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INTEGRATION OF PIEZOSTACKS AS FREQUENCY DEPENDENT
STIFFNESS ELEMENTS IN LOAD BEARING STRUCTURES

Jascha Schmied∗, Andrea Bergamini†

∗ CMASLab, ETH Zurich, Leonhardstrasse 21, CH 8092 Zurich, Switzerland
e-mail: jschmied@ethz.ch
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Abstract. In previous work we have described the use of piezoelectric elements as means to obtain
variable connectivity between the elements of a phononic crystal by exploiting the frequency dependent
stiffness of resonantly shunted piezoelectric elements. There, piezoelectric disks were intercalated be-
tween an aluminum plate and aluminum stubs and were used to effectively disconnect the stubs creating
a phononic structure from the substrate. Given the function of the investigated object, no special struc-
tural requirements were set to the piezoelectric disks. Here, we present work related to the structural
integration of piezoelectric elements in a load bearing structure. The goal of the integration is to exploit
frequency dependent stiffness properties of resonantly shunted piezos to modify the stiffness matrix of
a simple truss structure. In order to demonstrate the proposed approach, a ring-shaped piezo-stack is
axially mounted into the diagonal strut of a square frame. In order to guarantee the function of the piezo-
electric element under the expected load conditions, axial pre-compression needs to be applied. This
contribution describes the design, implementation and initial investigation of the dynamic response of a
variable connectivity truss structure.

1 INTRODUCTION

The use of shunted piezoelectric elements for vibration damping purposes has now been demon-
strated [1] for four decades, further developed and divulged in innumerable contributions [2, 3, 4, 5] and
represents in some ways the golden standard in integrated multi-field vibration mitigation treatments.
However, the implementation of this type of treatments implies the ability to correctly tailor the position
and frequency response of the piezoelectric device and is subject to detuning or incorrect placement of
the shunted piezoelectric element due to varying operational conditions, deterioration of the integrity
of the structure or environmental effects. As such, in spite of their undoubted efficacy, their practical
application is still limited to very specific cases. Recent research indicates that under certain condi-
tions, the implementation of distributed elements for the mitigation of mechanical vibrations can offer
substantial advantages in terms of robustness of the system. In this sense, with the understanding that
structural vibrations are nothing else than the expression of the interaction of low frequency waves prop-
agating through a structure and interacting with its boundaries and the imposed conditions, the focus of
research is shifted to avenues for the manipulation of the propagation of mechanical waves. Here, the
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groundbreaking work of Liu [6] has successfully demonstrated the wavenumber-independent attenuation
of mechanical waves at a specific frequency using sub-wavelength features, employing local mechani-
cal resonators and providing for robustness against the misplacement of the energy absorbers within the
structure. Inspired by these findings, elegant implementations of local resonators based on electrome-
chanical systems were devised, such as the ones presented by Spadoni [7], and Casadei [8], among others.
This approach to wave propagation control offers the undoubted advantages of wavenumber independent
attenuation of waves and orthogonality to structural properties [9] originating from the local nature of the
resonators, however at the cost of a very narrow band effect. Wu [10] has demonstrated the realization
of complete Bragg bandgaps in macroscopic systems, echoing the seminal work of Brillouin [11] on the
propagation of waves in periodic media. Here it has been shown that in periodic arrangements of mass
and spring elements the propagation of waves in certain ranges is suppressed by scattering phenomena.
This effect can cover wide frequency ranges [12, 13, 14]. As long as the modulus, density, unit cell
size of the phononic crystal allow for it, the position of the bandgaps can be positioned at arbitrarily
low frequencies. However, it should be noticed that there are limits to what can be achieved in these
terms [15]. In previous work we have shown a possible use of electromechanical resonators as variable
stiffness elements to modify the connectivity in phononic crystals [16]. There, we introduced resonantly
shunted piezoelectric disks between the stubs and the plate of a stubbed plate as described in [10]. If the
resonance frequency of the piezoelectric element was position within the Bragg type bandgap created by
the lattice created by the periodically arranged stubs, we could observe the appearance of a passband.
We interpreted this observation as due to the effective modification of the connectivity of the stubs and
the plate, due to the frequency dependence of the effective modulus of the piezoelectric disk around the
electric resonance of the LC shunt. In this contribution we explore the implementation of frequency
dependent stiffness elements (embodied by resonantly shunted piezoelectric elements) in lattice-type
phononic crystals, as a way to adaptively modify the connectivity of the lattice, with the expectation that
some useful property would emerge from this. The baseline expectation is that, the adaptive connectivity
of the lattice can be used to strongly affect its response to dynamic loads. Here we present a numerical
investigation of dynamic properties of a lattice structure with adaptive connectivity trusses and of the
unit cell it is made of. Finally, we show the state of advancement of our effort to experimentally verify
the behavior predicted by our models.

2 STRUCTURES WITH FREQUENCY-DEPENDENT STIFFNESS ELEMENTS

The implementation of active elements in truss structures has been presented in [17], where the ef-
fectiveness of discrete piezoelectric elements in an active vibration suppression scheme is outstandingly
demonstrated. Here, we will discuss a passive approach, in which piezoelectric elements are imple-
mented as frequency dependent stiffness elements. First, we will investigate the frequency response of
the base element of the two-dimensional structure, that we will consider as the unit cell of a periodic
structure and assess the frequency dependent stiffness of the unit cell (see fig. 1). Then we will show the
effect of distributed frequency dependent elements in a periodic structure (see fig. 2) on its frequency
response. The frequency dependent stiffness elements are represented by bulk piezoelectric elements in
the numerical models presented in the following sections, for the sake of simplicity. Accordingly, the
inductance values selected to obtain the electrical resonance of shunts at the frequencies of interest are
very high. In the practical implementation, briefly discussed at the end of this work, piezostacks are
chosen, over piezoelectric patches as a more effective way to exploit the electromechanical coupling in a
load carrying structure. The simplification made in the numerical models does not affect the validity of
the general findings they provide.
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Figure 1: Base unit of the truss structure with frequency dependent stiffness elements, consisting of a diagonal
brace, in which a piezoelectric element shunted over an inductor L is integrated, horizontal beams, and vertical
beams to close the frame. In the model, the unit cell is fixed along its left edge.

2.1 Unit Cell

In two dimensions, a square frame with a diagonal shear stiffening element represents a very simple
component from which a larger structure can be created by simple symmetry operations such as trans-
lation, rotation, and mirroring. The properties of such a structure are known to carry the imprint of its
constituting components [18]. So, we are interested in understanding the effect of the electrical resonance
in the shunted piezo on the dynamic properties of the unit cell. Assuming that the shunted piezoelectric
element provides the frequency dependent stiffness postulated in [16], we can expect the shear stiffness
of the truss to strongly vary as a function of frequency, around the resonant frequency of the piezoelectric
resonator. The host structure is modeled in COMSOL Multiphysics as a two-dimensional object, assum-
ing plain strain conditions, with an assigned thickness (z-direction) of 3.3mm. The host structure (grey)
is modeled as an aluminum alloy, the piezoelectric element representing a piezoelectric stack is taken to
have the properties of PZT-5H. The dimensions and the mechanical boundary conditions are shown in
figure 1. A point force in -y direction is applied to top right corner of the unit cell.

2.2 Structure

The structure we consider is inspired by the unit cell discussed above. The diagonal braces with the
integrated piezoelectric element are identical with the one implemented in the unit cell. The horizontal

3



Jascha Schmied∗, Andrea Bergamini†

240mm

2m
m

8
6
m
m

3.5mm PZT-5H

L

Al-alloy
F

x

y

1

2

3

4

6

28

30

Figure 2: Structure that includes diagonal braces as discussed in the previous section. Additionally some horizontal
beams are added to maintain the free length of the braces. The width of the outer frame is the same as in figure 1.
The figure shows only one electric shunt (inductor L=210.5H), implying that each piezoelectric element is shunted
individually over identical circuits. The numbers in blue color, next to the piezos, indicate the numbering scheme
for the piezoelectric elements.

trusses have the same width as the quadratic frame of the unit cell, while the frame of the structure is
slightly wider. In order to be able to include periodic arrays of braces with the same length as in figure
1, horizontal elements were included. The resulting structure is presented in figure 2. As in the model
presented in the previous section, the left edge of the structure is fixed both in x- and in y-direction. The
materials considered in the 2-dimensional model of the structure are the same as for the unit cell. The
model also assumes plain strain conditions and has an assigned thickness of 3.3mm. A point force in
y-direction is applied to top right corner of the unit cell.

The frequency response of the two structures described in the sections above, represented as the
displacement amplitude for a unit force applied to the structure and the time average of the electric
energy density within the piezoelectric elements will give us information about the effect of the the
integrated variable stiffness elements on the dynamic response of the two structures.

3 RESULTS and DISCUSSION

In the following we report the displacement-amplitude recorded at the position where the point force
is applied as a function of frequency for three different electrical boundary conditions applied to the
piezoelectric elements: open circuit, where no current can flow in the shunt, short circuit, where the
potential between the electrodes is zero and where the impedance of the shunt is determined by an ideal
inductor with L = 210.5H. The reported quantity represents the compliance of the structure, with the
units [mm/N]. For the same boundary conditions, we report also the time averaged electrical energy
density in the piezoelectric elements, as a measure of the energy exchanged by the structure with the
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Figure 3: Overview of the frequency response (green, displacement amplitude) of the unit cell under open circuit,
short circuit and inductively shunted (L = 210.5H) conditions, the color figures show the modal shapes for the
corresponding eigenfrequencies, the insert shows a detail of diplacement and electrical energy density (black) in
proximity of the eigenfrequency of the LC resonator (shunted piezo).

shunted piezos.

3.1 Unit Cell

The frequency response of the unit cell, expressed as its compliance, well agrees in its essence with
the results reported in [16]: The stiffness of the piezoelectric element is known to drop at frequencies
immediately below the resonance frequency of the LC shunt and to increase again as the frequency
exceeds it, accordingly the compliance of the structure increases and decreases again to values similar
to the ones far away from resonance. Also the comparison between open and short-circuit boundary
conditions confirms what we know: It is reasonable to state that -unsurpriingly- also in the configuration
presented in this work, piezoelectric elements can be regarded as elements that can change their effective
stiffness as a consequence of the electric boundary conditions.

3.2 Structure

The integration of shunted piezoelectric elements in a larger, periodically arranged structure is ex-
pected to carry in itself to a large extent the footprint of its constitutive elements. If in the piezoelectric
elements a variation of the stiffness of the components occurs at a specific frequency, the effect of this
variation can be expected to affect also the behavior of the larger structure. Now, since under the ideal
conditions offered by a numerical model, we were able to tune all LC circuits composed of the piezo-
electric element and the inductor to the same frequency (approximately 484Hz for the given piezos and
an inductance value of L = 842H), the expectation would be to see an increase in compliance, i.e. of
displacement amplitude in correspondence to the electric resonance, similar to what we see for the unit
cell comprised of one piezoelectric element. This corresponds also to the observation made for local
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Figure 4: Frequency response (displacement amplitude, black, and time-averaged electric energy density in the
piezoelectric elements, colors) of the unit cell under inductively shunted (L = 842H) conditions at frequencies
below the first global, structural eigenfrequency (968.5Hz).

piezoelectric resonators, as discussed in [8, 7], where a dip in the transmissibility of waves through the
structure. Here, however, we observe phenomena that qualitatively and quantitatively deviate from the
response of a single or of an array of local resonators: in stead of a single peak and subsequent dip in
compliance, the frequency response of the structure at hand shows a much richer behavior, spanning over
a fairly wide range of frequencies, and characterized by a series of local displacement amplitude peaks
and valleys. Interestingly, the electric energy density in the piezoelectric elements shows a rich frequency
dependent behavior around the electric resonance, whereas, farther below and above it, this quantity only
slightly differs among different piezos, and has a smooth behavior, as a function of frequency.

The plots of figures 5 and 6 show how the structure behaves, when the nominal resonance frequency
of the shunted piezoelectric resonators is tuned to a structural eigenfrequency. Also here, if the array of
tuned piezoelectric resonators were to act as local resonators, or if there where only one piezoelectric
element coupled to the structure, the expected response would be the one of a two degrees of freedom
(2DOF) system with two resonance peaks and one antiresonance, as shown in [1, 2]. However, the
complexity that we have seen emerge from the presence of multiple resonators, tuned at the same nominal
frequency, is visible also here. Globally, two resonance peaks at the edge of the frequency range in which
the multi-resonator behavior is observed, are given (fig 5).

4 CONCLUSIONS and OUTLOOK

The numerical investigations of a structure comprised of multiple, tuned, piezoelectric resonators
presented in this work, point to the emergence of phenomena originating from the interaction between
mechanically coupled piezoelectric resonators: It appears that in spite of all being electrically identical,
the shunted piezoelectric elements display inhomogenous frequency responses among them, as clearly
indicated by plots of the electrical energy density for the individual elements. An interpretation for this
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Figure 5: Overview of the frequency response (displacement amplitude) of the truss structure under open circuit
(red), short circuit (blue) and inductively shunted (green, L = 210.5H) conditions, around its first mechanical
resonance.
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Figure 6: Frequency response (time-averaged electrical energy density in the piezo. for each peizo) of the truss
structure under open circuit (red), short circuit (blue) and inductively shunted (green, L = 210.5H) conditions,
around its first mechanical resonance. The shade of the respective color indicates the piezo number the line refers
to: black→1, color→, see figure 2 for the piezo numbering scheme
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observation can be found in the fact that not only do the mechanical properties of piezoelectric materi-
als depend on the electric boundary conditions, but also the dielectric properties of the material depend
on the mechanical boundary conditions. Out of this coupling arise complex interactions between the
piezoelectric elements, mediated by the structure that lead to the rich response of the array of mechan-
ically coupled resonators. Thanks to these emergent phenomena, distributed, coupled variable stiffness
elements realized via shunted piezos, appear to qualitatively distinguish themselves from discrete piezo-
electric treatments. The mechanisms that lead to the interesting dynamic behavior of the described
structure will need further investigation.

4.1 Experimental verification and challenges

The next challenge of this work will be the experimental verification of these findings. For this
purpose a way to properly integrate piezoelectric elements has to be devised. Unlike in the numerical
model, the integration in a real setting presents a few practical challenges:

• Piezoelectric elements come in discrete sizes and designs, the structure needs to be designed
around the best suitable candidate for the purpose

• To guarantee proper function, thick piezoelectric transducers need to be pre-compressed

• First investigations based on the numerical model appear to indicate that the system is sensitive to
material damping and that the described phenomena are most easily observed in a weakly damped
system. For this reason the use of conventional polymer based adhesives does not seem to be idea.

The challenges listed above have lead us to design a ’dry mounted’ system in which load transfer relies
on clamping a ring stack actuator within the diagonal brace. This should allow to meet the requirements
we have recognized as relevant so far. However, the realization of a clamped, pre-stressed structure, as
the one shown in figure 7, requires high precision components and careful assembly. First experimental
results to confirm the findings of the numerical model of the unit cell are expected soon. The preparation
of a multi-resonator structure will be tackled once the technique for the preparation of the unit cell will
have been refined.
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