (7.8), we may expand in the nonrelativistic

limit implemented as m1,2 → ∞ as before. Alternatively, we choose instead to expand in

E1,2 → ∞ in order to keep the functions of
√
p2 +m2

i intact. Unlike the double-triangle

integral, this integral depends on the invariant p1 · p2 = E1E2 + p2. Expanding the spatial

integrand this way, we obtain

ĨTT′ =
1

12E1E2`2
1(`2 − `1)2(`2 + q)2

[
1 +

(`2
1 + 2p`1)2

4E2
2`

2
1

+
(`2

1 + 2p`1)2

4E2
2(`2 − `1)2

+
(`2

1 + 2p`1)(`2
2 + 2p`2)

2E1E2(`2 − `1)2
+

(`2
2 + 2p`2)2

4E2
1(`2 − `1)2

+
(`2

2 + 2p`2)2

4E2
1(`2 + q)2

+ · · ·
]
,

(7.57)

where we have shifted the integration variable `2 → `2 − `1, and the ellipsis denotes

higher-order terms in the nonrelativistic expansion. Applying eq. (7.9) sequentially to each

integral, we obtain

ITT′ = − ln q2

384π2E1E2

[
1 +

(
E3

1 + E3
2

)

3E2
1E

2
2E

p2 +

(
E5

1 + E5
2

)

5E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

7E6
1E

6
2E

p6 + · · ·
]
,

(7.58)

where E = E1 + E2 and the ellipsis denotes higher-order terms in the nonrelativistic

expansion. We have included in eq. (7.58) results for higher-order terms not explicitly

shown in eq. (7.57), and have checked to sufficiently high orders that the obvious pattern

persists, allowing us to resum (see appendix C) the result as

ITT′ = − ln q2

192π2m1m2

arcsinh
√

σ−1
2√

σ2 − 1
. (7.59)

For later convenience we have defined the quantity

σ =
p1 · p2

m1m2
=
E1E2 + p2

m1m2
, (7.60)

where p1 and p2 are the incoming four-momenta associated with φ1 and φ2. In the nonrel-

ativistic limit, σ approaches unity.

The classical contribution from the scalar double-triangle prime integral is given to

all orders in velocity in eq. (7.59). As we cautioned at the end of section 7.1, results for

individual diagrams may be prescription dependent. Such is the case here, and only the

sum of the double-triangle prime diagram with its nonplanar version can be unambiguously

determined and compared to results obtained from other methods. Of course, our aim in

this section is to illustrate the mechanics of our nonrelativistic integration method for gen-

eral applicability, whether it be for a single diagram or for a sum of diagrams. Nonetheless,

we briefly remark on the nonplanar diagram shown in figure 20. The calculation is similar

to that of the planar case except that the symmetry factor is -1/6 instead of -1/3. The

result is

ITT′ = − ln q2

384π2m1m2

arcsinh
√

σ−1
2√

σ2 − 1
. (7.61)

The sum ITT′ + ITT′ agrees with the result from relativistic integration given in the first

line of eq. (8.14).
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(E1,p
0)

<latexit sha1_base64="jP+86kWki6CCLjoBol/iSXNHesA=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVjEClJ2a0GPBRE8VrAPaJclm822odlkSbJCWQr+FS8eFPHq7/DmvzFt96CtAyHDzPeRyQQJo0o7zrdVWFldW98obpa2tnd29+z9g7YSqcSkhQUTshsgRRjlpKWpZqSbSILigJFOMLqZ+p1HIhUV/EGPE+LFaMBpRDHSRvLto8qt717AfiBYqMaxuWBydu7bZafqzACXiZuTMsjR9O2vfihwGhOuMUNK9Vwn0V6GpKaYkUmpnyqSIDxCA9IzlKOYKC+bxZ/AU6OEMBLSHK7hTP29kaFYTbOZyRjpoVr0puJ/Xi/V0bWXUZ6kmnA8fyhKGdQCTruAIZUEazY2BGFJTVaIh0girE1jJVOCu/jlZdKuVd3Lau2+Xm7U8zqK4BicgApwwRVogDvQBC2AQQaewSt4s56sF+vd+piPFqx85xD8gfX5A//LlC8=</latexit>

(E2,�p0)
<latexit sha1_base64="OVOz6ifk47BYQVuJWvAsiS9SQIM=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQJ+ho50CPAxE8TnAfsJWSpukWljYlSYVRd/Bf8eJBEa/+G978b0y3HnTzQcjjvd+PvDwvZlQqy/o2CkvLK6trxfXSxubW9o65u9eWPBGYtDBnXHQ9JAmjEWkpqhjpxoKg0GOk442uM7/zQISkPLpX45g4IRpENKAYKS255kHlxq2dwfO+x5kvx6G+YHxy6pplq2pNAReJnZMyyNF0za++z3ESkkhhhqTs2VasnBQJRTEjk1I/kSRGeIQGpKdphEIinXSafwKPteLDgAt9IgWn6u+NFIUyy6YnQ6SGct7LxP+8XqKCKyelUZwoEuHZQ0HCoOIwKwP6VBCs2FgThAXVWSEeIoGw0pWVdAn2/JcXSbtWtS+qtbt6uVHP6yiCQ3AEKsAGl6ABbkETtAAGj+AZvII348l4Md6Nj9lowch39sEfGJ8/bruUZw==</latexit>

Figure 20. The nonplanar version of the double-triangle prime diagram.

(E2,�p)
<latexit sha1_base64="u5U3C7ZeaAptq2JCeBDRdV0yCQQ=">AAAB/nicbVBLSwMxGMzWV62vVfHkJViEClp2a0GPBRE8VrAPaJclm822odlkSbJCWQr+FS8eFPHq7/DmvzHb9qCtAyHDzPeRyQQJo0o7zrdVWFldW98obpa2tnd29+z9g7YSqcSkhQUTshsgRRjlpKWpZqSbSILigJFOMLrJ/c4jkYoK/qDHCfFiNOA0ohhpI/n2UeXWr53Di34gWKjGsblgcubbZafqTAGXiTsnZTBH07e/+qHAaUy4xgwp1XOdRHsZkppiRialfqpIgvAIDUjPUI5iorxsGn8CT40SwkhIc7iGU/X3RoZilUczkzHSQ7Xo5eJ/Xi/V0bWXUZ6kmnA8eyhKGdQC5l3AkEqCNRsbgrCkJivEQyQR1qaxkinBXfzyMmnXqu5ltXZfLzfq8zqK4BicgApwwRVogDvQBC2AQQaewSt4s56sF+vd+piNFqz5ziH4A+vzBwezlDY=</latexit>

(E1,p)
<latexit sha1_base64="/eRmOgbJEw2yQ7lKl3BRSXLJ04o=">AAAB/XicbVBLSwMxGMzWV62v9XHzEixCBSm7taDHgggeK9gHtMuSzWbb0GyyJFmhluJf8eJBEa/+D2/+G7PtHrR1IGSY+T4ymSBhVGnH+bYKK6tr6xvFzdLW9s7unr1/0FYilZi0sGBCdgOkCKOctDTVjHQTSVAcMNIJRteZ33kgUlHB7/U4IV6MBpxGFCNtJN8+qtz47jnsB4KFahybCyZnvl12qs4McJm4OSmDHE3f/uqHAqcx4RozpFTPdRLtTZDUFDMyLfVTRRKER2hAeoZyFBPlTWbpp/DUKCGMhDSHazhTf29MUKyyaGYyRnqoFr1M/M/rpTq68iaUJ6kmHM8filIGtYBZFTCkkmDNxoYgLKnJCvEQSYS1KaxkSnAXv7xM2rWqe1Gt3dXLjXpeRxEcgxNQAS64BA1wC5qgBTB4BM/gFbxZT9aL9W59zEcLVr5zCP7A+vwBmPOT/g==</latexit>

(E1,p
0)

<latexit sha1_base64="jP+86kWki6CCLjoBol/iSXNHesA=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVjEClJ2a0GPBRE8VrAPaJclm822odlkSbJCWQr+FS8eFPHq7/DmvzFt96CtAyHDzPeRyQQJo0o7zrdVWFldW98obpa2tnd29+z9g7YSqcSkhQUTshsgRRjlpKWpZqSbSILigJFOMLqZ+p1HIhUV/EGPE+LFaMBpRDHSRvLto8qt717AfiBYqMaxuWBydu7bZafqzACXiZuTMsjR9O2vfihwGhOuMUNK9Vwn0V6GpKaYkUmpnyqSIDxCA9IzlKOYKC+bxZ/AU6OEMBLSHK7hTP29kaFYTbOZyRjpoVr0puJ/Xi/V0bWXUZ6kmnA8fyhKGdQCTruAIZUEazY2BGFJTVaIh0girE1jJVOCu/jlZdKuVd3Lau2+Xm7U8zqK4BicgApwwRVogDvQBC2AQQaewSt4s56sF+vd+piPFqx85xD8gfX5A//LlC8=</latexit>

(E2,�p0)
<latexit sha1_base64="OVOz6ifk47BYQVuJWvAsiS9SQIM=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQJ+ho50CPAxE8TnAfsJWSpukWljYlSYVRd/Bf8eJBEa/+G978b0y3HnTzQcjjvd+PvDwvZlQqy/o2CkvLK6trxfXSxubW9o65u9eWPBGYtDBnXHQ9JAmjEWkpqhjpxoKg0GOk442uM7/zQISkPLpX45g4IRpENKAYKS255kHlxq2dwfO+x5kvx6G+YHxy6pplq2pNAReJnZMyyNF0za++z3ESkkhhhqTs2VasnBQJRTEjk1I/kSRGeIQGpKdphEIinXSafwKPteLDgAt9IgWn6u+NFIUyy6YnQ6SGct7LxP+8XqKCKyelUZwoEuHZQ0HCoOIwKwP6VBCs2FgThAXVWSEeIoGw0pWVdAn2/JcXSbtWtS+qtbt6uVHP6yiCQ3AEKsAGl6ABbkETtAAGj+AZvII348l4Md6Nj9lowch39sEfGJ8/bruUZw==</latexit>

(!1, `1)
<latexit sha1_base64="DXaOAdqkPX8Hrvhj1hCDUB3SlbM=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBEqSElqQZcFNy4r2Ac0IUwmN+3QSSbMTIRSunPjr7hxoYhbf8Gdf+P0sdDWA8MczrmXe+8JM86Udpxva2V1bX1js7BV3N7Z3du3Dw5bSuSSQpMKLmQnJAo4S6GpmebQySSQJOTQDgc3E7/9AFIxkd7rYQZ+Qnopixkl2kiBfVL2RAI9ErgX2AsFj9QwMR/2gPPAPQ/sklNxpsDLxJ2TEpqjEdhfXiRonkCqKSdKdV0n0/6ISM0oh3HRyxVkhA5ID7qGpiQB5Y+md4zxmVEiHAtpXqrxVP3dMSKJmuxnKhOi+2rRm4j/ed1cx9f+iKVZriGls0FxzrEWeBIKjpgEqvnQEEIlM7ti2ieSUG2iK5oQ3MWTl0mrWnEvK9W7Wqlem8dRQMfoFJWRi65QHd2iBmoiih7RM3pFb9aT9WK9Wx+z0hVr3nOE/sD6/AE/a5g7</latexit>

(!2, `2)
<latexit sha1_base64="enTQc1FK8xUvO8pNfF4rauHrngY=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBEqSElqQZcFNy4r2Ac0IUwmt+3QSSbMTIRSunPjr7hxoYhbf8Gdf+O0zUJbDwxzOOde7r0nTDlT2nG+rZXVtfWNzcJWcXtnd2/fPjhsKZFJCk0quJCdkCjgLIGmZppDJ5VA4pBDOxzeTP32A0jFRHKvRyn4MeknrMco0UYK7JOyJ2Lok6B6gb1Q8EiNYvNhDzgPqueBXXIqzgx4mbg5KaEcjcD+8iJBsxgSTTlRqus6qfbHRGpGOUyKXqYgJXRI+tA1NCExKH88u2OCz4wS4Z6Q5iUaz9TfHWMSq+l+pjImeqAWvan4n9fNdO/aH7MkzTQkdD6ol3GsBZ6GgiMmgWo+MoRQycyumA6IJFSb6IomBHfx5GXSqlbcy0r1rlaq1/I4CugYnaIyctEVqqNb1EBNRNEjekav6M16sl6sd+tjXrpi5T1H6A+szx9CiZg9</latexit>

(!2, `2 � q)
<latexit sha1_base64="lVAse8lz6otgx1oqOkN0JpgWAsA=">AAACF3icbVDLSgMxFM34rPVVdekmWIQKWmbGgi4LblxWsA/oDEMmvW1DM5MxyQil9C/c+CtuXCjiVnf+jZm2C9t6IORwzr3ce0+YcKa0bf9YK6tr6xubua389s7u3n7h4LChRCop1KngQrZCooCzGOqaaQ6tRAKJQg7NcHCT+c1HkIqJ+F4PE/Aj0otZl1GijRQUyiVPRNAjgXuOvVDwjhpG5sMecB64+GJOfDgLCkW7bE+Al4kzI0U0Qy0ofHsdQdMIYk05Uart2In2R0RqRjmM816qICF0QHrQNjQmESh/NLlrjE+N0sFdIc2LNZ6ofztGJFLZaqYyIrqvFr1M/M9rp7p77Y9YnKQaYjod1E051gJnIeEOk0A1HxpCqGRmV0z7RBKqTZR5E4KzePIyabhl57Ls3lWK1cosjhw6RieohBx0haroFtVQHVH0hF7QG3q3nq1X68P6nJauWLOeIzQH6+sX11qebg==</latexit>

(!1, `1 + q)
<latexit sha1_base64="tDJc/cGxKuZ58ZNxRRSaT4j+4yY=">AAACF3icbVDLSgMxFM34rPVVdekmWISKUmZqQZcFNy4r2Ad0hiGTuW1DM5MxyQil9C/c+CtuXCjiVnf+jZm2C9t6IORwzr3ce0+QcKa0bf9YK6tr6xubua389s7u3n7h4LCpRCopNKjgQrYDooCzGBqaaQ7tRAKJAg6tYHCT+a1HkIqJ+F4PE/Ai0otZl1GijeQXyiVXRNAjvnOB3UDwUA0j82EXOPcdfD4nPpz5haJdtifAy8SZkSKaoe4Xvt1Q0DSCWFNOlOo4dqK9EZGaUQ7jvJsqSAgdkB50DI1JBMobTe4a41OjhLgrpHmxxhP1b8eIRCpbzVRGRPfVopeJ/3mdVHevvRGLk1RDTKeDuinHWuAsJBwyCVTzoSGESmZ2xbRPJKHaRJk3ITiLJy+TZqXsXJYrd9VirTqLI4eO0QkqIQddoRq6RXXUQBQ9oRf0ht6tZ+vV+rA+p6Ur1qznCM3B+voF0Paeag==</latexit>

(E2,�p)
<latexit sha1_base64="u5U3C7ZeaAptq2JCeBDRdV0yCQQ=">AAAB/nicbVBLSwMxGMzWV62vVfHkJViEClp2a0GPBRE8VrAPaJclm822odlkSbJCWQr+FS8eFPHq7/DmvzHb9qCtAyHDzPeRyQQJo0o7zrdVWFldW98obpa2tnd29+z9g7YSqcSkhQUTshsgRRjlpKWpZqSbSILigJFOMLrJ/c4jkYoK/qDHCfFiNOA0ohhpI/n2UeXWr53Di34gWKjGsblgcubbZafqTAGXiTsnZTBH07e/+qHAaUy4xgwp1XOdRHsZkppiRialfqpIgvAIDUjPUI5iorxsGn8CT40SwkhIc7iGU/X3RoZilUczkzHSQ7Xo5eJ/Xi/V0bWXUZ6kmnA8eyhKGdQC5l3AkEqCNRsbgrCkJivEQyQR1qaxkinBXfzyMmnXqu5ltXZfLzfq8zqK4BicgApwwRVogDvQBC2AQQaewSt4s56sF+vd+piNFqz5ziH4A+vzBwezlDY=</latexit>

(E1,p)
<latexit sha1_base64="/eRmOgbJEw2yQ7lKl3BRSXLJ04o=">AAAB/XicbVBLSwMxGMzWV62v9XHzEixCBSm7taDHgggeK9gHtMuSzWbb0GyyJFmhluJf8eJBEa/+D2/+G7PtHrR1IGSY+T4ymSBhVGnH+bYKK6tr6xvFzdLW9s7unr1/0FYilZi0sGBCdgOkCKOctDTVjHQTSVAcMNIJRteZ33kgUlHB7/U4IV6MBpxGFCNtJN8+qtz47jnsB4KFahybCyZnvl12qs4McJm4OSmDHE3f/uqHAqcx4RozpFTPdRLtTZDUFDMyLfVTRRKER2hAeoZyFBPlTWbpp/DUKCGMhDSHazhTf29MUKyyaGYyRnqoFr1M/M/rpTq68iaUJ6kmHM8filIGtYBZFTCkkmDNxoYgLKnJCvEQSYS1KaxkSnAXv7xM2rWqe1Gt3dXLjXpeRxEcgxNQAS64BA1wC5qgBTB4BM/gFbxZT9aL9W59zEcLVr5zCP7A+vwBmPOT/g==</latexit>

(E1,p
0)

<latexit sha1_base64="jP+86kWki6CCLjoBol/iSXNHesA=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVjEClJ2a0GPBRE8VrAPaJclm822odlkSbJCWQr+FS8eFPHq7/DmvzFt96CtAyHDzPeRyQQJo0o7zrdVWFldW98obpa2tnd29+z9g7YSqcSkhQUTshsgRRjlpKWpZqSbSILigJFOMLqZ+p1HIhUV/EGPE+LFaMBpRDHSRvLto8qt717AfiBYqMaxuWBydu7bZafqzACXiZuTMsjR9O2vfihwGhOuMUNK9Vwn0V6GpKaYkUmpnyqSIDxCA9IzlKOYKC+bxZ/AU6OEMBLSHK7hTP29kaFYTbOZyRjpoVr0puJ/Xi/V0bWXUZ6kmnA8fyhKGdQCTruAIZUEazY2BGFJTVaIh0girE1jJVOCu/jlZdKuVd3Lau2+Xm7U8zqK4BicgApwwRVogDvQBC2AQQaewSt4s56sF+vd+piPFqx85xD8gfX5A//LlC8=</latexit>

(E2,�p0)
<latexit sha1_base64="OVOz6ifk47BYQVuJWvAsiS9SQIM=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQJ+ho50CPAxE8TnAfsJWSpukWljYlSYVRd/Bf8eJBEa/+G978b0y3HnTzQcjjvd+PvDwvZlQqy/o2CkvLK6trxfXSxubW9o65u9eWPBGYtDBnXHQ9JAmjEWkpqhjpxoKg0GOk442uM7/zQISkPLpX45g4IRpENKAYKS255kHlxq2dwfO+x5kvx6G+YHxy6pplq2pNAReJnZMyyNF0za++z3ESkkhhhqTs2VasnBQJRTEjk1I/kSRGeIQGpKdphEIinXSafwKPteLDgAt9IgWn6u+NFIUyy6YnQ6SGct7LxP+8XqKCKyelUZwoEuHZQ0HCoOIwKwP6VBCs2FgThAXVWSEeIoGw0pWVdAn2/JcXSbtWtS+qtbt6uVHP6yiCQ3AEKsAGl6ABbkETtAAGj+AZvII348l4Md6Nj9lowch39sEfGJ8/bruUZw==</latexit>

(!1, `1)
<latexit sha1_base64="DXaOAdqkPX8Hrvhj1hCDUB3SlbM=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBEqSElqQZcFNy4r2Ac0IUwmN+3QSSbMTIRSunPjr7hxoYhbf8Gdf+P0sdDWA8MczrmXe+8JM86Udpxva2V1bX1js7BV3N7Z3du3Dw5bSuSSQpMKLmQnJAo4S6GpmebQySSQJOTQDgc3E7/9AFIxkd7rYQZ+Qnopixkl2kiBfVL2RAI9ErgX2AsFj9QwMR/2gPPAPQ/sklNxpsDLxJ2TEpqjEdhfXiRonkCqKSdKdV0n0/6ISM0oh3HRyxVkhA5ID7qGpiQB5Y+md4zxmVEiHAtpXqrxVP3dMSKJmuxnKhOi+2rRm4j/ed1cx9f+iKVZriGls0FxzrEWeBIKjpgEqvnQEEIlM7ti2ieSUG2iK5oQ3MWTl0mrWnEvK9W7Wqlem8dRQMfoFJWRi65QHd2iBmoiih7RM3pFb9aT9WK9Wx+z0hVr3nOE/sD6/AE/a5g7</latexit>

(!2, `2)
<latexit sha1_base64="enTQc1FK8xUvO8pNfF4rauHrngY=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBEqSElqQZcFNy4r2Ac0IUwmt+3QSSbMTIRSunPjr7hxoYhbf8Gdf+O0zUJbDwxzOOde7r0nTDlT2nG+rZXVtfWNzcJWcXtnd2/fPjhsKZFJCk0quJCdkCjgLIGmZppDJ5VA4pBDOxzeTP32A0jFRHKvRyn4MeknrMco0UYK7JOyJ2Lok6B6gb1Q8EiNYvNhDzgPqueBXXIqzgx4mbg5KaEcjcD+8iJBsxgSTTlRqus6qfbHRGpGOUyKXqYgJXRI+tA1NCExKH88u2OCz4wS4Z6Q5iUaz9TfHWMSq+l+pjImeqAWvan4n9fNdO/aH7MkzTQkdD6ol3GsBZ6GgiMmgWo+MoRQycyumA6IJFSb6IomBHfx5GXSqlbcy0r1rlaq1/I4CugYnaIyctEVqqNb1EBNRNEjekav6M16sl6sd+tjXrpi5T1H6A+szx9CiZg9</latexit>

(!2, `2 � q)
<latexit sha1_base64="lVAse8lz6otgx1oqOkN0JpgWAsA=">AAACF3icbVDLSgMxFM34rPVVdekmWIQKWmbGgi4LblxWsA/oDEMmvW1DM5MxyQil9C/c+CtuXCjiVnf+jZm2C9t6IORwzr3ce0+YcKa0bf9YK6tr6xubua389s7u3n7h4LChRCop1KngQrZCooCzGOqaaQ6tRAKJQg7NcHCT+c1HkIqJ+F4PE/Aj0otZl1GijRQUyiVPRNAjgXuOvVDwjhpG5sMecB64+GJOfDgLCkW7bE+Al4kzI0U0Qy0ofHsdQdMIYk05Uart2In2R0RqRjmM816qICF0QHrQNjQmESh/NLlrjE+N0sFdIc2LNZ6ofztGJFLZaqYyIrqvFr1M/M9rp7p77Y9YnKQaYjod1E051gJnIeEOk0A1HxpCqGRmV0z7RBKqTZR5E4KzePIyabhl57Ls3lWK1cosjhw6RieohBx0haroFtVQHVH0hF7QG3q3nq1X68P6nJauWLOeIzQH6+sX11qebg==</latexit>

(!1, `1 + q)
<latexit sha1_base64="tDJc/cGxKuZ58ZNxRRSaT4j+4yY=">AAACF3icbVDLSgMxFM34rPVVdekmWISKUmZqQZcFNy4r2Ad0hiGTuW1DM5MxyQil9C/c+CtuXCjiVnf+jZm2C9t6IORwzr3ce0+QcKa0bf9YK6tr6xubua389s7u3n7h4LCpRCopNKjgQrYDooCzGBqaaQ7tRAKJAg6tYHCT+a1HkIqJ+F4PE/Ai0otZl1GijeQXyiVXRNAjvnOB3UDwUA0j82EXOPcdfD4nPpz5haJdtifAy8SZkSKaoe4Xvt1Q0DSCWFNOlOo4dqK9EZGaUQ7jvJsqSAgdkB50DI1JBMobTe4a41OjhLgrpHmxxhP1b8eIRCpbzVRGRPfVopeJ/3mdVHevvRGLk1RDTKeDuinHWuAsJBwyCVTzoSGESmZ2xbRPJKHaRJk3ITiLJy+TZqXsXJYrd9VirTqLI4eO0QkqIQddoRq6RXXUQBQ9oRf0ht6tZ+vV+rA+p6Ur1qznCM3B+voF0Paeag==</latexit>

Figure 21. The H and crossed-H diagrams.

7.3.3 H and crossed-H diagrams

The next example we consider is the sum of the general H and crossed-H diagrams. We

will denote the latter by H. These are two-loop integrals with arbitrary numerators and

one φ1 propagator, one φ2 propagator, and five graviton propagators as shown in figure 21.

The corresponding integrands are

IH =
1

(E1 + ω1)2 − (p + `1)2 −m2
1

1

(E2 + ω2)2 − (p− `2)2 −m2
2

× 1
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1

1

ω2
1 − (`1 + q)2

1

ω2
2 − `2

2

1

ω2
2 − (`2 − q)2

1

(ω1 + ω2)2 − (`1 + `2)2
NH ,

IH =
1

(E1 − ω1)2 − (p′ − `1)2 −m2
1

1

(E2 + ω2)2 − (p− `2)2 −m2
2

× 1

ω2
1 − `2

1

1

ω2
1 − (`1 + q)2

1

ω2
2 − `2
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1
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2 − (`2 − q)2

1

(ω1 + ω2)2 − (`1 + `2)2
NH .

(7.62)
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As before the φ1 and φ2 propagators can be factored into matter and antimatter

components,
1

(E1 + ω1)2 − (p + `1)2 −m2
1

=
1

(ω1 − ωP1)(ω1 − ωA1)
,

1

(E1 − ω1)2 − (p′ − `1)2 −m2
1

=
1

(ω1 − ωP 1
)(ω1 − ωA1

)
,

1

(E2 + ω2)2 − (p− `2)2 −m2
2

=
1

(ω2 − ωP2)(ω2 − ωA2)
.

(7.63)

The spatial integrands in terms of the effective numerator are then

ĨH =

∫
dω1

2π

dω2

2π

ÑH(ω1, ω2)

(ω1 − ωP1)(ω2 − ωP2)
,

ĨH =

∫
dω1

2π

dω2

2π

ÑH(ω1, ω2)

(ω1 − ωP 1
)(ω2 − ωP2)

,

(7.64)

where

ÑH(ω1, ω2) =
1

ω1 − ωA1

1

ω2 − ωA2

1

ω2
1 − `2

1

1

ω2
1 − (`1 + q)2

1

ω2
2 − `2

2

1

ω2
2 − (`2 − q)2

× 1

(ω1 + ω2)2 − (`1 + `2)2
NH(ω1, ω2) ,

ÑH(ω1, ω2) =
1

ω1 − ωA1

1

ω2 − ωA2

1

ω2
1 − `2

1

1

ω2
1 − (`1 + q)2

1

ω2
2 − `2

2

1

ω2
2 − (`2 − q)2

× 1

(ω1 + ω2)2 − (`1 + `2)2
NH(ω1, ω2) .

(7.65)

Next, we use the fact that in each diagram canceling either energy denominator will

produce a scaleless integral in either ω1 or ω2. Consequently, we can freely send

H : ω1 − ωP1 → 0 and ω2 − ωP2 → 0 ,

H : ω1 − ωP 1
→ 0 and ω2 − ωP2 → 0 ,

(7.66)

so we can effectively evaluate the numerators

ÑH(ω1, ω2)→ ÑH(ωP1 , ωP2) , ÑH(ω1, ω2)→ ÑH(ωP 1
, ωP2) . (7.67)

Upon this replacement, the spatial integrands become

ĨH = ÑH(ωP1 , ωP2)

∫
dω1

2π

dω2

2π

1

(ω1 − ωP1)(ω2 − ωP2)
,

ĨH = ÑH(ωP 1
, ωP2)

∫
dω1

2π

dω2

2π

1

(ω1 − ωP 1
)(ω2 − ωP2)

.
(7.68)

Before proceeding with the energy master integrals, we note a few properties that are

helpful in combining the H and H integrands. First, the relativistic numerators and the

antimatter poles for each diagram are related as

NH = NH +O(q) ,
1

ω1 − ωA1

=
1

2E1
+O(q) , − 1

ω1 − ωA1

=
1

2E1
+O(q) . (7.69)
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These are due essentially to the fact that H and H are related by relabeling p1 ↔ p4 and

that p1 = p4 + q, where the momentum transfer q is defined in eq. (2.2). Now since the

graviton propagators and the matter propagator for φ2 are the same for both diagrams,

the effective numerators satisfy

ÑH = −ÑH +O(q) . (7.70)

Second, the triple-graviton vertex comes with a scaling of q2, and there are two of them in

both H and H. We thus have the scalings NH ∼ q4 and NH ∼ q4. This is consistent with a

classical contribution given the q scalings of the integration measure and propagators, and

implies that the O(q) difference in eq. (7.70) is quantum and can be dropped. We thus

combine the integrands as

ĨH + ĨH = ÑH(ωP1 , ωP2)

∫
dω1

2π

dω2

2π

[
1

(ω1 − ωP1)(ω2 − ωP2)
− 1

(ω1 − ωP 1
)(ω2 − ωP2)

]
.

(7.71)

The last factor in eq. (7.71) is the master energy integral. The integrals over ω1 and

ω2 factorize. The integral over ω1 is convergent, and direct integration gives

∫
dω1

[
1

(ω1 − ωP1)
− 1

(ω1 − ωP 1
)

]
= −2πi . (7.72)

The integral over ω2 is done similar to the triangle master energy integral in eq. (7.18),

∫
dω2

ω2 − ωP2

≡ 1

2
× (−2πi) . (7.73)

We thus obtain a 1/2 symmetry factor relative to the naive expression one would obtain

by sequential application of the residue theorem on each pole.

Having evaluated the energy integral, we obtain the spatial integrand,

ĨH + ĨH = −1

2
ÑH(ωP1 , ωP2) . (7.74)

Consider for illustration the scalar case NH = q4, with q scaling chosen to give a classical

result. Upon expanding the spatial integrand in the classical limit and then in large E1,2

we obtain

ĨH + ĨH =
q4

8E1E2`2
1(`1 + q)2(`1 + `2)2`2

2(`2 − q)2

×
[
1 +

(`2
1 + 2p`1)2

4E2
1`

2
1

+
(`2

1 + 2p`1)2

4E2
1(`1 + q)2

+
(`2

1 + 2p`1)2

4E2
1(`1 + `2)2

+
(`2

2 − 2p`2)2

4E2
2`

2
2

+
(`2

2 − 2p`2)2

4E2
2(`2 − q)2

+
(`2

2 − 2p`2)2

4E2
2(`1 + `2)2

+
(`2

1 + 2p`1)(`2
2 − 2p`2)

2E1E2(`1 + `2)2
+ · · ·

]
,

(7.75)

where the ellipsis denotes higher-order terms in the expansion. This result is not of the

form given in eq. (7.8) since each one of the loop variables `1 and `2 appear in three types

of graviton factors in the denominator. We proceed by first applying standard techniques
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Figure 22. The box-triangle diagram.

for tensor reduction to express eq. (7.75) in terms of scalar integrands. Then we use the

IBP identity

(D − 1)− a1 − a2 − 2a3 + a1(1+4− − 1+3−) + a2(2+5− − 2+3−) = 0 , (7.76)

where we have used standard notation (see e.g. ref. [96]) for raising and lowering operators,

i.e., 1+4−F [a1, a2, a3, a4, a5] = F [a1 + 1, a2, a3, a4 − 1, a5] with the definition

F [a1, a2, a3, a4, a5] =
1

`2a1
1 (`1 + q)2a2(`1 + `2)2a3`2a4

2 (`2 − q)2a5
. (7.77)

Repeated application of this identity (and those related by relabelings of the loop variables)

puts the integrand in the form of eq. (7.8). Finally, applying eq. (7.9) sequentially, we obtain

IH + IH =
ln q2

128π2E1E2

[
1 +

(
E3

1 + E3
2

)

3E2
1E

2
2(E1 + E2)

p2 +

(
E5

1 + E5
2

)

5E4
1E

4
2(E1 + E2)

p4

+

(
E7

1 + E7
2

)

7E6
1E

6
2(E1 + E2)

p6 + · · ·
]
. (7.78)

As in the previous section, we can resum this as

IH + IH =
ln q2

64π2m1m2

arcsinh
√

σ−1
2√

σ2 − 1
, (7.79)

where σ is defined as in eq. (7.60). This is our final result for the classical contribution

from the sum of scalar H and scalar H diagrams to all orders in velocity. Individually these

diagrams give results that depend on the integration prescription, but the sum can be

meaningfully compared, e.g. to the result from relativistic integration in section 8. Indeed,

the result in eq. (7.79) agrees with that in eq. (8.10).

7.3.4 Box-triangle diagram

Consider next the general box triangle diagram, which is a two-loop integral with an

arbitrary numerator and two φ1 propagators, one φ2 propagator, and three graviton prop-
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agators as arranged in figure 22. The integrand corresponding to this diagram is

IBT =
1

(E1 + ω1)2 − (p + `1)2 −m2
1

1

(E1 + ω1 + ω2)2 − (p + `1 + `2)2 −m2
1

× 1

(E2 − ω1)2 − (p + `1)2 −m2
2

1

ω2
1 − `2

1

1

ω2
2 − `2

2

1

(ω1 + ω2)2 − (`1 + `2 + q)2
NBT .

(7.80)

We factor all matter propagators into matter and antimatter components,

1

(E1 + ω1)2 − (p + `1)2 −m2
1

=
1

(ω1 − ωP1)(ω1 − ωA1)
,

1

(E2 − ω1)2 − (p + `1)2 −m2
2

=
1

(ω1 − ωP2)(ω1 − ωA2)
,

1

(E1 + ω1 + ω2)2 − (p + `1 + `2)2 −m2
1

=
1

(ω1 + ω2 − ωP ′1)(ω1 + ω2 − ωA′1)
.

(7.81)

The spatial integrand is then given in terms of the effective numerator by

ĨBT =

∫
dω1

2π

dω2

2π

ÑBT(ω1, ω2)

(ω1 − ωP1)(ω1 − ωP2)(ω1 + ω2 − ωP ′1)
, (7.82)

where

ÑBT(ω1, ω2) =
1

ω1 − ωA1

1

ω1 − ωA2

1

ω1 + ω2 − ωA′1
1

ω2
1 − `2

1

1

ω2
2 − `2

2

× 1

(ω1 + ω2)2 − (`1 + `2 + q)2
NBT(ω1, ω2) .

(7.83)

Next, we implement energy-integral reduction. From the diagram’s topology, we see

that the constraints are a combination of those of the one-loop box and triangle integrals:

(ω1 − ωP1)(ω1 − ωP2)→ 0 and ω1 + ω2 − ωP ′1 → 0 . (7.84)

Hence we can effectively evaluate the numerator

ÑBT(ω1, ω2)→ ÑBT(ω1, ωP ′1 − ω1) , (7.85)

and then treat the remaining dependence on ω1 as we would for the one-loop box. That is,

we reduce it to a linear function using the first constraint in eq. (7.84), and then expand

about either ωP1 or ωP2 . This would cancel one of the factors in (ω1 − ωP1)(ω1 − ωP2) and

lead to either the master for the double-triangle diagram in eq. (7.42) or the master for the

double-triangle prime diagram in eq. (7.55). We of course have terms with all three matter

poles uncanceled, and thus the box triangle master energy integral:
∫

dω1 dω2

(ω1 − ωP1 + iε)(ω1 − ωP2 − iε)(ω1 + ω2 − ωP ′1 + iε)

≡ 1

3!

(∫
dω1 dω2

(ω1 − ωP1 + iε)(ω1 − ωP2 − iε)(ω1 + ω2 − ωP ′1 + iε)
+ {perm.}

)

=
1

2(ωP1 − ωP2)
× (−2πi)2 .

(7.86)
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Figure 23. The double-box diagram.

Consider for illustration the case NBT = 1. Upon implementing the above procedure,

we obtain the spatial integrand,

ĨBT = − 1

8E1(E2 + E1)`2
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+ · · ·
]
,

(7.87)

where we have shifted the integration variable `2 → `2 − `1, and the ellipsis denotes

higher-order terms in the nonrelativistic expansion. Applying eq. (7.9) sequentially to each

integral, we obtain,

IBT = − 1

64E1E

∫
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1

`2
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[
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+
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+
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ln q2
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1E

[
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5p2

4E2
1

+
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8E4
1

+
93p6

64E6
1

+ · · ·
]
, (7.88)

where we have included results for higher-order terms not shown explicitly in eq. (7.87).

Resummation of the series (see appendix C for details) yields

IBT = − 1

64m1E
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1

`2
1|`1 − q|(`2

1 + 2p`1)
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ln q2(E1 −m1)

1024π2m2
1Ep2

, (7.89)

where the second term is the classical contribution. The remaining integral has the form

of eq. (7.8) with γ = 1. It is superclassical, having an additional factor of |q|−1 relative to

the classical scaling, and represents the iteration of the lower-order tree-level and one-loop

triangle diagrams. It is infrared divergent and will cancel with the same infrared artifact

appearing in the effective-theory contribution to the matching.

7.3.5 Double-box diagram

Consider the general double-box diagram which is a two-loop integral with an arbitrary

numerator and two φ1 propagators, two φ2 propagators, and three graviton propagators
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arranged as in figure 23. The integrand corresponding to this diagram is

IBB =
1

(E1 + ω1)2 − (p + `1)2 −m2
1

1
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2
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NBB . (7.90)

As before, we factor all propagators into matter and antimatter components. The

spatial integrand is then given in terms of the effective numerator by

ĨBB =

∫
dω1

2π

dω2

2π

ÑBB(ω1, ω2)

(ω1 − ωP1)(ω1 − ωP2)(ω1 + ω2 − ωP ′1)(ω1 + ω2 − ωP ′2)
, (7.91)

where

ÑBB(ω1, ω2) =
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NBB(ω1, ω2) .

(7.92)

The energy-reduction constraints take the form

(ω1 − ωP1)(ω1 − ωP2)→ 0 ,

(ω1 + ω2 − ωP ′1)(ω1 + ω2 − ωP ′2)→ 0 .
(7.93)

These constraints reduce the effective numerator to the form

NBB(ω1, ω2) = f0 + f1ω1 + f2ω2 + f3ω1ω2 . (7.94)

As before, the remaining dependence on ω1 and ω2 can be expanded about a chosen energy

pole, leading to the previously encountered energy master integrals for the box-triangle,

double-triangle, and double-triangle prime diagrams. The term independent of ω1 and ω2

require the double-box master integral given by
∫

dω1 dω2

(ω1 − ωP1 + iε)(ω1 − ωP2 − iε)(ω1 + ω2 − ωP ′1 + iε)(ω1 + ω2 − ωP ′2 − iε)

=
1

(ωP1 − ωP2)(ωP ′1 − ωP ′2)
× (−2πi)2 .

(7.95)

As before, consider for illustration the case NBB = 1. Upon expanding in the classical

and nonrelativistic limits, we obtain the spatial integrand

ĨBB =
1

4E2`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

+ · · · , (7.96)

where we have shifted the integration variable `2 → `2 − `1, and the ellipsis denotes

higher-order terms in the nonrelativistic expansion. Applying eq. (7.9) sequentially to each

integral, we obtain,
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Figure 24. The nonplanar double-box diagram.

The remaining integral here is infrared divergent and superclassical, having an additional

factor of |q|−2 relative to the classical scaling. It represents the iteration of the lower-

order tree-level diagram, and we will leave the integral unevaluated since it will simply

cancel with the same infrared artifact appearing in the effective theory contribution to the

matching. As in the case of the one-loop box diagram, the classical contributions vanish

order by order in the nonrelativistic expansion.

7.3.6 Crossed-double-box diagram

Finally we consider the general nonplanar double-box diagram, which is a two-loop nonpla-

nar integral with an arbitrary numerator and two φ1 propagators, two φ2 propagators, and

three graviton propagators arranged as shown in figure 24. The integrand corresponding

to this diagram is

IBB =
1

(E1 + ω1)2 − (p + `1)2 −m2
1

1

(E2 − ω1)2 − (p + `1)2 −m2
2

× 1
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1

1
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2

× 1

ω2
1 − `2

1

1

ω2
2 − `2

2

1

(ω1 + ω2)2 − (`1 + `2 + q)2
NBB . (7.98)

As before, we factor all propagators into matter and antimatter components. The spatial

integrand is then

ĨBB =

∫
dω1

2π

dω2

2π

ÑBB(ω1, ω2)

(ω1 − ωP1)(ω1 − ωP2)(ω1 + ω2 − ωP ′1)(ω2 − ωP ′2)
, (7.99)

where the effective numerator is

ÑBB(ω1, ω2) =
1

ω1 − ωA1

1

ω1 − ωA2

1

ω1 + ω2 − ωA′1
1

ω2 − ωA′2
1

ω2
1 − `2

1

1

ω2
2 − `2

2

× 1

(ω1 + ω2)2 − (`1 + `2 + q)2
NBB(ω1, ω2) .

(7.100)

The energy-reduction constraints take the form

(ω1 − ωP1)(ω1 − ωP2)(ω1 + ω2 − ωP ′1)→ 0 ,

(ω1 − ωP1)(ω1 − ωP2)(ω2 − ωP ′2)→ 0 ,

(ω1 + ω2 − ωP ′1)(ω2 − ωP ′2)→ 0 .

(7.101)
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We can solve for ω3
1 from the first constraint, ω2

1 from the second constraint, and ω2
2 from

the third constraint. This allows us to reduce the effective numerator to the form

NBB(ω1, ω2) = f0 + f1ω1 + f2ω2 + f3ω1ω2 . (7.102)

As before, the remaining dependence on ω1 and ω2 can be expanded about a chosen energy

pole. In particular the last two terms in eq. (7.102) lead to the previously encountered

energy master integrals for the box-triangle, double-triangle, and double-triangle prime

diagrams. The first and second terms lead to vanishing masters given by
∫

dω1 dω2

(ω1 − ωP1 + iε)(ω1 − ωP2 − iε)(ω1 + ω2 − ωP ′1 + iε)(ω2 − ωP ′2 + iε)
= 0 ,

∫
dω1 dω2

(ω1 − ωP1 + iε)(ω1 + ω2 − ωP ′1 + iε)(ω2 − ωP ′2 + iε)
= 0 .

(7.103)

These were evaluated by averaging over six permutations of the three exchanged gravitons.

As in the case of the one-loop scalar crossed box, the two-loop crossed-double-box with

NBB = 1 vanishes order by order in the velocity expansion.

7.4 Quantum contributions

In the previous subsections we have described various diagrams which contribute to clas-

sical scattering. Conversely, we have dropped many contributions which, as discussed in

section 2.3, would otherwise contribute to the scattering amplitude but are quantum me-

chanical. Restricting to the classical contribution to the conservative potential, we then

restrict consideration to diagrams in which

(i) every loop includes at least one matter propagator,

(ii) there are no gravitons starting and ending at the same matter line.

These would exclude, for example, the diagrams shown in figure 25, where diagrams (a)

and (b) respectively violate the first and second criteria.

We discuss here the above criteria in terms of the mechanics of the nonrelativistic

method of integration described in this section. Consider an internal graviton line with

momentum (ω, `). The component ω is set through energy integration to a matter pole,

e.g. ωP1 , which at leading order goes as ωP1 ∼ p · `/m1. At the same time, as seen from

eq. (7.8) the component ` is set by a graviton pole in (D−1)-momentum variables to be of

order the momentum transfer, |`| ∼ |q|. These, of course, are consistent with the potential

region, where a graviton loop momentum goes as (ω, `) ∼ (|v||q|, |q|). However, the energy

or (D − 1)-momentum components cannot be of the same order as the scales m or |p|
while being in the potential region. There is also the radiation region but, as discussed in

section 12.3, this only affects emission, at least at the order at which we are computing.

From these remarks the criteria above are straightforward to understand. The first

criterion is necessary because the energy flowing through a loop that does not include a

matter propagator cannot be set to the matter pole, and is therefore not in the potential

region. For example, consider the dependence on the graviton loop momentum (ω1, `1) in
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Figure 25. Examples of diagrams that do not have classical potential contributions.

diagram (a) in figure 25. The loop energy ω1 has no pole in ωP1 because there is no matter

propagator for φ1. Note that the middle horizontal graviton depends on the sum ω1 + ω2

but this is subleading to the (D − 1)-momentum component since it is a potential mode,

and does not correspond to a pole for ω1. This diagram fails the first criterion. On the

other hand, this diagram has a pole in `1 − q and passes the second criteria.

The second criterion is necessary because the momentum flowing through a graviton

starting and ending on the same matter line cannot have a scale set to the momentum

transfer. As a concrete example, consider the dependence on the graviton loop momentum

(ω1, `1) in diagram (b) in figure 25. The loop energy ω1 can be set to a matter pole since

there are matter propagators for φ1. However, there is no pole in `1 − q. Note that the

matter propagators for φ1 depend on the spatial momenta p, `2, and q, but there is no

pole in `1 − q or `1 − `2.

7.5 Residue method

In this section we discuss an alternative simpler method for performing the energy inte-

gration. In the previous examples our approach was to apply energy-integral reduction to

express everything in terms of master energy integrals which were then evaluated directly.

Here we will see that we can instead evaluate the energy integrals using residues. This has

been verified explicitly at two loops.

Recall that the spatial integrand Ĩ is equal to the energy integral of the full integrand,

Ĩ =

[
nL∏

i=1

∫
dωi
2π

]
I . (7.104)

In general, I will have singularities from graviton poles as well as matter and antimatter

poles. Of course, only the matter poles reside in the kinematic region which contributes

classically. In general, we can take the nL loop energies and localize them onto nL of the

nM matter poles. We label each of these solutions ωiα by an index α. Our claim is that
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the energy integral is equal to

Ĩ =
∑

α

σα Res
ωi=ωiα

[I] , (7.105)

where σα is a numerical symmetry factor associated with each residue. To determine σα
we interpret the residue as cutting certain matter propagators, while all uncut matter

propagators should be thought of as pinched. The resulting diagram then corresponds

to one of the master energy integrals we have considered already, and σα is precisely the

associated symmetry factor.

The residue method can be derived from the method of energy integral reduction.

Consider expanding the integrand I, written as eq. (7.5), in the potential region. Then

the effective numerator Ñ is a power series in ωi. The power series can be organized

into terms that pinch all energy poles, and terms with singularities in ωi. The first type

integrates to zero via eq. (7.6). This is trivially equivalent to taking the residue because the

corresponding energy integrand is regular in the finite region. The second type are nothing

but the energy master integrals, e.g. eq. (7.29) and eq. (7.42), and evaluate to residues

with appropriate symmetry factors. Hence, the energy integration for each term in the

expansion of Ñ is equivalent to taking the residue and including symmetry factors, and

therefore the answer should reproduce eq. (7.105) after expanding in the potential region.

We briefly discuss how this works in some of our earlier examples in section 7.2 and 7.3.

First, we consider one loop, where ωi runs over a single loop energy. The triangle diagram

has one matter pole so α runs over one solution. As we have shown the associated symmetry

factor is σα = {1/2}. Meanwhile, for both the box and crossed-box diagrams there are two

matter poles so α runs over two solutions with symmetry factors σα = {1/2, 1/2}.
Moving on to two loops, we see that the double-triangle diagram has two matter poles.

Since ωi runs over two-loop energies, α runs over a single solution for which σα = {1/6}.
The box-triangle diagram is more complicated because it has three matter poles. A priori,

there are three ways to localize two-loop energies onto these matter poles. However, one

of these configurations does not exist because there is no choice of loop energy that can

localize both matter poles residing in a box subdiagram. Consequently, for the box-triangle

diagram, α runs over two solutions with symmetry factors σα = {1/6, 1/3}, which is

consistent with the energy master integral in eq. (7.86) since 1/3 + 1/6 = 1/2.

8 Relativistic integration

Ideally, we would evaluate all integrals via fully relativistic methods. As we will see, this

is relatively straightforward for certain diagrams — in particular, those which are free

from infrared divergent matter singularities. One notable example is the H and crossed-

H diagrams in section 7.3.3, whose resummation yielded the arcsinh function. In the

present section, we describe several relativistic methods, such as differential equations and

Mellin-Barnes integration, for analytic computation of the H diagram and other integrals

in the same class, including the diagram in section 7.3.2. These methods provides strong

confirmation that we have indeed correctly resummed the amplitude to all orders in velocity.
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p1

p2 p3

p4

ℓ1 ℓ3
ℓ2

ℓ4 ℓ6

ℓ5

ℓ7

Figure 26. The H graph with momentum assignments. The 7 propagators carrying momentum `i
correspond to the propagators in eq. (8.1). The external momenta are all outgoing and the direction

of the independent loop momenta are indicated by the arrows.

p1

p2 p3

ℓ2

ℓ1 ℓ6

ℓ5

ℓ7
p4

Figure 27. The diagram H[1, 1, 0, 0, 1, 1, 1, 0, 0], with momentum assignments, obtained by cancel-

ing propagators 3 and 4 of the H diagram in figure 26.

8.1 Method of differential equations

Differential equations are a powerful method for evaluating Feynman integrals [138–141].

We will adapt the method to evaluate the classical contribution of the sum of the H and H

integrals, using differential equations for integrals localized on the poles of the two internal

matter lines.

The class of integrals we will discuss, denoted by H[a1 . . . a9], is defined as

H[a1, . . . a7, a8, a9] =

∫
dD`1d

D`4
(2π)2D

((`4 + p1)2 −m2
1)−a8((`1 − p2)2 −m2

2)−a9

(`21)a1(`22 −m2
1)a2(`23)a3(`24)a4(`25 −m2

2)a5(`26)a6(`27)a7
,

(8.1)

with the momentum labeling in figure 26 and `2,3,5,6,7 expressed in terms of `1 and `4 by

momentum conservation.

8.1.1 Integration-by-parts reduction

To obtain differential equations, we first perform integration-by-parts (IBP) reduction [136,

137] in D = 4−2ε dimensions. There are by now many automated IBP reduction programs.

We use Kira [142] which implements fast modern algorithms. All integrals of the H diagram

and a tower of contact diagrams with collapsed propagators are reduced to 51 master

integrals.

The most important master integrals are associated with the H diagram,

H[1, 1, 1, 1, 1, 1, 1, 0, 0], and with H[1, 1, 0, 0, 1, 1, 1, 0, 0]. It turns out that di-

agrams H[0, 1, 1, 1, 1, 1, 1, 0, 0], H[1, 1, 0, 1, 1, 1, 1, 0, 0], H[1, 1, 1, 0, 1, 1, 1, 0, 0] or

H[1, 1, 1, 1, 1, 0, 1, 0, 0], obtained from H by canceling one of the propagators 1, 3, 4,
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or 6 respectively, have no master integrals. That is, all integrals H[a1, 1, 1, 1, 1, 1, 1, a8, a9],

H[1, 1, a3, 1, 1, 1, 1, a8, a9], H[1, 1, 1, a4, 1, 1, 1, a8, a9] or H[1, 1, 1, 1, 1, a6, 1, a8, a9] with

a1,3,4,6,8,9 ≤ 0, can be reduced (via IBP) to master integrals of the diagram

H[1, 1, 0, 0, 1, 1, 1, 0, 0].

The master integrals associated with the H graph in figure 26, i.e. the integrals that can

be used to express any integral of the type H[1, 1, 1, 1, 1, 1, 1, a8, a9] with a8,9 ≤ 0 modulo

contact integrals with fewer propagators, are (rescaled by appropriate powers of t = −q2

to have classical power counting)

I1 = t2 H[1, 1, 1, 1, 1, 1, 1, 0, 0] , I2 = t3/2 H[1, 1, 1, 1, 1, 1, 1, 0,−1] ,

I3 = t3/2 H[1, 1, 1, 1, 1, 1, 1,−1, 0] , I4 = tH[1, 1, 1, 1, 1, 1, 1,−2, 0] . (8.2)

The master integrals associated with the graph H[1, 1, 0, 0, 1, 1, 1, 0, 0] in figure 27, i.e.

the integrals that can be used to express any integral of the type H[1, 1, a3, a4, 1, 1, 1, a8, a9]

with a3,4,8,9 ≤ 0 modulo contact integrals with fewer propagators, are

I5 = H[1, 1, 0, 0, 1, 1, 1, 0, 0] , I6 = t−1/2 H[1, 1, 0, 0, 1, 1, 1, 0,−1] ,

I7 = t−1/2 H[1, 1, 0, 0, 1, 1, 1,−1, 0] , I8 = t−1 H[1, 1,−1, 0, 1, 1, 1, 0, 0] ,

I9 = t−2 H[1, 1,−2, 0, 1, 1, 1, 0, 0] . (8.3)

We omit the expressions for the remaining master integrals. In fact, they are associated

with diagram topologies that cannot give rise to a classical 1/r3 potential; among them

are topologies with collapsed matter propagators and topologies with four-scalar contact

vertices. This also matches the construction of the integrand in section 6.4, where the two

internal matter lines in graphs of H topology are always cut and therefore never collapsed.

8.1.2 Differential equations

The derivative of a master integral with respect to any kinematic variable, such as (∂/∂σ),

can be rewritten in the form

Ωij k
µ
i

∂

∂kµj
(8.4)

which can then act on the propagators and numerators of an integral. Here Ωij is a linear

combination of the GL(3) generators. The action of the operator (8.4) generally introduces

propagators raised to higher powers, but the IBP reduction re-expresses the result as

a linear combination of the original master integrals. Therefore we obtain differential

equations [141]

∂

∂σ

∣∣∣∣∣
t,m2

1,m
2
2

Ii = Mij Ij , (8.5)

with some matrix Mij whose entries are rational functions of the kinematic variables σ =

(p1 · p2)/(m1m2), t = −q2,m2
1,m

2
2.

We define the “conjugate” master integrals from a s↔ u crossing,

Īi = Ii|p2↔p3 , i = 1, 2, . . . , 9 (8.6)
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As shown in section 7, in the small-t limit, the conservative contribution from the sum,

Îi = Re(Ii + Īi) , (8.7)

is effectively a modified version of Ii with the two matter propagators replaced by delta

functions, see section 8.2. By dropping master integrals with collapsed matter propagators,

and taking the small-t limits of the Mij entries in eq. (8.5), we obtain the final differential

equations that are valid for integrals localized on the matter poles, similar to the energy

integration procedure,

∂

∂σ

∣∣∣∣∣
t,m2

1,m
2
2

Îi = M̃ij Îj , (8.8)

where the values of i and j only run from 1 to 9, corresponding to the 9 master integrals

in eqs. (8.2) and (8.3), and the matrix M̃ on the right-hand side is defined as

M̃ij = Mij |t=0 . (8.9)

The limit on the right-hand side is well-defined because the Mij entries are all non-singular

at t = 0, thanks to the appropriate normalizations by powers of t in eqs. (8.2) and (8.3).

To solve the differential equations eq. (8.8), the boundary condition is that all the

integrals are non-singular in the threshold limit, s → (m1 + m2)2. This is sufficient to

fix the solutions up to an overall numerical prefactor. Since the differential equations are

homogeneous, the overall prefactor can be fixed by evaluating one integral (in this case,

the sum of the scalar H and H integrals) in the static limit |p| = 0, which is the first term

in eq. (7.78).

The result for Î1, the sum of scalar H and H integrals localized on matter poles and

rescaled by t2 as in eq. (8.2), is equal to

Î1 =
ln q2

64π2m1m2

1√
σ2 − 1

arcsinh

√
σ − 1

2
, (8.10)

where σ is defined as in eq. (7.60). We have omitted O(ε) corrections, as is the case for

all results presented in this subsection. The result is in agreement with eq. (7.79), but is

rigorously established by the differential equations to all orders in the velocity expansion.

Using hyperbolic trigonometry identities, eq. (8.10) can be re-written as

Î1 =
ln q2

128π2

arcsinh(|p|/m1) + arcsinh(|p|/m2)

|p|(E1 + E2)
, (8.11)

where p, E1 and E2 are defined in the center-of-mass frame as

− p1 = (E1,p), −p2 = (E2,−p) . (8.12)

All other master integrals for the H diagram, combined with the conjugate integrals, have

no contribution in the classical limit,

Îi = 0, i = 2, 3, 4, 5 . (8.13)
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The results for the nonzero master integrals of the diagram H[1, 1, 0, 0, 1, 1, 1, 0, 0], combined

with their conjugate integrals, are as follows:

Î5 = − ln q2 1

128π2m1m2

1√
σ2 − 1

arcsinh

√
σ − 1

2
,

Î8 = ln q2 σ

256π2m1m2

(
1

σ2 − 1
− 2σ

(σ2 − 1)3/2
arcsinh

√
σ − 1

2

)
,

Î9 = ln q2 (1 + 2σ2)

1024π2m1m2(σ2 − 1)5/2

(
3σ
√
σ2 − 1− 2(1 + 2σ2)

)
arcsinh

√
σ − 1

2
. (8.14)

The result for Î5 agrees with the sum of eq. (7.59) and eq. (7.61). The other two master

integrals of the diagram H[1, 1, 0, 0, 1, 1, 1, 0, 0] vanish in the classical limit when localized

on the matter poles,

Îj = 0, j = 6, 7 . (8.15)

We emphasize that the differential equation method discussed here establishes in a

rigorous way that the resummation of the velocity expansion in eq. (7.78) gives the complete

result for the diagram H localized on the matter poles, which is the only part of this diagram

that contributes to the conservative potential.

8.1.3 Sample differential equations for the diagram H[1, 1, 0, 0, 1, 1, 1, 0, 0]

As a simple illustration, we give sample differential equations for the integrals Î5,8,9 asso-

ciated with the double triangle prime diagram, H[1, 1, 0, 0, 1, 1, 1, 0, 0] in figure 27, in the

equal-mass case m1 = m2 = 1. In the limit t → 0, D → 4, these integrals are decoupled

from the other master integrals in the differential equations,

∂

∂σ

∣∣∣∣∣
t,m2

1,m
2
2

Îi = M̃ij Îj , (8.16)

where the indices i and j take the values 5, 8, 9. Setting t = 0, D = 4, m1 = m2 = 1, the

entries of the matrix M̃ are

M̃5,5 =
2σ2 + 1

(σ − 1)σ(σ + 1)
, M̃5,8 = − 3σ

(σ − 1)(σ + 1)
, M̃5,9 =

4

3σ
,

M̃8,5 =
1

3σ
, M̃8,8 = 0, M̃8,9 = − 4

3σ
,

M̃9,5 = − 1

3σ
, M̃9,8 =

3σ

(σ − 1)(σ + 1)
, M̃9,9 = − 11σ2 + 4

3(σ − 1)σ(σ + 1)
. (8.17)

It can be readily checked that eq. (8.14) solves the differential equations given above.

The differential equations in D = 4 are sufficient to determine the master integrals of

the diagram H[1, 1, 0, 0, 1, 1, 1, 0, 0] localized on matter poles in the leading small-t limit.

In general however we need to keep dependence on D, for several reasons. First, the

differential equations for the H diagram have spurious singularities as D → 4, but the actual

solutions are non-singular. Second, the integrals in the class H[1, 1, 0, 1, 1, 1, 1, 0, 0] will be
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reduced (via IBP) to integrals in the class H[1, 1, 0, 0, 1, 1, 1, 0, 0], but with coefficients

that are singular in D → 4. Therefore, to determine the former as D → 4, exact-D

solutions are needed for the integrals of the latter. The coefficients and the actual values

of the integrals H[1, 1, 0, 0, 1, 1, 1, 0, 0] will conspire to cancel the D → 4 singularities of the

integrals H[1, 1, 0, 1, 1, 1, 1, 0, 0]. In the end, the integral H[1, 1, 0, 1, 1, 1, 1, 0, 0] turns out to

be equal to the integral H[1, 1, 0, 0, 1, 1, 1, 0, 0] up to a minus sign in the D → 4 limit. As

we will see in section 8.2 by finding certain integral representations for the leading small-t

terms of the H[1, 1, 0, 0, 1, 1, 1, 0, 0] and H[1, 1, 0, 1, 1, 1, 1, 0, 0] integrals, this relation holds

even in the absence of localization on matter poles.

8.1.4 Integration of graphs 7 and 7̄

The complete graph 7 in figure 14 contains up to rank-8 tensor integrals; while some of

these tensors correspond, effectively, to inverse propagators (and thus may be interpreted as

lower-rank tensors on a graph with quartic vertices) the rank is rarely reduced by more than

two units. A direct application of the IBP techniques to such high-rank tensor integrals is

very time-consuming. Our case however is simpler because we are interested only in the

classical contribution of this diagram, i.e. only in the terms which could potentially yield

ln q2 upon integration. As discussed in section 2, simple scaling shows that any term of

rank higher than 4 is subleading in the classical limit and can therefore be dropped. Of

the 318 terms in the original integrand of graph 7, constructed in section 6.4 and given as

supplementary material, and corresponding to 137 superficially distinct integrals, only 18

survive. These correspond to 6 superficially distinct integrals, five of which have ranks 2

and 4, giving the result for graph 7:

7 = 4(1− 2σ2)2m4
1m

4
2 (t2H[1, 1, 1, 1, 1, 1, 1, 0, 0])− 16σ2m2

1m
4
2 (tH[1, 1, 1, 1, 1, 1, 1,−2, 0])

+ 16σm3
1m

3
2 (tH[1, 1, 1, 1, 1, 1, 1,−1,−1])− 16σ2m4

1m
2
2 (tH[1, 1, 1, 1, 1, 1, 1, 0,−2])

+ 2m4
2 H[1, 1, 1, 1, 1, 1, 1,−4, 0] + 2m4

1 H[1, 1, 1, 1, 1, 1, 1, 0,−4] . (8.18)

As described in section 8.1.1, the IBP identities express all dimensionally-regularized

scalar and tensor integrals with the topology of the H graph and graphs related to it by

propagator collapse, i.e. all integrals in eq. (8.1), in terms of 51 master integrals. The

coefficients of the master integrals have two important features: (a) they may contain

inverse powers of t = q2 and (b) they may be singular as D → 4. The former implies

that master integrals which, on their own, do not contain classical terms may nonetheless

contribute in the classical limit due to their t-dependent coefficient. The latter implies

that, for a complete evaluation of the classical contribution of graph 7 through O(ε0) it

is necessary to evaluate master integrals to higher orders in the dimensional regulator.

Examples of relations reducing integrals in eq. (8.18), expanded in t and ε and illustrating

their structure, are:

H[1, 1, 1, 1, 1, 1, 1, 0,−2] =

(
m2

2

m2
1

− (m2
1 −m2

2)

4m4
1

t

)
H[1, 1, 1, 1, 1, 1, 1,−2, 0] (8.19)

+

(
1− m2

2

m2
1

)
1

t
H[1, 1,−1, 0, 1, 1, 1, 0, 0]−

(
1− m2

2

m2
1

)
H[1, 1, 0, 0, 1, 1, 1, 0, 0] + . . .
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i hi Ii

1 4(−3 + 4σ4) t2H[1, 1, 1, 1, 1, 1, 1, 0, 0]

2 0 t3/2H[1, 1, 1, 1, 1, 1, 1, 0,−1]

3 0 t3/2H[1, 1, 1, 1, 1, 1, 1,−1, 0]

4 8
ε − 4

3 (15 + 22σ2) tH[1, 1, 1, 1, 1, 1, 1,−2, 0]

5 −(1 + 2σ2) 16
ε2 + (17 + 94σ2) 8

3ε + 16
9 (50− 283σ2 − 4σ4) H[1, 1, 0, 0, 1, 1, 1, 0, 0]

6 0 t1/2H[1, 1, 0, 0, 1, 1, 1, 0,−1]

7 0 t1/2H[1, 1, 0, 0, 1, 1, 1,−1, 0]

8 (1 + 2σ2) 48
ε2 − (1 + 2σ2) 296

ε + 16
3 (95 + 138σ2 + 4σ4) 1

tH[1, 1,−1, 0, 1, 1, 1, 0, 0]

9 −(σ2 − 1) 64
ε2 + (σ2 − 1) 1024

3ε − 16
9 (σ2 − 1)(8σ2 + 181) 1

t2 H[1, 1,−2, 0, 1, 1, 1, 0, 0]

10 32(σ2 − 1) tH[1, 1, 1, 1, 1, 1, 0, 0, 0]

Table 2. Coefficients and master integrals obtained from reducing graph 7 in figure 14. The

integrals in the third column are the master integrals defined in eqs. (8.2) and (8.3). The definition

of I10 is provided by the third entry of the last line of this table.

H[1, 1, 1, 1, 1, 1, 1,−4, 0] = −
(
m2

1 −
2

3
m2

1σ
2

)
tH[1, 1, 1, 1, 1, 1, 1,−2, 0] (8.20)

+

(
4

3ε
m4

1(σ2 − 1) +
10

3
m4

1 −
14

9
m4

1σ
2 − 16

9
m4

1σ
4

)
1

t2
H[1, 1,−2, 0, 1, 1, 1, 0, 0]

+

(
−1

ε
m4

1(1 + 2σ2) +
10

3
m4

1 + 8m4
1σ

2 +
8

3
m4

1σ
4

)
1

t
H[1, 1,−1, 0, 1, 1, 1, 0, 0]

−
(

34

9
m4

1σ
2 +

8

9
m4

1σ
4 − 1

3ε
m4

1(1 + 2σ2)

)
H[1, 1, 0, 0, 1, 1, 1, 0, 0] + . . . .

In both these equations the ellipsis stand for terms of higher order t and ε containing the

master integrals written explicitly. They also account for master integrals which, while hav-

ing classical (and possibly superclassical) contributions to each of the terms in eq. (8.18),

cancel out in the complete expression of graph 7. The differential equation method de-

scribed in section 8.1.2, is well-suited for the evaluation of the remaining master integrals

to any order in the expansion around four dimensions. The Mellin-Barnes representation

method is often a very helpful alternative.

Using the solution of the IBP equations and expanding the coefficients of the master

integrals at small t and near four dimensions, we find that graph 7 with all outgoing

momenta contributes in the classical limit as

7 = m4
1m

4
2

10∑

i=1

hiIi , (8.21)

where the coefficients hi and integrals Ii are given in table 2 and correspond to the H and

H[1, 1, 0, 0, 1, 1, 1, 0, 0] master integrals defined in eqs. (8.2) and (8.3). We note here that

all superclassical terms that appear in the reduction of individual integrals (cf. e.g. (8.19))

– 75 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
6

canceled out and the leading small-t term is the classical one. This is, of course, as it

should be because this graph does not contain any lower-loop iterations.

Graph 7̄ is obtained from graph 7 through the relabeling p2 ↔ p3. In terms of the

variable σ, this transformation amounts to the replacement

σ → −σ − t

2m1m2
. (8.22)

Because the classical contribution of the integrals as defined in table 2 is the first term in

their small-t expansion, the term linear in t in the transformation above does not contribute

in the classical limit. Since the coefficients hi depend quadratically on σ and recalling (8.6)

that Īi = Ii|p2↔p3 , we find

7 + 7̄ = m4
1m

4
2

10∑

i=1

hi
(
Ii + Īi

)
(8.23)

Direct evaluation shows that H[1, 1, 1, 1, 1, 1, 0, 0, 0] does not, in fact, contribute in

the classical limit. Moreover, while surviving in the classical limit, the imaginary part of(
Ii + Īi

)
with i = 1, . . . , 9 does not contribute to the conservative potential. For Re

(
Ii + Īi

)

we use the results of the differential equation approach discussed in the previous section,

which we have also verified numerically.

We evaluated the ln(−t)-dependent real part of the p2 ↔ p3-symmetric combination

of other five integrals, to O(ε)2 and to 40th order in the small velocity expansion. All the

singular terms cancel out, as they should. The resulting series resums to

7 + 7̄ =
(1− 2σ2)2 arcsinh

√
σ−1

2

16π2
√
σ2 − 1

m3
1m

3
2 ln q2 + . . . , (8.24)

where we used that ln(−t) = ln q2 and the ellipsis stand for imaginary terms and real terms

with no ln q2 dependence. It is interesting to note that, up to a factor of m4
1m

4
2(1− 2σ2)2,

this is just the scalar H integral, H[1, 1, 1, 1, 1, 1, 1, 0, 0]; inspecting the coefficient of this

integral in table 2 it is easy to see that this is a consequence of the other integrals and

especially of their O(ε) and O(ε2) terms. The result (8.24) for the combination 7+ 7̄ agrees

with eq. (9.2) obtained by resumming the velocity expansion of these graphs.

To verify the uniqueness of the resummation we also evaluated separately in appendix D

both H[1, 1, 1, 1, 1, 1, 1, 0, 0] and its image under the p2 ↔ p3 remapping and without local-

ization on the matter poles; the real part of their sum confirms both the resummation of the

velocity expansion and the result of the differential equation approach. The integral also

has an imaginary part, which is consistent with the possibility of a real graviton emission

from graphs 7 and 7̄. This imaginary part however does not contribute to the conservative

potential at the 3PM order.

8.2 Mellin-Barnes integration

In evaluating the integrals in the classical limit it is important to have nontrivial cross-

checks, based on completely different methods. The Mellin-Barnes (MB) representation [96]
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offers a rather different approach compared to the nonrelativistic methods used in section 7.

In particular, it does not rely on resumming in velocity, and offers a useful check of that

procedure. Instead of isolating regions of the momentum-space integration domain that

contribute to the classical limit, in this approach all regions of loop momenta are integrated

over and the extraction of classical contributions happens at a later stage. On the other

hand, the method can be more difficult to apply to more complicated integrals because of

issues related to the analytic continuation of the result to the physical region [143–145].

We use the Mellin-Barnes representation to explore the properties of the master inte-

grals resulting from the IBP system as well as for their evaluation, especially for Euclidean

kinematics. In this method one first Feynman parametrizes the loop integral, and uses

the MB representation to evaluate the Feynman parameter integrals resulting from the

standard evaluation of the loop momentum integrals. The main identity in this method,

which may be applied iteratively for more complicated denominator linear functions, is

1

(a+ b)ν
=

1

2πi

∫ β+i∞

β−i∞
dw

Γ(−w)Γ(w + ν)

Γ(ν)

aw

bν+w
, (8.25)

where the integral over the Mellin-Barnes parameter w is along a contour which is parallel

to the imaginary axis and crosses the real axis at −Re(ν) < β < 0. After applying

repeatedly eq. (8.25), all integrals over Feynman parameters can be evaluated in terms of

Euler gamma functions whose arguments are linear combinations of the MB parameters,

the exponents of the propagators and the dimensional regulator D = 4 − 2ε. A Feynman

integral can have multiple MB representations; it is of course natural to choose the simplest

one. Some amount of trial is necessary to find it, especially for nonplanar integrals. Rather

than constructing MB representations for one integral at a time, it is convenient to derive

them for classes of integrals corresponding to a fixed graph topology but with arbitrary

exponents for each propagator, as e.g. in eq. (8.1). Apart from the obvious possibility

of reusing a once-derived good parametrization for any choice of exponents (the limit of

vanishing exponents must be treated carefully), it provides a prescription for choosing the

real part of the integration contours such that the poles due to factors of Γ(A−w) are to the

right of the w-contour while those due to factors of Γ(A+w) are to the left of that contour.

Here A stands for some (linear) combination of the other MB parameters, dimensional

regulator and propagator exponents and ε is fixed in the neighborhood of some suitable

negative value. If ε can be chosen from the beginning in the neighborhood of the origin, then

the integral is finite. An algorithm for the construction of MB representation of Feynman

integrals is implemented in the Mathematica package AMBRE [146]. See also refs. [96, 147–

151] for further details on constructing MB representations and many examples. A simple

example is the one-loop triangle integral. Taking all momenta to be outgoing, it is easy to

find that

IT =
i

(4π)D/2

∫
dD`

iπD/2
1

`2((`+ p1)2 −m2
1)(`+ q)2

(8.26)

= − i

(4π)D/2
1

(−t)1+ε

∫

C

dz

2πi

(−t
m2

1

)−z Γ(−ε− z)2Γ(−z)Γ(1 + ε+ z)Γ(1 + 2z)

Γ(1− 2ε)
,
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where C is a contour parallel to the imaginary axis, which crosses the real axis at z0 '
−0.162 and z0 < ε < 0.

Once an MB representation of a Feynman integral is constructed, the next step is to

construct its small ε expansion; the coefficients of the various powers of ε will be integrals

depending solely on external momenta so they could potentially be amenable to numer-

ical evaluation (in the appropriate momentum region). Analytically, they are naturally

represented as sums over the residues of the integrand, i.e. as infinite sums over various

powers of ratios of external momentum invariants and masses. Residues may also exhibit

logarithmic dependence on external momentum invariants. For our purpose of extracting

the classical term of an amplitude, which amounts to picking out a specific power of the

t = s23 = −q2 Mandelstam invariant, this representation is particularly useful.

Therefore, one must first analytically continue ε from the negative value used to fix

the integration contours to the neighborhood of the origin, while keeping the integration

contours fixed. To do so one must carefully follow the poles of the integrand as ε in-

creases; whenever a pole crosses an integration contour its residue must be separated and

added/subtracted and subsequently treated recursively as ε is further increased. The con-

struction of contours and the analytic continuation ε → 0 has been automated in the

Mathematica packages MB.m [152] and MBresolve.m [153]. Continuing the example of the

one-loop triangle integral (8.26) and closing the contour either to the left or to the right,

it is then easy to see that, as ε → 0, no pole of the Γ functions crosses the integration

contour. Thus, we can simply put ε = 0 in the integrand to obtain,

IT =
i

(4π)D/2
1

t

∫

C

dz

2πi

(−t
m2

1

)−z
Γ(−z)3Γ(1 + z)Γ(1 + 2z) . (8.27)

We are, of course, simply recovering the fact that the massive triangle integral we are

interested is IR-finite.

The MB representation techniques have proven to be extremely efficient, leading to

the evaluation of a large variety of massive and massless, planar and nonplanar Feyn-

man integrals, at two loops and beyond, some exhibiting infrared singularities (see e.g.

refs. [147–151]). For our purpose however, it is, of course, more convenient to extract the

desired terms in the small-q expansion before the Mellin-Barnes integrals fully evaluated

rather than afterwards. This amounts to organizing the poles of the integrand and pick-

ing out only the ones that contribute to the desired order. This step typically leads to

localization of some — sometimes all — of the MB integrals. The expansion in small mo-

mentum invariants and mass parameters has been automated in the Mathematica package

MBAsymptotics.m.13 For the case of the one-loop triangle integral example, the small q

expansion can be constructed by inspection: we need to pick the poles of the integrand

for which z is negative. They are the poles of the product Γ(1 + z)Γ(1 + 2z) in eq. (8.27),

so they occur at negative integers and half-integers, the first of which is at z = −1/2 and

corresponds to the classical part of the one-loop amplitude:

IT = − i

32m1|q|
+O(ln(q2), (q2)0) . (8.28)

13https://mbtools.hepforge.org/
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Thus, we reproduce eq. (7.22). Repeating the same steps for the box integral we find that,

through O(ε0) the dependence on q2 and p1 · p2 = m1m2σ factorizes as

IB =
1

ε

1

(q2)1+ε
f(σ) , (8.29)

and therefore this integral does not have a contribution to the classical potential, as dis-

cussed in section 7.2.2. A factorization of a similar type also occurs for the two-loop H

integral and can be proven by similar means.

While, in some cases, upon picking out the relevant classical terms all MB integrals

localize, in most instances some are left to be evaluated and lead to nontrivial functions

of the remaining momentum invariants and masses. They may either be evaluated an-

alytically or numerically. A useful automated package that converts MB integrals into

infinite sums and bypasses case-by-case analysis is MBsums.m [154]. An interesting feature

of these sums is that they are typically convergent for Euclidean momenta, when all mo-

mentum invariants are negative (for our mostly-minus metric convention). To correctly

carry out the analytic continuation to the physical region it is necessary to track the causal

iε through the MB parametrization. The numerical evaluation of MB integrals has simi-

lar properties: they are convergent with the standard choice of contours described above

only for Euclidean momenta, as originally pointed out in ref. [152]. For one-dimensional

MB integrals a procedure for deforming the integration contours to obtain convergence for

physical momenta was devised in refs. [143–145]. For general integrals, finding contours

that guarantee convergence in the physical region remains an open problem.

We have used the MB-based integration methods to explore the structure of the clas-

sical limit and verify the existence of classical contributions of various one- and two-loop

integrals as well as to evaluate those whose classical contributions have none or one MB in-

tegrals. Among them are the integrals appearing in the complete one-loop amplitude in sec-

tion 12.1, the integral discussed in section 7.3.1 and other integrals with triangle topology.

For example, we can construct a three-dimensional MB representation for the double

triangle integral in section 7.3.1, shown in figure 18:

ITT = − 1

(4π)4

1

m2

2 ∫

C

dz1dz2dz3

(2πi)3

(
m2

1

−t

)1+z1

Γ(−z1)Γ(−z3)Γ(1 + z1)Γ(1 + z2)

× Γ(−1− z12)Γ(z1 − z23)Γ(1 + z12 − z3)Γ2(z3 − z1)Γ(2 + z123)

Γ(2 + z12 − z3)Γ(1− z1 + z3)
, (8.30)

where zij... = zi + zj + . . . and the contour C crosses the real axis at z1 = −64/101,

z2 = −29/51 and z3 = −22/51. Upon extracting the leading term with logarithmic depen-

dence on t, two of the integrals localize. The remaining integral can be evaluated through

Cauchy’s theorem and reproduces the result in eq. (7.45).

Similarly, following the steps described above we can construct MB representations

which depend on three parameters for the integral in figure 28(a) and eight parameters for

the integral in figure 28(b). Upon specification of contours however they become more com-

plicated, involving several integrals of lower dimension which are needed for the contours
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(a)

1

2 3

4

(b)

1

2 3

4

Figure 28. Planar and nonplanar triangle integrals which appear in the cuts in figure 12(a).

to take the standard straight line form. We do not include them explicitly here. De-

spite these superficial differences, it turns out that the two integrals have identical leading

ln(−t)-dependent term:

IFigure 28(a)

∣∣∣
ln(−t) term

= IFigure 28(b)

∣∣∣
ln(−t) term

= −
(

i

(4π)2

)2 ln(−t)
2m2

2t

∫

C

dz

2πi

Γ(−1− 2z)Γ2(−z)Γ3(1 + z)

Γ(−2z)Γ(2 + z)
, (8.31)

where the contour C crosses the real axis at z0 = −0.897. Closing the contour to the right

picks up poles at z = −1/2 and at all non-negative integers; the corresponding residues are

Resz=−1/2 = −π2 , Resz=n≥0∩Z =
3 + 4n

(1 + n)2(1 + 2n)2
, (8.32)

and, once resummed, they give

IFigure 28(a)

∣∣∣
ln q2 term

= − 1

768π2

ln q2

m2
2 q

2
. (8.33)

As a further example of application of the MB integration techniques we revisit briefly

the integrals H[1, 1, 0, 1, 1, 1, 1, 0, 0] and H[1, 1, 0, 0, 1, 1, 1, 0, 0], defined in eq. (8.1). We

discussed them from the point of view of the differential equation for integrals related to the

H graph with two cut matter propagators and restricted to the leading small-t logarithmic

term and found that, if the latter is chosen as master integral, the former can be reduced.

It is not difficult to derive a 7-dimensional MB representation for H[1, 1, 0, 1, 1, 1, 1, 0, 0]

and a 5-dimensional MB representation for H[1, 1, 0, 0, 1, 1, 1, 0, 0]. Extracting the leading

ln(−t) = ln q2 coefficients we find that both integrals are proportional to

I = − ln(−t)
(4π)4

∫

C

dz1dz2

(2πi)2

( −τ12

m1m2

)z2

×Γ3(−z1)Γ(1 + z1)Γ((1 + z2)/2 + z1)Γ(−z2)Γ((1 + z2)/2)

4m1m2 Γ(1− z1)
, (8.34)

with the contour C crossing the real axis at z1 = −0.078 and z2 = −0.228.14 More

specifically

I = H[1, 1, 0, 0, 1, 1, 1, 0, 0]
∣∣∣
ln(−t) term

= −tH[1, 1, 0, 1, 1, 1, 1, 0, 0]
∣∣∣
ln(−t) term

, (8.35)

14We note that this integral is well-defined for Euclidean momenta, where τ12 = 2p1 · p2 < 0. To

analytically continue it to the physical region, with τ12 > 0, it is necessary to track the causal iε prescription

through the MB representation.
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thus recovering the result of the differential equation approach. We note that the argument

here shows that H[1, 1, 0, 1, 1, 1, 1, 0, 0] and H[1, 1, 0, 0, 1, 1, 1, 0, 0] obey this relation even

without localization on matter poles.

While, as mentioned above, it is difficult to numerically evaluate the MB integrals

for physical momenta, other approaches are up for this task. An example is the sector

decomposition strategy, as implemented in the computer codes FIESTA [155, 156] and

SecDec [157]. We used the former to verify the result of the analytic result for the scalar

H integral in appendix D.

In section 8.1.4 we have noticed that all integrals related to figure 26 by collapse of

propagators enter the classical limit of the amplitude only in the combination symmetrized

under the remapping p2 ↔ p3. As described in ref. [107], in the classical limit and to

leading order in the small-t expansion, the matter propagators organize as

1

2l4 · p2 + iε
+

1

2l4 · p3 + iε
' 1

2l4 · p2 + iε
− 1

2l4 · p2 − iε
= −2πiδ(2l4 · p2) ,

1

2l1 · p1 + iε
+

1

2l1 · p4 + iε
' 1

2l1 · p1 + iε
− 1

2l1 · p1 − iε
= −2πiδ(2l1 · p1) . (8.36)

The arguments of the two Dirac δ-functions are nothing but the on-shell conditions for the

two internal matter lines in the classical limit |l2i | ∼ −t� p2
i . Thus, the symmetrized com-

bination of integrals, Ii+ Īi, localizes on the matter poles and this combination can be com-

pared to the results of the differential equations and nonrelativistic integration that enforce

this condition. We have indeed verified that the result of the differential equation approach

for the leading ln(−t) = ln q2 term of scalar integrals related to figure 26 by collapse of

propagators (i.e. H[1, 1, 1, 1, 1, 1, 1, 0, 0], H[1, 1, 0, 0, 1, 1, 1, 0, 0], H[1, 1, 0, 1, 1, 1, 1, 0, 0], etc.)

is reproduced by high-precision numerical integration. Thus, the results obtained by resum-

ming the nonrelativistic velocity expansion in section 7 and through differential equations

in section 8.1 and their contribution to graphs 7 and 7̄ in section 8.1.4 are complete.

9 Scattering amplitude

In section 6, we used the double copy and generalized unitarity to construct the integrands

denoted as graphs 1− 8, which are shown in figure 14. The integration method described

in section 7 ultimately trivializes all one and two loop integrals by reducing them to three-

dimensional bubble integrals via nonrelativistic expansion. In section 9.1 below, we present

results for each diagram up to 7PN.

Of course the cost of analytic tractability is that the answer is formally computed

order by order in the nonrelativistic expansion. However, if we retain terms to sufficiently

high order in velocity, then we can resum this expansion, yielding our putative all orders

in velocity expression for the PM amplitude. The resummation can be reliably performed

because relativity imposes strong constraints on the structure of the series in two important

ways. First, the series encountered are due to relativistic invariants whose structure is

simple enough to identify order by order in velocity. Second, there is a bound for the

highest PN order at which new relativistic structures can appear. Beyond this order velocity

corrections are solely from structures that are already present at lower orders. The detailed

argument is presented in section 9.2.
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We employ two methods for resummation. First is resummation by inspection. As we

will see below, the series encountered are geometric, binomial, or arcsinh, where a pattern

can be clearly identified. These series are collected in appendix C. Second is resummation

by ansatz. A natural ansatz can be formed from the small basis of functions encountered

in the case of scalar two-loop integrals, multiplied by arbitrary polynomials of the external

four momenta. The free coefficients are then uniquely fixed by comparing to the first

several terms in the PN expansion. Both methods yield the same result, and we discuss

various checks below. The final result for scattering amplitudes up to 3PM are given in

eq. (9.3).

9.1 Post-Newtonian expansion

We can mechanically integrate graphs 1− 8 using the methods of section 7. This involves

expanding the integrands in the nonrelativistic limit, and we do this by assigning the

scalings p1 · p2 ∼ ρ2 , Ei ∼ ρ ,mi ∼ ρ, and then expanding order by order in large ρ. This

generally leads to much simpler expressions compared to expanding in large mi everywhere

since functions of p1 · p2 and Ei are kept intact to all orders in velocity. Our results up to

7PN are

1 = −2m6
1m

6
2(1− 2σ2)3

E2

×
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

,

1 = 0 ,

2 = −m
2
1m

6
2(2σ2 − 1)Ep2

32E3
2

×
∫

dD−1`

(2π)D−1

1

`2|` + q|(`2 + 2p`)

[
1 +

3p2

2E2
2

+
15p4

8E4
2

+
35p6

16E6
2

+ · · ·
]

+
m2

1m
5
2(m2 + 4m1σ − 5m2σ

2 − 8m1σ
3)

192π2E2
2

[
1+

p2

E2
2

+
p4

E4
2

+
p6

E6
2

+
p8

E8
2

+
p10

E10
2

+ · · ·
]

− σ2m4
1m

4
2

12π2E1E2

[
1 +

(
E3

1 + E3
2

)

3E2
1E

2
2E

p2 +

(
E5

1 + E5
2

)

5E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

7E6
1E

6
2E

p6

+

(
E9

1 + E9
2

)

9E8
1E

8
2E

p8 +

(
E11

1 + E11
2

)

11E10
1 E10

2 E
p10 + · · ·

]

+
m4

1m
2
2Ep2

36π2E3
1

[
1 +

6p2

5E2
1

+
9p4

7E4
1

+
4p6

3E6
1

+
15p8

11E8
1

+ · · ·
]

+
m4

1m
2
2p

2

36π2E2
1

[
1 +

3p2

5E2
1

+
3p4

7E4
1

+
p6

3E6
1

+
3p8

11E8
1

+ · · ·
]

+
m4

1m
2
2p

2

36π2E1E2

[
1 +

(
E3

1 + E3
2

)

5E2
1E

2
2E

p2 +
3
(
E5

1 + E5
2

)

35E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

21E6
1E

6
2E

p6

+

(
E9

1 + E9
2

)

33E8
1E

8
2E

p8 + · · ·
]
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+
m2

1m
6
2(2σ2 − 1)E

768π2E3
2

[
1 +

7p2

2E2
2

+
51p4

8E4
2

+
151p6

16E6
2

+
1615p8

128E8
2

+
4065p10

256E10
2

+ · · ·
]
,

2 = −σm
3
1m

5
2(2σ2 − 1)

24π2E2
2

[
1 +

p2

E2
2

+
p4

E4
2

+
p6

E6
2

+
p8

E8
2

+
p10

E10
2

+ · · ·
]

− σ2m2
1m

6
2

64π2E2
2

[
1− p2

3E2
2

− 5p4

3E4
2

− 3p6

E6
2

− 13p8

3E8
2

− 17p10

3E10
2

+ · · ·
]

+
σm2

1m
6
2(2σE1E2 −m1m2)

96π2E4
2

[
1 +

2p2

E2
2

+
3p4

E4
2

+
4p6

E6
2

+
5p8

E8
2

+
6p10

E10
2

+ · · ·
]

− σ2m4
1m

4
2

24π2E1E2

[
1 +

(
E3

1 + E3
2

)

3E2
1E

2
2E

p2 +

(
E5

1 + E5
2

)

5E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

7E6
1E

6
2E

p6 +

(
E9

1 + E9
2

)

9E8
1E

8
2E

p8

+

(
E11

1 + E11
2

)

11E10
1 E10

2 E
p10 + · · ·

]

+
m4

1m
2
2p

2

72π2E2
1

[
1 +

3p2

5E2
1

+
3p4

7E4
1

+
p6

3E6
1

+
3p8

11E8
1

+ · · ·
]

+
Em4

1m
2
2p

2

72π2E3
1

[
1 +

6p2

5E2
1

+
9p4

7E4
1

+
4p6

3E6
1

+
15p8

11E8
1

+ · · ·
]

+
m4

1m
2
2p

2

72π2E1E2

[
1 +

(
E3

1 + E3
2

)

5E2
1E

2
2E

p2 +
3
(
E5

1 + E5
2

)

35E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

21E6
1E

6
2E

p6

+

(
E9

1 + E9
2

)

33E8
1E

8
2E

p8 + · · ·
]
,

3 = 0 ,

4 =
(2σ2 − 1)(4σ2 − 1)m4

1m
6
2

8E2E

×
∫

dD−1`

(2π)D−1

1

`2|` + q|(`2 + 2p`)

[
1 +

p2

2E2
2

+
3p4

8E4
2

+
5p6

16E6
2

+ · · ·
]

+
σm3

1m
5
2(4σ2 − 1)

48π2E2
2

[
1 +

p2

E2
2

+
p4

E4
2

+
p6

E6
2

+
p8

E8
2

+
p10

E10
2

+ · · ·
]

− m4
1m

6
2(2σ2 − 1)(4σ2 − 1)

128π2E3
2E

[
1 +

5p2

4E2
2

+
11p4

8E4
2

+
93p6

64E6
2

+
193p8

128E8
2

+
793p10

512E10
2

+ · · ·
]

+ {1↔ 2} ,

4 =
σm3

1m
5
2(4σ2 − 1)

24π2E2
2

[
1 +

p2

E2
2

+
p4

E4
2

+
p6

E6
2

+
p8

E8
2

+
p10

E10
2

+ · · ·
]

+ {1↔ 2} ,

5 = −σm
2
1m

5
2(12σ2m1 + σm2 − 6m1)

96π2E2
2

[
1 +

p2

E2
2

+
p4

E4
2

+
p6

E6
2

+
p8

E8
2

+
p10

E10
2

+ · · ·
]

− p2σm1m
5
2E

2

48π2E4
2

[
1 +

2p2

E2
2

+
3p4

E4
2

+
4p6

E6
2

+
5p8

E8
2

+ · · ·
]
,

6 = −σ
2m2

1m
6
2

24π2E2
2

[
1 +

p2

E2
2

+
p4

E4
2

+
p6

E6
2

+
p8

E8
2

+
p10

E10
2

+ · · ·
]
,
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7 + 7 =
(2σ2 − 1)2m4

1m
4
2

16π2E1E2

[
1 +

(
E3

1 + E3
2

)

3E2
1E

2
2E

p2 +

(
E5

1 + E5
2

)

5E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

7E6
1E

6
2E

p6

+

(
E9

1 + E9
2

)

9E8
1E

8
2E

p8 +

(
E11

1 + E11
2

)

11E10
1 E10

2 E
p10 + · · ·

]
,

8 = 0 . (9.1)

Here for every equation we have omitted a factor of 1
2(8πG)3 ln q2 for the finite terms and

a factor of (8πG)3 for the remaining infrared divergent integrals. We have not included

a factor of 1/(4E1E2) for nonrelativistic normalization. Moreover, for diagrams 4 and

4, we denote by {1 ↔ 2} contributions obtained from swapping the mass and energy

subscripts in all terms. The results above are for the individual diagrams 1−8, and do not

include contributions from topologies related by flipping the diagram. Graphs 1,2,4,7 are

related to graphs 1,2,4,7 by crossing, i.e. by swapping the external momenta p2 ↔ p3 or

equivalently p1 ↔ p4. We refer the reader to table 1.

Note that judicious further expansion of factors of Ei in some places can lead to even

simpler results. In particular, series resummation often yields factors of Ei and mi that

cancel in the final result (see appendix C). For example, in graph 6, expanding the factor

of m2
2/E

2
2 in large m2 cancels the geometric series in p2/E2

2 , yielding a result that is exact

at 2PN. This is expected since it follows from the topology of 6 that its nonrelativistic

expansion is in |q|/mi, and there are no velocity corrections from integration.

We see that graphs 1 ,1 ,3, and 8 are zero except for a contribution from iterations of

lower order processes which will cancel in the matching with the EFT.

9.2 Post-Minkowskian expansion

The results for graphs 1−8 above are expressed in terms of series that have a substantially

simple structure order by order in p2. This simplicity is of course due to relativistic

invariance. However, even if it is trivial by inspection to resum all orders in velocity, it is

natural to be suspicious since any finite number of terms in a generic series has no bearing

on the full function. Nevertheless, apart from the verification of certain graphs by fully

relativistic methods, we believe that our resummation is trustworthy due to the following

argument.

The underlying worry about resummation is that extrapolation may fail due to the

appearance of new velocity-dependent structures at some high order. Note, however, that

the velocity expansion is not an arbitrary series. Rather, it is strongly constrained by

relativistic invariance of the underlying theory and any new velocity-dependent structure

must originate from a new fully relativistic one.

There is a simple argument from dimensional analysis that forbids new relativistic

structures from appearing at arbitrarily high order in the PN expansion. First, recall that

the two loop scattering amplitude has mass dimension six. Since every graph has seven

propagators and the integration measure has mass dimension eight, the numerator of the

integrand must have mass dimension twelve. If we assume conservatively that the entire

mass dimension of the numerator is due to p, then the numerator scales at most as v12

which, together with the G3 factor, is of 8PN order. This logic suggests that beyond 8PN
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no new velocity dependent structure will appear and all velocity corrections are from the

expansion of structures that are already present at lower orders.

The 8PN bound argued above only uses dimensional analysis and can be refined by

noting that the mass dimension of the numerator cannot be due entirely to p. In particular,

the numerator must provide some dimensionful factors of q in order to produce a classical

contribution. We thus need to consider the numerator dependence on factors of p ·` and `2,

where p is an external four momentum and ` is a loop four momentum. Other numerator

factors which are independent of the loop variables and depend only on p1 · p2 and q2,

are effectively constant and do not affect the integration. Consequently, these spectator

factors can be separated from the actual integration and do not produce new factors of p

upon integration. Given the q and v scaling of graviton momenta in the potential region

discussed in section 2, a generic combination (p ·`)a(`2)b scales at most as |q|a+2b|v|a+2b. In

deriving this we focused on the highest power of the velocity as this automatically covers

any weaker dependence on |v|. The upshot is that, for the non-spectator terms in the

numerator, the scaling of the numerator in v is equal to the scaling of the numerator in

|q|, thus lowering the bound by a factor of two.

Concretely, consider a diagram with nG graviton propagators and nM matter propaga-

tors. Graphs 1−8 all have exactly nG+nM = 7 propagators. Using this, together with the

fact that the measure scales as |q|8 and the propagator denominators scale as |q|2nG+nM ,

we learn that the numerator must scale at most as |q|nG−1. Any higher q scaling will

produce a quantum correction. Hence the numerator scales at most as |v|nG−1. Since the

maximum number for nG in our set of diagrams is five, we obtain a global bound at 4PN

as the highest order at which new p-dependent structures can arise.

Still the above argument can be refined further if we consider information about indi-

vidual diagrams. For example, we know from the possible relativistic invariants of diagrams

3 and 6 that they are expansions in q/m and not p/m ∼ v. These diagrams are therefore

exact at 2PN, and in fact the series in the result for 6 in eq. (9.1) cancels with the factor

of m2
2/E

2
2 . Another example is given by diagrams such as 1, 2, and 4, which have nM > 2

matter propagators. For these diagrams the numerator terms that contribute to the static

or 2PN order scale as |p|nM−2 in order to cancel the extra factor of |p|2−nM from the matter

propagators. This lowers the bound to 2PN for diagrams with four matter propagators

and to 3PN for diagrams with three matter propagators. As a final example, we know from

the mechanics of two loop integration that diagram 8 will not develop the required ln q2

structure that makes a contribution at two loop order classical, and therefore it vanishes

to all orders.

The above arguments imply that all relativistic invariants are already manifest in the

7PN results in eq. (9.1), and hence that resummation can be reliably performed. For most

of the series encountered, there is immediately an obvious pattern that can be extended

naturally to all orders, while others require some sleuthing. Details are given in appendix C.

Upon resummation, we obtain the following all orders in velocity expressions:

1 = −2m6
1m

6
2(1− 2σ2)3

E2

×
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

,
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1 = 0 ,

2 = −m
2
1m

3
2(2σ2 − 1)Ep2

32

∫
dD−1`

(2π)D−1

1

`2|` + q|(`2 + 2p`)

− m2
1m

3
2σ(6m1σ

2 + 3σm2 − 11m1)

192π2

− m4
1m

5
2(σ2 − 1)(2σ2 − 1)

256π2Ep2
− m3

1m
3
2(2σ2 + 1)

12π2

arcsinh
√

σ−1
2√

σ2 − 1
,

2 = −m
2
1m

3
2σ(12σ2m1 + 3σm2 − 10m1)

192π2
− m3

1m
3
2(2σ2 + 1)

24π2

arcsinh
√

σ−1
2√

σ2 − 1
,

3 = 0 ,

4 =
(2σ2 − 1)(4σ2 − 1)m4

1m
4
2m

8E

∫
dD−1`

(2π)D−1

1

`2|` + q|(`2 + 2p`)
+
σm3

1m
3
2(4σ2 − 1)

24π2

− m4
1m

4
2(2σ2 − 1)(4σ2 − 1)(E −m)

64π2Ep2
,

4 =
σm3

1m
3
2(4σ2 − 1)

12π2
,

5 = −2σm2
1m

3
2

(
14σ2m1 + σm2 − 8m1

)

192π2
,

6 = −σ
2m2

1m
4
2

24π2
,

7 + 7 =
m3

1m
3
2(2σ2 − 1)2

8π2

arcsinh
√

σ−1
2√

σ2 − 1
,

8 = 0 , (9.2)

again omitting the same prefactors as in eq. (9.1). Note that for diagrams 4 and 4 the

contributions denoted by {1↔ 2} in eq. (9.1) are included in eq. (9.2). For some diagrams

such as 7 + 7, we have checked the result using relativistic integration (see section 8).

The total amplitude is then obtained by summing these contributions and including

the relabeling given in table 1. We present here our final expression for the 3PM scattering

amplitude, M3, along with expressions for the 1PM and 2PM amplitudes, M1 and M2,

for completeness:

M1 = −4πGν2m2

γ2ξq2
(1− 2σ2) ,

M2 = −3π2G2ν2m3

2γ2ξ|q| (1− 5σ2)

+
32π2G2ν4m5(1− 2σ2)2

γ3ξ

∫
dD−1`1

(2π)D−1

1

`2(` + q)2(`2 + 2p`)
,

M3 =
πG3ν2m4 ln q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3
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−
48ν

(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1

2√
σ2 − 1

− 18νγ
(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]

+
8π3G3ν4m6

γ4ξ

[
3γ
(
1− 2σ2

) (
1− 5σ2

) ∫ dD−1`

(2π)D−1

1

`2|` + q|(`2 + 2p`)

− 32m2ν2
(
1−2σ2

)3∫ dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2−`1)2(`2+q)2(`2

1+2p`1)(`2
2+2p`2)

]
.

(9.3)

We remind the reader that here we use center-of-mass coordinates where the incoming and

outgoing particle momenta are ±p and ±(p−q), respectively. We have included the overall

normalization factor (8πG)3 as well as the nonrelativistic normalization factor 1/4E1E2,

where E1,2 =
√
p2 +m2

1,2. We define the total mass m = m1+m2, the symmetric mass ratio

ν = m1m2/m
2, the total energy E = E1 + E2, the symmetric energy ratio ξ = E1E2/E

2,

the energy-mass ratio γ = E/m, and the relativistic kinematic invariant σ = p1·p2
m1m2

.

The remaining integrals in eq. (9.3) are IR divergent and manifest the iterative struc-

ture through factors of the tree-level and one loop triangle scalar coefficients, given respec-

tively by (1 − 2σ2) and (1 − 5σ2). The integrals in M2 and M3 that are proportional to

(1− 2σ2)2 and (1− 2σ2)3 represent the double and triple iterations of tree-level exchange.

The integral in M3 that is proportional to (1 − 2σ2)(1 − 5σ2) represents the iteration of

the tree-level exchange and the one loop triangle. Note that the (1 − 5σ2) factor arises

from combining the IR divergent integrals in graphs 2 and 4. We have also computed

these IR pieces by using factorization properties of the full amplitude in transverse impact

parameter space. As we will see in the next section, these IR artifacts will cancel with

similar contributions from the EFT. This is of course guaranteed because the two theories

describe the same infrared dynamics, but nonetheless provides a nontrivial check.

As an alternative to resummation by inspection, we can build an ansatz from the

small number of simple functional basis elements encountered in the case of scalar two

loop integrals discussed in section 7. The basis functions correspond to the primitive

topologies given by the scalar double triangle diagram, the scalar box triangle diagram,

and the scalar double triangle prime diagram, which are respectively given by

O1 = 1 , O2 =
E −m
Ep2

, O3 =
1

E|p|

(
arcsinh

|p|
m1

+ arcsinh
|p|
m2

)
. (9.4)

The ansatz is then

Mansatz
3 = τ1O1 + τ2O2 + τ3O3 , (9.5)

where the τi are arbitrary polynomial functions of m1, m2, and σ with correct overall mass

dimension. Performing the fit to explicit results, we find that these functions are already

uniquely fixed by the 6PN results. Consequently, the 7PN terms of the explicit calculation

provide a nontrivial verification of the resummed amplitude in eq. (9.3). The uniqueness

and the simplicity of the all-orders result in eq. (9.3) are remarkable.

A feature of the 3PM amplitude in eq. (9.3) is that it contains a mass singularity due

to the arcsinh factor. This factor, which is proportional to the sum of particle rapidities,
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arctanh |p|/E1,2, diverges as the two masses become simultaneously small. Taking m1 ∼
m2 → 0 in the 3PM amplitude we find a logarithmic singularity,

M3 → −128πG3p4 ln q2 ln

(
m1m2

4p2

)
+ · · · = −8πG3s2 ln(−t) ln

(
m1m2

s

)
+ · · · , (9.6)

where we display only the singular term in the IR finite part. At first sight this might seem

surprising because scattering amplitudes in quantum gravity do not have such singulari-

ties [158–160]. However, as we explain in section 12.1, this singularity arises in the classical

potential region, and an interchange of limits of small mass with small momentum transfer

prevents the cancellation of mass singularities that would occur in the quantum theory.

10 Effective field theory

The culmination of the previous sections is the 3PM scattering amplitude shown in eq. (9.3).

Employing the EFT framework described in ref. [58] we can now translate the 1PM, 2PM

and 3PM amplitudes into the classical Hamiltonian describing the conservative dynamics

of a compact binary system. Our approach is a straightforward EFT matching calcula-

tion. First, we compute the two particle scattering amplitudes in the EFT mediated by a

generic classical Hamiltonian compatible with the potential in eq. (1.2). Next, the free co-

efficients of the Hamiltonian are fixed by matching the EFT amplitudes to the amplitudes

of the full theory. In the present section we briefly recall the details of the EFT and the

matching procedure.

As we will see, the EFT framework described here offers a useful tool for checking

that a given potential is consistent, or that two potentials in different gauges are physically

equivalent, by computing on-shell amplitudes, which are gauge invariant and independent

of field variables. In particular, in section 11.2, we take known potentials, such as the 4PN

potential from literature and the Schwarzschild potential, and verify that the resulting

amplitudes agree with eq. (9.3) in the overlap regions. An alternative approach, based on

the EOB framework, was described in ref. [22].

10.1 Formalism

The effective theory describes two nonrelativistic scalar fields φ1 and φ2, with masses m1

and m2, interacting through a long distance potential. The Lagrangian for this system is

L =

∫
dD−1k

(2π)D−1
φ†1(−k)

(
i∂t −

√
k2 +m2

1

)
φ1(k)

+

∫
dD−1k

(2π)D−1
φ†2(−k)

(
i∂t −

√
k2 +m2

2

)
φ2(k)

−
∫

dD−1k

(2π)D−1

dD−1k′

(2π)D−1
V (k,k′)φ†1(k′)φ1(k)φ†2(−k′)φ2(−k) ,

(10.1)

where we work in the center of mass frame. The potential is written as a contact operator

since it is generated by integrating out potential modes which are off shell. The function

V (k,k′) is parameterized by an ansatz of real rotational invariants composed of k and k′.
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We choose a field basis where V (k,k′) depends only on the combination k2 + k′2 and the

momentum transfer |k−k′|. Other choices involve combinations that vanish on shell, such

as k2 − k′2 and k0 − k′0, and are related to our choice by field redefinition. The explicit

form of our ansatz is

V (k,k′) =
∞∑

n=1

(G/2)n(4π)(D−1)/2

|k − k′|D−1−n
Γ [(D − 1− n)/2]

Γ [n/2]
cn

(
k2 + k′2

2

)

=
4πG

|k − k′|2 c1

(
k2 + k′2

2

)
+

2π2G2

|k − k′| c2

(
k2 + k′2

2

)

− 2πG3 ln(k − k′)2 c3

(
k2 + k′2

2

)
+ · · · ,

(10.2)

where we work in D = 4− 2ε dimensions, the coefficient functions cn contain all orders in

the velocity expansion, and n labels the order in the PM expansion at which a coefficient

becomes relevant. In the second line, the ellipsis contains terms of higher order in the PM
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(k0,k) =
i

k0 �
q

k2 +m2
A,B + i0

,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

MEFT =
1X

i=1

M
(i)
EFT =

1X

L=0

ML-loop
EFT , (8)

where M
(i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·

p

-p

k1

-k1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk0
2⇡

1

k0 �
p

k2 +m2
A

1

E � k0 �
p
k2 +m2

B

=
1

E �
p

k2 +m2
A �

p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k0 either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop
EFT = �

Z

k1···kL

V (p,k1)�(k1) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop
EFT

X2
1X

2
2 · · ·X2

L+1Y1Y2 · · ·YL
,

(11)
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Figure 29. The EFT scattering amplitude is given by a sum of bubble diagrams.

10.2 Scattering amplitude

The EFT amplitude is given by the sum of iterated bubbles shown in figure 29. Note that

particle number is conserved in such diagrams; topologies involving pair production of the

massive states is kinematically forbidden in the classical nonrelativistic limit. Since the

interaction V (k,k′) is not homogeneous in the coupling constant G, the nPM amplitude,

which scales as O(Gn), receives contributions from all diagrams with at most n−1 bubbles.

The Feynman rules for the EFT follow from eq. (10.2) in the usual way. For the

propagator of the scalars, it is convenient to define a “two-body” propagator given by the

product of the two nonrelativistic propagators comprising a bubble, integrated over the

energy component of the loop momentum:

i∆(k) =

∫
dω

2π

i

ω −
√
k2 +m2

1

i

E − ω −
√

k2 +m2
2

=
i

E −
√
k2 +m2

1 −
√
k2 +m2

2

,

(10.3)

where the second equality is obtained by closing the ω contour either upwards or downwards

in the complex plane. We are able to perform this integration over the energy component

of the loop momentum since the interaction vertex in eq. (10.2) has no energy dependence.

This leaves us with integration over the spatial component of the loop momenta.

Using the Feynman rules described above, we compute the nPM amplitude in the

effective theory,

MEFT
n = −V (p,p′)−

n−1∑

nL=1

[
nL∏

i=1

∫
dD−1ki
(2π)D−1

]
V (p,k1)∆(k1) · · ·∆(knL)V (knL ,p

′) , (10.4)

where the second term involving the sum contributes for n > 1. The loop momenta ki
for i = 1 to nL are the momenta flowing through the internal matter lines as shown in

figure 29. We can simplify this integral by expanding the integrand in the classical limit,

taking the momentum transfer at each interaction point to scale as |ki − ki+1| ∼ q, while

the degree to which each two-body propagator is off-shell scales as k2
i −p2 ∼ q. Expanding

the amplitude through the classical order we find

MEFT
n = −V (p,p′)−

n−1∑

nL=1

[
nL∏

i=1

∫
dD−1ki
(2π)D−1

][
nL∏

i=0

1

|ki − ki+1|2

][
nL∏

i=1

1

k2
i − p2

]
NEFT
nL

,

(10.5)

where we have introduced k0 = p and knL+1 = p′. The first term is the tree level contribu-

tion given by the potential evaluated on shell, and the second term captures the classical

contributions from the sum of iterated bubbles. The poles k2
i −p2 come from the expansion
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of the two-body propagators ∆ in eq. (10.4), while the poles |ki − ki+1|2 come from the

expansion of the vertices V in eq. (10.4). The numerator NEFT
nL

is a regular function whose

momentum dependence may cancel factors in the denominator.

We can map the integral in eq. (10.5) to the general type treated in section 7 by

changing integration variables ki → p + `i for i = 1 to nL. For any one of the loop

momenta, the resulting form is that of eq. (7.8) with γ ≤ 1 and α, β ≤ 2. The poles in

|ki−ki+1|2 and k2
i −p2 here map to the graviton and matter propagator poles in eq. (7.8),

respectively. As described in section 7, all triangle subdiagrams are evaluated sequentially,

while box subdiagrams lead to superclassical iterations, which are infrared divergent and

cancel in the matching between full theory and effective theory.

Putting together all of this machinery, we obtain the EFT scattering amplitudes up to

3PM order:

MEFT
1 = −4πGc1

q2
,

MEFT
2 = −2π2G2c2

|q| +
π2G2

Eξ|q|

[
(1− 3ξ)c2

1 + 4ξ2E2c1c
′
1

]

+

∫
dD−1`

(2π)D−1

32Eξπ2G2c2
1

`2(` + q)2(`2 + 2p`)
,

MEFT
3 = 2πG3 ln q2c3 −

πG3 ln q2

E2ξ

[
(1− 4ξ)c3

1 − 8ξ3E4c1c
′
1

2 − 4ξ3E4c2
1c
′′
1 + 4ξ2E3c2c

′
1

+ 4ξ2E3c1c
′
2 − 2(3− 9ξ)ξE2c2

1c
′
1 + 2E(1− 3ξ)c1c2

]

+

∫
dD−1`

(2π)D−1

16π3G3c1

[
2Eξc2 − (1− 3ξ)c2

1 − 4ξ2E2c1c
′
1

]

`2|` + q|(`2 + 2p`)

−
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

256E2ξ2π3G3c3
1

`2
1(`1 + `2)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

, (10.6)

where the dependence of the functions cn on p2 is kept implicit, while c′n and c′′n denote

first and second derivatives with respect to p2. The unevaluated integrals are IR divergent

and manifest the iterative structure through factors of the coefficients cn. The integrals

in MEFT
2 and MEFT

3 that are proportional to c2
1 and c3

1 represent the double and triple

iteration of the 1PM potential. The integral in MEFT
3 that depends on the product c1c2

represents the iteration of the 1PM potential and 2PM potential.

It is straightforward to extend these results to higher orders in the PM expansion.

Note however that our construction here includes only the conservative sector of the effec-

tive theory as sufficient for extracting the classical conservative potential at 3PM order.

For describing dissipative dynamics and the conservative dynamics beyond 3PM, opera-

tors encoding gravitational wave emission must be included in the effective theory. See

section 12.3 for further discussion.

10.3 Conservative potential from matching

By construction, the effective theory given by eq. (10.1) captures the same physics described

by the full theory for two-to-two scattering of scalars interacting through exchanges of
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gravitons in the classical potential region. Thus, the full theory and EFT amplitudes must

match order by order in the PM expansion,

Mn =MEFT
n , (10.7)

and this allows us to successively determine the unknown coefficient functions

c1 , c2 , c3 ,. . . that parameterize the classical potential. In particular, matching at nPM

order determines the coefficient cn which comes from the tree-level diagram in the EFT

and appears linearly in the first term of the amplitudes in eq. (10.6). The matching at

nPM involves the lower order coefficients, ci for i = 1 to n− 1, through subtraction terms

which include infrared divergent integrals. Performing this matching procedure, we obtain

the classical conservative Hamiltonian at 3PM order

H3PM(p, r) =
√
p2 +m2

1 +
√
p2 +m2

2 + V 3PM(p, r) , (10.8)

with potential

V 3PM(p, r) =

3∑

n=1

(
G

|r|

)n
cn(p2) , (10.9)

where

c1 =
ν2m2

γ2ξ

(
1− 2σ2

)
,

c2 =
ν2m3

γ2ξ

[
3

4

(
1− 5σ2

)
− 4νσ

(
1− 2σ2

)

γξ
− ν2(1− ξ)

(
1− 2σ2

)2

2γ3ξ2

]
,

c3 =
ν2m4

γ2ξ

[
1

12

(
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3

)

−
4ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1

2√
σ2 − 1

− 3νγ
(
1− 2σ2

) (
1− 5σ2

)

2(1 + γ)(1 + σ)

− 3νσ
(
7− 20σ2

)

2γξ
+

2ν3(3− 4ξ)σ
(
1− 2σ2

)2

γ4ξ3

− ν2
(
3 + 8γ − 3ξ − 15σ2 − 80γσ2 + 15ξσ2

) (
1− 2σ2

)

4γ3ξ2
+
ν4(1− 2ξ)

(
1− 2σ2

)3

2γ6ξ4

]
.

(10.10)

The variables used in eq. (10.10) are defined below eq. (9.3) and in appendix A. Note that

plugging in c1 and c2 into the IR divergent integrals in eq. (10.6) exactly reproduces the IR

divergent integrals in eq. (9.3). This explicitly demonstrates the cancellation of IR artifacts

in the matching between full theory and the EFT.

The Hamiltonian in eq. (10.8) contains a mass singularity, reflecting the mass singu-

larity in the amplitude (9.3). Taking both masses small, the arcsinh term in c3 dominates

and gives

H3PM(p, r)→ −64
G3p4

|r|3 ln
m1m2

4p2
+ · · · = −4

G3s2

|r|3 ln
m1m2

s
+ · · · , (10.11)
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where we display only the singular term. As we explain in section 12, this singularity is

consistent with the known absence of collinear singularities in gravitational theories [160]

because the small mass and small momentum transfer limits do not commute.

11 Consistency checks

Our calculation of the 3PM Hamiltonian exploits a number of novel techniques. To vali-

date the result, we have performed several consistency checks against known results such

as the 4PN Hamiltonian, the Schwarzschild solution, and the 4PN and 2PM scattering an-

gles. These are of course not all independent but nevertheless it is satisfying to reproduce

multiple results in the literature.

As shown in figure 1, the overlap between our 3PM Hamiltonian and the 4PN Hamil-

tonian provides a nontrivial check. However, Hamiltonians depend on the choice of co-

ordinates and cannot be directly compared. In section 11.1, we construct a canonical

transformation that relates our 3PM Hamiltonian in eq. (10.8) and the 4PN Hamiltonian

in ref. [36], thus demonstrating their equivalence in the overlap region.

Alternatively, we may check the equivalence between Hamiltonians by comparing scat-

tering amplitudes, which encode only physical information and are independent of the

gauge choice. In section 11.2, we use the EFT framework in section 10 to compute scat-

tering amplitudes from two known potentials, the Schwarzschild potential and the 4PN

potential in ref. [36], and compare with our result in eq. (9.3). Note that the Schwarzschild

solution provides a check in the probe limit, m2 � m1, to all orders in velocity.

In section 11.3, we give a general derivation of the PM scattering angle from a generic

PM Hamiltonian with potential of the form given in eq. (1.2). We provide results for the

scattering angle as a function of the coefficient functions ci up to 4PM order. We evaluate

this explicitly through 3PM, and compare to results in the literature.

11.1 Coordinate transformation

The first check is the equivalence of our 3PM Hamiltonian and the 4PN Hamiltonian in

refs. [35, 36] in the overlap region, i.e. up to O(G3 v4). We need to find the correspond-

ing coordinate transformation on canonical variables (r,p). Consider a general canonical

transformation

(r,p)→ (R,P ) = (A r +B p, C p +D r) , (11.1)

where A,B,C,D are scalar functions in terms of r, p, masses, and G. Here we do not

assume bound orbits so the velocity expansion is not correlated to the expansion in G.

The coordinate transformation is not arbitrary, but needs to preserve the Poisson brackets

{Ri, Pj} = δij , and {Ri, Rj} = {Pi, Pj} = 0 , (11.2)

for i, j = 1, 2, 3. Given the constraints from Poisson brackets, matching the two Hamilto-

nians provides a highly non-trivial check for our result.

To find the allowed coordinate transformation, we use a bottom-up approach in the

spirit of ref. [162]. Some simple examples can also be found in refs. [163, 164]. In the
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PM scenario, we assume that the results can be separately expand in G and velocity. The

coordinate transformation can be parametrized as

A,C = 1 +
∑

k,n,l

fA,C(k, n, l)
Gk

|r|k p
2n (p · r̂)2l , (11.3)

B = |r|
∑

k,n,l

fB(k, n, l)
Gk

|r|k p2n (p · r̂)2l+1 , (11.4)

D =
1

|r|
∑

k,n,l

fD(k, n, l)
Gk

|r|k p
2n (p · r̂)2l+1 , (11.5)

where r̂ = r/|r|, fA,B,C,D(k, n, l) are functions of masses, and k, n, l are non-negative

integers. The above expressions are designed to have the correct classical counting in

(R,P ) following the discussion in section 2. They also preserve time-reversal symmetry,

under which (r,p)→ (r,−p). The range of k, n, l are bounded by perturbative structure.

First k has to be positive because the two Hamiltonians have identical kinematic energy.

To build a canonical transformation valid up to 4PN, we only need to consider k+n+ l ≤ 4

for A,C,D, and k + n + l ≤ 3 for B. Given the parametrization in eqs. (11.3)–(11.5), we

can solve the constraints imposed by the Poisson brackets in eq. (11.2), order by order in

G and velocity.15 This yields the space of consistent coordinate transformations, which we

solved up to 4PN order.

Given the canonical transformation built above, the remaining free coefficients can be

adjusted to obtain a perfect match between H4PN in eq. (8.41) of refs. [35, 36] and our

result in eq. (10.8),

H4PN(R,P )
∣∣∣
O(G3v4)

= H3PM(r,p)
∣∣∣
O(G3v4)

, (11.6)

valid up to O(G3v4). To leading order, the functions A,B,C,D in eqs. (11.3)–(11.4) are

A = 1 +
Gmν

2|r| + · · · , B =
G(2/ν − 1)

4m
p · r̂ + · · · , (11.7)

C = 1− Gmν

2|r| + · · · , D =
Gmν

2|r|2 p · r̂ + · · · , (11.8)

where the ellipsis stand for higher order terms available as supplementary material. Note

that the transformation (11.8) maps the Hamiltonian in refs. [35, 36] to our Hamiltonian,

which is the inverse of the transformation in ref. [59]. This proves that our Hamiltonian is

physically equivalent to that of refs. [35, 36] in the region where both are valid.

As an additional but redundant check we have also verified that our 3PM potential

produces the correct expressions for the binding energy of a circular orbit for the relevant

overlapping 2PN contributions.

15Solving the constraints order by order makes it technically simple, because the equations become linear

in fA,B,C,D(k, n, l) at each order.
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11.2 Comparison of scattering amplitudes

In the previous section we employed a canonical transformation to establish the equivalence

of Hamiltonians in different gauges. In this section, we alternatively check the equivalence

by comparing scattering amplitudes computed from known expressions for the potential in

the literature. To compute the scattering amplitude from a given potential we employ the

EFT framework described in section 10.

The Hamiltonian for a point particle in a Schwarzschild background [31, 165] is

HSch = mν

((
1− Gm

2|r|

)(
1 +

Gm

2|r|

)−1
√

1 +

(
1 +

Gm

2|r|

)−4 p2

m2ν2
− 1

)
, (11.9)

where m = m1 + m2 and ν = m1m2/m
2. Taking the probe limit, m2 � m1, and

Fourier transform of the potential term in eq. (11.9) yields the potential in eq. (10.2)

with the coefficients

c1(p2) = −m1

E2
(2p2 +m2

2) ,

c2(p2) =
m2

1

4E3
2

(9p4 + 13p2m2
2 + 2m4

2) ,

c3(p2) = − m3
1

4E5
2

(8p6 + 20p4m2
2 + 15p2m4

2 +m6
2) .

(11.10)

The coefficients ci are proportional to mi
1 so that each term is proportional to the ith power

of the Schwarzschild radius of the heavy mass. Since HSch does not depend on p · r, it

is in the same isotropic gauge as our result and a direct comparison can be made. The

expressions in eq. (11.10) agree with those in eq. (10.10) upon taking the probe limit.

It of course follows that the amplitudes also agree. To use the classical poten-

tial described by the coefficients in eq. (11.10) as a Feynman vertex we simply make

the replacement

p2 → k2 + k′2

2
, |q| → |k − k′| , (11.11)

where k and k′ are off shell. The rest of the computation follows the procedure described

in section 10. Here we simply plug the coefficients in eq. (11.10) into the EFT amplitudes

in eq. (10.6), yielding

MSch
1 =

4πGm1(2E2
2 −m2

2)

q2E2
,

MSch
2 =

3π2G2m2
1(5E2

2 −m2
2)

2|q|E2
,

MSch
3 = −πG

3 ln q2m3
1(18E2

2 −m2
2)

2E2
,

(11.12)

which agree with the results in eq. (9.3) upon taking the probe limit.

Now we discuss the computation of the scattering amplitude from the 4PN Hamiltonian

in ref. [36], which depends on p · r̂ and is thus in a gauge different from ours. In momentum
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χb rmin

p∞

Figure 30. The scattering angle in center of mass coordinates. The black circle denotes the center

of mass. The thick solid line is a schematic representation of the trajectory, with χ being the angle

of deflection in the final state.

space this 4PN classical potential takes the form

V (p, q) =
G

q2
b1
(
p2, (p · q̂)2

)
+
G2

|q| b2
(
p2, (p · q̂)2

)
+G3 ln q2 b3

(
p2, (p · q̂)2

)
+ · · · ,

(11.13)

where q̂ = q/|q| and the ellipsis denotes higher order terms. The coefficients bi truncate

to 4PN and scale as ∼ q0. The dependence on (p · q̂)2 arises from the Fourier transform of

the p · r̂ terms.

To define a Feynman vertex from the 4PN classical potential in eq. (11.13) we make

the replacements in eq. (11.11) together with

p · q̂ → 1

2

k2 − k′2

|k − k′| , (11.14)

where k and k′ are off shell. On shell we have k2 = k′2 and the right-hand side vanishes,

while p · q = q2/2 and the left hand side is dropped as a quantum contribution.

We then follow the general procedure in section 10 for computing the EFT bubble

diagrams, except in this case the expansion of the integrand that puts it in the form of

eq. (7.8) is more subtle due to the (k2
i −k2

i+1)/|ki−ki+1| terms from eq. (11.14). Unlike the

k2
i +k2

i+1 terms, these are not expanded in the classical limit since (k2
i −k2

i+1)/|ki−ki+1| ∼
q0. Nonetheless we can proceed by noting that a term of the form (k2

i − k2
i+1)n/|ki −

ki+1|n yields upon integration contributions that scale as pn + pn−2q2 + · · · + qn. This

counting, together with the fact that the two loop amplitude has superclassical terms that

are enhanced by q−2 relative to the classical scaling, implies that terms with n = 6 are

necessary for the comparison between the 4PN and 3PM amplitudes. Indeed, our final

scattering amplitude computed from the 4PN Hamiltonian in ref. [36] agrees with the 3PM

amplitude in eq. (9.3) where these regions overlap.

11.3 Scattering angle

Armed with the two-body Hamiltonian, obtaining the scattering angle for two black holes

(ignoring radiation effects) is straightforward. As explained in refs. [21, 72] the scattering

angle is a useful stepping stone to obtain an effective one-body Hamiltonian [3, 4].

Before specializing to the case of our 3PM Hamiltonian, consider first the general

problem of an arbitrary central-field Hamiltonian, H(r2,p2), describing the interaction of
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two particles in the center of mass frame. We shall assume that, as in our case, r and p

are canonically-conjugate to each other. The goal is to find (an integral representation for)

the scattering angle in terms of the total energy of the system and the angular momentum

or, equivalently, the impact parameter.

As in the classical case of Newtonian scattering, it is convenient to use polar coordi-

nates. As for that case, the central nature of the interaction implies that the scattering

process occurs in a plane as shown in figure 30, so it suffices to specify only the two planar

polar coordinates, r = rer and the corresponding momenta, p = prer + pθeθ. Here er and

eθ are unit vectors in the radial and angular directions, respectively. In these coordinates,

Hamilton’s equations are

ṙer + rθ̇eθ = 2(prer + pθeθ)F (r2,p2) , F (r2,p2) =
∂H(r2,p2)

∂p2
,

(ṗr − pθθ̇)er + (ṗθ + prθ̇)eθ = −2rerK(r2,p2) , K(r2,p2) =
∂H(r2,p2)

∂r2
,

(11.15)

and the two conservation laws are

J = |r × p| = |b× p∞| = rpθ = bp∞ , E = H(r2, p2
r + p2

θ) . (11.16)

where b ≡ |b| is the impact parameter. We denoted the norm of the three-momentum at

infinity by p∞; it is related to the total energy in the usual way for a scattering process,

E =
√
p2∞ +m2

1 +
√
p2∞ +m2

2 , (11.17)

The two components of the first of Hamilton’s equations and the eθ component of the

second suffice to determine the trajectory in terms of the radial momentum pr,

dr

dθ
=
r2

J
pr , (11.18)

which in turn is determined given by conservation of energy (11.16),

E = H(r2, p2
r + J2/r2) . (11.19)

We denote this solution by pr(r). The scattering angle is then obtained by integrating the

trajectory equation (11.18):

χ = −π + 2J

∫ ∞

rmin

dr

r2
√
pr(r)2

. (11.20)

We denoted the minimum distance between the two particles by rmin. At this point the

radial momentum pr changes sign, and therefore must vanish:

0 = pr(rmin) . (11.21)

We shall use this relation to determine rmin.16

16An alternative is to extract it from energy conservation, E = H(r2min, J
2/r2min).
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11.3.1 Scattering angle in the post-Minkowskian expansion

As discussed before, the conservative Hamiltonian for a system of two spinless compact

bodies in the post-Minkowskian expansion, neglecting radiation effects, has the form (1.2)

H(r2,p2) =
√

p2 +m2
1 +

√
p2 +m2

2 (11.22)

+ c1(p2)
G

|r| + c2(p2)

(
G

|r|

)2

+ c3(p2)

(
G

|r|

)3

+ c4(p2)

(
G

|r|

)4

+ . . . .

The dependence on the radial coordinate is sufficiently simple to allow us to find the

scattering angle for arbitrary coefficients ci(p
2), whose index reflects the PM order at which

they appear. Since this structure of the Hamiltonian relies only on the spinless nature of

the particles and Lorentz invariance of their interactions, such a general expression can

also be used to explore extensions of General Relativity by further fields and/or further

interactions.

The radial momentum pr as a function of the radial coordinate r ≡ |r|, obtained by

solving perturbatively (11.19), is

p2
r(r) =

p2
∞r

2 − J2

r2
+ P1

G

r
+ P2

(
G

r

)2

+ P3

(
G

r

)3

+ P4

(
G

r

)4

+O(G5) . (11.23)

The coefficients Pi will be listed shortly. The vanishing of pr(r) determines the minimum

distance rmin:

r2
min = b2 − b3P1

G

J2
+
b4

2
(P 2

1 − 2p2
∞P2)

G2

J4

− b5

8
(P 3

1 − 4p2
∞P1P2 + 8p4

∞P3)
G3

J6
− b6p6

∞P4
G4

J8
+O(G5) . (11.24)

Using eqs. (11.23) and (11.24) in eq. (11.20), it is not difficult to find the scattering

angle through fourth order in the PM expansion,17 in terms of the expansion coefficients

in eq. (11.23)

χ =
∑

i≥1

χiPM =
P1

p∞

(
G

J

)
+
π

2
P2

(
G

J

)2

− P 3
1 − 12p2

∞P1P2 − 24p4
∞P3

12p3∞

(
G

J

)3

+
3π

8
(P 2

2 + 2P1P3 + 2p2
∞P4)

(
G

J

)4

+O
(
(G/J)5

)
, (11.25)

where the χiPM is the angle at the order (G/J)i. The dependence on the momentum at

infinity may be traded for dependence on the total energy by inverting eq. (11.17):

p2
∞ =

1

4E2
(E2 − (m1 −m2)2)(E2 − (m1 +m2)2) . (11.26)

Lastly, the coefficients Pi of the G expansion of the radial momentum are:

P1 =− 2Eξc̄1 , (11.27)

P2 =− 2Eξc̄2 + (1− 3ξ)c̄2
1 + 4E2ξ2c̄1c̄

′
1 , (11.28)

17The expansion on the integrand in eq. (11.20) must be carried out carefully to avoid spurious singularity.
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P3 =− 2Eξc̄3 + 2(1− 3ξ)c̄1c̄2 − 4E3ξ3c̄1

(
2c̄′21 + c̄1c̄

′′
1

)
+ 4E2ξ2

(
c̄2c̄
′
1 + c̄1c̄

′
2

)

− 6E(1− 3ξ)ξc̄2
1c̄
′
1 +

(1− 4ξ)c̄3
1

E
, (11.29)

P4 =− 2Eξc̄4 +
8

3
E4ξ4c̄1

(
6c̄′31 + 9c̄1c̄

′′
1c̄
′
1 + c̄2

1c̄
′′′

1

)
+

5(1− 4ξ)c̄4
1

4E2
+

3(1− 4ξ)c̄2
1c̄2

E

− 4E3ξ3
(
2c̄2

(
c̄′21 + c̄1c̄

′′
1

)
+ c̄1

(
4c̄′1c̄′2 + c̄1c̄

′′
2

))
+ (1− 3ξ)c̄2

2

+ 4E2ξ2
(
2(1− 3ξ)c̄′′1c̄3

1 + 6(1− 3ξ)c̄′21c̄
2
1 + c̄′3c̄1 + c̄3c̄

′
1 + c̄2c̄

′
2

)

− 6E(1− 3ξ)ξc̄1

(
2c̄2c̄

′
1 + c̄1c̄

′
2

)
+ 2c̄1

(
(1− 5ξ)2c̄′1c̄2

1 + (1− 3ξ)c̄3

)
, (11.30)

where c̄i ≡ ci(p
2
∞), the primes denote derivatives with respect to the argument and, as

before, E = E1 + E2 and ξ = E1E2/E
2. The ci are the coefficients in the potential in

eq. (10.8) and are given in eq. (10.10). The expressions relating Pi≥5 to the coefficients of the

Hamiltonian are lengthier, but may be derived without difficulty by inverting eq. (11.16),

iteratively in Newton’s constant.

We note that all coefficients Pi have the structure

Pi = −2Eξc̄i + . . . , (11.31)

where the ellipsis only depend on Hamiltonian coefficients cj with j < i and their deriva-

tives; this may be easily understood from the special structure of the Hamiltonian (11.22).

We also note that there exists a close relation between the coefficients Pi and the EFT

amplitudes at the same order in G. Indeed, comparing eqs. (11.27), (11.28) and (11.29)

with (10.6) it is easy to see that Pi is proportional to the IR-finite part of the EFT ampli-

tudes. We expect that this feature will continue to higher PM orders.

11.3.2 Angle through 3PM and comparison with known results

Using (11.27), (11.28), (11.29) and (11.25) as well as the Hamiltonian (10.8)–(10.10), it is

straightforward to obtain that, through 3PM order, the conservative part of the scattering

angle is [59, 72]

χ1PM =
2(2σ2 − 1)√

σ2 − 1

νm2G

J
,

χ2PM =
3π

4

5σ2 − 1√
1 + 2ν(σ − 1)

ν2m4G2

J2
,

χ3PM = −
[

1

12

(
2(2σ2 − 1)√

σ2 − 1

)3

− 2

π

(
2(2σ2 − 1)√

σ2 − 1

)(
3π

4

5σ2 − 1√
1 + 2ν(σ − 1)

)

+ 4

√
σ2 − 1

2(σ − 1)ν + 1

(
− 3ν

(
1− 5σ2

) (
1− 2σ2

)
(2ν(σ − 1) + 1)

2(σ + 1)
(

2ν(σ − 1) +
√

2ν(σ − 1) + 1 + 1
)

− 4ν
(
−4σ4 + 12σ2 + 3

)
√
σ2 − 1

arcsinh

(√
σ − 1√

2

)

+
1

12

(
4νσ3 + 108νσ2 + 206νσ − 54σ2 − 6ν + 3

))]ν3m6G3

J3
. (11.32)
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Using the observation that Pi are proportional to the IR-finite parts M′i of the EFT

amplitudes evaluated at p = p∞, the angle can be rewritten very compactly as [59]

2πχ =
d1

J
+
d2

J2
+

1

J3

(
−4d3 +

d1d2

π2
− d3

1

48π2

)
, (11.33)

where di are defined in terms of M′i as

d1 = mγξq2M′1/|p| , d2 = mγξ|q|M′2 , d3 = mγξ|p|M′3/ ln q2 , (11.34)

and p→ p∞ is implicitly understood.

The 2PM angle has been obtained through a variety of methods in refs. [21, 22, 61, 108],

and our result is in agreement. Moreover, the 4PN terms in the 3PM angle reproduce the

corresponding terms in [166]. This is, of course, to be expected since we have already shown

that the 4PN part of our Hamiltonian reproduces (up to a canonical transformation) the

O(G3) part of the known 4PN Hamiltonian.

One may parametrize the higher-PM angle in several different ways; given the expected

relation between the Pi coefficients in eq. (11.23) and the classical limit of the IR-finite

parts of the i-loop amplitude, it seems convenient to parameterize them recursively in terms

of the lower-PM angle and Pi. For example, the 4PM angle without radiation effect can

be written as:

χ4PM =
3πp2

∞G
4

4J4
P4 +

3π

8
χ1PMχ3PM +

3

2π
(χ2PM)2 − 3

4
(χ1PM)2χ2PM +

π

32
(χ1PM)4 .

(11.35)

It would be interesting to understand the relation between the method used here to compute

the scattering angle and the one based on the eikonal limit of scattering amplitudes [107].

In particular, it would be interesting to see how terms proportional to the IR-finite part of

scattering amplitudes (11.33) arise from the recent amplitude-based methods [61, 71, 108].

12 Discussion

In this section we discuss various features and subtleties in our results. In particular, we

describe the mass singularity that appears in our 3PM results, as well as subtleties as-

sociated with infrared singularities. In general relativity infrared singularities are quite

tame compared to gauge theory, because they are a simple exponential of one-loop diver-

gence [158–160]. We therefore do not anticipate serious difficulties at higher loops when

applying four-dimensional methods to construct integrands relevant for extracting classical

physics. In this section we analyze the one- and two-loop situations, to show that straight-

forward application of four-dimensional helicity methods indeed gives the same final result

as a more careful treatment, where all steps are computed in D = 4 − 2ε dimensions, as

required when using conventional dimensional regularization.

We also comment on radiative contributions to conservative dynamics, which we show

are not relevant at 3PM order, but should become important at the next order in the

post-Minkowskian approximation.
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12.1 Mass singularities and collinear structure

A feature of the 3PM amplitude (9.3), Hamiltonian (10.8) and scattering angle (11.33) is

that as both masses are taken to vanish a logarithmic mass singularity develops, as displayed

in eq. (9.6). At first sight this might seem surprising because quantum amplitudes do not

have mass or, equivalently, collinear singularities [158–160]. Since our results originate

from a quantum amplitude, one might be surprised by its appearance in our final results.

In this section we trace the origin of the mass singularity as due to an inability to

interchange the classical and massless limits originating from our hierarchy of scales (2.5),

that takes the momentum transfer |q| � mi, while assuming that both masses mi have

fixed finite values.

As explained in section 2, we defined the PM potential such that, at each order in

Newton’s constant, its velocity expansion matches all corresponding terms in the PN ex-

pansion. Indeed, as discussed in section 11, the known 4PN Hamiltonian [35, 36] confirms

the first three terms of the small-velocity expansion of the arcsinh term which becomes

logarithmically-divergent in the massless limit. One may attempt to define a Hamiltonian

for which the limit is smooth by e.g. resumming the various logarithmic terms to all orders

in G expansion, but, given the above, it is unclear how such a result would match known

PN potentials, without introducing extraneous contributions. Of course, a function that

is smooth in the massless limit and contains all information necessary for constructing the

classical potential is the full quantum amplitude. However, this function is likely highly

nontrivial to construct and manipulate.

We verified that it is not possible to remove this mass singularity of the classical

potential by a canonical transformation, which is consistent with it appearing also in the

amplitude and in the scattering angle. This implies that the massless limit is generally

discontinuous — and in fact may be ill-defined if taken after arriving at the classical

potential. On the other hand, if the massless limit, is taken prior to taking the classical

limit we do expect to smoothly match onto other purely massless computations, such as

the scattering angle in the high-energy limit obtained via eikonal methods in ref. [167].

From an intuitive perspective, it is perhaps not so surprising that the massless limit

is subtle. After all, we usually think of a potential as mediating an instantaneous force

between two bodies. We naturally expand the potential about the static limit in which the

relative velocity is zero. However, if interacting particles are moving at the speed of light,

this notion of instantaneous potential becomes unclear.

Our non-relativistic integration methods explicitly assume, following the construction

of the classical limit in section 2, that the momentum transfer is much smaller than the mass

in order to define potential-mode gravitons. Although, not relying on a velocity expansion,

when using relativistic methods for evaluating the integrals in section 8 we make a similar

assumption, by first carrying out the asymptotic expansion at small-momentum transfer.

Once the integration is carried out, one naturally expects to encounter difficulties when

attempting to interchange the order of limits and compare the result with one obtained in

a massless theory. Similar interchange of limits issues appear, for example, in factorization

limits of infrared divergent theories [168]. Indeed, the massless limit of our results at
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two loops, included in eq. (9.6) does not match those of ref. [167], obtained in the high

energy limit.

In order to sharpen our understanding of the mass singularity appearing in our results,

we analyze its appearance in the case in the first subleading quantum terms in the small-q

expansion of the one-loop amplitude, as noted in refs. [60, 169]. We will do so as follows:

• We explicitly confirm the well-known cancellation of mass singularities in the full

one-loop quantum amplitude.

• We explicitly show that the small-q limit does not commute with the massless limit

for the first quantum correction to the amplitude.

Our conclusion will be that the 3PM classical potential indeed has a discontinuity in the

m→ 0 limit.

We note that while the mass singularity is not of phenomenological interest in the

inspiral region because the logarithm is of order unity, it is of some theoretical interest to

understand its origin and, even better, to attempt to exploit it. Typically, mass singularities

in gauge theories can be resummed to all orders in the coupling. This could conceivably

form the basis of new approximation schemes. In any case, in this section, we explain the

appearance of a mass singularity within our framework.

12.1.1 Absence of mass singularity for q2 � m2

A full analysis of the mass singularity at two-loop case is nontrivial, in part, because of the

difficulty of carrying out the loop integration without making explicit use of the classical

limit. We therefore instead carry out a detailed one-loop analysis. This offers impor-

tant insight, because it also exhibits a similar mass singularity, albeit starting in the first

subleading quantum contribution [60, 169]. The complete one-loop quantum amplitude is

straightforward to evaluate, allowing us to track both the cancellation of the mass singu-

larities in the full quantum theory [160] and to track how these cancellations break down

when expanding around the classical limit. The result is that the expansion around the

classical limit does not commute with the small-mass limit.

We first show that, for fixed kinematical invariants s and t, the one-loop quantum

amplitude does not contain a ln(m1m2) singularity for small m1 and m2, as expected.

While modern methods can help [82, 170], we used Feynman diagrams since this calculation

is simple enough, followed by standard loop integration methods [136, 137]. In carrying

out this computation, we ignore bubble-on-external-leg contributions, since these do not

carry the mass singularities: such contributions are suppressed by factors of mass-squared,

as follows from simple dimensional analysis and the fact that the only kinematic invariant

they can depend on is p2
i = m2

i . Because the calculation of the integrand and its integration

is straightforward, we do not include the details here, but merely quote the result focusing

on collinear and mass singularities.
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For one-loop calculations, it is possible to organize the amplitude as linear combinations

of scalar “master” integrals. Our results is given by18

M(1) =
17∑

i=1

ai I
(1)
i , (12.1)

where I
(1)
i is the master integral of the one-loop graph i in table 3. The master integral is

defined as

I
(1)
i =

∫
dD`

eγEε

iπD/2
1∏

j∈iDj
, (12.2)

where
∏
j Dj is the product of all inverse propagators corresponding to the edges of the

graph i in table 3, and γE is the Euler constant. The coefficients ai in eq. (12.1) depend

on external masses and Mandelstam invariants. A property that will be useful shortly is

that all coefficients are regular in the small m1 and m2 limit.

All the analytic expressions of the scalar tadpole, bubble, triangle, and box integrals

can be found in ref. [171]. We derive their small-mass logarithmic singularities using the

Mellin-Barnes method briefly reviewed in section 8.2 and implemented in the computer

codes MB.m and MBasymptotics.m; the resulting expressions are, of course, consistent with

the integrals listed in ref. [171]. Integrals I
(1)
1 , I

(1)
2 , I

(1)
3 , I

(1)
4 , I

(1)
10 , I

(1)
13 and I

(1)
14 are smooth

when mi → 0. I
(1)
1 and I

(1)
13 in fact vanish in this limit, being proportional to m2

i . The

other five bubble integrals are also regular in the massless limit, because in this limit the

total momentum flowing through them is fixed and nonzero. An important property of all

17 integrals is that they do not exhibit any power-like singularities in the small-mass limit

with fixed momentum transfer.

The singular terms as mi → 0 for the remaining ten integrals are collected in the third

column of table 4. Since none of them exhibits a power-like mass singularity to study the

lnmi behavior of the amplitude it is sufficient to evaluate the integral coefficients with

vanishing masses. These coefficients are collected in the second column of table 4.

It is not difficult to see that by multiplying the second and third column and adding

the resulting ten terms all the simple and double mass logarithms cancel out, as required by

the general argument of ref. [160]. For example, the complete soft and collinearly-divergent

terms in the sum of integrals I
(1)
6 and I

(1)
11 , proportional to (s2 + u2) ln(m1m2)/ε, cancel

against similar terms in the sum of integrals I
(1)
9 and I

(1)
12 . The remainder, proportional

to su ln(m1m2)/ε, cancels against analogous terms in the sum of I
(1)
8 and I

(1)
17 . Relations

between Mandelstam invariants are, of course, essential. A second cancellation that is

easy to see by inspection is that of the double logarithms ln(−t) ln(m1m2), which are

given only by I
(1)
7 + I

(1)
16 , I

(1)
9 and I

(1)
12 . The first combination of integrals gives the double

logarithms under discussion while the sum of the second integrals, each of which has the

double logarithms, produces the necessary overall coefficient.

All integrals in table 4 are essential for the complete cancellation of collinear singular-

ities. However, not all of them survive in the small-q limit. This can be seen by examining

18As mentioned above, this is not the complete one-loop amplitude because one needs to add the bubble-

on-external-line contributions and matter self-energy graphs, which we ignore here.
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m1

(1)

m1

m2

1

2 3

4

(2)
1

2 3

4
(3)

1 m1

(5)
1

2 3

4

m1 m1

(4)

1

2 3

4
1

2 3

4

2 3

41

m2

m1

m1

m1m1

(6) (7) (8)

m1

m2

1

2 3

4

(9)

Table 3. Master integrals I
(1)
1 to I

(1)
9 for the one-loop scattering amplitude in the full quantum

theory. The thin lines are massless and thick lines are massive. The internal masses are specified

explicitly. The other master integrals are obtained from the displayed one via relabeling. The

u-channel integrals, I
(1)
10,11,12, are given by I

(1)
2,6,9 with 2↔ 3. The master integrals I

(1)
13,14,15,16,17 are

obtained from I
(1)
1,4,5,7,8 by the map (1, 4)↔ (2, 3) as well as exchanging internal masses m1 ↔ m2.

the t-dependence of the combination of the integrals and their coefficients which needs

to yield t−1/2 or ln(−t) dependence to contribute to the classical 2PM potential or the

first quantum correction to it, respectively. For example, the combination a6I
(1)
6 does not

appear in the construction of 2PM potential, either at the classical and the first quantum

order, because it only depends on the s Mandelstam invariant.

12.1.2 Appearance of mass singularity for q2 � m2

Now that we understand in detail how the mass singularity cancels in the complete one-loop

quantum amplitude, we can explore the breakdown of this cancellation when expanding

around the classical limit. As noted in refs. [60, 169], while there is no mass singularity in

the 2PM amplitude used to derive the classical potential, there is one in the first subleading

quantum correction to it. This provides a much simpler case to study than at two loops,
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i ai I
(1)
i

5 0
1

ε
+ 2− 2 lnm1

6 π2s3

8

1

ε s
(lnm1 + lnm2)− 1

s

(
(lnm1)2 + (lnm2)2

)
+ . . .

7 1
16π

2t(s2 − su+ u2)
2

t

(
(lnm1)2 − ln(−t) lnm1

)
+ . . .

8 − 1
16π

2stu
2

t

(
1

ε
lnm1 − (lnm1)2

)
+ . . .

9 1
16π

2s4 2

st

(
1

ε
− ln(−t))

)
(lnm1 + lnm2) + . . .

11 1
8π

2u3 I
(1)
6

∣∣∣
(2↔3)

12 1
16π

2u4 I
(1)
9

∣∣∣
(2↔3)

15 0 I
(1)
5

∣∣∣
((1,4)↔(2,3);m1↔m2)

16 1
16π

2t(s2 − su+ u2) I
(1)
7

∣∣∣
((1,4)↔(2,3);m1↔m2)

17 − 1
16π

2stu I
(1)
8

∣∣∣
((1,4)↔(2,3);m1↔m2)

Table 4. Master integrals in the physical region and their coefficients in the small-mass limit.

Integrals not included explicitly do not have any lnmi singularities. Ellipsis contain terms which

are regular in the small-mass limit but may contain divergence in the dimensional regulator ε.

which nonetheless has similar features. We will first identify the mass singularity and recall

how it cancels in the quantum theory, and then proceed to show that it no longer does if

the amplitude is first series-expanded in small |q| to extract the classical potential.

In ref. [60], the first quantum correction to the classical potential is shown to have a

ln(m1m2/s) singularity. It originates from the one-loop scalar box integral I
(1)
9 in table 3,

which has no classical limit. Interestingly, the same type of function appears at two loops.

The complete expression of the box integral with two internal massive lines is [96, 171, 172]

I
(1)
9 =

2

t
√

(s−∆m2)(s−M2)

(
1

ε
− ln

(−t
µ2

))(
ln

(
1−

√
s−M2

s−∆m2

1 +
√

s−M2

s−∆m2

)
+ iπ

)
, (12.3)

where ∆m2 = (m1 −m2)2 and M2 = (m1 + m2)2. The dependence on t = −|q|2 and on

mass are factorized, so the small-t expansion and the massless limits commute trivially.

However, this integral exhibits a logarithmic singularity in the small-mass limit

I
(1)
9 =

2

t s

(
1

ε
− ln(−t)

)
ln

(
m1m2

s

)
+ . . . , (12.4)

where the ellipsis stand for a power series in mimj/s. Combining this with the cross-box

integral, I
(1)
12 , obtained by the replacement s → u = −s − t + M2 + ∆m2, and using the
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integral coefficients a9 and a12 in table 4 exposes the complete mass singularity of the first

subleading quantum correction to the amplitude:

a9I
(1)
9 + a12I

(1)
12 = −π

2

8
(s2 − su+ u2)

(
1

ε
− ln(−t)

)
ln

(
m1m2

s

)
+ . . . , (12.5)

where the ellipsis contain terms that are regular in the small-mi limit as well as higher

orders in a small-t expansion. This reproduces the mass singularity as found in ref. [60] in

the leading quantum correction to the 2PM amplitude.

As discussed above in section 12.1.1, in the small-mass limit taken at fixed t and

s, the overlap of soft and collinear singularities in the contribution of I
(1)
9 and I

(1)
12 ,

ln(m1m2)/ε, cancels against the sum of I
(1)
6 , I

(1)
11 , I

(1)
8 and I

(1)
17 , while the double logarithm,

ln(−t) ln(m1m2), cancels against the sum of I
(1)
7 and I

(1)
16 . Thus, to understand the fate of

collinear singularities in an expansion around the classical limit it suffices to expand these

integrals first at small t and then at small mi. Using MB.m and MBasymptotics.m one finds

that I
(1)
6 and I

(1)
11 are given by the same expressions in table 4. The other four integrals

are different. I
(1)
7 and I

(1)
8 are given by

(
I

(1)
7

∣∣
t→0

)∣∣
mi→0

= − π2

2m1

√−t −
1

2m2
1

(ln(−t)− 2 lnm1 − 2) + . . .

(
I

(1)
8

∣∣
t→0

)∣∣
mi→0

=
1

2m2
1

(
1

ε
− 2 lnm1

)
+ . . . , (12.6)

and I
(1)
16 and I

(1)
17 are given by the appropriate relabelings. The ellipsis stand for terms

which are regular in the limit t→ 0, |t| � m2
i and s fixed; on dimensional grounds all these

terms are increasingly more singular as mi → 0. Comparing with the relevant entries in

table 4 we see that I
(1)
7 , I

(1)
8 , I

(1)
16 and I

(1)
17 have different expansions around the small-mass

limit and around the classical limit. In particular, in the later expansion they contain

stronger-than-logarithmic singularities in the mass while missing the soft-collinear overlap,

lnmi/ε, and double-logarithms ln(−t) lnmi. It is therefore clear that the cancellation

of collinear singularities in the small-mass expansion is broken in the expansion around

the classical limit. Thus, the small-m and small-t expansions do not commute. Because

the 1/t appearing in the small-mass limit is replaced by a 1/m2
1 in the small t limit, the

contributions from I
(1)
7 and I

(1)
8 , and their coefficients in the expansion around the classical

result are subsubleading in the expansion around the classical limit and thus unable to

cancel the mass singularity (12.5) appearing in the first subleading quantum correction.

The expansions (12.6) may be confirmed by starting from the known analytic expres-

sions for I
(1)
7 and I

(1)
8 in the physical t < 0 region; for example, the latter integral is given

by [171]:

I
(1)
8 =

xt
m2

1 (1− x2
t )

[
lnxt

(
−1

ε
− 1

2
lnxt + 2 ln(1− x2

t ) + ln
m2

1

µ2

)

− π2

6
+ Li2(x2

t ) + 2Li2(1− xt)
]
, (12.7)
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where µ is the dimensional regularization scale and

xt =
−t

4m2
1



√

1 +
4m2

1

−t − 1




2

. (12.8)

While we have not carried out the corresponding calculation at two loops, the one-loop

calculation described in detail here illustrates that, generically, the small-m and small-t

expansions do not commute and moreover that the latter expansion contains remnants

of collinearly-singular terms that cancel in the former, in agreement with the general ar-

guments of ref. [160]. Based on our one-loop analysis, we therefore conclude that mass

singularities in the 3PM classical potential are not surprising.

12.2 Four- vs. D-dimensional integrands

An important issue which can help streamline future calculations is whether we can com-

pute the integrand for the classical potential using only four dimensional methods or

whether it is necessary to be more careful and use D-dimensional methods when dimen-

sionally regularizing infrared singularities.

When using four-dimensional helicity methods to construct the integrand the following

choices are implicitly made:

1. Terms containing Gram determinants or terms that vanish in four but not in D

dimensions are not included. Equivalently, terms containing loop momenta that are

outside the four-dimensional subspace are dropped.

2. The state-counting parameter is implicitly taken to be Ds = 4.

This is to be contrasted to conventional dimensional regularization which keeps all such

Gram determinants, and takes Ds = 4 − 2ε. Here we show that through two loops these

differences in prescription have no effect on the final classical potential. Some points which

appear to be generic underlie this conclusion:

• Terms with (−2ε)-dimensional components of loop momentum are suppressed in ε

and cannot contribute unless they interfere with 1/ε singularities. However, after

extracting an explicit factor of ε, it turns out that remaining integrals are equivalent

to integrals in higher dimensions that cannot be infrared singular. If a contribu-

tion remains it must come from an ultraviolet divergence whose origin is quantum

mechanical.

• The dependence on the state-counting Ds parameter may strike infrared singularities

and thus modify the integrand by finite terms. However, even if some terms were

to remain, the Ds prescription needs to be applied consistently and uniformly to

different orders in the PM expansion, including in the EFT. The net effect is that the

iteration terms in the EFT should automatically subtract any prescription differences.

• The (−2ε)-dimensional terms, whether from Ds or (−2ε)-dimensional components of

loop momenta, are of the wrong form to generate classical contributions. In particu-

lar, at 3PM order they do not generate the required ln q2 terms.
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While a detailed proof beyond 3PM order is beyond the scope of this paper, the fact

that the underlying ideas appear to be generic suggests that helicity methods will also be

sufficient at higher orders.

12.2.1 Integrand comparison at one loop

Before turning to the 3PM case, it is useful to understand how four-dimensional helicity

methods for constructing the integrand lead to the correct 2PM potential. As emphasized

earlier, at first sight one might worry that, in the presence of O(1/ε) infrared singularities,

terms of O(ε) originating from differences between four- and D-dimensional methods may

yield errors in finite terms. We will show that this does not happen.

As already noted in section 5, there are only four independent momenta in the one-loop

integrand: three external and one loop momentum. Thus, it is not possible to form a Gram

determinant that vanishes in four dimensions but not in general dimensions. Consequently,

four-dimensional helicity methods must fully reconstruct the D dimensional integrand, up

to the choice of the Ds parameter, which four-dimensional helicity methods implicitly fix

to Ds = 4. This reduces the question of whether the classical potential obtained through

helicity methods drops any important terms to that of whether we can use Ds = 4 in the

simplified physical state projector in eq. (5.20) without affecting the potential.

As we discussed in section 10, the triangle integrals are infrared-finite and the only

infrared divergence comes from box integrals. Thus, only their contribution is sensitive to

the value of Ds. The part of the box-integral coefficient proportional to (Ds − 4) can be

obtained from eq. (5.22) by cutting the i/τ15 propagator, so that all four box propagators

are cut. Combining this with the Ds = 4 result (4.39), gives the Ds-dependent coefficient

of the box integral

Cbox =((s−m2
1 +m2

2)2 − 2m2
1m

2
2)2 +

4m2
1m

2
2(Ds − 4)

(Ds − 2)

(
(s−m2

1 −m2
2)2 −m2

1m
2
2

Ds

Ds − 2

)

=

(
(s−m2

1 −m2
2)2 − 4

Ds − 2
m2

1m
2
2

)2

. (12.9)

Its essential property is that it is the square of the numerator of the tree amplitude in Ds

dimensions,

M4(1s, 2s, 3s, 4s) =
i

t

(
(s−m2

1 −m2
2)2 − 4

Ds − 2
m2

1m
2
2

)
. (12.10)

That is, the only modification that survives as ε → 0 is that the coefficient of the four

dimensional box integral (4.39) is the Ds-dimensional tree amplitude instead of the four-

dimensional one. Because the box contains the only infrared singularity of the one-loop

amplitude which, by construction, is the same as that of the EFT, it follows that the com-

plete Ds dependence of the one-loop amplitude is reproduced by the iterated Ds-dependent

tree amplitude of the EFT. The net effect is that, when the iterated tree including Ds de-

pendence is subtracted to determine the 2PM potential, the Ds dependence is subtracted

as well. We therefore find that the integrand constructed in four dimensions and the

D-dimensional one give the same 2PM classical potential, without even needing to look

further at detailed form of the integration.
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Although, as we argued above, four-dimensional methods fully reconstruct the com-

plete one-loop integrand as a function of momenta without dropping any kinematic terms

containing Gram determinants, by two loops this is no longer true. Moreover, this is no

longer true even at one loop if the external states carry spin or if one is interested in higher-

point amplitudes such as those containing outgoing gravitons. It is therefore instructive

to understand the effect of such terms on the classical potential, if they were present at

one loop. This also serves as a preview of the two-loop analysis, which is similar. The

types of terms we are interested in are proportional to Gram determinants formed from

five or more vectors so that they vanish in four dimensions. Equivalently, they can also

be characterized as being proportional to components of loop momenta that lie outside of

four dimensions. These two view points are equivalent because any Gram determinant that

vanishes in four-dimensions must be proportional to the extra-dimensional components of

loop momenta.

To analyze such numerator factors at one loop order, we separate the loop momentum,

following ref. [123], into the four-dimensional component, ¯̀, and the (−2ε) component, λ, as

` = ¯̀+ λ . (12.11)

Taking ε < 0 we have that

`2 = ¯̀2 − λ2 , (12.12)

where ¯̀·λ = 0 because ¯̀and λ lie in orthogonal subspaces. In general, when constructing in-

tegrands using four-dimensional helicity methods, we may drop terms19 proportional to λ2.

The question we would like to address is whether these dropped O(λ2) kinematic terms

might lead to incorrect results for the classical potential. To this end, we use the fact that

any one-loop integral in D = 4 − 2ε dimensions with numerator proportional to λ2r can

be expressed in terms of an integral in shifted dimension, D → D + 2r, whose numerator

no longer has the factor depending on the (−2ε) components of the loop momentum (see

eq. (A.15) of ref. [123]):

∫
d4−2ε` λ2rf(`µ, pµi , λ

2) = − 1

π
ε(1− ε) . . . (r − 1− ε)

∫
d4+2r−2ε` f(`µ, pµi , λ

2) . (12.13)

From this relation it is clear that the effect of adding a single factor of λ2 in the numerator is

equivalent to shifting the integration dimension from D = 4−2ε to D = 6−2ε dimensions,

and multiplying the resulting integral by a compensating ε-dependent factor.

Consider such a term in an amplitude. Since infrared divergences are absent in dimen-

sions D > 4, the only possible source of 1/ε poles to compensate the overall ε factor in

eq. (12.13) is an UV divergence. General renormalization theory requires that, because at

one loop there are no subdivergences, all UV divergences are local. Consequently, so are

the finite terms generated by multiplication by ε, cf. eq. (12.13). Since only terms propor-

tional to (−t)−1/2 contribute to the classical potential, we conclude that box integrals with

factors of λ2r>0 in the numerator will affect the amplitude only at some subleading order

19We also drop the λ2 in propagators, but in practice these are trivial to restore since the denominators

must be those of D-dimensional Feynman propagators.
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in the expansion around the classical limit. As we already noted, while such terms do not

appear in the elastic scattering of two spinless particles at one-loop, they do occur when

spin is added to the problem or when the scattering is allowed to be inelastic.

12.2.2 Integrand comparison at two loops

Consider now the possible dependence of the two-loop amplitude on the treatment of D

and Ds. The simplest case is that of graph 8 in figure 14, which factorizes into two one-loop

integrals, and is therefore already covered by the one-loop argument above.

The genuine two-loop four-point diagrams are of course more intricate. Here the

diagram integrands differ not only because of dependence on the Ds parameter, but also

because of the appearance of the Gram determinant G5, defined in eq. (6.17), that vanishes

in D = 4. As at one loop, we begin by discussing the possible kinematic contributions, and

then proceed to the Ds effects.

At first sight, the appearance of G5 seems to be a rather serious complication. For-

tunately, its effect at two loops is essentially identical to that of λ2 at one loop. This

can be understood using the Baikov representation of Feynman integrals [173–176]. For

our purpose we do not need the full power of this formalism, and instead follow a sim-

pler formulation given in e.g. ref. [177]. For any two-loop integral with four external legs,

the external momenta span a three-dimensional subspace, due to momentum conservation.

We decompose each of the two loop momenta, `µi , i = 1, 2, into a sum of their projection

onto these three dimensions (not to be confused with the three spatial dimensions used in

the NR integration), denoted by l̄µi , and the projection into the orthogonal complement

subspace of dimension20 (1− 2ε), denoted by λµi . Introducing the notation

λi · λj = λij , (12.14)

the two-loop integration measure can be rewritten as
∫
d4−2ε`1 d

4−2ε`2 =
2−1−2επ2−ε

π4Γ(−2ε)

∫ ∞

0
dλ11

∫ ∞

0
dλ22

∫ √λ11λ22
−
√
λ11λ22

dλ12

× (λ11λ22 − λ2
12)
−2−2ε

2

∫
d3 ¯̀

1d
3 ¯̀

2 , (12.15)

which holds for any integrand.

Note that (λ11λ22−λ2
12) = Gram(λ1, λ2) vanishes if the original integration dimension

is exactly 4, because in that case λµ1 and λµ2 are both one dimensional. In fact, (λ11λ22 −
λ2

12) can be shown to be proportional to G5; the constant of proportionality depends on

Mandelstam invariants and masses of external legs. So, up to overall factors, one power of

G5 in the numerator has the effect of increasing the integration dimension by 2, while also

introducing an extra factor of ε, similar to the one-loop situation in eq. (12.13). As at one-

loop, when extracting the classical potential we localize the energy integrals to matter poles,

leaving behind a spatial integration in one lower dimension for each loop. Taking advantage

of the lack of one-loop sub-divergences of UV origin in the NR integration with gravitons

20At one loop our λµ lives in a (−2ε) subspace, but this is only a minor difference and is due to our desire

to match formulas known in the literature.
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in the potential region and near odd spatial dimensions, a finite O(ε0) contribution can

only arise from an overall two-loop UV divergence. General renormalization theory implies

that, if they exist at all, these potential UV divergences are local. We therefore can obtain

at most four-scalar contact-term discrepancies between integrands constructed in D = 4

and in D = 4 − 2ε dimensions, from graphs 1, 2, 4, 5, and 7 in figure 14. Graphs 3 and

6 contain a two-loop triangle graph attached by a propagator to a three-point vertex. A

similar argument as above implies that the triangle integrals can at most give a local two-

loop divergence (in shifted dimension). Classical (small-q) power counting further implies

that the coefficient of this divergence is at least of the order of O(|q|). The additional tree-

level vertex and propagator will dress it by a factor of the form P2(pi)/q
2, where P2 is some

quadratic polynomial resulting from the tree-level scalar field stress tensor. Thus, as for the

other graphs, Gram determinant terms in graphs 3 and 6 cannot have the requisite ln q2

dependence to contribute to the 3PM conservative classical potential while also scaling at

most as O(q0).

Unlike the one-loop amplitude, several of the two-loop graphs exhibit Ds dependence

and, moreover, for some of them it does not enter in a factorized fashion. A detailed analysis

is therefore needed to track, graph by graph, the fate of the O(ε) terms. Nevertheless,

infrared singularities of amplitudes have a universal structure to all loop orders based on

the one loop singularities [158–160] and are identical in the complete theory and the EFT.

Because of this we expect that, as at one loop, the two- and higher-loop amplitude terms

that depend on the prescription used for the state-counting parameter Ds are automatically

compensated by analogous terms in the EFT amplitudes and therefore do not contribute

to the conservative potential.

The independence of the final results on the treatment of (−2ε)-dimensional compo-

nents of loop momenta and Ds can also be understood through an analysis of the mechanics

of the appearance of ε/ε-type contributions in the nonrelativistic integration method and

matching with the EFT described in sections 7 and 10. At two loops, the energy master

integrals are finite. The two (D− 1)-momentum integrals are then done in succession and,

as before, the first one is finite. The second one is done in D − 1 = 3 − 2ε dimensions

and has both ultraviolet and infrared artifacts. The latter correspond to iterations and are

canceled at the integrand level in the matching of the full theory and the effective theory.

The only 1/ε factor which may give nontrivial contributions is the ultraviolet divergence

from the second space-like momentum integral. To understand whether it can contribute

nontrivially it is useful to recall that the ln q2 signaling a contribution to the classical

potential arises from |q|ε/ε in a regularized integral. However, terms of O(ε) from Ds or

elsewhere can produce finite terms only when multiplying the 1/ε; such terms will therefore

not have the necessary ln q2 factor and will not affect to the classical potential.

As a direct check, following the methods described in sections 5 and 6, we have ex-

plicitly derived the 3PM classical potential starting from a loop integrand constructed in

D = Ds = 4 − 2ε dimensions and compared it to the potential derived from an integrand

obtained using four-dimensional helicity methods; the resulting potentials are identical,

confirming our discussion above. The fact that, through two loops, we can construct the

necessary integrand using efficient helicity methods makes it promising that the same will

be true at higher loop orders.
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12.3 Radiative contributions to the conservative potential

The method of nonrelativistic integration described in section 7 incorporates the effects

of potential-mode gravitons only. As discussed in section 2.2, potential modes are never

on shell, and thus can only make a real contribution to the scattering and hence to the

conservative potential. However, we are still left with the converse question: can radiation

modes also contribute to the conservative dynamics? As we explain, the answer is negative

at our 3PM order of interest. However, radiation-mode contributions to the conservative

potential should become nontrivial at 4PM order.

To understand why, let us recapitulate some known facts about the dynamics of a

binary inspiral in the language of EFT. In the standard picture, the gravitational modes

are split between near-zone (potential mode) and far-zone (radiation mode) degrees of

freedom. Potential gravitons have spatial momentum of order 1/r, which is the minimum

distance between the constituents, while radiation gravitons have spatial momentum of

order v/r. Integrating out the near-zone gravitons yields an EFT for the two-body system

describing a pair of compact objects interacting via a conservative gravitational potential.

Afterwards, we integrate out the far-zone gravitons to obtain a one-body EFT describing

the entire binary.

Let us consider the effects of radiation gravitons order by order. The leading effect of

radiation is the Burke-Thorne radiation-reaction force [178–180], which is generated by the

one-loop self energy diagram in the one-body EFT. This process corresponds to the real

emission of a graviton from the binary system. The effect is purely dissipative, in the sense

that the induced response is purely odd under time reversal. Consequently, Burke-Thorne

radiation-reaction does not contribute to the conservative dynamics.

The next-to-leading order effect arises from a two-loop self-energy diagram in the one-

body EFT. This process is the so-called tail effect [130–135], corresponding to graviton

radiation emitted from the binary which scatters off the monopole gravitational potential

of the system before falling back in. The tail effect has both time-even and time-odd

contributions. The time-even piece produces the leading contribution to the conservative

potential from radiation modes. This term scales as ∼ G2
...
I

2 where
...
I is the triple time

derivative of the center of mass quadrupole moment, which at leading order is I ∼ (rirj −
1/3r2δij). The time derivatives necessarily produce at least one acceleration and one

velocity, so
...
I ∼ Gv, so the tail effect occurs at order G4v2 [35, 42, 43]. Even including

arbitrarily higher order PN corrections to I we reach the same conclusion. Simply counting

powers in G, we see that the tail effect induces conservative radiation reaction force starting

at 4PM order.

The tail effect implies a breakdown of the naive split between near- and far-zone

dynamics. In the original works on the PN potential, the tail effect appears as a non-local

in time “hereditary” effect [130–135, 181]. From the point of view of EFT [42, 43] the

tail effect appears as an infrared divergence. This divergence is nonlocal in r and thus

cannot be absorbed by any counterterm. Given the understanding of this subtlety in the

PN expansion we do not expect any difficulties dealing with it at 4PM order.
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13 Conclusion

This paper details a general framework for deriving the conservative dynamics of a compact

binary system using modern methods from scattering amplitudes and effective field theory.

This framework has been used in our previous work to obtain the 3PM conservative two-

body Hamiltonian [59], which we described in detail in the present paper. This result is

of interest [72] to see whether velocity corrections lead to improvements when building

accurate waveform models for LIGO/Virgo data analysis.

Our approach exploits the double-copy construction [81–83], which expresses gravi-

tational scattering amplitudes in terms of simpler gauge-theory ones. Generalized uni-

tarity [73–77] then efficiently builds loop integrands for multi-loop scattering processes

that encode the classical dynamics. The input gauge-theory tree amplitudes are remark-

ably compact when using four-dimensional helicity states [92–94, 182]. Using a battery of

standard and nonstandard integration methods, including relativistic and nonrelativistic

approaches, we then integrate these expressions and obtain the 3PM amplitude for classi-

cal scattering mediated by potential gravitons. The nonrelativistic approach of ref. [58],

in particular, efficiently targets the classical contributions and displays excellent scaling to

higher loop orders. By matching the amplitude to one computed in a low-energy effective

field theory [58, 69], we then extract the 3PM conservative potential.

We described various cross-checks of our result for the 3PM potential against existing

literature, including showing that our expressions are equivalent to known PN results where

these expansions overlap. Our result has already been analyzed in an initial study [72] for its

potential to improve gravitational wave template models for LIGO/Virgo, when combining

it with state of the art PN calculations [35, 36, 42, 43], effective one-body models [3, 4]

and numerical relativity [5–7]. While preliminary, this study shows interesting promise.

While the 3PM potential we have computed is now state of the art in PM order,

it is natural to think about pushing forward to 4PM. We expect that our approach to

integrand construction via double copy and unitarity should scale well to quite high loop

orders, as highlighted by their application to supergravity theories up to five-loop order [84–

89]. Moreover, our method of nonrelativistic integration should also scale well to higher

loops [58]. In fact, since it mirrors the integration approach of NRGR — which has been

amenable to integration up to the five-loop 5PN [44, 45]—we believe the same will be true

in our case.

As we proceed to higher orders in the PM expansion we do expect to encounter new

issues and subtleties. One expected subtlety that should arise at 4PM is the appearance

of conservative radiation-reaction, whereby radiation graviton modes back react on the

conservative dynamics [42, 43]. We expect this will appear through nontrivial infrared

divergence structure in the 4PM amplitude and in the effective field theory mapping; this

deserves a dedicated study as part of any 4PM computation.

There are a number of other issues that warrant further attention. Through 3PM

we showed that, in line with expectations, we can compute the integrand using four-

dimensional techniques and then afterwards apply dimensional regularization to deal with

infrared singularities, without missing any pieces. While it seems plausible that this
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should be generally true, can we find an all-orders proof? If true then we could use

four-dimensional helicity amplitudes to construct loop integrands, without needing to deal

with D-dimensional integrand constructions.

Prior to carrying out the integration we merged the unitarity cuts into a single inte-

grand. When extracting the classical potential the regions of integration that contribute

effectively have matter cuts reimposed. This suggests that there should, in fact, be a

method that allows us to extract the classical potential at high loop orders directly from

the unitarity cuts without merging them into a single integrand.

While our nonrelativistic integration methods are efficient and more importantly have

good scaling properties, it would be helpful to also have a fully-relativistic integration

method. For example, one would like a relativistic method that does not involve using

integration by parts [136, 137], which tends to lead to large systems with poor scaling

properties. The Mellin-Barnes representation could be such an approach, but this has

difficulties stemming from nontrivial analytic continuations into the physical region [143–

145]. On the other hand, we know that after integration final results are remarkably

simple, strongly suggesting that, in fact, much more efficient relativistic techniques can be

developed to perform the loop integration in the classical limit.

Furthermore, the present work is purely on a single aspect of the binary inspiral which

is the conservative dynamics. However, the ideas we have described here are extendable

and continuously linked to a large array of connected phenomena that are crucial for

extracting useful physics from the LIGO/Virgo experiment. For example, here we have

only considered nonspinning objects described by scalars, but the initial intrinsic angular

momentum of the objects can be important for the gravitational-wave signal. Another effect

that we have neglected is related to the finite size of the constituents of the binary system,

which is particularly critical for understanding neutron-star mergers and the extraction

of the nuclear equation of state. Conveniently, spin and finite-size effects can be both

systematically incorporated into any relativistic calculation in the usual way, as highlighted

by recent work in this direction [49–56]. The other obvious future direction is to include

dissipation effects. On-shell radiation has been studied in terms of concrete double-copy

procedure [183–191] and also soft theorems [192–198], albeit the incorporation of effective

field theory has not yet been explored.

A surprising feature of our results for the 3PM amplitude, potential and scattering

angle is that they contain a term which is singular in the small-mass limit, introducing a

discontinuity with massless results. At first sight this might seem to violate the absence of

such mass singularities in the full quantum amplitude, but as we explained in some detail

in section 12, they can appear in the classical limit due to an interchange of limits issue. A

rather intriguing prospect would be to understand the appearance of the mass singularity

well enough to predict its coefficient to any order in the PM expansion.

Another aspect worthy of future study pertains to possible resummation in Newton’s

constant G. This is a natural question, given that we have analytic expressions now for the

1PM, 2PM, and 3PM potential, amplitude and scattering angle. A closely related question

is whether the mass logarithms discussed in section 12.1 can also be resummed in some way.

Given the appearance of new structures at 3PM order it may be that a proper attempt
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at resummation of the expansion in G would require having at least the 4PM result at

hand. In any event, we look forward to gaining a deeper understanding of gravitational

perturbation theory towards the goal of improving predictions of gravitational radiation

from compact astrophysical sources. It may turn out that the most useful and novel aspect

of the present work will be its potential for unraveling the systematic structure of the PM

expansion of general relativity.
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A Notations and conventions

We collect some notation here for easy reference.

Signature (+,−,−,−)

Spacetime dimension D = 4− 2ε

Spacetime dimension for state counting Ds

Newton’s constant G

Color-ordered gauge-theory amplitude A

Color-dressed gauge-theory amplitude A
Gravitational amplitude italic M

nPM amplitude Mn

nPM EFT amplitude MEFT
n

Eight diagrams in figure 14 1,2, . . .

Diagrams related by crossing 1,2, . . .

Relative position r

Relative velocity v

Impact parameter b

Large angular momentum J

Mass of particle 1 m1

Mass of particle 2 m2

Incoming four-momentum of particle 1 (E1,p) = −pµ1
Incoming four-momentum of particle 2 (E2,−p) = −pµ2
Outgoing four-momentum of particle 1 (E1,p

′) = pµ4
Outgoing four-momentum of particle 2 (E2,−p′) = pµ3
Four-momentum transfer qµ = (0, q) = (0,p− p′) = (p2 + p3)µ

Mandelstam variables s = (p1 + p2)2, u = (p1 + p3)2, t = (p2 + p3)2 = −q2

Total energy E = E1 + E2

Symmetric energy ratio ξ = E1E2/E
2

Total mass m = m1 +m2

Symmetric mass ratio ν = m1m2/m
2

Energy mass ratio γ = E/m

Invariant product σ = p1 · p2/m1m2

Full relativistic integrand I
Spatial integrand Ĩ
Matter field loop four-momentum kµ = (ε,k)

Graviton loop four-momentum `µ = (ω, `)

Number of loops nL

Number of matter propagators nM

Number of graviton propagators nG

Integrand numerator N
Effective numerator Ñ
Matter pole ωP

Antimatter pole ωA

Scattering angle χ
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B Tree amplitudes for unitarity cuts

The starting point for our construction of the 3PM two-body Hamiltonian is gauge-theory

amplitudes for a scalar coupled to gluons. In this appendix we give the four- and five-

point gauge-theory tree amplitudes needed as input into the cut construction of gravity

amplitudes through the KLT and double-copy relations. We do so for both the four-

dimensional and for the dimensionally-regularized D-dimensional theories.

B.1 Four-dimensional tree amplitudes

While we will, at times, use generalized unitarity cuts containing three-point tree ampli-

tudes, they have the disadvantage that they contain a reference vector needed to define the

helicity states. As noted in section 3, it is more convenient to instead start with the rather

clean forms of the four- and five-point trees and generate cuts containing three-point tree

amplitudes by taking residues on the appropriate cut propagators. By doing so we bypass

the need of explicit three-point tree amplitudes.

The independent two-gluon two-scalar tree amplitudes needed in the KLT rela-

tions (3.2) are:

Atree
4 (1s, 2+, 3+, 4s) = i

m2 [2 3]

〈2 3〉 τ12
,

Atree
4 (1s, 2+, 3−, 4s) = i

〈3| 1 |2]2

s23τ12
, (B.1)

where τ12 = 2p1 · p2 = s2
12 −m2, sij = (pi + pj)

2 and legs 1 and 2 are massive scalar legs

with mass m. The ‘±’ superscripts refer to the helicities of the two gluons legs and the ‘s’

superscript labels a scalar leg. The four-gluon amplitudes are [121, 122, 199, 200]:

Atree
4 (1−, 2−, 3+, 4+) = i

〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 ,

Atree
4 (1−, 2+, 3−, 4+) = i

〈1 3〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 . (B.2)

The relevant tree-level helicity amplitudes at five-points are A(s,+,+,+, s),

A(s,+,+,−, s), and A(s,+,−,+, s). While the first one is already rendered in a compact

form by ref. [182], the other two contain undesirable spurious singularities that complicate

loop integration. Compact forms for all required five-point tree amplitudes are:

Atree(1s, 2+, 3+, 4+, 5s)

= −i m2 [4|51|2]

τ12 〈2 3〉 〈3 4〉 τ45
,

Atree(1s, 2+, 3+, 4−, 5s)

= i
τ45[34] 〈4| 51 |4〉 〈4| 1 |2] +m2 [2 3] 〈3 4〉 ([4 3] 〈4| 51 |4〉 − s23 〈4| 5 |3])

τ12 〈2 3〉 s34 τ45 s51
,

Atree(1s, 2+, 3−, 4+, 5s)

= i
1

τ12 s23 s34 τ45 s51

[
−[23][34] 〈3| 1 |2] 〈3| 5 |4] 〈3| 51 |3〉 (B.3)

+m2 〈2 3〉 〈3 4〉 [2 4]2 ([3 4] 〈3| 1 |2]− [2 4] τ45)
]
,
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Figure 31. The four-point cubic diagram whose numerator (B.7) determines all other diagram

numerators.

where τ12 = 2p1 · p2 = s12 −m2 and τ45 = 2p4 · p5 = s45 −m2 are the inverse propagators

and pij = pi+pj . We use these expressions in sections 4 and 6 to obtain compact forms for

the four-dimensional generalized cuts of one- and two-loop four-scalar amplitudes. Here

m is the mass of the scalar legs 1 and 5. (The second amplitude in eq. (B.3) corrects a

relative sign compared to ref. [182]).

To use the KLT relations, we also need amplitudes where the massive scalars are in

different positions in the color ordering. They can be obtained simply through the U(1)

decoupling identities,

Atree(1s, 2, 3, 5s, 4) = −Atree(1s, 4, 2, 3, 5s)−Atree(1s, 2, 4, 3, 5s)−Atree(1s, 2, 3, 4, 5s) . (B.4)

which hold for any helicity configuration. We will also use reflection symmetry

Atree(1s, 2, 5s, 4, 3) = −Atree(5s, 2, 1s, 3, 4) , (B.5)

and cyclic symmetry

Atree(1s, 2, 3, 5s, 4) = Atree(5s, 4, 1s, 2, 3) . (B.6)

B.2 D-dimensional tree amplitudes

We will also need D-dimensional versions of tree amplitude in our explicit checks that the

four-dimensional trees are sufficient to capture the full classical conservative potential. We

express the D-dimensional amplitudes in terms of diagrams with only cubic vertices. Using

BCJ duality, a simple way to specify all the numerators is in terms of the so-called DDM

basis [201], where only a single numerator is sufficient to generate the full amplitude. For

example, eq. (5.10) yields the two scalar two gluon amplitude. The BCJ numerator for the

four-gluon amplitude corresponding to the diagram in figure 31 is

ns = n(1, 2, 3, 4)

=
i

2

{
(ε1 · ε4) (2(p1 · ε2)(p12 · ε3) + 2(p34 · ε2)(p4 · ε3)− s(ε2 · ε3))

+ (4(ε3 · ε4)(p2 · ε1)(p3 · ε2)− 4(ε3 · ε4)(p3 · ε1)(p12 · ε2)− 4(ε2 · ε4)(p2 · ε1)(p12 · ε3))

+ (4(ε2 · ε1)(p3 · ε4)(p2 · ε3)− 4(ε2 · ε1)(p2 · ε4)(p34 · ε3)− 4(ε3 · ε1)(p3 · ε4)(p34 · ε2))

+ 2s (ε1 · ε3)(ε2 · ε4) + 2u (ε1 · ε2)(ε3 · ε4)− 4(ε2 · ε3)(p2 · ε1)(p3 · ε4)
}
. (B.7)

Note that under dimensional reduction in eq. (3.3) and eq. (3.4), this numerator reduces to

s-channel numerator in eq. (5.10). The u-channel numerator is given by swapping 2↔ 3,

nu = n(1, 3, 2, 4) , (B.8)

– 118 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
6

1

2 3

5

4

Figure 32. The five-point diagram whose kinematic numerator determines all other diagram

numerators.

and the t-channel is given by Jacobi identity (3.8)

nt = n(1, 2, 3, 4)− n(1, 3, 2, 4) . (B.9)

In terms of these numerators, the four-point tree-level gauge-theory amplitude is

Atree
4 (1, 2, 3, 4) =

nscs
s

+
ntct
t

+
nucu
u

, (B.10)

while the gravity amplitude is

M tree
4 (1, 2, 3, 4) = i

(
n2
s

s
+
n2
t

t
+
n2
u

u

)
. (B.11)

We also need the D-dimensional two-scalar three-gluon tree amplitude. Using again

the DDM basis and BCJ duality, we need only specify the numerator corresponding to the

diagram in figure 32,

n(1s, 2, 3, 4, 5s)

=
i√
8

{
− 4(p1 · ε2)(p12 · ε3)(p123 · ε4)− 2(ε2 · ε3)(p12 · p3) ((p1 − p5 + 2p2) · ε4)

+ 4(p345 · ε2)(p45 · ε3)(p5 · ε4) + 2(ε3 · ε4)(p12 · p3) ((p1 − p5 − 2p4) · ε2)

+ 4(ε2 · ε4) ((p2 · ε3)(p4 · p5)− (p4 · ε3)(p1 · p2))

+ (ε2 · ε4)((p1 − p5) · ε3)(p2
12 + p2

45 − 2m2)
}
, (B.12)

where pijk = pi+pj+pk. The propagators and color factors can be read from the diagrams.

The diagrams where the scalars are held fixed and the gluon legs are permuted are obtained

simply by relabeling the gluon legs 2, 3, 4 in eq. (B.12). The remaining 9 diagram, for a

total of 15, are obtained by using the BCJ identities for the kinematic numerator factors

n. As usual, the full amplitudes are assembled using eqs. (3.5) or (3.10).

The D dimensional tree-level amplitudes with two scalar lines presented here have the

useful property that the on-shell Ward identities,

A|εi→pi → 0 , (B.13)

hold for the gluon or graviton i = 2, 3, . . . n − 1 without using transverse property on

other legs. Whenever the Ward identity holds without using the transverse properties on

any other legs, we will call this a “generalized Ward identity”. An amplitude with this

property is obtained by appropriately adding terms that vanish due to on-shell conditions

to a generic form that amplitude. The existence of such amplitudes has been exploited

in the calculations of refs. [59, 60] to help simplify D-dimensional constructions of the

integrand. We use this property in the calculations in sections 5 and 6 to simplify physical-

state projectors that appear in D-dimensional unitarity cuts.
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C Series resummation

We collect here the series encountered in eq. (9.1) and their resummation. We have the

simple geometric series and its square:

1 +
p2

E2
2

+
p4

E4
2

+
p6

E6
2

+ · · · ≡ E2
2

m2
2

,

1 +
2p2

E2
2

+
3p4

E4
2

+
4p6

E6
2

+ · · · ≡ E4
2

m4
2

,

1− p2

3E2
2

− 5p4

3E4
2

− 3p6

E6
2

+ · · · ≡ 7E2
2

3m2
2

− 4E4
2

3m4
2

,

(C.1)

where the third series is a linear combination of the first two. For the resummation of the

IR pieces we encountered the series

1 +
p2

2E2
2

+
3p4

8E4
2

+
5p6

16E6
2

+ · · · ≡ E2

m2
,

1 +
3p2

2E2
2

+
15p4

8E4
2

+
35p6

16E6
2

+ · · · ≡ E3
2

m3
2

,

(C.2)

where the first one is the square root of the geometric series above and is also encountered

in the box-triangle example in section 7.3.4.

We have series that involve the expansion of square roots and hence binomial coeffi-

cients, which we denote here as B[m,n]:

1 +
5p2

4E2
2

+
11p4

8E4
2

+
93p6

64E6
2

+ · · · ≡ 2

∞∑

n=0

(1 + (−1)nB[−1/2, n+ 1])
p2n

E2n
2

=
2E3

2(E2 −m2)

m2
2p

2
,

1 +
7p2

2E2
2

+
51p4

8E4
2

+
151p6

16E6
2

+ · · · ≡
∞∑

n=0

(4(n+ 1)− 3(−1)nB[−3/2, n])
p2n

E2n
2

=
E3

2(4E2 − 3m2)

m4
2

.

(C.3)

The first series above appears in the example of the two-loop scalar box-triangle integral.

Finally we have series that resum to arcsinh |p|mi , which is the rapidity of particle i = 1

or 2:

1 +

(
E3

1 + E3
2

)

3E2
1E

2
2E

p2 +

(
E5

1 + E5
2

)

5E4
1E

4
2E

p4 +

(
E7

1 + E7
2

)

7E6
1E

6
2E

p6 + · · ·

≡ 1

E

∞∑

n=0

(E2n+1
1 + E2n+1

2 )p2n

(2n+ 1)E2n
1 E2n

2

=
E1E2

[
arcsinh |p|m1

+ arcsinh |p|m2

]

E|p| ,
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1 +

(
E3

1 + E3
2

)

5E2
1E

2
2E

p2 +
3
(
E5

1 + E5
2

)

35E4
1E

4
2E

p4 + · · ·

≡ 3

E

∞∑

n=0

(E2n+1
1 + E2n+1

2 )p2n

(2n+ 1)(2n+ 3)E2n
1 E2n

2

=
3E1E2

2p2

[
1 +

m2
1 arcsinh |p|m1

+m2
2 arcsinh |p|m2

E|p|

]
,

1 +
3p2

5E2
1

+
3p4

7E4
1

+ · · · ≡ 3
∞∑

n=0

p2n

(2n+ 3)E2n
1

= −3E2
1

p2
+

3E3
1arcsinh |p|m1

|p|3 ,

1 +
6p2

5E2
1

+
9p4

7E4
1

+ · · · ≡ 3
∞∑

n=0

(n+ 1)p2n

(2n+ 3)E2n
1

=
3E4

1

2m2
1p

2
−

3E3
1arcsinh |p|m1

2|p|3 . (C.4)

The first series above appears in the example of the two loop scalar flipped double triangle

and scalar H integrals.

Note that a few of the series shown in this appendix are related to each other by the

operator d
dxx(·), where x is the small parameter. Moreover, notice that the resummation

often yields factors of Ei that cancel with those multiplying the series in eq. (9.1). In

particular, combining those factors into the series and then expanding in large mi can lead

to even simpler series.

D Evaluation of H diagram and imaginary part

We extract the small-t limit of the H and H integral which has been calculated for the

fully quantum case in ref. [97] for the case of equal masses (motivated by massive-quark

scattering). We start from results in the Euclidean region in the aforementioned reference,

written in terms of harmonic polylogarithms, and with different notations for the kinematic

variables and perform the necessary analytic continuation. The material here differs from

section 8.1 in two respects: (1) here we do not give results for tensor integrals; (2) here we

present the full ln(−t) terms of the H integral and H integral separately, without adding

them together to localize on matter poles, and without dropping imaginary contributions.

This gives us an important confirmation on our techniques, because the classical limit is

taken only at the end, after all loop integrations are carried out in a fully relativistic fashion.

The ln(−t) term of the scalar H integral in the small-t limit, starting from eq. (4.1) of

ref. [97], is

IH

∣∣
ln(−t) = − 1

192π4

1

m2t2
1√

σ2 − 1
arcsinh

√
σ − 1

2

×
[
4 arcsinh2

√
σ − 1

2
− 6iπ arcsinh

√
σ − 1

2
− 2π2

]
, (D.1)

where we have divided by (−256π4) to account for the difference in normalization compared

to the one used here and σ is defined in eq. (7.60), taking m1 = m2 = m. The result for
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the scalar H integral is

IH

∣∣
ln(−t) =

1

192π4

1

m2t2
1√

σ2 − 1
arcsinh

√
σ − 1

2

[
4 arcsinh2

√
σ − 1

2
+ π2

]
. (D.2)

Adding eq. (D.1) and eq. (D.2) for the H and H diagram, the ln(−t) coefficient in the

sum is

(
IH + IH

) ∣∣
ln(−t) =

1

64π3

1

m2t2
1√

σ2 − 1
arcsinh

√
σ − 1

2

[
π + 2i arcsinh

√
σ − 1

2

]
. (D.3)

The real part is in perfect agreement with our previous results in eqs. (7.79) and (8.10)

from expansions around the potential region, after setting m1 = m2 = m (and accounting

for the 1/t2 extracted from the earlier expressions). Eq. (D.3) also has a nonzero imaginary

part as expected, corresponding to the possibility that the internal graviton propagator not

attached to the matter lines goes on shell. This term, however, does not contribute to the

conservative classical potential. The agreement of the real part of the ln(−t) coefficient

with our result is a direct confirmation of the appearance of a mass singularity in the

classical part of this integral, starting with a full quantum evaluation.
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any medium, provided the original author(s) and source are credited.

References

[1] LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary

black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

[2] LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves

from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101

[arXiv:1710.05832] [INSPIRE].

[3] A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body

dynamics, Phys. Rev. D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE].

[4] A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole

coalescences, Phys. Rev. D 62 (2000) 064015 [gr-qc/0001013] [INSPIRE].

[5] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95 (2005) 121101

[gr-qc/0507014] [INSPIRE].

[6] M. Campanelli, C.O. Lousto, P. Marronetti and Y. Zlochower, Accurate evolutions of

orbiting black-hole binaries without excision, Phys. Rev. Lett. 96 (2006) 111101

[gr-qc/0511048] [INSPIRE].

[7] J.G. Baker et al., Gravitational wave extraction from an inspiraling configuration of

merging black holes, Phys. Rev. Lett. 96 (2006) 111102 [gr-qc/0511103] [INSPIRE].

[8] Y. Mino, M. Sasaki and T. Tanaka, Gravitational radiation reaction to a particle motion,

Phys. Rev. D 55 (1997) 3457 [gr-qc/9606018] [INSPIRE].

– 122 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03837
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.05832
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9811091
https://doi.org/10.1103/PhysRevD.62.064015
https://arxiv.org/abs/gr-qc/0001013
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0001013
https://doi.org/10.1103/PhysRevLett.95.121101
https://arxiv.org/abs/gr-qc/0507014
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0507014
https://doi.org/10.1103/PhysRevLett.96.111101
https://arxiv.org/abs/gr-qc/0511048
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0511048
https://doi.org/10.1103/PhysRevLett.96.111102
https://arxiv.org/abs/gr-qc/0511103
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0511103
https://doi.org/10.1103/PhysRevD.55.3457
https://arxiv.org/abs/gr-qc/9606018
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9606018


J
H
E
P
1
0
(
2
0
1
9
)
2
0
6

[9] T.C. Quinn and R.M. Wald, An axiomatic approach to electromagnetic and gravitational

radiation reaction of particles in curved space-time, Phys. Rev. D 56 (1997) 3381

[gr-qc/9610053] [INSPIRE].

[10] J. Droste. The field of n moving centres in Einstein’s theory of gravitation, Proc. Acad. Sci.

Amst. 19 (1916) 447.

[11] A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations and the problem of

motion, Annals Math. 39 (1938) 65.

[12] B. Bertotti, On gravitational motion, Nuovo Cim. 4 (1956) 898.

[13] R.P. Kerr, The Lorentz-covariant approximation method in general relativity I, Nuovo Cim.

13 (1959) 469.
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approach to the general relativistic two-body problem, Phys. Rev. D 62 (2000) 021501

[Erratum ibid. D 63 (2001) 029903] [gr-qc/0003051] [INSPIRE].

[163] N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections

to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67 (2003) 084033

[Erratum ibid. D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].

[164] B.R. Holstein and A. Ross, Spin effects in long range gravitational scattering,

arXiv:0802.0716 [INSPIRE].
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theory amplitudes with massive particles, JHEP 07 (2005) 025 [hep-th/0504159] [INSPIRE].

[183] A. Luna et al., The double copy: Bremsstrahlung and accelerating black holes, JHEP 06

(2016) 023 [arXiv:1603.05737] [INSPIRE].

[184] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color

charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

[185] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation

from the bi-adjoint scalar double copy, Phys. Rev. D 96 (2017) 065009 [arXiv:1705.09263]

[INSPIRE].

[186] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.

D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].

[187] D. Chester, Radiative double copy for Einstein-Yang-Mills theory, Phys. Rev. D 97 (2018)

084025 [arXiv:1712.08684] [INSPIRE].

[188] W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the

classical double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].

[189] J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy,

Phys. Rev. D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].

[190] C.-H. Shen, Gravitational radiation from color-kinematics duality, JHEP 11 (2018) 162

[arXiv:1806.07388] [INSPIRE].

[191] Y.F. Bautista and A. Guevara, From scattering amplitudes to classical physics: universality,

double copy and soft theorems, arXiv:1903.12419 [INSPIRE].

[192] A. Laddha and A. Sen, Gravity waves from soft theorem in general dimensions, JHEP 09

(2018) 105 [arXiv:1801.07719] [INSPIRE].

[193] A. Laddha and A. Sen, Logarithmic terms in the soft expansion in four dimensions, JHEP

10 (2018) 056 [arXiv:1804.09193] [INSPIRE].

[194] A. Laddha and A. Sen, Observational signature of the logarithmic terms in the soft graviton

theorem, Phys. Rev. D 100 (2019) 024009 [arXiv:1806.01872] [INSPIRE].

– 132 –

https://doi.org/10.1142/S0217751X11053687
https://arxiv.org/abs/1104.3993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3993
https://doi.org/10.1007/JHEP04(2017)083
https://arxiv.org/abs/1701.07356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.07356
https://doi.org/10.1103/PhysRevD.93.041701
https://arxiv.org/abs/1511.01071
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01071
https://doi.org/10.1086/150259
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,158,997%22
https://doi.org/10.1063/1.1665603
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,12,401%22
https://arxiv.org/abs/1907.02869
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.02869
https://doi.org/10.1088/1126-6708/2005/07/025
https://arxiv.org/abs/hep-th/0504159
https://inspirehep.net/search?p=find+EPRINT+hep-th/0504159
https://doi.org/10.1007/JHEP06(2016)023
https://doi.org/10.1007/JHEP06(2016)023
https://arxiv.org/abs/1603.05737
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.05737
https://doi.org/10.1103/PhysRevD.95.125010
https://arxiv.org/abs/1611.03493
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03493
https://doi.org/10.1103/PhysRevD.96.065009
https://arxiv.org/abs/1705.09263
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.09263
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1103/PhysRevD.97.085019
https://arxiv.org/abs/1711.09493
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.09493
https://doi.org/10.1103/PhysRevD.97.084025
https://doi.org/10.1103/PhysRevD.97.084025
https://arxiv.org/abs/1712.08684
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.08684
https://doi.org/10.1103/PhysRevD.97.105018
https://arxiv.org/abs/1712.09250
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09250
https://doi.org/10.1103/PhysRevD.97.105019
https://arxiv.org/abs/1803.02405
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.02405
https://doi.org/10.1007/JHEP11(2018)162
https://arxiv.org/abs/1806.07388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.07388
https://arxiv.org/abs/1903.12419
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.12419
https://doi.org/10.1007/JHEP09(2018)105
https://doi.org/10.1007/JHEP09(2018)105
https://arxiv.org/abs/1801.07719
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.07719
https://doi.org/10.1007/JHEP10(2018)056
https://doi.org/10.1007/JHEP10(2018)056
https://arxiv.org/abs/1804.09193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.09193
https://doi.org/10.1103/PhysRevD.100.024009
https://arxiv.org/abs/1806.01872
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.01872


J
H
E
P
1
0
(
2
0
1
9
)
2
0
6

[195] B. Sahoo and A. Sen, Classical and quantum results on logarithmic terms in the soft

theorem in four dimensions, JHEP 02 (2019) 086 [arXiv:1808.03288] [INSPIRE].

[196] M. Ciafaloni, D. Colferai and G. Veneziano, Infrared features of gravitational scattering and

radiation in the eikonal approach, Phys. Rev. D 99 (2019) 066008 [arXiv:1812.08137]

[INSPIRE].

[197] A. Laddha and A. Sen, A classical proof of the classical soft graviton theorem in D > 4,

arXiv:1906.08288 [INSPIRE].

[198] A. PV and A. Manu, Classical double copy from color kinematics duality: a proof in the soft

limit, arXiv:1907.10021 [INSPIRE].

[199] S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986)

2459 [INSPIRE].

[200] M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B

298 (1988) 653 [INSPIRE].

[201] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at

tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

– 133 –

https://doi.org/10.1007/JHEP02(2019)086
https://arxiv.org/abs/1808.03288
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.03288
https://doi.org/10.1103/PhysRevD.99.066008
https://arxiv.org/abs/1812.08137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.08137
https://arxiv.org/abs/1906.08288
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.08288
https://arxiv.org/abs/1907.10021
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.10021
https://doi.org/10.1103/PhysRevLett.56.2459
https://doi.org/10.1103/PhysRevLett.56.2459
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,56,2459%22
https://doi.org/10.1016/0550-3213(88)90001-6
https://doi.org/10.1016/0550-3213(88)90001-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B298,653%22
https://doi.org/10.1016/S0550-3213(99)00809-3
https://arxiv.org/abs/hep-ph/9910563
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9910563

