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Foreword

Computer simulation is used nowadays in virtually all civil and mechanical engineering applications,
either for designing or operating complex systems. However, the analyst rarely has a complete knowl-
edge of the parameters of the system under consideration, either because they are naturally variable
(aleatory uncertainty, such as environmental conditions) or because of lack of knowledge (epistemic
uncertainty). Modelling the sources of uncertainty and then propagate them through the computa-
tional model to estimate statistical properties of the predictions is becoming an ubiquitous task for
the engineer.

In this report the two types of uncertainties are considered simultaneously, in the context where
a probabilistic model is built from scarce data. The formalism of choice for this representation is
that of “imprecise probability theory”, i.e. p-boxes, which are a natural extension of the well-known
cumulative distribution function of an uncertain parameter. P-boxes allow the analyst to conveniently
represent the two sources of uncertainty as a whole.

This research report was written as a PhD thesis (ETH Dissertation Nr. 24078) by Roland SCHÖBI
and presents original methods and algorithms to carry out uncertainty propagation, sensitivity anal-
ysis and structural reliability in the context of imprecise probability modelling. The applicability
of these approaches has been demonstrated in realistic case studies from geotechnical and aerospace
engineering. I would like to thank Roland SCHÖBI for his high commitment all along this research
project, and the outstanding quality of his contributions.

Zurich, September 2019
Bruno Sudret
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Summary

Nowadays, computer simulations are a popular engineering tool to design systems of even increa-

sing complexity and to determine their performance. Theses simulations aim at reproducing the 
physical process at hand and hence provide a solution to the underlying governing equations. As 
an example, finite element models have become a standard tool in modern civil and mechanical 
engineering. Such models exploit the available computer power, meaning that a single run of 
the model can take up to hours or days of computing.

At the same time, uncertainties are intrinsic to theses processes and simulation methods. 
Typically model parameters are not known deterministically, but inferred from data and then 
modelled probabilistically. However, a common situation in practice is to have a limited budget 
for data acquisition and hence to end up with sparse datasets. This introduces epistemic uncer-

tainty (lack of knowledge) alongside aleatory uncertainty (natural variability). The mix of these 
two sources of uncertainties is often referred to as imprecise probabilities.

Among the various concepts to describe imprecise probabilities, there are probability-boxes 
(p-boxes), which model the uncertainty by an interval-valued cumulative distribution function. 
Hence, p-boxes are a generalization of the popular probability theory. P-boxes provide an 
intuitive framework that is more general than conventional probability theory and that allows 
for a clear distinction between aleatory and epistemic uncertainty. Due to its intuitive setup,

p-boxes are easy to interpret and hence easy to apply to practical problem settings.

In this context, engineers are concerned with uncertainty quantification. In other words,

engineers analyse how the uncertainty in the model parameters affects the uncertainty in the

quantity of interest. In this sense, uncertainty quantification includes uncertainty propagation,

structural reliability analysis, sensitivity analysis, and design optimization.

Due to the complexity of the computer simulations and the use of p-boxes, however, these

analyses may become intractable. In order to reduce the computational costs and to make uncer-

tainty quantification analyses tractable, meta-models are used throughout this thesis. Kriging

(a.k.a Gaussian process modelling) and polynomial chaos expansions (PCE) are two state-of-

the-art meta-modelling algorithms which approximate the complex computer simulations with

an easy-to-evaluate function. Furthermore, the proposed Polynomial-Chaos-Kriging approach

further increases the accuracy of the approximation when comparing to Kriging and PCE.

Depending on the uncertainty quantification analysis, the meta-modelling approaches are

modified to fit the needs of the specific analysis in the context of p-boxes. For uncertainty pro-

pagation and structural reliability analysis, two-level meta-modelling approaches are proposed.

The use of meta-models at different stages of the analysis allows for an efficient, i.e. accurate

and inexpensive, estimation of the quantity of interest. Emphasis is taken on the limitation of

computational resources, i.e. of the number of runs of the complex computer simulations.

The approaches are validated on a number of benchmark function, ranging from purely
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analytical function to finite element models. Further, case studies from the field of aeronautics

and geotechnical engineering show the applicability of the proposed algorithm in realistic and

complex engineering settings. The variety of examples shows the flexibility and versatility of

the proposed algorithms. Hence, the proposed approaches are of importance for the engineering

practice when the standard probabilistic approach fails to characterize the uncertainty.



Zusammenfassung

Heutzutage sind Computersimulationen ein beliebtes Hilfsmittel für Ingenieure um immer kom-

plexer werdende Systeme zu untersuchen. Diese Simulationen beabsichtigen es physikalische

Prozesse abzubilden und bieten eine Lösung zu den zugrundeliegenden Gleichungen. Zum Beis-

piel ist das Finite-Elemente-Model zu einem Standardwerkzeug des modernen Bau- und Mas-

chinenbauingenieurs geworden. Diese Modelle nutzen die verfügbaren Computerkapazitäten, so

dass eine einzelne Ausführung des Modelles Stunden bis Tage beanspruchen kann.

Gleichzeitig sind Unsicherheiten in diesen Modellen und Prozessen allgegenwärtig. In vielen

Fällen sind die Modelleingangsgrössen nicht bekannt, werden von Datensätzen abgeleitet und

werden anschliessend mit einem probabilistischen Ansatz modelliert. Jedoch kommt es in der

Praxis häufig vor, dass das Kontingent für Datensammlungsaktionen begrenzt ist und die Da-

tensätze darum klein sind. In diesem Fall treten neben aleatorischen Unsicherheiten (natürliche

Variabilität) auch epistemische Unsicherheiten (Wissenslücken) auf. Die Mischung dieser bei-

den Unsicherheitsquellen wird in der Literatur mit dem Term unpräzise Wahrscheinlichkeiten

(englisch: imprecise probabilities) beschrieben.

Unter den zahlreichen Konzepten zur Beschreibung von unpräzisen Wahrscheinlichkeiten

sind die Wahrscheinlichkeitsboxen (Englisch: p-boxes) zu finden. Wahrscheinlichkeitsboxen bes-

chreiben die Unsicherheit mit einer intervallwertigen kumulativen Verteilungsfunktion (CDF).

Darum sind die Wahrscheinlichkeitsboxen eine Verallgemeinerung der beliebten Wahrscheinli-

chkeitstheorie. Wahrscheinlichkeitsboxen bieten einen intuitiven Ansatz, welcher allgemeiner

als die klassische Wahrscheinlichkeitstheorie ist und welcher eine klare Unterscheidung zwischen

aleatorischen und epistemischen Unsicherheiten erlaubt. Wegen des intuitiven Ansatzes sind

Wahrscheinlichkeitsboxen einfach zu interpretieren und darum relevant für praktische Problem-

stellungen.

In diesem Kontext befassen sich Ingenieure mit der Quantifizierung von Unsicherheiten.

Ingenieure analysieren, wie die Unsicherheit in den Eingangsgrössen die Unsicherheit in den

Ausgangsgrössen beeinflusst. Die Quantifizierung von Unsicherheiten umfasst unter anderem

die Übertragungen von Unsicherheiten, Verlässlichkeitsanalysen, Sensitivitätsanalysen und Ent-

wurfsoptimierungen.

Wegen der Komplexität der Computersimulationen und der Verwendung von Wahrscheinli-

chkeitsboxen sind diese Analysen allerdings oft schwierig zu bewältigen. Metamodelle werden

in dieser Doktorarbeit verwendet um die hohen Computeraufwände zu reduzieren und um die

Analysen zur Quantifizierung von Unsicherheiten schliesslich zu ermöglichen. Kriging (im En-

glischen auch bekannt als ”Gaussian process modelling”) und ”Polynomial Chaos Expansions”

(PCE) sind zwei Metamodellierungsansätze auf dem neusten Stand der Technik, welche die kom-

plexen Computersimulationen mit einer simplen Funktion annähern. Ausserdem ermöglicht die

vorgeschlagene Polynomial-Chaos-Kriging-Methode die Genauigkeit solcher Annäherungen im
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Vergleich zu Kriging und PCE weiter zu steigern.

Diese Metamodellmethoden werden so angepasst, dass sie den spezifischen Charakteristi-

ken der verschiedenen Analysen zur Quantifizierung von Unsicherheiten entsprechen. Für die

Übertragung von Unsicherheiten und die Verlässlichkeitsanalyse werden zweistufige Metamodel-

lierungsalgorithmen vorgeschlagen. Die Verwendung von Metamodellen an verschiedenen Stellen

der Analyse erlaubt eine effiziente, i.e. präzise und günstige, Abschätzung der Ausgangsgrösse.

Der Fokus steht dabei auf der Begrenzung von Computerressourcen, insbesondere der Anzahl

Computersimulationen.

Die vorgeschlagenen Algorithmen sind an einer Vielzahl von Benchmarkbeispielen validiert,

einschliesslich rein analytischen Funktionen bis Finite-Element-Modelle. Ausserdem werden Fal-

lbeispiele aus der Aeronautik und der Geotechnik diskutiert um die Anwendbarkeit der vorges-

chlagenen Algorithmen in realistischen und komplexen Ingenieursproblemstellungen zu erörtern.

Die Vielfalt der Anwendungen zeigt die Flexibilität und Vielseitigkeit der vorgeschlagenen Al-

gorithmen. Darum sind die vorgeschlagenen Algorithmen relevant für die Ingenieurspraxis,

insbesondere wenn der wahrscheinlichkeitsbasierte Standardansatz versagt.
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CHAPTER 1

Introduction

1.1 Context

In modern engineering, mathematical models are used to represent physical and engineering

processes and systems. The application fields are various, including the modelling of subsurface

flow of contaminated water through different layers of soil (Deman et al. 2016), slope stability

under spatially varying soil parameters (Sudret & Schöbi 2017), and the deflection of a frame

structure subjected to horizontal wind loads (Schöbi & Sudret 2016b). The mathematical model

aims at reproducing the behaviour of the physical system for a given set of parameters. As an

example, the soil model may predict the stability of a newly built slope. Moreover, the set

of parameters may include the physical and mechanical properties of soil layers (e.g. Young’s

modulus or internal friction angle), the loading at the initial state, and the degradation behaviour

over time.

Due to the diversity of the applications and the sophistication of the analyses, the complexity

of the mathematical representation may range from simple analytical functions to complex

models (e.g. partial differential equations, continuum mechanics, or dynamics). Often, complex

mathematical models have no closed form solution and rely on solvers such as finite element or

finite difference schemes. A large number of commercial and non-commercial software packages

have been developed in the past decade intending to solve these finite element models.

Despite the differences in application field and complexity, mathematical models have one

feature in common: they represent simplifications of the reality. The simplification can be cha-

racterized by two aspects: (i) limited applicability and (ii) limited accuracy. The mathematical

model typically represents a limited system with boundary conditions rather than the entire

universe. In other words, the mathematical models represent a small aspect of reality and,

hence, have limited applicability. As an example, the model for slope stability is not suitable

for analysing the deflection of the frame structure. The limited accuracy of the mathematical

model is coupled to the definition of the target system. Due to the limiting boundaries of the

system under consideration, some influence factors are neglected in the mathematical model.

This naturally introduces discrepancies between the behaviour of the physical system and the

mathematical model. Hence, the mathematical model generally approximates the real behavi-
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our at a certain level of accuracy. As an examples, the soil model could use a linear elastic

constitutive model whereas reality is different.

In the context of this discussion, the famous quote ”essentially all models are wrong but some

are useful” by Box & Draper (1987) becomes meaningful. Among all possible models available

to the modeller, the choice of an appropriate model is crucial for the success of the analysis. The

modeller aims at describing the physical system by defining an appropriate subsystem, boundary

conditions, set of parameters, and (potentially) a solver.

When having identified a suitable mathematical model, different sources of inaccuracies

may occur. As the mathematical model represents a simplification of reality, it entails an

intrinsic model error. Furthermore, modelling complex systems requires numerical solvers, as

mentioned above, which may introduce numerical and discretization errors. Last but not least,

the parameters of the mathematical model might not be known perfectly. The different types

of inaccuracies might or might not be present in a given problem setting. However, they may

interact with each other. Hence, an important task is to quantify the errors in order to be able

to interpret the results.

The inaccuracies and errors are generally modelled by uncertainty models/concepts. In order

to do so, two main sources of uncertainty are identified in the literature: aleatory and epistemic

uncertainty. Aleatory (”alea” is Latin for ”dice”) uncertainty describes the natural/intrinsic

variability of a quantity of interest and is hence non-reducible. An example of pure aleatory

uncertainty is a fair dice, where the outcome of a dice throw varies naturally between one to six

and cannot be predicted. Epistemic (”επιστηµη” is Greek for ”knowledge/science”) uncertainty,

on the other hand, describes the lack of knowledge and is potentially reducible by acquiring more

knowledge. An example of pure epistemic uncertainty is the measurement of the height of an

existing building. Due to the fact that the building has been constructed, there exists a real

but unknown value for the building height. The height might be measured by e.g. eyesight,

measuring tape, GPS, or theodolite. However, using different measurement devices will lead

to different values. The theodolite will likely give a more precise value than measuring with

your own eyes. In practical applications, the two sources of uncertainty can appear in the same

problem setting and therefore should be considered as such by the modeller.

Having defined a proper mathematical model and having quantified the corresponding un-

certainties, the modeller becomes a decision maker. Ultimately, the mathematical model is used

to understand the physical process and make some related decisions, which can be manifold. In

the slope stability example, the model might be used to estimate whether the constructed slope

is reliable in the long term. In the case of the frame structure, the model might indicate whether

the building would be safe in case of a hurricane and can hence be built or not.

1.2 General framework for uncertainty quantification

Uncertainty quantification (UQ) is a general term to summarize the various tasks and challenges

described previously. Following the developments by de Rocquigny (2006a,b), Sudret (2007),

and the mindset of the Chair of Risk, Safety and Uncertainty Quantification at ETH Zurich, a

general framework for uncertainty quantification is presented here and frames the developments

in this thesis.

A summary of the main elements is sketched in Figure 1.1. Each box represents a different

task (grey area) as well as a number of examples (white area). The basic steps are presented in

depth in the following.
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Step B

Quantification of
sources of uncertainty

Step A

Model(s) of
the system

Step C

Uncertainty
propagation

Constants, probability
distribution, intervals,
probability-boxes, . . .

Computational model,
limit-state function,

analytical function, . . .

Response variable,
failure probability,

quantiles, moments, . . .

Datasets, expert
knowledge, physi-
cal constraints, . . .

Step B-

Parameter evidence

Bayesian inference,
sensitivity measures,
model reduction, . . .

Step D

Iteration

Figure 1.1: Uncertainty quantification framework.

• Step A: in a first step, the computational model representing the physical system or

process is defined. It may consist of an analytical function in the simplest case. However,

the computational model may also consist of an entire workflow containing different pieces

of software or even physical experiments (as in e.g. hybrid modelling, which combines

physical experiments and finite element models (Abbiati et al. 2017)). As a summary, the

computational model maps a set of input parameters to a quantity of interest (QoI) that

is further used for decision making.

• Step B: the quantification of sources of uncertainty aims at identifying input parameters

and modelling them appropriately. A variety of modelling choices are available, including

constants (i.e. no uncertainty), probability distributions, intervals, and imprecise probabi-

lities. Hence, the task of the modeller is to choose a suitable model and calibrate it for each

input parameter. The suitability of an uncertainty model may be defined through various

factors, such as the available information on the input parameters, general knowledge on

the system, as well as the purpose of the analysis.

• Step B-: the definition of the uncertainty model in Step B is based on pieces of knowledge,

which can be manifold. In general, however, the knowledge on a given parameter consists

of two types of information: (i) datasets and (ii) expert knowledge. Datasets are collections

of data obtained by field investigations. The term expert knowledge/judgement includes

experiences made in similar previous projects as well as logical constraints, among other

components.

• Step C: uncertainty propagation analyses how the uncertainty in the input parameters is

transformed through the computational model towards the QoI. When the input is mo-

delled by uncertain parameters, the QoI is likely to be uncertain, too. Hence, Step C

analyses different statistics of interest, depending on the type of question at hand. Statis-

tics of interest include mean values, higher-order moments, failure probabilities, quantiles,

and distributions.

• Step D: the iteration step connects the response QoI to the input parameters. There are

two main frameworks mentioned here to do so: (i) sensitivity analysis and (ii) Bayesian
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inference. Sensitivity analysis measures the impact of each uncertain input parameter onto

the uncertainty in the QoI. This can be seen as a post-processing technique to Step C.

Bayesian inference refines the uncertainty model in the input parameters as a function of

the uncertainty in the QoI and potentially additional data.

As it is indicated in Figure 1.1, the uncertainty quantification analysis is an iterative process.

In fact, a typical engineering workflow includes a continuous refinement of the uncertainty model

based on additional knowledge (i.e. datasets, observations). This iterative learning process

allows for an improved prediction accuracy with time.

1.3 Problem statement

In the general framework for uncertainty quantification, a number of challenges appear. Starting

in Step A, consider a computational model that represents a physical system well enough for

the purpose of uncertainty quantification (i.e. numerical and discretization error are neglected).

Note that, as a simplification in this thesis, the computational model is considered to be deter-

ministic, i.e. the repeated evaluation with the same set of input parameters leads to the same

model response. In practice this assumption is not always fulfilled. However, the computational

model may be complex and expensive-to-evaluate. Considering the subsurface flow example,

a finite element model simulation may take minutes to days to converge to a stable solution.

Furthermore, the computational model is often a black box, i.e. only the input parameters and

the response value are observable. The internal machinery of the computational model is not

necessarily accessible, as it is typically found when handling legacy codes. Hence, only non-

intrusive analysis methods are applicable. The input values and the corresponding value of the

QoI are the basis of a non-intrusive analysis. Any potential knowledge on the workings of the

computational model is neglected.

Regarding Step B, probability theory is the most popular technique used in the literature

for modelling uncertainties. However, in many practical application examples, the knowledge

on input parameters is limited, due to time, money and labour constraints. Then, epistemic

uncertainty is present in combination with aleatory uncertainty, and probability theory may not

be any more an appropriate tool to characterize the uncertainty. Hence, in this thesis, the more

general class of imprecise probabilities is used to describe the uncertainty in the input para-

meters. Imprecise probabilities allow for modelling separately aleatory and epistemic sources of

uncertainty and hence can represent both types of uncertainty more adequately than probability

theory alone.

The use of imprecise probability in uncertainty quantification analyses has become more

popular in recent years but is still in its infancy compared to probabilistic modelling. The rea-

son for this phenomenon is the added complexity and the increased computational costs when

using imprecise probabilities. When the model is expensive-to-evaluate, the total computational

costs is dominated by the number of runs of the computational model. Therefore, standard

methods, such as Monte Carlo simulation, should be avoided, despite their robustness. As a

countermeasure, meta-modelling (also called response surface modelling and surrogate model-

ling) techniques are widely established in probabilistic problem settings (Sudret 2007, 2012).

Meta-models approximate the computational model by a simple and inexpensive-to-evaluate

function. Subsequently, the meta-models can be used for uncertainty propagation analyses al-

lowing for Monte Carlo simulation-based algorithms. These meta-modelling methods, however,

have been applied to imprecise probabilities in rare occasions only. Hence, there is a need
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to further develop the well-established meta-modelling techniques to the context of imprecise

probabilities.

1.4 Objectives and outline of the thesis

Taking into considerations the previous problem statement, this thesis is focused on the following

objectives:

(i) Develop an intuitive framework to model imprecise probabilities, i.e. the mixture of alea-

tory and epistemic uncertainty, for the context of engineering problems. The determined

framework shall be more general than probability theory and, at the same time, shall be

handy for practising engineers.

(ii) Use state-of-the-art meta-modelling techniques to conduct uncertainty quantification ana-

lyses in the presence of imprecise probabilities.

(iii) Apply the proposed framework to a variety of classical uncertainty quantification analyses,

such as structural reliability analysis and sensitivity analysis.

(iv) Show the relevance of the proposed framework for realistic engineering problems.

In order to address the objectives, the document is organized in nine chapters beyond the

introduction and conclusions chapters.

Chapter 2 contains a review of common uncertainty concepts, including the conventional

probability theory, probability-boxes, and fuzzy distributions. The concepts are discussed and

compared based on the application of a small dataset. Finally, a suitable imprecise probabilities

concept is identified and used for the remaining chapters.

In the context of probability theory, Chapter 3 introduces two state-of-the-art meta-modelling

techniques, namely Kriging and sparse Polynomial Chaos Expansions (PCE). Kriging assumes

that the computational model is a realization of a Gaussian process. PCE represents the re-

sponse of the computational model by a series expansion of orthonormal polynomials. Using

smart selections algorithms such as least-angle regression, sparse PCE models are calibrated.

The two techniques are compared based on a one-dimensional example and their advantages and

disadvantages are highlighted.

An original combination of Kriging and PCE is presented in Chapter 4. The so-called PC-

Kriging meta-modelling technique was proposed by the author and combines the local interpola-

tion property of Kriging with the global regression property of PCE. The resulting meta-model

is shown to be more accurate than the conventional techniques taken separately. Apart from

uncertainty propagation, the PC-Kriging technique is applied to the estimation of failure pro-

babilities and quantiles in Chapter 5. Making use of active learning algorithms, the efficiency

of PC-Kriging in structural reliability analysis is demonstrated.

Starting from Chapter 6, meta-modelling is applied to imprecise probabilities and the algo-

rithms proposed thereof were developed by the author. In particular, Chapter 6 describes the

uncertainty propagation of probability-boxes through a computational model. Making extensive

use of meta-modelling techniques allows for an efficient estimation of the quantity of interest. In

particular, the novel two-level meta-modelling algorithm approximates the computational model

at different levels of the uncertainty propagation.

Chapter 7 discusses structural reliability analysis in the presence of imprecise probabilities.

Similar to Chapter 6, the use of meta-models at different levels of the imprecise structural
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reliability analysis yields an efficient estimation of the statistics of interest. The efficiency can

be improved further by using the idea of active learning algorithms discussed in Chapter 5.

Sensitivity analysis for imprecise probabilities is discussed in Chapter 8. Two sensitivity

measures that are standard tools in the probabilistic literature are discussed in the context of

imprecise probabilities. Again, using meta-models allows for an efficient estimation of the dis-

tinct sensitivity measures, resulting in a novel sensitivity measure as well as further development

of existing sensitivity measures.

Apart from the various benchmark applications presented alongside the theory chapters of

this thesis, Chapter 9 presents the NASA uncertainty quantification challenge whereas Chap-

ter 10 illustrates a set of geotechnical engineering problems. The NASA challenge describes a

problem set addressing the flight behaviour of an aircraft in adverse conditions and shows results

obtained with the previously proposed frameworks. The geotechnics chapter discusses a number

of commonly encountered problem settings in the field of geotechnics. Due to the compara-

bly large uncertainties and expensive computational models (typically finite element models in

combination with random field theory), geotechnical engineering is an ideal case study for the

proposed frameworks.

A short summary of the topics presented in this thesis is shown in Table 1.1. Based on

the general uncertainty quantification framework presented in Figure 1.1, its main elements are

discussed in this thesis. Moreover, the discussion includes the case of probability theory, which

is the conventional approach, as well as the proposed imprecise probabilities, which are the

main contributions of the author. Note that for each chapter, ”SOA” refers to state-of-the-art

methodologies whereas ”NEW” refers to original contributions by the author.

Table 1.1: Summary of the content of the thesis.

Probability theory Imprecise probabilities Objectives

Uncertainty modelling Chapter 2 (SOA) Chapter 2 (SOA) (i)

Uncertainty propagation Chapter 3 (SOA), Chapter 6 (NEW) (ii)

Chapter 4 (NEW)

Structural reliability Chapter 5 (NEW) Chapter 7 (NEW) (iii)

Sensitivity analysis Chapter 8 (SOA) Chapter 8 (NEW) (iii)

Case studies Chapter 10 (NEW) Chapter 9 (NEW), (iv)

Chapter 10 (NEW)



CHAPTER 2

Imprecise probabilities

Uncertainty in parameters can be modelled by a variety of concepts. In

this chapter, a number of such concepts are introduced, including conven-

tional probability theory, Bayesian hierarchical models, evidence theory,

probability-boxes and fuzzy distributions. Each concept is defined by its

characteristic terminology and equations. Further, a case study illustrates

its application to a small dataset. At the end of the chapter, the concepts

are connected, compared and discussed. Probability-boxes are chosen as the

uncertainty modelling approach for targeting the problem statement in this

thesis.

2.1 Probability theory

2.1.1 Theory

Consider the probability space (Ω,F ,P), where Ω denotes an event space (also called sample

space, universal set, or outcome space) equipped with the σ-algebra F and a probability measure

P ∈ [0, 1]. Consider an event E ∈ Ω and its complementary event Ec. By definition, their union

reads E∪Ec = Ω and their intersection results in the zero event E∩Ec = ∅. Then, the probability

of E and Ec add up to one: P (E) + P (Ec) = 1. The probability of the empty set ∅ and the

complete set are P (∅) = 0 and P (Ω) = 1, respectively.

In this context, a random variable X is defined by the mapping X(ω) : Ω 7→ DX ⊂ R,

where ω ∈ Ω is an elementary event and DX is the support domain of X. A realization of

the random variable X is denoted by the corresponding lower case letter x. A random variable

X is typically characterized by a cumulative distribution function (CDF) FX which assigns a

probability to the event {X ≤ x}, i.e. FX(x) = P (X ≤ x). It follows from this definition that

any CDF is monotonically non-decreasing, tends to zero for low values of x, and tends to one

for large values of x. For continuous random variables, the first derivative of the CDF is called

probability density function (PDF) and is defined by fX(x) = dFX(x)/dx. The PDF describes

the likelihood of X being in the neighbourhood of x. Due to the monotonicity property of CDFs,

fX(x) ≥ 0 for all x ∈ DX .

7
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2.1.2 Data to CDF

Empirical CDF

Consider a set of realizations X =
{
χ(1), . . . , χ(N)

}
of a random variable X, whose probability

distribution is unknown a-priori. In order to describe X properly, the data X is used to infer a

probability distribution.

A basic method of statistics is then to compute the empirical CDF, which is defined as:

F emp
X (x) =

1

N

N∑

i=1

Ix≥χ(i)(x), (2.1)

where I is the indicator function, which reads I = 1 for a true subscript statement and I = 0

otherwise. Due to the limited number of samples N , the empirical CDF is a stair-shaped curve

with constant CDF values between samples and steps at x = χ(i), i = 1, . . . , N . Assuming

that the underlying probability distribution X may be continuous, the empirical CDF provides

a poor but simple estimate of FX . Hence, more sophisticated methods, such as the method of

moments or the maximum likelihood method, are commonly used in practice.

Method of moments

Let us consider a distribution family FX(x|θ), where θ denotes a vector of parameters defining

the shape of the CDF. Further, we denote nθ = |θ| the number of such parameters. Note that

for distributions commonly used in the literature and practice, nθ = 2. Then, the method of

moments determines the optimal distribution by matching the first moments of FX(x|θ) with

the sample-based estimations of the first moments based on X . Precisely, denote the mean value

and variance of X by µ(θ) and σ2(θ), which depend on the yet-to-be-determined parameters θ.

Further, denote the sample mean and variance by E [X ] and Var [X ]:

E [X ] =
1

N

N∑

i=1

χ(i), Var [X ] =
1

N − 1

N∑

i=1

(
χ(i) − E [X ]

)2
. (2.2)

Then, the parameters θ are obtained by solving: µ(θ) = E [X ] , σ2(θ) = Var [X ].

The method of moments relies on the knowledge of the underlying distribution family, which

is an additional assumption compared to the previous empirical CDF. However, this assumption

avoids the stair-shaped CDF curves of the empirical CDF and allows for a smooth CDF curve.

Maximum likelihood method

Similarly to the method of moments, the maximum likelihood method requires the knowledge

of a distribution family FX(x|θ) with unknown distribution parameters θ. Then, the likelihood

of observing X depending on the parameter value θ can be computed by:

L(θ|X ) =
N∏

i=1

fX(χ(i)|θ), (2.3)

where fX(x|θ) is the PDF conditional on θ. The optimal parameter values are inferred by

maximizing the likelihood function:

θ∗ = arg max
θ
L(θ|X ). (2.4)
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The maximum likelihood method suffers from the same pitfall as the method of moments.

The feasibility of the method depends on the initial assumption on the distribution family.

In fact, any suitable and non-suitable distribution family can be fitted with these methods.

Moreover, the optimization in Eq. (2.4) is not always trivial to solve.

Dataset X1

In order to compare the various methods, a small dataset X1 of N = 30 samples is used. The

dataset contains the following ordered values:

X1 =





4.02 4.07 4.25 4.32 4.36 4.45

4.47 4.57 4.58 4.62 4.68 4.71

4.72 4.79 4.85 4.86 4.88 4.90

5.08 5.09 5.29 5.30 5.40 5.44

5.59 5.59 5.70 5.89 5.89 6.01





, (2.5)

which is sampled from a Gaussian distribution with mean value µX = 5 and standard deviation

σX = 0.5. Figure 2.1 shows a histogram and the empirical CDF of X1.
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(b) Empirical CDF

Figure 2.1: Dataset X1 – simple visualizations.

In order to conduct an analysis by the method of moments, the Gaussian distribution family

is chosen. This distribution family has nθ = 2 parameters (i.e. mean µ and standard deviation

σ). In order to match these parameters, the mean value and variance of X1 are estimated:

E [X1] =
1

N

N∑

i=1

χ(i) = 4.95, (2.6)

Var [X1] =
1

N − 1

N∑

i=1

[
χ(i) − E [X1]

]2
= 0.31. (2.7)

The resulting Gaussian distribution is defined by µX = E [X1] = 4.95 and σX =
√

Var [X1] =

0.56. The CDF of the fitted distribution is shown in Figure 2.2 where it is compared to the

empirical CDF. The fitted distribution follows nicely the empirical CDF.

At last, the parameters of the Gaussian distribution family are estimated by maximum

likelihood method. For Gaussian distributions, the likelihood reads:

L(µ, σ|X1) =
N∏

i=1

1

σ
√

2π
exp


−1

2

(
χ(i) − µ

σ

)2

 . (2.8)
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Figure 2.2: Dataset X1 – fitted distribution versus empirical CDF of the dataset.

The maximum likelihood estimate reads maxθ L(µ, σ|X1) = 2.37 ·10−11 when using µ = 4.95 and

σ = 0.56. These parameters are identical to the method of moments at two-decimal precision.

Hence, the resulting distribution function is equivalent to the one obtained by the method of

moments as seen by the overlapping curves in Figure 2.2. This, however, might not be the case

for other classical distributions.

2.1.3 Limitations

Probability theory provides a single measure for uncertainty. In other words, the uncertainty in

X must be known and quantifiable by the probability measure P. The distinction of aleatory

and epistemic uncertainty, as described in Chapter 1.1, is not possible. Considering e.g. the

method of moments, uncertainty arises from the variability of X, the choice of distribution

family, and also the estimation of the moments based on a finite sample set N . This is why in

many situations, the uncertainty in X consists of a mix of aleatory and epistemic uncertainty.

Probability theory is not able to treat each of these sources of uncertainty separately. Therefore,

a more general framework, such as Bayesian hierarchical modelling, p-box, or fuzzy variable, is

more adequate to characterize imprecise probabilities.

2.2 Bayesian hierarchical modelling

2.2.1 Theory

Bayesian hierarchical modelling belongs to the group of subjective probabilities (Beer, Ferson, &

Kreinovich 2016) and is a natural extension to the traditional probability theory. Considering a

distribution family FX(x|θ), a Bayesian hierarchical model describes the epistemic uncertainty

with a probability distribution function on θ and the aleatory uncertainty with the conditional

probability distribution FX(x|θ) (Gelman et al. 2009):

FX(x) = FX(x|θ), where FΘ(θ) = FΘ(θ|ϑ), (2.9)

where FΘ is the CDF of the parameters of FX , and ϑ are the corresponding distribution hyper-

parameters with nϑ = |ϑ|. Note that both types of uncertainty are modelled by probabilistic

distributions. Hence, the properties and axioms of the previous section are valid on both levels

of the hierarchical uncertainty model.
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2.2.2 Data to Bayesian hierarchical model

Given a Bayesian hierarchical model and a dataset X , Bayesian inference can be applied to

estimate the posterior distribution of the epistemic parameters θ:

f ′′Θ(θ|X ,ϑ) =
L (θ|X )∫

DΘ
L (θ|X ) f ′Θ(θ|ϑ) dθ

f ′Θ(θ|ϑ), (2.10)

where f ′Θ and f ′′Θ denote the prior and posterior probability density function of Θ, respectively,

and L is the likelihood defined in Eq. (2.3). Note that the denominator has a constant value,

independent of θ and is sometimes also called evidence. This evidence has, however, nothing in

common with the later presented evidence theory.

Consider again the example case of dataset X1. As a prior hierarchical model, a Gaus-

sian distribution is assumed where the parameters are uniformly distributed as µ′X ∼ U (0, 10)

and σ′X ∼ U (0.2, 1). The corresponding posterior distribution of (µX , σX)T is shown in Fi-

gure 2.3(a). The large values of the posterior PDF group around the true, but unknown value

of {µX = 5, σX = 0.5}. The maximum posterior probability density is found at hyperparmeter

values {µX = 4.95, σX = 0.56}, which is equal to the point found in the method of maximum

likelihood. When assuming a uniform prior for the Bayesian hierarchical model, the two met-

hods lead to identical parameters with maximum likelihood. Note that the posterior distribution

function F ′′Θ has a non-analytical form here and in the general case. Hence, the sampling of such

a distribution can be a non-trivial task.
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(a) Posterior PDF f ′′Θ(θ) = f ′′Θ(µX , σX)
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Figure 2.3: Dataset X1 – Bayesian hierarchical model.

Figure 2.3(b) compares the empirical CDF of X1 and 100 realizations of conditional CDFs

FX(x|θ) based on the posterior distribution F ′′Θ(θ). The posterior CDF realizations group nicely

around the empirical CDF. It is, however, still possible to generate realizations far away from

the empirical CDF, such as the most left curve with {µX = 4.51, σX = 0.71}.

2.2.3 Limitations

The Bayesian hierarchical model greatly depends on the assumption that epistemic uncertainty

can be quantified by a probability distribution (i.e. FΘ). If there are good reasons (e.g. expert

knowledge) to assume such a distribution, then Bayesian hierarchical models can be adequate.

However, when the lack of knowledge does not allow to quantify a subjective distribution,

Bayesian hierarchical models may be inadequate.
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In many practical cases, a uniform prior f ′Θ is assumed when prior knowledge is so vague

that no distribution can be specified. The uniform distribution is a viable choice respecting

the principle of maximum entropy when only the bounds on θ are known. However, a uniform

distribution implies a weighing between different values of Θ, which in turn might not correspond

to any physical meaning in the system. This point adds to the discussion and criticism whether

treating epistemic uncertainty with probability theory is appropriate.

A third point of discussion is the following: by using a probability distribution for Θ, the

modeller focuses on the analysis of the average behaviour of a variable. In other words, extreme

realizations of Θ are weighted against all other realizations and are thus likely to be under-

represented. When the modeller puts importance on the worst/best case scenario, Bayesian

hierarchical models appear to be suboptimal.

2.3 Evidence theory

2.3.1 Theory

Evidence theory is based on the developments by Dempster (1967) and Shafer (1976) and is

hence often called Dempster-Shafer’s theory of evidence. Evidence theory loosens the strict

assumption of a single probability measure P in probability theory. In particular, evidence

theory considers two measures, i.e. belief and plausibility, for each event E in the event space

Ω.

Consider the triple (Ω,F ,m), where Ω is again the event space, F is a countable collection

of subsets of Ω, and m is the basic probability assignment (BPA) defined as:

m(J ) =

{
> 0 if J ∈ F
0 if J ⊂ Ω and J /∈ F (2.11)

∑

J∈F
m(J ) = 1. (2.12)

In this concept, m(J ) is interpreted as the amount of likelihood that is associated with event

J but without any specifications of how this likelihood might be appointed in any sub-events

J∗ ⊂ J .

Then, the belief measure is defined as the minimum amount of likelihood that must be

associated to an event E , whereas the plausibility is defined as the maximum amount of likelihood

that could be associated to the same event E . In mathematical terms, the belief and plausibility

are defined as follows in terms of the event E and the event J (or possibly a set of events J ):

Bel (E) =
∑

J⊂E
m(J ), (2.13)

Pl (E) =
∑

J∩E6=∅
m(J ). (2.14)

It follows from Eqs. (2.13) and (2.14) that Bel (E) + Bel (Ec) ≤ 1, Pl (E) + Pl (Ec) ≥ 1, and

Bel (E) + Pl (Ec) = 1. Note that probability theory can be seen as a special case of evidence

theory, when Bel (E) = Pl (E). The construction of Bel (·), Pl (·), J , and m(J ) is also referred

to as Dempster-Shafer structure in the literature.

A special case of the Dempster-Shafer structure emerges when considering the event {X ≤ x},
used earlier in the section on probability theory. Let JX =

{
J (1)
Y , . . . ,J (N)

Y

}
denote a set of
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events whose components can be represented by an interval in the domain DX ∈ R. Then, the

belief and plausibility measures can be interpreted as the minimum and maximum values for

the CDF of variable X. Eqs. (2.13) and (2.14) can be rewritten as:

Bel (X ≤ x) = Bel (FX(x)) =
N∑

i=1

I(
maxJ (i)

X ≤x
)
(
J (i)
X

)
m
(
J (i)
X

)
, (2.15)

Pl (X ≤ x) = Pl (FX(x)) =
N∑

i=1

I(
minJ (i)

X ≤x
)
(
J (i)
X

)
m
(
J (i)
X

)
, (2.16)

where minJ (i)
X and maxJ (i)

X denote the minimum and maximum x-value in event J (i)
X , respecti-

vely.

2.3.2 Data to Dempster-Shafer structure

Consider again the dataset X1. In order to construct a Dempster-Shafer structure, it is assumed

that the sampled data points χ(i) are imprecise due to inaccuracies in the measurement devices.

The true value of each sample point is found in the interval χ
(i)
∗ ∈

[
χ(i) − 0.5, χ(i) + 0.5

]
. The

intervals are shown in Figure 2.4(a). Further, the probability mass assignment is chosen as equal

for all samples, i.e. m
(
χ(i)
)

= 1/N = 1/30.

Then, the belief and plausibility measure for the event {X ≤ x} reads:

Bel (X ≤ x) =
N∑

i=1

I(χ(i)+0.5≤x)(x) m
(
χ(i)
)
, (2.17)

Pl (X ≤ x) =

N∑

i=1

I(χ(i)−0.5≤x)(x) m
(
χ(i)
)
. (2.18)

The resulting belief and plausibility values are shown in Figure 2.4(b). The resulting CDFs have

the same shape as the empirical CDF translated along the horizontal direction by +0.5 and

−0.5, respectively.
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Figure 2.4: Dataset X1 – Dempster-Shafer structure.
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2.3.3 Limitations

The concept of Dempster-Shafer’s theory of evidence depends on the BPA and hence on the

ability to determine bounds for specific events. The definition of the bounds is, however, often

a non-trivial task in practical applications. In case it is not possible, the reader is referred to

the subsequent sections of this thesis.

2.4 Probability-boxes

2.4.1 Theory

Probability-boxes (p-boxes) define the CDF of a variable X by lower and upper bounds denoted

by FX and FX , respectively (Ferson & Ginzburg 1996; Ferson & Hajagos 2004). For any value

x ∈ DX , the true-but-unknown CDF lies within these bounds such that FX(x) ≤ FX(x) ≤
FX(x). The two boundary curves form an intermediate area, hence the name probability-box.

In the literature, two types of p-boxes are distinguished, namely free and parametric p-boxes,

which are discussed in the following.

Free p-boxes

Free p-boxes are defined as introduced above, i.e. by lower and upper bounds on the CDF only.

This implies that the true CDF can have an arbitrary shape as long as it fulfils the characteristics

of a generic CDF and lies within the bounds of the p-box. Figure 2.5 shows the boundary curves

of a free p-box and a number of possible realizations of the true CDF. Because the shape of the

true CDF is not specified, different types of curves are possible, including non-smooth ones (see

realization #3 in Figure 2.5).
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Figure 2.5: Free p-box – bounds and realizations of possible CDFs.

Free p-boxes are a special case of Dempster-Shafer structures, when considering the event

{X ≤ x}. Then, the belief function Bel (X ≤ x) is equivalent to FX(x) and the plausibility

function Pl (X ≤ x) is equivalent to FX(x), for all x ∈ DX . This implies a duality between free

p-boxes and Dempster-Shafer structures: a free p-box can be represented by a Dempster-Shafer

structure and vice versa (Walley 2000; Ferson, Kreinovich, et al. 2003; Möller & Beer 2008).
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Parametric p-boxes

Parametric p-boxes (a.k.a. distributional p-boxes) are defined as distribution function families

the parameters of which are known in intervals:

FX(x) = FX(x|θ), θ ∈ DΘ ⊂ Rnθ , (2.19)

where DΘ is the interval domain of the distribution parameters of dimension nθ = |θ|. Precisely,

DΘ =
[
θ1, θ1

]
× . . . ×

[
θnθ , θnθ

]
denotes a hyper-rectangular domain in this thesis for the sake

of simplicity. Note that θ and θ denote the lower and upper bound value of the interval
[
θ, θ
]
.

Parametric p-boxes allow for a clear separation of aleatory and epistemic uncertainty: alea-

tory uncertainty is represented by the distribution function family, whereas epistemic uncertainty

is represented by the intervals in the distribution parameters. However, parametric p-boxes are

more restrictive than free p-boxes because they require knowledge on the distribution family.

In other words, free p-boxes can be interpreted as a generalization of parametric p-boxes where

the distribution family has nθ →∞ parameters.

Figure 2.6 illustrates a parametric p-box consisting of a Gaussian distribution family with

mean value µ ∈ [−0.5, 0.5] and standard deviation σ ∈ [0.7, 1.0]. The lower and upper boundary

curves of the parametric p-box drawn in Figure 2.6 are obtained by:

FX(x) = min
θ∈DΘ

FX(x|θ), FX(x) = max
θ∈DΘ

FX(x|θ), (2.20)

where θ = (µ, σ)T in this example. Hence, the boundary curves have the characteristics of a

CDF but are not necessarily a realization with a specific parameter vector θ(0). They generally

consist of sections of different realizations. As an example, the lower boundary CDF FX is

a combination of realization #2 (defined by µ = 0.5, σ = 0.7) and realization #3 (µ = 0.5,

σ = 1.0).
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Figure 2.6: Parametric p-box – bounds and realizations of possible CDFs.

Parametric p-boxes are related to the previously discussed Bayesian hierarchical models

(Section 2.2). The two-level construction of a parametric p-box in Eq. (2.9) resembles a Bayesian

hierarchical model in Eq. (2.19) in which the distribution of the hyper-parameters θ ∼ Θ is

replaced by an interval domain θ ∈ DΘ. Note that in the p-box approach, no weight function is

attached to the various values of θ ∈ DΘ.
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2.4.2 Data to free p-box

A number of methods have been proposed to construct free p-boxes and the equivalent Dempster-

Shafer structures, some of which are presented here in brief. For further details and other

methods, it is referred to Ferson, Kreinovich, et al. (2003). In this thesis, the Kolmogorov-

Smirnov confidence bound, Chebyshev’s inequalities, and robust Bayes’ method are reviewed

briefly.

Kolmogorov-Smirnoff confidence bounds

Consider a dataset with N samples. Based on the Kolmogorov-Smirnov (KS) statistics (Smirnov

1939; Kolmogoroff 1941; Feller 1948; Miller 1956), Grosof (1986) and Ferson, Kreinovich, et al.

(2003) define the bounds of a free p-box by KS confidence limits as follows:

FX(x) = min [1, max (0, Fn(x)−Dα
N )] , (2.21)

FX(x) = min [1, max (0, Fn(x) +Dα
N )] , (2.22)

where FN (x) is the empirical CDF of the dataset and Dα
N is the KS critical value at significance

level α and sample size N . The values for Dα
N can be found in Kolmogoroff (1941). Note that the

obtained p-boxes are based on confidence bounds rather than absolute bounds. Hence strictly

speaking, this approach violates the definition of a p-box. However, using confidence bounds is

often the only possible and reasonable choice in practice.

Chebychev’s inequalities

In some situations it is not possible to have a dataset to characterize a free p-box, but it is possible

to obtain certain statistics, such as mean value, variance, or minimum/maximum value. In this

context, a number of methods have been published to bound the CDF of interest. In particular,

Rowe (1988) discusses the case of known {minimum, maximum, mean}, Smith (1995) deals with

the combination of {minimum, maximum, mode}, Chebyshev (1874) and Feller (1968) discuss

{mean, variance}, and Mallows (1956) and Smith (1995) handle PDF limits. These methods

can be used in the context of free p-boxes with little modification.

As an example, Oberguggenberger & Fellin (2008) and H. Zhang, Dai, et al. (2013) define

the bounds of a free p-box by the two-sided Chebyshev’s inequality:

FX(x) =

{
0, for x < µ+ σ

1− σ2

(x−µ)2 , for x ≥ µ+ σ
, (2.23)

FX(x) =

{
σ2

(x−µ)2 , for x < µ− σ
1, for x ≥ µ− σ,

, (2.24)

where µ and σ are the known mean value and standard deviation of X. Tighter bounds can be

obtained by using one-sided Chebyshev’s inequalities and knowledge about the minimum and

maximum value of X (Ferson, Kreinovich, et al. 2003; H. Zhang, Dai, et al. 2013):

FX(x) =





0, for x ≤ µ+ σ2/(µ− x)

1− [b(1 + a)− c− b2]/a, for µ+ σ2/(µ− x) < x < µ+ σ2/(µ− x)

1/[1 + σ2/(x− µ)2], for µ+ σ2/(µ− x) ≤ x < x

1, for x ≥ x

, (2.25)
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FX(x) =





0, for x ≤ x
1/[1 + (µ− x)2/σ2] for x < x ≤ µ+ σ2/(µ− x)

1− (b2 − ab+ c)/(1− a), for µ+ σ2/(µ− x) < x ≤ µ+ σ2/(µ− x)

1, for x ≥ µ+ σ2/(µ− x)

, (2.26)

where x ∈ [x, x], a = (x− x)/(x− x), b = (µ− x)/(x− x), and c = σ2/(x− x)2.

Robust Bayes’ method

The robust Bayes’ method (Berger 1985) is based on the basic Bayes’ theorem. Consider again

the hierarchical model presented in Section 2.2 and denote θ∗ the hyper-parameter values which

maximize the posterior PDF f ′′Θ. θ∗ and the corresponding CDF model F ′′X(x|θ∗) depend on the

distribution family FX , the formulation of the likelihood L, and the prior distribution f ′Θ. In

the context of robust Bayes’ method, the insistence on having a single, precise prior distribution

and a single, specific likelihood function are relaxed. Instead, an entire class of distribution

families and prior distributions f ′Θ are used. Different combinations of prior and likelihood lead

to different posterior distributions F ′′X . Hence, a p-box can be obtained by forming the envelope

or convex hull of this set of posterior CDFs. Consider a set of k = 1, . . . , nb pairs of distribution

families and prior distributions, i.e.
{
F

(k)
X , F

′(k)
Θ

}
, the bounds of the free p-box are obtained by:

FX(x) = min
k=1,...,nb

F
′′(k)
X

(
x|θ∗(k)

)
, (2.27)

FX(x) = max
k=1,...,nb

F
′′(k)
X

(
x|θ∗(k)

)
, (2.28)

where θ∗(k) denotes the optimal hyper-parameter value of combination k. Note that nb can be

arbitrarily large when considering the prior distribution to be a beta distribution with unknown-

but-bound hyper-parameters.

Compound of expert opinions

In the previous methods, a single source of information has been considered. However, a common

situation in practice is when multiple sources are available, e.g. when a number of experts is

asked for their opinion. There exists an extensive literature on the aggregation of information

(Dubois & Prade 1992; Ayyub 2001; Sentz & Ferson 2002; Ferson, Kreinovich, et al. 2003;

Ayyub & Klir 2006). Methods include null aggregation, intersection, enveloping, Dempster’s

rule and its modifications, Bayes’ rule, mixture rules, logarithmic pooling and averaging. For

further details, it is referred to the corresponding literature.

Dataset X1

The KS-confidence bounds, Chebyshev’s inequalities, and robust Bayes’ method are applied to

the dataset X1. For the KS-confidence bounds, the level of significance is set to α = 0.10. The

resulting free p-box is shown in Figure 2.7 alongside the empirical CDF of X1. The bounds of

the resulting p-box are a vertical translation of the empirical CDF by a distance of Dα
N = 0.22.

Note that the support of the p-box is [−∞,∞], when assuming no knowledge on the real support

of X. This shows the amount of conservatism in this approach.

Chebyshev’s inequalities require knowledge on the mean value and standard deviation of

X. Therefore, it is assumed that the empirical mean value (Eq. (2.6)) and variance (Eq. (2.7))

correspond to the true mean value and variance of X. Figure 2.8 shows the resulting p-boxes
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Figure 2.7: Dataset X1 – free p-boxes – KS-confidence bounds.

based on the Chebyshev’s inequalities compared to the empirical CDF of the dataset. Note that

for the one-sided results, it is further assumed that x ∈ [0, 10]. Figure 2.8 illustrates nicely how

the free p-box changes, when the information on the support of X is added to the analysis: the

p-box becomes narrower, i.e. the epistemic uncertainty becomes smaller.
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(a) Two-sided Chebyshev’s inequalities
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(b) One-sided Chebyshev’s inequalities

Figure 2.8: Dataset X1 – free p-boxes – Chebyshev’s inequalities.

Chebyshev’s inequalities lead to wider, but smoother p-box bounds than the KS-confidence

method around the mean value of the unknown distribution. In the tails, however, the behaviour

is the contrary: the KS-confidence method leads to wider bounds in the tail compared to the

Chebyshev’s inequalities. In fact, the KS-confidence bounds do not converge in the tails of the

distributions, as seen by the constant value of FX(x) for x > 6 in Figure 2.7.

For the robust Bayes’ method, the distribution families of interest are the Gaussian, lognor-

mal, Weibull, and Gumbel distribution. The hyper-parameters of interest are the mean value

µX and the standard deviation σX . The set of prior distributions for the mean value con-

sists of a uniform distribution within the range µX ∈ [0, 10] and a Gaussian distribution with

{µµX = 4, σµX = 1}. The set of prior distributions for the standard deviation consists of a uni-

form distribution with σX ∈ [0.1, 1] and a lognormal distribution with {µσX = 0.6, σσX = 0.2}.
For each combination of distribution function and prior distribution, the Bayesian inference is

used to compute the (posterior-based) most likely value of {µX , σX}. This results in a set of

nb = 4 · 2 · 2 = 16 values for {µX , σX} and hence to 16 distributions for X. Their CDFs and the
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resulting p-box boundary curves are illustrated in Figure 2.9.

The final boundary curves of the p-box envelope nicely the empirical CDF with tight bounds.

Due to the small sample size of X1, the empirical CDF exceeds the bounds of the p-box locally.

Note, however, that the tightness of the bounds depends on the number of candidate distribution

families and prior distributions. When more candidates are available (i.e. k ↑), it is likely that

the bounds are wider than shown in this example.

3.5 4 4.5 5 5.5 6 6.5

X

0

0.2

0.4

0.6

0.8

1

F
X

Realizations F
′′(k)

X

FX , FX

(a) Optimal CDFs and p-box boundaries
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(b) P-box versus empirical CDF

Figure 2.9: Dataset X1 – free p-boxes – robust Bayes’ method.

2.4.3 Data to parametric p-boxes

Confidence bounds

Considering the likelihood method in Section 2.1 and its generalized Bayesian inference algorithm

in Section 2.2, a parametric p-box can be generated by determining confidence bounds onto

the distribution parameters Θ, i.e. on F ′′Θ. The interval-domain DΘ (see Eq. (2.19)) is then

constructed by cutting off the areas with low posterior density f ′′Θ. Note that in the general case

of an arbitrary distribution in Θ, DΘ does not necessarily form a rectangular domain (see also

Figure 2.3(a)).

In the special case of a Gaussian distribution with uniform prior on its mean value µX and

variance σ2
X , their confidence bounds are often assumed to be independent, forming a rectangular

domain DΘ. The confidence intervals for µX and σ2
X are then calculated as follows (McClave &

Sincish 2013):

µX ∈
[
E [X ] +

tN−1,1−γ/2√
N

Std [X ] , E [X ]−
tN−1,1−γ/2√

N
Std [X ]

]
, (2.29)

σ2
X ∈

[
N − 1

χ2
N−1,1−γ/2

Var [X ] ,
N − 1

χ2
N−1,γ/2

Var [X ]

]
, (2.30)

where Std [X ] =
√

Var [X ] is the standard deviation of the dataset X , tN−1,1−γ/2 is the (1−γ/2)-

th quantile of the t-distribution with N −1 degrees of freedom, χ2
N−1,γ/2 is the (γ/2)-th quantile

of the χ2 (chi-square) distribution with N−1 degrees of freedom, and γ ∈ [0, 1] is the confidence

level.
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Dataset X1

Considering X1 and the analysis in Section 2.2, the posterior likelihood f ′′Θ is shown in Fi-

gure 2.3(a) based on a uniform prior distribution f ′Θ. Using Eqs. (2.29) and (2.30), the con-

fidence intervals for γ = 0.05 are µX ∈ [4.74, 5.15] and σX = [0.44, 0.75]. The corresponding

DΘ is illustrated in Figure 2.10(a) in comparison to the posterior distribution f ′′Θ of the Baye-

sian hierarchical model. The interval domain DΘ incorporates the major part of the posterior

probability density located around the true mean value/standard deviation.
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Figure 2.10: Dataset X1 – parametric p-box – confidence-bounds-based p-box.

Figure 2.10(b) compares the parametric p-box boundaries with the empirical CDF. Also from

this point of view, the obtained parametric p-box provides a conservative estimate for the true,

but unknown distribution function FX . Note that the boundary curves are obtained through

Eq. (2.20).

2.4.4 Limitations

P-boxes provide an intuitive concept to distinguish between aleatory and epistemic uncertainty

as seen by the definition of free and parametric p-boxes. However, the crucial point lies in the

definition of the (absolute) bounds of the epistemic uncertainty. A particular case is illustrated

by the study of the dataset X1, where no physical reasons or expert knowledge regarding bounds

is available. Then, a practical solution is to define the bounds in terms of an appropriate

confidence level, as seen in Section 2.4.3. The level is, however, a choice made by the modeller

and should be considered carefully in the analysis and post-processing of such p-boxes.

2.5 Fuzzy variables

2.5.1 Definitions

Fuzzy variables are strongly related to the set theory. Hence, the basic definitions of sets are

presented here for the sake of clarity and in coherency with Möller & Beer (2004). Considering

the event space (i.e. universal set) Ω, a membership function ξE(ω) ∈ [0, 1] describes whether

an elementary event ω belong to a set E . When the membership function is binary (i.e. {0, 1}),
the set E is called a crisp set. When the membership function is not binary but continuous, E
describes a fuzzy set.
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In practical applications, continuous random variables are common. Hence, the fuzzy sets

are adapted to the theory of continuous numbers. In particular, an interval is defined by a binary

membership function analogously to a crisp set. Moreover, a fuzzy number is a convex fuzzy set

whose membership function is at least segmentally continuous and ξE(x) = 1 at a single value

x = x∗. This point x∗ is also called the mean value of the fuzzy number. When ξE(x) = 1 for

more than a single point x ∈ DX , then E describes a fuzzy interval. In both cases, the support

is defined as the interval where ξE(x) > 0, x ∈ DX .

The membership function of an interval, a fuzzy number, and a fuzzy interval in the domain

DX are shown in Figure 2.11. The interval has a membership value of ξE = 1 for x ∈ [2, 4]

and 0 otherwise. The fuzzy number is illustrated here by a triangular membership function

whose mean value is x = 2.7. The support of the fuzzy number is [0.3, 5.2]. The third curve

in Figure 2.11 is a fuzzy interval where the membership function reads ξE = 1 for the interval

x ∈ [1.5, 3.0] and has a support of [0.5, 5.0].
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Figure 2.11: Fuzzy numbers for event E – membership functions of interval, fuzzy number and

fuzzy interval.

For the further analysis of fuzzy numbers, the α-level interval is defined as:

E(α) = {x ∈ DX : ξE(x) ≥ α} , (2.31)

where α ∈ [0, 1] is the α-cut level. Note that the α-cuts provide nested intervals, as E(αi) ⊆ E(αj)

when αi ≥ αj for all αi, αj ∈ [0, 1]. The case of α = 0+ describes the support of the fuzzy

number/interval.

2.5.2 Fuzzy distributions

General idea

Fuzziness can be interpreted as the imprecision in measurements, which is a generalization of the

description of epistemic uncertainty modelled by intervals (i.e. crisp sets). Then, the members-

hip function quantifies the precision of the measurements. When α = 1, the measurement is as

precise as possible (however, E(α=1) can still be an interval due to epistemic uncertainty). When

α ≈ 0+, the measurement is very uncertain and E(α≈0+) denotes the widest possible interval for

event E .

Fuzzy probability theory is a combination of fuzzy set theory and probability theory (Beer,

Ferson, & Kreinovich 2013). In fact, a fuzzy distribution is defined as a probability distribution
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whose CDF FX(x) is a fuzzy interval for every x ∈ DX :

FX(x) ∈ ΞX(x, c), (2.32)

where ΞX(x, c) denotes the membership function for variable X at x ∈ DX and CDF value

c ∈ [0, 1]. ΞX(x, c) can be defined in different ways, including as a generalization of free and

parametric p-boxes.

Fuzzy distribution: a generalization of a free p-box

Considering the free p-box defined in Section 2.4, FX(x) and FX(x) describe an interval for

FX(x), which corresponds to a membership function with ΞX(x, c) = 1 if c ∈
[
FX(x), FX(x)

]
,

and ΞX(x, c) = 0 otherwise, for all x ∈ DX . In analogy with Eq. (2.31), every α-cut of ΞX(x, c)

leads to the following free p-box bounds:

F
(α)
X (x) = c∗, c∗ = arg min

c∈[0,1]
ΞX(x, c) ≥ α, (2.33)

F
(α)
X (x) = c∗, c∗ = arg max

c∈[0,1]
ΞX(x, c) ≥ α. (2.34)

When generalizing the membership function to describe a fuzzy interval, a fuzzy distribution

is generated. Note that Eqs. (2.33) and (2.34) hold for this general case too: each α-cut leads

to a free p-box with bounds F
(α)
X and F

(α)
X . In fact, Eqs. (2.33) and (2.34) lead to nested free

p-boxes with F
(αi)
X (x) ≤ F (αj)

X (x) and F
(αi)
X (x) ≥ F (αj)

X (x) for αi < αj and any x ∈ DX .

Figure 2.12 illustrates the construction of a fuzzy distribution as a generalization of a free

p-box. For a given value x(0), the associated membership function is shown in red. Further, for a

given level α(0), the lower and upper bounds of the CDF are obtained analytically by Eqs. (2.33)

and (2.34). This procedure can be repeated for every value x ∈ DX .
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Figure 2.12: Fuzzy distribution – illustration of Eqs. (2.33) and (2.34).

Fuzzy hierarchical model: a generalization of a parametric p-box

Considering again the parametric p-box defined in Eq. (2.19), the interval domain DΘ can be

interpreted as a special case of a membership function for the parameters Θ. Then, ξΘ(θ)
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describes the fuzziness of the hyper-parameters Θ, where ξΘ(θ) = 1 for θ ∈ DΘ and ξΘ(θ) = 0

otherwise.

The generalization of the membership function to describing a fuzzy interval leads to a second

definition of a fuzzy variable (analogous to Eq. (2.19)):

FX(x) = FX(x|θ), θ ∈ {θ ∈ DΘ : ξΘ(θ) > α} . (2.35)

Again, each α-cut leads to a parametric p-box with interval-valued hyper-parameters in D(α)
Θ =

{θ ∈ DΘ : ξΘ(θ) > α}. Note that ξΘ describes a nΘ-dimensional fuzzy interval.

2.5.3 Data to fuzzy distribution

A variety of methods are available in the literature to define fuzzy numbers and fuzzy distribu-

tions from data. The optimal strategy greatly depends on the amount and type of knowledge

available to the modeller. Hence, in the following, only two approaches are presented which

relate to the dataset X1. In the first approach fuzziness is used to imprecise measurements and

in the second approach it is used to model different confidence levels. For further methods, the

reader is referred to e.g. Möller & Beer (2004), Klir (2006), Beer (2009), Beer, Mingqiang, et al.

(2011), Beer, Y. Zhang, et al. (2012), and Beer, Ferson, & Kreinovich (2013).

Fuzzy measurements

Let us assume that the measurement device has an unknown but limited precision, which can be

modelled by a membership function. In order to determine the corresponding fuzzy distribution,

free p-boxes are generated at different values of α and subsequently assembled.

For a given α value, Eq. (2.31) is evaluated for each sample χ(i), i = 1, . . . , N , leading to a

set of intervals:

χ(i)(α) ∈
[
χ(i)(α), χ(i)(α)

]
, (2.36)

χ(i)(α) = arg min
x∈DX

ξχ(i)(x) ≥ α, (2.37)

χ(i)(α) = arg max
x∈DX

ξχ(i)(x) ≥ α, (2.38)

where ξχ(i) denotes the membership function of sample χ(i). Then, the free p-box for α is

obtained by using Eqs. (2.15) and (2.16):

F
(α)
X (x) =

1

N

N∑

i=1

Iχ(i)(α)≤x (x) , (2.39)

F
(α)
X (x) =

1

N

N∑

i=1

Iχ(i)(α)≤x (x) , (2.40)

where N is the number of samples in the dataset.

This simple approach follows the same methodology as in Section 2.3.2, which only uses the

information contained in the dataset to model a CDF. At each α-cut, the belief and plausibility

measures of the empirical CDF are constructed. However, a more sophisticated approach could

be applied to determine the bounds of the free p-box.
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Variable confidence levels

Consider again Section 2.4.3, where a parametric p-box is determined through fixed confidence

intervals (CI) on the posterior distribution of the hyper-parameters Θ. The choice of the confi-

dence level is crucial for the size of the interval domain DΘ and hence the width of the parametric

p-box. In this case, fuzzy distributions allow for more flexibility by varying the CI and hence

by defining a membership function for Θ dependent on this CI.

The membership function ξΘ can be defined indirectly through its α-cuts:

{θ : ξΘ(θ) ≥ α} =
{
θ ∈ D(γ)

Θ

}
, (2.41)

where D(γ)
Θ denotes the interval domain corresponding to a confidence level γ. Then, a function

fαγ is required to map α to γ to define the membership function ξΘ. A number of such functions

can be proposed, i.e. there is no unique choice.

Dataset X1

In a first approach, it is assumed that the samples of the dataset X1 can be modelled by a trian-

gular membership function ξχ(i) with mean value χ(i) and support interval
[
χ(i) − 0.5, χ(i) + 0.5

]
.

The membership functions are shown graphically in Figure 2.13(a), where ξχ(i)(x) are plotted

as a function of x for i = 1, . . . , N . Each triangular shape corresponding to a sample point χ(i).
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Figure 2.13: Dataset X1 – fuzzy distributions – measurement fuzziness.

Figure 2.13(b) illustrates the corresponding fuzzy distribution by showing the boundary

curves of the free p-boxes at α = {0.0, 0.5, 1.0}. When α = 1.0, the free p-box reduces to

the empirical CDF found in Figure 2.1(b). At this level, the fuzzy intervals reduce to the

actual measurements χ(i). On the other side, α = 0.0 leads to the same boundary curves as in

Figure 2.4, because of the identical support in both application examples.

In order to apply the second approach, which deals with variable confidence levels (Eq. (2.41))

and no measurement imprecision, the function fαγ is defined:

γ = fαγ(α) = α, (2.42)

which maps the α value to the confidence level γ. Figure 2.14(a) shows the interval domain D(γ)
Θ

corresponding to α = {0.0, 0.5, 1.0} and in comparison to the posterior likelihood distribution
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Figure 2.14: Dataset X1 – fuzzy distributions – fuzziness due to confidence level.

obtained in Figure 2.10(a). Naturally, the lower α, the larger is DΘ. Note that the minimum

value of α is chosen as 0.001 (instead of 0.0) in order to avoid infinitely wide domains.

Figure 2.14(b) shows the corresponding fuzzy CDF. In particular, the boundary curves of

the same α-cuts are compared to the empirical CDF of X1. Again, the lower α, the wider are the

parametric p-box bounds. Hence, the lower α-cuts lead to more conservative estimates of the

CDF. Note that despite the linear function between α and γ, the width of the α-cut parametric

p-boxes is highly nonlinear. α = 0.5 results in bounds that are close to the bounds corresponding

to α = 1.0, whereas α = 0.0 results in much wider bounds.

2.6 Further concepts

Apart from the concepts presented for uncertainty modelling, further methodologies are dis-

cussed in the literature, including possibility theory, clouds, credal sets, info-gap theory and

lack-of-knowledge theory. These methods are related to the presented uncertainty concepts but

are not discussed here in detail for the sake of brevity.

Possibility theory defines two specifications of the likelihood of events, namely necessity

(lower bound) and possibility (Dubois & Prade 1988, 1998; De Cooman, Ruan, & Kerre 1995;

De Cooman 1997). The possibility theory is closely related to Dempster-Shafer’s theory of

evidence, which also provides two measures of likelihood (Guan & Bell 1991).

Neumaier (2004) introduced clouds, which is somewhere between fuzzy sets and probability

distributions and which is related to the interval-valued fuzzy sets (Dubois & Prade 2005). In

the context of clouds, a fuzzy interval is modelled by a pair of membership functions, which

lead to a lower an upper α-cut. Further details can be found in e.g. Kozine & Utkin (2005),

Destercke, Dubois, & Chojnacki (2008a,b), and Fuchs & Neumaier (2009).

Info-gap theory (Ben-Haim 2006) can be interpreted as the concept of fuzzy intervals, where

the membership function is defined in a different way (Ferson & Tucker 2008). Further details

and applications can be found in e.g. Kanno & Takewaki (2006a,b) and Pierce, Worden, &

Manson (2006). A closely related concept is also the lack-of-knowledge theory developed by

Barthe et al. (2003) and Ladevèze, Puel, & Romeuf (2006).
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2.7 Comparison

The notations of the various concepts presented in this thesis are summarized in Table 2.1. For

each concept, the table presents the uncertainty model as well as its aleatory and epistemic

portion of uncertainty. Note that the epistemic uncertainty is split into interval-valued and

fuzzy set-valued methods to distinguish the complexity of modelling. For completeness, simple

constants, intervals, and a fuzzy interval/number are added. The interval is an example of a

purely interval-valued epistemic quantity. In this compilation, the equivalence of Dempster-

Shafer structure and free p-boxes is clearly visible since FX(x) = Bel (X ≤ x) and FX(x) =

Pl (X ≤ x).

A distinction is made between hierarchical and non-hierarchical models, as indicated by the

last column in Table 2.1. The three hierarchical concepts allocate epistemic uncertainty on the

definition of the hyper-parameters θ. This allows for a clear separation of the three aspects of

uncertainty: aleatory uncertainty models the variability in X, epistemic uncertainty models the

non-determinacy of Θ, and fuzziness models the variation of epistemic uncertainty. In contrast,

the non-hierarchical models mix the different aspects of uncertainty in a single modelling level.

The distinction is not as straightforward in this case.

The connections of the different concepts in visualized in Figure 2.15. Each concept is

represented by a rectangular box. Note that free p-boxes share a box with Dempster-Shafer (DS)

structures due to their equivalence. The arrows indicate the simplifications in the uncertainty

model. The figure is split into four levels. The highest level shows the most general uncertainty

representations considered in this thesis, i.e. models with all three aspects of uncertainty. When

heading to a lower level, an aspect of uncertainty modelling is removed. As an example, a fuzzy

distribution reduces to a free p-box when removing fuzziness from the uncertainty model. The

free p-box further reduces to an interval when removing aleatory uncertainty. Finally, the

interval reduces to a constant when neglecting any epistemic uncertainty.

Constant

Interval Probability
distribution

Fuzzy intervalFuzzy number Free p-box,
DS structure

Parametric
p-box

Bayesian hier-
archical model

Fuzzy dis-
tribution

Fuzzy hierar-
chial model

Removing aleatory uncertainty

Removing epistemic uncertainty

Removing fuzziness

Figure 2.15: Relations between different concepts of uncertainty modelling.

Going upwards in Figure 2.15 leads to more general and more complex uncertainty represen-
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tations. As an example, allowing for epistemic uncertainty transforms a probability distribution

into either a free p-box, a parametric p-box or a Bayesian hierarchical model. Generalizing the

parametric p-box leads to a fuzzy hierarchical model.

2.8 Conclusion

The concepts presented in this chapter give an overview of uncertainty models with varying

complexity and with varying information content. In practical applications, however, a choice

must be made for a single uncertainty model or a combination of suitable models. This choice

should be driven by the available information on the one side and by the purpose of the analysis

on the other side (Beer, Ferson, & Kreinovich 2016). The type and amount of information

can be manifold as discussed in Chapter 1: from pure datasets to pure expert knowledge or

a combination of multiple sources of information. The same diversity can be imagined for the

purpose of the analysis. As an example, the purpose of the analysis could be the estimation

of sensitivities in early design stage to understand the impact of input uncertainties to the

output. Another case would be to estimate the failure probability with respect to prescribed

code requirements.

Conventionally, probability theory is used to cope with uncertainty. After a comprehensive

review, the p-box model is retained in this thesis, particularly the two concepts of free and

parametric p-boxes, due to the following arguments:

• The p-box concept allows for a natural extension of the conventional probability theory.

Apart from aleatory uncertainty, which is related to probability theory, p-boxes allow to

include epistemic uncertainty in the uncertainty model.

• A common situation in practice is to have limited information due to resource constraints

(e.g. scarce datasets, imprecise measurements, distribution bounds). Then, p-boxes allow

one to model the lack of knowledge by considering the set-theoretical approach: epistemic

uncertainty is represented by interval-valued quantities.

• The p-box concept allows for a clear distinction of aleatory and epistemic uncertainty,

which makes it intuitive to understand and interpret. This is crucial when dealing with

engineers and decision makers in practice, where the communication of uncertainty con-

cepts is challenging.

• The concepts of free and parametric p-boxes cover the two typical scenarios of non-

hierarchical and hierarchical models, respectively (see also Table 2.1). This allows for

a flexible modelling of uncertainty and the applicability to diverse problems.

• Last but not least, p-boxes are a special case of fuzzy distributions and fuzzy hierarchical

models. Hence, the approaches presented in the following chapters can also be applied to

more general cases including fuzziness with only little modifications.

Hence on the one side, p-boxes provide a versatile concept of uncertainty quantification that goes

beyond the conventional probability theory but does not touch the realm of fuzzy sets. On the

other side, p-boxes allow for modelling a mix of aleatory and epistemic uncertainty. Considering

the aspect of modelling complexity and modelling generality, p-boxes maintain a good trade-off.

In the remainder of this thesis, p-boxes are used for uncertainty quantification analyses.

In particular, specific algorithms are developed for the two types of p-boxes, namely free and

parametric p-boxes.



CHAPTER 3

Classical meta-models

This chapter provides an overview of state-of-the-art meta-modelling techni-

ques, in particular polynomial chaos expansions and Kriging. The main parts

of this chapter have been published in Schöbi, Sudret, & Wiart (2015), Schöbi

& Sudret (2014a,d).

3.1 State of the art

Propagating uncertainties usually requires a large number of repeated calls to the model for dif-

ferent values of the input parameters, for instance through a Monte Carlo simulation procedure.

Such an approach requires thousands to millions of runs which is not affordable in many practical

cases even with high-performance computing architectures. To circumvent this problem, surro-

gate models may be used, which replace the original computational model by an easy-to-evaluate

function (Hastie, Tibshirani, & Friedman 2001; Forrester, Sóbester, & Keane 2008; Storlie et al.

2009). These surrogate models, also known as response surfaces or meta-models, are capable

of quickly predicting responses to new input realizations. This allows for conducting analyses

which require a large number of model evaluations, such as simple uncertainty propagation,

structural reliability analysis and design optimization, in a reasonable time.

Among the various options for constructing meta-models, this thesis focuses on non-intrusive

approaches, meaning that only the input vector (i.e. a realization of the random input in

the process of uncertainty propagation) is selected, the model is run and the output vector of

quantities of interest (QoI) is collected. No additional knowledge on the inner structure of the

computer code is accessible and/or considered. Popular types of meta-models include polynomial

chaos expansions (PCE) (Ghanem & Spanos 2003), Kriging (also known as Gaussian process

modelling) (Sacks et al. 1989; Santner, B. Williams, & Notz 2003; Rasmussen & C. Williams

2006), support vector machines (Gunn 1998; Vazquez & Walter 2003; Clarke, Griebsch, &

Simpson 2003; Smola & Schölkopf 2006), and artificial neural networks (Hurtado & Alvarez 2001;

Schueremans & Van Gemert 2005a; Cartwright 2015), which have been extensively investigated

in the last decade. In this thesis, the focus lies on PCE and Kriging.

PCE, also known as spectral expansions, approximate the computational model by a series

of multivariate polynomials which are orthogonal with respect to the distributions of the input

random variables. Traditionally, spectral expansions have been used to solve partial differential

29
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equations in an intrusive manner (Ghanem & Spanos 2003). In this setup, truncated expansions

are inserted into the governing equations and the expansion coefficients are obtained using

a Galerkin scheme. The pioneering approach called spectral stochastic finite element method

(SSFEM) was later developed by Xiu & Karniadakis (2002), Sudret, Defaux, & Pendola (2004),

Wan & Karniadakis (2005, 2006), and Berveiller, Sudret, & Lemaire (2006a), among others.

These intrusive methods require specific, problem-dependent algorithmic developments though.

Because it is not always possible and/or feasible to treat a computational model intrusively,

especially when legacy codes are at hand in e.g. an industrial context, non-intrusive PCE

were developed. So-called projection methods were developed by Ghiocel & Ghanem (2002), Le

Mâıtre et al. (2002), Keese & Matthies (2005), and Xiu & Hesthaven (2005), see Xiu (2009) for

a comprehensive review. Least-squares minimization techniques have been introduced by Choi

et al. (2004) and Berveiller, Sudret, & Lemaire (2006b) based on the pioneering work of Tatang

et al. (1997) and Isukapalli (1999). Further developments which combine spectral expansions

and compressive sensing ideas have lead to so-called sparse PCE (Blatman & Sudret 2008,

2010a,b, 2011; Doostan & Owhadi 2011; Doostan, Validi, & Iaccarino 2013; Jakeman, Eldred,

& Sargsyan 2015). Sparse PCE is the approach discussed in this thesis (see also Section 3.3).

Recent applications of sparse PCE in the context of structural reliability analysis and design

optimization can be found in Eldred, Webster, & Constantine (2008), Eldred (2009), and Sarangi

et al. (2014). A state-of-the-art implementation of sparse PCE is available in the Matlab-based

framework UQLab (Marelli & Sudret 2014, 2015).

The second meta-modelling technique of interest in this thesis is Kriging, which originates

from geographical data in mining (Krige 1951) and is today also known as Gaussian process

modelling (Santner, B. Williams, & Notz 2003; Rasmussen & C. Williams 2006). The Kriging

meta-model is interpreted as a realization of a Gaussian process. The latest developments of

Kriging are contributed in the aspects of optimal estimation of model parameters (called hyper-

parameters in Section 3.4) (Bachoc 2013; Bachoc et al. 2014; Bachoc 2014), the use of adaptive

kernels (Duvenaud, Nickisch, & Rasmussen 2012; Ginsbourger, Roustant, & Durrande 2013),

and the use of additive kernels (Durrande, Ginsbourger, & Roustant 2012, 2013; Ginsbourger,

Durrande, & Roustant 2013). Practical applications can be found in many fields, such as struc-

tural reliability analysis (Kaymaz 2005; Bichon, Eldred, et al. 2008; Echard, Gayton, & Lemaire

2011; Bect et al. 2012; Dubourg, Sudret, & Deheeger 2013; Dubourg & Sudret 2014; Schöbi,

Sudret, & Marelli 2016), and design optimization (Jones, Schonlau, & Welch 1998; Dubourg,

Sudret, & Bourinet 2011; Dubourg 2011; Moustapha et al. 2016). The implementation of the

Kriging meta-modelling techniques can be found in a variety of software including the Matlab

implementation (The MathWorks Inc. 2016), the Matlab-based DACE toolbox (Lophaven,

Nielsen, & Sondergaard 2002), the Matlab-based UQLab framework (Lataniotis, Marelli, &

Sudret 2015; Marelli, Lamas-Fernandes, et al. 2015), and the R-based DiceKriging package

(Roustant, Ginsbourger, & Deville 2012, 2013).

3.2 Computational model

Consider a system whose behaviour is represented by a computational model M which maps

the M -dimensional input space to the one-dimensional output space:

M : x ∈ DX ⊂ RM 7→ y ∈ R, (3.1)
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where x = (x1, . . . , xM )T. In other words, the computational model M is a function from x to

y:

y =M (x) . (3.2)

The computational model considered here provides a deterministic mapping from the input to

the output space, i.e. repeated evaluations with the same x(0) ∈ DX lead to the same output

value y(0) =M
(
x(0)

)
. Further, it is assumed that M is a black box, i.e. for each input vector

x, only the corresponding response y =M(x) is accessible. In other words, the inner structure

and mechanisms of the computational model are not observable. This is typically the case for

e.g. a finite element model (FEM) in which, generally speaking, the governing equations cannot

be solved analytically.

As the input vector x is assumed to be affected by uncertainty, an uncertainty model is

introduced. In the context of most classical meta-modelling techniques, probability theory is

used. Hence, due to uncertainties in the input vector, it is represented by a random vector

X with given joint probability density function (PDF) fX and corresponding joint cumulative

distribution function (CDF) FX . For the sake of simplicity, the components of X are assumed

independent throughout this thesis, so that the joint PDF may be written as the product of the

marginal PDFs denoted by fXi , i = 1, . . . ,M . Note that the case of dependent input variables

can be addressed by using an isoprobabilistic transform first, such as the Nataf or Rosenblatt

transform (Lemaire 2009; Lebrun & Dutfoy 2009a,b). The output of the model is a random

variable Y obtained by propagating the input uncertainty in X through the computational

model M:

Y =M (X) . (3.3)

3.3 Polynomial Chaos Expansions

3.3.1 Definition

Provided that the output random variable Y is a second-order variable (i.e. E
[
Y 2
]
< +∞),

the computational model M can be cast as the following polynomial chaos expansion (PCE)

(Ghanem & Spanos 2003; Soize & Ghanem 2004):

Y =M (X) ≡
∑

α∈NM
aα ψα (X) , (3.4)

where
{
aα, α ∈ NM

}
are coefficients of the multivariate orthonormal polynomials ψα (X) which

are built in coherency with the distribution of the input random vector X, α = (α1, . . . , αM )

is the multi-index and M is the number of input variables (dimensions). Since the components

of X are independent, the joint PDF is the product of its marginals. Then, a functional inner

product for each marginal PDF fXi is defined by:

〈φ1, φ2〉i =

∫

DXi
φ1(x) φ2(x) fXi(x) dx, (3.5)

for any two functions {φ1, φ2} such that the integral exists. For each variable Xi, an orthonormal

polynomial basis can be constructed which satisfies (Xiu & Karniadakis 2002):

〈P (i)
j , P

(i)
k 〉 =

∫

DXi
P

(i)
j (x) P

(i)
k (x) fXi(x) dx = δjk, (3.6)
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where
{
P

(i)
j , P

(i)
k

}
are two candidate univariate polynomials in the i-th variable, DXi is the

support of the random variable Xi, and δjk is the Kronecker symbol with is equal to 1 for j = k

and equal to 0 otherwise. Xiu & Karniadakis (2002) summarize bases for some classical PDFs.

The multivariate polynomials in Eq. (3.4) are then composed of univariate polynomials by

tensor product, i.e. by multiplying the various polynomials in each input variable:

ψα (X) =
M∏

i=1

ψ(i)
αi (Xi) , (3.7)

where ψ
(i)
αi is the polynomial of degree αi in the i-th variable.

3.3.2 Truncation schemes

The main idea of PCE is to surrogate the computational model by an infinite series of polynomi-

als as seen in Eq. (3.4). In practice however, it is not feasible to handle infinite series, thus the

need for a truncation scheme. Such a truncation scheme corresponds to a set of multi-indices

α ∈ A ⊂ NM such that the system response is accurately approximated with respect to some

error measure (Blatman & Sudret 2010a, 2011):

Y ≈ Y (PCE) def
= M(PCE) (X) =

∑

α∈A
aαψα (X) . (3.8)

There are several ways to select a priori a truncation set A. A simple and commonly applied

scheme consists in upper-bounding the total degree of polynomials to a maximal value p. The

total degree of polynomials is defined by:

|α| =
M∑

i=1

αi. (3.9)

In this case, the set of multi-indices is denoted by AM,p = {α ∈ NM : |α| ≤ p} where p is the

maximal total polynomial degree. The number of elements in the set AM,p is:

∣∣AM,p
∣∣ =

(M + p)!

M ! p!
. (3.10)

This cardinality grows polynomially with both M and p. Such a truncation scheme thus leads

to non-tractable problems if the response is highly nonlinear in its input parameters (need for a

large p) and/or if the size of the input vector X is large (M > 10). This problem is referred to

as the curse of dimensionality.

Blatman (2009) and Blatman & Sudret (2010a) proposed a more restrictive truncation

scheme called hyperbolic index set. The authors observed that many systems tend to have

only low-degree interaction polynomials and thus it is not necessary to compute all interaction

terms of higher polynomial degree. The hyperbolic index set is based on the following q-norm:

AM,p
q = {α ∈ NM : ‖α‖q ≤ p}, (3.11)

where

‖α‖q =

(
M∑

i=1

αqi

) 1
q

, (3.12)

where 0 < q ≤ 1 is a parameter and p is the maximal total degree of the polynomials retained.

A decreasing q leads to a smaller number of interactive polynomials, i.e. a smaller set of
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polynomials. When q → 0, only univariate polynomials are left in the set of polynomials which

is called an additive model (Sudret 2015). For the sake of illustration, the retained polynomial

indices α ∈ AM,p
q of a two-dimensional input space (M = 2) and varying p and q are illustrated

in Figure 3.1. The indices denoted by • are elements of AM,p
q and the solid black line represents

‖α‖q = p. Note that for q = 1, the hyperbolic index sets are equivalent to the total degree index

set (see Eq. (3.9)).
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Figure 3.1: Representation of a hyperbolic index set AM,p
q for various p and q (M = 2).

3.3.3 Computation of the coefficients

After defining the set of candidate polynomials, the next step is to determine the expansion

coefficients aα of each multivariate polynomial ψα(x). In this thesis, only non-intrusive methods

are considered, which are based on repeatedly evaluating the model M over a set of input

realizations X = {χ(1), . . . ,χ(N)}, the so-called experimental design. A variety of methods has

been proposed to sample the input variables X to ensure high accuracy for the meta-model.

Apart from random sampling, such as Monte Carlo simulation and Latin-hypercube sampling

(LHS) (McKay, Beckman, & Conover 1979), quasi-random sequences may be used to generate an

experimental design. Popular quasi-random sequences include Sobol’ sequences (Sobol’ 1967),

Faure sequences (Faure 1982), Halton series (Halton 1960), Niederreiter series (Niederreiter

1988), and orthogonal arrays (Suen & Kuhfeld 2005; Y. Zhang 2007). For a comparison of the

various methods, the reader is referred to Schöbi & Sudret (2014a).

After generating the experimental design, the coefficients aα are computed. Different non-

intrusive methods have been proposed in the last decade to calibrate PC meta-models, namely

projection (Ghiocel & Ghanem 2002; Le Mâıtre et al. 2002; Keese & Matthies 2005), stochastic

collocation (Xiu & Hesthaven 2005; Xiu 2009) and least-square minimization methods (Berveil-

ler, Sudret, & Lemaire 2006b; Blatman & Sudret 2010a, 2011; Chkifa et al. 2013; Migliorati
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et al. 2014). In this thesis, least-square minimization methods are used.

The expansion coefficients a = {aα, α ∈ A ⊂ NM} are calculated by minimizing the expec-

tation of the least-squares residual:

a = arg min
a∈RnA

E



(
Y −

∑

α∈A
aα ψα(X)

)2

 , (3.13)

where nA = |A| are the number of polynomials in PCE. In practice, the expectation in Eq. (3.13)

is evaluated by an empirical sample-based estimator. Denoting by Y =
{
Y(1), . . . ,Y(N)

}
the

set of outputs of the exact model M for each point in the experimental design X (i.e. Y(i) =

M(χ(i)), i = 1, . . . , N), the discretized least-squares error minimization problem derived from

Eq. (3.13) reads:

â = arg min
a∈RnA

1

N

N∑

i=1

(
Y(i) −

∑

α∈A
aα ψα

(
χ(i)

))2

. (3.14)

The optimal expansion coefficients â can be computed by solving the linear system

â = (FTF)−1FTY, (3.15)

where F is the information matrix of size N × nA whose generic term reads:

Fij = ψj

(
χ(i)

)
, i = 1, . . . , N, j = 1, . . . , nA. (3.16)

3.3.4 Sparse PCE

Typically for smooth functions, a small number of polynomials is able to represent accurately the

output of the computational model. Thus, a further reduction of the set of predictors is possible.

Various types of generalized regression algorithms have been proposed in the literature, namely

the least absolute shrinkage operator (LASSO) (Tibshirani 1996), the Least Angle Regression

(LAR) (Efron, Hastie, et al. 2004), the Orthogonal Matching Pursuit (OMP) (Pati, Rezaiifar,

& Krishnaprasad 1993; Mallat & Z. Zhang 1993), low-rank approximations (Doostan, Validi,

& Iaccarino 2013; Peng, Hampton, & Doostan 2014) and compressive sensing (Sargsyan et al.

2014).

Based on LAR, sparse PCE models defined by a hyperbolic index set AM,p
q in combination

with the LARS algorithm (Blatman & Sudret 2011) are used in this thesis. LARS allows for

an efficient selection of a small number of polynomial predictors out of the candidate set AM,p
q .

For a thorough discussion of the LARS algorithm, the reader is referred to Blatman (2009) and

Blatman & Sudret (2011).

3.3.5 Error measures

Validation set-based error

As seen in Eq. (3.8), PCE are approximations of the exact computational model and thus

the prediction at new input samples leads to some residual error. Hence, error measures are

developed to quantify the deviation between exact output Y and the meta-model output Y (PCE).

The generalization error (also called L2-error) is the expectation of the squared output residuals

(Vapnik 1995):

Err(P)
gen = E

[(
Y − Y (PCE)

)2
]
, (3.17)
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where the expectation is defined with respect to the PDF of the input variables X. If the

computational model M is inexpensive to evaluate, the generalization error can be estimated

accurately using an auxiliary validation set S =
{
x(1), . . . ,x(n)

}
, which is sampled from the

input distribution fX . The estimate of the generalization error then reads:

Êrr
(P)

gen =
1

n

n∑

i=1

[
M
(
x(i)
)
−M(PCE)

(
x(i)
)]2

. (3.18)

Normalizing the generalization error by the variance of the output Y leads to the relative gene-

ralization error :

êrr(P)
gen =

Êrrgen
Var [Y ]

=

∑n
i=1

[
M
(
x(i)
)
−M(PCE)

(
x(i)
)]2

∑n
i=1

[
M
(
x(i)
)
− µ̂Y

]2 , (3.19)

where µ̂Y = 1
n

∑n
i=1M

(
x(i)
)

is the estimated mean value of Y . By normalizing with respect

to the variance, the generalization error provides a dimensionless measure relative to the scat-

ter/variability of the response quantity Y .

Experimental design-based error

However, a validation set is rarely available in real applications since the very purpose of building

a meta-model is to avoid evaluatingM on a large sample set S. When the use of a large validation

set is not affordable, the empirical error based on the available experimental design X may be

defined:

Erremp =
1

N

N∑

i=1

[
Y(i) −M(PCE)

(
χ(i)

)]2
. (3.20)

Normalizing the empirical error by the variance of the output values leads to the relative empi-

rical error, which is defined as:

erremp =
Erremp
Var [Y]

=

∑N
i=1

[
Y(i) −M(PCE)

(
χ(i)

)]2
∑N

i=1

[
Y(i) − µ̂Y

]2 , (3.21)

where µ̂Y = 1
N

∑N
i=1M

(
χ(i)

)
is the estimated mean value of the output values Y. The empirical

error, which is based on the experimental design, generally underestimates the generalization

error. In particular, if the number of polynomials |A| is close to the number of samples N in the

experimental design, the empirical error tends to zero whereas the true (generalization) error

may not. In the extreme case where N = |A| the predictors may interpolate the experimental

design points and thus the empirical error vanishes. This phenomenon is called overfitting.

In order to avoid overfitting, the leave-one-out (LOO) has been proposed as a better estimate

of the generalization error (Stone 1974; Geisser 1975). The general formulation of the LOO error

reads:

Err
(PCE)
LOO =

1

N

N∑

i=1

[
Y(i) −M(PCE)

(−i)

(
χ(i)

)]2
, (3.22)

where M(PCE)
(−i) (·) is a PCE model built from the reduced experimental design set X (−i) =

X\χ(i) =
{
χ(j), j = 1, . . . , i− 1, i+ 1, . . . , N

}
and Y =

{
Y(i), i = 1, . . . , N

}
are the corre-

sponding response values of the exact computational model. The LOO error is a special case

of the leave-k-out cross validation error (Allen 1971), which discards k samples from the initial

experimental design to build up a model and predict the error at the k samples left aside.
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In theory, the computational cost of the LOO error is proportional to the number of samples

N , since N PCE meta-models corresponding to each experimental design X (−i) seem to be

required in its estimation in Eq. (3.22). In the special case of linearly parameterized regression,

which is the case for PCE, it is possible to calculate the LOO error analytically without building

N separate models. Then, the LOO error reads (see e.g. Saporta (2006) and Blatman (2009)

for the proof):

Err
(PCE)
LOO =

1

N

N∑

i=1

[
Y(i) −M(PCE)(χ(i))

1− hi

]2

, (3.23)

where hi is the i-th diagonal term of the matrix F
(
FTF

)−1
FT and the information matrix F

is defined in Eq. (3.16). Note that the PCE used in Eq. (3.23) is built only once from the full

experimental design X .

Similar to the generalization error, the relative leave-one-out error is defined as the following

ratio:

err
(PCE)
LOO =

Err
(PCE)
LOO

Var [Y]
=

∑N
i=1

[
Y(i) −M(PCE)

(−i)
(
χ(i)

)]2

∑N
i=1

[
Y(i) − µ̂Y

]2 , (3.24)

where µ̂Y = 1
N

∑N
i=1M

(
χ(i)

)
is the estimated mean value of Y .

3.4 Kriging

3.4.1 Definition

Kriging, also known as Gaussian process modeling, assumes that the computational model is a

realization of a Gaussian random process (Santner, B. Williams, & Notz 2003):

M(x) ≈M(K)(x) = βTf(x) + σ2 Z(x, ω), (3.25)

where βTf(x) =
∑nT

j=1 βjfj(x) is the mean value (a.k.a trend) of the Gaussian process, σ2 is

the process variance and Z(x, ω) is a zero-mean, unit-variance stationary Gaussian process. The

zero-mean Gaussian process Z(x, ω) is characterized by an auto-correlation function R(x,x′) =

R(|x− x′|;ρ) and its hyper-parameters ρ.

Various correlation functions can be found in the literature (Santner, B. Williams, & Notz

2003; Rasmussen & C. Williams 2006), including linear, exponential, Gaussian (also called

squared exponential), and Matérn autocorrelation functions. A summary of the commonly used

autocorrelation functions can be found in Appendix C. Depending on the characteristics of the

computational modelM, one or the other represents the function’s behaviour better. Note that

for stochastic computational models, i.e. models where the repeated evaluation of the same

input vector x leads to different values of y, a nugget is added to the autocorrelation function.

Apart from the correlation part in Eq. (3.25), there is also the trend βTf(x). Three different

flavours of Kriging are defined in the literature (M. Stein 1999; Santner, B. Williams, & Notz

2003; Rasmussen & C. Williams 2006), namely simple, ordinary and universal Kriging according

to the complexity of the trend. Simple Kriging assumes that the trend has a known constant

value, i.e. βTf(x) = β0. In ordinary Kriging, the trend has a constant but unknown value, i.e.

nT = 1, f1(x) = 1 and β1 is unknown. The most general and flexible formulation is universal

Kriging, which assumes that the trend is composed of a sum of nT pre-selected functions fk(x):

βTf(x) =

nT∑

k=1

βkfk(x), (3.26)
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where βk is the trend coefficient corresponding to the k-th function fk. Note that simple and

ordinary Kriging are special cases of universal Kriging. Hence, the following derivations are

elaborated for the case of universal Kriging only.

3.4.2 Calibration

Given a value for the auto-correlation hyper-parameters ρ̂, the calibration of the Kriging model

parameters
{
β(ρ̂), σ2

y(ρ̂)
}

may be computed using an empirical best linear unbiased estimator

(BLUE). The optimization yields an analytical expression as a function of ρ̂:

β(ρ̂) =
(
FTR−1F

)−1
F R−1Y, (3.27)

σ2
y(ρ̂) =

1

N
(Y − Fβ)T R−1 (Y − Fβ) , (3.28)

where Y = {Y(i), i = 1, . . . , N} are model responses of the exact computational model on the

experimental design X = {χ(i), i = 1, . . . , N}, Rij = R(|χ(i)−χ(j)|; ρ̂) is the correlation matrix

and Fij = fj
(
χ(i)

)
is the information matrix.

Following recent developments, the optimal correlation parameters ρ̂ may be determined by

either a maximum-likelihood-estimate (denoted by ML) (Marrel et al. 2008; Dubourg 2011) or

by leave-one-out cross-validation (CV ) (Bachoc 2013). The optimal parameters are determined

through a minimization:

ρ̂ML = arg min
ρ

[
1

N
(Y − Fβ)T R−1(ρ) (Y − Fβ) (det R(ρ))1/N

]
, (3.29)

ρ̂CV = arg min
ρ

[
YT R−1(ρ) diag

(
R−1(ρ)

)−2
R−1(ρ) Y

]
. (3.30)

The comparison of both approaches shows that ML is preferable to CV in well-specified cases,

i.e. when the meta-model autocorrelation function family is identical to the autocorrelation

function of the computational model. For practical problems, i.e. assuming a black-box model,

the autocorrelation function family is not known with certainty. In this case, CV shall lead to

more robust results than ML, as discussed in Bachoc (2013).

3.4.3 Prediction

Based on the assumption of a Gaussian process, the prediction of a Kriging model of a new

point x is a Gaussian random variable with mean µ
Ŷ

(x) and variance σ2
Ŷ

(x):

µ
Ŷ

(x) = fT(x)β + rT(x)R−1 (Y − Fβ) , (3.31)

σ2
Ŷ

(x) = σ2
y

(
1 − rT(x) R r(x) + uT(x)

(
FTR−1F

)−1
u(x)

)
, (3.32)

where ri(x) = R
(
|x− χ(i)|;ρ

)
is the correlation between the new sample x and the sample χ(i)

of the experimental design and u(x) = FTR−1r(x) − f(x). The prediction mean is used as

the surrogate to the original model M, whereas the variance gives a local error indicator about

its prediction precision. It is important to note that the Kriging model interpolates the data,

namely:

µ
Ŷ

(
χ(i)

)
=M

(
χ(i)

)
, σ2

Ŷ

(
χ(i)

)
= 0, ∀χ(i) ∈ X . (3.33)
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3.4.4 Error measures

A local error measure for any sample x is given by the prediction variance σ2
Ŷ

(x) defined in

Eq. (3.32). As an example, a confidence interval of the prediction can be defined as µ
Ŷ

(x) ±
1.96 · σ

Ŷ
(x) for every point x ∈ DX . This information is useful to detect regions where the

prediction accuracy is low. Adding new samples to the experimental design X in the regions

with high prediction variance may lead to an overall increase in the accuracy of the meta-model

in that region. This characteristics is exploited when devising adaptive experimental designs in

structural reliability analysis (Bichon, Eldred, et al. 2008; Bichon, McFarland, & Mahadevan

2011; Dubourg, Sudret, & Bourinet 2011; Echard, Gayton, Lemaire, & Relun 2013; Schöbi,

Sudret, & Marelli 2016). For further details, the reader is referred to Chapter 5.

A simple global error measure of the accuracy of the meta-model (such as the empirical

error in Eq. (3.21) for PCE) is not available for Kriging due to its interpolating properties (see

Eq. (3.33)), which results in Erremp = 0 (considering no nugget effect in its auto-correlation

function). However, the LOO error is available and is defined as:

Err
(K)
LOO =

1

N

N∑

i=1

[
Y(i) − µ

Ŷ (−i)

(
χ(i)

)]2
, (3.34)

where µ
Ŷ (−i)

(
χ(i)

)
is the prediction mean µ

Ŷ
at sample χ(i) by a Kriging meta-model based

on the experimental design X (−i) = X\χ(i) and Y =
{
Y(i), i = 1, . . . , N

}
is the exact model

response. Dubrule (1983) derived an analytical solution for the LOO error for universal Kriging

without computing the N meta-models explicitly, in the same spirit as Eq. (3.23) for PCE. The

prediction mean and variance are given by:

µ
Ŷ (−i) = −

N∑

j=1,j 6=i

Bij

Bii
Y(j) = −

N∑

j=1

Bij

Bii
Y(j) + Y(i), (3.35)

σ2
Ŷ (−i) =

1

Bii
, (3.36)

where B is a square matrix of size (N + nT ) with N and nT denoting the number of samples in

the experimental design and the number of functions fk in the trend part, respectively:

B =

[
σ2
yR F

FT 0

]−1

, (3.37)

where σ2
y is the Kriging variance for the full experimental design X estimated by Eq. (3.28).

A generalized version of this algorithm called v-fold cross-correlation error can be found in

Dubrule (1983). Finally, the relative leave-one-out error is obtained by normalizing the leave-

one-out error by the variance of Y :

err
(K)
LOO =

Err
(K)
LOO

Var [Y ]
=

∑N
i=1

[
Y(i) − µ

Ŷ (−i)
(
χ(i)

)]2

∑N
i=1

[
Y(i) − µ̂Y

]2 , (3.38)

where µ̂Y = 1
N

∑N
i=1M

(
χ(i)

)
is the estimated mean value of Y .

When a validation set is available, the generalization error and relative generalization error

defined in Eqs. (3.18) and (3.19) for PCE, respectively, can be adopted to the Kriging prediction

as follows:

Êrr
(K)

gen =
1

n

n∑

i=1

[
M
(
x(i)
)
− µ

Ŷ

(
x(i)
)]2

, (3.39)
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êrr(K)
gen =

∑n
i=1

[
M
(
x(i)
)
− µ

Ŷ

(
x(i)
)]2

∑n
i=1

[
M
(
x(i)
)
− µ̂Y

]2 , (3.40)

where µ̂Y = 1
n

∑n
i=1M

(
x(i)
)

is the estimated mean value of Y .

3.5 PCE versus Kriging

3.5.1 Model behaviour

As mentioned before, PCE approximates the global behaviour of the computational model well,

due to the regression-type approach that is used in this thesis and the related least-squares mini-

mization of the residuals. Kriging, however, focuses on the local behaviour of the computational

model, resulting in high prediction accuracy close to sample points of the experimental design.

On the other side, the global behaviour can be poor. In fact, far away from the experimental

design points χ(i), Kriging tends to the trend. Hence, the goodness-of-fit of the Kriging meta-

model does not only depend on the experimental design points but also on the definition of the

trend.

The dependency on the experimental design algorithm is a characteristic of Kriging. In

fact, the experimental design X and the corresponding responses Y are required to predict a

new point x ∈ DX , as seen in Eqs. (3.31) and (3.32). This is due to the correlation vector r

which estimates the correlation between the new sample x and the samples of the experimental

design X . This results in large matrices and the need for inverse of large matrices when the

experimental design is large. PCE, however, is independent of the experimental design X once

the meta-model is calibrated. The prediction of a new sample x is achieved by simply solving

Eq. (3.8), which consists of evaluating a sum of multivariate polynomials.

Due to the independence on X , PCE does not interpolate samples of the experimental

design in the general case (Y(i) 6= M(PCE)
(
χ(i)

)
). This downside originates in the regression-

types approach used for PCE. Note that in contrast, stochastic collocation approaches lead to

multivariate interpolating polynomials. Kriging, however, interpolates the experimental design

points as shown in Eq. (3.33) whatever the structure of the trend and the autocorrelation

function. Considering that the computational model is deterministic, i.e. Y(i) is the true and

precise value of M
(
χ(i)

)
, Kriging may locally lead to better prediction results than PCE.

3.5.2 Visualization

In order to visualize the general behaviour of PCE and Kriging, consider the following experimen-

tal design X2, where χ(i), i = 1, . . . , 10 are sampled from a uniform distribution X ∼ U(0, 10).

The computational model is defined as M(x) = x · sin (x), which defines the vector of response

values Y2 corresponding to X2.

PCE and Kriging meta-models are calibrated using the Matlab-based framework UQLab

(Marelli & Sudret 2014). In this example, PCE is calibrated by a truncation set AM,p where the

maximal total polynomial degree is p = 10 and the degree-adaptive LARS algorithm is used.

Note that the use of hyperbolic index sets is redundant here due to M = 1. For the Kriging

meta-model, an ordinary Kriging model is used together with a Matérn autocorrelation function

(ν = 3/2). The corresponding hyper-parameter ρ is determined by cross-validation.

Figure 3.2 compares the true computational model to PCE and Kriging. The circles mark the

samples of the experimental design whereas the dashed line represents the exact computational

modelM. In Figure 3.2(a), the solid line marks the prediction of the PCE model. The prediction
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line follows the line of the exact model nicely within the range of the experimental design

x ∈
[
mini χ

(i),maxi χ
(i)
]
. At the boundaries of the domain DX , however, the PCE model tends

to be inaccurate: close to x = 0 the exact model response in overestimated whereas close to

x = 10 it is underestimated.
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(a) PCE model
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(b) Kriging model

Figure 3.2: Comparison of PCE and Kriging – meta-models based on X2 and corresponding Y2.

The Kriging model is shown in Figure 3.2(b), where the prediction mean value µ
Ŷ

(x) are

shown by the solid line and where the grey area marks the 95% confidence interval of the

prediction. The confidence interval
[
µ
Ŷ

(x)− 1.96 · σ
Ŷ

(x), µ
Ŷ

(x) + 1.96 · σ
Ŷ

(x)
]

is obtained by

accounting for the fact that the prediction of each x ∈ DX results in a Gaussian random variable

characterised by
{
µ
Ŷ

(x), σ
Ŷ

(x)
}

. The grey confidence intervals point out areas of low accuracy,

which correspond to the areas where the prediction mean value µ
Ŷ

(x) does not overlap with the

true value y =M (x). Similar to PCE, the Kriging model predicts well the exact model in the

centre of the input domain and not so well towards the boundaries of the input domain.

As discussed in Section 3.5.1, the behaviour of the two meta-models is different when extra-

polating outside of the range of experimental design samples. The polynomial format of PCE

results in extreme response values at the boundaries of DX , whereas the ordinary Kriging model

results in predictions towards its trend (here estimated β1 = 1.45). Hence in this case, Kriging

results in more confined response values than PCE.

The accuracy of both meta-models is compared in Table 3.1 by means of error measures

introduced in Sections 3.3.5 and 3.4.4. The empirical and LOO error are based on the experi-

mental design. Note that the empirical error of Kriging is zero due to the interpolation feature.

The low values of both error measures indicate that the meta-models accurately predict the

computational model response Y , which confirms the visual impression gained from Figure 3.2.

The (relative) generalization error measures the accuracy with respect to a validation set of

size nMCS = 105 sampled uniformly in the input domain. In order to see the effect of extrapo-

lation, i.e. prediction outside of the range of experimental design samples, the generalization

error is computed for x ∈ [0, 10] and x ∈ [0.75, 8.5]. In this example, the difference in the error

estimates is significant. Comparing the domain x ∈ [0.75, 8.5] to x ∈ [0, 10], the generalization

error varies by two orders of magnitude. This is due to the previously discussed behaviour

when extrapolating beyond the range of experimental design samples and confirms the visual

impression gained in Figure 3.2.

Finally, the relative generalization error normalizes the generalization error with respect to

Var [Y ] = 13.61 (see also Eqs. (3.19) and (3.40)). Then, an error of êrrgen = 1 would correspond



3.5. PCE VERSUS KRIGING 41

Table 3.1: Comparison of PCE and Kriging – error measures for X2 and corresponding Y2

(validation set with n = 105 samples).

Error measure Domain PCE Kriging

Erremp - 1.47 · 10−2 0

ErrLOO - 1.11 3.90 · 10−1

errLOO - 7.84 · 10−2 2.76 · 10−2

Êrrgen x ∈ [0.0, 10.0] 5.66 3.26

x ∈ [0.75, 8.5] 1.61 · 10−2 3.90 · 10−2

êrrgen x ∈ [0.0, 10.0] 4.16 · 10−1 2.39 · 10−1

x ∈ [0.75, 8.5] 1.19 · 10−3 2.86 · 10−3

to a model where the meta-model residuals scatter by a similar amount as the variable Y .

Hence, êrrgen � 1 would correspond to an accurate model. In the present example, the relative

generalization errors are small for x ∈ [0.75, 8.5] and between 0.2 and 0.4 for x ∈ [0, 10]. This

confirms the discussion on extrapolation in the previous paragraph on the generalization error.

3.5.3 PCE as a particular case of Kriging

Despite the many differences in the definition of PCE and Kriging, the two meta-models are

related. In fact, PCE can be interpreted as universal Kriging models when the autocorrelation

function consists of the Kronecker delta function:

R(|x− x′|) = δ(x− x′), (3.41)

where δ = 1 for x = x′ and δ = 0 otherwise. The correlation matrix is then the identity matrix

of size N , i.e. R = IN . This reduces Eqs. (3.27) to (3.15) and hence Eqs. (3.31) to (3.8) (indeed

r(x,x′) = 0 when x 6∈ X in this particular case).

Further, it can be shown that the LOO error in Eqs. (3.34) to (3.36) reduces to Eq. (3.23) by

the following derivations. Consider the symmetric partitioned matrix C and the corresponding

inverse D, i.e. D = C−1 which are defined as:

C =

[
C11 C12

CT
12 C22

]
, D =

[
D11 D12

DT
12 D22

]
, (3.42)

where C11 and D11 (respectively C22 and D22) are square matrices with dimension N (respecti-

vely nT ). Using block matrix inversion one can derive:

D11 = C−1
11 + C−1

11 C12

(
C22 −CT

12C
−1
11 C12

)−1
CT

12C
−1
11 . (3.43)

In the context of the LOO error, taking C = B, C11 = σ2
yIN , C12 = F, and C22 = 0nT in

Eq. (3.37) leads to:

D11 =
1

σ2
y

IN +
1

σ2
y

INF

(
0P − FT 1

σ2
y

INF

)−1

FT 1

σ2
y

IN

=
1

σ2
y

I +
1

σ2
y

F
(
−FTF

)−1
FT

=
1

σ2
y

(
I− F

(
FTF

)−1
FT

)
.

(3.44)
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Then, the LOO error in Eq. (3.34) combined with Eq. (3.35) and the above inverse formulation

of the B matrix reads (Schöbi, Sudret, & Wiart 2015):

Err
(K)
LOO =

1

N

N∑

i=1


Y(i) +

N∑

j=1

Bij
Bii
Y(j) − Y(i)




2

=
1

N

N∑

i=1


 1

Bii

N∑

j=1

BijY(j)




2

=
1

N

N∑

i=1


 1

Biiσ2
y

N∑

j=1

(
I− F

(
FTF

)−1
FT

)

ij

Y(j)




2

=
1

N

N∑

i=1


 1

1−
(

diag
[
F (FTF)

−1
FT
])

i

·


Y(i) −

N∑

j=1

[
F
(
FTF

)−1
FT

]

ij

Y(j)






2

=
1

N

N∑

i=1



Y(i) −

[
F
(
FTF

)−1
FTY

]
i

1−
(

diag
[
F (FTF)

−1
FT
])

i




2

=
1

N

N∑

i=1



Y(i) −

[(
FTF

)−1
FTY

]T
f(χ(i))

1−
(

diag
[
F (FTF)

−1
FT
])

i




2

,

(3.45)

which is equivalent to the formulation of the LOO error in Eq. (3.23) for the case of PCE and

f(χ(i)) ≡ ψ(χ(i)). Thus, the LOO error in PCE can be seen as a special case of the LOO error

in the Kriging framework.

3.6 Conclusion

PCE and Kriging are two popular meta-modelling techniques which approximate the compu-

tational model by an inexpensive-to-evaluate function. These techniques have been developed

by different communities in the past, hence the different formulations, notations, and usages.

When looking at Section 3.5, however, the two meta-modelling techniques are more similar than

seen at first sight. The question then naturally arises, whether it is possible to combine the

two techniques to form an even more accurate and efficient meta-modelling technique. To the

author’s knowledge, no attempt has been taken in combining them up till now. Hence, a new

meta-modelling technique is introduced in the next chapter taking advantage of the properties

of PCE and Kriging.



CHAPTER 4

PC-Kriging

This chapter introduces the novel PC-Kriging approach, which is a com-

bination of the classical PCE and Kriging meta-modelling techniques, and

compares the three methods. The content of this chapter has been published

in Schöbi & Sudret (2014a,d) and Schöbi, Sudret, & Wiart (2015).

4.1 Theory

The characteristics of Kriging is to interpolate local variations of the output of the computational

model Y as a function of the neighbouring experimental design points. In contrast, PCE are

used for approximating the global behaviour of M using a set of orthogonal polynomials. By

combining the two techniques, the goal is to capture the global behaviour of the computational

model with a set of orthogonal polynomials in the trend of a universal Kriging model and the

local variability with the Gaussian process. The new approach called Polynomial-Chaos-Kriging

(PC-Kriging) combines these two distinct meta-modelling techniques and their characteristics.

Using the same notations as in the previous chapter for truncated PCE (see Eq. (3.8)), the

PC-Kriging meta-model is cast as follows (Schöbi & Sudret 2014d):

M(x) ≈M(PCK)(x) =
∑

α∈A
aαψα (x) + σ2Z(x, ω), (4.1)

where
∑
α∈A aαψα(x) is a weighted sum of orthonormal polynomials describing the mean value

of the Gaussian process and A is the index set of the polynomials. Z(x, ω) is a zero-mean,

unit-variance stationary Gaussian process defined by an autocorrelation function R(|x− x′|;ρ)

and is parametrized by a set of hyper-parameters ρ.

Building a PC-Kriging meta-model consists of two parts: (i) the determination of the optimal

set of polynomials contained in the regression part (i.e. in the truncation set A) and (ii) the

calibration of the correlation hyper-parameters ρ as well as the Kriging parameters
{
σ2
y ,a
}

.

The set of polynomials is determined using the LARS algorithm (Blatman & Sudret 2011)

together with hyperbolic index sets to obtain sparse sets of polynomials. After the set is fixed,

the trend and correlation parameters are evaluated using the universal Kriging equations (see

Eqs. (3.27)-(3.30)).

43
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4.2 Calibration and prediction

The two distinct frameworks for PCE and Kriging can be combined in various ways. In this

chapter, two approaches are explained and discussed in details, i.e. Sequential PC-Kriging

and Optimal PC-Kriging. Both approaches are based on the same input information: (i) an

experimental design X , (ii) the corresponding response values Y obtained from the computa-

tional model evaluations M (X ), (iii) the description of the random input variables by their

marginal PDFs (to define orthonormal polynomials), and (iv) the parametric expression of the

auto-correlation function R (|x− x′|;ρ).

4.2.1 Sequential PC-Kriging

In sequential PC-Kriging (SPC-Kriging), the set of polynomials and the Kriging meta-models

are determined sequentially. The assumption behind this procedure is that the optimal set of

polynomials found by the LARS algorithm in the context of pure PCE can be used directly

as a suitable trend for the universal Kriging model. Hence in a first step, the optimal set

of polynomials is determined using the PCE framework: A is found by applying the LARS

procedure as in Blatman & Sudret (2011). Then, the set of multivariate orthonormal polynomials

A is embedded into a universal Kriging model as its trend. The universal Kriging model is finally

calibrated using Eqs. (3.27)-(3.30).

At the end of the algorithm, the accuracy of the calibrated meta-model can be measured

by e.g. the LOO error given in Eq. (3.34) or, when using a validation set, by the sample-based

generalization error in Eq. (3.39).

The SPC-Kriging algorithm is illustrated in Figure 4.1, where the white boxes mark the

required input information and the grey boxes represent the computational tasks. Given a cali-

brated SPC-Kriging model, the response of a new input realization (i.e. prediction) is computed

by Eqs. (3.31) and (3.32).

Input distribution
fX

Experimental design
{X , Y}

LARS

Autocorrelation
function

R(|x − x′|;ρ)

Sequential-PC-Kriging

M(SPCK)(x) =
∑
α∈A aαψα(x) + σ2Z(x, ω)

Prediction
{µŶ (x), σ2

Ŷ
(x)}

Figure 4.1: Sequential PC-Kriging – flowchart for calibration of the meta-model.
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4.2.2 Optimal PC-Kriging

In optimal PC-Kriging (OPC-Kriging), the PC-Kriging meta-model is obtained iteratively. The

set of orthonormal multivariate polynomials is determined by the LARS algorithm in the same

way as in SPC-Kriging. Yet the LARS algorithm results in a list of ranked polynomials which

are chosen depending on their correlation to the current residual at each iteration, in decreasing

order. OPC-Kriging consists of an iterative algorithm where each polynomial is added one-by-

one (starting with the one ranked highest) to the trend part of the universal Kriging model. In

each iteration, a Kriging model is calibrated, i.e. the coefficients of the trend and the parameters

of the auto-correlation function are computed. In the end, a number of nA = |A| different PC-

Kriging models are available. The nA meta-models are then compared in terms of the LOO

error in Eq. (3.34). Finally, the optimal PC-Kriging model is chosen as the one with minimal

LOO error.

Figure 4.2 illustrates the OPC-Kriging algorithm in a flowchart. Similar to Figure 4.1, the

white boxes mark the required input information and the grey boxes represent the computa-

tional tasks. The model M(K)(i)(x), i = 1, . . . , nA denotes a universal Kriging meta-model

where the trend is modelled by the first i polynomials selected in A according to the ran-

king obtained by LARS. The LOO error corresponding to the Kriging model M(K)(i) is deno-

ted by Err
(K)(i)
LOO . The final meta-model is chosen as the one minimizing the LOO error, i.e.

i∗ = arg mini=1,...,nA Err
(K)(i)
LOO and hence M(OPCK)(x) =M(K)(i∗)(x). The final box marks the

prediction model responses to new realizations of the input vector X. As in SPC-Kriging and

any universal Kriging model, the prediction values are obtained by Eqs. (3.31) and (3.32).

Input distribution
fX

Experimental design
{X , Y}

Autocorrelation
function

R(|x − x′|;ρ)

Optimal PC-Kriging

LAR (iteration 1)

y = M(K)(1)(x)

LOO error Err
(K)(1)
LOO

LAR (iteration 2)

y = M(K)(2)(x)

LOO error Err
(K)(2)
LOO

· · ·

LAR (iteration nA)

y = M(K)(nA)(x)

LOO error Err
(K)(nA)
LOO

i∗ = argmini=1,...,nA Err
(K)(i)
LOO

M(OPCK)(x) = M(K)(i∗)(x)

Prediction
{µŶ (x), σ2

Ŷ
(x)}

Figure 4.2: Optimal PC-Kriging – flowchart for calibration of the meta-model.
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4.3 Error measures

PC-Kriging is nothing but a universal Kriging model with an advanced trend. Thus, the error

measures in Section 3.4.4 are valid. In particular, the LOO error in Eq. (3.34) is used to compare

different PC-Kriging models and to compute the optimal meta-model in OPC-Kriging.

4.4 Numerical examples

4.4.1 Setup

A number of benchmark analytical functions are analysed in this section to compare the per-

formance of the PC-Kriging approach and the traditional PCE and Kriging. Six analytical

functions of different dimensionality are illustrated, namely four with uniformly distributed in-

put variables (i.e. Ishigami, Sobol’, Rosenbrock and Morris function) and two with Gaussian

input variables (i.e. Rastrigin and O’Hagan function).

• The Ishigami function is a smooth function with three independent input parameters com-

monly used for benchmarking methods in meta-modelling and global sensitivity analysis:

f1(x) = sinx1 + 7 sin2 x2 + 0.1x4
3 sinx1, (4.2)

where Xi ∼ U(−π, π), i = 1, 2, 3.

• The Sobol ’ function is a well-known function in sensitivity analysis because of the analytical

derivation of the Sobol’ indices (Sobol’ 1993):

f2(x) =
8∏

i=i

|4xi − 2|+ ci
1 + ci

, (4.3)

where Xi ∼ U(0, 1), i = 1, . . . , 8 and c = (1, 2, 5, 10, 20, 50, 100, 500)T as in Sudret (2008).

Due to the absolute value operator in the enumerator the function behaves non-smoothly

at the point xi = 0.5.

• The Rosenbrock function is a polynomial function with a two-dimensional input space

(Rosenbrock 1960):

f3(x) = 100
(
x2 − x2

1

)2
+ (1− x1)2 , (4.4)

where Xi ∼ U(−2, 2), i = 1, 2.

• The Morris function is a function of a high-dimensional input space (M = 20) and is

defined by (Morris 1991):

f4(x) =
20∑

i=1

βiwi +
20∑

i<j

βij wiwj +
20∑

i<j<l

βijl wiwjwl + 5w1w2w3w4, (4.5)

where Xi ∼ U(0, 1), i = 1, . . . , 20, wi = 2 (xi − 1/2) for all i except for i = 3, 5, 7

where wi = 2 (
1.1xi
xi + 0.1

− 1/2). The coefficients are defined as: βi = 20 for i = 1, . . . , 10,

βij = −15 for i, j = 1, . . . , 6, and βijl = −10 for i, j, l = 1, . . . , 5. The remaining coefficients

are set equal to βi = (−1)i and βij = (−1)i+j as in Blatman (2009).
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• The Rastrigin function has a two-dimensional input space and is defined by (Rastrigin

1974):

f5(x) = 10−
2∑

i=1

(x2
i − 5 cos(2π xi)), (4.6)

where Xi ∼ N (0, 1), i = 1, 2 is modelled as a standard normal variable.

• The last function is the O’Hagan function which is defined by (Oakley & O’Hagan 2004):

f6(x) = aT1x+ aT2 sin(x) + aT3 cos(x) + xTQx, (4.7)

where Xi ∼ N (0, 1), i = 1, . . . , 15. The vectors {a1,a2.a3} and matrix Q are defined in

Oakley & O’Hagan (2004) and given in Appendix D for the sake of completeness.

Note that the functions f1 to f4 have uniform input random variables. Accordingly, the PC

trend in PC-Kriging is built up from multivariate Legendre polynomials. In contrast f5 and f6

have Gaussian input random variables. Thus, the PC trend is modelled by multivariate Hermite

polynomials (see also Sudret (2015)).

4.4.2 Analysis

At the beginning of each algorithm, the experimental design is generated with the Latin-

hypercube sampling technique (McKay, Beckman, & Conover 1979) in the unit-hypercube

[0, 1]M and a subsequent isoprobabilistic transform to the input domain DX . Then, meta-

models are calibrated applying the four previously discussed meta-modelling techniques, i.e.

ordinary Kriging, PCE, SPC-Kriging, and OPC-Kriging. Their performance is compared by

means of relative generalization error (see Eqs. (3.19) and (3.40)) based on a validation set of

n = 105 samples. Note that the validation set is sampled from the input vector X with the

Monte Carlo method.

For each experimental setup, the analysis is replicated 50 times to account for the statistical

uncertainties in the experimental design. The results of the 50 independent runs are represented

by box plots. In a box plot, the central mark visualizes the median value of the 50 runs, the edges

are the 25-th and 75-th percentile denoted by q25 and q75, respectively. The whiskers describe

the boundary to the outliers, which are defined as the values smaller than q25 − 1.5 (q75 − q25)

or larger than q75 + (q75 − q25).

4.4.3 Results

Visualization of PC-Kriging’s behaviour

The general behaviour of the different types of meta-models are illustrated in Figure 4.3. Fi-

gure 4.3(a) shows a two-dimensional contour plot of the model response of the Rastrigin function

as a function of x1 and x2. The model response is compared to PCE, ordinary Kriging and PC-

Kriging meta-models (Figures 4.3(b)-4.3(d)), which are based on an experimental design of size

N = 128. The Rastrigin function has a highly oscillatory behaviour over the entire input space

as seen in Figure 4.3(a). This behaviour is difficult to meta-model with a small number of

samples because many local minima/maxima are missed out.

The analytical formulation of the Rastrigin function is a combination of a quadratic compo-

nent and a high-frequency trigonometric component. The PCE model in Figure 4.3(c) captures

the global characteristic of the function, i.e. the quadratic component, whereas the ordinary
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Kriging model in Figure 4.3(b) approximates the local characteristics, i.e. the high-frequency

trigonometric component. Finally, the combination of PCE and Kriging leads to a better meta-

model as shown in Figure 4.3(d).

Note that the meta-models in Figure 4.3 have a high accuracy around the origin of the

coordinate system due to the definition of the input vector PDF as standard normal distributions

(Xi ∼ N (0, 1)).
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(d) PC-Kriging

Figure 4.3: Rastrigin function – visual composition of PC-Kriging.

Small experimental design

The four meta-modelling techniques are compared for the six analytical functions f1 to f6 using

experimental designs of increasing size N . The number of samples is chosen so that the analysis

yields a large range of relative generalization errors. The results are illustrated in Figures 4.4

to 4.9. In each figure, (a) shows the ordinary Kriging model and (b) shows the PCE model. The

new approaches SPC-Kriging and OPC-Kriging are shown in (c) and (d), respectively.

Ishigami function Figure 4.4 shows the relative generalization error for the Ishigami function.

For a small sample size of N = 20 samples, ordinary Kriging performs best with respect to the

median value of the box plots. When the number of samples is increased, the two PC-Kriging

approaches perform better than the traditional approaches because their median value and the

range of the error is lower. For large sample sizes (N ≥ 50), PC-Kriging performs similarly to
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PCE, though slightly better. OPC-Kriging is slightly more accurate than SPC-Kriging over the

whole range of sample sizes.
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Figure 4.4: Ishigami function – relative generalization error for four meta-modelling techniques.

Rosenbrock function Figure 4.5 presents the results of the Rosenbrock function, which is a

purely polynomial function and can be modelled accordingly with a small number of polynomials

based on a small number of points in the experimental design (e.g. in the case of PCE). This

is the reason why the number of points lies within N = 8, . . . , 20. Highly accurate surrogate

models are obtained with only 20 samples. For small sample sizes OPC-Kriging performs best

among the four techniques in terms of the relative generalization error.

Sobol’ function The Sobol’ function is more complex than the two previous functions because

of the dimensionality (M = 8) and the non-smooth behaviour at xi = 0.5, i = 1, . . . , 8. Thus,

more samples are needed to obtain a similar range of relative generalization errors compared to

the previous functions, as seen in Figure 4.6. Behaviours for the larger sample sizes (N = 64, 128)

are very similar among the meta-modelling approaches, although PC-Kriging performs slightly

better than the traditional PCE and ordinary Kriging approaches. For very small sample sizes

(N = 16, 32), OPC-Kriging performs significantly better than the other meta-models.

Morris function Figure 4.7 shows the results for the Morris function. A large experimental

design is required to properly surrogate the computational model because of the high dimensi-

onality of the input vector X and the amount of interactive terms of different input variables
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Figure 4.5: Rosenbrock function – relative generalization error for four meta-modelling techni-

ques.

Xi in the analytical formulation (see Eq. (4.5)). The relative generalization error of the two

PC-Kriging approaches resembles more the one of ordinary Kriging than the one of PCE in this

case. Sparse PCE is not capable of modelling this analytical function with a small number of

samples, due to the large number of interactive terms in the formulation of the function at hand.

Rastrigin function The results associated with the Rastrigin function are shown in Fi-

gure 4.8. Despite the low dimensionality of the input (M = 2), many samples are needed to

obtain small error estimates. This is due to the fact that the function output is highly oscillatory

over the entire input space as previously illustrated in Figure 4.3. In comparison to Figure 4.3,

which describes the qualitative performance of PC-Kriging on the Rastrigin function, the quanti-

tative benefit of combining PCE and Kriging becomes visible in Figure 4.8: PC-Kriging performs

better than the traditional approaches. Ordinary Kriging performs the worst followed by PCE.

OPC-Kriging has statistically the lowest relative generalization errors over the whole range of

experimental design sizes.

O’Hagan function Figure 4.9 displays the results associated with the O’Hagan function.

Similarly to the Morris function, the performance of PC-Kriging in the case of the O’Hagan

function resembles that of ordinary Kriging whereas PCE performs worse than the other three
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Figure 4.6: Sobol’ function – relative generalization error for four meta-modelling techniques.

approaches. Over the entire displayed range of experimental designs in Figure 4.9, the perfor-

mance of OPC-Kriging is slightly better than the performance of SPC-Kriging and ordinary

Kriging. Note that meta-modelling the O’Hagan function requires less samples in the experi-

mental design to obtain the same accuracy as in the case of the Rastrigin function despite the

fact that the O’Hagan function has a 15-dimensional input space and that both functions are

very smooth.

Accuracy comparison Summarizing the results of all six analytical functions in Figures 4.4-

4.9, the proposed PC-Kriging approaches perform better than or at least as good as the tra-

ditional PCE and Kriging approaches. Note that for functions like Morris (Figure 4.7) and

O’Hagan (Figure 4.9), the performance of PC-Kriging is more similar to Kriging than PCE,

whereas for the other functions the performance of PC-Kriging resembles more that of PCE. As

one could expect, there is no general rule so as to decide whether PCE or Kriging provides the

most accurate meta-models for a given experimental design. The advantage of PC-Kriging is to

perform as least as well as the best of the two.

Computational costs The combination of PCE and Kriging and its increased accuracy co-

mes with a higher computational cost. The traditional ordinary Kriging and PCE approaches

have the lowest computational cost, SPC-Kriging has an intermediate and OPC-Kriging has the

highest cost. The high cost of OPC-Kriging originates from the iterative character of the algo-

rithm and the accompanying repetitive calibration of Kriging models. For a single calibration of
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ê
r
r
g
e
n

N

(a) Ordinary Kriging

 32  64 128 256

0  

0.2

0.4

0.6

0.8

1  

ê
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Figure 4.7: Morris function – relative generalization error for four meta-modelling techniques.

a surrogate of the Ishigami function (experimental design of size N = 128 samples) the ratio of

computational times when comparing PCE to ordinary Kriging, SPC-Kriging and OPC-Kriging

is approximately 1 : 5, 1 : 20 and 1 : 200, respectively.

Note that it is intended to apply these techniques to realistic problems where the evaluation

of the exact computational model response lasts much longer than the computation of a meta-

model. Then, the apparent computational overload of OPC-Kriging will not be anymore an

issue in many practical applications.

Large experimental design

When the resources for experiments are limited, the focus lies on doing as few computational

model runs as possible, as discussed in the previous section. However, in order to describe

the entire behaviour of the meta-modelling approaches, the Ishigami function is also studied for

larger experimental designs in order to assess the convergence of the various schemes. Figure 4.10

illustrates the evolution of the relative generalization error from small to large sample sizes on

the logarithmic (base 10) scale. When using PC-based approaches, the relative generalization

error decreases fast when enlarging the sample set. As the Ishigami function is composed of sine

and cosine functions, an approximation with series of polynomials works well (see also Taylor

series expansions). Hence, PCE and PC-Kriging result in highly accurate meta-models. In case

of PC-Kriging, the polynomial trend is the dominating effect whereas the Gaussian random

process is almost negligible.
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Figure 4.8: Rastrigin function – relative generalization error for four meta-modelling techniques.

For large sample sizes, ordinary Kriging is outperformed by the other three approaches. In

general, Kriging works well with small sample sizes. If too many samples are used, the interpo-

lation algorithm becomes unstable due to singularities and bad conditioning in the correlation

matrix R. If a large sample size is available, regional Kriging models on a subset of samples,

e.g. the neighbouring samples, are more suitable (Dubrule 1983).

The performance of PC-Kriging and also PCE for a large number of samples (here 128 and

256 samples in Figure 4.10) is in the order of magnitude of the machine computation precision.

Errors around êrrgen ≈ 10−12 originate from numerical round-off errors which are not reducible

by adding more samples. It is questionable though, whether in reality such a high accuracy in

the meta-model prediction is needed.

Evolution of the error measures

The OPC-Kriging algorithm includes the tracking of the LOO error to optimally choose the

sparse set of orthonormal polynomials. Hence, the evolution of the LOO error for the Ishigami

function and a sample size of N = 128 samples is presented in Figure 4.11. The experimental-

design-based LOO error (dashed line) is compared to the relative generalization error which is

shown as the solid black line.

The first point to notice is that the LOO error slightly under-predicts the true value of the

relative generalization error for all sizes of polynomial sets. This is due to the fact that the

LOO error is based solely on the information contained in the experimental design samples,
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Figure 4.9: O’Hagan function – relative generalization error for four meta-modelling techniques.

whereas the relative generalization error is based on a large validation set (n = 105). Although

there is an inherent under-prediction, the overall behaviour of the two error measures is similar.

Thus, the choice of the optimal set of polynomials for the OPC-Kriging can be based on the

LOO error, which is obtained as a by-product of the procedure used to fit the parameters of the

PC-Kriging model. In the example case of Figure 4.11, choosing only half of the polynomials,

i.e. i∗ = 27, leads to a meta-model which is almost as accurate as using all 56 polynomials.

The optimal set of polynomials can be chosen at the point where the decrease in LOO error

becomes insignificant. This reduces the number of polynomials needed and thus also reduces

the complexity of the OPC-Kriging meta-model.

4.5 Conclusion

PC-Kriging is a combination of the traditional non-intrusive PCE and Kriging methods. In

other words, PC-Kriging is a generalization of PCE and Kriging. In fact in some applications,

PC-Kriging tends to behave like an ordinary Kriging model, whereas in other applications it

tends to behave like PCE. In any examined cases, however, PC-Kriging performs better than the

two traditional meta-modelling techniques taken separately. Hence, PC-Kriging is an efficient

meta-modelling technique which allows for an efficient propagation of uncertainty in the context

of probability distributions.
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(ê
r
r
g
e
n
)

(b) PCE

 32  64 128 256
−14

−12

−10

−8

−6

−4

−2

0

N

lo
g
1
0
(ê
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(c) SPC-Kriging
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Figure 4.10: Ishigami function – relative generalization error for four meta-modelling techniques

and large experimental designs.
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algorithm as a function of the number of polynomials in the trend.





CHAPTER 5

PC-Kriging in rare event estimation

PC-Kriging is used in structural reliability analysis, where adaptive expe-

rimental design algorithms are used to increase the efficiency of estimating

failure probabilities and quantiles. Different aspects of this topic have been

published in Schöbi & Sudret (2014b,c,e), and Schöbi, Sudret, & Marelli

(2016).

5.1 State of the art

Apart from pure uncertainty propagation (as discussed in Chapter 3 and 4), analysts are often

interested in the estimation of rare events. Two cases are generally distinguished in the context

of rare event estimation, namely the estimation of failure probabilities (so-called structural

reliability analysis) and that of extreme quantiles. Both quantities describe important statistics

of the response of the computational models. In the context of engineering and high reliability

targets, failure probabilities are generally low (in the order of 10−3 to 10−6) and the quantiles are

extreme (e.g. 99 % quantiles), therefore structural reliability analysis falls into the broad class of

rare events estimation. Note that traditionally “structural reliability analysis” was developed in

the context of civil engineering structures. However, the same methods can be applied in other

fields, hence the more general name of “rare event estimation” and simply “reliability analysis”.

A large number of tools have been proposed and are widely available for solving such relia-

bility analyses. Methods include the traditional Monte Carlo simulation (MCS) (Metropolis &

Ulam 1949; Hammersley & Handscomb 1964), first order reliability method (FORM) (Hasofer

& Lind 1974; Rackwitz & Fiessler 1978), second order reliability analysis (SORM) (Hohenbi-

chler et al. 1987; Breitung 1989), subset simulation (Au & Beck 2001; Au 2016), line sampling

(Koutsourelakis, Pradlwarter, & Schuëller 2004; Koutsourelakis 2004), importance sampling

(Melchers 1989; Engelund & Rackwitz 1993), and meta-model-based approaches. For a more

detailed overview and applications of structural reliability analyses, see e.g. Ditlevsen & Madsen

(1996), Melchers (1999), Lemaire (2009), and Morio, Balesdent, et al. (2014).

In the context of structural reliability analysis and meta-modelling, Kriging is often con-

nected to the idea of adaptive design enrichment strategies. The reason is that Kriging provides

a local error estimate of the meta-model accuracy by the prediction variance σ2
Ŷ

(x). Kaymaz

(2005) and Schueremans & Van Gemert (2005b) introduced Kriging to structural reliability

57
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analysis. The use of adaptive experimental design algorithms has been investigated by Bichon,

Eldred, et al. (2008), Echard, Gayton, & Lemaire (2011), Dubourg, Sudret, & Bourinet (2011),

and Ranjan, Bingham, & Michailidis (2012) who combine an adaptive Kriging meta-model with

Monte Carlo simulation, and Echard, Gayton, Lemaire, & Relun (2013) and Cadini, Santos,

& Zio (2014), who modify it for the case of importance sampling. Under the name “stepwise

uncertainty reduction” Arnaud et al. (2010), Bect et al. (2012), and Jala (2013) discuss an

adaptive Kriging approach in a Bayesian context. Dani, Hayes, & Kakade (2008) and Srinivas

et al. (2012) use upper confidence bounds. Finally, the use of adaptive Kriging to build up a

quasi-optimal importance sampling density (thus leading to unbiased estimates of the failure

probability) has been recently proposed in Dubourg, Sudret, & Deheeger (2013) and Dubourg

& Sudret (2014).

Other meta-modelling techniques have been applied in fewer occasions. Bourinet, Deheeger,

& Lemaire (2011) use support vector machines in the context of subset simulations. Dai et al.

(2014) discuss the use of wavelet-density-based adaptive importance sampling. Marelli & Sudret

(2016) use bootstrapping to enrich the experimental design of a PCE meta-model.

Due to their versatility and popularity, Kriging meta-models with experimental design strate-

gies are discussed in the following in the context of structural reliability methods. In particular,

existing approaches are expanded to the new PC-Kriging algorithms.

5.2 Structural reliability analysis

5.2.1 Limit-state function

In the context of structural reliability analyses, a limit-state function describes the performance

of a process or system as a function of a set of input parameters. The deterministic mapping is

defined as:

G : x ∈ DX ⊂ RM 7→ y = G (x) ∈ R, (5.1)

where x is a M -dimensional vector defined in DX and y is the output scalar indicating the

performance. The sign of y, and hence G (x), determines whether an input vector x corresponds

to a safe system (G (x) > 0) or a failed system (G (x) ≤ 0).

The limit-state function G and the computational model M are closely related. For simpli-

city, it is assumed that the input vector x is identical for G and M. Moreover the limit-state

function can be interpreted as a function of the computational model, i.e. G(x) = f (M (x)).

In practice, this function is often of simple form, such as a translation. As an example, let us

consider that the computational modelM is a finite element model of a building. The response

value M (x) may be the displacement at the top floor. Then, a possible limit-state function

could describe whether the top floor displacement exceeds a threshold value of yadm. This can

be modelled by the following limit-state function:

G(x) = yadm −M (x) . (5.2)

In other examples, it can be that the computational model is modelling the performance itself,

hence G (x) = M (x). Due to this close relationship between G and M, only G is used in the

following section in the context of structural reliability analysis. The use of M instead would

not change the spirit of the methods proposed in the following.
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5.2.2 Estimation of a failure probability

In structural reliability analysis, the failure probability Pf is defined as the probability that the

limit-state function takes negative values:

Pf = P (G (X) ≤ 0) . (5.3)

The failure probability may be recast as the following integral:

Pf =

∫

Df
fX(x) dx, (5.4)

where Df = {x ∈ DX : G (x) ≤ 0} is the failure domain and fX is the joint PDF of the input

vector X. The integration operation in Eq. (5.4) cannot be performed analytically in the general

case where the failure domain Df has a complex shape. Hence, numerical estimates for the failure

probability were developed such as Monte Carlo simulation. Considering a large sample of X

denoted by S =
{
x(1), . . . ,x(n)

}
, the failure probability can be estimated by:

P̂f =
nf
n

=
1

n

n∑

i=1

IG(x)≤0

(
x(i)
)
, (5.5)

where nf is the number of failure samples x(i) ∈ Df , n = |S| is the total number of samples

and I is the indicator function with I = 1 for failure and I = 0 otherwise. Note that the use of

I transforms the structural reliability problem into a classification problem where only the sign

of G(x) is relevant.

An advantage of the Monte Carlo simulation is that the accuracy of the failure probability

estimate can be computed easily. The theoretical coefficient of variation of the failure portability

estimate reads:

CoV
[
P̂f

]
=

√√√√1− P̂f
n · P̂f

. (5.6)

The main limitation of pure Monte Carlo approaches, namely the loss of efficiency for small

failure probabilities, is apparent in Eq. (5.6). The number of samples required to obtain a target

coefficient of variation is rapidly increasing with decreasing failure probability. For instance, to

achieve a target coefficient of variation of CoV
[
P̂f

]
= 0.1 given a failure probability Pf = 10−k,

n ≈
[
P̂f · CoV

[
P̂f

]2
]−1

= 10k+2 samples are needed.

5.2.3 Estimation of a quantile

Quantile estimation consists in determining a quantile qα so that the probability of G (X) being

smaller than qα is equal to a preset value α:

P (G (X) ≤ qα) = α, (5.7)

where α ∈ [0, 1]. This constitutes an inverse problem compared to classical failure probability

estimation shown in Eq. (5.3).

The quantile estimation problem can also be solved by Monte Carlo simulation. Consider

again a reasonably large sample set S =
{
x(1), ...,x(n)

}
and the corresponding response values

y =
{
y(1), ..., y(n)

}
=
{
G
(
x(1)

)
, . . . ,G

(
x(n)

)}
. Assume that the response values are ranked in
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ascending order and denote them by y(1) ≤ y(2) ≤ . . . ≤ y(n). Then the estimator of the quantile

qα reads:

q̂α = ybnαc, (5.8)

where bnαc is the largest integer smaller than nα. Analogously to failure probability estimation,

the quantile estimation problem can be cast as a classification problem:

find q̂α s.t. α ≈ 1

n

n∑

i=1

IG(x)≤q̂α
(
x(i)
)
. (5.9)

5.2.4 Limit-state surface

Both the estimation of failure probabilities in Eq. (5.5) and of quantiles in Eq. (5.9) may be

treated as classification problems dividing the input domain into failure and safety regions. The

limit-state surface marks the boundary between the failure and safety domain. Therefore, the

limit-state parameter y0 is introduced, which determines whether a response y belongs to the

failure (y ≤ y0) or to the safety domain (y > y0). For the estimation of failure probabilities

y0 = 0, whereas for the estimation of quantiles y0 = q̂α. Due to these similarities, failure

probability and quantiles are denoted as statistics of interest in the remaining of the chapter.

5.2.5 Model accuracy

In the context of engineering and high reliability targets, failure probabilities are generally low (in

the order of 10−3 to 10−6) and quantiles are extreme (e.g. 99% quantile). Therefore, structural

reliability falls into the broad class of rare event estimation. Hence, the failure domain Df is

either small and/or far away from the mean value of the input distribution X in the input

space DX . The meta-modelling techniques introduced so far focus, however, on the area around

the mean of the input distribution rather than on the distribution’s tail. Moreover, they use a

static experimental design which is independent on the limit-state surface that characterizes the

classification problems introduced in Eqs. (5.5) and (5.9). Thus, the accuracy of the estimation

of the statistics of interest is generally low using these techniques.

In order to improve the accuracy of this techniques, rare event estimation has been often

related to the concept of experimental design enrichment (a.k.a. adaptive experimental design

algorithms). The core idea is to start calibrating a meta-model with a limited set of limit-state

function runs and then to add new evaluations x iteratively to increase the accuracy of the

statistics of interest.

5.3 Adaptive experimental design algorithm

5.3.1 Main algorithm

A slightly modified version of the Adaptive leaning reliability methods combining Kriging and

Monte Carlo Simulation (AK-MCS) (Echard, Gayton, & Lemaire 2011) algorithm is introduced

here making use of the PC-Kriging meta-models presented in the previous chapter. The main

steps can be summarized as follows:

(i) Initial experimental design: The initial experimental design X (composed of N0 samples) is

generated by a space-filling design (e.g. Latin-hypercube sampling) and the corresponding

response values Y(i) = G
(
χ(i)

)
are computed.
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(ii) Calibration of meta-model Ĝ: A meta-model Ĝ is calibrated based on {X ,Y}. In the

following, PC-Kriging and ordinary Kriging models are used for comparison.

(iii) MC population S: A large set of candidate samples S =
{
x(1), . . . ,x(n)

}
is generated from

X by Monte Carlo simulation. This candidate set is the basis for estimating the statistics

of interest later on.

(iv) Computation of meta-model responses: Compute the prediction mean µ
Ŷ

(x) and variance

σ2
Ŷ

(x) for every x ∈ S.

(v) Limit-state parameter y0: Estimation of the limit-state parameter y0 based on the current

meta-model, i.e. based on
{
µ
Ŷ

(x), x ∈ S
}

. Note that in the case of failure probability

estimation, the parameter is automatically set to y0 = 0.

(vi) Probability of misclassification: All candidate samples x ∈ S are ranked according to an

enrichment criterion.

(vii) Candidate selection: In the selection step, the optimal sample(s) χ∗ which are to be added

to the experimental design are determined, so that X ← {X ,χ∗}.

(viii) Addition of χ∗: The response values corresponding to χ∗ is/are evaluated and added to

Y ← {Y,Y∗}. Then, the iterative algorithm goes back to step (ii), where the meta-model

Ĝ is recalibrated with the enriched experimental design.

(ix) Stopping criterion: The iterative part of the algorithm is terminated through a convergence

measure (stopping criterion) with respect to the statistics of interest.

(x) End of algorithm: After the termination of the iterative algorithm, the statistics of interest

is estimated based on the last meta-model Ĝ and the candidate set S.

An overview of the algorithm is shown in the flowchart in Figure 5.1. The white boxes mark the

information required to start the algorithm, whereas the grey boxes represent the computational

tasks.

5.3.2 Initial experimental design

In order to have a well-behaved initial experimental design, a space-filling sampling method is

required. In this thesis, the Latin-hypercube sampling algorithm is used (McKay, Beckman, &

Conover 1979). In particular, the unit hyper-cube [0, 1]M is sampled and the samples are mapped

to the input space DX by the inverse CDF of the marginals. Other sampling strategies include

quasi-random sequences, such as Sobol’ sequences (Sobol’ 1967) and Halton series (Halton 1960).

5.3.3 Candidate selection

Single sample selection

A learning function (LF) estimates the expected value of information gained with respect to the

statistics of interest when point x is added to the experimental design X of the meta-model. A

variety of learning functions has been proposed in the literature including the Expected Feasibility

Function (EFF) (Bichon, Eldred, et al. 2008), the Expected Improvement (EI) functions (Jones,

Schonlau, & Welch 1998; Ginsbourger, Rosspopoff, et al. 2013), the Gaussian process upper

confidence bounds (GP-UCB) (Srinivas et al. 2012) and the U -function (Echard, Gayton, &
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Stopping
criterion

Add χ∗ to X and
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Estimate statis-
tics of interest

no

yes

Figure 5.1: Flowchart of the adaptive algorithm for rare event estimation.

Lemaire 2011). For further details regarding the learning function, the reader is referred to

Appendix E. In the following, the U -function is discussed more in depth.

The U -function is based on the concept of misclassification and the very nature of the

Gaussian process (GP) meta-model. Since the GP prediction Ŷ (x) is a Gaussian variable for

each sample point x ∈ S, there is a non-zero probability that the prediction mean µ
Ŷ

(x) > y0

(safety domain) whereas the true value satisfies G (x) ≤ y0 (failure domain) or vice versa. Due

to the fact that the prediction Ŷ (x) is a Gaussian random variable described by the first two

moments
{
µ
Ŷ

(x), σ
Ŷ

(x)
}

, the probability of misclassification Pm can be written as (Bect et al.

2012):

Pm(x) = min

[
Φ

(
µ
Ŷ

(x)− y0

σ
Ŷ

(x)

)
,Φ

(
y0 − µŶ (x)

σ
Ŷ

(x)

)]
= Φ

(
−|µŶ (x)− y0|

σ
Ŷ

(x)

)
. (5.10)

The probability of misclassification is maximized when the fraction tends to zero, i.e. −|µ
Ŷ

(x)−
y0|/σŶ (x) ∼ 0 → Pm(x) = 0.5, and is small when either the prediction mean is far away from

the limit-state parameter y0 and/or the prediction variance is small. Note that the probability

measure used to define misclassification is the one associated to the Gaussian nature of the

predictor N
(
µ
Ŷ

(x), σ
Ŷ

(x)
)

in each point x. It shall not be confused with the probability P (·)
in Eq. (5.3) which corresponds to the input random vector X.

In this formalism, the U -function is defined as the “reliability index” corresponding to the
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probability of misclassification (Echard, Gayton, & Lemaire 2011):

U(x) =
|µ
Ŷ

(x)− y0|
σ
Ŷ

(x)
. (5.11)

The optimal sample to enrich the experimental design is the one minimizing the U -function

among x ∈ S, thus maximizing the probability of misclassification:

x∗ = arg min
x∈S

U(x) ≡ arg max
x∈S

Pm(x). (5.12)

Due to this similarity, both the probability of misclassification and the U -function can be used

as learning functions.

Multiple sample selection

In cases where parallel computing is available, it can be beneficial to add multiple points in

each iteration to speed up the overall computation even if the procedure may be slightly subop-

timal. Assuming that K samples can be determined at the beginning of each iteration, the

corresponding model responses could be computed simultaneously on K independent CPUs.

There are several ways to sample multiple points from the set of candidates S. Generally

speaking though, attractive candidates are found close to the limit-state surface. Thus, a lower

and upper boundary of the limit-state surface is defined taking into account the prediction

uncertainty in the Kriging model. Then, two bounds can be defined as:

µ
Ŷ

(x)− k · σ
Ŷ

(x) = y0, (5.13)

µ
Ŷ

(x) + k · σ
Ŷ

(x) = y0, (5.14)

where k sets the confidence level typically equal to 1.96 = Φ−1(97.5%). In other words, the lower

bound estimates the limit-state surface assuming that the real value of every sample x ∈ DX is

µ
Ŷ

(x)− k · σ
Ŷ

(x) instead of the mean value µ
Ŷ

(x).

Analogously, we define the “mean” failure domain in terms of the prediction mean value:

D0
f

def
=
{
x ∈ DX : µ

Ŷ
(x) ≤ y0

}
, (5.15)

and the corresponding lower and upper bounds to the failure domain:

D−f
def
=
{
x ∈ DX : µ

Ŷ
(x) + k · σ

Ŷ
(x) ≤ y0

}
, (5.16)

D+
f

def
=
{
x ∈ DX : µ

Ŷ
(x)− k · σ

Ŷ
(x) ≤ y0

}
, (5.17)

so that D−f ⊂ D0
f ⊂ D+

f are nested failure domains. The lower and upper bounds can be

interpreted as the least and most conservative estimate of the failure domain, respectively.

The limit-state margin Mf is defined as the difference between the lower and the upper

boundaries of the failure domain (Dubourg 2011):

Mf
def
= D+

f \D−f . (5.18)

The limit-state margin is a natural region where to focus for candidate samples for the design

enrichment. Considering a large set of samples of the input vector S =
{
x(1), . . . ,x(n)

}
, we

define the following sets corresponding to the domains in Eqs. (5.15) to (5.18):

S0
f

def
=
{
x ∈ S : µ

Ŷ
(x) ≤ y0

}
, (5.19)
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S+
f

def
=
{
x ∈ S : µ

Ŷ
(x)− k · σ

Ŷ
(x) ≤ y0

}
, (5.20)

S−f
def
=
{
x ∈ S : µ

Ŷ
(x) + k · σ

Ŷ
(x) ≤ y0

}
, (5.21)

SM def
= S+

f \S−f , (5.22)

where S−f ⊂ S0
f ⊂ S+

f are nested sets. These sets are the discrete counterparts corresponding to

the domains defined in Eqs. (5.15) to (5.18). The margin set SM contains points of interest for

enriching the experimental design since they lie close to the true limit-state surface. Virtually

any point in SM could be added to X and a simple approach would be to sample the K different

points randomly. However, a better coverage of Mf can be obtained using clustering techniques.

To account for the relative importance of the samples in SM, a weighted K-means clustering

algorithm is used (Zaki & Meira 2014). In this algorithm, samples with high information value

according to the learning function have larger weights, whereas samples with low information

value have low weights. The weights are set equal to the probability of misclassification (see

Eq. (5.10)) of each sample x ∈ SM. By definition of the probability of misclassification, the

weights are bounded on [0, 0.5]. The additional K samples χ∗ are then determined as the

samples x ∈ SM which are closest to the nuclei of each i-th cluster.

To showcase the process of selecting additional samples, let us consider the following limit-

state function with two-dimensional input vector:

y = G(x) = 20− (x1 − x2)2 − 8 · (x1 + x2 − 4)3, (5.23)

where the input variables have uniform distributions Xi ∼ U(−5, 5), i = 1, 2.

The function is meta-modelled with an ordinary Kriging model. Figure 5.2(a) displays the

initial experimental design (“◦” for failure samples and “+” for safety samples), the exact failure

domain (thin line) and the failure region estimated from the prediction mean values µ
Ŷ

(x)

(thick black line). Figures 5.2(b)-5.2(d) show the lower and upper failure domains as well as

the domain of the limit-state margin, respectively. Finally, Figure 5.2(e) shows the probability

of misclassification in the limit-state margin and Figure 5.2(f) shows the selected candidates.

The grey area in Figure 5.2(f) represents the samples in the limit-state margin, the large black

diamond represents the optimal sample (with highest probability of misclassification) and the

hollow black diamonds represent the K = 5 samples obtained by weighted K-means clustering.

It can be observed that the K = 5 samples in Figure 5.2(f) cover the domain of the limit-state

margin well and are close to the limit-state surface determined by the prediction mean value.

This leads to an efficient selection of additional samples for enriching the experimental design.

Interestingly, however, the optimal sample in terms of the probability of misclassification is not

part of the K = 5 sample set. This implies that each of the K = 5 samples is suboptimal in

terms of misclassification.

The optimal sample (filled diamond marker in Figure 5.2(f)) depends highly on the sampling

of the limit-state margin. In principle any sample with µ
Ŷ

(x) = y0 = 0 could be optimal in

terms of the probability of misclassification. This implies that the choice of a single sample with

respect to the maximal probability of misclassification is non-unique in theory. However, it is

unique and well-defined in the discrete optimization problem Eq. (5.12).

5.3.4 Stopping criterion

In Echard, Gayton, & Lemaire (2011), the convergence measure (a.k.a. stopping criterion)

is based on the accuracy of the meta-model around the limit-state surface rather than on the
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Figure 5.2: Design enrichment when adding K = 5 samples – definition of failure domains and

illustration of the candidate selection algorithm.
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estimation of the statistics of interest. Thus, two stopping criteria are proposed for the estimation

of failure probabilities and quantiles designed to maximize the accuracy of the statistics of

interest while minimizing computational costs.

The stability of the estimate of the statistics of interest can be measured by the size of

the limit-state margin Mf and consequently by the associated values of the upper and lower

boundaries of the limit-state surface. When the boundaries are close to each other (i.e. a small

limit-state margin), then, the estimate of the statistics of interest is accurate. Therefore, the

stopping criterion for estimating failure probabilities is defined as:

P̂+
f − P̂−f
P̂ 0
f

≤ ε
P̂f
, (5.24)

for two consecutive iteration steps where ε
P̂f

= 5% is used in applications. The upper and lower

bound failure probabilities are defined as:

P̂+
f

def
= P

(
µ
Ŷ

(X)− k σ
Ŷ

(X) ≤ y0

)
, (5.25)

P̂−f
def
= P

(
µ
Ŷ

(X) + k σ
Ŷ

(X) ≤ y0

)
, (5.26)

and the best estimate for the failure probability reads:

P̂ 0
f

def
= P

(
µ
Ŷ

(X) ≤ y0

)
. (5.27)

These failure probabilities are estimated based on S. As an example, P̂+
f is estimated by an

equation analogue to Eq. (5.5):

P̂+
f ≈

1

n

n∑

i=1

I(µŶ (x)−kσ
Ŷ

(x)≤y0)

(
x(i)
)
. (5.28)

The stopping criterion defined in Eq. (5.24) can be adapted to the context of quantile esti-

mation as follows:
q̂+
α − q̂−α

Std
[
Ŷ
] ≤ εq̂α , (5.29)

for two consecutive iteration steps where εq̂α = 5% is used in practical applications. The

quantiles q̂±α are computed from a large Monte Carlo sampling of the bounds µ
Ŷ

(x)± k σ
Ŷ

(x),

where Std
[
Ŷ
]

is the empirical standard deviation of the sample
{
µ
Ŷ

(
x(i)
)
, i = 1, . . . , n

}
. The

normalization in Eq. (5.29) makes use of the standard deviation rather than q̂0
α in analogy with

Eq. (5.24). Indeed, unlike P̂ 0
f in Eq. (5.24), q̂0

α can be any real number in R, which makes it

inappropriate for normalization.

5.4 Numerical examples

5.4.1 Four-branch function

Problem statement

The four-branch function is a common benchmark in structural reliability analysis (SRA) that

describes the failure of a series system with four distinct component limit states. Its mathema-
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tical formulation reads (Waarts 2000; Schueremans & Van Gemert 2005a,b):

f7(x) = min





3 + 0.1 (x1 − x2)2 − x1+x2√
2

3 + 0.1 (x1 − x2)2 + x1+x2√
2

(x1 − x2) + 6√
2

(x2 − x1) + 6√
2




, (5.30)

where the input variables are modelled by two independent Gaussian random variables Xi ∼
N (0, 1). The failure event is defined as f7(x) ≤ 0, i.e. the failure probability is Pf =

P (f7(X) ≤ 0). Hence, in this example the limit-state function G (x) is equivalent to the com-

putational model M(x) = f7(x).

Figure 5.3 illustrates the response surface of the four-branch function and the contour lines

including a highlighted limit-state surface. The response surface nicely shows the four parts of

the limit-state function. Moreover, the failure domain has a complex shape accounting for the

four elements of the series system.
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Figure 5.3: Four-branch function – exact model response.

Failure probability estimation

Settings The adaptive experimental design algorithm is initiated with N0 = 12 Latin-hyper-

cube samples (LHS) and a candidate Monte Carlo population S of n = 106 samples. The

performances of PC-Kriging (PCK) are compared to those of ordinary Kriging (OK). The trend

in PC-Kriging consists of Hermite polynomials of maximal degree of eight and a Gaussian

autocorrelation function is chosen for the Gaussian process. Both meta-modelling techniques

are calibrated using the Matlab-based toolbox UQLab (Marelli & Sudret 2014). The adaptive

experimental design algorithm is tested in both single and multiple (K = 6) samples mode.

Visualization Figures 5.4 and 5.5 visualize several iterations of the algorithm for OK and

PCK, respectively, for single sample enrichment. The grey dots represent the candidate MC

population S. The empty squares mark the initial experimental design, whereas the blue filled

circles mark the additional samples. The solid black line represents the exact limit-state surface.

Both variants discover the four distinct failure modes in the limit-state function within the

first 50 iterations. The main difference lies in the limit-state exploration pattern. When using
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(a) Iteration 10 (b) Iteration 30

(c) Iteration 40 (d) Iteration 50

Figure 5.4: Four-branch function – iterations of the adaptive experimental design algorithm

with ordinary Kriging meta-models (K = 1).
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(a) Iteration 10 (b) Iteration 30

(c) Iteration 40 (d) Iteration 50

Figure 5.5: Four-branch function – iterations of the adaptive experimental design algorithm

with PC-Kriging meta-models (K = 1).
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ordinary Kriging in Figure 5.4, the distinct failure mechanisms are explored one-by-one. As soon

as a failure mechanism is characterized, the adaptive sampling algorithm moves to the next. At

iteration 50 all four failure mechanisms are discovered. In the case of PC-Kriging, all four

failure mechanisms are already discovered after 10 iterations (Figure 5.5(a)). Thus, PC-Kriging

converges on average faster to an accurate estimate of the failure probability as compared to

ordinary Kriging. This is to be expected due to the more accurate global trend in PC-Kriging.

Figure 5.6 illustrates the convergence of the estimate of the failure probability by showing P̂±f
(k = 2) and P̂ 0

f . Further, the final iteration is marked where the iterative algorithm is stopped

due to the stopping criterion in Eq. (5.24). Figure 5.6 confirms the faster convergence of the

PC-Kriging meta-models. Note that for the Kriging meta-model, Figure 5.6 shows four plateaus

in P̂ 0
f which correspond to the exploration of the four branches of the limit-state function.
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(b) PC-Kriging

Figure 5.6: Four-branch function – convergence curves of the adaptive experimental design

algorithm for the single run in Figures 5.4 and 5.5.

In order to test the statistical significance of the convergence, the analysis is replicated 50

times with different initial experimental designs. Figure 5.7 illustrates the convergence of the

failure probability estimates P̂ 0
f based on ordinary Kriging and PC-Kriging up to iteration 100,

respectively. The solid line represents the mean value of 50 independent replications of the same

analysis with different initial Latin-hypercube experimental designs. The dashed lines represent

the 5% and 95% quantiles of the 50 independent replications, i.e. the 90% confidence interval

(CI). The results show that PC-Kriging converges faster than ordinary Kriging. Note that the

variation in P̂f after convergence (iterations ≥ 80) originates from the finite size of S and the

corresponding variance in Monte Carlo simulations (see also Eq. (5.6)). Hence, the remaining
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variance is identical for ordinary Kriging and PC-Kriging.
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Figure 5.7: Four-branch function – convergence curves of the adaptive experimental design

algorithms (statistics of 50 replications of the analysis with different initial Latin-hypercube

experimental design).

Parametric study In this paragraph, the candidate selection algorithm and the choice of

stopping criterion are discussed. The candidate selection algorithm compares the selection of

the single optimal candidate to the selection of multiple candidates through weighted K-means

clustering. In terms of stopping criterion, Eq. (5.24) (k = 2) is compared to the existing stopping

criterion defined in Echard, Gayton, & Lemaire (2011):

min[U(x)] ≥ 2 ∀x ∈ S, (5.31)

which indicates that the probability of misclassification must be smaller than Φ(−2) ≈ 2 % for

all candidate samples in order to stop the iterations.

The full failure probability analysis is replicated 50 times with different initial LHS expe-

rimental design in order to assess the statistical significance (e.g. standard deviation of the

resulting P̂f ). The analysis is focused on the total number of computational model evaluations

and on the accuracy of the estimate of the failure probability. The total number of computati-

onal model runs is Ntot = N0 +N1, where N1 is the number of samples added by the adaptive

algorithm.
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Table 5.1: Four-branch function – results using different meta-models, candidate selection al-

gorithms and stopping criteria. Coefficients of variation (CoV) are computed based on the 50

replications of the analysis with different initial experimental designs.

Method Enrich. Stop. crit. E
[
P̂f

]
CoV

[
P̂f

]
E [Ntot] CoV [N1]

MCS 4.460 · 10−3 0.15 % 108 -

OK single Eq. (5.31) 4.464 · 10−3 1.4 % 12 + 96.4 = 108.4 6.7 %

PCK single Eq. (5.31) 4.471 · 10−3 1.4 % 12 + 115.8 = 127.8 24.5 %

OK (∗) single Eq. (5.31) 4.416 · 10−3 - 126 -

OK single Eq. (5.24) 4.440 · 10−3 1.6 % 12 + 66.3 = 78.3 11.0 %

PCK single Eq. (5.24) 4.457 · 10−3 1.5 % 12 + 61.2 = 73.2 28.5 %

PCK K = 6 Eq. (5.24) 4.458 · 10−3 1.5 % 12 + 14.4 · 6 = 98.4 8.9 %

(∗) single run results from Echard, Gayton, & Lemaire (2011)

Table 5.1 summarizes the results for the four-branch function. The results of the adaptive ex-

perimental design algorithm are presented for both stopping criteria (Eqs. (5.24) and (5.31)) and

meta-models (ordinary Kriging and PC-Kriging). The reference value for the failure probability

is computed by Monte Carlo simulation with 108 samples.

Considering the cases of adding a single candidate, all configurations estimate accurately

the failure probability. The coefficient of variation of the estimate of the failure probability

CoV
[
P̂f

]
is comparable with the theoretical coefficient of variation of a Monte Carlo sampling

(see Eq. (5.6)) with nMCS = 106 samples, i.e. CoV
[
P̂f = 4.46 · 10−3, nMCS = 106

]
≈ 1.5 %.

The results in Table 5.1 show that the stopping criterion in Eq. (5.24) leads to accurate results

despite the smaller number of computational model runs Ntot when compared to the stopping

criterion in Eq. (5.31). This indicates that Eq. (5.24) is more suitable to the estimation of failure

probabilities than Eq. (5.31). It is interesting though that PC-Kriging converges faster than

ordinary Kriging with the stopping criterion in Eq. (5.24), as opposed to the one in Eq. (5.31).

The explanation lies in the fact that the stopping criterion in Eq. (5.24) measures the convergence

of the statistics of interest, whereas Eq. (5.31) assesses the overall accuracy of the approximation

of the Kriging surrogate.

For the case of PCK and the stopping criterion in Eq. (5.24), Table 5.1 includes also the

results obtained by adding K = 6 candidates at each iteration. The comparison of the total

number of computational model runs Ntot to the case of adding a single point in each iteration

shows that the addition of multiple points at each iteration requires a larger Ntot: indeed in

the case of single point enrichment, the total number of model runs is Ntot = 73, whereas

adding K = 6 points in each step leads to Ntot = 98. Considering however that the runs of the

computational model can be performed in parallel (K = 6 on six independent CPUs), the total

physical time for the K-point enrichment algorithm is approximately four times smaller.

Quantile estimation

Consider now the quantile estimation problem related to the four-branch function. The quantiles

are estimated for α = {0.01, 0.001, 0.0001}. PC-Kriging is used, a single sample is added at each

iteration out of a candidate Monte Carlo population of n = 106 samples, and the algorithm is

stopped with the stopping criterion in Eq. (5.29).
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Table 5.2 summarizes the results and compares the estimate of the quantiles q̂α with a refe-

rence solution from a Monte Carlo simulation (nMCS = 108). The three α values are accurately

estimated with the adaptive algorithm despite the small initial experimental design of N0 = 12

samples. The coefficient of variation of the results increases with decreasing α due to the decre-

asing size of the failure domain. The results obtained by PC-Kriging are more efficient due to

the relatively low number of model evaluations compared to the ordinary Kriging results.

Table 5.2: Four-branch function – quantile estimation results. MCS is based nMCS = 108

samples. Coefficients of variation (CoV) are computed based on 50 replications of the analysis

with different initial experimental designs.

α Method E [q̂α] CoV [q̂α] E [Ntot] CoV [N1]

0.01 MCS 0.303

OK 0.303 1.7 % 12 + 139.6 = 151.6 32.5 %

PCK 0.305 1.4 % 12 + 62.4 = 74.4 21.0 %

0.001 MCS −0.528

OK −0.530 2.2 % 12 + 138.9 = 150.9 34.8 %

PCK −0.531 2.1 % 12 + 57.7 = 69.7 23.3 %

0.0001 MCS −1.299

OK −1.280 5.0% 12 + 165 = 177 29.4 %

PCK −1.292 2.4 % 12 + 47.9 = 59.9 13.6 %

It is interesting to notice that in the case of PC-Kriging the smaller the α value is, the fewer

samples are required to estimate the quantile. This phenomenon can be explained by considering

the failure domain defined by Eq. (5.30). For small values of α, indeed the failure domain is also

small. Hence to meta-model the limit-state surface, a smaller number of experimental design

points is required.

5.4.2 Borehole model

Problem statement

The first realistic engineering problem considered is the so-called borehole-function, which des-

cribes the water flow through a borehole. This benchmark function has been discussed in

papers such as Harper & Gupta (1983), Morris (1993), An & Owen (2001), and Kersaudy et

al. (2015). It is a fast-to-evaluate function depending on an eight-dimensional input vector

x = (rw, r, Tu, Hu, Tl, Hl, L,Kw)T (Harper & Gupta 1983):

v(x) =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2

wKw
+ Tu

Tl

) , (5.32)

where v(x) is the fluid water flow measured in m3/year, rw is the radius of the borehole, r the

radius of influence, Tu the transmissivity of the upper aquifer, Hu the potentiometric head of

the upper aquifer, Tl the transmissivity of the lower aquifer, Hl the potentiometric head of the

lower aquifer, L the length of the borehole, and Kw the hydraulic conductivity of the soil.

The uncertainties in the input vector are modelled as independent random variables whose

properties are summarized in Table 5.3. For the lognormal distribution, the parameters are the
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mean and standard deviation of the natural logarithm of the variable. For the other variables,

they describe the range of uniform distributions.

Table 5.3: Borehole model – definition of the probabilistic model of the input variables. For the

uniform distributions the parameters denote the range, whereas for the lognormal distribution,

the parameters denote the mean and standard deviation of the natural logarithm of the variable.

Variable Units Distribution Parameters

rw [m] Uniform [0.05, 0.15]

r [m] Lognormal [7.71, 1.0056]

Tu [m2/year] Uniform [63070, 115600]

Hu [m] Uniform [990, 1110]

Tl [m2/year] Uniform [63.1, 116]

Hl [m] Uniform [700, 820]

L [m] Uniform [1120, 1680]

Kw [m/year] Uniform [9855, 12045]

Quantile estimation

The statistics of interest are the quantiles of the water flow v(x) corresponding to α = {0.99,

0.999, 0.9999}. An initial experimental design of N0 = 12 Latin-hypercube samples in used.

The number of samples in the candidate Monte Carlo population is set to n = 106 and the

remaining settings are the same as in the four-branch function application example.

The results of the adaptive algorithm and the reference values are reported in Table 5.4 for

the various values of α, the meta-modelling method (PCK and OK) and enrichment strategies

(single or multiple) used.

The prediction of the quantiles is accurate for both meta-modelling techniques (OK and

PCK) compared to the Monte Carlo (nMCS = 106) solution when adding a single sample and

multiple samples to the experimental design in each iteration. There is, however, a noticeable

difference in the total number of evaluations of the computational model. Ordinary Kriging

(OK) requires more model evaluations than PC-Kriging (PCK) for all values of α. The addition

of K = 6 samples at a time induces slightly more model evaluations Ntot but at the same time

reduces the total computational time due to the parallel evaluation of K = 6 samples.

5.4.3 Two-dimensional truss structure

Problem statement

For the purpose of illustrating a realistic structural engineering application including FEM,

a two-dimensional truss structure is analysed. This specific truss example structure has been

presented and discussed previously in Lee & Kwak (2006), Sudret, Blatman, & Berveiller (2007),

and Blatman & Sudret (2008, 2010a).

Consider the simply supported two-dimensional truss structure sketched in Figure 5.8, which

consists of 23 bars and 13 nodes. The geometry is known deterministically, whereas the material

properties and the loadings are modelled stochastically. Ten stochastic input variables form the

input vector X:

X = (E1, E2, A1, A2, P1, P2, P3, P4, P5, P6)T , (5.33)
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Table 5.4: Borehole model – results of quantile estimation based on a single run of the adaptive

experimental design algorithm with stopping criterion defined in Eq. (5.29).

α Method Enrichment q̂α Ntot

0.99 MCS - 157.5 m3/year 106

OK single 157.3 m3/year 12 + 199 = 211

PCK single 157.4 m3/year 12 + 34 = 46

OK K = 6 157.5 m3/year 12 + 41 · 6 = 258

PCK K = 6 157.7 m3/year 12 + 10 · 6 = 72

0.999 MCS - 197.8 m3/year 106

OK single 197.8 m3/year 12 + 137 = 149

PCK single 198.2 m3/year 12 + 30 = 42

OK K = 6 198.0 m3/year 12 + 32 · 6 = 204

PCK K = 6 198.2 m3/year 12 + 4 · 6 = 32

0.9999 MCS - 235.0 m3/year 106

OK single 235.2 m3/year 12 + 143 = 155

PCK single 235.2 m3/year 12 + 26 = 38

OK K = 6 235.3 m3/year 12 + 33 · 6 = 210

PCK K = 6 235.3 m3/year 12 + 10 · 6 = 72

where E1, E2 are the Young’s moduli of the linear elastic material, A1, A2 are the cross-sections

of the bars and P1, . . . , P6 are the vertical loads acting on the nodes of the upper part of the

structure. The horizontal bars have the properties {E1, A1}, whereas the diagonal bars have

the properties {E2, A2}. The input variables are modelled by the probability distributions

summarized in Table 5.5. It is assumed that the input variables are statistically independent.

A finite element model of the structure is used to calculate the mid-span deflection, denoted by

u(x), as a function of the ten variables in the input vector x, which is defined as positive in the

direction indicated in Figure 5.8. This defines the computational model M (x) = u (x).

6 x 4m

 2
m

P1 P2 P3 P4 P5 P6
A1, E1

A2, E2

u

Figure 5.8: Truss structure – sketch of the geometry, material parameters {Ai, Ei} and loads

Pi.

Failure probability estimation

The failure probability is defined as the probability that the mid-span deflection u is larger than

an admissible value uadm, i.e. Pf = P (u (X) ≥ uadm). Hence, the limit-state function is defined

as G (x) = uadm − u (x), which is equivalent to G(x) = uadm −M (x).

The adaptive experimental design algorithm is started with an initial experimental design



76 CHAPTER 5. PC-KRIGING IN RARE EVENT ESTIMATION

Table 5.5: Truss structure – definition of the probabilistic model of the input variables.

Variable Units Distribution Mean Standard deviation

E1, E2 [Pa] Lognormal 2.1 · 1011 2.1 · 1010

A1 [m2] Lognormal 2.0 · 10−3 2 · 10−4

A2 [m2] Lognormal 1.0 · 10−3 1 · 10−4

P1, . . . , P6 [N] Gumbel 5.0 · 104 7.5 · 103

of N0 = 12 Latin-hypercube samples and the candidate Monte Carlo population S has a size of

n = 106 samples. A single sample or K = 6 samples are added to the experimental design at

each iteration.

Table 5.6 summarizes the results of the failure probability estimation. The results are com-

pared to a reference plain Monte Carlo simulation with nMCS = 106 samples and to the first

order reliability method (FORM) in terms of failure probability and Hasofer-Lind reliability in-

dex (Y. Zhang & Der Kiureghian 1995). For comparison purposes, the generalized reliability

index β̂ = Φ−1(P̂f ) is also given for the various sampling-based approaches.

Table 5.6: Truss structure – results of the failure probability estimate based on a single run of the

adaptive experimental design algorithm for different meta-modelling techniques and enrichment

modes.
uadm Method Enrichment P̂f (CoV [Pf ]) β̂ Ntot

10 cm MCS - 4.29 · 10−2 (0.5 %) 1.72 106

FORM - 2.81 · 10−2 1.91 251

OK single 4.32 · 10−2 1.71 12 + 135 = 147

PCK single 4.32 · 10−2 1.71 12 + 158 = 170

OK K = 6 4.31 · 10−2 1.72 12 + 26 · 6 = 168

PCK K = 6 4.32 · 10−2 1.71 12 + 31 · 6 = 198

12 cm MCS - 1.55 · 10−3 (2.5 %) 2.96 106

FORM - 7.57 · 10−4 3.17 236

OK single 1.53 · 10−3 2.96 12 + 164 = 176

PCK single 1.52 · 10−3 2.96 12 + 157 = 169

OK K = 6 1.53 · 10−3 2.96 12 + 27 · 6 = 174

PCK K = 6 1.53 · 10−3 2.96 12 + 25 · 6 = 162

14 cm MCS - 3.6 · 10−5 (16.7 %) 3.97 106

FORM - 1.29 · 10−5 4.21 231

OK single 3.7 · 10−5 3.96 12 + 110 = 122

PCK single 3.7 · 10−5 3.96 12 + 63 = 75

OK K = 6 3.4 · 10−5 3.99 12 + 27 · 6 = 174

PCK K = 6 3.2 · 10−5 4.00 12 + 11 · 6 = 78

The values of P̂f shown in Table 5.6 are consistent with the reference values for all the

adaptive experimental design configurations. The number of runs of the computational model,

however, differ considerably. For the cases of uadm = 10 cm and 12 cm the number of exact

model runs are similar for both ordinary Kriging (OK) and PC-Kriging (PCK). In the case of

uadm = 14 cm, PCK requires significantly fewer runs than OK, for both single and multiple
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sample selection modes. Similarly to the borehole example, multiple sample selection results in

more computational model runs, but overall lower computational times (up to 5-times smaller)

due to high performance computing.

The well-established FORM gives an estimate that is worse than the adaptive experimental

design algorithm despite the higher cost. It is thus preferable in this application to conduct an

adaptive experimental design search rather than using FORM algorithm.

5.5 Discussion

Apart from simple uncertainty propagation, PC-Kriging can be applied in structural reliability

analysis. A unified framework is available to estimate both failure probabilities and quantiles.

The combination of PC-Kriging and design enrichment based on the probability of misclassifi-

cation increases the accuracy in the estimation of the statistics of interest. An efficient strategy

to add multiple samples at each iteration of the adaptive experimental design algorithm is in-

troduced to enable the use of high-performance computing resources. Further, the adaptive

design algorithm is equipped with a new stopping criterion which monitors the convergence of

the statistics of interest better than existing stopping criteria. This further reduces the total

computational resources needed to accurately estimate the statistics of interest.

The applications in Sections 4.4 and 5.4 confirm the efficiency of the PC-Kriging model on

benchmark analytical functions as well as realistic engineering applications. These applications

shows the versatility of PC-Kriging and its significance for the engineering practice.





CHAPTER 6

Propagation of p-boxes with

meta-models

In this chapter, a number of algorithms are proposed to propagate p-boxes

efficiently using meta-models at different stages of the analysis. The algo-

rithms have been published for free p-boxes in Schöbi & Sudret (2017b) and

for parametric p-boxes in Schöbi & Sudret (2015c).

6.1 State of the art

As previously seen in the context of probabilistic input modelling, uncertainty propagation met-

hods have been widely studied in the last decades through Monte Carlo simulation. A much

lower number of methods have been developed for propagating p-boxes, amongst which are nes-

ted Monte Carlo algorithms (Eldred 2009; Chowdhary & Dupuis 2013; He, Mirzargar, & Kirby

2015; Schöbi & Sudret 2015c) and interval-analysis-based algorithms (Helton & Oberkampf 2004;

Helton, Johnson, & Oberkampf 2004). Nested Monte Carlo simulations are generally associated

to parametric p-boxes, whereas interval analysis is related to free p-boxes. These algorithms

require a large number of model evaluations to ensure an accurate estimate of the uncertainty in

the quantity of interest (QoI). Hence, in the general case of expensive-to-evaluate models, these

types of algorithms become intractable.

Moreover, the use of meta-models to facilitate the uncertainty propagation analysis has been

addressed rarely in the literature. Chen et al. (2015) propagate fuzzy sets using generalized

polynomial chaos meta-models. Hu & Du (2015) use Kriging meta-models to estimate failure

probabilities. Shah, Hosder, & Winter (2015) use collocation methods to propagate Dempster-

Shafer structures. Jakeman, Eldred, & Xiu (2010) use PCE to propagate different types of

imprecise probabilities. Eldred (2009) and Eldred & Swiler (2009) propagate imprecise proba-

bilities using generalized PCE and stochastic collocation methods.

Making use of the sparse PCE models discussed in Section 3.3, two approaches are proposed

in this chapter to propagate the two types of p-boxes efficiently.

79
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6.2 Free p-boxes

6.2.1 Scenarios

In Chapter 2, a variety of methods are presented to define a free p-box based on a dataset and

more generally based on information. In the context of uncertainty propagation however, two

cases can be distinguished for free p-boxes: bounded and unbounded free p-boxes. Hence, two

scenarios are introduced here and discussed in the remainder of this chapter.

Case #1 – interval-valued measurements or expert opinions

Consider the case of interval-valued measurements described in Section 2.3. This scenario can be

interpreted as twofold: the intervals are imprecise measurements or the intervals represent the

opinion of different experts. The first case is discussed in the latter section and the corresponding

free p-box can be defined by Eqs. (2.15) and (2.16).

The second case assumes that a number of experts are asked to name an interval for describing

the possible values of a variable. Expert i = 1, . . . , nE provides an interval x(i) ∈
[
x(i), x(i)

]
.

Additionally, a mass of credibility w(i) is assigned to each expert accounting for the expert’s

knowledge. Note that the credibility is defined here as a relative value so that
∑nE

i=1w
(i) = 1.

Modifying Eqs. (2.15) and (2.16) and assuming that the disagreement between the various

estimates of the variable represents actual variability, the bounds of the free p-box are obtained

by the mixture method (Ferson, Kreinovich, et al. 2003):

FX(x) =

nE∑

i=1

w(i) · Ix≥x(i)(x), FX(x) =

nE∑

i=1

w(i) · Ix≥x(i)(x). (6.1)

Case #2 – CDF-shaped expert opinions

Case #2(a) Assume that experts are asked to give their opinion on the behaviour of a variable

in the form of a CDF. Each expert provides a formulation for the CDF denoted by F
(i)
X , i =

1, . . . , nE , where the support of X is possibly unbounded. Assuming that these CDFs describe

the uncertainty (epistemic and aleatory) in the system, the free p-box can be generated by the

envelope of the experts’ CDFs (Ferson, Kreinovich, et al. 2003; Fu et al. 2011):

FX(x) = min
i=1,...,nE

F
(i)
X (x), FX(x) = max

i=1,...,nE
F

(i)
X (x), ∀x ∈ DX . (6.2)

Note that contrary to Case #1, the credibility of the experts is not considered in Case #2.

Assuming that the true CDF lies between the experts’ CDF, the envelope of all opinions includes

the true CDF, thus forming a valid p-box.

An example of seven expert CDFs is shown in Figure 6.1(a). The resulting free p-box for

the CDFs in Figure 6.1(a) can be found in Figure 6.1(b). The boundary curves of the free p-box

consist of sections of different expert CDFs.

Case #2(b) An alternative way to define a p-box is to choose a distribution family and set

interval-valued distribution parameters, i.e. a parametric p-box. The corresponding free p-box

can be defined by taking the envelope of the set of distributions as in Case #2(a). The free

p-box bounds are then found by (see also Eq. (2.20)):

FX(x) = min
θ∈DΘ

FX(x|θ), FX(x) = max
θ∈DΘ

FX(x|θ), ∀x ∈ DX , (6.3)
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Figure 6.1: Case #2 – free p-box as a combination of expert CDFs.

where θ is a vector of distribution parameters which are defined in a domain DΘ. Note that in

this case, only the bounds are used for further analyses. The information about the distribution

family is ignored (as opposed to parametric p-boxes) once FX and FX are defined by Eq. (6.3).

6.2.2 Slicing algorithm

The uncertainty propagation of free p-boxes uses the same formalism as in Eq. (3.2):

Y =M (X) (6.4)

where each Xi is modelled by a free p-box and hence Y is a free p-box, too. The traditional

approach to estimate the p-box of the response variable Y is the slicing algorithm in combination

with interval analysis. The slicing algorithm transforms the propagation of p-boxes into the

propagation of a large number of intervals, the propagation of which is a well-established field of

research related to constraint optimization algorithms (Moore 1966; Dong & Shah 1987; Stolfi

& De Figueiredo 2003). The main steps are described in the following:

(i) Input definition: The input variables Xi, i = 1, . . . ,M of the computational modelM are

modelled by free p-boxes.

(ii) Discretization: Discretization methods approximate the p-box by a set of intervals and

corresponding probability masses in order to facilitate the uncertainty propagation task.

A number of discretization schemes are available in the literature (see e.g. Tonon (2004)

and H. Zhang, Mullen, & Muhanna (2010)). The outer discretization method is now briefly

reviewed here. Each input p-box is discretized into a number of intervals and associated

probability masses. For variable Xi, the interval [0, 1] is divided into nXi subintervals

with corresponding thickness m
(j)
i where j = 1, . . . , nXi and

∑
jm

(j)
i = 1. Let us denote

the lower and upper boundary of these intervals by c
(j)
i and c

(j)
i , respectively. Given the

bounds of the free p-box [FXi , FXi ], the corresponding intervals in DXi are:

x
(j)
i = F

−1
Xi

(
c

(j)
i

)
, x

(j)
i = F−1

Xi

(
c

(j)
i

)
, (6.5)

for j = 1, . . . , nXi and i = 1, . . . ,M . The intervals of interest are then
[
x

(j)
i , x

(j)
i

]
and the

associated probability masses are m
(j)
Xi

, which together characterize the free p-box of the

input variable Xi.
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(iii) Interval propagation: Let K be a set of multi-indices defining a combination of intervals of

each input parameter Xi:

K = {k = (k1, . . . , kM ), ki ∈ {1, . . . , nXi} , i = 1, . . . ,M} . (6.6)

Let Dk be the hyper-rectangle defined by:

Dk =
[
x

(k1)
1 , x

(k1)
1

]
× . . .×

[
x

(kM )
M , x

(kM )
M

]
. (6.7)

For each hyper-rectangle Dk, two optimization problems are solved to define the associated

bounds of Y :

y(k) = min
x∈Dk

M (x) , y(k) = max
x∈Dk

M (x) . (6.8)

The probability mass associated to Dk can be computed by:

m
(k)
Y = m

(k1)
X1
·m(k2)

X2
· . . . ·m(kM )

XM
. (6.9)

Correspondingly, the free p-box of Y is eventually characterized by nY = nX1 ·nX2 ·. . .·nXM
intervals

[
y(k), y(k)

]
given in Eq. (6.8) with associated probability masses given in Eq. (6.9).

Hence, 2 · nY optimization algorithms (see Eq. (6.8)) are required in the M -dimensional

optimization domain in order to propagate the input p-boxes. When M and nXi become

large, this quickly becomes intractable due to the large number of optimizations. This

problem is often referred to as the curse of dimensionality.

A number of methodologies can be found in the literature to simplify the optimizations,

amongst which are the classical interval analysis (Moore 1966), affine arithmetic (Stolfi &

De Figueiredo 2003) and the vertex method (Dong & Shah 1987; Dubois, Fargier, & Fortin

2004). However, these simplifications require restrictive assumptions, such as monotonicity

in the computational model, to ensure accuracy. Other optimization algorithms can be

applied such as local, derivative-based methods (e.g. BFGS algorithm (Byrd, Hribar, &

Nocedal 1999)), global methods (e.g. genetic algorithms (Goldberg 1989) and differential

evolution algorithms (Storn & K. Price 1997; Deng et al. 2013)) and hybrid methods (i.e.

with a global and local component) for solving directly Eq. (6.8). They are more accurate

in the general case but require extensive computational resources.

(iv) Merging : The result of the previous step is a set of nY = |K| intervals
[
y(k), y(k)

]
and

the corresponding probability masses m
(k)
y . The response free p-box is then obtained

by converting
{
y(k),m

(k)
y

}
and

{
y(k),m

(k)
y

}
to weighted empirical CDFs F Y and F Y as

explained in Eq. (6.1).

Figure 6.2 illustrates the main steps of the slicing algorithm on a one-dimensional problem.

The bounds of the input p-box are defined by two Gaussian distributions with µX = [1.5, 2] and

σX = [0.7, 1.0] (Case #2(b)) (Figure 6.2(a)). The p-box is discretized with nX = 20 equally

spaced subintervals, i.e. m(j) = 1/20 (Figure 6.2(b)). The computational model is y = x/2 + 4

(Figure 6.2(c)). Finally, the resulting intervals are merged to a free p-box in Figure 6.2(d).

Figure 6.2(d) illustrates the influence of nX on the accuracy of the response p-box. It can

be seen from this simple example already that the number of discretization points nXi is crucial

to the accuracy of the response p-box: the approximated response p-box is conservative in the

sense that it is wider than the exact response p-box obtained analytically. The larger nXi , the

more accurate is the approximated p-box, and at the same time the larger the computational
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Figure 6.2: Illustration of the slicing algorithm. The bounds of the input p-box are defined from

Gaussian CDFs with interval-valued mean value and standard deviation. nX = 20 intervals are

used.

costs (due to the number of intervals and the related number of optimization operations). This

effect is more pronounced when the input vector is multi-dimensional, as discussed later in the

application examples in Section 6.3.

Note that in Case #1, the intervals might be chosen to represent each expert’s opinion.

Then, the expert’s credibility is equal to the probability mass in uncertainty propagation, i.e.

m(j) = w(j), j = 1, . . . , nXi . This is feasible particularly when M and nXi are small.

6.2.3 Problem conversion

A disadvantage of the slicing algorithm is the full-factorial design, which leads to a potentially

large number of optimizations for high-dimensional problems, namely nY = |K| = nX1 · nX2 ·
. . . ·nXM . In order to circumvent the effects of the full factorial approach, the imprecise problem

setting is reformulated in this section, as originally proposed by H. Zhang, Mullen, & Muhanna

(2010) and Schöbi & Sudret (2015b). They replace the full factorial design of the slicing algo-

rithm with a random sampling-based approach as follows. Consider the slicing algorithm with

a large number of subintervals nXi → ∞ (and |K| → ∞) in order to accurately estimate the

response p-box Y . The corresponding number of response intervals will be nY →∞, too. Then,
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Y can be approximated by propagating a random subset K′ ⊂ K to reduce the computational

costs. This approximation allows to estimate Y more efficiently than the full-factorial design.

Consider the random vector C made of independent, uniformly distributed variables in the

unit-hypercube domain DC = [0, 1]M . The random variable Ci shall describe the CDF value

of input variable Xi, i.e. Ci = FXi(Xi). In other words, Ci describes the index of one of the

nXi → ∞ subintervals in K. Given a free p-box in Xi, each ci ∈ [0, 1] corresponds then to an

interval [xi, xi] in DXi through the inverse CDF of the bounds of the p-box:

xi(ci) = F
−1
Xi (ci), xi(ci) = F−1

Xi
(ci). (6.10)

This equation is a pseudo inverse transformation due to the potentially stairs-shaped CDF

boundary curves (e.g. Case 1). In fact, when FXi and FXi are a stairs-shaped functions, then:

xi(ci) = arg min
xi∈DXi

FXi(x) ≥ ci, xi(ci) = arg min
xi∈DXi

FXi(x) ≥ ci. (6.11)

Note that compared to the previous definition in Eq. (6.5) where the interval [ci, ci] is the input

argument, Eq. (6.10) uses a single value ci. Eq. (6.10) can be interpreted as a special case of

Eq. (6.5) when setting nXi →∞ and thus m
(j)
i → 0 and ci ≈ ci. For a given realization c ∈ DC ,

let us denote a hyper-rectangular domain by Dc = [x1(c1), x1(c1)]× . . .× [xM (cM ), xM (cM )]. As

a consequence, two computational models can be formulated as a function of c, equivalent to

Eq. (6.8) (Alvarez, Hurtado, & Uribe 2014; Schöbi & Sudret 2015b):

y =M(c) = min
x∈Dc

M(x), y =M(c) = max
x∈Dc

M(x). (6.12)

These equations lead to intervals
[
y, y
]

of Y . In analogy with the slicing algorithm (see also

Figure 6.2), the lower bounds of the intervals model the upper boundary curve of Y (and vice

versa). Hence, the lower bound model M maps C to the upper bound Y and the upper bound

model M maps C to the lower bound response Y :

Y =M (C) , Y =M (C) , (6.13)

where Y and Y are characterized by the CDF F Y and F Y respectively. Interestingly, Eq. (6.13)

splits the propagation of free p-boxes into two standard uncertainty propagation problems as-

sociated with input random vector C.

The probabilistic description of the auxiliary input vector C allows for conventional methods

of uncertainty propagation such as random sampling (Monte Carlo simulation, Latin-hypercube

sampling (McKay, Beckman, & Conover 1979)) and low-discrepancy sequences (Sobol’ sequence

(Sobol’ 1967), Halton sequence (Halton 1960)). These methods are more efficient than the full

factorial design approach described in Section 6.2.2, but they are not conservative with respect

to the p-box due to the nature of sampling methods, as opposed to the previously discussed

slicing algorithm. Sufficiently large sample sets must then be used to ensure proper convergence

and high accuracy.

6.2.4 Two-level meta-modelling

Basic idea

Considering the main steps of the uncertainty propagation of p-boxes, there are three main

factors contributing to the total computational effort. Firstly, the computational model is eva-

luated a large number of times due to the optimization methods, in particular when using global
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optimization methods in the general case when model monotonicity does not hold. Secondly,

the number of optimization operations is large considering the sampling-based approach for es-

timating the bounds of the response p-box, i.e. Y and Y . Last but not least, the cost of a single

evaluation of the computational model may affect the total costs considerably.

In order to address these three factors, it is proposed to surrogate the computational model

at two levels by sparse PCE models. More specifically, the first-level meta-model approximates

the response of M, whereas the second-level one approximates the response of the lower and

upper model denoted by M and M.

Meta-modelling M and M

Eq. (6.13) describes the bounds of the response p-box as a function of the probabilistic vector

C. Hence, classical meta-modelling techniques can be applied in a straightforward manner. The

corresponding meta-models using the sparse PCE technique read:

Y ≈M(P)
(C) =

∑

α∈Al
aα ψα (C) , (6.14)

Y ≈M(P) (C) =
∑

α∈Au
aα ψα (C) , (6.15)

where a and a are the corresponding PC coefficients. Note that because of the LARS algorithm

in the sparse PCE models, the two index sets Al and Au are likely to be not equal. The meta-

models M(P)
and M(P) are based on the experimental design C =

{
c(1), . . . , c(N)

}
and the

corresponding response values

Y =
{
Y(1) =M

(
c(1)
)
, . . . ,Y(N) =M

(
c(N)

)}
,

Y =
{
Y(1)

=M
(
c(1)
)
, . . . ,Y(N)

=M
(
c(N)

)}
,

respectively.

Meta-modelling M

Condensation of free p-boxes The expensive-to-evaluate computational model M may

itself be approximated with a sparse PCE model in view of solving the global optimization pro-

blems definingM andM. The input ofM is a free p-box in M dimensions in the problems on

consideration. However, in order to apply a sparse PCE model, a probabilistic input vector is

required. Hence, auxiliary input variables X̃i are defined for the sole purpose of meta-modelling

M. The auxiliary input variables should represent the probability mass in the input free p-boxes

in an appropriate manner. In other words, the auxiliary distributions aim at ”summarizing” the

free p-box, such as fulfilling FX(x) < F
X̃

(x) < FX(x), ∀x ∈ DX . This is the so-called conden-

sation phase. As free p-boxes are defined on interval-valued CDFs, a number of distributions

can be proposed, i.e. there is no unique choice.

Generally speaking, for Case #1 (Section 6.2.1) and bounded free p-boxes, it is proposed to

use a uniform distribution between the minimum and maximum value of the free p-boxes:

X̃i ∼ U
(

min
j=1...,nE

(
x

(j)
i

)
, max
j=1,...,nE

(
x

(j)
i

))
, (6.16)
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where
[
x

(j)
i , x

(j)
i

]
is the interval on variable i provided by the j-th expert. For Case #2

(Section 6.2.1) and generally for unbounded free p-boxes, it is proposed to define the CDF

of X̃i as an average curve of its input free p-boxes:

F
X̃i

(xi) =
1

2

(
FXi(xi) + FXi(xi)

)
. (6.17)

In both cases, the proposed auxiliary input distribution covers the free p-box in the areas where

most of the probability mass is located and is therefore suitable to represent the free p-box in

a sparse PCE model. However, in terms of accuracy of the meta-model, different distributions

might be more suitable than the one in Eq. (6.17).

Arbitrary input PCE Having defined an auxiliary input vector X̃, it can be propagated

through the computational model. The corresponding uncertainty propagation problem then

reads:

Ỹ =M
(
X̃
)
, (6.18)

and the corresponding approximation with PCE (see also Eq. (3.8)):

Ỹ ≈M(P)
(
X̃
)

=
∑

α∈Ã

ãα ψα

(
X̃
)
. (6.19)

This PCE model can be trained by pure vanilla least-square analysis, least-angle regression or

any other non-intrusive technique (see Section 3.3).

An important aspect here is when X̃i has an arbitrary CDF shape for which it might not be

trivial to define a set of orthogonal polynomials (Gautschi 2004). Wan & Karniadakis (2006),

Witteveen, Sarkar, & Bijl (2007), Ahlfeld, Belkouchi, & Montomoli (2016) and Dey et al. (2016)

discuss the use of so-called arbitrary PCE, which are based on arbitrarily shaped input distri-

butions. An alternative way is to formalize an isoprobabilistic transform from variables X̃i to

Zi for which a suitable set of orthogonal polynomials is known already. The mapping from one

distribution to the other is denoted by T : Zi = T
(
X̃i

)
. A point xi ∼ X̃i can be mapped to Zi

as zi = F−1
Zi

(
F
X̃i

(xi)
)

. When X̃i and Zi are chosen in a smart way, the transform T shall be

nearly linear. The sparse PCE model can then be written as:

Ỹ ≈M(P)(X̃) =
∑

α∈Ã

ãαψα

(
T
(
X̃
))

=
∑

α∈Ã

ãαψα (Z) , (6.20)

where the set of ψα’s are orthogonal with respect to the vector Z = T
(
X̃
)

.

Aggregation of the two levels

Framework of meta-models Figure 6.3 summarizes the two levels of meta-modelling pre-

sented previously. A first level of sparse PCE approximates the computational model M on

the basis of the auxiliary input vector X̃, which is itself defined according to the type of input

free p-box considered. This results in the meta-model M(P). Then, the problem is divided into

the estimation of Y and Y by Eq. (6.13). They are obtained by approximating M and M,

respectively, via sparse PCE and the probabilistic input vector C, which defines the second level

of the two-level approach.
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Figure 6.3: Two-level meta-modelling for the propagation of p-boxes – definition and connection

of the two levels.

Case #1 In the case of bounded free p-boxes, i.e. when the support of the boundary CDFs

FXi and FXi are compact, the methods can be applied as described in the previous sections.

For the first level of meta-modelling, bounded variables X̃ are used so that the response Ỹ may

be approximated efficiently. On the second-level meta-model however, the response Y =M(C)

and Y =M(C) are non-smooth due to the stair-like input free p-boxes Xi originating in a finite

set of expert intervals. The effect of this non-smoothness is investigated further in the example

in Section 6.3.2. However, when the number of expert intervals and the number of variables are

small, the second-level meta-model may be redundant, as the full factorial design approach is

tractable (i.e. nY small). In the other extreme case of large number of variables and intervals,

the response boundary curves loose the stair-shaped nature of the CDF curves due to the large

number of response intervals (i.e. nY large).

Case #2 In the case of unbounded free p-boxes, the uncertainty propagation analysis, as

proposed above, may become inefficient due to the usage of a bounded C on the second-level

meta-model. In general, it is not advised to model an unbounded variable X by a bounded vari-

able C and the corresponding isoprobabilistic transform, due to the highly non-linear functional

form of this transform (Schöbi & Sudret 2015b, 2016b).

In order to reduce the effect of the non-linear transform and to ensure fast convergence,

the second-level meta-model is trained in the auxiliary input domain X̃ as previously discussed

in Schöbi & Sudret (2015b). An isoprobabilistic transform can be formulated such that C =

T
(
X̃
)

. The corresponding models are:

Y =M
(
T
(
X̃
))

, Y =M
(
T
(
X̃
))

. (6.21)

These two computational models can be approximated using sparse PCE meta-models. The

effect of this additional isoprobabilistic transform is discussed further in the application example

in Section 6.3.2.

Special case: monotone computational models When the computational model M is

known to be monotonic with respect to all variables Xi, then the constraint optimization in



88 CHAPTER 6. PROPAGATION OF P-BOXES WITH META-MODELS

Eq. (6.12) reduces to the analysis of the corners of the search domain. In the context of interval

analysis, this approach is called vertex method (Dong & Shah 1987; Dubois, Fargier, & Fortin

2004). Then, uncertainty propagation of p-boxes simplifies to the propagation of the bounds of

the input p-boxes. It follows that the meta-modelling of M and M becomes out of scope. Y

and Y can be directly estimated based on M(P) and the bounds of each Xi.

6.3 Numerical examples for free p-boxes

6.3.1 Reference solution

In the following application examples, the proposed two-level meta-modelling algorithm is com-

pared to a reference solution. The reference solution is obtained by (i) using the original com-

putational model M (no first-level meta-model M(P)
(
X̃
)

), (ii) using a large number of points

(n = 106) in the prediction of Y and Y , and by (iii) using either a hybrid optimization algorithm

or the exact optimization value to find y and y.

6.3.2 Rosenbrock function

Problem statement

The first example is the Rosenbrock function, defined previously in Eq. (4.4), which is recalled

here:

f3(x) = 100
(
x2 − x2

1

)2
+ (1− x1)2 . (6.22)

Here, the two input parameters X1 and X2 are modelled by independent free p-boxes. Fi-

gure 6.4(a) shows the response surface of f3 as a function of x1 and x2. The response is

non-monotone around the origin of the input space and has a global minimum of y = 0 at

{x1 = 1, x2 = 1}. Thus, Y is bounded on one side to the domain DY = [0,∞]. Figure 6.4(b)

shows a contour plot of f3 and its global minimum marked by the large black dot. The response

surface is flat around the minimum response value and steep at the boundaries of the figure

domain.
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Figure 6.4: Rosenbrock function – response surface y = f3(x).
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Case #1 The free p-boxes based on the opinions of seven experts are illustrated in Fi-

gure 6.5(a). The solid lines mark the p-box for X1, whereas the dashed lines mark the p-box

for X2. It can be seen that the credibility of the experts is uniform due to the constant vertical

step size between the vertical plateaus of the boundary CDFs, and that the free p-boxes are

bounded on both sides.
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Figure 6.5: Rosenbrock function – input free p-boxes – boundary curves of Xi.

Case #2 The bounds of the two input variables Xi are defined as follows (corresponding to

Case #2(b)):

FXi(xi) = min
µ∈[µ,µ],σ∈[σ,σ]

FN (xi|µ, σ) ,

FXi(xi) = max
µ∈[µ,µ],σ∈[σ,σ]

FN (xi|µ, σ) ,

where FN (x|µ, σ) is a Gaussian CDF with mean value µ and standard deviation σ. In order to

generate a free p-box, the distribution parameters are given in intervals: µ ∈
[
µ, µ

]
= [−0.5, 0.5]

and σ ∈ [σ, σ] = [0.7, 1.0]. Figure 6.5(b) shows the boundary curves of the free p-boxes for Xi,

i = 1, 2.

Analysis

The two-level meta-modelling approach has been implemented taking advantage of the Matlab-

based uncertainty quantification framework UQLab (Marelli & Sudret 2014, 2015). The sparse

PCE meta-models were calibrated with Latin-hypercube experimental designs and appropriate

sets of orthonormal polynomials (Legendre polynomials for bounded variables and Hermite po-

lynomials for unbounded variables). The set of polynomials is determined by a degree-adaptive

LARS of which the maximum total polynomial degree is set to 30 and the parameter for the

hyperbolic truncation set AM,p
q is set to q = 0.75. The number of samples in the experimental

design is denoted by N1 and N2 for constructing the meta-models of M and
{
M,M

}
, re-

spectively. In order to achieve a statistical significance, the uncertainty propagation analyses

are replicated 50 times with different LHS experimental designs.

For Case #1, the auxiliary input variables are defined as in Eq. (6.16), whereas for Case #2,

the auxiliary input variables are defined as F
X̃i

= FN (x|0, 1). Note that for Case #2, both levels

of meta-models are trained in the same auxiliary domain, i.e. D
X̃

.
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Figure 6.6: Rosenbrock function – Case #1 – relative generalization error as a function of N2

and based on 50 replications of the same analysis (N1 = 30).

Results

Case #1 The polynomial form of the Rosenbrock function can be modelled exactly with

the polynomial-based PCE models. Hence, the first-level meta-model does not introduce any

approximation in this application example. Therefore, the first-level meta-model is not discussed

thereafter.

The reference solution for the second-level modelsM andM is obtained by propagating all

possible combinations of input intervals, i.e. nY = nE,X1 · nE,X2 = 7 · 7 = 49 intervals. This

results in stair-shaped boundary curves for the response p-box. These shapes are difficult to

model with polynomials, which are smooth functions. Hence, the accuracy of the second-level

meta-models is low, as seen in Figure 6.6, which summarizes the relative generalization error for

the two second-level meta-models, i.e. M(P )
and M(P ). In fact, it requires N2 = 1000 samples

to achieve an accuracy of êrrgen ≈ 0.05 due to the shape of the input p-boxes. The continuous

input vector C is mapped onto 49 interval domains of the input space DX and hence also in the

response variables Y and Y .

The explanation for this convergence behaviour is illustrated in Figure 6.7, which shows

the response surface of the computational models as a function of the input random variables.

The computational model M, which is the basis for the first-level meta-model, shows smooth

contour lines (see Figure 6.4(b)), whereas M and M show plateau-shaped response surfaces

(see Figures 6.7(a) and 6.7(b)), respectively, with constant response values within each plateau.

A total of 7 × 7 = 49 distinct plateaus can be identified corresponding to the 49 possible

combinations of input intervals defined by the expert opinions. As an alternative to training

second-level meta-models, the original (small) number of input intervals, i.e. the intervals given

by the experts, may be propagated directly to estimate the bounds of the response p-box. In

other words, the slicing algorithm may be applied on the second-level of the uncertainty analysis,

due to the low number of response intervals, i.e. |K| = 49.

When comparing the boundary curves of the response p-box, however, results show that the

proposed approach provides accurate (although smooth) approximations of the response p-box

boundaries. The exact boundary curves of the p-box of Y are shown in Figure 6.8, where the

distinct values are clearly visible in the stair-shaped CDF curves. For comparison, the boundary

curves of the two-level approach are presented for a single run with N1 = 50 and N2 = 200. For
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Figure 6.7: Rosenbrock function – Case #1 – shape of the response surfaces.

this run, the relative generalization error are êrrgen
[
Y
]

= 1.14·10−1 and êrrgen [Y ] = 8.76·10−2.

The PCE-based CDFs are not capable of reproducing the stair-like functions but still follow the

exact boundary curves sufficiently accurately for visual comparison. This confirms the large

relative generalization errors in the second-level meta-models.
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Figure 6.8: Rosenbrock function – Case #1 – response p-boxes Y ∈
[
Y , Y

]
: reference solution

(n = 7 · 7 = 49) versus two-level approach (N1 = 50, N2 = 200).

Case #2 Analogously to Case #1, the performance of the second-level meta-models is shown

in the two Figures 6.9(a) and 6.9(b) for Y and Y , respectively, using N1 = 100 and N2 =

{50, 100, 200, 1000}. As expected, the relative generalization error becomes smaller with larger

experimental design, i.e. larger N2. Interestingly however, the values are considerably different

for Y and Y , due to the shape of the response function M and M, respectively.

Figure 6.10 shows the response surface for M and M, respectively, as a function of the

auxiliary input variables X̃. Comparing the two sets of contour lines in Figure 6.10 and the

contour lines in Figure 6.4(b), the response surface of M shows a large plateau around the

origin and steep value increases around the plateau. This behaviour is difficult to model with

polynomials, which results in a lower accuracy seen in Figure 6.9(b). Note that in case the PCE

meta-model is calibrated in DC directly, then the response surfaces are even more complex, as

shown in Figure 6.11. Hence, an even lower accuracy of the meta-models can be observed.
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Figure 6.9: Rosenbrock function – Case #2 – relative generalization error as a function of N2

and based on 50 replications of the same analysis (N1 = 100).
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Figure 6.10: Rosenbrock function – shape of the response surfaces of M and M as a function

of X̃.

Finally, the resulting boundary curves of the p-box of Y are shown in Figure 6.12. The

reference solution was computed with the exact computational model on the first level of the

algorithm and n = 106 samples on the second level. The effect of the identified plateau in

M in Figure 6.10(b) is that a large quantile of Y is close to y = 0 (see F Y in Figure 6.12).

Additionally, a single realization of those boundary curves is drawn in Figure 6.12 for the case

of N1 = 100 and N2 = 200. The corresponding relative generalization error for Y and Y are

êrrgen
[
Y
]

= 3.43 · 10−1 and êrrgen [Y ] = 5.66 · 10−3, respectively. Despite the relatively large

values of the relative generalization error of the second-level meta-model, the bounds of the

response p-box are remarkably accurate.

6.3.3 Two-degree-of-freedom damped oscillator

Problem statement

Consider the two-degree-of-freedom (2-dof) damped oscillator subjected to white noise excitation

S(t) sketched in Figure 6.13. The subscripts p and s refer to the primary and secondary mass,
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Figure 6.11: Rosenbrock function – shape of the response surfaces of M and M as a function

of C.
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Figure 6.12: Rosenbrock function – Case #2 – response p-boxes Y ∈
[
Y , Y

]
: reference solution

(n = 106) versus two-level approach (N1 = 100, N2 = 200).

respectively. The QoI is the force acting on the secondary spring. According to Der Kiureghian

& de Stefano (1990) and Dubourg, Sudret, & Deheeger (2013), the peak force Ps in the secondary

spring can be computed by:

Ps = 3 ks
√

ES [x2
s], (6.23)

ES
[
x2
s

]
= π

S0

4ζsω3
s

· ζaζs
ζpζs (4ζ2

a + ξ2) + γζ2
a

·
(
ζpω

3
p + ζsω

3
s

)
ωp

4ζaω4
a

, (6.24)

where ωp =
√
kp/mp and ωs =

√
ks/ms are the natural frequencies, γ = ms/mp is the relative

mass, ωa = (ωp + ωs) /2 is the average natural frequency, ζa = (ζp + ζs) /2 is the average dam-

ping ratio, ξ = (ωp − ωs) /ωa, m is the mass, kp and ks are the spring stiffnesses, and ζp and

ζS are the damping ratios. The input parameters in x = (mp,ms, kp, ks, ζp, ζs, S0) are conside-

red statistically independent. The parameters {mp,ms, kp, ks, S0} are assumed to be well-known

(i.e. negligible epistemic uncertainty) and defined as independent lognormal variables, with pro-

perties summarized in Table 6.1. Each lognormal variable is characterized by a mean value and

a coefficient of variation (CoV). Assume that the properties of the damping ratios {ζp, ζs} are

investigated through a survey among experts because of the highly uncertain nature of damping

in dynamic systems. Analogously to Case #1, each expert provides an interval of values for the
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two damping ratios. Eleven and ten intervals have been collected for ζp and ζs, respectively.

The aggregated p-boxes are shown in Figure 6.14 assuming equal credibility among the experts.

z
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xs

ms

S(t)

p s

Figure 6.13: Sketch of the 2-dof damped oscillator

Table 6.1: 2-dof damped oscillator – probabilistic input variables.

Variable Distribution Mean CoV

mp Lognormal 1.50 10%

ms Lognormal 0.01 10%

kp Lognormal 1.00 20%

ks Lognormal 0.05 20%

S0 Lognormal 100 10%
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Figure 6.14: 2-dof damped oscillator – aggregated p-boxes of the damping ratio (10 expert

opinions of equal credibility).

Analysis

The settings for the two-level meta-modelling approach are kept the same as in the Rosenbrock

function example in Section 6.3.2. Sparse PCE is trained with a candidate basis of maximum

total polynomial degree equal to 20 and hyperbolic truncation sets with q = 0.75. The auxiliary

variables X̃i for ζp and ζs are defined as in Eq. (6.16). In order to analyse the influence of the

sample size, N1 and N2 are varied in {100, 200, 300,→∞} and {100, 200, 300, 1000}, respectively.

Note that N1 → ∞ denotes a case where the first-level meta-model is not applied; instead,

the true model M is used. 50 independent analyses with different experimental designs are

conducted to assess the statistical significance of the QoI.
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Results

The results for the relative generalization error are summarized in Table 6.2. As expected, incre-

asing N1 reduces the relative generalization error of the first-level meta-model (see êrrgen

[
P̃s

]
).

However, the accuracy of the second-level meta-model is lower than the first-level meta-model,

and does not depend significantly on the accuracy of the first-level meta-model. Thus, the error

is dominated by the second-level meta-modelling operation. The explanation lies in the free

p-boxes of the damping coefficients ζp and ζs, which have stair-shaped boundary CDF curves.

Analogously to Case #1 in the Rosenbrock function (Section 6.3.2), this shape reduces the

accuracy of the meta-model on the second level.

Table 6.2: 2-dof damped oscillator – resulting relative generalization error êrrgen based on a

Monte Carlo simulation with n = 105 samples – mean value of 50 repetitions.

N1 êrrgen

[
P̃s

]
N2 êrrgen [P s] êrrgen

[
P s
]

100 1.59 · 10−2 100 5.85 · 10−2 9.46 · 10−2

200 4.59 · 10−2 7.32 · 10−2

300 4.18 · 10−2 6.76 · 10−2

1000 3.19 · 10−2 5.17 · 10−2

200 5.24 · 10−3 100 5.20 · 10−2 7.99 · 10−2

200 3.41 · 10−2 6.08 · 10−2

300 2.97 · 10−2 5.21 · 10−2

1000 1.87 · 10−2 3.57 · 10−2

300 2.85 · 10−3 100 5.12 · 10−2 8.09 · 10−2

200 3.13 · 10−2 5.93 · 10−2

300 2.75 · 10−2 4.99 · 10−2

1000 1.71 · 10−2 3.30 · 10−2

→∞ 0 100 5.44 · 10−2 8.49 · 10−2

200 3.07 · 10−2 6.11 · 10−2

300 2.71 · 10−2 4.96 · 10−2

1000 1.52 · 10−2 3.07 · 10−2

Although the two-level meta-models are only moderately accurate, the bounds of the re-

sulting free p-box are computed accurately, as seen in Figure 6.15. A reference solution based

on n = 105 Monte Carlo samples is compared to the two-level meta-modelling approach with

N1 = 300 and N2 = 100. The boundary curves (FPs and FPs) obtained by using the proposed

approach are almost superimposed with the reference ones.

Comparison to slicing algorithm

In order to illustrate the curse of dimensionality, the slicing algorithm is applied on the second

level of the two-level approach replacing the calibration of the meta-models M(P) and M(P)
.

Note that in order to apply the slicing algorithm consistently, each probabilistic input variable

is interpreted as free p-box too. These continuous random variables are bounded within their

1% and 99% quantiles in order to obtain finite intervals for the interval analysis. The number of

intervals is chosen as nXi = 3 in order to obtain a similar number of optimization operations as
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Figure 6.15: 2-dof damped oscillator – reference solution (n = 105) versus two-level approxi-

mation approach (N1 = 300, N2 = 100, êrrgen

[
P̃s

]
= 2.57 · 10−3, êrrgen

[
P s
]

= 7.50 · 10−2,

êrrgen [P s] = 3.89 · 10−2) and slicing algorithm with nXi = 3.

the proposed two-level approach, i.e. |K| = 37 = 2187. Figure 6.16 illustrates the discretization

for mp and ζp. The boundary curves of the discretized free p-boxes are wider than the original

input p-boxes. This effect is pronounced for the probabilistic input variables, as seen in the left

part of Figure 6.16.
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Figure 6.16: 2-dof damped oscillator – discretization of mp and ζp with nXi = 3.

The discretization algorithm leads to conservative approximations of the true input free p-

boxes. The propagation of the discretized intervals results in a free p-box that is much wider (i.e.

more conservative) compared to the proposed two-level approach, as indicated in Figure 6.15,

despite the fact that more model evaluations were computed. This would be hardly interpretable

in practice. The conservative estimate of the response free p-box originates mainly in the coarse

approximation of the five probabilistic input variables.

6.3.4 Two-dimensional truss structure

Problem statement

The third application example is the two-dimensional truss structure described in Section 5.4.3.

Analogously to Case #2(b), the input variables are modelled by free p-boxes defined by the
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envelope of a set of curves (see Eq. (6.3)). The distribution function and its interval-valued

parameters are summarized in Table 6.3. The variables are assumed to be statistically indepen-

dent.

Table 6.3: Two-dimensional truss – input p-boxes.

Variable Distribution Mean CoV

A1 [m2] Lognormal [1.9, 2.1] · 10−3 [8, 12]%

A2 [m2] Lognormal [0.9, 1.1] · 10−3 [8, 12]%

E1, E2 [Pa] Lognormal [2.0, 2.2] · 1011 [9, 11]%

P1, . . . , P6 [N] Gumbel [4.0, 6.0] · 104 [10, 15]%

The QoI is the deflection u at mid-span as a function of the loading and the material para-

meters. The arrow in Figure 5.8 indicates positive values for u.

Analysis

For the truss structure, the auxiliary variable X̃i is defined as follows. The mean value µ
X̃i

is the mid-range of the mean value of Xi, and the coefficient of variation CoV
X̃i

is set to the

maximum value of the coefficient of variation of Xi. The auxiliary variables are used on both

levels of meta-models to ensure a good convergence behaviour.

Similar to the previous examples, the number of samples is varied in both levels of meta-

models, i.e. N1 = {100, 300,→∞} and N2 = {100, 300}. The sparse PCE meta-models are built

with Hermite polynomials with a candidate basis of maximal total degree of 20 and hyperbolic

truncation scheme with q = 0.75. To ensure statistical significance of the results, 50 independent

runs of the analysis are performed with different LHS experimental designs.

Results

A summary of the relative generalization error is given in Table 6.4. As expected, increasing the

number of samples in the experimental design decreases the error of the meta-model on both

meta-modelling levels. In particular, the influence of a larger experimental design on the first-

level meta-model is visible. For the second-level meta-model, the absolute value of the relative

generalization error is larger than for the first level due to the larger complexity of the analysis.

In fact, the accuracy of u and u depends on the quality of (i) the first-level meta-model, (ii) the

optimization algorithm, and (iii) the second-level meta-model.

Table 6.4: Two-dimensional truss – resulting relative generalization error based on a Monte

Carlo simulation with n = 105 samples – mean value of 50 repetitions.

N1 êrrgen [ũ] N2 êrrgen [u] êrrgen [u]

100 1.96 · 10−3 100 8.30 · 10−2 4.85 · 10−2

300 2.39 · 10−2 2.50 · 10−2

300 1.44 · 10−4 100 9.10 · 10−2 4.66 · 10−2

300 2.09 · 10−2 2.01 · 10−2

→∞ 0 100 1.24 · 10−2 2.18 · 10−2

300 7.05 · 10−3 1.65 · 10−2
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Another aspect of the modelling is the shape of the response p-box, which is shown in

Figure 6.17. The reference solution is obtained by a Monte Carlo simulation (n = 105) and

by taking advantage of the monotonicity of the truss model. A two-level approximation with

N1 = 300 is able to reproduce the boundary curves of the response p-box accurately: the two

curves for u coincide, whereas the two curves for u are remarkably close to each other, too.
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Figure 6.17: Two-dimensional truss – free p-box of the deflection u: reference solution (n =

105) versus two-level meta-modelling approach (N1 = 300, N2 = 300, êrrgen [ũ] = 9.82 · 10−5,

êrrgen [u] = 3.70 · 10−2, and êrrgen [u] = 2.64 · 10−2).

6.4 Parametric p-boxes

6.4.1 Nested Monte Carlo simulation

The hierarchical setup of parametric p-boxes allows for a nested uncertainty propagation appro-

ach. A straightforward sampling-based algorithm is the nested Monte Carlo simulation (nMCS)

(Eldred & Swiler 2009; Chowdhary & Dupuis 2013; Schöbi & Sudret 2015c), which is illus-

trated in Figure 6.18. Consider the input vector X described by M independent parametric

p-boxes, which are characterized by a conditional CDF FX = FX(x|θ) and θ ∈ DΘ. Note that

θi denotes the vector of epistemic parameters (i.e. intervals) describing variable Xi, whereas

Θ
def
= {θ1, . . . ,θM} gathers those parameters for all variables in X. Then, in the outer loop

of nMCS, realizations of the distribution parameters Θ are generated. In the inner loop, a

Monte Carlo simulation is conducted based on the conditional CDF FX

(
x
∣∣∣θ(k)

)
and the com-

putational model M. Each realization θ(k), hence, results in a realization of the response CDF

FY

(
y
∣∣∣θ(k)

)
. Finally, the boundary curves of the response p-box are obtained by:

F Y (y) = min
θ∈DΘ

FY (y|θ) , F Y (y) = max
θ∈DΘ

FY (y|θ) . (6.25)

The nMCS provides a robust but inefficient tool to estimate the boundaries of the response

p-box. The inefficiency arises from the large number of model evaluations due to the nested

Monte Carlo simulations. In case of an expensive-to-evaluate computational model M, nMCS

becomes intractable. Therefore, it is proposed to replace the computational model by a PCE

model as described in the following sections.
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Figure 6.18: Nested Monte Carlo simulation.

6.4.2 Augmented PCE

Augmented input space

Due to the clear separation of aleatory and epistemic uncertainty in the formulation of parametric

p-boxes, those sources of uncertainty can be treated as separate entities, i.e. X and Θ, as seen

previously in Section 2.4 for a single variable X. Hence, the QoI Y can be interpreted as a

function of the augmented input vector (X,Θ). The corresponding map then reads:

W =M(aug) (X,Θ) , (6.26)

which is based on the original computational model as M(aug) (x,θ) ≡M (x).

The components of the augmented input vector are dependent on each other. In particular,

X depends on Θ as a result of the hierarchical formulation of the parametric p-box. The

dependencies are visualized in Figure 6.19(a). In this thesis, however, the input variables to a

computational model are assumed to be independent. In order to obtain independent variables

in the augmented input vector, an isoprobabilistic transform is used which maps (X,Θ) to V ,

which shall be a vector with independent components. Assuming that the components Xi are

independent and that the parameter intervals in Θ are independent too (i.e. DΘ is a hyper-

rectangular domain), the parametric p-box X can be written as:

Xi = F−1
Xi

(Ci|θi) , i = 1, . . . ,M. (6.27)

whereC = (C1, . . . , CM ) is a vector of independent uniform distributions and where Ci ∼ U(0, 1)

describes the CDF value of Xi. Then, the augmented vector V = (C,Θ) is a vector with

independent components.

The Bayesian network corresponding to this model is visualized in Figure 6.19(b). Note that

in the terminology of the Bayesian network, x is used in lower case due to the deterministic

transform of V = (C,Θ) 7→X. In Figure 6.19(a), the transform of Θ to X is not deterministic,

hence, the upper case X.

Special cases

A special case is when the distribution family is Gaussian, i.e. X ∼ N (µX , σX) and θ =

(µX , σX), and the isoprobabilistic transform in Eq. (6.27) may be replaced by a simpler con-
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Figure 6.19: Parametric p-box – dependency structures.

struction. Consider a parametric p-box where the mean value µX and standard deviation σX
are given in intervals. Instead of using a uniform distribution C, a standard Gaussian vari-

able ζ ∼ N (0, 1) can be used in the independent input vector V = (ζ, µX , σX). Then, the

isoprobabilistic transform reads:

X = µX + σX · ζ. (6.28)

This transform is simpler than the inverse CDF formulation in Eq. (6.27) because the unbounded

variable X is modelled by the unbounded ζ. A similar construction is possible for the lognormal

distribution, due to the fact that logX ∼ N follows a normal distribution if X ∼ LN follows a

lognormal distribution.

Another special case of interest is the Gumbel distribution whose CDF reads:

FGU (x|α, β) = exp [− exp (−(x− α)/β)] ,

where α = µX − βγe and β = σX
√

6/π are its distribution hyperparameters and γe = 0.5772 . . .

is the Euler constant. Then, denote by ζ ∼ GU(α = 0, β = 1) a standard Gumbel variable. It

follows that a Gumbel distribution with arbitrary hyperparameters {α, β} can be formulated in

terms of a standard Gumbel variable:

FGU (x|α, β) = FGU (ζ|0, 1)

exp [− exp (−(x− α)/β)] = exp [− exp (−ζ)]

(x− α)/β = ζ.

Hence, a standard Gumbel distribution can be transformed into an arbitrary Gumbel distribution

by:

X = α+ β · ζ, (6.29)

which resembles the construction for Gaussian variables in Eq. (6.28) with different transfor-

mation parameters. Note that there are potentially other distribution families where such a

simplification might be feasible. However, they are not discussed in this thesis.
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Meta-model

The augmented computational model M(aug) can be formulated as a function of vector V :

W =M(aug) (T (V )) , (6.30)

where T denotes the isoprobabilistic transform from V to (X,Θ). When interpreting the

epistemic intervals in Θ as uniform distributions, a sparse PCE model can be calibrated to

meta-model the augmented computational model:

W ≈M(PCE) (V ) =
∑

α∈A
aα ψα (V ) , (6.31)

where the dimensionality is M = |V | = |C|+ |Θ| ≡ |X|+ |Θ|. The meta-model is trained with

an experimental design V =
{
v(1), . . . ,v(N)

}
and the corresponding responses:

W =
{
W(1) =M(aug)

(
T
(
v(1)

))
, . . . ,W(N) =M(aug)

(
T
(
v(N)

))}
,

by using Eq. (6.30). In order to efficiently calibrate a sparse PCE meta-model, the reader is

referred to Section 3.3 for further details. Note that in this setup, the input vector V is sampled

in the same way for the C- and the Θ-components.

6.4.3 Phantom points

Dependencies in the experimental design

The number of dimensions in the augmented input space DV is larger than the one of the original

input space DX due to the epistemic uncertainty. Hence, Eq. (6.27) leads to an interesting

feature of the augmented PCE. For a given realization of x ∈ DX , there is an infinite number

of realizations v that satisfy Eq. (6.27). In other words, the inverse operation of Eq. (6.27) is

non-unique.

For illustrative purpose, consider a parametric p-box defined by a Gaussian distribution

family with interval-valued mean and standard deviation. As an example, it is assumed that

µX ∈ [−1, 1] and σX ∈ [0.5, 1.0]. Then for a given x0, the manifold defined by the triplet

{
µX ∈ [−1, 1], σX ∈ [0.5, 1.0], c ∈ [0, 1] : F−1

X (x0|µX , σX) = c
}

leads to the same x0 through the isoprobabilistic transform. Similarly for the special case of a

Gaussian variable, the manifold is defined as

{µX ∈ [−1, 1], σX ∈ [0.5, 1.0], ζ ∈ R : µX + σXζ = x0} .

Figure 6.20 illustrates the resulting manifolds in the µX -σX -C and µX -σX -ζ domain for

x0 = 0. Note that they are limited in µX and σX by the corresponding interval values, wheres

the extent in the ζ dimension is infinite. In terms of C, the manifold is naturally bounded in

[0, 1].

Enrichment of the experimental design

Consider again the experimental design V. Each sample v(j) can be transformed into an equi-

valent χ(j) using Eq. (6.27). A number of realizations v = (c, τ ) can be generated by sampling

τ ∈ DΘ and inserting them into the inverse isoprobabilistic transform to obtain realizations c.
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(a) Inverse CDF formulation in Eq. (6.27)
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Figure 6.20: Gaussian parametric p-box – manifolds corresponding to a particular x0.

In particular, for each dimension i = 1, . . . ,M and experimental design sample j = 1, . . . , N ,

nph samples can be generated from θi ∈ DΘi and collected in
{
τ

(j)(k)
i , k = 1, . . . , nph

}
. Then,

the inverse transform consists of evaluating simple CDFs and reads:

c
(j)(k)
i = FXi

(
χ

(j)
i

∣∣∣τ (j)(k)
i

)
, (6.32)

where each experimental design sample point is χ(j) =
(
χ

(j)
1 , . . . , χ

(j)
M

)
. The new components

in dimension i of vector v(j) reads then:

{
v

(j)(k)
i =

(
c
(j)(k)
i , τ

(j)(k)
i

)
, k = 1, . . . , nph

}
. (6.33)

When pursuing this procedure for all i = 1, . . . ,M dimensions of the input vector, new sam-

ples of the experimental design are generated. These samples are called phantom points (Schöbi

& Sudret 2015c) because they contribute to the experimental design V without increasing the

number of model evaluationsM. Indeed, the nph points in Eq. (6.33) all correspond to a single

χ(j) in the original experimental design, meaning a single run Y(j) = M
(
χ(j)

)
. This has a

large effect on the global efficiency when considering that model evaluations are dominating the

total computational costs. The experimental design with phantom points and the corresponding

responses then read:





V =
{
v(j)(k), j = 1, . . . , N, k = 1, . . . , nph

}

W =
{
W(j)(1) = . . . = W(j)(nph), j = 1, . . . , N

} , (6.34)

which is obtained at a cost of exactly N evaluations of the computational model M.

Consider again the Gaussian distribution with interval-valued distribution parameters and

the isoprobabilistic transform in Eq. (6.28). Further, consider a single realization of the augmen-

ted input vector, denoted by
{
µ

(1)
X , σ

(1)
X , ζ(1)

}
, and the corresponding χ(1) = µ

(1)
X + σ

(1)
X · ζ(1). A

set of realizations of the distribution parameters is generated and denoted by
{
µ

(1)(k)
X , σ

(1)(k)
X

}
,

k = 1, . . . , nph. Then, the equation corresponding to Eq. (6.32) reads:

ζ(1)(k) =
χ(1) − µ(1)(k)

X

σ
(1)(k)
X

, (6.35)
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which leads to the following experimental design enriched by phantom points and the correspon-

ding responses:





V =
{{

µ
(1)(k)
X , σ

(1)(k)
X , ζ(1)(k)

}
, k = 1, . . . , nph

}

W =
{
W(1)(1) = . . . = W(1)(nph) =M

(
χ(1)

)
= Y(1)

}
.

6.5 Numerical examples for parametric p-boxes

6.5.1 Rosenbrock function

Problem statement

Consider the Rosenbrock function defined in Eq. (6.22). The input vector is modelled by para-

metric p-boxes. Each input variable is defined by a Gaussian distribution function with interval-

valued mean value and standard deviation: µXi ∈ [−0.5, 0.5] and σXi ∈ [0.7, 1.0]. Its boundary

curves are plotted in Figure 6.5(b).

Analysis

Two cases are considered for parametric p-boxes in combination with augmented PCE models.

The first case consists of the general formulation for the isoprobabilistic transform in Eq. (6.27)

and the corresponding input vector V = (C,Θ). The second case consists of the special formu-

lation in Eq. (6.28) and the corresponding input vector V = (ζ,Θ).

The sparse PCE models are calibrated with a maximal polynomial degree of p = 10 and the

hyperbolic index set characterized by q = 1, due to the expected large number of interaction

polynomials. The phantom points are obtained by Eq. (6.35) and by Latin-hypercube sampling.

The same analysis is replicated 50 times with different experimental designs to achieve statistical

significance in the results.

Results

Figure 6.21 shows the boxplots for a varying experimental design size N and a constant value

of nph = 50 phantom points. As expected, the larger the experimental design, the smaller the

relative generalization error, which is estimated based on n = 105 Monte Carlo samples in this

example.

The two formulations of the augmented input vector V , however, behave differently. The

general formulation in Eq. (6.27) leads to a slower convergence behaviour than the formulation

in Eq. (6.28). The high accuracy of the meta-models in the case of V = (ζ,Θ) can be explained

by reformulating the computational model. By substituting the input vector X with (ζ,Θ) and

the corresponding isoprobabilistic transform, the augmented computational model read:

w = f
(aug)
3 (v) = 100

(
(µX2 + σX2 · ζ2)− (µX1 + σX1 · ζ1)2

)2
+(1− (µX1 + σX1 · ζ1))2 , (6.36)

where ζ1 ∼ N (0, 1) and ζ2 ∼ N (0, 1). This function is a smooth polynomial function with a

total degree of p = 8. Note that the number of interaction terms is large. However, this model

can be approximated well by PCE as seen in Figure 6.21(b). With an experimental design of

N = 100 samples, the average relative generalization error is in the order of êrrgen ≈ 10−9.
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Figure 6.21: Rosenbrock function – relative generalization error as a function of N and the

definition of the augmented space (nph = 50).

Focusing on the case of V = (ζ,Θ), the influence of the number of phantom points nph is

illustrated in Figure 6.22. The two figures show nicely that the larger the number of phantom

points, the more accurate is the meta-model in the augmented input space. When no phantom

points are used (i.e. nph = 1), the relative generalization error is of order êrrgen ≈
[
10−1, 100

]
,

which depicts a poor meta-model. On the right hand side of Figure 6.22(b), the relative gene-

ralization error is of order êrrgen ≈ 10−9 for nph = 50, which depicts an accurate meta-model

at the same number of computational model runs N .
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Figure 6.22: Rosenbrock function – relative generalization error as a function of nph (V =

(ζ,Θ)).

Comparison to free p-boxes

In Section 6.3.2, the Rosenbrock function is discussed in the context of free p-boxes. The p-box

boundaries of the input variables Xi are the same in the two examples, except a free (resp.a

parametric) structure is assumed in the latter (resp. present) example.

Both sections result in p-boxes for the response variable Y , the boundary curves of which

are shown in Figure 6.23. The free p-box formulation leads to wider boundary curves than

the parametric p-box formulation. This result is confirmed by the intuition that the free p-box



6.5. NUMERICAL EXAMPLES FOR PARAMETRIC P-BOXES 105

approach is more general than the parametric p-box approach and models a larger amount of

epistemic uncertainty (basically the absence of knowledge on the shape of the CDF).
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Figure 6.23: Rosenbrock function – response parametric versus free p-box.

6.5.2 Two-dimensional truss structure

Problem statement

Consider again the two-dimensional truss structure described in Sections 5.4.3 and 6.3.4. The

parametric p-boxes in the input vectorX are defined as distribution families with interval-valued

mean value and coefficient of variation, as described in Table 6.3.

Analysis

The augmented input vector in this application example is chosen to be a mix of interval-valued

epistemic parameters and standard Gaussian distributions, i.e. V = (ζ,Θ). Note that the

vector θi consists of a mean value µX and coefficient of variation ηX , as seen in Table 6.3. The

standard Gaussian distributions ζ represent the aleatory uncertainty of the input vector. The

Gaussian distribution is chosen because the input random variables are unbounded and hence

the resulting isoprobabilistic transform (see Eq. (6.27)) is nicely behaving.

The sparse PCE models are calibrated with a maximal polynomial degree of p = 10 and a

hyperbolic index set with q = 1, due to the expected large number of interaction polynomials.

The phantom points are generated by Latin-hypercube sampling technique. In particular, the

samples are generated in the domain of µX and ηX .

For lognormal variables (denoted by LN ), the phantom points are generated as follows.

Analogously to Eq. (6.28), the isoprobabilistic transform reads for the logarithm of x:

lnx = λX +$X · ζX , (6.37)

where the mean value and standard deviation of lnx are defined as:

λX (µX , η) = lnµX −$2
X/2 = ln

µX√
1 + η2

X

,

$X (µX , ηX) =
√

ln
(
1 + η2

X

)
,
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and where ζX is a standard Gaussian variable. Then, in the context of phantom points, Eq. (6.35)

transforms to:

ζ
(j)(k)
X =

lnχ(j) − λX
(
µ

(j)(k)
X , η

(j)(k)
X

)

$X

(
µ

(j)(k)
X , η

(j)(k)
X

) , (6.38)

where k = 1, . . . , nph. Note that the input parametric p-boxes are defined in terms of interval-

valued coefficient of variation rather than standard deviation. Hence, the experimental design

consist of τ (j)(k) =
{
µ

(j)(k)
X , η

(j)(k)
X

}
and the corresponding standard deviation reads σ

(j)(k)
X =

η
(j)(k)
X · µ(j)(k)

X .

For the Gumbel distributions (denoted by GU) with interval-valued mean value and coeffi-

cient of variation, the phantom points are computed directly with CDF and inverse CDF:

ζ
(j)(k)
X = F−1

N

(
FGU

(
χ(j)

∣∣∣µ(j)(k)
X , η

(j)(k)
X

))
, (6.39)

where FGU denotes the CDF of a Gumbel distribution, defined by:

FGU (x) = exp [− exp (−(x− α)/β)] , (6.40)

where α = µX − βγe and β = σX
√

6/π are the distribution parameters and γe = 0.577216 . . .

is the Euler constant. Note that Eq. (6.29) could also be used in this example to simplify the

isoprobabilistic transform.

Results

Table 6.5 summarizes the relative generalization error of the augmented PCE model of a single

run of the analysis. In particular, the dependency of the relative generalization error on the

number of runs of the computational model N and the number of phantom points nph. As

expected, the relative generalization error decreases, when N increases as well as when nph
increases.

Table 6.5: Two-dimensional truss structure – relative generalization error êrrgen [W ] for varying

N and nph and relative generalization error for a conventional PCE model on the auxiliary input

vector X̃ for comparison.

N = 100 N = 200 N = 500 N = 1000

nph = 1 4.07 · 10−2 1.12 · 10−2 2.86 · 10−3 1.14 · 10−3

nph = 2 8.26 · 10−2 2.39 · 10−2 1.32 · 10−2 5.21 · 10−3

nph = 10 1.27 · 10−2 7.95 · 10−3 2.73 · 10−3 3.68 · 10−4

nph = 20 8.73 · 10−3 3.64 · 10−3 3.42 · 10−4 2.25 · 10−4

X̃ 7.63 · 10−3 5.53 · 10−3 1.17 · 10−4 1.30 · 10−6

The relative generalization error of the augmented PCE is also compared to a PCE model

in the original input domain DX . For this purpose an auxiliary, probabilistic input vector X̃ is

used as a basis for the PCE meta-model. Each component X̃i is defined as the p-box distribution

family with central value mean value (i.e. µ
X̃i

=
(
µ
Xi

+ µXi

)
/2) and maximal coefficient of

variation (i.e. η
X̃i

= ηXi). Despite the higher-dimensional input domain DV (30 dimensions

instead of 10 for D
X̃

), the augmented PCE performs comparable to the PCE in the auxiliary

domain D
X̃

when using a reasonably large number of phantom points.
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The accuracy of the meta-model is also measured in terms of the shape of response p-

box. Figure 6.24 compares the boundary curves of the response p-box of the augmented PCE

meta-model (N = 200, nph = 20, êrrgen = 3.64 · 10−3) to a reference solution. The reference

solution is obtained by using the exact computational model M instead of the meta-model.

The boundary curves of the reference solution and the augmented PCE-based solution are close,

hence, indicating a high accuracy of the augmented PCE meta-model. The values of the relative

generalization error in Table 6.5 confirm this impression.
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Figure 6.24: Two-dimensional truss structure – boundary curves of the response p-box – exact

model versus augmented PCE model.

Comparison to free p-boxes

In Section 6.3.4, the same structural truss is discussed in the context of free p-boxes. The p-box

boundaries of the input variables Xi of the latter and present section coincide by construction.

Both sections result in p-boxes for the midspan deflection u, the boundary curves of which

are shown in Figure 6.25. Despite the different formulation of the input p-boxes, boundary

curves are almost identical. In fact, the free p-box formulation leads to wider boundary curves

as expected, but the difference to the parametric p-box formulation is negligibly small in contrast

to the Rosenbrock example.
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Figure 6.25: Two-dimensional truss structure – boundary curves of the response p-box – free

versus parametric p-box approach.

In terms of the number of model evaluations N , the two p-box approaches are comparable,
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too. Considering an experimental design size of N ≈ 200, the meta-modelling approaches are

capable of representing the underlying computational model and hence to propagate the p-boxes:

the two-level approach for free p-boxes and the augmented PCE model for parametric p-boxes.

As a result, the boundary curves are obtained efficiently in both p-box approaches.

6.6 Comparison free and parametric p-box approaches

In the case of parametric p-boxes, PCE in the augmented space approximate the computational

model M and at the same time account for the distinction between epistemic and aleatory

uncertainty. The number of computational model runs remains small because of the introduction

of phantom points. However, there is still a nMCS required to estimate the response p-box

after the calibration of the meta-model. In order to construct the bounds efficiently (see also

Eq. (6.3)), an optimization algorithm in combination with simple MCS can be applied instead

of a plain nMCS.

In the context of free p-boxes (see Section 6.2), the nature of the problem solving scheme

is different. In fact, the uncertainty propagation problem is solved based on the idea of inter-

val analysis. Hence, the two-level meta-modelling approach follows a different path than the

augmented PCE approach for parametric p-boxes. The two levels of meta-models are required

to reduce the computational costs introduced mainly by the large number of optimizations in

the converted problem described in Section 6.2.3 and Eq. (6.12). However, the second level

meta-models, approximating M and M, directly represent the bounds of the response p-box.

In the end, each bound can be estimated by simple MCS.

Table 6.6 summarizes the characteristics of the two approaches corresponding to the two

p-box types. Consider that the complexity of a meta-model is given by its dimensionality. From

this compilation, it is apparent that the free p-box approach requires three different meta-models

of complexity M . The parametric p-box approach requires just a single meta-model but of

increased complexity. Considering that most common distributions have two hyper-parameters,

the augmented PCE model has likely a complexity of 3 · M . Although the complexity can

be handled by phantom points, the amount of storage required to calibrate such meta-models

might be infeasible. Hence, it is important to use sparse PCE algorithms to limit the required

computational resources.

Table 6.6: Imprecise uncertainty propagation – comparison of free and parametric p-box appro-

aches.
Free p-box Parametric p-box

P-box FX , FX FX(x|θ), θ ∈ DΘ

Main solver Interval analysis Nested MCS

PCE models M (X) ,M (C) ,M (C) M(aug) (V )

PCE dimensionality |X| = |C| = M |V | = |X|+ |Θ| = M + |Θ|

Optimizations Eq. (6.12) Eq. (6.3)



CHAPTER 7

Imprecise structural reliability

analysis

In this chapter, a number of algorithms are proposed to conduct structu-

ral reliability analysis in the presence of p-boxes. The algorithms are based

on the developments discussed previously for the case of imprecise uncer-

tainty propagation. Moreover, the use of meta-models at various stages of

the analysis allows for an efficient estimation of failure probabilities. The

meta-model-based algorithm for free p-boxes has been published in Schöbi &

Sudret (2015b, 2016a,b).

7.1 State of the art

As seen in Chapter 5, there are many methods available for conducting structural reliability

analysis (SRA) in the presence of probabilistic variables. In the presence of imprecise proba-

bilities, however, fewer methods and publications are available, some of which are mentioned

here. Eldred (2009) and Hurtado (2013) use nested Monte Carlo simulations to cope with im-

precise probabilities. Alvarez & Hurtado (2014) combine subset simulation with random sets.

Z. Zhang, Jiang, Wang, et al. (2015) and Alibrandi & Koh (2015) generalize FORM/SORM for

the context of Dempster-Shafer’s evidence theory. A combination of line sampling and impre-

cise probabilities is discussed in De Angelis, Patelli, & Beer (2014) and De Angelis, Patelli, &

Beer (2015). Balu & Rao (2013) discuss imprecise structural reliability analyses (ISRA) in the

context of fuzzy variables. Muscolino & Sofi (2012) and Muscolino, Santoro, & Sofi (2015) dis-

cuss the interval perturbation method for uncertain-but-bound parameters. These publications

and their methods typically require a large number of model evaluations and hence rely on an

inexpensive-to-evaluate performance function to become a tractable analysis (Beer, Ferson, &

Kreinovich 2013).

A strategy to reduce the computational costs and to make the analysis tractable is the use

of meta-models, as seen also in Chapter 5 for probabilistic input vectors. As seen already,

using meta-models allows for an efficient estimation of both failure probabilities and quantiles.

Again, only few authors combine meta-modelling techniques with imprecise probabilities and

109



110 CHAPTER 7. IMPRECISE STRUCTURAL RELIABILITY ANALYSIS

SRA. Balesdent, Morio, & Brevault (2016) and Morio & Balesdent (2016) use an adaptive-

Kriging importance sampling algorithm for distributions with interval-valued parameters. A

combination of Karhunen-Loève expansions, evidence theory and structural reliability analysis

is presented in Oberguggenberger (2014). Z. Zhang, Jiang, Han, et al. (2014) use radial basis

expansions and quasi-Monte Carlo simulations in the case of evidence theory.

Based on these developments, a set of algorithms is proposed in this chapter to further

increase the efficiency of SRA methods in the presence of epistemic uncertainties. In particular,

free and parametric p-box approaches are presented separately and compared later in Section 7.6.

The application of Kriging meta-models at several stages of the imprecise structural reliability

analysis promises a reduction of the overall computational costs in analogy to Chapter 5.

7.2 Imprecise failure probability

In the context of probability theory, the definition of the failure probability is defined and

discussed in Section 5.2. In the context of interval-valued epistemic uncertainty and hence p-

boxes, Eq. (5.3) leads to a range of failure probabilities Pf ∈
[
P f , P f

]
, the bounds of which are

defined in the general case as:

P f = ′′min
fX

′′
∫

Df
fX(x) dx, P f = ′′max

fX

′′
∫

Df
fX(x) dx, (7.1)

where ′′min′′ (resp. ′′max′′) means that the optimization would be carried out over all PDF fX
which satisfy some constraints related to the definition of the underlying p-box. This imprecise

structural reliability analysis(ISRA) is not straightforward as it involves an optimization with a

multi-dimensional PDF fX as the argument of the objective function. Moreover, depending on

the type of p-boxes, the shape of the PDF fX is more or less restricted. In the following sections,

solution algorithms for the two types of p-boxes are discussed based on the developments in

the previous sections, in particular based on the proposed imprecise uncertainty quantification

algorithms (Chapter 6) and adaptive meta-modelling techniques (Chapter 5).

7.3 Free p-boxes

7.3.1 General idea

The uncertainty propagation of free p-boxes has been discussed in Section 6.2. The resulting

two-level meta-modelling approach, displayed in Figure 6.3, allows for an efficient propagation of

free p-boxes. The resulting uncertainty model in Y is again a free p-box, characterized by CDFs

FY (y) ∈
[
F Y (y), F Y (y)

]
. Based on the definition of the limit-state function, i.e. Pf = P (Y ≤ 0)

in the usual case, the failure probability can be found as Pf = FY (0) ∈
[
F Y (0), F Y (0)

]
. In other

words, the belief and plausibility values of the failure probability are found as P f = F Y (0) and

P f = F Y (0), respectively. Figure 7.1 shows the response p-box of Y by the corresponding

boundary curves. Further, the two bounds for the failure probability are illustrated.

Considering a limit-state function G instead of the computational model M, the failure

probability can be formulated as a function of the response variable Y . Then, the bounds to

the failure probability can be formulated in terms of the bounds of the response free p-box:

P f = P (Y ≤ 0) = P
(
G (C) ≤ 0

)
, (7.2)

P f = P
(
Y ≤ 0

)
= P (G (C) ≤ 0) , (7.3)
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Figure 7.1: Imprecise structural reliability analysis (ISRA) using free p-boxes – definition of the

bounds of the failure probability.

where G and G are defined analogously to Eq. (6.12) for M and M, respectively:

G (c) = min
x∈Dc

G (x) , G (c) = max
x∈Dc

G (x) . (7.4)

Hence, for the case of free p-boxes, the imprecise structural reliability problem can be recast

as two structural reliability problems in the probabilistic sense (H. Zhang, Mullen, & Muhanna

2010; H. Zhang 2012; Schöbi & Sudret 2015b).

A major drawback in this approach is, however, the high computational costs caused by the

same factors discussed in Chapter 6.2: expensive-to-evaluate limit-state functions, large number

of model evaluations, and small failure probabilities. Using the same idea as in the latter section,

the limit-state function can be replaced by a meta-model to reduce these computational costs.

In contrast to Section 6.2 where PCE models are used, however, Kriging models with adaptive

experimental designs are used here. The adaptive experimental design algorithm allows for an

efficient modelling of the limit-state surface and hence estimation of failure probabilities, as

discussed in Chapter 5.

7.3.2 First-level meta-model

A first meta-model is applied to the limit-state function G and, in particular, to model the

limit-state surface G (x) = 0. However, in order to conduct an AK-MCS analysis as introduced

in Section 5.3, a probabilistic input vector is required. Analogously to Section 6.2, an auxiliary

input vector X̃ is created by condensation. The auxiliary distribution shall cover the shape of

the p-box such that the resulting meta-model G(K) is accurate in the very neighbourhood of the

limit-state surface that contributes to the failure probability in the p-box setting.

7.3.3 Second-level meta-models

The second meta-model is applied to the limit-state functions G and G and the estimation of the

bounds of the failure probability. By using the approximation of G, Eq. (7.4) may be replaced

by:

G (c) ≈ min
x∈Dc

G(K) (x) , G (c) ≈ max
x∈Dc

G(K) (x) , (7.5)

where G(K) is the meta-model resulting from the first-level approximation. The optimizations

can be solved by available methods, such as genetic algorithms, due to the small computational
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costs of evaluating the meta-model G(K). Therefore, the bounds of the failure probability P f
and P f can be estimated by two independent AK-MCS analyses of G and G, respectively.

The bounds to the failure probability can be estimated as a function of the probabilistic

input vector C. However, to improve the convergence of the AK-MCS algorithm, an auxiliary

distribution may be beneficial. In fact, the same auxiliary distribution X̃ is suitable when the

free p-boxes are unbounded, as shown Section 6.2.4 and in Schöbi & Sudret (2015b). Then, an

isoprobabilistic transform maps C to X̃ and vice versa.

7.3.4 Compilation

Figure 7.2 summarizes the procedure, which consists of two sequential meta-modelling levels

connected by the problem conversion step. Analogously to Figure 6.3, the first-level meta-model

surrogates the original limit-state function G, whereas the second-level meta-model surrogates

the limit-state function for estimating the lower and upper bounds of the failure probability.

Both levels use auxiliary random variables, i.e. X̃ on the first level and C on the second level.

G G(K) G

C

G P f

P f

X̃

X

A
K
-M

C
S

C
on

ve
rs
io
n

A
K
-M

C
S

A
K
-M

C
S

C
on

d
en
sa
ti
on

Second LevelFirst Level

Figure 7.2: ISRA for free p-boxes – flowchart of the two-level meta-modelling algorithm.

7.4 Parametric p-boxes

7.4.1 General idea

The definition of parametric p-boxes indicates a hierarchical model where the distribution of

X is defined conditionally on its distribution parameters. Hence, nested simulation algorithms

can be applied as previously discussed in Section 6.4 in the context of uncertainty propagation.

In the context of structural reliability analysis, the computational model M is replaced by the

limit-state function G and the quantity of interest is the failure probability instead of the entire

response p-box.

Given parametric p-boxes, the bounds for the failure probability can be found by optimizing

the value of the distribution parameters θ:

P f = min
θ∈DΘ

Pf |θ (θ) , P f = max
θ∈DΘ

Pf |θ (θ) , (7.6)
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where Pf |θ = P (G (Xθ) ≤ 0) is the failure probability conditional on θ, and Xθ is the condi-

tional distribution characterized by the CDF FXθ(x) = FX (x|θ). Considering a Monte Carlo

simulation, the conditional failure probability is estimated by (see also Eq. (5.5)):

P̂f |θ =
1

n

n∑

i=1

IG(x)≤0

(
x(i)
)
, (7.7)

where Sθ =
{
x(i), i = 1, . . . , n

}
is a MC sample of the conditional input vector Xθ. Note that

each θ ∈ DΘ will lead to a different failure probability.

Considering this setup, it is important (i) to estimate the individual conditional failure pro-

bability efficiently and (ii) to choose θ in a way as to reach the bounds of the failure probability

efficiently. One way to do so is to use the meta-modelling techniques with adaptive experimental

designs as introduced in Chapter 5.

7.4.2 Conditional failure probabilities

In the context of parametric p-boxes, the core task consists of estimating efficiently the conditi-

onal failure probability Pf |θ by AK-MCS. Given a vector θ ∈ DΘ and consequently conditional

variablesXθ, AK-MCS can be applied to estimate the conditional failure probability analogously

as described in Chapter 5 and Eq. (7.7).

7.4.3 Optimization on distribution parameters

Efficient global optimization (EGO) is a global optimization algorithm which is based on Kriging

meta-models with a design enrichment strategy similar to AK-MCS (Jones, Schonlau, & Welch

1998; Echard, Gayton, & Lemaire 2011). In the context of ISRA for parametric p-boxes, EGO

can be used to find the extreme values of the failure probability by optimizing on the distribution

parameters θ. The main steps are discussed here:

(i) Given the distribution parameter θ ∈ DΘ, generate a small initial experimental design

T =
{
τ (1), . . . , τ (N)

}
.

(ii) Compute the corresponding responses P(i) = P (G (Xτ (i)) ≤ 0) for i = 1, . . . , N by AK-

MCS. Note that for the first evaluation of such a conditional failure probability, the pro-

cedure of Section 5.3 is applicable one-to-one with the distribution Xτ (1) . However, for

i = 2, . . . , n, the limit-state function evaluations of the previous AK-MCS analyses are

kept as initial experimental design. The difference lies then solely in a modified Xτ (i) and

hence a modified Sτ (i) . Due to the similarity of the MC populations Sτ (i) , the number of

limit-state function evaluations can be kept small.

(iii) Train a Kriging meta-model P
(K)
f (θ) based on {T ,P}. This meta-model approximates

the estimation of the conditional failure probability Pf |θ(θ).

(iv) Search for the optimal samples to be added to the experimental design for the minimization

and maximization of the failure probability:

τ ∗min = arg max
θ∈DΘ

[EImin (θ)] , (7.8)

τ ∗max = arg max
θ∈DΘ

[EImax (θ)] . (7.9)
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where the expected improvement is defined as (Mockus, Tiesis, & Zilinskas 1978; Jones,

Schonlau, & Welch 1998):

EImin(θ) =
(
Pmin − µP̂f (θ)

)
Φ

(Pmin − µP̂f (θ)

σ
P̂f

(θ)

)
+ σ

P̂f
(θ) ϕ

(Pmin − µP̂f (θ)

σ
P̂f

(θ)

)
,

(7.10)

EImax(θ) =
(
µ
P̂f

(θ)− Pmax
)

Φ

(
µ
P̂f

(θ)− Pmax
σ
P̂f

(θ)

)
+ σ

P̂f
(θ) ϕ

(
µ
P̂f

(θ)− Pmax
σ
P̂f

(θ)

)
,

(7.11)

where EImin and EImax are the expected improvement for minimizing and maximizing

Pf , respectively, Pmin = mini
[
P(i)

]
, Pmax = maxi

[
P(i)

]
, and Φ (·) and ϕ (·) are the CDF

and PDF of a standard normal variable, respectively. The expected improvement allows

for a balance between local and global search (Jones, Schonlau, & Welch 1998).

(v) Check the convergence criterion proposed by Jones, Schonlau, & Welch (1998), applied to

the maximum and minimum estimates of the failure probability:

EImin (τ ∗min) ≤ εEI , (7.12)

EImax (τ ∗max) ≤ εEI . (7.13)

If both criteria are fulfilled, terminate the optimization algorithm and return the last

estimates of the boundary value for the failure probability: P f = mini
[
P(i)

]
, P f =

maxi
[
P(i)

]
. Otherwise, continue with Step (vi). Note that a value of εEI = 10−5 was

identified as a reliable choice for the applications in Section 7.6.

(vi) Add the best next sample(s) to the experimental design T . The Steps (iv) and (v) allow

for a simultaneous or separate optimization for the bounds of the failure probability. For

simultaneous optimization, both boundary values of the failure probability are estimated

with the same meta-model and {τ ∗min, τ ∗max} are added in each iteration. For separate

optimization, the lower and upper bounds of the failure probability are estimated one after

another. The effect of this choice is discussed in Section 7.6. Then, depending on Step (v)

and the optimization mode, {τ ∗min, τ ∗max} is added if Eqs. (7.12) and (7.13) are fulfilled.

{τ ∗min} is added if only Eq. (7.12) is fulfilled and {τ ∗min} is added if only Eq. (7.13) is

fulfilled.

(vii) Evaluate the failure probability corresponding to τ ∗ and add it to P. Note that the limit-

state function evaluations computed in AK-MCS can be recycled. They can be used as

the initial experimental design in AK-MCS for estimating P∗ corresponding to τ ∗ (see also

Step (ii) for further details). Finally, continue with Step (iii).

Figure 7.3 summarizes the EGO algorithm for finding the minimum failure probability P f
in analogy to Figure 5.1. The white boxes represent the starting point of the algorithm, whereas

the grey boxes mark the computational tasks described previously. Note that for obtaining the

maximum failure probability, the same flowchart is valid when replacing EImin by EImax and

P f by P f .

When comparing Figures 7.3 to 5.1, some differences between EGO and AK-MCS are appa-

rent. The main difference is that AK-MCS optimizes on a sample set S, whereas EGO optimizes

on the continuous, nΘ-dimensional parameter domain DΘ. The reason for searching in DΘ is

threefold. Firstly, the input domain is given in intervals without a probabilistic description (i.e.
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Figure 7.3: Flowchart of the EGO algorithm to find extreme failure probabilities.

PDF). Hence, an auxiliary distribution is required to sample from in order to obtain a candidate

set S. The use of DΘ avoids this task. Secondly, DΘ can be interpreted as an infinite set of

candidate samples. Hence, the chance of hitting the global optimum is larger than in the case

of S. Thirdly, in AK-MCS, the quantity of interest (i.e. Pf ) depends on the entire set S rather

than a single sample x(i) ∈ S. On the other side, EGO searches for the optimal single sample

τ that optimizes the failure probability. Hence, the target result of EGO is point-dependent,

whereas the result of AK-MCS is ensemble-dependent.

7.4.4 Compilation

Figure 7.4 illustrates the main components of the proposed algorithm. Similar to the impre-

cise uncertainty quantification algorithm in Figure 6.18, the nested algorithm is visible. The

outer loop consists of the EGO method on the distribution parameters θ, whereas the inner

loop consists of the AK-MCS method to estimate failure probabilities. The main difference to

Figure 6.18 is, however, that the outer loop consists of an optimization algorithm rather than a

pure MCS.
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Figure 7.4: ISRA for parametric p-boxes – overview of the nested algorithm.

7.5 Multiple p-box types

The previous two sections dealt with the case where either free or parametric p-boxes are present.

However, if both types of p-boxes appear in a problem setting for different variables, these

concepts may be combined to one.

Denote the variables modelled by free p-boxes as X(f) and the ones modelled by parametric

p-boxes as X(p), such that X =
(
X(f),X(p)

)
and

∣∣∣X(f)
∣∣∣ +

∣∣∣X(p)
∣∣∣ = M . Then, for a given

θ ∈ DΘ, the bounds of the failure probability can be estimated as described in Section 7.3 in

the context of free p-boxes. Note that the conditional variables X
(p)
θi,i

are interpreted as free

p-boxes of which the two boundary CDFs coincide. As a result, boundary values of the failure

probability are obtained conditional on the parameter values θ, i.e. P f |θ and P f |θ. In a second

stage, the minimum value of P f |θ and the maximum value of P f |θ are obtained by applying

EGO twice in the parameter space DΘ, in a similar fashion as described in Section 7.4.

The procedure is summarized in Figure 7.5. It consists of three levels of meta-modelling:

(i) a Kriging meta-model of G, (ii) Kriging models of G and G, and (iii) two Kriging models for

optimization (i.e. for P f |θ and P f |θ). Note that evaluations of the true limit-state function G
are only computed in the AK-MCS procedure resulting in G(K). The evaluations of G can be

recycled in the different iterations of EGO as previously discussed in Section 7.4.

7.6 Numerical examples

In order to visualize how the proposed two-level meta-modelling approaches work, four appli-

cation examples are presented in this section. The toy function visualizes the adaptive Kriging

approach on a simple analytical function. Thereafter, three examples discuss realistic problem

settings involving more complex computational models. The analyses focus on the comparison

of free and parametric p-box modelling.

7.6.1 Toy function

Problem statement

The first example is a simple two-dimensional problem to illustrate the machinery of the proposed

approaches. The limit-state function is defined as:

g1 (x) = x1 − x2
2. (7.14)
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Figure 7.5: ISRA for multiple p-box types (i.e. free and parametric) – overview of the proposed

algorithm.

Failure is defined as g1(x) ≤ 0 and hence the failure probability reads Pf = P (g1 (X) ≤ 0). The

two variables Xi are modelled by p-boxes. In the following, two cases are distinguished: (i) Xi

is modelled by free p-boxes and (ii) Xi is modelled by parametric p-boxes. The bounds of the

free p-boxes are defined as:

FXi(xi) = FN (xi|µ = 2.5, σ = 1) ,

FXi(xi) = FN (xi|µ = 1.5, σ = 1) ,

where FN (x|µ, σ) denotes the CDF of a Gaussian distribution with mean value µ and standard

deviation σ. For the parametric p-box case, the distribution parameters θ are chosen so that

the boundary curves are the same as in the case of free p-boxes:

FXi(xi) = FN (xi|µ, σ = 1) , µ ∈ [1.5, 2.5] .

Analysis

The settings for the ISRA are the following. The meta-models and MCS are computed using the

Matlab-based uncertainty quantification framework UQLab (Marelli & Sudret 2014), including

its implementation of AK-MCS (Marelli, Lamas-Fernandes, et al. 2015). All Kriging models are

defined by a Gaussian autocorrelation function and a constant trend (f(x) = 1, a.k.a. ordinary

Kriging). The number of samples in the initial experimental design are N
(1)
0 = 12 and N

(2)
0 = 12

for the first-level and second-level AK-MCS algorithms, respectively. Furthermore, the initial

experimental design consists of N
(EGO)
0 = 4 samples for EGO. The initial experimental designs

are generated by the LHS method. For free p-boxes, the auxiliary input distribution is defined as

X̃i ∼ N (xi|2, 1). For parametric p-boxes and EGO, the threshold value of the stopping criterion
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is set to εEI = 10−5. The failure probabilities are estimated with a set of nMCS = 106 MC

samples. The analysis is repeated 50 times with different initial experimental designs in order

to obtain statistically significant results.

Results of free p-box case

Figure 7.6 visualizes a typical realization of the ISRA for free p-boxes. Note that the stopping

criterion in AK-MCS was deactivated in this simulation run to visualize the general behaviour of

the method. Figure 7.6(a) illustrates the experimental design of the final first-level meta-model.

The initial experimental design is marked by the grey squares. The additional samples (blue

squares) group around the limit-state surface (black solid line) in the physical domain, which

implies an efficient selection of additional samples. Further, Figures 7.6(b) and 7.6(c) show

the constraint optimization domains Dc in Eq. (7.4) in the physical space DX for the experi-

mental design on the second-level meta-model. The optimization domains Dc mark rectangular

areas due to the independence of the input components Xi. Again, the optimization domains

are selected in an efficient manner seen in the positioning of the blue rectangles. For G in Fi-

gure 7.6(b), the minimum value of the limit-state function within each blue rectangle is achieved

at a point which lies close to the limit-state surface. Thus, the rectangular are contained in the

safe domain. Analogously in Figure 7.6(c) for G, the maximum value of the limit-state function

within each blue rectangle lies close to the limit-state surface. Hence, the rectangles are mostly

contained in the failure domain.

Accounting for the 50 replications of the ISRA, the estimates of the failure probability are

summarized in Table 7.1. The reference value of the failure probability (denoted by Pf,ref ) is

obtained by an Importance Sampling analysis of G and G with a sample size of n = 106. The

table shows that all three meta-models accurately estimate the corresponding failure probabi-

lities in terms of mean estimate. However, in terms of coefficient of variation, the second-level

meta-models are less accurate than the expected Monte Carlo sampling-related values: for P f

the expected value is CoV
[
P f
]

=
√

(1− P f )/(nMCS · P f ) = 11.3% < 13.8% and for P f the

expected value is CoV
[
P f
]

= 0.9% < 7.4%. The large variation in P f is caused by the larger

number of samples in the failure domain and hence the larger length of the limit-state sur-

face relevant for the failure probability estimation, when comparing to the auxiliary space D
X̃

.

Selecting a different auxiliary distribution X̃ might reduce this phenomenon.

Table 7.1: Toy function – free p-boxes – failure probability estimation (results of 50 repetitions

of the same analysis with different sample sets and initial experimental designs).

P̃f P f P f
Pf,ref 1.68 · 10−3 7.78 · 10−5 1.27 · 10−2

E
[
P̂f

]
1.67 · 10−3 7.62 · 10−5 1.25 · 10−2

CoV
[
P̂f

]
2.5% 13.8% 7.4%

E
[
N (1)

]
12 + 2.7 = 14.7 - -

Std
[
N (1)

]
0.6 - -

E
[
N (2)

]
- 4 + 36.9 = 40.9 4 + 19.4 = 23.4

Std
[
N (2)

]
- 13.3 17.7
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Figure 7.6: Toy function – free p-boxes – adaptive experimental designs of a single run of the

analysis.

The lower part of Table 7.1 shows the number of samples in the experimental design of the

final meta-models. N (1) and N (2) denote the number of model evaluations on the first-level and

second-level meta-model, respectively. N (1) is low due to the smooth shape of the limit-state

surface. In fact, an addition of ∆N (1) = 2.7 points on average is sufficient to model it. On the

second-level meta-models, the number of samples N (2) is larger due to the shape of G and G and

the corresponding limit-state surfaces.

Results of parametric p-box case

A typical realization of the ISRA for parametric p-boxes in visualized in Figure 7.7. Figure 7.7(a)

shows the experimental design of the final AK-MCS meta-model. Similar to Figure 7.6(a),

the additional samples (red squares) group efficiently around the limit-state surface which is

represented by the solid black line. The experimental design of the EGO algorithm is shown in

Figure 7.7(b), which illustrates the exploratory behaviour of the EGO algorithm. Despite the

small number of added samples, the boundary values of the failure probability are estimated

accurately, as seen in Figure 7.7(c). The left side of Figure 7.7(c) shows the evolution of the

failure probability boundary values in the initial experimental design (N
(EGO)
0 = 4) which are

evaluated according to their a priori defined design of experiments. The right side of the latter
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figure shows the current boundary values of the failure probability during each iteration of EGO.

After iteration 3, the optimization algorithm converges to a stable value of the failure probability

estimates.
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Figure 7.7: Toy function – parametric p-boxes – single realization of the ISRA.

The results of the 50 replications of the analysis are summarized in Table 7.2 in terms of

failure probability estimates and experimental design sizes. Further, it is distinguished whether

the EGO algorithm is used to simultaneously optimize for P f and P f (left block of values) or

whether EGO is performed separately for P f and P f (right block of values). Note that for

the separate optimization case, samples from one optimization are not re-used in the other one.

In terms of the failure probability, both settings result in accurate estimates. Moreover, the

coefficient of variation is close to the expected value of CoV [Pf ] = 8.0% and 0.9% for P f and

P f , respectively, for a Monte Carlo simulation with nMCS = 106 samples.

Further, the number of evaluations of the true limit-state function N (1) is similar for the

simultaneous and separate optimization cases. The number of samples added during AK-MCS

is generally low. At the level of EGO, however, the simultaneous optimization requires more

samples (N (EGO)) as the separate optimization. Even when adding up the samples for the

separate optimization case, N
(EGO)
tot = 4 + 4.7 + 2.0 = 10.7 is less than N (EGO) = 14.3. Hence,

the separate optimization case is more efficient than the simultaneous optimization. Based on

this observation, the remaining application examples are analysed using separate optimizations.
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Table 7.2: Toy function – parametric p-boxes – failure probability estimation (results of 50

repetitions of the same analysis with different sample sets and initial experimental designs).

Simultaneous optimization Separate optimization

P f P f P f P f
Pf,ref 1.57 · 10−4 1.14 · 10−2 1.57 · 10−4 1.14 · 10−2

E
[
P̂f

]
1.58 · 10−4 1.14 · 10−2 1.58 · 10−4 1.14 · 10−2

CoV
[
P̂f

]
8.0% 1.2% 8.1% 1.2%

E
[
N (1)

]
12 + 3.4 = 15.4 12 + 3.4 = 15.4 12 + 3.2 = 15.2

Std
[
N (1)

]
0.9 1.0 0.9

E
[
N (EGO)

]
4 + 10.4 = 14.3 4 + 4.7 = 8.7 4 + 2.0 = 6.0

Std
[
N (EGO)

]
1.4 1.2 1.1

Results comparison

The algorithms for free and parametric p-boxes originate from two different paradigms: interval

analysis and nested Monte Carlo simulations, respectively. However, the statistics of the two

proposed two-level meta-modelling algorithms perform similar in terms of model evaluations.

Free p-boxes result in N (1) = 14.7 evaluations of the limit-state function whereas parametric

p-boxes result in N (1) = 15.4 on average. This is intuitively understood due to the identical

limit-state surface G (x) = 0 in both settings.

7.6.2 Single-degree-of-freedom oscillator

Problem statement

In order to visualize the effects of non-monotone functions on the failure probability, the follo-

wing example is analysed. Consider the non-linear undamped single-degree-of-freedom (SDOF)

oscillator sketched in Figure 7.8 (Schueremans & Van Gemert 2005a; Echard, Gayton, & Le-

maire 2011; Echard, Gayton, Lemaire, & Relun 2013). The corresponding limit-state function

reads:

gSDOF (r, F1, t1, c1, c2,m) = 3r −
∣∣∣∣

2F1

mω2
0

sin

(
ω0T1

2

)∣∣∣∣ , (7.15)

where m is the mass, c1, c2 are the spring constants of the primary and secondary springs, r is

the displacement at which the secondary spring yields, t1 is the duration of the loading, F1 is

the amplitude of the force and ω0 =
√

c1+c2
m is the natural frequency of the oscillator. Failure is

defined as gSDOF ≤ 0, hence the failure probability reads Pf = P (gSDOF ≤ 0).

The input vector is modelled by a mix of probabilistic variables and p-boxes accounting for

the different levels of knowledge. The description of the input variables is provided in Table 7.3.

It is assumed that the spring stiffnesses and the mass are well-known. Hence {c1, c2,m} are

modelled by precise CDFs. On the other side, knowledge on {r, F1, t1} is scarce. Hence, these

variables are modelled by p-boxes. The two cases of free and parametric p-boxes are distinguished

and compared in the following. As seen in Table 7.3, the parametric p-box is characterized by

a distribution function with interval-valued mean value. For the case of free p-boxes, the same
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Figure 7.8: SDOF oscillator – geometry sketch and definition of the variables

p-box boundary curves are used as for parametric p-boxes. Note that FN (x|µ, σ) refers to a

Gaussian distribution with mean value µ and standard deviation σ.

Table 7.3: SDOF oscillator – definition of the input vector for the cases of parametric and free

p-boxes.

Parametric p-box Free p-box

Xi Distribution Mean Std. FXi FXi
r Gaussian [0.49, 0.51] 0.05 FN (r|0.51, 0.05) FN (r|0.49, 0.05)

F1 Gaussian [−0.2, 0.2] 0.5 FN (F1|0.2, 0.5) FN (F1| − 0.2, 0.5)

t1 Gaussian [0.95, 1.05] 0.2 FN (t1|1.05, 0.2) FN (t1|0.95, 0.2)

c1 Gaussian 1 0.1 FN (c1|1, 0.1) = FN (c1|1, 0.1)

c2 Gaussian 0.1 0.01 FN (c2|0.1, 0.01) = FN (c2|0.1, 0.01)

m Gaussian 1 0.05 FN (m|1, 0.05) = FN (m|1, 0.05)

Analysis

The settings for the imprecise structural reliability analyses are kept the same as in Section 7.6.1,

except for the size of the initial experimental designs. Here, this size is set to N0 = 12 for all

meta-models (including EGO). Further, the threshold value in EI is set to εEI = 10−5. For free

p-boxes, the auxiliary distributions for {r, F1, t1} are defined by FN (r|0.5, 0.05), FN (F1|0, 0.5),

and FN (t1|1.00, 0.2), respectively.

Efficiency of the proposed approaches

Table 7.4 summarizes the results of a single run of the ISRA. The estimates of the failure

probability P̂f are compared to a reference Monte Carlo simulation with nMCS = 107 samples.

All four failure probabilities are estimated accurately. Further, the number of evaluations of

the limit-state function N (1) is low. The case of parametric p-boxes results in a larger N (1)

compared to the free p-box. The reason for this is the added samples during the iterations of

the EGO. In comparison, the two levels of the free p-box analysis are independent and hence

the total N (1) is lower.

The number of samples in the second-level meta-models are varying more than the first-

level meta-models. In the case of parametric p-boxes, a few samples N (EGO) are sufficient to

find the optimal distribution parameters. In the case of free p-boxes, N (2) has the same order

of magnitude as N (1) because the analysis is of the same type, i.e. AK-MCS. However, the

difference in N (2) of estimating P f and P f is large, which indicates the different complexity of

the limit-state surfaces G = 0 and G = 0, respectively.
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Table 7.4: SDOF oscillator – results of the ISRA (reference solution obtained by Monte Carlo

simulation with nMCS = 107 samples).

Parametric p-box Free p-box

P f P f P f P f
Pf,ref 2.42 · 10−3 9.04 · 10−3 7.08 · 10−4 1.63 · 10−2

P̂f 2.41 · 10−3 9.04 · 10−3 6.69 · 10−4 1.61 · 10−2

N (1) 12 + 185 = 197 12 + 185 = 197 12 + 120 = 132

N (EGO) 6 + 3 = 9 6 + 6 = 12 - -

N (2) - - 12 + 60 = 82 12 + 153 = 165

µ∗r 1.02 0.98 - -

µ∗F1
−0.01 0.20 - -

µ∗t1 0.95 1.05 - -

For the case of parametric p-boxes, Table 7.4 shows also the optimal mean values for

{r, F1, t1}, denoted by
{
µ∗r , µ

∗
F1
, µ∗t1

}
, which result from the EGO optimization. The results

confirm the intuition: the largest maximal failure probability is obtained by the smallest yield

displacement in combination with a long activation time and an eccentric force (µF1 ≈ 0.2 or

µF1 ≈ −0.2).

Evolution of experimental design

As mentioned above, the evolution of the experimental design is different for the two types

of p-boxes. For parametric p-boxes, the details are shown in Figure 7.9. The size of N (1) is

plotted as a function of the iteration in EGO in Figure 7.9(b). Interestingly, the major part

of evaluations are required to estimate the first sample of EGO’s initial experimental design.

Only a few additional evaluations are needed for the later iterations in EGO in order to refine

the estimates of the conditional failure probabilities. Hence, the recycling of limit-state function

evaluations is an efficient tool to keep the computational costs at a low level.
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(a) Failure probability estimates
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Figure 7.9: Oscillator – parametric p-boxes – convergence of the ISRA.

In the same figure, the evolution of the extreme failure probability estimates is also given (see
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Fig. 7.9(a)). Interestingly, the failure probabilities evolve with each iteration in EGO where at

the same time N (1) remains constant. In other words, the limit-state surface G = 0 is modelled

accurately enough to estimate the extreme failure probabilities.

Effect of non-monotonicity on failure probability

In this example, the two types of p-boxes have the same boundary curves, as seen in Table 7.3.

In case the limit-state function was a monotone function, the failure probabilities would be

identical. The oscillator function, however, results in non-identical failure probabilities. In fact,

the imprecise failure probability of the free p-box case encapsulates the one of the parametric p-

box case. As free p-boxes are more general than parametric p-boxes by definition, more extreme

failure probabilities are possible. In this example, free p-boxes result in a 3.4-times lower P f
and in a 1.8-times larger P f compared to the parametric p-boxes.

7.6.3 Simply supported truss structure

Problem statement

Hurtado (2013) introduced a two-dimensional truss structure, the geometry of which is shown

in Figure 7.10. The truss is subjected to seven loads Pi which are modelled with p-boxes. The

parametric p-boxes are defined by lognormal distributions with mean value µPi ∈ [95, 105] kN

and standard deviation σPi ∈ [13, 17] kN. The geometry of the structure and the material

properties are assumed constant. The modulus of elasticity is E = 200 · 109 Pa, whereas

the cross section area varies along the different bars: A = 0.00535 m2 for bars marked by •,
A = 0.0068 m2 for bars marked by ◦, and A = 0.004 m2 for the remaining bars.

8 x 2m

 2
m

P1 P2 P3 P4 P5 P6 P7

u4

Figure 7.10: Simply-supported truss structure – sketch of the geometry and definition of the

input variables.

In the following analysis, a second scenario is considered, where the former parametric p-

boxes are modelled by free p-boxes. As in the other examples, the boundary curves of the

p-boxes should coincide, hence:

FPi(pi) = min
µPi∈[95,105] kN, σPi∈[13,17] kN

FPi(pi|µPi , σPi),

FPi(pi) = max
µPi∈[95,105] kN, σPi∈[13,17] kN

FPi(pi|µPi , σPi).

In the context of structural reliability analysis, the limit-state function is defined as:

gtruss(p) = 0.029 m− u4(p), (7.16)

where u4 is the deflection of the truss at midspan, as indicated in Figure 7.10. Then, the

failure probability describes the probability that the deflection of the truss exceeds 0.029 m, i.e.

Pf = P (u4(P ) ≥ 0.029 m).
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Analysis

The deflection of the truss is computed by a finite element model (FEM), which is implemented

in the software framework UQLab (Marelli & Sudret 2014). The FEM interprets each bar

as a bar element, whereas the loads are modelled as point loads at the intersections of the

corresponding bars as indicated in Figure 7.10.

The ISRA settings are kept the same as in the previous examples. However, the initial

experimental design is set to N
(1)
0 = N

(2)
0 = N

(EGO)
0 = 12 Latin-hypercube samples and εEI =

10−5. For free p-boxes, the auxiliary distributions X̃i are chosen as lognormal distributions with

mean value µ
P̃i

= 100 kN and standard deviation µ
P̃i

= 15 kN.

Results

Table 7.5 summarizes the results in terms of failure probability estimates and number of mo-

del evaluations. The failure probabilities are estimated accurately for the cases of parametric

and free p-boxes. The numbers of FEM evaluations N (1) are low for both cases, too. Hence,

the proposed multi-level meta-modelling techniques yield efficient algorithms for ISRA in this

application example.

Table 7.5: Simply-supported truss structure – results of the ISRA (reference solution obtained

by MCS with nMC = 107 samples).

Parametric p-box Free p-box

P f P f P f P f
Pf,ref 2.49 · 10−4 7.62 · 10−2 2.21 · 10−4 9.22 · 10−2

P̂f 2.64 · 10−4 7.62 · 10−2 2.36 · 10−4 9.16 · 10−2

N (1) 12 + 130 = 142 12 + 129 = 141 12 + 106 = 118 12 + 106 = 118

N (EGO) 12 + 174 = 186 12 + 40 = 52 - -

N
(EGO)
∗ 12 + 26 = 38 12 + 4 = 16 - -

N (2) - - 12 + 116 = 128 12 + 192 = 204

µ∗Pi 95 kN 105 kN - -

σ∗Pi 13 kN 17 kN - -

In the case of parametric p-boxes, the minimum failure probability is obtained by µ∗Pi = 95 kN

and σ∗Pi = 13 kN, whereas the maximum failure probability is obtained by µ∗Pi = 105 kN and

σ∗Pi = 17 kN, i = 1, . . . , 7, as one would expect. EGO is capable of identifying these two extreme

cases in this application. The number of iterations required to do so are indicated by N
(EGO)
∗

in Table 7.5. The values are lower than the final number of samples N (EGO), which represent

the number of samples used to terminate the EGO algorithm. The additional samples beyond

N
(EGO)
∗ show the exploratory behaviour of the EGO algorithm in this application example.

Hurtado (2013) analysed the same truss structure for the parametric p-box case. However,

due to its use of a Monte Carlo simulation on the second level of the algorithm, the published

failure probability range is narrower, i.e. Pf ∈
[
3.2 · 10−3, 2.37 · 10−2

]
, than reported in Ta-

ble 7.5. This indicates the importance of using a proper optimization algorithm in order to find

the extreme failure probabilities.
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7.6.4 Two-dimensional truss

Problem statement

Consider again the two-dimensional truss structure described in Section 5.4.3 and whose geome-

try is shown again in Figure 7.11. The deflection at midspan u is modelled as a function of the

deterministic geometry and a random ten-dimensional input vector consisting of Young’s moduli,

cross section areas and six loads. The limit-state function is defined as G(x) = uadm −M (x),

where the admissible deflection is uadm = 12 cm in this example. In order to obtain a reasonable

range of the imprecise failure probability, the ten input parameters are defined in Table 7.6,

which is different from the definition in Table 6.3.

6 x 4m

 2
m

P1 P2 P3 P4 P5 P6
A1, E1

A2, E2

u

Figure 7.11: Two-dimensional truss – sketch of the geometry, material parameters {Ai, Ei} and

loads Pi (see also Figure 5.8).

Table 7.6: Two-dimensional truss – input p-boxes for ISRA.

Variable Distribution Mean CoV

A1 [m2] Lognormal [0.98, 1.02] · 2 · 10−3 [0.98, 1.02] · 10%

A2 [m2] Lognormal [0.98, 1.02] · 10−3 [0.98, 1.02] · 10%

E1, E2 [Pa] Lognormal [0.98, 1.02] · 2 · 1011 [0.98, 1.02] · 10%

P1, . . . , P6 [N] Gumbel [0.95, 1.05] · 5 · 104 [0.95, 1.05] · 15%

Three scenarios are considered: (i) all variables are modelled as free p-boxes, (ii) all variables

are modelled as parametric p-boxes, and (iii) P1, . . . , P6 are modelled as free p-boxes whereas

E1, E2, A1, A2 are modelled by parametric p-boxes. As seen in previous examples, the bounds

of the free p-boxes are generated by the envelope of the parametric p-boxes (see also Eq. (6.3)).

Note that the range for the mean value and coefficient of variation of all p-boxes are chosen

so that the structural reliability analysis results in manageable failure probabilities when using

Monte Carlo simulation. In practical applications, the ranges could be considerably wider.

Analysis

The same settings for ISRA are used as described in Section 7.6.1, except the initial experimental

design for AK-MCS and EGO are chosen to have N
(1)
0 = N

(2)
0 = N

(EGO)
0 = 20 samples. The

three cases of different input p-boxes are analysed using the three algorithms proposed in (i)

Section 7.3, (ii) Section 7.4, and (iii) Section 7.5, respectively. For any free p-box, the auxiliary

distribution X̃i is defined by the given distribution with mid-range mean value and maximum

coefficient of variation. The auxiliary distributions are used on both levels of the two-level

meta-modelling approach to improve convergence.
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Results

The results of a single run analysis are summarized in Table 7.7. The ranges of failure probabi-

lities are similar for all three cases. In other words, the decision on free or parametric p-boxes

does not affect the failure probability considerably in this example application. The reason for

this behaviour lies in the monotonicity of the limit-state function as discussed previously in

Section 6.5.2. As a result the input CDFs leading to the extreme failure probabilities are very

similar for all three cases.

Table 7.7: Two-dimensional truss – results of the ISRA (reference solution obtained by Impor-

tance Sampling with n = 106 samples).

Case P f P f
(i) free p-boxes Pf,ref 1.11 · 10−4 1.19 · 10−2

P̂f 1.35 · 10−4 1.06 · 10−2

N (1) 20 + 114 = 134 20 + 114 = 134

N (2) 20 + 81 = 101 20 + 292 = 312

(ii) parametric p-boxes Pf,ref 1.18 · 10−4 1.12 · 10−2

P̂f 1.34 · 10−4 9.91 · 10−3

N (1) 20 + 269 = 289 20 + 169 = 189

N (EGO) 20 + 31 = 51 20 + 8 = 28

(iii) mixed p-boxes Pf,ref 1.12 · 10−4 1.18 · 10−2

P̂f 1.19 · 10−4 1.18 · 10−2

N (1) 20 + 311 = 331 20 + 286 = 306

N (2) 20 + 83 = 103 20 + 181 = 201

N (EGO) 20 + 19 = 39 20 + 5 = 25

The estimated bounds for the failure probability are accurate in all three cases. The differen-

ces to the reference failure probabilities Pf,ref originate from the finite size of the MC sample,

i.e. nMCS = 106. However, in terms of efficiency, the differences between the three cases is

larger. Case (i) results in fewer evaluations of the exact limit-state function G compared to the

other two cases, as seen by comparing the values of N (1). The reason for the larger N (1) in Cases

(ii) and (iii) lies in the nested algorithm and its iterative refinement of the first-level meta-model

in the presence of parametric p-boxes. The largest number of limit-state function evaluations

are found in Case (iii) due to the fact that this case poses the most complex analysis among the

three ones discussed.

In terms of the second-level meta-model for free p-boxes, N (2) lies in the same order of mag-

nitude as N (1) but varies more. For EGO in the context of parametric p-boxes, the number of

iterations in the optimization is in the range N (EGO) ∈ [25, 51]. Considering that the optimi-

zation domain has a dimensionality of M = 20 and M = 8 for Cases (ii) and (iii), respectively,

N (EGO) is remarkably low meaning that EGO is efficient to find the extreme failure probabilities.

7.7 Comparison of free and parametric p-box approaches

The main features of the two proposed algorithms are shown in Table 7.8. In the case of

free p-boxes, the main solving algorithm is AK-MCS, whereas in the case of parametric p-
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boxes, it is AK-MCS in combination with EGO. Both types of p-boxes require two levels on

meta-models. The dimensionality of these meta-models is M except for M(K) in EGO, where

the dimensionality is |Θ|. EGO handles the optimization algorithms for the two bounds of the

failure probability. In the case of free p-boxes, EGO could also be applied in the optimizations in

Eq. (7.4). The number of EGO algorithms would, however, be much higher than for parametric

p-boxes, i.e. 2 ·N (2) � 2.

Table 7.8: ISRA – comparison of free and parametric p-box approaches.

Free p-box Parametric p-box

P-box FX , FX FX(x|θ), θ ∈ DΘ

Main solver AK-MCS AK-MCS + EGO

Kriging models G (x) , G (c) , G (c) M(K) (θ) , G(K) (x)

Kriging dimensionality |X| = |C| = M |Θ|, |X| = M

Optimization equation Eq. (7.4) Eq. (7.6)

Number of optimizations 2 ·N (2) 2

The ISRA approaches are similar to the imprecise uncertainty propagation (IUP) algorithms

in Chapter 6. In fact, when replacing M and MCS by G and AK-MCS, respectively, the IUP

approach for free p-boxes transforms to the ISRA approach presented in this chapter. The meta-

models calibrated in the analyses have the same complexity (i.e. dimensionality) for first- and

second-level meta-models. The difference lies in the fact that PCE models are used in the case

of IUP. These, however, might be replaced by Kriging meta-models to increase the similarities

to ISRA.

For parametric p-boxes, the ISRA approach is different from the IUP approach. In ISRA,

the statistics of interest is obtained by two different meta-models (used in AK-MCS and EGO),

whereas in uncertainty propagation, the response p-box is obtained through a single meta-model

(i.e. augmented PCE). In other words, the complexity of the augmented PCE model in IUP

is split into two meta-models in ISRA. The reason for this change is the efficiency of Kriging

models in the context of adaptive experimental designs and structural reliability analysis.
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Imprecise sensitivity analysis

In this chapter, sensitivity analysis is discussed in the presence of p-boxes.

In particular, two approaches existing in the context of probability theory

are extended to imprecise probabilities. Pinching analysis provides a sen-

sitivity measure for free p-boxes as well as parametric p-boxes. Imprecise

Sobol’ indices is an extension of the traditional Sobol’ indices for the case of

parametric p-boxes and has been published in Schöbi & Sudret (2017a).

8.1 State of the art

8.1.1 Local versus global sensitivity

Sensitivity analysis (SA) examines the impact of the uncertainty in Xi ∈X onto the uncertainty

in the response quantity Y . This is of importance in practice where the relation between input

variables and quantity of interest Y is often implicitly defined by a complex computer code. A

large number of SA methods can be found in the literature, including reviews of several methods

in Saltelli, Chan, & Scott (2000), Helton, Johnson, Sallaberry, et al. (2006), and Xu & Gertner

(2008). The methods can be separated into two broad classes, namely local and global sensitivity

analyses.

Local sensitivity analysis examines how small variations in the input variables Xi in the

vicinity of a nominal value influence the response variable Y . As a result, many methods are

based on the computation of the gradient of the computational model around the nominal va-

lue. Efficient computation of the gradient is achieved by applying finite-difference schemes,

direct differentiations, and adjoint differentiation (Cacuci 2003). Popular local sensitivity mea-

sures include importance factors in FORM, the Cotter method (Cotter 1979), the perturbation

method, and one-at-a-time methods. Note that these methods generally-speaking do not take

into account the interactions between input variables and hence are of limited use in practical

examples.

Opposed to local sensitivity analysis examining the small-scale variation around a nominal

value, global sensitivity analysis focuses on the entire variation of an input variable Xi or a

combination of several input variables. Hence, the uncertainty in Y is analysed as a function

129
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of the variability in the input variable Xi. Saltelli, Chan, & Scott (2000) group the various

methods into regression-based and variance-based methods:

(i) Regression-based methods exploit the linear regression of the model response on the in-

put vector. Hence, these methods are useful when the computational model is a linear or

nearly linear function of the input variables X. On the other side, these methods are inap-

propriate for non-monotone and highly non-linear computational models (Saltelli, Chan,

& Scott 2000). Popular methods in this group include the standard regression coefficient

(SRC), the input/output Pearson correlation coefficients, partial correlation coefficients

(PCC), standard rank regression coefficients (SRRC), and partial rank regression coeffi-

cients (PRCC).

(ii) Variance-based methods aim at decomposing the variance in Y as a sum of the variances of

the input contributions. Therefore, these methods are known as ANOVA (i.e. ANalysis Of

VAriance) techniques in statistics (Efron & C. Stein 1981). Popular methods include the

correlation ratios (McKay 1995), Fourier amplitude sensitivity test (FAST) (Cukier 1973;

Cukier, Levine, & Shuler 1978; Saltelli, Tarantola, & Chan 1999; Mara 2009), and Sobol’

indices (Sobol’ 1993, 2001; Archer, Saltelli, & Sobol’ 1997; Sobol’ & Kucherenko 2009).

Other global SA methods that do not fit in either of the groups above include the Morris

method (Morris 1991) and derivative-based global sensitivity measures (DGSM) (Sobol’ & Ku-

cherenko 2009, 2010; Kucherenko et al. 2009; Lamboni et al. 2013). Further, there are a number

of methods based on specific experimental designs, such as fractional factorial designs (Saltelli

& Sobol’ 1995) and Plackett-Burman designs (Beres & Hawkins 2001).

8.1.2 Meta-models

The SA methods usually require a large number of computational model runs for different

realizations of the input vector X. Hence, such analyses can become intractable when the com-

putational model is expensive-to-evaluate. Then, the use of meta-models is a popular solution

to lower the total computational costs, as also seen previously in this thesis in the context of

uncertainty propagation and structural reliability analysis.

The trivial approach of using meta-models is by the implementation of a sequential algorithm:

(i) calibrate a meta-model as previously done in an uncertainty propagation problem and (ii)

conduct a SA using Monte Carlo-based estimates on the meta-model. There are, however, more

elaborate ways to use meta-models in this context. Sudret (2006, 2008) computes Sobol’ indices

as a post-processing algorithm on an existing PCE model. Furthermore, Sudret & Mai (2015)

compute DGSM based on a sparse PCE model.

8.1.3 Imprecise probabilities

In the context of imprecise probabilities, the aim of sensitivity analysis is not straightforward.

Sensitivity can be measured in terms of (i) aleatory uncertainty, (ii) epistemic uncertainty,

or (iii) a combination of both (such as in the present case of p-boxes). In this thesis, the

contributions of aleatory and epistemic uncertainty are not mixed due to the different modelling

with probabilistic variables and intervals, respectively.

The SA methods presented above are typically defined as a measure of variability in the sense

of aleatory uncertainty. In the context of epistemic uncertainty and hence imprecise probabilities,

these methods can be applied/extended under some rigorous assumptions. However, the number
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of publications for imprecise sensitivity analysis (ISA) is small. The following publications

include sensitivity analysis and epistemic uncertainty:

• Krzykacz-Hausmann (2006) examines Bayesian hierarchical models. The author computes

sensitivity indices for each source of epistemic uncertainty in the overall joint epistemic

and aleatory uncertainty domain. In other words, sensitivity indices are computed based

on the expected response value over aleatory uncertainties.

• Helton, Johnson, Sallaberry, et al. (2006) provide a survey of available methods for uncer-

tainty quantification and sensitivity analysis. They point out that epistemic uncertainties

in ISA have not been considered adequately yet in 2006.

• Helton, Johnson, Oberkampf, & Sallaberry (2006) describe three methods for sensitivity

analysis in the presence of evidence theory (belief and plausibility measures). The three

methods range from an initial exploratory analysis over an incremental effects analysis to

a variance-based SA.

• Guo & Du (2012) describe a sensitivity analysis method to identify the most important

epistemic variables with respect to the design performance (in imprecise structural reli-

ability analysis). They make use of the Kolmogorov-Smirnov distance and one-at-a-time

strategy as importance measure.

• Sankararaman & Mahadevan (2013) discuss global sensitivity analysis for Bayesian hier-

archical models. They use auxiliary variables to describe the aleatory variability in each

variable.

• C. Li & Mahadevan (2016a,b) describe Sobol’ indices in the presence of input uncertainty

(aleatory and epistemic; modelled as Bayesian hierarchical model) and model uncertainty

(epistemic). Additionally, they propose techniques to analyse time series efficiently.

• Oberguggenberger & Fellin (2005) and Oberguggenberger, King, & Schmelzer (2009) dis-

cuss SA for different concepts of imprecise probabilities, including random sets, fuzzy sets,

p-boxes and CDFs. The focus lies on pinching strategies (keeping one variable constant

and see the effect on the response structure) and Sobol’ indices.

• Ferson & Troy Tucker (2006) use pinching to estimate the sensitivity of variables. In

particular, the sensitivity is measured by the ratio of the areas between the lower and

upper boundaries of a p-box.

• Hall (2006) considers that the input variables are modelled by intervals, free, or parametric

p-boxes. Then, the author examines variance-based sensitivity analysis (VBSA), partial

expected value of perfect information (partial EVPI) and aggregate uncertainty entropy-

based sensitivity indices (AUEBSI).

As previously seen in the context of IUQ and ISRA, the use of imprecise probability concepts

increases the computational cost, possibly making ISA intractable. Hence, the ISA methods

presented in the literature are only applicable to inexpensive-to-evaluate computational models,

which are often analytical toy functions. Therefore, in this chapter, the meta-modelling tools

introduced previously are extended and applied to ISA. In the following, the focus lies on the

pinching algorithm in the context of free and parametric p-boxes. Additionally, the Sobol’

indices are extended to the new concept of imprecise Sobol’ indices for the case of parametric

p-boxes.
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8.2 Free p-box

8.2.1 Pinching

Idea

In this section, sensitivity analysis is used to estimate the value of additional information when

reducing the epistemic uncertainty in the response variable Y of a computational model M.

In other words, it is examined how much the imprecision of the input variables Xi affects the

imprecision of the response Y .

A popular strategy herein is to compare the uncertainty in Y before and after pinching

an input variable (Ferson & Troy Tucker 2006; Oberguggenberger, King, & Schmelzer 2009).

Pinching in this context means that the epistemic uncertainty in an input variable Xi (or a

group of input variables) is replaced by a deterministic value. The pinched variables might,

however, still inherit aleatory uncertainty. In other words, the pinching transforms a set of

p-box-modelled input variables into probabilistic input variables.

In this context, the value of information (VoI) can be manifold, depending on the goals of

the sensitivity analysis and generally the statistics of interest. As a general concept, however,

the value of information can be defined as (Ferson & Troy Tucker 2006):

VoI [B, T ] = 1− unc (T )

unc (B)
, (8.1)

where unc (·) is a function measuring uncertainty, B is the base value and T is the pinched

value of the statistics of interest. The larger the VoI, the larger is the influence of epistemic

uncertainty in the considered variable. The VoI is limited to VoI ∈ [0, 1] because the pinched

input vector consists of less epistemic uncertainty, by definition, compared to the original input

vector.

Pinching response p-boxes

In the context of imprecise uncertainty propagation, the epistemic uncertainty can be measured

by the area between the bounds of the free p-box. Then, the VoI can be defined as the following

ratio of p-box areas:

VoI
[
Y, YX̌i

]
= 1−

AYX̌i
AY

, (8.2)

where Y is the original response variable, YX̌i is the corresponding response variable when X̌i is

pinched, and AY and AYX̌i
are the corresponding p-box areas, respectively. For a given p-box,

this p-box area is defined as:

AY =

∫

DY

(
F Y (y)− F Y (y)

)
dy. (8.3)

The integral can be computed numerically by using e.g. standard quadrature method or a large

number of MC samples of each boundary curve.

Figure 8.1 sketches the idea of pinching. Figure 8.1(a) shows two input variables modelled

by p-boxes, i.e. X1 (dashed lines) and X2 (dotted lines). Additionally, the solid line marks the

pinched variable X̌1, which consists a p-box with no epistemic uncertainty, i.e. of a probabilistic

variable. The original and pinched response p-box are compared in Figure 8.1(b). Note that

the computational model is y =M (x) = x1 + x2. As seen in Figure 8.1(b), the pinching of X1

reduces the epistemic uncertainty in the response p-box considerably. The corresponding value

of information results in VoI
[
Y, YX̌1

]
= 1− 0.2/0.7 = 0.7143 ≈ 71 %.
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Figure 8.1: Pinching free p-boxes – comparison of p-box areas.

Pinching failure probabilities

In the context of imprecise structural reliability analysis, the statistics of interest is the failure

probability. Hence, a VoI equivalent to Eq. (8.2) can be formulated as follows:

VoI
[
Y, YX̌i

]
= 1−

∆βHL

(
YX̌i
)

∆βHL (Y )
, (8.4)

where βHL is the Hasofer-Lind reliability index defined as βHL = −Φ−1 (Pf ) and ∆βHL (Y ) =

Φ−1
(
P f
)
−Φ−1

(
P f
)

describes the range of the reliability index for a p-box in Y . Note that this

is not a unique solution for the case of imprecise structural reliability analysis. However, the

Hasofer-Lind reliability index describes a value that is widely accepted as a measure of the reliabi-

lity level with typical values of βHL = {1, 3, 5} for Pf =
{

1.587 · 10−1, 1.350 · 10−3, 2.867 · 10−7
}

,

respectively.

Consider again the example in Figure 8.1 and assume that the failure probability of interest

is Pf = P (Y ≤ 3). Then according to Eq. (8.4), the value of information when pinching X1

reads VoI
[
Y, YX̌1

]
= 1−∆βHL

(
YX̌1

)
/∆βHL (Y ) = 1− 0.3922/1.3728 = 0.7143 ≈ 71 %. In this

special case, the two measures of Eqs. (8.2) and (8.4) lead to identical VoI values. However, in

the general case where F Y and F Y have arbitrary shapes, this conclusion may not hold. For

further details, see also the application example in Section 8.4.2.

Definition of X̌i

The straightforward definition of a pinched variable consists of using the average CDF curve:

FX̌i =
1

2

(
FXi(xi) + FXi(xi)

)
. (8.5)

The definition of the pinched distribution is, however, not unique. Moreover, the results of a

pinching analysis can depend on the definition of the CDF of the pinched variable. In parti-

cular, the VoI is a function of FX̌i(xi) ∈
[
FXi(xi), FXi(xi)

]
, ∀xi ∈ DXi . This dependency is

pronounced when the computational model is non-linear and non-monotone. Then, different

definitions of X̌i may result in different VoI. In extreme cases where the dependency is strong,

the examination of a bunch of different definitions of FX̌i (xi) might be more suitable to measure

the VoI than the examination of a single one, which is by default the average of the bounds FXi
and FXi defined in Eq. (8.5).
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8.2.2 Efficient pinching

The estimation of the VoI requires the computation of a series of response p-boxes as a function

of slightly varying input variables Xi. Hence, the approaches presented in Sections 6.2 and 7.3

can be adopted to solve Eqs. (8.2) and (8.4), respectively.

VoI with pinched p-boxes

In order to estimate the pinched response p-boxes efficiently, the two-level meta-modelling ap-

proach shown in Figure 6.3 can be adopted. The first-level meta-model can be kept the same

as in imprecise uncertainty propagation. The second-level meta-model, however, is modified to

account for the pinching. In fact when pinching Xi, Eq. (6.12) transforms into:

y
X̌i

=MX̌i
(c) = min

x∈Dc
X̌i

M(x), yX̌i =MX̌i
(c) = max

x∈Dc
X̌i

M(x), (8.6)

where the optimization domain is defined as:

DcX̌i = [x1(c1), x1(c1)]× . . .× [x̌i (ci)]× . . .× [xM (cM ), xM (cM )] , (8.7)

where the p-box of variable Xi degenerates to a probabilistic variable, i.e. x̌i (ci) = xi (ci) =

xi (ci) and F X̌i (x̌i) = F X̌i (x̌i) for all x̌i ∈ DX̌i .
Considering the computational models in Eq. (8.6), Figure 8.2 shows the flowchart of the

two-level meta-modelling algorithm for pinching variables. The pinched input vector is denoted

by XX̌i
, which is located between the first and the second level in the flowchart. After the

computation of the response free p-box YX̌i (characterized by Y X̌i
and Y X̌i

), the area AYX̌i
is

computed and used in Eq. (8.2).
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Figure 8.2: Pinching of free p-boxes – two-level meta-modelling approach for computation of

AYX̌i
.

Analysing the global meta-modelling approach, one can see that the two levels of meta-

modelling are conducted in series. In other words, the second-level meta-model does not interact

with the first-level meta-model. Hence, the second-level meta-model can be calibrated for each

pinched variable X̌i, i = 1, . . . ,M without recomputing the first-level meta-model M(P). In

this setting, the first-level meta-model is recycled during the estimation of AYX̌i
, i = 1, . . . ,M ,
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which limits the total computational costs to the ones in the (unpinched) imprecise uncertainty

propagation analysis.

VoI with pinched failure probabilities

When the value of information is connected to the range of the reliability index βHL, the two-

level meta-modelling framework presented in Figure 7.2 can be adopted straightforwardly with

little modifications. In particular, Eq. (7.4) is transformed to:

GX̌i (c) = min
x∈Dc

X̌i

G (x) , GX̌i (c) = max
x∈Dc

X̌i

G (x) , (8.8)

where the domain DcX̌i is defined in Eq. (8.7).

The modified flowchart is shown in Figure 8.3. Similar to the computation of AYX̌i
, the

second-level meta-model is computed after the first-level meta-model. Hence, the same first-

level meta-model G(K) can be used to compute all ∆βHL

(
YX̌i
)
, i = 1, . . . ,M on the second level.

This reduces the total computational costs as it limits the number of runs of the limit-state

function G.
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Figure 8.3: Pinching of free p-boxes – two-level meta-modelling approach for computation of

∆βHL

(
YX̌i
)
.

8.3 Parametric p-boxes

8.3.1 Pinching

In the previous section, pinching is introduced for the case of free p-boxes. The concept of

pinching can be applied to parametric p-boxes in an analogous manner, when considering the

boundary curves of the response parametric p-box (see also Eq. (2.20)):

F Y (y) = min
θY ∈DΘY

FY (y|θY ) , F Y (y) = max
θY ∈DΘY

FY (y|θY ) , (8.9)

where FY denotes the distribution family of Y with distribution parameters θY ∈ DΘY
. Note

that in the general case, F Y and F Y have non-analytical shapes and values.
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8.3.2 Efficient pinching

VoI with pinched p-boxes

Using the developments of Section 6.4, an augmented PCE model can be calibrated for the

full response parametric p-box Y . In order to apply Eq. (8.2), a particular realization of Y

is computed by setting the distribution parameters Θ to a fixed value θ and by conducting a

Monte Carlo simulation for the (aleatory) variables X (θ), or their transformed counterpart C.

Let us denote the resulting variable Yθ. Then, the response variable Yθ can be obtained by using

the augmented PCE model:

Yθ (θ) =M(P)
(aug) (C,θ) . (8.10)

In this context, the boundaries of a pinched response p-box are computed with a pinched input

vector XX̌i
:

F YX̌i
(y) = min

θ∈DΘ
X̌i

FYθ (y,θ) , F YX̌i
(y) = max

θ∈DΘ
X̌i

FYθ (y,θ) , (8.11)

where the pinched optimization domain DΘX̌i
is equal to the original optimization domain DΘ

with the components θX̌i being constant instead of interval-valued.

Figure 8.4 summarizes the main steps of the algorithm in a flowchart. Following the paths to-

wards the augmented PCE modelM(P)
(aug) corresponds to the procedure presented in Section 6.4.

The pinching algorithm introduces the paths from V X̌i
to AYX̌i

. Similar to the previous section,

the augmented meta-modelM(P)
(aug) is computed only once using the un-pinched input vector V .

This model is reused for every pinched variable X̌i, i = 1, . . . ,M . Hence, the main additions in

terms of computational effort are the optimizations to estimate Y X̌i
and Y X̌i

, which is, in turn,

small compared to the computation of the experimental design of the augmented PCE model.
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Figure 8.4: Pinching of parametric p-boxes – augmented PCE-based computation of AYX̌i
.

VoI with pinched failure probabilities

In the case of Eq. (8.4), the two-level meta-modelling approach presented in Figure 7.4 can be

adjusted to the pinching algorithm. Instead of using the domain DΘ, the domain DΘX̌i
is used

to estimate the bounds of the failure probability by EGO and AK-MCS. After estimating the

bounds P f,X̌i and P f,X̌i , the VoI is computed by Eq. (8.4).
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The limit-state function evaluations in AK-MCS can be recycled for different input vectors

ΘX̌i
, i = 1, . . . ,M . This limits the number of limit-state function evaluations and hence also

the total computational costs in the case of an expensive-to-evaluate G.

The resulting two-level meta-modelling approach is summarized in Figure 8.5. Compared

to Figure 7.4, the variables ΘX̌i
replaces the corresponding Θ and the box for computing the

range of reliability index is added. The core of the two-level meta-modelling approach stays the

same.
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Figure 8.5: Pinching for parametric p-boxes – two-level meta-modelling approach for computa-

tion of ∆βHL

(
YX̌i
)
.

8.3.3 Sobol’ indices

Theory

Consider a probabilistic input vector X, whose components Xi, i = 1, . . . ,M are modelled by

independent random variables. The output scalar of a computational model is then Y =M (X)

as seen in Eq. (3.2). The so-called Sobol’ decomposition represents the computational model by

a series of summands of increasing dimension (Sobol’ 1993):

M(x) =M0 +
M∑

i=1

Mi(xi) +
∑

1≤i<j≤M
Mij(xi, xj) + . . .

+
∑

1≤i1<...<is≤M
Mi1...is (xi1 , . . . , xis) + . . .+M1,2,...,M (x), (8.12)

where M0 is a constant (mean value of the function) and where it is imposed that the integral

of each summand Mi1,...,is (xi1 , . . . , xis) over any of its arguments is zero:

∫

DXk
Mi1...is(xi1 , . . . , xis) fXk (xk) dxk = 0, 1 ≤ i1 < . . . < is ≤M, k ∈ {i1, . . . , is} ,

(8.13)

where x ∈ DX . Then, the mean value of the function can be computed as:

M0 =

∫

DX
M(x) fX (x) dx. (8.14)
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Due to the imposed constraints in Eq. (8.13), the summands are orthogonal to each other so

that (Homma & Saltelli 1996):

∫

DX
Mi1...is(xi1 , . . . , xis)Mj1...jt(xj1,...,jt) fX (x) dx = 0, {i1, . . . , is} 6= {j1, . . . , jt} .

(8.15)

Considering now that the input parameters are modelled by independent random variables,

the total variance of the computational model is defined as:

D = Var [M(X)] =

∫

DX
M2(x) fX (x) dx−M2

0. (8.16)

By using the properties of Eq. (8.15) in Eq. (8.12), one obtains a decomposition of the variance:

D =
M∑

i=1

Di +
∑

1≤i<j≤M
Dij + . . .+D1,2,...,M , (8.17)

where the partial variances are computed as:

Di1,...,is =

∫

DX
M2

i1...is(xi1 , . . . , xis) fX (x) dx

for 1 ≤ i1 < . . . < is ≤M, s = 1, . . . ,M. (8.18)

This equation can be simplified due to the orthogonality property:

Di1,...,is =

∫

DX
M2

i1...is(xi1 , . . . , xis) fxi1 (xi1) . . . fxis (xis) dxi1 . . . dxis

for 1 ≤ i1 < . . . < is ≤M, s = 1, . . . ,M. (8.19)

Making use of this decomposition, the Sobol’ indices are defined as the relative partial

variances:

Si1...is =
Di1...is

D
, (8.20)

and by definition in Eq. (8.17), it holds that:

M∑

i=1

Si +
∑

1≤i<j≤M
Sij + . . .+ S1,2,...,M = 1. (8.21)

The Sobol’ indices measure the amount of the total variance due to the uncertainties in a

set of input parameters. In practice, it is common to measure the first order indices Si, which

measure the influence of each parameter taken separately. Higher order indices account for the

interactive contributions to the total variance. In this sense, the total sensitivity indices S
(T )
i

are defined as:

S
(T )
i =

∑

{i1,...,is}⊃{i}

Di1...is

D
. (8.22)

In other words, S
(T )
i = 1− S−i, where S−i is the sum of all Si1...is that do not include index i.

Note that the sum of all total Sobol’ indices is generally larger than one due to the interactive

terms Di1...is , which are considered multiple times.

M∑

i=1

S
(T )
i ≥ 1, (8.23)
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The equality only holds when there are no interactive terms, i.e. the computational modelM is

a sum of univariate functions Mi (xi), i = 1, . . . ,M . Likewise, the sum of all first order Sobol’

indices generally sums up to less than one due to the interactive terms Di1...is , which are not

accounted for:
M∑

i=1

Si ≤ 1, (8.24)

The equality only holds when there are no interactive terms. Sobol’ indices of higher order can

be computed in the same manner. Often in practice, however, only the first and the total order

Sobol’ indices are of interest.

PCE-based Sobol’ indices

Let us consider now that an appropriate approximation of the computational model M exists

in the form of a truncated PCE, as seen in Eq. (3.8) and recalled here:

Y ≈M(P) (X) =
∑

α∈A
aαψα (X) . (8.25)

Then, a set of multi-indices Ii1,...,is can be defined so that only the indices i1, . . . , is are non-zero,

i.e. :

Iii,...,is =

{
α ∈ A :

αk > 0 for all k ∈ {i1, . . . , is}
αk = 0 for all k 6∈ {i1, . . . , is}

}
. (8.26)

Then, the elements of Eq. (3.8) can be reordered according to the decomposition in Eq. (8.12)

(Sudret 2008):

M(P)(x) = a0 +
N∑

i=1


∑

α∈Ii
aαψα(xi)


+

∑

1≤i1<i2≤M


 ∑

α∈Ii1,i2

aαψα(xi1 , xi2)


+ . . .

+
∑

1≤i1<...<is≤M


 ∑

α∈Ii1,...,is
aαψα(xi1 , . . . , xis)


+ . . .+

∑

α∈I1,2,...,M
aαψα(x1, . . . , xM ). (8.27)

The summands fo Eq. (8.27) can be identified as summands of the Sobol’ decomposition:

Mi1...is(xi1 , . . . , xis) =
∑

α∈Ii1,...,is
aαψα(xi1 , . . . , xis). (8.28)

Due to the property of uniqueness, it can be concluded that Eq. (8.27) is indeed the Sobol’

decomposition of the PCE model.

The corresponding polynomial-chaos-based Sobol’ indices, denoted by S
(P)
i1...is

, are then defined

as:

S
(P)
i1...is

=
1

D(P)

∑

α∈Ii1,...,is
a2
α =

∑

α∈Ii1,...,is
a2
α

/ ∑

α∈A, α 6=0

a2
α , (8.29)

where D(P) is the variance of the response variable Y obtained by the PCE model M(P). The

total PC-based sensitivity indices are then computed analogously to Eq. (8.22):

S
(T )(P)
i =

∑

{i1,...,is}⊃{i}
S

(P)
i1,...,is

. (8.30)

As seen in this section, the computation of the Sobol’ indices for a PCE model boils down

to working with the coefficients of the PC-expansion, which is a simple operation at almost no

additional computational cost.
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8.3.4 Imprecise Sobol’ indices

Idea

In the context of parametric p-boxes, uncertainty propagation is typically conducted in nested

Monte Carlo simulations (nMCS) algorithms where an outer loop samples the parameters θ and

an inner loop samples the conditional probability distribution FX (x|θ). Taking this idea into the

context of sensitivity analysis, the Sobol’ indices can be computed for each realization θ(j) and

the corresponding FX

(
x|θ(j)

)
. Each realization can result in a different set of Sobol’ indices.

Finally, the bounds of the Sobol’ indices can be obtained by analysing the set of realizations.

In order to determine the bounds of the imprecise Sobol’ indices, an optimization problem

can be defined. As an example, the bounds of the total Sobol’ indices are obtained by:

S
(T )
j = min

θ∈DΘ

S
(T )
j (θ) , S

(T )
j = max

θ∈DΘ

S
(T )
j (θ) , (8.31)

where S
(T )
j (θ) is the j-th total Sobol’ index for the conditional input distribution FX (x|θ), and

j = 1, . . . ,M .

Eq. (8.31) requires a repeated evaluation of the Sobol’ indices, which includes a repeated

computation of the variance decomposition in Eq. (8.12). In order to speed up the process, PCE

models can be used:

S
(T )(P)
j = min

θ∈DΘ

S
(T )(P)
j (θ) , S

(T )(P)
j = max

θ∈DΘ

S
(T )(P)
j (θ) , (8.32)

where S
(T )(P)
j is the PCE-based total Sobol’ index equivalent to S

(T )
j . The use of the PCE

models reduces the computational effort of computing Sobol’ indices but does not remove the

repeated computation of the variance decomposition for every θ ∈ DΘ.

Augmented PCE-based indices

When an augmented PCE model is available as in Eq. (6.31) in Section 6.4.2, the imprecise

Sobol’ indices can be obtained by post-processing this augmented PCE model. Recall that:

W ≈M(P) (V ) =
∑

α∈A
aα ψα (V ) , (8.33)

where V = (C,Θ) is a composite of uniform random variables C accounting for the aleatory

uncertainty in the input vector and the vector of distribution parameters Θ accounting for

epistemic uncertainty. Hence, the Sobol’ indices shall be depending on C and conditioned on

Θ. In order to do so, the augmented PCE model is reformulated:

W ≈M(P) (C,Θ) =
∑

α∈A
aα ψαC (C) ψαΘ (Θ) , (8.34)

where α = (αC ,αΘ) forms the same index set as in Eq. (8.33) and ψα (V ) = ψαC (C) ·ψαΘ (Θ)

are the corresponding multivariate orthonormal polynomials. Then, the computational model

can be further rearranged for a given value θ as:

W (θ) ≈ M(P) (C,θ) =
∑

α∈A
(aαψαΘ (θ)) ψαC (C) =

∑

α∈A
aα,θ(θ) ψαC (C) , (8.35)
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where aα,θ(θ) = aαψαΘ (θ) is a new coefficient dependent on the value of θ. Note that several

αΘ may correspond to the same αC in α. Hence, Eq. (8.35) can be rewritten to a model with

proper variance decomposition as in Eq. (8.27):

W (θ) ≈M(P) (C,θ) =
∑

α∗C∈A∗C


 ∑

i=1,...,nA

I{
α

(i)
C =α∗C

}
(
α

(i)
C

)
aα(i) ψ

α
(i)
Θ

(θ)


ψα∗C (C) , (8.36)

where i marks the 1, . . . , nA multi-indices in A, I is the indicator function with I = 1 for α
(i)
C =

α∗C and I = 0 otherwise. A∗C is the set of unique multi-indices αC in A and α(i) =
(
α

(i)
C ,α

(i)
Θ

)
.

Rearranging the terms to obtain the same structure as in Eq. (8.27) leads to the following

coefficients depending on θ:

aα∗C (θ) =
∑

i=1,...,nA

I{
α

(i)
C =α∗C

}
(
α

(i)
C

)
aα(i) ψ

α
(i)
Θ

(θ) . (8.37)

The simplified decomposition then reads:

Wθ ≈M(P) (C,Θ = θ) =
∑

α∗C∈A∗C

aα∗C (Θ = θ) ψα∗C (C) . (8.38)

Finally, in order to obtain the extreme values of the Sobol’ indices, the optimizations in

Eq. (8.31) use the reformulated model in Eq. (8.38). Then, the bounds of imprecise Sobol’

indices can be computed by:

S
(P)
i1...is

= min
θ∈DΘ

Di1...is(θ)

D(θ)
= min
θ∈DΘ

∑

α∗C∈Ii1...is

a2
α∗C

(θ)

/ ∑

α∗C∈A∗C , α∗C 6=0

a2
α∗C

(θ) , (8.39)

S
(P)
i1...is = max

θ∈DΘ

Di1...is(θ)

D(θ)
= max
θ∈DΘ

∑

α∗C∈Ii1...is

a2
α∗C

(θ)

/ ∑

α∗C∈A∗C , α∗C 6=0

a2
α∗C

(θ) , (8.40)

Using the augmented PCE, the extreme values are obtained by optimizing the PCE coefficients

aα∗C (θ) in θ ∈ DΘ without recomputing the meta-model.

8.4 Numerical examples

The derived concepts are discussed on three application examples. The toy function exam-

ple examines the machinery of the imprecise Sobol’ indices in the case of parametric p-boxes.

The second example discusses the two-degree-of-freedom oscillator in the context of a pinching

analysis. Last but not least, the third example consists of the two-dimensional truss structure

presented in previous chapters. A full analysis, including parametric p-boxes and imprecise

Sobol’ indices as well as pinching analyses, is discussed for this example.

8.4.1 Toy function

Problem statement

A simple two-dimensional function is considered here to visualize the algorithm for computing

the imprecise Sobol’ indices presented in Section 8.3.3. The analytical function is defined as:

f8(x) = x1 · x2, (8.41)

where x1 and x2 are modelled by parametric p-boxes. The input variables are modelled by

Gaussian distributions with interval-valued mean value and standard deviation. In particular,

µi ∈ [−1, 1] and σi ∈ [0.5, 1.0].
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Imprecise Sobol’ indices

Each input parameter may be cast as xi = µi+σi ·ζi where ζi will be a standard normal variable.

Then, the augmented computational model can be written as:

f
(aug)
8 (µ,σ, ζ) = (µ1 + σ1 · ζ1) · (µ2 + σ2 · ζ2)

= (µ1 · µ2) + (µ2 · σ1) · ζ1 + (µ1 · σ2) · ζ2 + (σ1 · σ2) · ζ1 · ζ2. (8.42)

The variance of the response variable conditional on the values of µ and σ then reads:

D (µ,σ) ≡ Var [f8|µ,σ] = (µ2σ1)2 + (µ1σ2)2 + (σ1σ2)2 . (8.43)

Hence, the first order Sobol’ indices can be computed as a function of θ = (µ,σ):

S1 (θ) =
(µ2σ1)2

(µ2σ1)2 + (µ1σ2)2 + (σ1σ2)2 , S2 (θ) =
(µ1σ2)2

(µ2σ1)2 + (µ1σ2)2 + (σ1σ2)2 , (8.44)

The analytical derivation of the extreme Sobol’ indices results in the following bounds for

the first order Sobol’ indices:

S1 = S2 = 0.0, S1 = S2 = 0.8. (8.45)

As an example, the minimal first order Sobol’ index for X1 is obtained by setting µ2 = 0.

Similarly to the first order indices, the total order Sobol’ indices can be written as:

S
(T )
1 (θ) =

(µ2σ1)2 + (σ1σ2)2

(µ2σ1)2 + (µ1σ2)2 + (σ1σ2)2 , S
(T )
2 (θ) =

(µ1σ2)2 + (σ1σ2)2

(µ2σ1)2 + (µ1σ2)2 + (σ1σ2)2 , (8.46)

The bounds of the total order Sobol’ indices read:

S
(T )
1 = S

(T )
2 = 0.2, S

(T )
1 = S

(T )
2 = 1.0. (8.47)

As an example, the minimal total order Sobol’ index for X1 is obtained by µ1 ± 1, σ1 = 0.5,

µ2 = 0, and σ2 = 1. Due to the symmetry of the problem definition, i.e. computational model

f
(aug)
8 and input p-boxes Xi, the extreme Sobol’ indices are equivalent for X1 and X2. Note that

in this example, the first and total order Sobol’ indices are not identical due to the interactive

term (σ1 · σ2) · ζ1 · ζ2 in Eq. (8.42).

Augmented PCE-based Sobol’ indices

Implemented in UQLab (Marelli & Sudret 2015), the augmented PCE of f
(aug)
8 and the para-

metric p-boxes results in the following set of multi-indices A:

A =




α(1)

...

α(10)


 =




0 0 0 0 0 0

0 0 1 0 0 1

0 0 1 1 0 0

1 0 0 0 0 1

1 0 0 1 0 0

0 0 1 0 1 1

0 1 1 0 0 1

0 1 1 1 0 0

1 0 0 0 1 1

0 1 1 0 1 1




, (8.48)
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which contains ten vectors α and where the indices in each row correspond to the vector

(µ1, σ1, ζ1, µ2, σ2, ζ2). Splitting the multi-index set A to the contributions of the epistemic

(µ1, σ1, µ2, σ2) and aleatory (ζ1, ζ2) variables leads to:

AΘ =




0 0 0 0

0 0 0 0

0 0 1 0

1 0 0 0

1 0 1 0

0 0 0 1

0 1 0 0

0 1 1 0

1 0 0 1

0 1 0 1




, AC =




0 0

1 1

1 0

0 1

0 0

1 1

1 1

1 0

0 1

1 1




. (8.49)

Note that according to Eq. (8.42), only four elements should be part of A. However, due to the

normalization to a standard space (uniform distributions to [−1, 1] and Gaussian to standard

normal space), an additional six elements are present.

A∗C summarizes the set of unique row vectors αC in AC and contains the following four

elements:

A∗C =




α
∗(1)
C

α
∗(2)
C

α
∗(3)
C

α
∗(4)
C




=




0 0

1 1

1 0

0 1


 . (8.50)

The final coefficients are composed as follows:

a
α
∗(1)
C

= aα(1)ψ
α

(1)
Θ

(θ) + aα(5)ψ
α

(5)
Θ

(θ), (8.51)

a
α
∗(2)
C

= aα(2)ψ
α

(2)
Θ

(θ) + aα(6)ψ
α

(6)
Θ

(θ) + aα(7)ψ
α

(7)
Θ

(θ) + aα(10)ψ
α

(10)
Θ

(θ), (8.52)

a
α
∗(3)
C

= aα(3)ψ
α

(3)
Θ

(θ) + aα(8)ψ
α

(8)
Θ

(θ), (8.53)

a
α
∗(4)
C

= aα(4)ψ
α

(4)
Θ

(θ) + aα(9)ψ
α

(9)
Θ

(θ), (8.54)

where Eqs. (8.51) and (8.52) can be simplified to:

a
α
∗(1)
C

= aα(1) + aα(5)ψ
α

(5)
Θ

(θ), (8.55)

a
α
∗(2)
C

= aα(2) + aα(6)ψ
α

(6)
Θ

(θ) + aα(7)ψ
α

(7)
Θ

(θ) + aα(10)ψ
α

(10)
Θ

(θ). (8.56)

The variance decomposition of the PCE model then reads (see also Eq. (8.38)):

M(P) (C,Θ) =
∑

i=1,...,4

a
α
∗(i)
C

(Θ) ψ
α

(i)
C

(C) , (8.57)

where C = (ζ1, ζ2). By optimization on θ, the Sobol’ indices of Eqs. (8.45) and (8.47) are

obtained.

Visualization of the results

The resulting imprecise Sobol’ indices are illustrated in Figure 8.6. In particular, the first order

indices are shown in Figure 8.6(a), whereas the total order indices are shown in Figure 8.6(b).
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Each sensitivity index is visualized by two overlapping bars. The solid bar represent the lower

bound of the Sobol’ index, whereas the transparent bar represent the maximum bound of the

same Sobol’ index. Hence, the imprecision in the sensitivity measure is shown by the difference

of these two bars.
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Figure 8.6: Toy function – imprecise Sobol’ indices.

The results nicely visualize the symmetry of the model f8 and the p-boxes describing X1

and X2. Further, the influence of the interactive terms (see α
∗(2)
C ) can be seen when comparing

the first order to the total order indices, i.e. Figures 8.6(a) to 8.6(b).

8.4.2 Single-degree-of-freedom oscillator

Problem statement

Consider again the SDOF oscillator described in Section 7.6.2. The limit-state function is defined

in Eq. (7.15) and recalled here:

gSDOF (r, F1, t1, c1, c2,m) = 3r −
∣∣∣∣

2F1

mω2
0

sin

(
ω0T1

2

)∣∣∣∣ , (8.58)

where the six input parameters are modelled statistically independent. The two cases of (i)

free and (ii) parametric p-boxes are considered here (see also Table 7.3). Note that only the

first three variables are p-boxes whereas the remaining three variables are purely probabilistic

variables.

Analysis

The pinching algorithms are used in this example to measure the influence of the epistemic

uncertainty in each input variable onto the response p-box and the failure probability. Both VoI

of Eqs. (8.2) and (8.4) are estimated as sensitivity measures. Note that for Eq. (8.4), failure is

defined as gSDOF ≤ 0. As the algorithms presented in Section 8.2 and 8.3.1 are extensions of the

previously discussed meta-modelling algorithms, their accuracy and efficiency is not discussed

extensively in this section.

For the case of free p-boxes, the reference solutions are obtained by brute force Monte Carlo

simulation with a large sample size nMCS = 107. For the case of parametric p-boxes, the reference

solution is obtained by (i) a brute force Monte Carlo simulation with nMCS = 107 and (ii) a

standard genetic algorithm for the optimal value of θ.
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Free p-boxes

For free p-boxes, Eq. (8.2) is estimated by using PCE models with an experimental design of

N = 200 LHS samples. Moreover, the maximal polynomial degree is set of p = 15 and a

hyperbolic truncation set with q = 0.75 is used as the candidate basis. For estimating Eq. (8.4),

all AK-MCS algorithms are initiated with an initial experimental design ofN0 = 12 LHS samples.

The first-level algorithm resulted in a total number of computational model runs of N (1) = 180.

Hence, in terms of number of model runs, the analyses are comparable.

The resulting pinched p-boxes are shown in Figure 8.7. The dashed lines represent the

unpinched response p-boxes, whereas the solid lines represent the pinched response p-boxes.

Moreover, the orange curves mark the meta-model-based results whereas the black lines mark the

reference results. The meta-model-based results approximate the reference solution accurately,

as seen from the overlapping lines.
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Figure 8.7: SDOF oscillator – pinched response free p-boxes.

The same figure can be used to infer the sensitivity to the epistemic uncertainty in this

problem. Qualitatively, the epistemic uncertainty of variable F1 has the largest impact on the

imprecision in the response p-box since there is a great difference between the ”pinched” and

”unpinched” curves. The two variables {r, t1} have a minor impact on the width of the response

p-box. Note that the three probabilistic variables {c1, c2, m} are not shown here, because they

are not affected by epistemic uncertainty, hence the width of the response p-box is independent

of them.
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The numerical values for the VoI of Eqs. (8.2) and (8.4) are summarized in Table 8.1. The

meta-model-based results approximate well the reference values. Furthermore, the results con-

firm the impression gained in Figure 8.7: variable F1 has the largest impact on the imprecision

of the response p-box.

Table 8.1: SDOF oscillator – VoI of pinched free p-boxes.

Eq. (8.2) Eq. (8.4)

X̌i FX̌i VoIref V̂oI Ranking VoIref V̂oI Ranking

r FN (r|0.5, 0.05) 0.140 0.146 #2 0.095 0.099 #3

F1 FN (F1|0.0, 0.5) 0.784 0.771 #1 0.724 0.735 #1

t1 FN (t1|1.00, 0.2) 0.079 0.086 #3 0.171 0.182 #2

The variables are ranked according to their VoI for both criteria. For both criteria, F1 leads

to the largest value of VoI. However, the variables r and t1 lead to different rankings. r is more

influential for the imprecision in the response p-box (i.e. Eq. (8.2)), whereas t1 is more influential

for the imprecision in the failure probability (i.e. Eq. (8.4)). This phenomenon originates from

the definition of the two VoIs: Eq. (8.2) compares the volume of the p-box, whereas Eq. (8.4)

compares the tail of the distributions.

Parametric p-boxes

For parametric p-boxes, the same meta-model specifications are used to obtain comparable

results to the case of free p-boxes. In the augmented PCE model, the number of phantom

points is set to nph = 10 to ensure an accurate meta-model. For estimating Eq. (8.4) and the

corresponding conditional failure probabilities by AK-MCS, the total number of evaluations of

the limit-state function is N (1) = 223, which is comparable to the N (1) = 200 in the augmented

PCE model.

Figure 8.8 shows the boundaries of the response p-boxes. The figure design is the same as in

Figure 8.7. In this case, the largest reduction of the width of the response p-box is obtained by

pinching variable r. Variables F1 and t1 have a smaller but non-negligible effect on the width

of the response p-box.

The quantitative values of the VoI are summarized in Table 8.2. The values confirm the

impression gained from Figure 8.8. The VoI is approximated well by using the meta-model-

based approaches. All three variables r, F1, and t1 have a non-negligible influence onto the

imprecision in the response p-box. However, the relative ranking of their importance depends

on the definition of the VoI.

Table 8.2: SDOF oscillator – VoI of pinched parametric p-boxes.

Eq. (8.2) Eq. (8.4)

X̌i FX̌i VoIref V̂oI Ranking VoIref V̂oI Ranking

r FN (r|0.5, 0.05) 0.483 0.494 #1 0.237 0.255 #3

F1 FN (F1|0.0, 0.5) 0.252 0.254 #2 0.343 0.319 #2

t1 FN (t1|1.00, 0.2) 0.275 0.257 #2 0.392 0.421 #1
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Figure 8.8: SDOF oscillator – pinched response parametric p-boxes.

Comparison

The width of the pinched response p-boxes are obtained with a comparable number of runs of

the limit-state function, i.e. N (1) ≈ 200. Hence, the meta-model-based algorithms provide an

efficient tool to estimate the pinched response p-boxes. For both types of p-boxes, the boundary

curves of the response p-boxes are estimated accurately.

In terms of pinching and the corresponding VoI, the results differ for the two types of p-boxes.

The relative importance of the variables changes when comparing Table 8.1 to Table 8.2. In

other words, the definition of the input p-boxes affects the results of the sensitivity analysis. The

reason for this behaviour is the definition of the limit-state function, which is a non-monotone

and non-smooth function (see also Eq. (8.58)). The non-monotonicity can also be seen by the

different shapes of the response p-boxes in Figures 8.7 and 8.8. The case of free p-boxes leads

to much wider response p-boxes than the case of parametric p-boxes. Hence, the resulting

sensitivities are likely to be different too.

8.4.3 Simply supported truss structure

Problem statement

Consider again the simply supported truss structure presented in Section 7.6.3. The midspan

deflection is computed as a function of the seven loads, which are described here by parametric
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p-boxes. In order to estimate the influence of the loads onto the deflection u4, imprecise Sobol’

indices and pinching-based VoI are computed.

Imprecise Sobol’ indices

Reference results The finite element model corresponds to a monotone function of the load

parameters. Hence, the extreme cases of the first order Sobol’ indices can be obtained by setting

one variable to {µPi = 105 kN, σPi = 17 kN} and all other ones to {µPi = 95 kN, σPi = 13 kN}
or vice versa. The resulting extreme Sobol’ indices are summarized in Table 8.3. The indices are

obtained by PCE and a large experimental design. As expected, the values group symmetrically

around P4. As an example, P1 and P7 have the same values. Note that the largest imprecision

(i.e. largest ∆S
(P)
i = S

(P)
i − S

(P)
i ) is found where the largest upper bound Sobol’ indices is

found, i.e. P4.

Table 8.3: Simply supported truss structure – imprecise Sobol’ indices (first order) – reference

results.

Variable S
(P)
i S

(P)
i ∆S

(P)
i

P1 0.0193 0.0550 0.0357

P2 0.0703 0.1808 0.1105

P3 0.1353 0.3133 0.1780

P4 0.1895 0.4060 0.2165

P5 0.1349 0.3124 0.1775

P6 0.0702 0.1809 0.1107

P7 0.0194 0.0550 0.0356

Augmented PCE analysis In order to estimate the imprecise Sobol’ indices, an augmented

PCE model is computed based on an experimental design of N = 100 LHS samples and the

corresponding response values of the computational model. The original computational model

requires a seven-dimensional input vector describing the loading forces. Due to the definition of

the parametric p-boxes by interval-valued mean value and standard deviation, the augmented

PCE model requires a 21-dimensional input vector. Phantom points are used to construct the

meta-model in order to cope with the increased dimensionality of the augmented input space.

The number of phantom points nph is varied to examine the influence of these points onto the

accuracy of the Sobol’ indices.

Influence of phantom points The imprecise Sobol’ indices are visualized in Figure 8.9 as a

function of nph. The estimated values (plotted with orange bars) are compared to the reference

solution (black bars). As nph increases, the extreme values of the Sobol’ indices converge to

the true values without adding additional FEM runs. In this example, nph = 5 is sufficient to

obtain reliable results. This impression is confirmed by the relative generalization error which

is provided in the caption of the figure. In the case of nph = 2 and a relative generalization

error of êrrgen = 4.9 · 10−3, the imprecise PCE-based analysis provides usable estimates of the

imprecise Sobol’ indices.

Table 8.4 summarizes the first order Sobol’ indices obtained by the augmented PCE model

withN = 100 samples and nph = 20 phantom points. The meta-model-based results are identical

to the reference values given in Table 8.3. This confirms the impression gained in the graphical

illustration in Figure 8.9(f).
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(c) nph = 3 (êrrgen = 8.4 · 10−4)
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(e) nph = 10 (êrrgen = 3.5 · 10−6)
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Figure 8.9: Simply supported truss structure – imprecise Sobol’ indices (first order) – augmented-

PCE estimates (orange bars) versus the reference values (black bars).
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Table 8.4: Simply supported truss structure – imprecise Sobol’ indices (first order) – augmented

PCE results (N = 100, nph = 20).

Variable S
(P)
i S

(P)
i

P1 0.0195 0.0550

P2 0.0702 0.1809

P3 0.1344 0.3124

P4 0.1895 0.4060

P5 0.1344 0.3123

P6 0.0702 0.1809

P7 0.0196 0.0550

Pinching analysis

Augmented PCE analysis The augmented PCE model calibrated for the imprecise Sobol’

indices analysis is used in the pinching analysis. In order to ensure an accurate approximation

of the augmented computational model M(aug), nph = 20 is used in the following presentation

of results.

Results summary Reusing the same augmented PCE model allows for an efficient estimation

of the pinched response p-boxes and the corresponding AYX̌i
. The results are summarized in

Table 8.5, which shows the VoI of Eq. (8.2) alongside a ranking of the variables. The ranking

sorts the variables in ascending order from large to small VoI. As expected, the closer a load

to the symmetry axis of the truss structure (i.e. closer to u4), the larger its influence on the

epistemic uncertainty in u4 and hence the larger the VoI.

Table 8.5: Simply supported truss structure – pinching of parametric p-boxes – augmented PCE

results (N = 100, nph = 20) – VoI according to Eq. (8.2).

P̌i ÂYX̌i
V̂oI VoI Ranking

P1 2.65 · 10−3 0.068 ≈ 7 % 0.069 #4

P2 2.46 · 10−3 0.133 ≈ 13 % 0.134 #3

P3 2.31 · 10−3 0.187 ≈ 19 % 0.188 #2

P4 2.21 · 10−3 0.223 ≈ 22 % 0.224 #1

P5 2.31 · 10−3 0.187 ≈ 19 % 0.188 #2

P6 2.46 · 10−3 0.133 ≈ 13 % 0.134 #3

P7 2.65 · 10−3 0.068 ≈ 7 % 0.069 #4

none 2.84 · 10−3 0.000 0.000 -

Graphical comparison Figure 8.10 illustrates the response p-boxes when (i) the original

input p-boxes is used, (ii) when P4 is pinched and the other variables are parametric p-boxes.

In particular, the reference results (black lines) are compared to the augmented PCE-based

results (orange lines). The boundary curves of the original and pinched response p-boxes are

overlapping, indicating a remarkably accurate pinching analysis. Despite the small experimental

design of N = 100 LHS samples, the response p-box as well as the VoI are estimated accurately.
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Figure 8.10: Simply supported truss structure – response p-boxes – original versus pinched p-

boxes (X̌i = P4) – reference solution versus augmented PCE-based solution (N = 100, nph = 20).

Comparison to imprecise Sobol’ indices Comparing Table 8.3 and Table 8.5, the imprecise

Sobol’ indices analysis and the pinching algorithm result in comparable results. The influential

imprecision can be found in the midspan loading variable P4. Moreover, the symmetry of

the problem setting is confirmed by both analysis methods. As the augmented PCE methods

coincide with the reference solution, the meta-modelling approach is capable of estimating the

imprecise sensitivity measures accurately.

8.5 Discussion

In the context of p-boxes, a set of algorithms is proposed to compute the VoI in pinching analyses

efficiently. The low computational costs are achieved by an extensive use of meta-models. The

types and number of meta-models is summarized in Table 8.6. In all but one scenario, two

levels of meta-models are used. Moreover, the ISA algorithms are closely related to previously

discussed algorithms in the context of IUP and ISRA. The details of those algorithms are

presented in the corresponding chapters of this thesis. Hence, the ISA algorithms presented

here can be interpreted as an extension of the previously developed algorithms.

Table 8.6: ISA - pinching – comparison of free and parametric p-box approaches.

Free p-box Parametric p-box

P-box FX , FX FX (x|θ) , θ ∈ DΘ

VoI of Eq. (8.2) 2 × PCE Augmented PCE

Algorithm based on Section 6.2 Section 6.4

VoI of Eq. (8.4) 2 × AK-MCS AK-MCS + EGO

Algorithm based on Section 7.3 Section 7.4

As a special case for parametric p-boxes, imprecise Sobol’ indices are introduced as a second

measure for sensitivity. This additional sensitivity measure compares the epistemic and aleatory

uncertainty in a natural way. Furthermore, based on the augmented PCE model developed

in Section 7.3, the VoI defined in Eq. (8.2) can be estimated efficiently. In fact, the same
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meta-model can be used as in the IUP analysis.

The proposed SA estimate the influence of aleatory and epistemic uncertainty in the input

variables onto the output variable. However, considering that it is common practice to work

solely with probabilistic input variables, the introduction of (interval-valued) epistemic uncer-

tainty in the input variables and the consequent imprecise response variable can be interpreted

as a sensitivity measure for probabilistic analyses. In particular, p-boxes (free and parametric)

lead to bounds on the QoI. Then, the amount of imprecision in the QoI can be interpreted

as a measure for the reliability of the analysis. In other words, when the QoI represent small

imprecision compared to a given criterion, the results are insensitive to potential inaccuracies in

the definition of the probabilistic variables.



CHAPTER 9

NASA uncertainty quantification

challenge

The NASA uncertainy quantification challenge is a comprehensive challenge

set for imprecise probabilities in aeronautical engineering. In this chapter,

different aspects of the cheallenge set are solved with the frameowrk presented

in this thesis and the results are discussed. In comparison to the application

examples in the previous chapters, reference solutions are not available for

this case study. Hence, it is important that the analyses lead to accurate and

reliable results.

9.1 Context

The NASA Langley Multidisciplinary Uncertainty Quantification Challenge is a comprehensive

challenge set for imprecise probabilities in aeronautical engineering proposed by Crespo, Kenny,

& Giesy (2013). The details and software pieces can be found on the corresponding NASA

website: https://uqtools.larc.nasa.gov/nda-uq-challenge-problem-2014/. The challenge set deals

with key aspects of uncertainty quantification, namely uncertainty characterization, sensitivity

analysis, uncertainty propagation, extreme-case analysis, and robust design. The various tasks

include:

• Model updating: improvement of an initial uncertainty model by experimental data.

• Sensitivity analysis: determination of the key input variables and potential exclusion of

unimportant variables with respect to different statistics of interest.

• Investment strategy: decisions are to be made as to which uncertainty models should

be improved under constraint resources in order to reduce the uncertainty in the system

efficiently.

• Uncertainty propagation: comparison of different input models and the effect on statistics

of interest.

153
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• Structural identification and structural reliability analysis: identification of the uncertainty

models that yield to extreme response quantities.

• Robust design: determination of the best design point under epistemic (as well as aleatory)

uncertainty.

9.2 Problem statement

9.2.1 Introduction

The computational model describes the dynamic of a generic transport model, i.e. a remotely

operated twin-jet aircraft developed by NASA Langley Research Center. A typical test campaign

consists of manually piloting the aircraft to save flying conditions controlled from the ground

via radio frequency links. Of particular interest is the aircraft’s behaviour when flying outside

of the normal flying envelope. A set of requirements describes then the vehicles stability and

performance characteristics in regard to pilot command tracking and handling qualities.

9.2.2 Computational model

The challenge set is based on a set of encrypted Matlab functions. Hence, the computational

model is a true black box. The limit-state function is defined as:

gNASA = f (x,d) , (9.1)

where gNASA = (g1, . . . , g8)T is the performance vector, d = (d1, . . . , d14)T is a vector of design

parameters, and x = (x1, . . . , x5)T is a vector of intermediate variables. Note that the safety

domain is defined as maxi [gi] < 0 and the failure domain is defined as maxi [gi] ≥ 0. The

intermediate variables are the result of five fixed discipline analyses and are defined as:

x = h (p) , (9.2)

where p = (p1, . . . , p21)T is a vector of uncertain parameters in R21. Due to the fixed discipline

analyses, the following relationships between pi and xj are known:

x1 = h1 (p1, p2, p3, p4, p5) , (9.3)

x2 = h2 (p6, p7, p8, p9, p10) , (9.4)

x3 = h3 (p11, p12, p13, p14, p15) , (9.5)

x4 = h4 (p16, p17, p18, p19, p20) , (9.6)

x5 = h5 (p21) . (9.7)

Based on the limit-state function, two additional performance measures are defined:

J1 = E [w (p,dbaseline)] , (9.8)

J2 = 1− P (w (p,dbaseline) < 0) , (9.9)

where E [·] denotes the expectation value with respect to probabilistic uncertainty and w descri-

bes the worst-case requirement metric:

w (p,d) = max
i=1,...,8

gi = max
i=1,...,8

fi (h (p) ,d) . (9.10)
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Figure 9.1 summarizes the computational models and the corresponding input and output

quantities in a flowchart. The two white boxes mark the input parameters, whereas the grey

boxes mark the computational models/limit-state functions. Note that the design parameters

have fixed deterministic baseline values which are used throughout the following analyses.

21 uncer-
tain input

parameters pi

14 design
parameters

x = h (p) gNASA = f (x,d) J1, J2
p ∈ R21

x ∈ R5 g ∈ R8

d ∈ R14

Figure 9.1: NASA challenge set – input/output variables and the connection of the computati-

onal models.

9.2.3 Input modelling

Each of the input variables pi, i = 1, . . . , 21 is modelled as either (i) a probability distribution

(purely aleatory uncertainty, type I), (ii) an interval (purely epistemic uncertainty, type II), or

(iii) a parametric p-box (type III).

The detailed description of the 21 input variables is listed in Table 9.1. Considering the

three types of variables, the input vector p can be decomposed into 17 aleatory and 31 epistemic

variables, which are denoted by ai and ei, respectively. The aleatory uncertainty is described

by uniform, Gaussian and beta distributions. Note that the PDF of the beta distribution is

parametrized by fB(x) ∝ (x − a)r−1(b − x)s−1, where x ∈ [a, b] describes the support of this

distribution and r and s are the shape parameters.

9.3 Uncertainty characterization

9.3.1 Tasks

Consider the computational model defined in Eq. (9.3). The following challenge tasks read:

(i) Provided are 25 observations of x1 obtained through the true uncertainty model, where

the input variables have no epistemic uncertainty. Use this information to improve the

uncertainty model of the category II and III parameters. In other words, reduce the

interval widths of e1, . . . , e8 where applicable.

(ii) Use an additional 25 observations to validate the models found in (i).

(iii) Improve the uncertainty model further by using all 50 samples.

9.3.2 Solution algorithm

As the input distributions consist of parametric p-boxes, a non-parametric statistic method

based on the Kolmogorov-Smirnov (KS) test is used to improve the uncertainty model (see also

Section 2.4.2). The workflow consists of the following main steps:
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Table 9.1: NASA challenge set – input definition.

pi Type Aleatory variable Epistemic variable

p1 III a1 ∼ B(0, 1) Beta e1 ∈ [3/5, 4/5] Mean value E [p1]

e2 ∈ [1/50, 1/25] Variance Var [p1]

p2 II e3 ∈ [0, 1] Interval

p3 I a2 ∼ U(0, 1) Uniform

p4 III a3 ∼ N Gaussian e4 ∈ [−5, 5] Mean value E [p4]

e5 ∈ [1/400, 4] Variance Var [p4]

p5 III a4 ∼ N Gaussian e6 ∈ [−5, 5] Mean value E [p5]

e7 ∈ [1/400, 4] Variance Var [p5]

p4, p5 e8 ∈ [−1, 1] Correlation ρ(p4, p5)

p6 II e9 ∈ [0, 1] Interval

p7 III a5 ∼ B(0, 1) Beta e10 ∈ [0.982, 3.537] Distr. parameter r7

e11 ∈ [0.619, 1.080] Distr. parameter s7

p8 III a6 ∼ B(0, 1) Beta e12 ∈ [7.450, 14.093] Distr. parameter r8

e13 ∈ [4.285, 7.864] Distr. parameter s8

p9 I a7 ∼ U(0, 1) Uniform

p10 III a8 ∼ B(0, 1) Beta e14 ∈ [1.520, 4.513] Distr. parameter r10

e15 ∈ [1.536, 4.750] Distr. parameter s10

p11 I a9 ∼ U(0, 1) Uniform

p12 II e16 ∈ [0, 1] Interval

p13 III a10 ∼ B(0, 1) Beta e17 ∈ [0.412, 0.737] Distr. parameter r13

e18 ∈ [1.000, 2.068] Distr. parameter s13

p14 III a11 ∼ B(0, 1) Beta e19 ∈ [0.931, 2.169] Distr. parameter r14

e20 ∈ [1.000, 2.407] Distr. parameter s14

p15 III a12 ∼ B(0, 1) Beta e21 ∈ [5.435, 7.095] Distr. parameter r15

e22 ∈ [5.287, 6.945] Distr. parameter s15

p16 II e23 ∈ [0, 1] Interval

p17 III a13 ∼ B(0, 1) Beta e24 ∈ [1.060, 1.662] Distr. parameter r17

e25 ∈ [1.000, 1.488] Distr. parameter s17

p18 III a14 ∼ B(0, 1) Beta e26 ∈ [1.000, 4.266] Distr. parameter r18

e27 ∈ [0.553, 1.000] Distr. parameter s18

p19 I a15 ∼ U(0, 1) Uniform

p20 III a16 ∼ B(0, 1) Beta e28 ∈ [7.530, 13.492] Distr. parameter r20

e29 ∈ [4.711, 8.148] Distr. parameter s20

p21 III a17 ∼ B(0, 1) Beta e30 ∈ [0.421, 1.000] Distr. parameter r21

e31 ∈ [7.772, 29.621] Distr. parameter s21



9.3. UNCERTAINTY CHARACTERIZATION 157

1. Repeat for i = 1, . . . , k, where k is sufficiently large:

(a) Generate a realization of the epistemic variables e.

(b) Propagate the resulting probability distributions through the computational model

h and store the resulting probability distribution.

(c) Determine the maximal (vertical) distance between the empirical CDF of the dataset

at hand and the response probability distribution in a variable-CDF plot.

(d) The threshold value for the distance is looked up in tables such as in Massey (1951), of

which the values used here are listed in Table 9.2. If the maximum distance exceeds

Dα,n (corresponding to a significance level α), reject this realization e, otherwise

accept it as a feasible vector of distribution parameters for generating the dataset.

2. Plot the rejected versus accepted vectors e in a parallel plot in order to discover patterns.

In order to obtain robust results, repeat the same analysis with different confidence levels in the

KS-test.

Table 9.2: Kolmogorov-Smirnov test – maximal distances Dα,n for a level of significance α and

a sample size of n (literature values by Massey (1951)).

Literature values Matlab

α n = 25 n = 50 n = 25 n = 50

0.01 0.32 0.23 0.3166 0.2260

0.05 0.27 0.19 0.2641 0.1884

0.10 0.24 0.17 0.2377 0.1696

0.20 0.21 0.15 0.2080 0.1484

9.3.3 Results

Figure 9.2 displays the parallel plots for the first, second, and combined datasets (for k = 1000

samples of e). On the vertical axis, a relative value of the epistemic variables are displayed,

i.e. 0 marks the lower boundary value and 1 marks the upper boundary value of the epistemic

intervals. The red curves show the accepted parameter vectors e whereas the grey curves mark

the rejected parameter vectors e. As expected, the number of accepted parameter combinations

reduces when the significance level is increased. For α ≥ 0.1, there is a significant reduction

visible for two epistemic variables, namely e1 and e6, which correspond to E [p1] and E [p5],

respectively. For the other epistemic variables, there is no large reduction visible.

Figure 9.3 shows the response p-box of the accepted CDF curves in comparison with the

original response p-box. Again, the red area denotes the box of accepted CDF curves, whereas

the grey area denoted the box of rejected CDF curves. Additionally, the empirical CDF of the

corresponding dataset is shown by the solid black line. The accepted CDF curves envelope the

empirical CDF in all cases well. Furthermore, the larger α, the narrower the band of accepted

CDFs, which resembles the behaviour in Figure 9.2.

In order to improve the intervals of the epistemic variables e1, . . . , e8, new boundary values

are chosen as the minimum and maximum values of the accepted parameter values in Figure 9.2.

Using the results of α = 0.10 and engineering judgement, the improved input model is shown

in Table 9.3. Note that the solution to (i) can be found in the column n = 25, whereas the

solution to (iii) can be found in the column n = 50. For the two epistemic uncertainties E [p1]
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(a) First dataset (α = 0.01)
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(b) Second dataset (α = 0.01)
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(c) Both datasets (α = 0.01)
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(d) First dataset (α = 0.05)
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(e) Second dataset (α = 0.05)
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(f) Both datasets (α = 0.05)
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(g) First dataset (α = 0.10)
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(h) Second dataset (α = 0.10)
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(i) Both datasets (α = 0.10)
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(j) First dataset (α = 0.20)
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(k) Second dataset (α = 0.20)
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(l) Both datasets (α = 0.20)

Figure 9.2: NASA challenge set – uncertainty characterization – parallel plots.

and E [p5], a reduction in the interval width is proposed based on the case of n = 50 data points.

The reduced values are used in the subsequent analysis where applicable.

Table 9.3: NASA challenge set – uncertainty characterization – reduced input intervals (α = 0.1).

ei Description Initial range n = 25 n = 50

e1 E [p1] [0.6, 0.8] [0.6, 0.75] [0.62, 0.76]

e6 E [p5] [−5, 5] [−5, 5] [−5, 1.5]
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(b) Second dataset (α = 0.01)
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(c) Both datasets (α = 0.01)
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(d) First dataset (α = 0.05)
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(e) Second dataset (α = 0.05)
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(f) Both datasets (α = 0.05)
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(g) First dataset (α = 0.10)
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(h) Second dataset (α = 0.10)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

F
X

1

 

 

Accepted parameters
Rejected parameters
Empirical CDF dataset

(i) Both datasets (α = 0.10)
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(j) First dataset (α = 0.20)
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(k) Second dataset (α = 0.20)
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Figure 9.3: NASA challenge set – uncertainty characterization – response p-boxes compared to

empirical CDF.

9.4 Sensitivity analysis

9.4.1 Tasks

For sensitivity analysis, consider the input vector p ∈ R21 and the computational model defined

in Eq. (9.2). Further, the results of Section 9.3 should be considered as a stating point for the

following tasks:

(v) Rank the four imprecise variables in x1 = h1(p1, p2, p3, p4, p5) according to the degree of
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refinement in the p-box of x1 which one could hope to obtain by refining the uncertainty

models. Is it possible to set any parameters constant without introducing a significant

error? If so, evaluate and bound the error. Do the same for x2, x3, and x4 and the

corresponding variables pi.

(vi) Rank the 17 imprecise variables according to the reduction in the range of J1 in Eq. (9.8).

Are there any parameters that can take a constant value without introducing a significant

error?

(vii) Do the same as in (vi) for J2 in Eq. (9.9).

(viii) Compare the rankings.

9.4.2 Solution algorithm

The tasks in this section are solved by using the pinching method (see also Section 8.3.1). For

subtask (v), the VoI defined in Eq. (8.2) is used. The epistemic variables ei are pinched one-by-

one at their central value of the interval and the area of the response p-box Aěi is measured. For

subtask (vi), a new VoI measure is introduced, because Eq. (8.4) does not fit in this example.

The epistemic variables are pinched one-by-one at their central value of the interval and the

change in the response range of J1 and J2 is measured. Then, the VoI for J1 is defined as:

VoI(J1) (J1,0, J1,ěi) = 1−
J1,ěi − J1,ěi

J1,0 − J1,0

, (9.11)

where J1,ěi ∈
[
J1,ěi , J1,ěi

]
is the pinched interval and J1,0 ∈

[
J1,0, J1,0

]
is the unpinched interval

of J1. In a similar manner, the VoI for J2 is defined as:

VoI(J2) (J2,0, J2,ěi) = 1−
J2,ěi − J2,ěi

J2,0 − J2,0

, (9.12)

where J2,ěi ∈
[
J2,ěi , J2,ěi

]
is the pinched interval and J2,0 ∈

[
J2,0, J2,0

]
is the unpinched interval

of J2. Note that for pinching J2 representing a probability, the previously defined Eq. (8.4) is

not used here due to the anticipated wide range for J2 ∈ [0, 1].

9.4.3 Pinching results of xi

The computational model defined in Eq. (9.2) is an inexpensive-to-evaluate function. Hence, the

pinching analysis is conducted without the use of a meta-model but rather with brute force Monte

Carlo simulation. A further simplification is made by taking into account the dependencies of

the output xi on the input pj as indicated in Eqs. (9.3) - (9.7).

Figures 9.4 through 9.8 compare the pinched and the original response p-boxes in terms of

xi. The resulting p-boxes are plotted for the variables ei that lead to the largest reduction of

epistemic uncertainty according to the VoI defined in Eq. (8.2). Note that each epistemic uncer-

tainty ei is pinched separately. Based on the pictures, the largest reduction in imprecision in the

response p-box can be observed for the variables {e1, e6, e9, e10, e11, e23, e31}, which correspond

to the physical input parameters {E [p1] ,E [p5] , p6, r7, s7, p16, s21}, respectively.

The quantitative values of Eq. (8.2) are summarized in Tables 9.4 through 9.8. Additionally,

the epistemic variables are ranked according to VoI for each response variable xi. The tables
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Figure 9.4: NASA challenge – sensitivity analysis – pinching for x1.
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Figure 9.5: NASA challenge – sensitivity analysis – pinching for x2.
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Figure 9.6: NASA challenge – sensitivity analysis – pinching for x3.
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Figure 9.7: NASA challenge – sensitivity analysis – pinching for x4.

show that for each xi, a reduced number of input parameters is responsible for the response

epistemic uncertainty. According to the pinching algorithm, the variables

{e3, e5, e8, e12, e13, e14, e15, e17, e18, e19, e20, e21, e22, e28, e29}



162 CHAPTER 9. NASA UNCERTAINTY QUANTIFICATION CHALLENGE

0 0.2 0.4 0.6 0.8

x5

0

0.2

0.4

0.6

0.8

1

F
x
5

Full response p-box

Pinched e30

(a) r21 = e30 = 0.7105

0 0.2 0.4 0.6 0.8

x5

0

0.2

0.4

0.6

0.8

1

F
x
5

Full response p-box

Pinched e31

(b) s21 = e31 = 18.6965

Figure 9.8: NASA challenge – sensitivity analysis – pinching for x5.

do not contribute significantly to the imprecision in the corresponding response parametric p-

boxes.

Table 9.4: NASA challenge – sensitivity analysis – pinching for x1.

Variable ěi Aěi/A0 VoI Ranking

E [p1] e1 0.49 0.51 #1

Var [p1] e2 0.91 0.09 #4

p2 e3 0.99 0.01 #6

E [p4] e4 0.94 0.06 #5

Var [p4] e5 0.99 0.01 #6

E [p5] e6 0.79 0.21 #2

Var [p5] e7 0.89 0.11 #3

ρ(p4, p5) e8 1.00 0.00 #8

Table 9.5: NASA challenge – sensitivity analysis – pinching for x2.

Variable ěi Aěi/A0 VoI Ranking

p6 e9 0.28 0.72 #1

r7 e10 0.56 0.44 #2

s7 e11 0.84 0.16 #3

r8 e12 0.95 0.05 #4

s8 e13 0.96 0.04 #5

r10 e14 1.00 0.00 #7

s10 e15 0.99 0.01 #6

9.4.4 Pinching results of J1 and J2

Compared to the computational model defined in Eq. (9.2), the computational model defined

in Eqs. (9.8) and (9.9) are expensive-to-evaluate models. Hence, a brute force MC simulation is

not applicable in this case. In order to make the pinching analysis tractable, sparse PCE models

for the mapping e 7→ J1 and e 7→ J2 are calibrated.
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Table 9.6: NASA challenge – sensitivity analysis – pinching for x3.

Variable ěi Aěi/A0 VoI Ranking

p12 e16 0.03 0.97 #1

r13 e17 1.00 0.00 #2

s13 e18 1.00 0.00 #2

r14 e19 1.00 0.00 #2

s14 e20 1.00 0.00 #2

r15 e21 1.00 0.00 #2

s15 e22 1.00 0.00 #2

Table 9.7: NASA challenge – sensitivity analysis – pinching for x4.

Variable ěi Aěi/A0 VoI Ranking

p16 e23 0.18 0.82 #1

r17 e24 0.85 0.15 #2

s17 e25 0.90 0.10 #4

r18 e26 0.86 0.14 #3

s18 e27 0.94 0.06 #5

r20 e28 0.96 0.04 #6

s20 e29 0.96 0.04 #6

Table 9.8: NASA challenge – sensitivity analysis – pinching for x5.

Variable ěi Aěi/A0 VoI Ranking

r21 e30 0.63 0.37 #2

s21 e31 0.32 0.68 #1

Due to the large dimensionality of e (i.e. |e| = 31), the computational model is complex.

In order to reduce the complexity, some input ranges are set constant. In particular, if ei was

identified an unimportant in subtask (v), it is set to its central value in the PCE model to reduce

the number of random variables of the latter. Based on Tables 9.4 - 9.8, the twelve remaining

epistemic variables are

{e1, e6, e7, e9, e10, e11, e16, e23, e24, e26, e30, e31} ,

when considering VoI > 0.1. The PCE model is then calibrated with an experimental design of

N = 105 MC samples. Due to the non-linearity of the computational model, the sparse PCE

model results in relatively large empirical errors of êrremp = 0.65 and êrremp = 0.21 for J1 and

J2, respectively. Nevertheless, the pinching algorithm is applied onto the meta-models.

Table 9.9 summarizes the results of the pinching analysis for J1 and J2. For each pi, the

resulting range in Ji and the corresponding VoI are shown, as well as an overall ranking. Note

that in contrast to the previous subtask (v), the parameters pi are pinched to a single va-

lue/distribution whether they are modelled by one or two epistemic uncertainties, ej . Hence,

the pinched variables are denoted by p̌i rather than ěi.

As mentioned before, the accuracy of the meta-model is limited. This explains also the nega-

tive values for J2, which are by definition of a probability measure not feasible. Despite the low

accuracy of the meta-model, the influence of the input parameters pi onto the measures Ji is es-

timated. For both measures, the most influential parameters are marked with a relative ranking.

For J1 and J2, the influential factors are {p21, p5, p12, p1, p16, p6, p7} and {p12, p1, p7, p5, p21},
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Table 9.9: NASA challenge – sensitivity analysis – pinching for Ji – PCE-based results.

J1 J2

p̌i Range VoI Ranking Range VoI Ranking

None [−1.10, 3.05] 0.00 - [0.00, 0.73] 0.00 -

p1 [−0.99, 2.78] 0.09 #4 [0.06, 0.52] 0.39 #2

p5 [−0.91, 1.33] 0.46 #2 [0.020.69] 0.09 #4

p6 [−0.90, 3.05] 0.05 #6 [−0.01, 0.71] 0.03 #6

p7 [−1.03, 2.89] 0.05 #6 [0.02, 0.68] 0.11 #3

p12 [−0.40, 2.79] 0.23 #3 [0.01, 0.42] 0.44 #1

p16 [−0.96, 2.91] 0.07 #5 [0.03, 0.74] 0.03 #6

p21 [−0.32, 0.54] 0.79 #1 [0.01, 0.71] 0.04 #5

respectively. Note that many of the influential input parameters pi appear in both measures as

influential.

9.5 Uncertainty propagation

9.5.1 Tasks

The uncertainty propagation tasks are targeted on the two measures J1 and J2, defined in

Eqs. (9.8) and (9.9), respectively. The following subtasks are to be solved:

(ix) Determine the range of J1 corresponding to the original uncertainty model and the impro-

ved uncertainty model found in subtask (iii).

(x) Do the same for J2.

(xi) Select four imprecise random variables according to the rankings in subtasks (vi) and (vii).

Request an improved model from the organizers of the challenge.

(xii) Use the reduced model obtained in (xi) to recalculate the ranges of J1 and J2.

9.5.2 Solution algorithms

Uncertainty quantification with parametric p-boxes can be solved as discussed in Section 7.4.

Due to the complexity of the problem and the definitions of J1 and J2, however, a different

approach is chosen here. Instead of the original limit-state function defined in Eq. (9.10), an

alternative computational model is defined. Consider the direct mapping from the epistemic

input vector e to the measures J1 and J2. These are stochastic mappings, which map realizations

of e to Ji. The stochasticity originates from the sampling-based estimation of J1 and J2 and

the corresponding expectation value and exceedance probability operation, respectively.

When interpreting the epistemic input parameters as independent uniformly distributed

variables, a meta-model model can be used to approximate Ji. Finally, the extreme values of

Ji can be obtained by optimization in De. In order to increase the efficiency of this analysis,

the EGO algorithm is used to iteratively enrich the experimental design of the meta-models and

finally to determine the bounds of Ji.
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EGO is based on Kriging and is hence more efficient for low-dimensional objective functions.

Based on the results of the sensitivity analysis, the uncertainty propagation analysis is conducted

with a reduced epistemic input vector. The remaining interval-valued parameters are then:

{e1, e6, e7, e9, e10, e11, e16, e23, e30, e31} ,

which affect the input parameters:

{p1, p5, p6, p7, p12, p16, p21} .

Note that in parameter p20, the epistemic uncertainty is neglected due to the result of Table 9.7.

Due to the simpler shape of the optimization domain De, i.e. smaller dimensionality of De, the

number of function evaluations is expected to be lower than when using all epistemic parameters

as intervals.

9.5.3 Results

The ranges for the measures J1 and J2 are summarized in Table 9.10. The two measures are

estimated with the original uncertainty model as well as the improved model, where some input

epistemic intervals are reduced based on the datasets (see values in Table 9.3). Note that the

boundary values for J1 and J2 are obtained by a maximum of N (EGO) = 120 samples in the

experimental design. The iterative EGO algorithms are stopped manually.

The results show that the improved model of the input parameters does not change the inter-

vals considerably compared to the original model. As expected, the original model encapsulates

the improved model, due to the smaller epistemic uncertainty of the latter. The two models

provide rather wide ranges, in particular for the probability J2. Hence, it is impossible to make

decisions based on these results. Further investigations are required to reduce the epistemic

uncertainty in the input vector.

Table 9.10: NASA challenge set – uncertainty propagation – results of the adaptive Kriging

algorithm.

QoI Statistics Original model Improved model NASA model

J1 Ĵ1

[
8.40 · 10−3, 13.1

] [
1.48 · 10−2, 12.8

] [
3.06 · 10−2, 1.06

]

N (EGO) {120, 120} {120, 120} {120, 120}

J2 Ĵ2 [0.04, 0.89] [0.04, 0.85] [0.30, 0.40]

N (EGO) {120, 120} {120, 120} {120, 120}

Based on the results of pinching analysis summarized in Table 9.9, the parameters {p1, p7,

p12, p21} are chosen for further refinement. Upon request, the corresponding refined epistemic

parameters read: e1 ∈ [3.1/5, 3.2/5], e2 ∈ [0.8/25, 0.9/25], e10 ∈ [2.7, 3.1], e11 ∈ [0.9, 1.08],

e16 ∈ [0.96, 1.00], e30 ∈ [0.87, 1.00], and e31 ∈ [19, 23].

Using the reduced uncertainty model and the values obtained upon request, the correspon-

ding ranges for J1 and J2 are shown in Table 9.10, denoted by ”NASA model”. The values

are computed with the same algorithm as for the other uncertainty models. Compared to the

previous results, the ranges for J1 and J2 are considerably reduced. In fact, the range of J2 is

reduced to a value of J2 − J2 = 0.10. Hence, the parameters chosen for refinement efficiently

reduced the epistemic uncertainty in the statistics of interest, i.e. J1 and J2.
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9.6 Conclusion

As seen in Figure 9.1, the challenge set consists of three different computational models/limit-

state functions. In the flow of analyses, the computational model h is an inexpensive-to-evaluate

computational model, whereas the computation of J1 and J2 is an expensive-to-evaluate ope-

ration, depending on the definition of the epistemic uncertainty in the input parameters. Due

to the varying complexity, the choice of analysis is crucial to obtain results in an efficient man-

ner. As an example, in the first analyses concerning x = h (p), no meta-modelling algorithm

was used due to the low computational costs. Moreover, a meta-model is a potential source of

model errors. In the pinching of Ji and the final uncertainty propagation analyses, however,

meta-models are extensively used to reduce the computational costs. As an example, a single

evaluation of J1 based on 1000 samples of the aleatory uncertainty-related parameters results in

a computational time of 33 seconds on a quad-core computer.

In order to further reduce the computational efforts, the analyses of different subtasks are

combined. In particular, the information gained from results of previous analyses are used in the

definition of the solution algorithm of the next analysis. In doing so, the vector of 21 imprecise

input parameters p is reduced in the final uncertainty propagation analysis to a vector of only 10

imprecise input parameters. This reduction allows for a more efficient search algorithm to find

the extreme values of J1 and J2. In fact, the results confirm the ones found in Patelli, Broggi,

& Angelis (2014), Patelli, Alvarez, et al. (2015), and Crespo & Kenny (2015), summarized in

Table 9.11, which use similar approaches on the original, non-reduced input vector p. Hence,

the reduction of the input vector is feasible at this stage of the analysis.

Table 9.11: NASA challenge – comparison to results in Patelli, Broggi, & Angelis (2014).

Model Quantity Schöbi Patelli, Broggi, & Angelis (2014)

Original model J1

[
8.40 · 10−3, 13.1

] [
−1.55 · 10−4, 1.7608

]

J2 [0.04, 0.89] [0, 1]

Improved model ei

{
e1 ∈ [0.62, 0.76]

e6 ∈ [−5, 1.5]

} {
e1 ∈ [0.63, 0.76]

e6 ∈ [−4.9, 0.3]

}

J1

[
1.48 · 10−2, 12.8

] [
1.35 · 10−2, 4.97

]

J2 [0.04, 0.85] [0.06, 0.82]

NASA model pi {p1, p7, p12, p21} {p1, p4, p12, p21}
J1

[
3.06 · 10−2, 1.06

] [
2.88 · 10−2, 1.11

]

J2 [0.30, 0.40] [0.24, 0.38]

The presented results are obtained mainly with the algorithms developed in this thesis. In

particular, the use of meta-models is enforced where applicable. In order to obtain reliable

results, however, other methods shall be used for verification. As an example, Nagel & Sudret

(2014) analysed the first uncertainty characterization tasks with Bayesian hierarchical models

and Bayesian inference. Despite the different uncertainty concept as a starting point, similar

conclusions are made about the intervals of the epistemic parameters ei when comparing to the

KS-test applied in this thesis.



CHAPTER 10

Geotechnical applications

Geotechnical engineering is a prime example of uncertainty quantification

due to the generally speaking large uncertainties. Hence in this chapter, a

number of common geotechnical engineering problems are setup and solved

with the approaches developed in this thesis.

10.1 Overview

10.1.1 Context

Geotechnical engineering deals with construction projects in the subsurface and near-surface

area of the earth. Hence, a geotechnical engineer deals with the interface between rock, soil,

and anthropological constructions. Applications include tunnels, trenches, retaining walls, and

foundations. A crucial task is to predict the behaviour of the rock and soil masses which influence

the target construction site. However, the uncertainty in these materials is large, which makes

uncertainty quantification necessary.

Soil masses consists of natural, often not-engineered materials. The material soil may range

from silts to gravel and boulders. Moreover, soil is a composite material which can consist of

rock and organic, as well as other intrusive components (e.g. in a sanitary landfill). Last but not

least, soil is a multi-phase material, where solid (e.g. gravel), fluid (e.g. water and liquid gas),

and gaseous (e.g. air) molecules are present at the same time. Long lasting processes, such as

sedimentation and erosion, create soil masses over thousands of years. Additionally, short lasting

processes such as a sudden raise of the groundwater table or drilling of a tunnel, can influence the

soil behaviour in a limited geographical domain. Hence, the soil’s mechanical/physical behaviour

are generally-speaking inhomogeneous, anisotropic, non-linear, and time-dependent. The same

natural processes are responsible for mechanical/physical properties that vary spatially, i.e. they

are not constant on a large-scale physical domain.

Apart from the mechanical and physical behaviour of soil, the determination of the material

model is another source of uncertainty. Soil masses consist of generally speaking opaque materials

and large dimensions. Hence, accurate measurements of mechanical and physical properties are

costly because large devices are required for data accumulation on site. Moreover, due to the

spatial variability of soil, the measured value depends greatly on the location where it is taken.

167
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Moving the measurement device a few meters can change data considerably. In order to describe

a soil mass fully, i.e. including the spatial variability, a dense set of measurements are required,

which in turn is not economically feasible. Hence, epistemic uncertainty is a large source of

uncertainty in geotechnical engineering along with the inherent aleatory uncertainty.

As a result of the natural variability and limited observability properties, geotechnical engi-

neering is a prime example for large uncertainties. Hence, there is an intrinsic need for uncer-

tainty quantification in geotechnical applications. Additionally, the mix of natural variability

and lack of knowledge fits well into the framework of imprecise probabilities discussed in this

thesis.

10.1.2 Computational model

In geotechnical engineering, the computational models represent rock and soil masses as well

as engineered structures (such as a retaining wall). The quantity of interest depends on the

specific problem setting. However, there are three scenarios which compose the three most

common situations in practice: (i) slope stability, (ii) foundation settlement and foundation

bearing capacity, and (iii) stability of a retaining wall (see e.g. Lang et al. (2007)). Despite

their popularity, analytical solutions are only available for a few special cases. The analytical

solutions require rigorous assumptions on the problem setting, such as homogeneous soil masses,

negligence of spatial variability, idealized soil behaviour, and a specific geometry. For such

special case scenarios, a number of standard tools is available. As an example, a slope stability

analysis of a homogeneous soil mass with no layering and a simple geometry can be solved by

the ordinary method of slices (Fellenius 1936), the Bishop’s modified method (Bishop 1955),

the force equilibrium method (Lowe & Karafiath 1960), the Janbu’s generalized procedure for

slices (Janbu 1968), the Morgenstein & Price’s method (Morgenstein & V. Price 1965), or the

Spencer’s method (Spencer 1967), amongst others. A survey of more methods can be found in

Duncan (1996) and Duncan & Wright (2005).

For more general cases, finite element models (FEM) have become the standard tool to

analyse the behaviour of geotechnical systems. FEMs require none of the above mentioned

assumptions and are hence suitable for analysing geotechnical engineering problems (Sudret

2015). FE models can represent geotechnical problems with e.g. arbitrarily-shaped soil masses,

loads, time-variant pore water pressures, and even spatial variability. The drawback is, however,

the computational complexity of the analysis. The more complex the FE model, the larger are

the computational resources required to solve the very model. As an example, the solution to a

complex FEM can take minutes to hours using state-of-the-art software packages on nowadays

computers. Hence, geotechnical FE models are an ideal example for the application of meta-

models to speed up the uncertainty quantification analysis.

In this context, a large number of paper have been published, a few of which are mentioned

here. Griffiths, Huang, & Fenton (2011) discuss the reliability of an infinite slope. The stability

of slopes is analysed by using FE models in Griffiths & Fenton (2004). D.-Q. Li et al. (2016) use

meta-models and subset simulation for efficient reliability-based design analyses in geotechnical

engineering.

10.1.3 Modelling spatial variability

The spatial variability of mechanical properties in soil masses can be considered in FE models

by assigning different property values to each node in the FE mesh. For this purpose, the spatial

variability is commonly modelled by random field theory. The random field theory allows to
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model the mechanical properties of each geographical locations in a physical domain by a random

variable. In addition, the variables at different locations are correlated by a correlation function

(see Appendix F for further details).

In order to apply random fields in FE models, realizations of the random field are generated

and its values are assigned to the corresponding nodes of the FE mesh. The simulation of such

realizations is not straightforward. However, a number of methods have been proposed in the

literature. A survey and comparison of popular methods can be found in e.g. Sudret & Der

Kiureghian (2000). Among theses methods, the expansion optimal linear estimation (EOLE)

method approximates the random field by a series expansion and a finite set of probabilistic

random variables. For further details, the reader is referred to Appendix F, where the theory

of EOLE is discussed and the method is illustrated on a simple example. Note that in the

subsequent examples, the EOLE method is used to approximate all random fields involved.

In geotechnical engineering, a number of publications are available discussing the application

of random fields. Al-Bittar & Soubra (2013, 2014) analyse strip footings on spatially random

soils using PCE. Vorechovský (2008) simulates correlated random fields for FEM analyses. Pa-

paioannou & Der Kiureghian (2010) conduct reliability-based design analyses for slopes where

the soil is modelled by random fields. Griffiths, Huang, & Fenton (2009) discuss the influence

of spatial variability on slope reliability. Random fields in combination with observational data

and PCE meta-models are analysed in Schöbi & Sudret (2015a).

10.1.4 Examples

In the following sections, four application examples are discussed. The examples illustrate

problem settings that appear frequently in the geotechnical engineering practice. A summary

of the examples is given here:

(i) Infinite slope reliability (Section 10.2): the infinite slope reliability analysis is one of the few

problems with analytical solution. In fact, the limit-state function is a simple equation. The

input vector consists of six p-box-modelled input variables. Hence, the previously proposed

two-level meta-modelling approaches can be applied straightforwardly. Note that there is

no spatial variability in this example.

(ii) Foundation settlement with spatial variability (Section 10.3): the second application ex-

ample aims at estimating the settlement of a foundation structure. In order to describe

a realistic setting, the soil mass is composed of two soil layers which are connected by a

random interface. A one-dimensional random field is used to describe the location of this

interface. Due to the random interface geometry, the foundation settlement problem is

analysed with FEM. Furthermore, meta-models are used to allow for uncertainty quantifi-

cation analyses.

(iii) Foundation settlement with two random fields (Section 10.4): the third application example

builds upon the two-layer soil model of the second application example. In order to increase

the complexity of the analysis, though, the Young’s modulus of the upper soil layer is also

modelled by a random field, beside the layer interface.

(iv) Slope reliability (Section 10.5): another practical situation is the estimation of the stability

of a slope. In this example, random fields are used to characterize the shear strength

parameters of the soil mass (i.e. friction angle and cohesion). Furthermore, drained and

undrained analyses are conducted to analyse the different failure mechanisms.
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10.2 Infinite slope reliability

10.2.1 Problem setup

In geotechnical engineering, the stability of a infinitely long slope is a benchmark problem for

structural reliability analysis, as seen in e.g. Lang et al. (2007). Phoon (2008) formulated the

following limit-state function with six input random variables:

gslope(x) =
[γ (H − h) + (γsat − γw)h] cosψ tanϕ

[γ (H − h) + γsath] sinψ
− 1, (10.1)

where H is the depth of the soil above bedrock, h is the height of the groundwater table

above bedrock, γ and γsat are the moist and saturated unit weight of the soil, respectively,

γw = 9.81 kN/m3 is the unit weight of water, ϕ is the effective stress friction angle, and ψ is the

slope inclination. Figure 10.1 illustrates graphically the problem setting and the variables.

soil

rock

h

H

γsat

γ

ψ

Figure 10.1: Infinite slope – geometry and definition of variables.

In order to model the input with a set of independent variables, the following auxiliary

variables are introduced. The moist and saturated soil unit weights are related to each other by

means of the specific gravity of soil solids Gs and the void ratio e:

γ = γw
Gs + ke

1 + e
, γsat = γw

Gs + e

1 + e
, (10.2)

where k = 0.2 is the degree of saturation of moist soil. Further, h is modelled using an auxiliary

variable Uh such that h = Uh · H, because h is limited to the height of the soil. Finally, the

input vector consists of six independent variables x = (H,Uh, ϕ, ψ,Gs, e).

Due to modelling assumption h = Uh ·H, the limit-state function can be reformulated:

gslope(x) =
[γ (H − Uh ·H) + (γsat − γw)Uh ·H] tanϕ

[γ (H − Uh ·H) + γsatUh ·H] tanψ
− 1 (10.3)

=
[γ (1− Uh) + (γsat − γw)Uh] tanϕ

[γ (1− Uh) + γsatUh] tanψ
− 1, (10.4)

which is independent of H. Hence, the effective dimensionality of this problem is M = 5. H can

be interpreted as a dummy variable. In the following computations, the variable H is considered

although the effect on the results should be negligible.

In this example, the influence of the shape of the CDF onto the failure probability is analysed.

Hence, the input parameters are modelled by free and parametric p-boxes. For the parametric

p-boxes, each variable Xi is characterized by one interval-valued distribution parameter θi. The

parametric p-boxes are summarized in Table 10.1. Note that the PDF of the beta distribution

is parametrized by fB(x) ∝ (x − a)r−1(b − x)s−1, where x is the variable of interest with x ∈
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[a, b], r and s are the shape parameters. In order to visualize the effects of the parametric

p-boxes, Figure 10.2 shows the boundary curves of the parametric p-boxes of Uh and e and

some realizations of PDFs. Based on the definition of these two variables, Uh allows for skewed

distribution functions, whereas e allows for uniform to bell-shaped distribution functions around

the mean value.

Table 10.1: Infinite slope – definition of the parametric p-boxes

Variable Distribution Statistics Interval parameter

ϕ Lognormal µϕ = 35◦ · θϕ, σϕ = 2.8◦ θϕ ∈ [0.95, 1.05]

ψ Lognormal µψ = 20◦ · θψ, σψ = 1◦ θψ ∈ [0.95, 1.05]

Gs Lognormal µGs = 2.6 · θGs , σGs = 0.065 θGs ∈ [0.98, 1.02]

H Lognormal µH = 4 m · θH , σH = 1.2 m θH ∈ [0.9, 1.1]

Uh Beta Uh ∈ [0, 1], r = 1 + max[0, θUh ], θUh ∈ [−1, 1]

s = 1 + max[0,−θUh ]

e Beta e ∈ [0.3, 0.6], s = r = θe θe ∈ [1, 3]
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Figure 10.2: Infinite slope – parametric p-boxes of the input.

A second scenario consists of all variables being modelled as free p-boxes. Then, the boundary

curves are obtained by FXi(xi) = minθi FXi(xi|θi) and FXi(xi) = maxθi FXi(xi|θi).

10.2.2 Analysis

The analysis settings are kept the same as in the application examples in Section 7.6. A two-level

meta-modelling approach with adaptive Kriging models is applied for both cases of parametric

and free p-boxes. However, the initial experimental designs for the first and second-level meta-

models are set to N
(1)
0 = 12 and N

(2)
0 = 12, respectively. For parametric p-boxes, the threshold

value for the stopping criterion in EGO is set to εEI = 10−5. For free p-boxes, the auxiliary

distribution for the lognormal variables is defined by a lorgnormal variable the mean of which

is the central value of the interval given in Table 10.1. For the beta-distributed variables Uh
and e, the auxiliary distribution is defined as a beta distribution with {r = 1, s = 1} (uniform

distribution) and {r = 2, s = 2}, respectively.
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10.2.3 Results

Table 10.2 summarizes the results of imprecise structural reliability analysis (ISRA). The pro-

posed two-level methods approximate the boundary values of the imprecise failure probability

efficiently when comparing to the reference values which are obtained by plain Monte Carlo

simulation with nMCS = 107 samples.

As expected, the failure probability interval obtained by free p-boxes encapsulates the ones

by parametric p-boxes. The reason for the slightly wider interval for free p-boxes is the shape

of the input p-box in variable e. The optimal values of the distribution parameter r∗e indicate

that not the extreme values, i.e. {1, 3}, but rather an intermediate value leads to the extreme

failure probabilities for the case of parametric p-boxes.

Table 10.2: Infinite slope – results of the ISRA (reference failure probability obtained with

Monte Carlo simulation and nMCS = 107 samples).

Parametric p-box Free p-box

P f P f P f P f
Pf,ref 1.03 · 10−3 3.06 · 10−1 1.00 · 10−3 3.11 · 10−1

P̂f 1.06 · 10−3 3.05 · 10−1 1.02 · 10−3 3.11 · 10−1

N (1) 12 + 109 = 121 12 + 88 = 100 12 + 63 = 75

N (2) 12 + 72 = 84 12 + 11 = 23 12 + 116 = 128 12 + 80 = 92

µ∗ϕ 1.05 · 35◦ 0.95 · 35◦ - -

µ∗ψ 0.95 · 20◦ 1.05 · 20◦ - -

µ∗Gs 1.02 · 2.6 0.98 · 2.6 - -

µ∗H 1.1 · 4 m 1.02 · 4 m - -

θ∗Uh −1.00 1.00 - -

r∗e 2.68 3.00 - -

Another interesting variable is H, which results in the optimal mean values µ∗H = {1.1, 1.02}·
4 m. Due to modelling assumption h = Uh · H, the limit-state function is independent of H

as discussed in Eq. (10.4). It follows that the failure probability is independent of H, which

explains the arbitrary values in µ∗H in Table 10.2.

10.3 Foundation settlement with spatial variability

10.3.1 Problem statement

Consider the two-dimensional strip foundation sketched sketched in Figure 10.3 (Schöbi & Sudret

2015a). The soil mass is composed of two layers separated by an irregular horizontal interface

I(x) (where x is the horizontal coordinate) that can be modelled by a random field (RF) (see

also Appendix F). It is assumed that the soil mass is weightless and lays on a rigid bedrock at

a depth of 5 m below the soil surface.

The interface between the two soil layers is modelled by a one-dimensional Gaussian random

field I(x) with mean value µI = −1 m measured from the soil surface, a standard deviation

of σI = 0.3 m, and an exponential autocorrelation function with correlation length ρI = 5 m.

Note that there is a probability of Φ
(
− 1

0.3

)
= 4.3 · 10−4 that the interface is above the soil

surface. In this case, the lower layer would reach the soil surface at that location. Further, at
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Figure 10.3: Foundation settlement – geometry and notations.

three locations on the horizontal axis indicated in Figure 10.3, the interface depth is measured:

I (x = −4 m) = −0.5 m, I (0 m) = 1 m, and I (3 m) = −0.8 m. Several realizations of the

conditional random field are drawn in Figure 10.3 to showcase its variability. The measurements

clearly reduce the spatial variability of the interface in the neighbourhood of the observations.

The mechanical properties of the soil mass are modelled by a linear elastic behaviour. In

particular, Young’s modulus E and Poisson’s ratio ν describe the linear elastic constitutive

model. In both soil layers, the mechanical properties are modelled by random variables without

spatial variability. On top of the soil mass, a 2 m wide and 0.5 m thick foundation is located,

which is modelled by a deterministic Young’s modulus of Ef = 25 GPa and Poisson’s ratio of

νf = 0.2. The foundation is subjected to a vertical pressure q.

The probabilistic model of all stochastic variables is summarized in Table 10.3. Each variable

is defined by its distribution function, mean value and coefficient of variation (CoV). Note that

the variables {νu, νl} are modelled as constants due to their small influence on the results of the

FEM analysis.

Table 10.3: Foundation settlement – input distributions (subscript u, and l stand for upper and

lower layer of the soil model, respectively; I(x) summarizes the random field interface).

Variable Distribution Mean CoV

Eu Lognormal 5 MPa 15 %

El Lognormal 20 MPa 15 %

νu, νl Deterministic 0.3 -

q Gumbel 100 kPa 10 %

I(x) Gaussian RF −1 m 30 %

The quantity of interest is the settlement v of the midpoint of the foundation. The uncer-

tainty in v, hence, depends on the stochastic variables {Eu, El, q} as well as the spatial variability

in the interface I(x).
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10.3.2 Analysis

The random field is discretized using EOLE (see Appendix F.3) and MRF = 30 Gaussian varia-

bles. The total dimensionality of the computational model is then M = 30 + 3 = 33.

The foundation settlement v is estimated by a finite element model implemented in the

COMSOL Multiphysics software (COMSOL AB 2013). The resulting soil model has a total

width of 40 m to avoid boundary conditions influencing the foundation settlement v. Its mesh is

(partially) displayed in Figure 10.3 and consists of 17042 degrees-of-freedom. Note that the mesh

is fine close to the foundation strip and coarse far away from the foundation strip. Depending

on the realization of the random field, each node in the soil mass is assigned a value of {E∗u, νu}
or {E∗l , νl} in the upper and lower layer, respectively.

In order to estimate the uncertainty in the foundation settlement v, a PCE model is ca-

librated. Its experimental design consists of N = 300 LHS samples. The sparse PCE model

is calibrated using the Matlab-based framework UQLab (Marelli & Sudret 2015). Further,

Sobol’ indices are computed as a post-processing algorithm of the PCE model by using the same

software framework (Marelli, Lamas, & Sudret 2015).

10.3.3 Results

The accuracy of the PCE model is estimated through a validation set of nMCS = 1000 MC

samples. The relative generalization error between the prediction and the exact values of the

validation set is êrrgen = 4.4 %. This indicates a sufficiently accurate approximation of the

foundation settlement v to estimate the response PDF as well as sensitivity measures.

Due to the inexpensive-to-evaluate formulation of the sparse PCE model, the PDF fv(v) of

the foundation settlement can be estimated. The solid line in Figure 10.4 illustrates the estimate

of fv(v) obtained by a kernel smoothing of a MC sample (nMCS = 106) of the input vector and

the PCE model.
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Figure 10.4: Foundation settlement – PDF of v.

The dashed line in Figure 10.4 represents the PDF of the settlement in case an unconditional

random field (with the same parameters) is used, i.e. ignoring the borehole data. The difference

between the two distributions shows the influence of the borehole data, namely a significant

reduction of the uncertainty in the settlement estimation. The PDF of the conditional random

field case is more peaked and narrower. The mean value and standard deviation of the foun-

dation settlement are {µv,c = 20.0 mm, σv,c = 3.0 mm} and {µv = 20.5 mm, σv = 3.9 mm} for

the conditional and unconditional random field, respectively. These statistics indicate that the
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observations reduce indeed the uncertainty in the settlement prediction.

In order to analyse the influence of the RF on the foundation settlement, Sobol’ indices

are computed from the coefficient of the PCE model. The resulting total order Sobol’ indices,

denoted by S
(T)
i , are illustrated in Figure 10.5 for the cases of conditional (black bars) and un-

conditional (white bars) random fields. In Figure 10.5(a), the variables {X1, X2, X3} correspond

to {Eu, El, q} whereas the variables X4, . . . , X33 correspond to the MI = 30 Gaussian variables

modelling the random field I(x). Note that in Figure 10.5(b) the variable I(x) stands for the

total order Sobol’ index involving all 30 random variables describing the random field of the

interface.
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Figure 10.5: Foundation settlement – total order Sobol’ indices based on the PCE models.

In the case of an unconditional random field, the influence of the RF onto the variance of

the settlement is largest among the input variables, whereas the influence is the smallest for

the conditional random field. This indicates that the few observations (i.e. only three points)

significantly reduce the uncertainty regarding the location of the interface. The remaining input

variables have the same relative importance to each other in terms of Sobol’ indices for both

cases.

10.4 Foundation settlement with two random fields

10.4.1 Problem statement

Consider again the foundation settlement problem presented in the previous section. In order

to increase the complexity of the computational model and hence the dimensionality of the

calibrated meta-models, a second random field is introduced. Besides the interface of the two

layers, the variability of the Young’s modulus of the upper layer is modelled by a two-dimensional

random field Eu(x, y) where (x, y) are the coordinates in the soil mass.

Figure 10.6 illustrates the model setup. The coloured area represents a single realization

of the two-dimensional RF Eu(x, y). Additionally, the two layers of soil are connected by a

realization of the RF of I(x). The remaining random variables are then the load q and the

Young’s modulus El. The Poisson’s ratios are kept constant as well as the Young’s modulus of

the foundation strip (Ef ).

Table 10.4 summarizes the modelling of the random variables and constants in the input

vector. Note that the value for the load and Young’s modulus are different than in Section 10.3.
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Figure 10.6: Two RF settlement – sketch of the geometry and the input variables.

The description of the random fields in summarized in Table 10.5. Note that the random field

Eu(x, y) is modelled by a lognormal random field. The logarithmic value of a lognormal random

variable is a Gaussian random variable. Hence, realizations of the logarithmic random field

are obtained by (i) generating realizations of a corresponding Gaussian random field and (ii)

subsequently transforming the values by exponentiation.

Table 10.4: Two RF settlement – input random variables and constant parameters.

Xi Name Distribution Mean CoV

q Load Gumbel 200 kPa 15 %

El E-modulus lower layer Lognormal 50 MPa 15 %

Ef E-modulus foundation Constant 30 GPa -

νf Poisson’s ratio foundation Constant 0.20 -

νu Poisson’s ratio upper layer Constant 0.45 -

νl Poisson’s ratio lower layer Constant 0.30 -

The quantity of interest is again the settlement of the foundation strip at its mid-point,

denoted by u in this example.

10.4.2 Analysis

The FEM is developed in COMSOL Multiphysics (COMSOL AB 2013). The mesh includes

8514 elements where the largest element has a dimension of 0.4 m which corresponds to a fifth

of the vertical correlation length ρy,Eu . Figure 10.7(a) visualizes the mesh around the strip

foundation. The mesh size is fine in the vicinity of the foundation strip, whereas it is coarse

at the lateral boundaries. The solving time for a single evaluation is roughly six seconds on a

quad-core processor.

The involved random field are discretized with the EOLE algorithm presented in Appen-

dix F.3. In order to reproduce 99 % of the variance, nζ = 11 and nζ = 45 variables are used

for modelling I(x) and Eu(x, y), respectively. Hence, the dimensionality of the computational

model is M = Mq +MEl +MI +MEu = 1 + 1 + 11 + 45 = 58.
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Table 10.5: Two RF settlement – definition of the two random fields.
Name Description Value

I(x) Distribution Gaussian

Mean −5 m

CoV 30 %

Correlation family squared exponential

Correlation length 5 m

Number of variables 11 (∼ 99 % variance)

Eu(x, y) Distribution Lognormal

Mean 10 MPa

CoV 15 %

Correlation family squared exponential

Corr. length horizontal 10 m

Corr. length vertical 2 m

Number of variables 45 (∼ 99 % variance)
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Figure 10.7: Two RF settlement – FEM model.

Figure 10.7(b) shows a number of realizations of the RF of the interface I(x). The realizations

are smooth curves due to the large correlation length and the squared exponential correlation

family used in the application example. Due to the large coefficient of variation of 30 %, the

depth of the interface from the surface varies a lot. In particular, one realization is shown which

touches the rock surface (see the dark blue line).

The uncertainty quantification analysis in this application example is split into three conse-

cutive tasks:

(i) Sensitivity analysis: A PCE model is calibrated based on an experimental design of N =

1000 LHS samples and the corresponding response values of the FEM. Based on the PCE

model, the Sobol’ indices for all variables are estimated.

(ii) Structural reliability analysis: Based on the PCE model, the failure probability Pf =

P (u ≥ uadm) is estimated for different threshold values uadm.

(iii) Improved structural reliability analysis: Based on the Sobol’ indices, a reduced input vector
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is defined where each remaining variable has a non-negligible total order Sobol’ index, i.e.

S
(T)
i ≥ 0.01. Subsequently, an improved structural reliability analysis is conduced using

AK-MCS and the resulting failure probability estimate is compared to the PCE-based

estimate.

10.4.3 Results

Sensitivity analysis

The PCE model is calibrated in UQLab (Marelli & Sudret 2015). The optimal maximum degree

of polynomials is found as p∗ = 4. The accuracy of the PCE model is estimated by a validation

set of nMCS = 104 MC samples. The resulting relative generalization error is êrrgen = 1.85 %,

indicating an accurate meta-model despite the large dimensionality of the input vector.

The first and total order Sobol’ indices are shown in Figure 10.8 for all M = 58 random

variables. Note that the load q has the largest impact of the uncertainty in the settlement u.

Moreover, some variables of the RF discretizations of I(x) and Eu(x, y) have a non-negligible

influence too. As in the previous example application in Section 10.3, the variables with low

index i in each RF have larger Sobol’ indices than the ones with high index i.
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Figure 10.8: Two RF settlement – Sobol’ indices for individual input variables Xi.

The Sobol’ indices in Figure 10.8 show the individual contributions of Xi to the uncertainty

in the response variable u. In order to estimate the effect of the variability of a random field, the

corresponding variables are grouped. The resulting Sobol’ indices are summarized in Figure 10.9.

The results show that the uncertainty introduced by the random fields have a considerable effect

onto the uncertainty in u. The effects of I(x) and Eu(x, y) are comparable by means of first and

total order Sobol’ indices. The uncertainty in El, however, has a marginal effect on u.

Structural reliability analysis

Using the same PCE model as in the sensitivity analysis, the failure probabilities are estimated

by MCS with a sample size of nMCS = 107 to ensure accurate estimates in terms of MCS analysis.

The estimates of the failure probability and the corresponding reliability indices are summarized

in Table 10.6. The failure probability decreases rapidly with increasing threshold value uadm.

Note that the accuracy for uadm = {6 cm, 7 cm} is limited due to the use of PCE models which

are generally speaking not always accurate describing the tail of the output distribution.
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Figure 10.9: Two RF settlement – Sobol’ indices for groups of variables.

Table 10.6: Two RF settlement – failure probabilities for different threshold values (obtained

via MCS on the PCE meta-model and nMCS = 107).

uadm P̂f β̂HL

4 cm 1.97 · 10−1 0.85

5 cm 2.71 · 10−2 1.93

6 cm 2.85 · 10−3 2.76

7 cm 2.80 · 10−4 3.45

Improved structural reliability analysis

In order to improve the accuracy of the failure probability estimates, a structural reliability

analysis is conducted in this section taking into account the results of the sensitivity analysis

and replacing PCE by AK-MCS. Selecting the variables with S
(T )
i ≥ 0.01, a new input vector is

formed consisting of only nine variables. Apart from the load q, three out of eleven variables in

I(x) and five out of 45 variables in Eu(x, y) remain in the input vector.

The smaller dimensionality allows one to use Kriging meta-models and moreover AK-MCS

to estimate the failure probabilities for different values of uadm. The Kriging meta-models are

trained with a Gaussian correlation function and an initial experimental design of N0 = 20

Latin-hypercube samples. Further for AK-MCS, probability of misclassification is chosen as the

learning function and a candidate set of nMCS = 106 Monte Carlo samples is generated.

Table 10.7 summarizes the results of the analysis, namely the estimated failure probability,

corresponding reliability index, as well as the total number of runs of the FEM in AK-MCS Ntot.

The failure probability estimates for uadm = {4 cm, 5 cm} are close to the ones provided by PCE

in Table 10.6. For uadm = {6 cm, 7 cm}, the deviation of the two estimates becomes larger. In

terms of reliability index, however, the results of both methods are consistent. Note that Ntot

denotes the number of FEM runs till a steady value of the failure probability is achieved. For all

thresholds, the reliability analysis terminated with Ntot ≤ 150, which is a low number considering

failure probabilities as small as ∼ 10−4.
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Table 10.7: Two RF settlement – AK-MCS results based on the reduced input vector.

uadm P̂f β̂HL Ntot

4 cm 1.83 · 10−1 0.90 20 + 106 = 126

5 cm 2.65 · 10−2 1.94 20 + 122 = 142

6 cm 3.49 · 10−3 2.70 20 + 130 = 150

7 cm 4.10 · 10−4 3.35 20 + 129 = 149

10.5 Slope stability with spatial variability

10.5.1 Problem statement

Consider the two-dimensional slope model sketched in Figure 10.10. The height of the embank-

ment is 10 m and the slope inclination is 2 : 1. Below the embankment, there is a 10 m-thick

layer of soil, which reaches the bedrock. The bedrock is assumed to be rigid, hence modelling

the lower boundary of the slope model.
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Figure 10.10: Slope stability – geometry and variables.

The analysis is split into two parts: (i) an undrained analysis and a (ii) drained analysis.

The details are given here:

(i) Undrained analysis: Consider the case where the soil consists of silt and clay. The consti-

tutive law for the soil mass consists of a linear elastic-ideal plastic behaviour. The soil mass

is considered undrained, hence modelled by the Tresca failure criterion. The mechanical

properties of the soil are thus described by the Young’s modulus E, Poisson’s ratio ν, and

undrained shear strength cu, which is modelled by a two-dimensional random field. The

probabilistic modelling of the input parameters is summarized in Tables 10.8 and 10.9.

(ii) Drained analysis: Consider the case where the soil mass consists of gravel and sand with

a small cohesion. Similar to the undrained analysis, the soil mass is modelled by a linear

elastic-ideal plastic behaviour. However, the failure is modelled by the Mohr-Coulomb

failure criterion, which is parametrized by the effective friction angle ϕ′ and the effective

cohesion c′. These two factors are assumed to be spatially varying and linearly correlated.

Hence, they are modelled by two correlated random fields. The statistics of the random

fields are summarized in Table 10.10. The linear elastic behaviour is assumed to be iden-

tical to the case of undrained soil behaviour, hence see Table 10.8 for the probabilistic

descriptions.
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Table 10.8: Slope stability – probabilistic input variables.

Name Distribution Mean CoV

Young’s modulus E Lognormal 50 MPa 5 %

Poisson’s ratio ν Constant 0.3 -

Soil density ρ Constant 2000 kg/m3 -

Table 10.9: Slope stability – undrained analysis – definition of the random field of cu.

Description Value

Distribution Lognormal

Mean 50 kPa

CoV 20 %

Correlation family Squared exponential

Correlation length horizontal 15 m

Correlation length vertical 2 m

Number of variables 65 (∼ 95 % variance)

10.5.2 Analysis

The FEM is created using the free software slope64 (Griffiths & Lane 1999; Griffiths 2015). The

corresponding mesh is shown in Figure 10.11, which consists of 900 elements. The mechanical

properties of each element is equal to the value of the RF realization taken at the central point

of the element. Note that according to Sudret & Der Kiureghian (2000), the maximum element

size in the vertical direction shall not be larger than a fourth of the vertical correlation length

(i.e. 0.5 m), whereas in Figure 10.11 it is 1 m. The difference in terms of factor of safety between

the present and a finer mesh is, however, small as it was checked from analyses not reported in

this manuscript. Hence, this example is computed with the coarser mesh in order to speed up

the computation.

Figure 10.11: Slope stability – mesh of the finite element model.

As in the previous examples, the random fields are discretized by EOLE (see Appendix F.3).

In the undrained case, the algorithm is applied straightforwardly. In the drained case, where

the two random fields are correlated, the following transformations are used. Consider two

independent Gaussian variables Ξ(1),Ξ(2) ∼ N (0, 1). Then, ϕ′ and c′ can be modelled as:

ϕ′ = Tϕ

(
Ξ(1)

)
, (10.5)

c′ = Tc′
(
ρϕc Ξ(1) +

√
1− ρ2

ϕc Ξ(2)
)
, (10.6)

where ρϕc is the correlation between ϕ′ and c′, and Tϕ and Tc′ are isoprobabilistic transforms

mapping for the Gaussian space to the original input space, i.e. lognormal space in this example.
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Table 10.10: Slope stability – drained analysis – definition of the random fields for ϕ′ and c′.
Description ϕ′ c′

Distribution Lognormal Lognormal

Mean 25◦ 3 kPa

CoV 10 % 50 %

Correlation family Squared exponential Squared exponential

Correlation length horizontal 15 m 15 m

Correlation length vertical 2 m 2 m

Pseudo-correlation ϕ′ and c′ −0.5

Number of variables 65 (∼ 95 % variance) 65 (∼ 95 % variance)

Considering now two standard Gaussian fields Ξ(1)(x) and Ξ(2)(x), they can be approximated

by the same series expansion due to the shared geometry and correlation structure of ϕ′ and c′.
Then, denote the EOLE approximation of Ξ(1) and Ξ(2) by ĤΞ(1)

(
x, ζ(1)

)
and ĤΞ(2)

(
x, ζ(2)

)
,

respectively. The random fields of ϕ′ and c′ can be modelled by:

ϕ̂′
(
x, ζ(1)

)
= exp

(
λϕ +$ϕĤΞ(1) (x)

)
, (10.7)

ĉ′
(
x, ζ(1), ζ(2)

)
= exp

(
λc +$c

[
ρϕc ĤΞ(1)

(
x, ζ(1)

)
+
√

1− ρ2
ϕc ĤΞ(2)

(
x, ζ(2)

)])
, (10.8)

where λ and $ are the mean and standard deviation of the logarithm of a lognormal random

variable. This can be simplified taking into consideration the similar nature of the two random

fields. Indeed, the eigenvalue problem associated to EOLE is solved once and for all for ϕ′ and

c′:

ϕ̂′
(
x, ζ(1)

)
= exp

[
λϕ +$ϕ

nζ∑

i=1

φTi Σ
H(x)Ŷ√
λi

ζ
(1)
i

]
, (10.9)

ĉ′
(
x, ζ(1), ζ(2)

)
= exp

(
λc +$c

[ nζ∑

i=1

φTi Σ
H(x)Ŷ√
λi

[
ρϕc ζ

(1)
i +

√
1− ρ2

ϕc ζ
(2)
i

]])
, (10.10)

where ζ
(1)
i and ζ

(2)
i are the standard Gaussian variables of the RF discretizations ĤΞ(1)

(
x, ζ(1)

)

and ĤΞ(2)

(
x, ζ(2)

)
, respectively.

Given the discretization of the random fields and the FEM, the performance of the system

is assessed by the factor of safety (FOS). The FOS of each realization of the random fields is

obtained by the shear strength reduction method (e.g. Matsui & San (1992)). Let us define a

set of reduced shear strength parameters by:

cu,f =
cu

FOS
, (10.11)

for the undrained analysis and:

c′f =
c′

FOS
, (10.12)

ϕ′f = arctan

(
tan (ϕ′)

FOS

)
, (10.13)
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for the drained analysis. Assume that the gravity load is applied to the FEM. Then, the FOS is

defined as the number which brings the slope to the point of failure. In other words, the FOS is

the largest value where the FEM converges to a stable solution. The shear strength reduction

method is implemented in slope64.

Finally, failure occurs when FOS ≤ 1. Hence, the corresponding limit-state function reads

gFOS (X) = FOS (X)− 1 and the corresponding failure probability is Pf = P (FOS (X) ≤ 1) =

P (gFOS (X) ≤ 0). Note that the number of variables is M = 1+65 = 66 and M = 1+65+65 =

131 for the undrained and drained analyses, respectively.

Due to the large dimensionality of the limit-state function, PCE models are calibrated to

estimate the distribution of the FOS. The experimental design consists of N = 1000 LHS

samples. The sparse PCE model is calibrated with UQLab (Marelli & Sudret 2015). Then, the

failure probability is obtained by MCS conducted on the PCE meta-model.

10.5.3 Results

Failure modes in undrained analysis

Figure 10.12 shows four realizations of the random field modelling the undrained cohesion cu
and the corresponding failure mode of the FEM model. In the left side figures, the blue areas

correspond to low values of the effective cohesion whereas the red areas correspond to large

values. The first row of figures shows a shallow failure mechanism, which takes place in the

embankment part only. The second row visualizes a failure mechanism with medium depth,

i.e. not touching the rock surface at the lower boundary of the FEM. The third and fourth

row show RF realizations that lead to a deep failure mechanism. The fourth row leads to a

combined shallow and deep failure mechanism. Comparing the failure mechanisms with the

RF realization, it is apparent that the failure surface follows areas of low values in cu. This

behaviour is expected considering the shear strength reduction method.

Failure modes in drained analysis

Figure 10.13 shows visualizations of three random fields realizations and the corresponding

failure mechanism for the case of a drained analysis. In the left side and central figures, dark

areas correspond to low values of the mechanical properties whereas light areas correspond to

high values. Again, the three rows correspond to three different failure mechanisms, as seen in

Figures 10.13(c), 10.13(f), and 10.13(i), respectively. In the drained case, however, the failure

surface can be found where the two parameters ϕ′ and cu are low valued. Note that all failure

mechanisms occur close to the inclination of the surface. Hence, the failure mechanisms are

more local than the ones observed in the undrained analysis in Figure 10.12.

FOS in undrained analysis

The resulting PCE model, calibrated with N = 1000 samples, has a relative empirical error of

êrremp = 7.05 · 10−2, which indicates an accurate meta-model despite the large dimensionality

of the input domain. Based on the meta-model, Figure 10.14(a) illustrates the CDF of the

FOS for the undrained analysis. Furthermore, the empirical CDF of the N = 1000 samples is

added for comparison. The two lines are close to each other, which confirms the impression of

an accurate meta-model. Using MCS with nMCS = 107 samples and the PCE meta-model, the

failure probability is estimated as P̂f = 2.69 · 10−5.
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(a) Random field realization #1 (b) Failure mechanism #1

(c) Random field realization #2 (d) Failure mechanism #2

(e) Random field realization #3 (f) Failure mechanism #3

(g) Random field realization #4 (h) Failure mechanism #4

Figure 10.12: Slope stability – undrained analysis – RF realizations and associated failure me-

chanisms.

FOS in drained analysis

Based on an experimental design of N = 1000 samples, the calibrated PCE meta-model results

in a relative empirical error of êrremp = 7.84 · 10−2. Despite the larger dimensionality M

than in the undrained analysis, the meta-model is rather accurate. Figure 10.14(b) shows the

CDF of the FOS for the drained analysis. Similar as in the undrained analysis, the meta-model

reproduces the response CDF accurately when comparing to the empirical CDF of the N = 1000

experimental design samples. Using MCS with nMCS = 106 samples and the PCE meta-model,

the failure probability is estimated as P̂f = 1.83 ·10−3. It is important to note that using a PCE

meta-model and Monte Carlo simulation may lead to gross results when Pf < 10−3. However,

the order of magnitude of Pf is deemed correctly evaluated.

Imprecise failure probability (drained analysis)

The cohesion is a highly uncertain and at the same time a highly influential property of soil in

drained analyses. Hence, the effect of an imprecise cohesion is considered here. The mean value

of the cohesion is modelled by the interval µc′ ∈ [1, 5] kPa and the standard deviation is kept

constant, i.e. σc′ = 1.5 kPa. Due to the use of random fields in the implementation of FEM,

the uncertainty propagation is repeated for each realization µc′ ∈ [1, 5] kPa. In other words, the

previously used two-level approaches cannot be used for different realizations of µc′ . However as

a first approximation of the influence of the epistemic uncertainty, only the two extreme cases

of µc′ = 1 kPa and µc′ = 5 kPa are examined.

Using the same settings as in the previous paragraphs, two PCE meta-models are calibrated
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(a) Undrained analysis
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(b) Drained analysis

Figure 10.14: Slope stability – CDF of the FOS.

based on an experimental design of size N = 1000. The relative empirical error reads êrremp =

1.90 ·10−1 and êrremp = 4.55 ·10−2 for µc′ = 1 kPa and µc′ = 5, respectively. The corresponding

response CDFs, and hence the response p-box is illustrated in Figure 10.14(a). The width of the

response p-box is large, indicating indeed a large influence of the cohesion on the behaviour of

the slope. The same effect is observed when computing the imprecise FOSM (Cornell) reliability

index defined as βC = µFOS/σFOS. In this case, the estimated imprecise reliability index reads

βC ∈ [0.25, 4.85]. The corresponding failure probability Pf = Φ (−βHL) ranges of roughly six

orders of magnitude. This illustrates the large impact of the cohesion on the slope reliability in

this example.
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Figure 10.15: Slope stability – drained analysis – FOS as a function of an imprecise cohesion.

10.6 Conclusion

Four application examples are examined in this section of geotechnical engineering. The applica-

tions highlight typical geotechnical problem settings. The corresponding computational models

have diverse dimensionality, complexity, and numerical solvers. In particular, third-party FEM

software is used to model the behaviour of the soil mass. In order to allow for uncertainty quan-

tification, the FEM software is coupled with the Matlab-based software UQLab. The modular

setup of UQLab allows for wrappers that consider the FEM software as a black box. Hence,
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the incorporation of FEM to the uncertainty quantification analyses conducted in Matlab is

simple.

In this thesis, it is assumed that the computational models themselves have no model error.

In the geotechnical practice, however, the validation of the models is a crucial task in the

analysis. A good practice is then to solve the same problem setting with several FEM softwares

and compare the results. As an example, the results of the slope64 model have been compared

to the COMSOL Multiphysics model in this thesis.

Despite the complexity of the computational models, i.e. the FE models, the proposed meta-

modelling approaches are applicable in this section. This shows the power of the non-intrusive

approach that allows to analyse any computational model defined in Eq. (3.2). Moreover, the

proposed two-level meta-modelling approaches allow for an efficient propagation of p-boxes,

efficient estimation of failure probabilities, and efficient estimation of sensitivity measures.





CHAPTER 11

Conclusions

11.1 Summary

11.1.1 Imprecise probabilities

Imprecise probabilities describe a mix of aleatory (natural variability) and epistemic uncertain-

ties (lack of knowledge). From the large number of possible concepts, the probability-box (p-box)

provides a framework with clear distinction of aleatory and epistemic uncertainty. In this thesis,

two cases are considered: free and parametric p-boxes. Parametric p-boxes describe a hierarchi-

cal model where the parameters of a probability distributions are modelled by intervals. Hence,

the distribution function describes the aleatory uncertainty whereas the interval-valued para-

meters describe the epistemic uncertainty. Free p-boxes describe the cumulative distribution

function of a variable by two bounds. In this case, the probability distribution describes the

aleatory uncertainty, whereas the width of the two bounds describes the epistemic uncertainty.

The behaviour of both types of p-boxes is intuitively clear when looking at the typical CDF plot

(see e.g. Figure 2.5 for a free p-box). Due to the clear separation of the two types of uncertainty,

p-boxes provide a convenient uncertainty concept for the practical modeller/engineer.

The proper assimilation of pieces of information is important to define a meaningful p-

box. Given a dataset and/or expert knowledge, a number of methods have been presented to

construct/define a p-box. This emphasizes the usability of p-boxes in practical applications

where evidence is typically posed as a mix of sparse datasets and expert opinions.

In case the modeller is asking for an alternative uncertainty modelling concept, p-boxes

provide a starting point for extension. On one side, p-boxes are a generalization of probability

theory and interval analysis. On the other side, p-boxes can be seen as a special case of fuzzy

distributions. Due to these similarities, switching from one to the next uncertainty concept is

straightforward.

11.1.2 Meta-modelling

In the context of probability theory, a number of meta-modelling techniques are known and

readily used in the literature and software packages (e.g. UQLab (Lataniotis, Marelli, & Sudret

189
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2015; Marelli & Sudret 2015)). Among them, there are Polynomial Chaos Expansions (PCE) and

Kriging (a.k.a. Gaussian process modelling). PCE assumes that the computational model can be

modelled by a series of orthogonal polynomials, whereas Kriging assumes that the computational

model is a realization of an underlying Gaussian process. As used in this thesis, PCE is a

regression technique that models well the global behaviour of the computational model. On the

other side, Kriging is known to model well local variations because of its interpolation properties.

In order to further increase the accuracy of meta-modelling, the author proposed to use a

combination of the previous meta-modelling techniques. The new Polynomial-Chaos-Kriging

(PC-Kriging) technique models the global behaviour with a set of orthogonal polynomials and

the local behaviour with a Gaussian process. In fact, PC-Kriging is a special case of the uni-

versal Kriging model where the trend in modelled by orthogonal polynomials. A number of

benchmark analytical functions show the increased accuracy when comparing to the traditional

meta-modelling techniques.

PC-Kriging is applied to structural reliability analysis and compared to the conventional

Kriging technique. The efficiency of computing rare events, such as small failure probabilities

and extreme quantiles, is limited with both meta-modelling techniques. Then, a popular strategy

is to iteratively enrich the experimental design of the meta-model to increase the accuracy of

the estimation of the statistics of interest. Using ideas from machine learning, the adaptive-

PC-Kriging-Monte Carlo simulation (APCK-MCS) algorithm is developed as a pendant to the

well-established AK-MCS algorithm for Kriging. In order to show the efficiency of the proposed

algorithm, APCK-MCS is compared to AK-MCS in a number of benchmark applications. In the

shown applications, APCK-MCS allows for an accurate estimation of the statistics of interest

for a reasonable amount of runs of the computational model.

UQLab is a state-of-the-art framework for uncertainty quantification developed at the Chair

of Risk, Safety and Uncertainty Quantification at ETH Zurich. The conventional PCE and

Kriging meta-modelling techniques are included in UQLab’s meta-modelling module. As part

of this thesis, PC-Kriging and also APCK-MCS have been implemented in UQLab by the

author (Schöbi, Marelli, & Sudret 2016). This platform allows for a wide dissemination of these

state-of-the-art PC-Kriging algorithms.

11.1.3 Efficient imprecise uncertainty quantification

The state-of-the-art meta-modelling techniques are used to solve uncertainty quantification ana-

lyses in the presence of p-boxes. Given the different nature of free and parametric p-boxes, a

different set of algorithms is proposed for the two types of p-boxes. The basic idea for solving

free p-box-related problems is interval analysis, whereas for parametric p-box-related problems

it is nested Monte Carlo simulation.

For free p-boxes, the imprecise uncertainty quantification analysis is converted into two pro-

babilistic uncertainty quantification analyses. Therefore, the meta-modelling techniques descri-

bed previously can be applied. In particular, two-level meta-modelling algorithms are proposed.

The two meta-models consists of PCE models in the case of uncertainty propagation, whereas

they consists of adaptive Kriging models in the case of rare event estimations. The use of two

meta-models allows for an efficient estimation of the statistics of interest by limiting the number

of runs of the expensive-to-evaluate computational model. The efficiency is shown in a number

of benchmark application examples. The proposed two-level meta-modelling algorithm can be

post-processed for imprecise sensitivity analysis. As an example, pinching input variables mo-

difies the p-box of the QoI. Due to the availability of the meta-model, this operation does not
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involve further runs of the computational model and is hence inexpensive.

For parametric p-boxes, an augmented input vector and the corresponding augmented PCE

model is defined for uncertainty quantification analyses. The augmented input vector allows for

a clear separation of the aleatory and epistemic uncertainty in the input to the augmented PCE

model. The use of phantom points improves the prediction accuracy without the need for further

runs of the expensive-to-evaluate computational model. Further, post-processing the augmented

PCE model allows for the definition of imprecise Sobol’ indices, an original contribution of the

author. Similar as for free p-boxes, the same meta-model can be reused for a pinching analysis.

For structural reliability analyses, a combination of AK-MCS and a Kriging-based optimization

algorithm (which is similar to AK-MCS) allows for an efficient estimation of failure probabilities.

The same benchmark applications are addressed using free and parametric p-boxes to compare

the two types of p-boxes. Due to the same meta-modelling tools used in both p-box cases, the

number of runs of the computational model are comparable.

11.1.4 Applications

The benchmark applications in the theory chapters are used to validate the proposed algorithms.

They consist of mainly analytical functions or inexpensive-to-evaluate finite element models (e.g.

truss structures). Hence, the reference values are generally available by using crude Monte Carlo

simulation.

In the case studies, however, the application examples are more complex and often not

solvable by crude Monte Carlo simulation. Reasons are the large computational costs for a

single evaluation of the computational model as well as the large dimensionality of the input

vector. Hence, a reference solution is not available. As a substitute, a validation set is used

to estimate the accuracy of the proposed algorithms and, in particular, of the meta-models

involved.

The NASA uncertainty quantification challenge provides a realistic, pure black-box compu-

tational model originating in aeronautics. All aspects of the general uncertainty quantification

framework are addressed, including the definition of p-boxes, imprecise uncertainty propagation,

imprecise structural reliability analysis, and imprecise sensitivity analysis. The main challenge

lies in the iterative analysis of the problem, where the previous analysis influences the next

analysis. Full advantage is taken from this dependence structure. The uncertainty model of the

input is constantly refined by reducing the number of variables in the input vector. This allows

for an efficient estimation of the statistics of interest in the final analyses.

Geotechnical engineering is a prime example for uncertainty quantification, including a mix

of aleatory and epistemic uncertainties. Hence, four typical application examples of increasing

complexity are analysed. Additional to the randomness of a parameter, spatial variability is

added as a source of aleatory uncertainty. Using the theory of random fields, discretization

algorithms are discussed to simulate realizations of the random fields. Another aspect of the

complexity of geotechnical applications is the finite element models (FEM) typically involved.

The efficient use of FEM requires a workflow including different pieces of software (e.g. UQLab

and COMSOL Multiphysics). The proposed two-level meta-modelling approach, however,

allow for an efficient estimation of various statistics of interest, such as sensitivity indices, failure

probabilities and response p-boxes.
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11.2 Outlook

The proposed algorithms offer efficient tools for uncertainty quantification in the context of p-

boxes. A number of possible extensions and applications can be envisioned, a subset of which

is described in the following.

11.2.1 Fuzzy distributions

In the first part of this thesis, the p-box is determined as the optimal uncertainty concept to deal

with the target problem statement. In some cases however, an even more general uncertainty

concept might be appropriate. As seen in Chapter 2, p-boxes are a special case for fuzzy

distributions. When replacing the intervals by membership functions, p-boxes convert to fuzzy

distributions. In particular, free p-boxes generalize to fuzzy distributions whereas parametric

p-boxes generalize to fuzzy hierarchical models.

In the context of fuzzy distributions, uncertainty quantification is more cumbersome than in

the case of p-boxes due to the more general uncertainty concept. However, due to similarities, the

meta-modelling algorithms proposed in this thesis can be modified and extended to fit the needs

of fuzzy distributions. Then, an efficient way to handle fuzzy distributions appears affordable.

11.2.2 Imprecise correlation structure

The computational model maps an input vector to a quantity of interest. In this thesis, it is

assumed that the input variables are independent in order to be able to apply meta-models

without the need of complex isoprobabilistic transforms. In practice, however, it often appears

that certain variables are correlated. As an example, the friction angle and cohesion of a soil

are normally negatively correlated, as seen in the geotechnical examples in Section 10.5.

In the context of probability theory, a number of correlation measures are popular, including

Pearson’s correlation coefficient, Spearman’s correlation coefficient, Kendall’s τ -coefficient, and

copula theory (Nelsen 2006). The correlation coefficients consists of a single, bounded value

that describes the correlation between two input variables. The copula theory describes the

dependence between random variables by a function which is characterized by a set of copula

parameters.

In the context of imprecise probabilities and in particular p-boxes, few publications are avai-

lable in the literature that are concerned with dependence, see e.g. Ferson & Troy Tucker (2006).

The authors consider the following cases for free p-boxes: (i) independence, (ii) comonotonicity

(maximal dependence), (iii) countermonotonicity (minimal dependence), (iv) linear relations-

hip and correlation within specified interval, (v) linear relationship with unknown correlation,

(vi) signed but otherwise unknown dependence, and (vii) unknown dependency (including any

non-linear relationship). In this thesis, a simple application of imprecise correlation structures

is discussed in the NASA challenge set in Chapter 9. The linear correlation between two input

parameters is modelled by introducing an epistemic variable.

Although there are a few publications and examples available, there is still a need to cha-

racterize correlation in the context of imprecise probabilities by a thorough framework. In this

context, the meta-modelling-based algorithms proposed in this thesis could be extended to allow

for efficient analyses in the context of correlated input variables.
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11.2.3 Structural reliability methods

The estimation of failure probabilities and quantiles can be a non-trivial task. In this thesis,

Monte Carlo simulation is used to estimate failure probabilities and quantiles, due to its robus-

tness with respect to input distributions and shape of the limit-state function. The downside of

Monte Carlo simulation is its low convergence rate and hence its low efficiency when dealing with

engineering problems. The reason is that failure probabilities are generally low and quantiles of

interest are extreme.

Monte Carlo simulation works well for failure probabilities in the range of 10−1 to 10−5.

When failure probabilities are smaller, the number of samples required for an accurate simu-

lation result becomes too large for practical purposes. Hence, more sophisticated methods,

such as importance sampling and subset simulation may be used. However, they still require

a comparably large number of model evaluations. Hence, a number of publications discuss the

combination of advanced structural reliability analyses in combination with meta-models, as

described in Section 5.1.

In the context of imprecise probabilities, only a few publications are available. Especially,

the consistent use of meta-models is rare in the case of imprecise structural reliability analysis.

As an example, Z. Zhang, Jiang, Han, et al. (2014) uses radial-basis expansions in combination

with evidence theory. Based on the proposed two-level meta-modelling frameworks for free

and parametric p-boxes, a modified structural reliability analysis can be imagined when using

importance sampling or subset simulation instead of crude Monte Carlo simulation.

11.2.4 Robust design optimization

Engineers are concerned with adequate design of systems and processes. However, as uncertain-

ties are omnipresent at the design stage as well as at the operation stage, this is a non-trivial

task. Reliability-based design optimization (RBDO) aims at designing a physical or engineer-

ing system under a number of constraints which include reliability targets. Attempts, such as

by Moustapha (2016) and Moustapha et al. (2016), have been made to combine RBDO with

meta-models. To the author’s knowledge, however, the analyses are limited to probabilistic

approaches. Hence, RBDO takes into account the natural variability of input parameters for

searching the optimal design.

A different concept in design optimization is robust design optimization (RDO) (Mulvey,

Vanderbei, & Zenios 1995; Beyer & Sendhoff 2007). A robust design is a design for which the

sensitivity with respect to uncertainties in the definition of the system and its input variables is

small. In the context of p-boxes, this can relate to designs which are insensitive to the epistemic

uncertainty in the input parameters. Hence, RDO could account for the epistemic uncertainties

in the problem definition as opposed to the aleatory uncertainty in RBDO.

The p-box framework and the related algorithm presented in this thesis could be extended

to a combination of the traditionally disjoint RBDO and RDO. A robust reliability-based design

optimization (RRBDO) could search for the optimal design given reliability-based constraints

and imprecise input parameters. In particular, the modelling of input parameters as p-boxes

would lead to imprecise failure probabilities in the assessment of the reliability constraints. The

handling of such imprecise quantities is then related to the concepts of RDO.
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11.2.5 Risk assessment

In this thesis, probability distributions are the main measure of importance when comparing

different realizations of an input variable. In the case of structural reliability analysis, the

measure of importance is also related to whether a sample is in the failure domain or in the

safety domain. Hence, the measure is a binary value represented by the indicator function I. In

practical examples, however, decisions are made based on a utility function, such as the potential

consequences in e.g. financial terms or number of fatalities. The utility function is a complex

function in the general case. Hence, the associated risk can be defined as the expected utility as

follows:

R = E [u] =

∫

DX
fX (x) u (x) dx, (11.1)

where u (x) denotes the utility for a given realization x ∈ DX , fX (x) is the PDF of variable X

and R denotes the risk. Hence, the measure of importance in this application is the product of

utility and PDF value.

A modification of the proposed adaptive Kriging approach can be imagined in order to

efficiently estimate the overall risk instead of the failure probability. The associated learning

function could focus on exploring areas of large risk contribution rather than areas close to the

limit-state surface. Moreover, the use of p-boxes rather than probability distributions could be

used to analyse the sensitivity of the expected utility/risk, in particular, in situations where

information is scarce.

11.2.6 Bayesian inference

In this thesis, the focus lies on so-called forward propagation problems, including crude uncer-

tainty propagation, failure probability estimation, and quantile estimation. Sensitivity analysis

is the only method discussed in this thesis that relates the uncertainty in the response quan-

tity of interest backwards to the uncertainty in the input variables. In fact, sensitivity analysis

decomposes the response uncertainty according to contributions of the input uncertainties.

A common situation in practice is, however, that additional data becomes available at a later

stage of the analysis. Then, the initial uncertainty model can be updated to make an improved

prediction of the quantity of interest. Bayesian inference is a popular tool to do so (Gelman

et al. 2009; Nagel & Sudret 2016a). Chapter 2 shows a simple example of Bayesian inference

and mentions the term robust Bayesian inference. In conventional Bayesian inference the prior

is defined as a probability distribution. In robust Bayesian inference (Berger 1985), a bunch

of prior distributions are considered and used in a conventional Bayesian inference. Each prior

leads to a potentially different posterior distribution given the observed data.

In the context of this thesis, the bunch of prior distributions could be modelled by a p-box.

Then, the associated bunch of posterior distributions could also be modelled by a p-box. For

estimating the posterior p-box efficiently, the proposed two-level algorithms could be applied

to meta-model the forward model used to compute the likelihood in the Bayesian inference

algorithm. Moreover, the likelihood could be approximated by a meta-model itself as discussed

in Nagel & Sudret (2016b).



APPENDIX A

Notations

The following lists summarize the notations in the theory sections of this

thesis. For the applications section, some letters and symbols might denote a

physical property required to define the computational model. These double

usages are, however, not mentioned here for the sake of clarity.

Symbol Description

A Area of a p-box

a Vector of PC-coefficients

A Multi-index set in PCE

Bel (·) Belief function

B Beta distribution

C Input vector with uniformly distributed components Ci ∈ [0, 1]

c Realization of C

C Experimental design of C

c Experimental design sample in C

CoV [·] Coefficient of variation

D Total variance of a computational model

Dα
N Kolmogorov-Smirnov (KS) critical value for sample size N and confidence level α

d Geographical dimensionality of a random field

D Domain

E Event, subset of Ω

Ec Complementary event to E
E [·] Expected value operator

EI(·) Expected improvement function

Err Absolute error measure

Erremp Empirical error

Errgen Generalization error

ErrLOO Leave-one-out error

err Relative error measure

erremp Relative empirical error

errgen Relative generalization error
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errLOO Relative leave-one-out error

F (·) Cumulative distribution function (CDF)

F Lower bound of a p-box, belief

F Upper bound of a p-box, plausibility

f(·) Probability density function (PDF)

f ′(·) Prior PDF

f ′′(·) Posterior PDF

F Information matrix

F Collection of events in Ω (σ-algebra)

f(·) Trend functions in Kriging

G Limit-state function

GU Gumbel distribution

H Random field

I(·) Indicator function

I Identity matrix

I Multi-index set

J Event in Ω, subset of Ω

K Number of nodal points

k Multi-index in the slicing algorithm

K Multi-index set in the slicing algorithm

L(·) Likelihood function

LN Lognormal distribution

M Dimensionality of the input vector to M or G
m Basic probability assignment, probability mass

M Computational model

Mf Limit-state margin domain

N Experimental design size

N0 Initial experimental design size

N (1) First-level meta-model experimental design size

N (2) Second-level meta-model experimental design size

N (EGO) EGO experimental design size

n Number of samples in a validation set

nA Number of multi-indices α ∈ A
nf Number of failed samples in Monte Carlo simulation

nMCS Number of samples in a Monte Carlo simulation

nph Number of phantom points

nT Number of functions in the trend of a universal Kriging model

nX Number of discretization intervals in X in the slicing algorithm

nY Number of resulting intervals for Y in the slicing algorithm

nζ Number of random variables in an EOLE discretization of a random field

N Normal (Gaussian) distribution

N Space of positive integer numbers

P (·) Candidate polynomial

Pf Failure probability

Pm Probability of misclassification

p Maximal total polynomial degree

Pl (·) Plausibility function
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P (·) Probability measure

P Response values to experimental design T
q Parameter of the q-norm

qα α-quantile

R(·) Correlation function

r Parameter of beta distribution

R Correlation matrix

R Space of real numbers

Si First order Sobol’ indices of the i-th variable

S
(T)
i Total order Sobol’ indices of the i-th variable

s Parameter of beta distribution

S Candidate set in AK-MCS and APCK-MCS

Std [·] Standard deviation

T (·) Isoprobabilistic transform

t Quantile value of the t-distribution

U U -function in adaptive experimental design algorithm

U Uniform distribution

unc (·) Uncertainty measure

V Independent input variables in the augmented input space

V Experimental design in the augmented space

v Realization of V

v Experimental design sample point in the augmented space

Var [·] Variance

VoI [·] Value of information

W Response variable in the augmented space

w Realization of W

W Vector of response values corresponding to experimental design V

X Input vector

X̃ Auxiliary input vector

x Realization of X

Y Response variable

y Realization of Y

yadm Admissible response value

y0 Limit-state parameter

Y Vector of response values corresponding to experimental design X
Y Composed vector of response values in EOLE

Z(·) Gaussian process

Symbol Description

α Membership function value and basis of α-cuts

α Multi-index in PCE

βHL Hasofer-Lind reliability index

βC Cornell’s reliability index

β Vector of coefficients in Kriging

Γ(·) Gamma function

γ Confidence level parameter
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∆ Difference/range operator

δ Kronecker delta

ε Threshold value

εEI Threshold value for the EI function in EGO

εPf Threshold value for APCK-MCS when estimating failure probabilities

εqα Threshold value for APCK-MCS when estimating quantiles

ζ Standard normal variable

η Coefficient of variation

Θ Vector of epistemic parameter intervals

θ Vector of epistemic parameters

ϑ Hyper-parameters in Bayesian hierarchical model

λ Eigenvalue of the covariance matrix Σ

µ Mean value

µ
Ŷ

(·) Prediction mean value in Kriging

Ξ(·) Membership function of a fuzzy variable

ξ(·) Membership function of a fuzzy integral

ρ Correlation length

ρ Vector of correlation lengths

Σ Covariance matrix

σ Standard deviation

σ
Ŷ

(·) Prediction standard deviation in Kriging

T Experimental design of Θ

τ Experimental design sample in T
Φ(·) Cumulative distribution function (CDF) of a standard normal variable

φ(·) Candidate function

ϕ(·) Probability density function (PDF) of a standard normal variable

X1 Dataset used in Chapter 2

X Experimental design of X

χ2 Quantile value of the χ2 (chi-square) distribution

χ Experimental design sample point in X
ψ(·) Multivariate orthogonal polynomial

Ω Event space

ω Elementary event



APPENDIX B

Acronyms

The following list summarizes the acronyms used multiple times throughout

the thesis. In the chapters, the individual acronyms are introduced properly

where mentioned first.

Acronym Description

AK-MCS Active learning reliability method combining Kriging and Monte Carlo

simulation

ANOVA Analysis of variance

APCK-MCS Adaptive-Polynomial-Chaos-Kriging Monte Carlo simulation

BPA Basic probability assignment

CDF Cumulative distribution function

CI Confidence interval

CPU Central processing unit

CoV Coefficient of variation

CV Cross validation

DGSM Derivative-based global sensitivity measures

DS Dempster-Shafer

EFF Expected feasibility function

EGO Efficient global optimization

EI Expected improvement

EOLE Expansion optimal linear estimation method

FE Finite element

FEM Finite element model

FORM First order reliability method

FOSM First order second moment method

FOS Factor of safety

GP Gaussian process

ISA Imprecise sensitivity analysis

ISRA Imprecise structural reliability analysis

IUP Imprecise uncertainty propagation

IUQ Imprecise uncertainty quantification
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KL Karhunen-Loève

KS Kolmogorov-Smirnov

LAR Least angle regression

LARS Least angle regression selection

LF Learning function

LHS Latin-hypercube sampling

LOO Leave-one-out

LSF Limit-state function

LSS Limit-state surface

MC Monte Carlo

MCS Monte Carlo simulation

ML Maximum likelihood

nMCS Nested Monte Carlo simulation

OK Ordinary Kriging

OPCK Optimal Polynomial-Chaos-Kriging

p-box Probability-box

PC Polynomial chaos

PCE Polynomial chaos expansions

PCK Polynomial-Chaos-Kriging

PC-Kriging Polynomial-Chaos-Kriging

PDF Probability density function

QoI Quantity of interest

RBDO Reliability-based design optimization

RDO robust design optimization

RF Random field

SA Sensitivity analysis

SDOF Single degree of freedom

SFEM Stochastic finite element method

SRA Structural reliability analysis

SSFEM Spectral stochastic finite element method

SPCK Sequential Polynomial-Chaos-Kriging

UCB Upper confidence bound

UP Uncertainty propagation

UQ Uncertainty quantification

VoI Value of information



APPENDIX C

Autocorrelation functions

An essential part of Kriging meta-models is the choice of autocorrelation

function describing the Gaussian process. A number of common autocorre-

lation functions are presented here. Furthermore, different methodologies to

assemble the one-dimensional autocorrelation functions in multi-dimensional

examples are shown.

C.1 Popular autocorrelation functions

Consider a one-dimensional input space DX . The autocorrelation function describes the corre-

lation between two points. Various formulations of autocorrelation functions can be found in

the literature. Some of the widely used autocorrelation functions are listed here (see also Sacks

et al. (1989) and Dubourg (2011)):

• Linear autocorrelation function:

R(x, x′; ρ) = max

(
0, 1− |x− x

′|
ρ

)
, (C.1)

where ρ is the so-called correlation length. The correlation is limited to a defined range

described by the parameter ρ. This corresponds to the assumption that there is no corre-

lation beyond a distance ρ in each dimension.

• Exponential autocorrelation function:

R(x, x′; ρ) = exp

(
−|x− x

′|
ρ

)
. (C.2)

• Squared exponential autocorrelation function:

R(x, x′; ρ) = exp

(
−
(
xi − x′i
ρ

)2
)
. (C.3)

This autocorrelation function is also called Gaussian autocorrelation function.
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• Matérn autocorrelation function:

R(x, x′; ρ, ν) =
1

2ν−1 Γ(ν)

(√
2ν
|x− x′|

ρ

)ν
κν

(√
2ν
|x− x′|

ρ

)
, (C.4)

where ν ≥ 1/2 is the shape parameter, Γ(·) is the Euler Gamma function and κν(·) is the

modified Bessel function of the second kind (also known as Bessel function of the third

kind). In practice the values ν = 3/2 and ν = 5/2 are the most popular forms. The

formulation then simplifies into (Roustant, Ginsbourger, & Deville 2012):

R(x, x′; ρ, ν = 3/2) =

(
1 +

√
3 |x− x′|
ρ

)
exp

(
−
√

3 |x− x′|
ρ

)
, (C.5)

R(x, x′; ρ, ν = 5/2) =

(
1 +

√
5 |x− x′|
ρ

+
5 (x− x′)2

3 ρ2

)
exp

(
−
√

5 |x− x′|
ρ

)
. (C.6)

• Dirac (a.k.a. nugget) autocorrelation function:

R(x, x′) = δ(x− x′), (C.7)

where δ is the Dirac function which is δ = 1 for x = x′ and 0 otherwise. Note that the

Dirac autocorrelation function has no correlation hyper-parameter ρ.

Graphs of the behaviour of the various autocorrelation functions can be found in e.g. Dubourg

(2011).

C.2 Multi-dimensional correlation models

Consider now that the input domain DX is M -dimensional. Then, the correlation of two points

depends on their distance to each other. In the literature, there are a number of models available

to model multi-dimensional correlation, including separable, ellipsoidal, and additive correlation

models.

C.2.1 Separable autocorrelation functions

Separable autocorrelation functions are a popular choice and are characterized as the product

of component-wise correlations:

R(x,x′;ρ) =
M∏

i=1

R(xi, x
′
i; ρi), (C.8)

where ρ = (ρ1, . . . , ρM ) is the vector of correlation lengths corresponding to the input variables

Xi, i = 1, . . . ,M . As an example, the linear autocorrelation function reads then:

R(x,x′;ρ) =
M∏

i=1

max

(
0, 1− |xi − x

′
i|

ρi

)
. (C.9)

Separable autocorrelation functions work well for low-dimensional problems. Hence in this

thesis, separable autocorrelation models are used in all examples when calibrating a Kriging

model or a random field.
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C.2.2 Ellipsoidal autocorrelation functions

Apart from the separable autocorrelation functions, ellipsoidal autocorrelation functions assume

that the correlation depends on the distance between x and x′ directly. The corresponding

correlation functions then read (Rasmussen & C. Williams 2006):

R(x,x′;ρ) = R(h), h =

√√√√
M∑

i=1

(
xi − x′i
ρi

)2

, (C.10)

where h is the weighted distance of x and x′. As an example, the linear autocorrelation function

reads then:

R(x,x′;ρ) = max (0, 1− h) . (C.11)

C.2.3 Additive autocorrelation functions

Recently, new additive autocorrelation functions were proposed (Ginsbourger, Durrande, &

Roustant 2013; Durrande, Ginsbourger, & Roustant 2012; Duvenaud, Nickisch, & Rasmussen

2012; Durrande, Ginsbourger, & Roustant 2013) which seem to be suitable for high-dimensional

problems. Additive kernels inherit a summation in the autocorrelation function instead of a

multiplication:

R(x,x′;ρ) =
1

M

M∑

i=1

R(xi, x
′
i; ρi). (C.12)

As an example, the linear autocorrelation function reads then:

R(x,x′;ρ) =
1

M

M∑

i=1

max

(
0, 1− |xi − x

′
i|

ρi

)
. (C.13)

By choosing adequate additive kernels, the behaviour of the Gaussian process can be modelled

more accurately (Duvenaud, Nickisch, & Rasmussen 2012).





APPENDIX D

O’Hagan function

The O’Hagan function is defined as f6(x) = aT1x+ aT2 sin (x) + aT cos (x) +

xTQx (Oakley & O’Hagan 2004). This appendix provides the numerical

values of {a1,a2,a3,Q}.

a1 =




0.0118

0.0456

0.2297

0.0393

0.1177

0.3865

0.3897

0.6061

0.6159

0.4005

1.0741

1.1474

0.7880

1.1242

1.1982




, a2 =




0.4341

0.0887

0.0512

0.3233

0.1489

1.0360

0.9892

0.9672

0.8977

0.8083

1.8426

2.4712

2.3946

2.0045

2.2621




, a3 =




0.1044

0.2057

0.0774

0.2730

0.1253

0.7526

0.8570

1.0331

0.8388

0.7970

2.2145

2.0382

2.4004

2.0541

1.9845



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Q
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APPENDIX E

Learning functions

Learning functions are the core of Kriging meta-models with adaptive expe-

rimental design strategies. This appendix chapter illustrates four learning

function found in the literature. Their comparison has been published pre-

viously in Schöbi & Sudret (2014e).

E.1 Overview

A learning function (LF) of a candidate state x estimates the expected value of information

gained with respect to the objective function when point x is added to the experimental design

X of the (Kriging) meta-model. In the following, four learning functions are presented, namely

the expected feasibility function, the U -function, the expected improvement function and the

Gaussian process upper confidence bounds function. All of them are popular choices in adaptive

experimental design algorithms and have been applied to optimization algorithms as well as to

structural reliability problems.

The presentation of these four functions focuses on the task of estimating a failure probability,

which is in principle a classification problem. The input domain is split into a safety and a failure

domain. It is assumed that the failure domain is defined as Y ≤ y0 and the safety domain as

Y > y0.

E.2 Expected feasibility function

The expected feasibility function (EFF) (Bichon, Eldred, et al. 2008) originates from the efficient

global reliability analysis algorithm (EGRA). In the context of structural reliability analysis,

EFF provides an indication of how well the true value of the response is expected to satisfy the

equality constraint G(x) = y0. This expectation can be calculated by integrating over a region

in the immediate vicinity of the limit-state parameter, say y0 ± ε:

EFF
(
Ŷ (x)

)
=

∫ y0+ε

y0−ε
(ε− |y0 − y|) fŶ (y) dy, (E.1)

where f
Ŷ

is the PDF of the Gaussian variable Ŷ (x), y0 is the threshold value and ε is a tuning

parameter with a small value. In the context of Kriging, Ŷ (x) is a Gaussian variable with mean
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value µ
Ŷ

(x) and standard deviation σ
Ŷ

(x). Thus the integral can be computed analytically:

EFF(x) =

(
µ
Ŷ

(x)− y0

) [
2 Φ

(
y0 − µŶ (x)

σ
Ŷ

(x)

)
− Φ

(
(y0 − ε)− µŶ (x)

σ
Ŷ

(x)

)
− Φ

(
(y0 + ε)− µ

Ŷ
(x)

σ
Ŷ

(x)

)]

− σ
Ŷ

(x)

[
2ϕ

(
y0 − µŶ (x)

σ
Ŷ

(x)

)
− ϕ

(
(y0 − ε)− µŶ (x)

σ
Ŷ

(x)

)
− ϕ

(
(y0 + ε)− µ

Ŷ
(x)

σ
Ŷ

(x)

)]

+ ε

[
Φ

(
(y0 + ε)− µ

Ŷ
(x)

σ
Ŷ

(x)

)
− Φ

(
(y0 − ε)− µŶ (x)

σ
Ŷ

(x)

)]
, (E.2)

where Φ(·) is the standard normal cumulative distribution function, ϕ(·) is the standard normal

PDF and y0 describes the limit-state threshold value (which is equal to y0 = 0 in the case of

failure probability estimation). In EGRA, the expected feasibility function is built with a range

ε that depends on the point x. Usually, the value ε = 2σ
Ŷ

(x) is used, which describes the region

or interest around y0, i.e. y0± 2σ
Ŷ

(x). Note that ε is a tuning parameter of the EFF algorithm

and can thus be tuned towards points in the vicinity of the limit-state surface or towards a more

global search.

The best next point of the input space is then determined by:

x∗ = arg max
x∈S

(EFF(x)), (E.3)

where S describes the set of candidate points in the enrichment.

Denote t = µ
Ŷ

(x)− y0 and s = σ
Ŷ

(x). It follows that ε = 2s and that EFF in Eq. (E.2) can

be formulated in terms of {t, s}:

ẼFF(t, s) = t

[
2 Φ

(−t
s

)
− Φ

(−t− 2s

s

)
− Φ

(−t+ 2s

s

)]

− s
[
2ϕ

(−t
s

)
− ϕ

(−t− 2s

s

)
− ϕ

(−t+ 2s

s

)]

+ 2s

[
Φ

(−t+ 2s

s

)
− Φ

(−t− 2s

s

)]
. (E.4)

Figure E.1 displays the value of ẼFF for an input variable x whose t ranges in the interval

[−10, 10] and whose s takes the values {1, 2, 3}. Note that the curves are symmetric around the

value t = 0 (i.e. µ
Ŷ

(x) = y0) and resemble Gaussian probability density functions.

E.3 U-function

The U -function and the related probability of misclassification Pm are introduced in Section 5.3.

Note that the best next point of the input space is then determined by:

x∗ = arg min
x∈S

U (x) , (E.5)

as opposed to other criteria in this chapter.

For illustration purposes, the variables {t, s} are used to transform the U -function and the

probability of misclassification into:

Ũ(t, s) =
|t|
s
, P̃M = Φ

(
−|t|
s

)
. (E.6)
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Figure E.1: Expected feasibility function ẼFF.

Figure E.2 summarizes the Ũ -function and the corresponding probability of misclassification

P̃m. Note that the maximum value of the probability of misclassification is max P̃m = 0.5 for

t = 0 (i.e. µ
Ŷ

(x) = y0), which is independent of s. Thus the probability of misclassification is

bounded within the interval Pm ∈ [0, 0.5].
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Figure E.2: Ũ -function and the corresponding probability of misclassification P̃m.

E.4 Expected improvement function

Ginsbourger, Rosspopoff, et al. (2013) proposed an expected improvement method (EI) using a

Kriging meta-model in order to find the minimum of a computational model output when the

input varies within a range. It is based on a formulation by Jones, Schonlau, & Welch (1998)

for a minimization operation:

EI(x) = E [max(µmin −G, 0)] , (E.7)

which simplifies into:

EI(x) = (µmin − µŶ (x)) Φ

(
µmin − µŶ (x)

σ
Ŷ

(x)

)
+ σ

Ŷ
(x) ϕ

(
µmin − µŶ (x)

σ
Ŷ

(x)

)
, (E.8)
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where µmin is the minimum value of the prediction mean values, i.e. µmin = minx∈S µŶ (x). This

minimization can be adapted to classification problems by taking the absolute Kriging prediction

values, replacing the minimum value µmin with zero and replacing µ
Ŷ

(x) with µ
Ŷ

(x) − y0 in

order to foster the closeness to the threshold y0.

EI(x) =
(
−|µ

Ŷ
(x)− y0|

)
Φ

(−|µ
Ŷ

(x)− y0|
σ
Ŷ

(x)

)
+ σ

Ŷ
(x) ϕ

(−|µ
Ŷ

(x)− y0|
σ
Ŷ

(x)

)
. (E.9)

The goal of adaptive experimental design algorithms is to accurately meta-model the limit-

state function, but also to find a representative subset of input samples leading to a response

curve close to the reference, i.e. to small misfits. Thus, Ginsbourger, Rosspopoff, et al. (2013)

modified the original formulation in Eq. (E.8) by using the quantile value qα instead of the

minimum value µmin of the absolute prediction mean values. This lowers the repulsion effect of

the current best point, i.e. the best next point shifts to the area of the quantile instead of the

global maxima. The modified equation including the threshold y0 reads then:

EIα(x) =
(
qα − |µŶ (x)− y0|

)
Φ

(
qα − |µŶ (x)− y0|

σ
Ŷ

(x)

)
+ σ

Ŷ
(x)ϕ

(
qα − |µŶ (x)− y0|

σ
Ŷ

(x)

)
,

(E.10)

where qα is the empirical α-quantile of the set of absolute shifted prediction mean values |µ
Ŷ

(x)−
y0|. The tuning of α distinguishes between local and global search. When α is set to zero, then

qα coincides with the minimum of |µ
Ŷ

(x)− y0|, leading back to Eq. (E.9).

The best next sample is then determined by choosing the maximum EIα-value among the

samples in the sample set S:

x∗ = arg max
x∈S

(EIα(x)) .

Consider the expected improvement method as a function of {t, s} which reads:

ẼIα = (q̃α − |t|) Φ

(
q̃α − |t|

s

)
+ sϕ

(
q̃α − |t|

s

)
, (E.11)

where q̃α is the empirical α-quantile of the set of {|ti|}. Figure E.3 illustrates the behaviour of

the expected improvement function according to Eq. (E.11). Figures E.3(a) and E.3(b) show

the cases of q̃α = 0 and q̃α = 1, respectively. The plots show that the expected improvement is

positively correlated to s and negatively correlated to |t|.

E.5 Gaussian process upper confidence bounds (GP-UCB)

Srinivas et al. (2012) proposed the Gaussian process upper confidence bounds approach (GP-

UCB) primarily to find the maximum of a function. In the context of classification problems,

the general formulation can be slightly modified to find points which are either close to the

limit-state surface or whose prediction is highly uncertain, or both. The modified equation

reads:

UCB(x) = −|µ
Ŷ

(x)− y0|+
√
βN σŶ (x), (E.12)

x∗ = arg max
x∈S

UCB(x), (E.13)

where
√
βN is the parameter distinguishing between exploration (global search) and exploitation

(local search). The special feature of this learning function is the evolution of the function values
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Figure E.3: Expected improvement learning function ẼIα according to Eq. (E.11).

depending on the number of samples in the growing experimental design. In Srinivas et al. (2012),

and after Dani, Hayes, & Kakade (2008), two formulations are suggested for the parameter βN :

β
(1)
N = 2 log(|S|N2 π2/6δ) (E.14)

β
(2)
N = 2 log(M2 2π2/(3δ)) + 2M log

(
N2M br

√
log(4M c/δ)

)
, (E.15)

where S is a set of a Monte Carlo population of the input space, |S| is its cardinality, N is

the current number of samples in the experimental design, 0 < δ < 1 is a tuning parameter,

M is the number of dimensions in the input space and {b, c} are additional tuning parameters.

Note that βN changes with every added sample, as N increases in every iteration of an adaptive

meta-modelling technique. With increasing number of samples, the variance of the prediction

points becomes more important compared to the prediction mean value and βN becomes larger.

Furthermore, the tuning parameters {b, c, δ} have a considerable effect on the result.

These two formulations of βN originate from the context of decision planning for a bandit

problem. The goal is to optimally decide what move to make in the next time step to minimize

the regret, which is defined as the difference between maximum possible reward and the currently

achieved reward ({regret} = {max. possible reward} − {achieved reward}). This resembles a

global search for the maximum possible reward, i.e. smallest regret (Dani, Hayes, & Kakade

2008).

Let us consider UCB as a function of {t, s}:

ŨCB(t, s) = −|t|+
√
βN · s. (E.16)

Figure E.4 shows some realizations of the ŨCB learning function on a one-dimensional example.

The following settings are chosen for Figure E.4(a): the learning function is applying β
(1)
N defined

in Eq. (E.14), s = 1, the candidate sample set has a size of |S| = 104 and δ = 1. The different

lines represent different number of samples N in the current experimental design. As the number

of samples increases, the UCB-function becomes higher, thus allowing for more exploration.

Figure E.4(b) shows the analogous figure for β
(2)
N (see Eq. (E.15)). The tuning parameters

are set to b = 1, c = 1 and δ = 1. It is clear that the role of β
(2)
N is similar to that of β

(1)
N .



212 APPENDIX E. LEARNING FUNCTIONS

-10 -5 0 5 10

t

-8

-6

-4

-2

0

2

4

6

Ũ
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Figure E.4: ŨCB learning function – comparison of the two βN formulations (s = 1, δ = 1,

|S| = 104, b = 1, c = 1).

E.6 Discussion

In the previous section different learning functions have been presented. In practice each of them

will lead to a different best next point x∗. In this section, the learning functions are compared

on a specific example to highlight their behaviour.

For the following discussion, let us consider the so-called hat function, which is defined as

(see also Eq. (5.23)):

y = fhat(x) = 20− (x1 − x2)2 − 8 · (x1 + x2 − 4)3, (E.17)

where the two-dimensional input parameters xi are modelled by standard Gaussian variables,

i.e. Xi ∼ N (0, 1), i = 1, 2.

The function is meta-modelled with an ordinary Kriging model whose experimental design

is shown in Figure E.5(a). This figure also shows the exact contour of the limit-state surface for

y = 0. Figure E.5(b) shows the contour plot of the prediction mean values µ
Ŷ

(x) of the calibrated

Kriging model and the current estimate of the limit-state function, whereas Figure E.5(c) shows

the corresponding prediction standard deviation σ
Ŷ

(x) of the same model.

Figure E.6 shows the contour plot of the four previously discussed learning functions applied

to this example. The blue markers represent the experimental design, in particular the ”+”

markers denote the samples of which Y(i) > 0 and the circles denote the samples of which Y(i) <

0. The solid dark line represents the current estimate of the limit-state surface, whereas the

grey dashed line represents the exact limit-state surface. The learning functions are represented

by the grey-scaled colour regions, where the darker regions are the regions of interest for finding

the next point for enrichment. The green and red contour lines represent the zero values for

{µ
Ŷ

(x) − 2 · σ
Ŷ

(x) = 0} and {µ
Ŷ

(x) + 2 · σ
Ŷ

(x) = 0} respectively and provide the confidence

interval of the estimate of the limit-state surface.

Figures E.6(a) to E.6(d) display the EFF, U -function, expected improvement (EI) and the

UCB learning functions, respectively. Note that for EFF, EI and UCB, the plotted values are

normalized by the standard deviation of the output variable Y in order to get dimensionless

values, e.g. EFF/Std [Y ]. This results in comparable values for all four learning functions.

When comparing the four learning functions it becomes visible that the best next point x∗

will be determined at different coordinates depending on the choice made. EFF, EI and UCB
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Figure E.5: Hat function – Kriging model.

tend to identify interesting samples along the boundaries of the presented domain in Figure E.6,

whereas the U -function will select a point inside the domain, more specifically in the limit-state

margin Mf , which lies between the group of “+” and the group of “◦”.

Note that for the UCB function in Figure E.6(d), samples around the existing experimental

design are also of interest due to the formulation of the learning function and the relative

importance of prediction mean µ
Ŷ

(x) and standard deviation σ
Ŷ

(x). In contrast, the other

three learning functions assess samples close to the experimental design as not interesting (this

is seen from the white regions around the experimental design samples). This behaviour can

also be observed when comparing learning functions and the red and green contour lines in the

figures. EFF, U -function and expected improvement function focus on the region Mf , i.e. on

the region between the green and red contour lines. In the case of UCB, this distinction is not

as clear as in the other three cases.
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(a) EFF/Std[Y] (b) U -function

(c) EIα/Std [Y ] with α = 0 (d) UCB/Std [Y ] with β
(1)
N

Figure E.6: Hat function – Different learning functions of the same Kriging meta-model.



APPENDIX F

Random fields

This chapter introduces the theory of random fields and some basic algo-

rithms to generate realizations of random fields. Furthermore, conditional

random fields are defined in the case where spatial data is available. For this

case, a modification of the conventional EOLE is discussed, which has been

published in Schöbi & Sudret (2015a).

F.1 State of the art

Random fields (RF) theory is a mathematical concept which allows the modelling of uncertainties

of physical properties in continuous media with respect to randomness and spatial variability

(Sudret & Der Kiureghian 2000). Basic definitions and general properties can be found in Lin

(1967) and E. Vanmarcke (1983).

In engineering disciplines, an important application of the RF theory are the so-called sto-

chastic finite element methods (SFEM) which aim at solving a finite element model (FEM)

subject to randomness in the formulation of the finite element model itself. SFEM is generally

based on sampling-based approaches, where realizations of the random field are generated and

the resulting FE simulation is carried out. Hence, an important topic in the literature on random

fields is discretization procedures.

Discretization methods allow for representing random fields in a way that is suitable for a

subsequent sampling. Indeed, random fields may be considered as an infinite set of random

variables, which can thus not be sampled before some mathematical treatment. The discreti-

zation methods can be divided into three groups: point discretization, average discretization,

and series expansion methods (C. Li & Der Kiureghian 1993; Ditlevsen 1996; Matthies et al.

1997). The point discretization methods include the midpoint method (MP) (Der Kiureghian &

Ke 1988), the shape function method (SF) (Liu, Belytschko, & Mani 1986b,a), the integration

point method (Matthies et al. 1997), and the optimal linear estimation method (OLE) (C. Li

& Der Kiureghian 1993). The average discretization methods include the spatial average met-

hod (SA) (E. Vanmarcke 1983) and the weighted integral method (Deodatis 1990, 1991; Takada

1990a,b; Deodatis & Shinozuka 1991). And finally, the series expansion methods include the

Karhunen-Loève expansion method (KL expansion) (Loève 1977), the orthogonal series expan-

sion methods (OSE) (J. Zhang & Ellingwood 1994), and the expansion optimal linear estimation

215
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method (EOLE) (C. Li & Der Kiureghian 1993). A comprehensive comparison of these methods

can be found in e.g. Sudret & Der Kiureghian (2000).

Recent studies discuss random fields apart from standard setups. Cho, Venturi, & Karnia-

dakis (2013) discuss KL expansions for correlated random fields. Vorechovský (2008) discusses

EOLE and KL expansions of correlated non-Gaussian random fields. Le (2014) uses the local

average subdivision algorithm to sample correlated random fields.

The methods above assume that the value of the random field is unknown at every geographi-

cal location z ∈ DZ . However, when the value of the RF is known at some location, a conditional

random field can be defined taking into account the additional information. Monteiro, Ramos, &

Hatherly (2009) model random fields conditional of observations by direct modelling. E. H. Van-

marcke & Fenton (1991) and Hoshiya (1995) generate realizations of conditional random fields

by Kriging. Kameda & Morikawa (1992, 1994) simulate conditional random fields by Fourier

series expansion. Elishakoff, Ren, & Shinozuka (1994) discuss conditional simulation techniques

for non-Gaussian random fields.

F.2 Theory

A random field H (z, ω) is defined as a collection of random variables, which are indexed by

the continuous parameter z ∈ DZ . The space DZ ⊂ Rd describes the geometry of the system.

In typical engineering applications, z describes geographical locations, i.e. coordinates. ω ∈ Ω

denotes the variability of the random field. Note that for a given location z∗, the random field

H (z∗, ω) is a random variable, whereas for a given ω∗, the random field describes a curve in the

domain DZ .

A special case is the Gaussian random field where H (z, ω) is a Gaussian random variable

at any location z ∈ DZ . A Gaussian RF may be completely defined by its mean value µ (z),

variance σ2 (z), and autocorrelation function R (z − z′|ρ). Due to some handy mathematical

properties, the Gaussian RF is a popular choice in the literature and it is also the focus of this

chapter.

F.3 Expansion optimal linear estimation method (EOLE)

The expansion optimal linear estimation method (EOLE) is an extension of the optimal li-

near estimation method (OLE), which was first published by C. Li & Der Kiureghian (1993).

OLE can also be seen as a particular case of the Kriging method. It is a special case of the

method of regression of linear functionals discussed in Ditlevsen (1996). EOLE is a discreti-

zation method that approximates the random field H (z, ω) by some function Ĥ (z, ζ), where

ζ = {ζi, i = 1, . . . , nζ} is a finite set of random variables describing the randomness in the RF.

The explicit function Ĥ allows one to sample the random field H in a straightforward way by

sampling ζ.

Assume that H (z, ω) is a Gaussian random field and consider a vector of nodal points

Z =
(
z(1), . . . ,z(K)

)
in the domain DZ . The optimal linear estimation of the random field is

then given by:

Ĥ (z, ω) = µ (z) + ΣH(z)Y Σ−1
Y Y (Y − µY ) , (F.1)

where Y =
(
Y (1), . . . , Y (K)

)
is the set of correlated Gaussian variables associated to the points

Z, and µY and ΣY Y are its mean value and covariance matrix, whose components are defined
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by:

µY,k = µ
(
Y (k)

)
, (F.2)

ΣY Y,k,l = σ
(
z(k)

)
σ
(
z(l)
)
R
(
z(k) − z(l)

)
, (F.3)

where k = 1, . . . ,K and l = 1, . . . ,K. Further, ΣH(z)Y is a correlation vector with components:

ΣH(z)Y,k = σ (z) σ
(
z(k)

)
R
(
z − z(k)

)
, (F.4)

where k = 1, . . . ,K.

Then, consider the eigenvalue decomposition of the covariance matrix:

ΣY Y φi = λiφi, (F.5)

where λi are the eigenvalues and φi are the eigenfunctions. The eigenvalue decomposition results

in K pairs of {λi, φi}. Note that the index i refers to the i-th largest eigenvalue of the set of K

eigenvalues. Then, the EOLE approximation of the random field reads:

Ĥ (z, ζ (ω)) = µ (z) +

nζ∑

i=1

ζi (ω)√
λi
φT
i ΣH(z)Y , (F.6)

where ζ is a vector of nζ standard Gaussian variables. Commonly done in practice, only the

nζ ≤ K eigenvalues are used in the series expansion.

The quality of the EOLE approximation depends on the number of terms nζ in the series

expansion. The variance of the approximation error in EOLE is (Sudret & Der Kiureghian

2000):

Var
[
H (z)− Ĥ (z)

]
= σ2 (z)−

nζ∑

i=1

1

λi

(
φT
i ΣH(z)Y

)2
= Var [H]−Var

[
Ĥ
]
, (F.7)

where σ2 is the variance of the Gaussian RF and nζ ≤ K. Due to the fact that variances

are always positive, the variance of the approximation field Ĥ must be smaller or equal to the

original RF H. Hence, EOLE always under-estimates the true variability of the Gaussian RF.

Therefore, nζ should be chosen large enough in order to ensure a good approximation of H. In

practice, Var
[
Ĥ
]
≥ 0.95 · Var [H] leads to good approximations with a reasonable number of

variables nζ (see also Chapter 10).

F.4 Conditional random fields

F.4.1 Definition

Assume that in the continuous domain DZ , there exists a set of locations Z =
{
z(1), . . . , z(N)

}

where the random field value is deterministically known, i.e. Y(i) = H
(
z(i)
)
. These points

are called geographical evidence or simply observations. Then, a conditional random field is a

random field conditioned on these observations:

Hc (z, ω) = H (z, ω) s.t. H
(
z(i), ω

)
= Y(i), i = 1, . . . , N, (F.8)

where Y =
{
Y(1), . . . ,Y(N)

}
. Note that in the context of Kriging, Z and Y are called the

experimental design and the corresponding response values of the computational model.

The implicit formulation of the conditional RF makes it complex to generate realizations.

Hence, in the following sections, three approaches are described to sample from the conditional

RF: direct sampling, conditional EOLE, and Kriging.
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F.4.2 Discretization

The conditional RF is discretized by a finite set of nodal points Z, as introduced before. Consider

the combined vector of nodal points and observational points and denote it by Y:

Y =

(
Y

Y

)
=
(
Y (1), . . . , Y (K),Y(1), . . . ,Y(N)

)T
. (F.9)

Then, Y can be represented as a Gaussian vector Y ∼ N (µY,ΣYY) with mean and variance as:

µY =

(
µY
µY

)
, (F.10)

ΣYY =

(
ΣY Y ΣY Y
ΣT
Y Y ΣYY

)
, (F.11)

where ΣY Y is the covariance matrix between the set of nodal points Z and the set of observation

points Z. Then, it can be shown that Y conditioned on the observations Y is obtained by:

Y |Y ∼ N
(
µY |Y ,ΣY |Y

)
, (F.12)

where the mean and covariance are computed by:

µY |Y = µY + ΣY Y Σ−1
YY
(
Y − µY

)
, (F.13)

ΣY |Y = ΣY Y −ΣY Y Σ−1
YY ΣT

Y Y . (F.14)

F.4.3 Direct sampling

In order to generate realizations of the conditional random field, sampling the conditional dis-

tribution in Eq. (F.12) is the straightforward way. Hence, the standard Cholesky decomposition

can be applied to the covariance matrix in Eq. (F.14), such that ΣY |Y = LLT, where L is a

lower triangular matrix. This allows for a transformation of the correlated multivariate Gaussian

distribution into an uncorrelated multivariate Gaussian distribution:

Y = µY |Y + Lζ (ω) , (F.15)

where ζ is a K-dimensional vector of independent standard Gaussian variables.

The complexity of the direct sampling approach depends greatly on the Cholesky decom-

position, i.e. on the size of the covariance matrix ΣY |Y . To bypass the problem of solving the

Cholesky decomposition, Hoffmann & Ribak (1991) and Hoffmann (2009) proposed a two-step

algorithm:

(i) Generate a realization of the unconditional RF H (z, ω) ignoring the observations and

denote the realization as:

Y(0) =

(
Y (0)

Y(0)

)
. (F.16)

(ii) Compute the corresponding realization of the conditional random field using as expression

similar to Eq. (F.13):

Y = Y (0) + ΣY Y Σ−1
YY

(
Y − Y(0)

)
. (F.17)
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Note that this is a deterministic transformation of the realization of the unconditional RF

obtained in Step (i). This equation fulfils the condition H
(
z(i), ω

)
= Y(i), i = 1, . . . , N ,

as proven by considering the case of predicting the variables Y = Y at the corresponding

geographical locations Z = Z:

Y = Y(0) + ΣYYΣ−1
YY

(
Y − Y(0)

)
, (F.18)

Y − Y(0) = IN

(
Y − Y(0)

)
, (F.19)

Y − Y(0) = Y − Y(0), (F.20)

where IN is the identity matrix of size N ×N .

This two-step algorithm is particularly useful when realizations of the unconditional RF are

available. In fact, the conditional realization is obtained by a simple post-processing scheme of

the unconditional realization of the RF.

F.4.4 Conditional EOLE

Conditional EOLE is a combination of the EOLE approach in Section F.3 and the two-step

algorithm in Section F.4.3 (Schöbi & Sudret 2015a). In particular, the realization of the un-

conditional RF in Step (i) of the two-step algorithm is computed by EOLE. Then, it is possible

to compute realizations of the conditional random field efficiently. Moreover, realizations of the

conditional RF can be generated conveniently as a function of nζ random variables and a set of

observations {Z,Y}.
When considering a random field as input of a computational model, the discretization

procedure allows to reduce the input to nζ independent standard normal variables, which are

simply collected with other input parameters of the problem into a single random vector. This, in

turn, allows for meta-models to be applied in a straightforward manner, which allows for efficient

estimations of the QoI. For practical examples in the context of geotechnical engineering, see

also Chapter 10.

F.4.5 Kriging

Based on the mean value, variance, autocorrelation function of a Gaussian RF and a set of

observations {Z,Y}, Kriging is capable of predicting the Gaussian variable at any location

z ∈ DZ . This allows the simulation of RF realizations for a given set of nodal points Z by an

iterative algorithm (Kameda & Morikawa 1992; Hoshiya 1995):

(i) Use the observations as experimental design for the calibration of a Kriging model as in

Eqs. (3.27) and (3.28).

(ii) Choose one of the remaining unknown nodal points Z and generate its value by random

sampling the random field at that location, i.e. by random sampling of the Gaussian varia-

ble y∗ ∼ N (µY (z∗) , σY (z∗)), where µY (z∗) and σY (z∗) are obtained through Eqs. (3.31)

and (3.32), respectively.

(iii) Consider the samples value at z∗ as a given observation and add it to the experimental

design, i.e. Z ← {Z, z∗} and Y ← {Y, y∗}. Remove the sampled point from the set of

nodal points, i.e. Z ← Z\z∗.
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(iv) Iterate steps (i) to (iii) until the set of nodal points Z is empty, i.e. till all samples have

been sampled.

The main advantage of this algorithm is its simplicity. The algorithm mainly consists of a

series of Kriging models with increasing size of the experimental design. Thus, the generation of

conditional RF realizations is robust but inefficient when comparing to the conditional EOLE

approach.

With respect to the application of meta-models, the number of input variables would be

equal to the number of simulated points, i.e. the number of nodal points. When the set of

nodal points is large, it becomes inefficient to represent the uncertainty at each nodal point by

a separate random variable, comparable to the direct sampling approach in Eq. (F.15). That is

why the adaptation of series expansion approaches, such as conditional EOLE, is more suitable

for conditional random fields.

F.5 Toy example

Consider a one-dimensional geographical domainDZ = [0, 1]. Assume that the spatial variability

can be modelled by a one-dimensional Gaussian random field with mean value µ = 0, variance

σ2 = 1, and an exponential autocorrelation function with a correlation length of ρ = 0.2 (see

also Eq. (C.2)). Additionally, there are observations of the random field at three locations:

{
Z =

{
z(1) = 0.22, z(2) = 0.46, z(3) = 0.92

}

Y =
{
Y(1) = 0.00, Y(2) = −0.15, Y(3) = 0.25

} . (F.21)

Ignoring the observations, realizations of the unconditional RF are generated using the EOLE

algorithm. In particular, the set of nodal points Z consists of K = 1000 equally spaced points

in [0, 1]. Ten realizations of the resulting discretized RF are shown in Figure F.1(a). Note that

the number of random variables ζ is set to nζ = 51 in order to recover 98 % of the RF variance.

The difference of response value Y between different realizations of the RF is apparent.

Figure F.1(b) illustrates the confidence intervals (CI) of the realizations of the EOLE algo-

rithm to the theoretical values. The CI is set at 90 %. Note that the CI of the EOLE algorithm

are obtained by computing the empirical quantiles of 1000 realizations of the unconditional RF.

The overlapping of the CIs shows the ability of the EOLE algorithm to recover the variability

of the original unconditional random field.

Figure F.2 shows realizations and CI for the case of the conditional RF analogue to Fi-

gure F.1 for the unconditional RF. Note that the black bullet points represent the observations

in Eq. (F.21). The realizations as well as the CI interpolate the observation points z(i), where

the returned value is deterministically known. Additionally, the conditional EOLE recovers the

variance of the conditional RF, as seen by the overlapping CI with the theoretical values.
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Figure F.1: Toy function – unconditional random field – simulated by EOLE.
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Figure F.2: Toy function – random field on observations in Eq. (F.21) – simulated by conditional

EOLE.
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s)”. In: Acta Arith. 41, pp. 337–351.

Fellenius, W. (1936). “Calculation of the stability of earth dams”. In: Proc. 2nd Congr. Large

Dams. Vol. 4. Washington DC.

Feller, W. (1948). “On the Kolmogorov-Smirnov limit theorem for empirical distributions”. In:

Ann. Math. Stat. 19, pp. 177–189.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications. second. Vol. 2.

New York: John Wiley and Sons.

Ferson, S. & L. R. Ginzburg (1996). “Different methods are needed to propagate ignorance and

variability”. In: Reliab. Eng. Sys. Safety 54 (2-3), pp. 133–144.

Ferson, S. & W. Tucker (2008). “Probability boxes as info-gap models”. In: NAFIPS 2008 -

2008 Annu. Meet. North Am. Fuzzy Inf. Process. Soc. IEEE, pp. 1–6.



BIBLIOGRAPHY 229

Ferson, S. & J. G. Hajagos (2004). “Arithmetic with uncertain numbers: rigorous and (often)

best possible answers”. In: Reliab. Eng. Sys. Safety 85 (1-3), pp. 135–152.

Ferson, S., V. Kreinovich, L. Ginzburg, D. S. Myers, & K. Sentz (2003). Constructing Probability

Boxes and Dempster-Shafer Structures. Tech. rep. Sandia National Laboratories.

Ferson, S. & W. Troy Tucker (2006). “Sensitivity analysis using probability bounding”. In:

Reliab. Eng. Sys. Safety 91 (10-11), pp. 1435–1442.
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Marelli, S., C. Lamas-Fernandes, R. Schöbi, & B. Sudret (2015). UQLab user manual – Relia-

bility analysis. Tech. rep. Report # UQLab-V0.9-107. Chair of Risk, Safety & Uncertainty

Quantification, ETH Zurich.

Marelli, S. & B. Sudret (2014). “UQLab: a framework for uncertainty quantification in MAT-

LAB”. In: Advances in Engineering Software. in preparation.

Marelli, S. & B. Sudret (2015). UQLab user manual – Polynomial chaos expansions. Tech. rep.

Report # UQLab-V0.9-104. Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich.

Marelli, S. & B. Sudret (2016). “Bootstrap-polynomial chaos expansions and adaptive design

for reliability analysis”. In: Proc. 6th Asian-Pacific Symp. Struct. Reliab. (APSSRA’2016).

Marrel, A., B. Iooss, F. Van Dorpe, & E. Volkova (2008). “An efficient methodology for modeling

complex computer codes with Gaussian processes”. In: Comput. Stat. Data An. 52, pp. 4731–

4744.

Massey, F. J. (1951). “The Kolmogorov-Smirnov test for goodness of fit”. In: J. Am. Stat. Assoc.

Matsui, T. & K.-C. San (1992). “Finite element slope stability analysis by shear strength re-

duction technique”. In: Soils Found. 32 (1), pp. 59–70.

Matthies, H., C. Brenner, C. Bucher, & C. Guedes Soares (1997). “Uncertainties in probabilistic

numerical analysis of structures and solids - stochastic finite elements”. In: Structural Safety

19 (3), pp. 283–336.

McClave, J. & T. Sincish (2013). A first course in statistics. 11th Edition. Pearson.

McKay, M. (1995). Evaluating prediction uncertainty. Tech. rep. NUREG/CR-6311. Los Alamos

National Laboratory.

McKay, M., R. Beckman, & W. Conover (1979). “A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code”. In: Technometrics

2, pp. 239–245.

Melchers, R. (1989). “Importance sampling in structural systems”. In: Structural Safety 6, pp. 3–

10.

Melchers, R. (1999). Structural reliability analysis and prediction. John Wiley & Sons.

Metropolis, N. & S. Ulam (1949). “The Monte Carlo method”. In: J. Am. Stat. Assoc. 44 (247),

pp. 335–341.

Migliorati, G., F. Nobile, E. von Schwerin, & R. Tempone (2014). “Analysis of discrete L2

projection on polynomial spaces with random evaluations”. In: Found. Comput. Math. 14 (3),

pp. 419–456.

Miller, L. H. (1956). “Table of percentage points of Kolmogorov statistics”. In: J. Amer. Stat.

Soc. 51, pp. 111–121.

Mockus, J., V. Tiesis, & A. Zilinskas (1978). “The application of Bayesian methods for seeking

the extremum”. In: Towards Global Optimization. Noth Holland, Amsterdam.

Möller, B. & M. Beer (2004). Fuzzy Randomness. Springer.
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Schöbi, R. & B. Sudret (2017b). “Uncertainty propagation of p-boxes using sparse polynomial

chaos expansions”. In: J. Comput. Phys. accepted.

Schöbi, R., B. Sudret, & S. Marelli (2016). “Rare event estimation using Polynomial-Chaos-

Kriging”. In: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. P. D4016002.
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