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Exploring 5d BPS Spectra with Exponential
Networks

Sibasish Banerjee, Pietro Longhi and Mauricio Romo

Abstract. We develop geometric techniques for counting BPS states in
five-dimensional gauge theories engineered by M theory on a toric Calabi–
Yau threefold. The problem is approached by studying framed 3d–5d
wall-crossing in the presence of a single M5 brane wrapping a special La-
grangian submanifold L. The spectrum of 3d–5d BPS states is encoded
by the geometry of the manifold of vacua of the 3d–5d system, which fur-
ther coincides with the mirror curve describing moduli of the Lagrangian
brane. The information about the BPS spectrum is extracted from the
geometry of the mirror curve by construction of a nonabelianization map
for the exponential networks. For the simplest Calabi–Yau, C3 we repro-
duce the count of 5d BPS states and match predictions of 3d tt∗ geometry
for the count of 3d–5d BPS states. We comment on applications of our
construction to the study of enumerative invariants of toric Calabi–Yau
threefolds.

1. Introduction

In this paper, we develop a geometric approach to count BPS states in five-
dimensional gauge theories with eight supercharges compactified on a circle
of finite radius. This problem is directly related to BPS counting in Calabi–
Yau compactifications of M theory and therefore is of relevance to questions
in enumerative geometry [1–6]. Progress on wall-crossing over the past decade
has yielded new insights into these questions and led to developments in the
study of BPS spectra both in the context of supersymmetric gauge theories
and in string theory [7–19].

The present work focuses on the BPS spectra of five-dimensional gauge
theories engineered by M theory on a toric Calabi–Yau threefold X. The goal
is to develop a systematic framework for studying both BPS instanton-dyons
and magnetic monopole strings. A fruitful approach to probe BPS spectra
in quantum field theory and in string theory is to introduce supersymmetric
defects of various types. For this purpose, we consider codimension-two defects
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engineered by an M5 brane on L × S1 × R
2, where L is a special Lagrangian

submanifold of X.
The M5 brane defect can be described at low energies by a 3d N = 2

theory on S1 × R
2, whose field content and couplings are determined by the

geometry of L. This theory, which will be denoted T [L], further couples to the
bulk five-dimensional gauge theory in a way that is encoded by the embedding
of L in X. Defects of this type provide a familiar way to embed topologi-
cal strings into M theory and establish a relation between vortex partition
functions and open topological string amplitudes [20]. In this paper, we study
another kind of BPS states of T [L], corresponding to field configurations that
reduce to BPS kinks (instead of vortices) when the circle shrinks.

The coupling of T [L] to the ambient five-dimensional theory includes
interactions between 3d and 5d BPS spectra, and their boundstates give rise
to a hybrid 3d–5d BPS sector. This new sector is rich in information, being
sensitive both to the stability of 3d BPS states and of 5d BPS states, as
well as to additional stability conditions specific to 3d–5d boundstates. In
other words, 3d–5d BPS states contain both information about the 3d BPS
spectrum and about the 5d BPS spectrum. The first main result of this work
is to develop a systematic framework for studying 3d–5d BPS spectra. With
this information is under control, we can further investigate how to extract
BPS states of the pure five-dimensional theory, this is our second main result.
The construction behind both results is inspired by seminal ideas of [21], which
involve studying entire families of configurations for the defect engineered by L.
From the viewpoint of the 3d–5d system, this corresponds to varying certain
couplings of the 3d theory. From a geometric viewpoint, it means instead
studying the geometry on the moduli space of L. The deformation moduli of
L is 1 real dimensional if b1(L) = 1 [22]. In this work, we will limit ourselves
to single M5 branes wrapping a Lagrangian L with topology R

2 × S1; hence,
the space of deformations plus the flat U(1)-bundle moduli can be described
in terms of a curve.

For simplicity, we take L to be a toric brane of the type studied in [23,24],
although our construction applies directly to a much larger class of Lagrangian
branes. In this case, the moduli space of L coincides with the mirror curve Σ
of X (more precisely the mirror of X is a conic bundle over Σ [25]). This
choice has the advantage that T [L] can be presented as a U(1) gauge theory,
with a finite number of charged chiral multiplets coupled to the bulk gauge
and background connections. On the Coulomb branch of the five-dimensional
theory, the 5d vectormultiplets’ adjoint scalars acquire vacuum expectation
values. Since they couple to 3d chiral multiplets as twisted masses, the latter
can be integrated out to yield an effective description of the 3d–5d system
[26–28]. Viewing the 3d theory as a 2d N = (2, 2) theory of KK modes, the
low-energy dynamics is described by an effective theory for the twisted chiral
field strength multiplet, controlled by a superpotential ˜Weff(σ, t, u). Here σ is
the 2d scalar field strength, t is a complex Fayet–Ilioupoulos coupling, and
u collectively denotes moduli of the 5d theory (both Coulomb moduli and
masses). For a generic choice of moduli t and u, the twisted superpotential has
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a discrete set of massive vacua, and we study the spectrum of kink-like BPS
states that interpolate between any two of them. The critical points of ˜Weff

trace out an algebraic curve Σ ⊂ C
∗ × C

∗ with coordinates (e2πR σ, e2πR t),
which turns out to be a Seiberg–Witten curve for the 5d theory, and further
coincides with the mirror curve of X.

BPS kinks of 2d N = (2, 2) theories are counted by the CFIV index Q
which admits an infrared expansion as a sum with integer coefficients μ(a)
that count BPS states of charge a [29,30]. An effective way to compute Q is to
study the tt∗ connection on the vacuum bundle over the t plane [31]. Spectral
networks provide another powerful approach to computing the BPS degenera-
cies μ(a), essentially taking advantage of their interpretation as (signed sums
of) intersection numbers of Lefschetz thimbles of the BPS equations [21,30,32].
A bit more precisely, spectral networks provide a construction of a flat non-
abelian connection A on the vacuum bundle over the t-plane, that arises in
the Lax representation of the tt∗ equations. This construction is known as the
nonabelianization map.

Returning to three dimensions, it is natural to expect the existence of an
analogous construction, at least when the 3d theory is compactified on a circle,
when it can be viewed as the 2d theory of the KK modes. Indeed this viewpoint
was adopted in [33] to formulate the tt∗ equations in three dimensions, making
contact with work on periodic monopoles and hyperholomorphic connections.
We construct a nonabelianization map for 3d–5d systems, based on an uplift
of spectral networks known as exponential networks [34]. The counting of 3d–
5d BPS states is a byproduct of our construction, since μ(a) are explicitly
encoded by this map.

Exponential networks arise by projecting certain special Lagrangian cy-
cles of the mirror Calabi–Yau Y onto the mirror curve Σ. As already men-
tioned, Σ also coincides with the manifold of vacua of T [L], as well as with a
Seiberg–Witten curve of the ambient 5d theory [26,28,35]. BPS solitons are
static field configurations interpolating between two vacua, a standard argu-
ment shows that they correspond to calibrated open paths on Σ connecting
the corresponding points on the curve, see Fig. 1. Projecting these BPS paths
to the t-plane gives trajectories that correspond to the geometric data of the
exponential network.

An important difference from spectral networks arising in 2d–4d systems
is that in the context of 3d N = 2 theories σ is periodic, due to invariance
under large gauge transformations on the compactification circle. In part be-
cause of this, the twisted superpotential turns out to be multivalued on the
vacuum manifold Σ, and it is often convenient to introduce a Z-covering ˜Σ
with logarithmic branching at points where σ(t) goes to zero or infinity. Since
Σ was presented as a finite ramified covering of the t-plane, ˜Σ is an infinite-
sheeted covering of the latter. At each t there are towers of vacua labeled by
|i,N〉, where i is one of a finite set of critical points of ˜Weff (a point on Σ), and
N ∈ Z denotes a choice of branch for the logarithm (fixing a point on ˜Σ). One
can trade infinite towers of vacua for an extra continuous modulus by passing
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Figure 1. An open path on Σ connecting two vacua
σi(t), σj(t). Calibrated paths correspond to BPS states T [L].
Exponential networks arise from projecting BPS paths to the
t-plane

to a “Bloch basis”, this would lead to periodic monopole equations of 3d tt∗

geometry [33,36]. However, it is more convenient for us to work with infinite
towers of vacua. Our nonabelianization map then constructs a formal flat con-
nection for this infinite-dimensional vacuum bundle. Its construction involves
counting calibrated open paths on ˜Σ running between two vacua |i,N〉 and
|j,M〉. Physically these paths are interpreted as charges of 3d–5d BPS states.
Therefore, we collectively refer to this set of open paths, counted by appro-
priate BPS indices μ(a), as the soliton data of the exponential network. For a
given pair (i, j), physical properties of 3d–5d BPS states (such as their central
charges) are sensitive only to the difference N − M . This property is indeed
reflected by a Z-symmetry of the soliton data that we compute, providing a
nontrivial check of our construction.

Another salient novelty that arises in three dimensions is the presence of
collinear solitons, BPS states interpolating between vacua |i,N〉 and |i,N +n〉
(in short, (ii, n)-solitons). These BPS states are collinear in the sense that
their central charges have the same phase, and their existence leads to multi-
particle contributions to the nonabelianization map with fractional coefficients.
Similar phenomena have been observed in the general context of periodic tt∗

geometry, in the form of multi-particle contributions to the CFIV index [37].
We reproduce and extend these results by studying wall-crossing for solitons of
types (ij,N,N + n) and (ji,M,M + m). The nonabelianization map provides
a powerful tool to compute the spectrum of boundstates, for which we obtain
a closed-form expression. We find BPS states with infinitely many different
charges, including collinear solitons and their multi-particle boundstates.1

The second main goal of this paper, five-dimensional BPS counting, is
accomplished by studying jumps of the nonabelianization map when the topol-
ogy of the exponential network degenerates. These jumps arise as a natural
uplift of the K-wall phenomenon of 2d–4d wall-crossing [21,32] and capture
boundstates of 3d–5d BPS states that carry purely five-dimensional charges.
Our study of these jumps focuses on their influence on the soliton data of
nonabelianization. We leave a field-theoretic description of this phenomenon

1Details on this result can be found in Sect. 3.3.3.
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to future work. We argue that the nonabelianization map changes by certain
morphisms of Kontsevich–Soibelman type, in line with overall expectations
from analogies with spectral networks. This should also be expected on physi-
cal grounds, since our nonabelianization map is built to capture the KK modes
of 3d–5d BPS states, whose physics is essentially that of 2d–4d states captured
by spectral networks. In fact, more precisely, our K-wall formula is expected
to compute indices of 4d BPS states corresponding to KK modes of 5d BPS
states. We hasten to stress that this does not imply that the 5d spectrum
should be a trivial Kaluza–Klein uplift of a 4d BPS spectrum. It is in prin-
ciple possible that, in certain regions of the moduli space, only part of a KK
tower of 5d BPS states decays. In fact, the central charges of different KK
modes need not have the same phase for finite compactification radius, and
in principle may experience wall-crossing separately from each other. Similar
questions on the relation between 4d and 5d BPS states were recently raised
in [38], we believe that the nonabelianization map provides a tool to address
them in detail.

As an illustration of our construction, we consider exponential networks
for the mirror curve of the toric brane in C

3. We plot the exponential network
at various phases, and direct application of our nonabelianization formulae
provides explicit counts for the 3d–5d BPS states captured by the soliton
data. Already in this simple example we observe several interesting phenom-
ena, including the occurrence of wall-crossing of Cecotti–Vafa type as well as
wall-crossing of the ij/ji-type described above, with an infinite number of
boundstates, including collinear solitons and multi-particle states. We check
that the 3d–5d BPS spectrum computed by the nonabelianization map is com-
patible with predictions about the CFIV index from 3d tt∗ geometry. The
exponential network for C

3 exhibits a single K-wall jump (together with its
conjugate) caused by a tower of bulk BPS particles with charges nγ. This is in
line with physical expectations, since the five-dimensional theory should only
contain BPS states arising from boundstates of D0 branes. We find a particle
of charge nγ for each n ≥ 1, with index Ω(nγ) = −1. The BPS central charge
is Znγ = 2πn/R confirming the physical expectation that these particles are
D0 boundstates, or equivalently the Kaluza–Klein tower of the massless modes
of M theory on C

3 [1].

1.1. A Mathematically Oriented Summary

The results of this paper may be of interest to mathematicians, as they provide
concrete predictions and computational tools for enumerative geometry on
Calabi–Yau threefolds. However, some of the language used may obscure key
ideas and claims, here we attempt to bridge this gap with a self-contained
discussion.

The main subject of this paper is the development of a framework to
study the connection between certain problems in enumerative geometry. On
one side, we wish to count generalized Donaldson–Thomas invariants [8] of a
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toric Calabi–Yau threefold X, which arise in physics as BPS states of five-
dimensional gauge theories engineered by M theory on X. In fact, in appropri-
ate regions of the complexified Kahler moduli space, some of these BPS states
may be identified with Donaldson–Thomas or with Gromov–Witten invariants
[39]. A standard physics description of generalized DT involves D6–D4–D2–D0
boundstates in type IIA string theory on X. The relation to BPS counting in
M theory was explained in [4] (see also [5,6,39–43]). On the other side, we will
repackage these enumerative invariants as counting special Lagrangians in the
mirror Calabi–Yau Y , a problem that arises naturally once we consider the in-
sertion of defects in the 5d gauge theory, engineered by an M5 brane wrapped
on a Lagrangian submanifold L ⊂ X. Therefore, we approach the original
counting problem by embedding it into another one: we enrich the geometry
by including certain Lagrangian defects in X, and count BPS states in their
presence. The BPS spectrum of this system includes the previously mentioned
generalized DT invariants, as well as new sectors related to the presence of
the defect. To our understanding, there is currently no mathematical inter-
pretation of these new BPS states in the language of enumerative geometry.
The main motivation for considering defects is that it is easier to compute the
defect BPS states, which moreover encode information about the previously
mentioned generalized DT invariants.

Let us proceed to use the physical intuition of brane constructions to
describe these results, since we can draw in parallel a mathematical interpre-
tation. Consider the following system of D-branes in type IIA string theory on
R

3 × S1 × X:

R
3 S1 X

D6: pt. S1 X
D2: pt. S1 C2

kD0: pt. S1 x

where x ∈ X, C2 is a 2-cycle in X. Lifting this configuration to M theory,
the D6-brane becomes pure geometry, that is Taub–Nut space TN which is
topologically a circle S1

TN (the M theory circle) fibered over R
3, and the D2

and D0-branes become M2 branes wrapping C2 with k units of momentum
along S1. The M2’s are localized near the origin of TN . If we take the radius
of S1

TN to infinity, then TN ∼ R
4 and the M2 branes form a diluted gas [4].

The large S1
TN radius limit gives a configuration equivalent to the Gopakumar–

Vafa counting of BPS states in 5d [1,44], and BPS states of the 5d theory on
R

4 × S1 are M2 branes carrying k units of momentum, counted by genus-zero
GV invariants of class [C2]. Then, to summarize, after taking the radius of
S1

TN to infinity, we are left with M theory on X × R
4 × S1 and we count M2

branes wrapping C2 × S1. Let us mention that our framework also captures
BPS states including D4 branes, which in M theory would lift to M5 branes
wrapping a four-cycle of X, however we omit this from the present discussion
for simplicity.

As previously mentioned, a novelty of our approach consists of employ-
ing certain defects to solve this counting problem. In the M theory setting,
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we consider an M5 brane wrapping a Lagrangian submanifold L of X and ex-
tending along S1 × R

2 introducing several new sectors for the BPS spectrum.
A well-studied class of such BPS states are M2 branes wrapping a curve C2

and wrapping the circle S1, with ∂C2 ending on L along a nontrivial one-cycle.
The counting of these BPS states is related to open Gromov–Witten invari-
ants [23,24,45]. From the viewpoint of the 3d N = 2 theory arising on the M5
brane on S1 × R

2 these M2 branes give rise to BPS vortices located at a point
in R

2 and extending along S1 [20]. There is another, less studied class of BPS
states, on which we will focus. When the circle S1 shrinks to zero radius, M5
descends to a D4 brane wrapping L × R

2 and these BPS states correspond to
kinks on the 2d theory supported on R

2. Kinks are field configurations that
do not depend on the time coordinate Rt ⊂ R

2, but evolve along the spatial
direction Rx ⊂ R

2, and such that that fields at x → ±∞ approach certain
vacuum configurations. Restoring the circle at finite radius, these BPS states
will be located at a point along the circle; therefore, locally they may look
like vortices on a small patch of the cylinder S1 × Rx, but globally fields must
still approach constant (vacuum) configurations along S1 ×Rt when x → ±∞.
Therefore, these BPS states have some features of 3d vortices at short distance
as well as some features of 2d kinks at long distance, we will refer to them as
“kinky vortices”. From the viewpoint of the 3d theory on S1 × R

2, these BPS
states have not been studied to our knowledge.

To illustrate the geometric meaning of kinky vortices, note that unlike
standard vortices, they are field configurations on S1 ×R

2 that interpolate two
distinct vacua at infinity. Each vacuum corresponds to a BPS configuration for
the M5 brane on L×S1 ×R

2. Therefore, each vacuum is a point in the moduli
space of A-branes. The moduli space encodes both geometric moduli for the
Lagrangian submanifold L, as well as the moduli for a U(1) line bundle L on
L. Since we are considering toric Lagrangians which have topology C × S1,
then, this moduli space is one complex dimensional and parametrized by the
mirror curve Σ ⊂ C

∗
x × C

∗
y of X. Let p1, p2 ∈ Σ be two points corresponding

to branes (L,L1), (L,L2) with the same underlying Lagrangian L but with
different bundles. A kinky vortex corresponds to a configuration of A-branes
fibered over S1×R

2 such that it approaches (L,L1) along S1×Rt for x → −∞
and (L,L2) along S1 × Rt for x → +∞. Note that the underlying Lagrangian
L is fixed, as in related counts of open strings with a single boundary ending
on L [24,46].

Through physical arguments, we set up a combinatorial construction of
the generalized DT invariants based entirely on the geometry of the mirror
curve Σ. Motivated by the physical interpretation of the x and y variables on
C

∗
x × C

∗
y, we view Σ as a ramified covering of the x-plane. We then consider

networks on the x-plane arising from projecting special Lagrangian cycles S
of Y down on Σ, and further down on C

∗
x. By a such a cycle S we mean

a Lagrangian submanifold of Y along which the holomorphic three-form has
constant phase Ω|S ∼ eiϑ|Ω|. We focus on cycles having the form of a S2

fibration over a one-cycle γ on Σ. For these, the special Lagrangian condition
can be reformulated as the requirement that log y d log x has a constant phase
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along γ. The network W is made of trajectories subject to this constraint,
projected to the x-plane and with boundary conditions that trajectories must
be generated either at branch points or at intersections of other trajectories.
The geometric definition of these networks was originally introduced in [47].
This construction was further developed in [34] where it was shown that D2–D0
states in the resolved conifold and D4–D2–D0 states in local P

2 are captured
by the geometry. We take this as a proof of principle for the validity of this
geometric approach.

The appropriate count of special Lagrangian cycles is the main new result
of this paper, and it is determined by a combinatorial problem formulated in
terms of the topology of W. In a nutshell, one takes a flat line bundle on Σ
and considers its trivial pushforward in each (simply) connected component of
C

∗
x\W, then one glues back together different patches using certain combina-

torial data on the trajectories of W. The combinatorial data of each trajectory
consist of relative homology classes of open paths on Σ, each path connects
two points in a canonical lift of the trajectory to the mirror curve. These data
are uniquely fixed by demanding that the parallel transport along a path ℘
from one patch to another of C

∗
x\W only depends on the homotopy class of

℘. This construction of higher-rank flat bundles from the data of a covering
flat line bundle was originally introduced in [32] in the context of Spectral
Networks associated to Hitchin systems. The construction is also deeply con-
nected to the subject of tt∗ geometry [31,48]. One crucial difference with our
case is that Σ is not a spectral curve of a Hitchin system. Our construction is
motivated from a different perspective, brought about by the Lagrangian de-
fect engineered by the M5 brane, which leads naturally to a three-dimensional
version of the tt∗ equations considered in [33]. We derive the flatness equa-
tions that determine the combinatorial data and therefore establish a formal
nonabelianization map that takes a flat abelian connection on Σ and produces
a flat nonabelian connection on C

∗
x. The physical interpretation of the com-

binatorial data derives from identifying open paths on Σ running from p1 to
p2 with charges of kinky vortices interpolating between bundles L1,L2 on L.
This identification, together with the fact that kinky vortices reduce to BPS
kinks when S1 shrinks, strongly suggests that the nonabelian connection we
construct should be closely related to the tt∗ connection computed in a massive
Landau–Ginzburg model. The model should be characterized by a superpoten-
tial W such that exp(∂W/∂ log y) = 1 coincides with the algebraic equation
for the mirror curve F (x, y) = 0 and x parametrizes W . Massive models are
anomalous but still have a sensible tt∗ connection [30]. These anomalous cases
of tt∗ geometry have also been studied in the mathematical literature [49,50].

While the network’s shape is sensitive to the geometry of Σ, the con-
struction of the nonabelian connection is topological. In other words, we may
slightly vary the shape of W, but the combinatorial data remain essentially
constant. The geometry of W also depends on the phase ϑ (in addition to
the geometry of Σ), in fact varying this phase by finite amounts may produce
jumps in the topology of W. The jumps occur when ϑ is the phase of (the
holomorphic volume of) a special Lagrangian cycle and are identified with the
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5d BPS states of X. It is the degeneracies of these states that correspond to
the enumerative invariants that we set out to study. The topological jump of
W induces a change in the combinatorial data on trajectories, and this takes
the form of a “Kontsevich–Soibelman morphism” associated to C (a generic
combination of D6–D4–D2–D0 charges). Comparing the combinatorial data
before and after the jump therefore provides information on the appropriate
enumerative invariant Ω(C). We provide explicit formulae for computing the
combinatorial data that define a nonabelianization map, as well as for the enu-
merative invariants of X that describe its jumps. The formulae rely entirely
on the combinatorial data extracted from Σ through the network W.

Finally, we illustrate the application of this framework in the example
X = C

3. Our setup computes the spectrum of D0 boundstates, and we find
Ω(nD0) = −1 for n ≥ 1. This result agrees with predictions from topolog-
ical strings, in the following sense. On the one hand, the closed topological
string partition function of this model is the Mac Mahon function M(q),
whose coefficients (as a q-series) encode D6–D0 boundstates, by the Gromov–
Witten/Donaldson–Thomas correspondence [4–6]. On the other hand, wall-
crossing relates the spectrum of D0 boundstates to that of D6–D0 states and
predicts that Ω(nD0) = −χX for n ≥ 1, see [7, Sect. 6.5].2

1.2. Organization of the Paper

This paper is organized as follows. In the Sect. 2, we start by setting up the
physical perspectives. We briefly also recapitulate several facts from the exist-
ing literature. In particular, we review tt∗ geometry in some detail and discuss
the basics of the spectral and exponential networks. In Sect. 3, we set up the
construction of the nonabelianization map for exponential networks. We give a
detailed algorithmic description about how to determine various BPS indices
in our context, namely the 3d and 5d BPS indices. Then in Sect. 4 we realize
our formalism explicitly and in particular solve the flatness equations explic-
itly to compute closed 5d BPS states. Section 5 new questions and suggestions
for future work.

Note added: while this paper was in the final stages of preparation, a relation
between spectral networks and topological strings appeared in the interesting
work [52].

2. Lagrangian Defects and tt∗ Geometry

This section contains background material that supports the physical inter-
pretation and motivation of our main construction. It does not contain new
material, except for possibly new viewpoints on connections among several
topics. Readers interested in the construction of the nonabelianization map
alone may safely skip to the next section.

2More precisely, since C3 has infinite volume, one should speak of framed wall-crossing. One
way to view this is to start with a compact Calabi–Yau and take a large-volume limit in
which it becomes C3, see [41,51]. The resulting generalized DT invariants are not affected.
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In the following, we motivate the use of the exponential networks for
computing the BPS indices for 3d–5d systems. This goal prompted us to re-
view a somewhat broad spectrum of topics, in order to provide the physical
underpinnings of various objects that will be discussed later. We have not tried
to be exhaustive in details, but hopefully the following review is self-contained
to a certain extent, at least on the conceptual level.

The starting point is the fruitful viewpoint of geometric engineering of
quantum field theories and their BPS states. We then move on to include codi-
mension two defects in the picture, and touch on their properties as probes
of BPS spectra and wall-crossing. The next step is to introduce the geomet-
ric viewpoint on soliton spectra of defect theories, via the framework of tt∗

geometry. In the context of 2d–4d systems this provides the physical interpre-
tation for the construction of the nonabelianization map of spectral networks
developed in [32]. Likewise the 3d–5d version of tt∗ geometry will provide the
physical interpretation for the nonabelianization map that we will construct in
Sect. 3 for exponential networks. We then briefly review the framework of spec-
tral and exponential networks with an emphasis on their ties to 2d–4d/3d–5d
systems, their BPS spectra and their tt∗ geometries.

2.1. Geometric Approaches to BPS States from String Theory

The advantage of geometric approaches to BPS counting in 4d N = 2 quantum
field theories was advocated long ago by [47]. This philosophy was turned into
a truly powerful framework more recently in [32], and in follow-ups [53–58].
The application of geometric techniques to BPS counting in 3d–5d systems
was advocated more recently in [34].

The broad idea of geometric approaches relies on two pieces of data: a
Riemann surface Σ and a differential λ on it. Roughly speaking, BPS states
can be obtained by studying which homology cycles on the Riemann surface
support BPS geodesics defined by the differential. There are two different set-
tings which naturally provide these data. One is that of class S theories in
which Σ is the spectral curve of a Hitchin system, and λ is determined by
the Higgs field, this is the setting in which spectral networks were originally
developed [10,32]. The other setting is that of Type IIB string theory on a
ALE-fibered Calabi–Yau threefold, in this case Σ arises from the monodromy
properties of the fibration, and the differential on Σ descends from the holo-
morphic three-form. The two settings are in fact related to each other, see
[47].

The type IIB setup will turn out to be more closely related to the ap-
proach of our paper, so we now review a few basic facts about BPS states in
this setting. In the Seiberg–Witten regime, the Calabi–Yau threefold Y can be
taken to be a fibration by ALE spaces (of ADE-type) over the complex z-plane,
with singularities at isolated points. BPS states of the 4d N = 2 theory arises
from D3 branes wrapping three cycles, which correspond roughly to two-cycles
in the ALE space fibered over a one-cycle from the z-plane. For illustration let
us consider a Calabi–Yau of the following type,
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n
∏

i=1

(x − ai(z)) + y2 + w2 = 0, (1)

where each of the ai(z) can be multivalued function, in principle. The fiber
over the z-plane is an An−1-type ALE space in this case, the two-cycles are
associated to pairs ai, aj which correspond to weights of An−1. Varying z, the
two-cycles in the ALE space vanish somewhere on the z-plane, whenever two
weights ai = aj collide. Taking a one-parameter family of two-cycles fibered
over two such points gives a compact three-cycle in the Calabi–Yau, whose
topology may be S2 × S1, S3, or a more complicated fibration.

The Riemann surface Σ in this case is defined by the algebraic equation

Σ :
n
∏

i=1

(x − ai(z)) = 0. (2)

This is an n-fold ramified covering of the z-plane with ramification points
associated to roots of An−1. Given a fixed z, the image of the two cycle of
the ALE space is a zero cycle represented by the class [ai(z)] − [aj(z)]. Then
the image of the three cycle on the z-plane is a path on the z-plane, either
open or closed. Its lift on Σ is a closed cycle, whose period

∮

λ can be shown
to coincide with the period of the holomorphic three-form on the original
three-cycle. More precisely, there is a map from H3 of the Calabi–Yau to
H1(Σ), and correspondingly from the holomorphic top form Ω, one recovers
the canonical one form associated to Σ, denoted by λ. Then one can view
the three branes wrapped around the three cycles as, respectively, electric or
magnetic depending on what type of three cycles (A or B) they wrap. The
BPS mass is then given by

M =
∣

∣

∣

∣

∮

γ

λ

∣

∣

∣

∣

. (3)

It is also quite clear how these objects are BPS, from the viewpoint of string
theory. For example, a three brane partially wrapping S2 of the ALE space
gives rise to a string on the z-plane, whose tension

T = |ai(x) − aj(z)| (4)

depends on the position on the z-plane, as the S2 varies over it.3 The insight
that BPS states correspond to strings which minimize the tension leads to
a geometric approach to finding stable BPS states. This consists of studying
geodesics on the z-plane, either closed or stretching between two (or more)
branch points.

Exponential networks, as defined in [34], arise naturally in this Type
IIB setting. The geometries of interest in this case are however slight gener-
alizations of the ALE fibration considered above and arise as mirrors of toric
threefolds. Σ is replaced by a mirror curve, and λ is now replaced by log x dz/z.
On a geometric level, this leads to novelties in the types of BPS geodesics that
can occur, as we will see in greater detail in later sections.

3An explanation of this fact is most natural from the type IIA perspective which involves
self-dual strings, see [47].
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In the rest of this section, we will take a different perspective and motivate
the study of exponential networks on mirror curves from the viewpoint of
“Lagrangian defects” in 5d quantum field theory. The advantage of the field-
theoretic viewpoint will be to provide not only the geometric picture of BPS
states, but also a proper setting to define their counting, which is the main
subject of this work.

2.2. Codimension-Two Defects in Four- and Five-Dimensional Theories

In this section, we review the roles played by codimension-two surface defects in
four- and five-dimensional supersymmetric gauge theories. Three-dimensional
surface defects are most relevant for the BPS counting framework that we
are going to develop with exponential networks. However, to motivate their
features we first give a brief look at the 2d surface defects in 4d theories, and
to their relation to spectral networks.

2.2.1. 2d–4d Systems. Four-dimensional N = 2 quantum field theories can be
modified in the UV in a variety of ways, so as to give rise to distinct half-
BPS surface defects preserving 2d N = (2, 2) supersymmetry. The prototype
of such surface defects is the so-called Gukov–Witten defect [59], which are
characterized by imposing local monodromy constraints for the 4d gauge fields
around the defect. Another way to engineer surface defects is to couple a 2d
N = (2, 2) theory to 4d gauge fields through gauging the 2d flavors.

We focus on the second type of defects following the treatment of [26].
We start by discussing the IR set up. As one flows to the IR, the bulk theory
becomes abelian and a holomorphic function of the Coulomb branch, the pre-
potential F characterizes the geometry of the vacua. The surface defect gener-
ically has a discrete set of massive vacua, which is fibered over the Coulomb
branch B of the theory, defining the combined space of vacua of the 2d–4d
system. For each massive vacuum, the monodromy around the defect is char-
acterized by the “effective twisted superpotential” (W ), one of the most im-
portant geometric quantities for our considerations. The choice of the surface
defects determines the geometry of the 2d–4d space of vacua and in IR, this
effective superpotential.

We will use the powerful techniques from the 2d gauged linear sigma
model (GLSM) technology [60–62]. One can compute the effective twisted
superpotential for the surface defects by coupling the gauge fields in the bulk
to the flavor symmetries of the 2d GLSM’s. Below, we will review the procedure
for 2d N = (2, 2) GLSM first and then will review the same for surface defects
following [26] and will illustrate with examples.

For 2d GLSM [60–62], one first integrates out the 2d chiral matter fields.
This gives rise to the twisted superpotential which is a function of the twisted
masses and the 2d gauge multiplet scalars. Extremizing the superpotential
now with the 2d gauge multiplet scalars, one can derive the twisted chiral ring
equations.
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As an example, take the 2d CP
1 linear sigma model, defined by a U(1)

gauge theory with two chirals transforming as an SU(2) flavor doublet. Then
one can compute the twisted superpotential as

˜W = tσ − (σ − m) log(σ − m) − (σ + m) log(σ + m), (5)

where m is the twisted mass parameter for the SU(2) flavor symmetry, σ is
the 2d gauge multiplet scalar and t is the FI parameter. Then the chiral ring
equation can be derived from the extremization of the superpotential with
respect to σ,

σ2 − m2 = et, (6)
from which one finds that there are two vacua from the solutions of this equa-
tion.

For the surface defects [26] suggests a similar procedure. One first in-
tegrates out the chiral matter fields. Then treating the bulk vectormultiplet
scalars Φ as the twisted masses, one gets 2d chiral with 2d mass x, in a repre-
sentation R of the bulk gauge fields giving rise to an twisted effective super-
potential

WR(x,Φ) = −TrR(x + Φ) log(x + Φ). (7)
Then one replaces TrRΦk coming from the expansion by the VEV of this
operator in the 4d N = 2 theory. This will be a function of the Coulomb
branch parameters ui, and can be computed using resolvents of the related
matrix models. This gives an effective twisted superpotential W(σ,m, u), as a
function of the 2d scalar vevs σ, 4d scalar vevs ui and twisted mass parameters
m. Then extremization with respect to u gives the twisted chiral ring equations
of the 2d–4d system.

As an example, couple SU(2) to the two chirals of CP
1 model. Then one

has the superpotential

W = tσ − Tr(σ + Φ) log(σ + Φ). (8)

Then one can compute the twisted chiral ring equations as [26]

σ2 − u = Λ4e−t + et. (9)

A crucial property of this expression is that it coincides with the Seiberg–
Witten curve of the 4d bulk theory, or in other words the curve (2) arising
in the string theoretic setting. This fact is a key reason why studying BPS
surface defects provides a good probe of the low-energy dynamics of 4d N = 2
theories.

2.2.2. 3d–5d Systems. Defects of codimension two in the context of five-
dimensional gauge theories will be most relevant in what follows. As for the
2d–4d case, there are several possibilities for defining these defects. One fa-
miliar way is to include them in the M-theoretic engineering, by designating
a choice of special Lagrangian submanifold L ⊂ X and considering a stack of
M5 branes on L×S1 ×R

2. We will restrict to the case of a single fivebrane and
will further restrict L to be the “toric” brane of [23,24]. The second restriction
is made for simplicity, although our constructions with exponential networks
can be directly applied to any other choice of Lagrangian branes whose mirror
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geometry is known. This includes knot conormals of [45] and we will return on
this in Sect. 5.

If we restrict to a class of 5d theories with a known Lagrangian description
(as well as an M-theoretic engineering), we can define the 3d–5d system in
a way that is analogous to the 2d–4d case. For illustration purposes, let us
assume that the bulk 5d theory is a gauge theory with gauge group SU(N).
Namely, we consider a circle uplift of the 2d N = (2, 2) U(1) GLSM to a
3d N = 2 U(1) gauge theory with a charged chiral multiplet transforming
in the fundamental representation of SU(N). We further turn on a minimal
coupling for the 3d chirals to 5d vectormultiplet fields restricted to the defect.
The 3d theory may additionally feature a Chern–Simons term. This is the field
theoretic description of the 3d theory T [L] coupled to the 5d theory, see for
instance [20]. The classical moduli space of vacua of the 3d theory can be seen
to coincide with the positions of L on the toric diagram of X [63], where the
quantum moduli space is expected to be captured by the mirror curve [23].
The 3d Chern–Simons term is then directly related to the choice of framing.

However, it is not necessary to invoke mirror symmetry to study the
low-energy dynamics of the 3d–5d system. We can rely directly on quantum
field theory if we follow the strategy already employed for 2d–4d systems,
pioneered by [26]. There is in fact a matrix model description of (at least,
certain) 5d gauge theories, the difference is that this involves unitary rather
than hermitian models [64]. See for example [65] for a study of matrix models
associated to 5d N = 1 gauge theory. The argument for computing the twisted
effective superpotential of T [L] runs in the same way as the 2d case: the chirals
acquire a u-dependent mass on the Coulomb branch of the 5d theory and can
be integrated out to yield an effective description in terms of the 3d field
strength scalar σ. A 3d chiral multiplet with twisted mass m then contributes
a dilogarithm Li2(e−2πR (σ+m)) to the twisted superpotential.4 Now viewing
m as the VEV of the 5d vectormultiplet scalars, one integrates out the 5d
degrees of freedom, further deforming the 3d twisted superpotential into a
function ˜W(σ, t, u) of the FI coupling t and of the 5d Coulomb and mass
moduli, collectively denoted by u. Since both the 3d and the 5d theories are
taken on a circle of finite radius, both σ and t are complexified and have a
periodic imaginary part. The 5d path integral is carried out with the help of
the matrix model, as in the 4d case it suffices to know the explicit form of
the resolvent. Minimizing ˜W should then produce the Seiberg–Witten curve
of the 5d bulk theory, which is expected to arise as the spectral curve of some
relativistic integrable system [67]. An example can be found in Sect. 4.3.

This program for the study of 3d–5d systems was carried out in recent
works, confirming expectations in some explicit cases [27,28]. Our working
assumption will be that it extends to generic toric branes of toric Calabi–Yau
threefolds. One indication that this should be possible is that we may view

4A neat way to see this is to consider its KK modes as fields in the 2d theory, and taking the
regularized sum of the contribution of all KK modes studied in the 2d case, see for instance
[66].
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the 3d–5d system on a circle as a 2d–4d system of the KK modes. Although
this may look rather involved from the 2d–4d viewpoint, one could once again
run the logic used in the study of the latter, and obtain the expected results.
A further hint that this should work comes from mirror symmetry, whose
prediction identifies the moduli space of L with the mirror curve, and further
with the Seiberg–Witten curve of the 5d theory.

2.3. tt∗ Geometry in Two and Three Dimensions

Above we reviewed how codimension-two defects provide powerful probes into
the low-energy dynamics of four- and five-dimensional gauge theories with eight
supercharges. The upshot is that their moduli spaces of vacua (twisted chiral
rings) coincide with the Seiberg–Witten curves of the bulk theories. These
curves are presented as ramified coverings of the FI plane, parameterized by
the variable t in the previous discussion. At each t the twisted superpotential
exhibits a finite number of massive vacua, corresponding to sheets of Σ. The
next step will be to study the spectrum of BPS kinks connecting these vacua
in the 2d–4d context, and similar kink-like BPS states in the 3d–5d setting.
A powerful approach to this problem is via tt∗ geometry. Here we give a brief
review of the main ideas of tt∗ in 2d and in 3d, and its relation to BPS counting.

2.3.1. Solitons of 2d N = 2 Landau–Ginzburg Models. tt∗ geometry in two
dimensions was introduced in [31] and further explored in subsequent papers
[29,30]. A rigorous mathematical formulation was proposed in [48].

To review its salient features, we consider a Landau–Ginzburg theory in
two dimensions, where the geometric meaning of the solitons is most trans-
parent. These theories are characterized by a superpotential W (xi) which is a
function of n chiral superfields, up to a variation of D-terms given by the Kähler
potential which turns out to be positive for unitary theories. The bosonic part
of the action is given by

S =
∫

d2zGij̄∂μxi∂μxj̄ + Gij̄∂iW∂̄j̄W̄ , (10)

where Gij̄ = ∂i∂̄j̄K, and K is the Kähler potential.
Minima of the superpotential correspond to the vacua of the theory, they

are assumed to be non-degenerate. In particular by a genericity assumption
one can assume that the superpotential is quadratic near each vacuum.

Solitons are static field configurations with a profile along the spatial di-
rection, and with boundary conditions governed by two distinct critical points
α, β such that xi(−∞) = αi and xi(∞) = βi. Stable solitons are the ones
which satisfy the boundary conditions and minimize the energy, i.e., saturate
the BPS bound. The latter condition can be shown to take the following form

∂ξx
i = eiϑGij̄ ∂̄j̄W̄ , (11)

where ξ denotes the space variable and eiϑ = W (β)−W (α)
|W (β)−W (α)| is the phase of the

jump of the superpotential. The central charge of the soliton is

Zαβ = 2(W (β) − W (α)). (12)
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The BPS equations imply

∂ξW = eiϑ|∂W |2, (13)

which means that the soliton field configuration maps to a straight segment in
the W -plane of slope ϑ and connecting W (α) and W (β).

To count the number of solitons, one asks how many solutions exist for
(11). To answer this, one considers the “thimble” of such solutions near each
of the critical points and then evolves the thimbles according to the BPS
equations in the field-space of xi, and finally counts the number of points the
thimble of α intersects the thimble of β [30]. The wavefront of all possible
solutions originating from a critical point is a Sn−1 sphere for a given W . In
fact, this coincides with the definition of the vanishing cycle in the context of
singularity theory, as the sphere vanishes upon approaching the critical point.
Denoting the two wavefronts originating at two critical points by Δα and
Δβ , the intersection number (computed on a hyperplane mid-way between the
critical points) is given by

|μαβ | =

∣

∣

∣

∣

∣

∣

∑

αβ soliton

(−1)F F

∣

∣

∣

∣

∣

∣

= |Δα · Δβ |, (14)

where F is the fermionic number. In fact it turns out that absolute value
signs can be dropped (with possible ordering of vacua). Thus one arrives at an
expression for an index counting the number of solitons between two vacua in
terms of intersections of thimbles:

μαβ = Δα · Δβ . (15)

As a consequence of this fact, there is no soliton interpolating between a vac-
uum and itself [30], in other words μαα = 0.

As one perturbs W the critical values move in the W -plane. Intersection
numbers are topologically stable, and do not change as long as no critical
value crosses the straight line joining two other critical values. However, when
a critical value β happens to move onto the straight line connecting the critical
values α and γ, then one can not continuously pass the wavefront originating
from α to γ. Thus the intersection number μαγ suddenly changes, and the
change is captured by the automorphism of the group of vanishing cycles.

The transformation of the basis cycles in the above situation can be
analyzed by the well-established techniques of Picard–Lefschetz theory. It turns
out that

Δ′
α = Δα + (Δα · Δβ)Δβ , (16)

from which one can compute the jump in the intersection number as

μ′
αγ = Δ′

α · Δγ = μαγ + μαβμβγ . (17)

This is the Cecotti–Vafa wall-crossing formula for 2d BPS states, which also
plays a key role in the construction of spectral networks.
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2.3.2. tt∗ Geometry in Two Dimensions. The tt∗ equations of [31] are defined
in general for N = 2 theories, not necessarily for SCFTs. Indeed for defining
chiral rings and eventually tt∗ equations, we only need two adjoint supercharges
Q and Q such that (Q)† = Q and they define a Hamiltonian {Q,Q} = H. We
also need to have at least one unbroken R-symmetry U(1)R. We will mainly
focus in models where this happens to be the axial R-symmetry U(1)A, for
example the LG models discussed above. For massive models flowing to SCFTs
(critical models), we have also a vector R-charge U(1)V because of quasi-
homogeneity of the superpotential W . For any of these models, the Fermion
number F can be defined just as the U(1)A charge:

F = FA = qA (18)

the topological/antitopological or chiral/antichiral ring is defined as either Q
or Q cohomology. To define this ring for any Riemann surface, one needs to
perform a topological twist which leads to the Ramond (R) sector. Consider
φi ∈ HQ, the ring structure is encapsulated by the relations

φiφj = Ck
ijφk. (19)

By spectral flow one can argue that there is a distinguished vacuum |0〉, which
can be used to define vacua associated with other chiral operators:5

φi|0〉 = |i〉. (20)

Just by CPT theorem, there must exist an invertible matrix M such that

〈̄i| = M j
ī
〈j| M j

ī
(M∗)k̄

j = δk̄
ī (M∗)ī

j = (M i
j̄)

∗ (21)

M provides a real structure to the vacuum bundle. Then, a very simple com-
putation shows:

gij̄ = Mk
j̄ ηki gη−1(gη−1)∗ = 1. (22)

The topological metric is given by the topologically twisted two point function
on S2: 〈φiφj〉S2 . For B-twisted LG models (which are the ones of interest to
us), in the untwisted sector this has a simple expression:

ηij = 〈φiφj〉S2 =
1

(2πi)N

∮

γ

φiφj
∏

a ∂aW
(23)

here γ is a middle dimensional contour with the topology of TN , and circling
around each pole. For the one-dimensional case, the contour is therefore a
disjoint union of circles. The derivative stands for ∂i = ∂/∂xi where xi are the
LG fields. If critical points of W are isolated and non-degenerate, the Hessian
HW is non-vanishing there and the formula can be reduced to

ηij =
∑

p∈Crit(W )

φiφj

HW (p)
. (24)

5Here |0〉 is the unique Neveu–Schwarz (NS) vacuum and then flowed to R sector by the
spectral flow operator (which is well defined by the fact we have U(1)A). In the SCFT case,
we have two R-charges and they provide a grading for the chiral–chiral ring in the NS sector.
A vacuum is defined up to Q|ψ〉. But, by imposing additionally Q|i〉 = 0, it is possible to

fix a harmonic representative.
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In order to write the tt∗ equations, is convenient to work in a basis of vacua
labeled by (a choice of) the chiral ring generators |i〉. In the massive case, we
can use the so-called point-like basis |p〉 labeled by p ∈ Crit(W ), and then the
hermitian metric gij̄ is given by pairing |i〉 and its CPT conjugate 〈j̄|. In the
point basis, we may define the matrix Cφ by

(Cφ)k
j := Ck

φj ∈ MatN (25)

where φ is any operator acting on a chiral φj as in (19). and naturally, the
metric gij̄ is N × N dimensional and in the chiral basis it is hermitian.

tt∗ geometry describes how gij̄ varies with deformations of the theory.
One can introduce a natural connection on the vacuum bundle defined by

Aiαβ̄ = 〈β̄|∂i|α〉 (26)

where ∂i denotes variation with respect to the coupling associated with a chiral
operator φi. The tt∗ equations assert then that the “improved” connection6

∇ = dti (∂i − Ai + Ci) ∇ = dtī
(

∂̄ī − Aī + C ī

)

(27)

is flat
∇2 = ∇2

= ∇∇ + ∇∇ = 0. (28)
Coupling-dependent changes of basis on the vacuum Hilbert space correspond
to gauge transformation for the tt∗ connection. It is often convenient to work
in a holomorphic gauge where Aī = 0. It is precisely in this basis that the
connection is related to the metric g as

Ai = −g∂ig
−1. (29)

The tt∗ equations can then be formulated in terms of g alone as follows

∂̄i(g∂jg
−1) − [Cj , g(Ci)†g−1] = 0

∂iCj − ∂jCi + [g∂ig
−1, Cj ] − [g∂jg

−1, Ci] = 0.
(30)

On one hand, the flatness equations of the tt∗ connection will be most useful
to make contact with our nonabelianization map for exponential networks in
Sect. 3. On the other hand, the latter form of the equations involving g will
be most useful to us in actual computations of tt∗ geometry in Sect. 4.

To conclude our lightning overview of tt∗ equations, let us sketch how they
subsume the soliton counting techniques via intersection numbers of Lefschetz
thimbles reviewed above, following [30]. The basic idea is to use tt∗ equations to
connect leading infrared behavior to the one in the ultraviolet. In the infrared,
it turns out that the metric is (in the point basis) diagonal, and gets corrected
by solitons between vacua; on the other hand, in the ultraviolet regime it is
related to U(1) charges of the Ramond vacua. The analogous quantity to study
in more general models is the “CFIV” index [29]. Its definition is

Qab =
iβ

2L
Trab(−1)F Fe−βH , (31)

6The covariant derivative is understood to act according to the type of representation of the
object to which it is applied.
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where the partition function is taken over a cylinder of length L and perimeter
β. The boundary conditions are specified by two vacua a, b. In the UV limit
β → 0, and Q is coincides with the spectrum of left (or right) charges of the
Ramond sector

Qij

∣

∣

β→0
= qij . (32)

In the IR limit instead Q admits an expansion in terms of corrections
due to solitons, which come with integer coefficients corresponding to the μab

introduced earlier [30]. For a completely massive theory, there is a natural set
of coordinates in the space of coupling constants, called canonical coordinates
wk with k = 1, . . . , n. Given the central charge of the supersymmetry algebra
Z = {Q+, Q̄+}, they are defined as

wi − wj =
1
2
Z
∣

∣

(i,j)
. (33)

In the canonical coordinates, the CFIV index is related to the tt∗ metric as
follows

Q = −
∑

k

wkg∂kg−1 = −1
2
gβ∂βg−1. (34)

In the IR limit β → ∞, the CFIV index admits an expansion of the following
form

Qij

∣

∣

β→∞ ≈ − i

2π
μijmijβK1(mijβ), (35)

where mij = |Z|∣∣
(i,j)

= 2|wi − wj | are soliton masses and K1 is the modified
Bessel function of the first kind. Similarly the tt∗ metric admits an expansion
of the form

gij̄ = δij − i

π
μijK0(mijβ). (36)

Note in particular this implies a similar expansion for the tt∗ connection Ai

as well as for the improved flat connection ∇ through Eqs. (27) and (29).
This form of the flat connection in terms of “corrections” by solitons underlies
the nonabelianization map construction of spectral networks [10,21,32]. It will
also provide the physical interpretation for our main construction, outlined in
Sect. 3, which is strongly inspired to spectral networks.

2.3.3. tt∗ Geometry in Three Dimensions. Three-dimensional N = 2 theories
on a circle of finite radius may be viewed as the 2d (2, 2) theories of the Fourier
modes of the 3d fields. In this way, it is possible to uplift the construction of
two-dimensional tt∗ geometry 3d [33]. We will be brief on this topic, since
an explicit example will be studied in detail in Sect. 4.4. In view of this, we
will tailor the present discussion on a specific set of models which includes
our main example, namely GLSMs (gauge linear sigma models). As recalled
in Sect. 2.2.2, an important novelty in three-dimensional GLSM is that the
vectormultiplet scalar fields becomes complexified and periodic Yi ∼ Yi + 2π
when the theory is placed on a circle. Let us consider a U(1) GLSM with N
chiral multiplets of equal charge. Let Y be the vectormultiplet field strength
scalar, and let X be the corresponding FI coupling. If we turn on masses mi
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for the chirals, they decouple and leave one-loop contributions for the effective
twisted superpotential, which takes the generic form

˜W = XY +
∑

i

Li2(e−2πR (Y +mi)) +
κ

2
Y 2 (37)

where R is the circle radius, mi are bare masses of 3d chirals and κ is an
effective Chern–Simons coupling.

For generic X the theory has a finite set of massive (non-degenerate)
vacua, indeed the critical set of W can be conveniently described by an alge-
braic equation in the exponentiated variables X,Y → x, y

dW

dX
= 0 → F (x, y) = 0. (38)

Solving for y gives a finite set of solutions yi(x) which can be identified with
the vacua of the theory for a given value of the coupling. BPS solitons are field
configurations for Y that interpolate between a vacuum i and another vacuum
j, while obeying the BPS equations. One spatial direction is compactified,
by “soliton” we mean a field configuration in which Y approaches a constant
value at ±∞ in the non-compact direction. Unlike in two dimensions, physical
properties of these solitons are captured not only by the pair of vacua they
connect, but also by the relative homology class of the path the soliton traces
on the Y -cylinder (not to be confused with the space-like cylinder). Solitons
that wind around the cylinder pick up corrections to their mass due to the
multivaluedness of ˜W. The BPS equations determine the precise profile for
Y (ξ) over space, and the mass of a soliton can be unambiguously defined as
the integral of the energy density of a given field configuration over space (see
Sect. 4.4.1 for more detail).

A way to keep track of this phenomenon is to work on the universal cov-
ering of the Y -plane, by introducing a discrete index N ∈ Z to label preimages
of vacua

|i〉 → |i,N〉. (39)

This introduces an infinite tower of vacua for each critical point of the vacuum
manifold (38) and refines the notion of soliton charge. Solitons are in fact now
labeled by pairs (i,N), (j,M).

Coming back to the question of tt∗ geometry, it is natural to consider
an uplift of the tt∗ metric to an infinite-dimensional matrix g(i,N),(j̄,M̄). Re-
call that the metric depends explicitly on information of the superpotential
of the theory, for instance through the IR expansion (36), which contains
m(i,N),(j̄,M̄) = 2|Δ˜W|. In [33] it was argued that certain models have a soli-
ton spectrum that is invariant under simultaneous shifts of N,M preserving
M − N . This effectively means that solitons come in infinite towers and all
solitons of the tower have the same mass. We will study the realization of this
symmetry in detail in Sect. 4.4 and will indeed find that it is present, although
somewhat nontrivially. In particular, since ˜W is still multivalued on the uni-
versal covering of the Y -cylinder, shift symmetry is not automatically verified:
its presence is tied to the structure of the BPS spectrum. Shift symmetry will
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also play a prominent role in our construction of Sect. 3. In fact our framework
provides a general proof of shift symmetry, since we will argue that it arises
naturally from the perspective of exponential networks and their soliton data.7

Taking the shift symmetry for granted, it implies that the metric itself
must be shift-symmetric

g(i,N),(j̄,M̄) = gij̄(M − N). (40)

It is then natural to introduce a “Bloch” basis

|i, θ〉 =
∑

N

ei N θ|i,N〉. (41)

In this basis, the metric can be expressed as a periodic function gij̄(θ), and
one trades infinite-dimensional matrices for differential operators in θ in the
tt∗ equations, by replacing

N → −i
∂

∂θ
. (42)

In this way, tt∗ geometry in three-dimensions can be viewed as augmenting the
parameter space of the theory by one extra periodic direction parameterized
by θ. The tt∗ equations have been shown to take the form of periodic monopole
equations on the augmented space of couplings [68].

2.4. A Field Theoretic Perspective on Spectral Networks and Exponential
Networks

One of the main goals of this paper is to provide a B-model version of the
BPS states counting for local Calabi–Yau threefolds. A detailed algorithmic
approach toward this will be described in Sect. 3, based on the geometric
framework of exponential networks and key ideas from spectral networks. Here
we review both frameworks, from the viewpoint of quantum field theory of
2d–4d and 3d–5d systems, respectively. This perspective is especially suited
to making contact with the previous discussion on tt∗ geometries in 2d and in
3d, which provides the physical foundations for our constructions.

In fact this leads us back to the geometric approach discussed at the
beginning of this Sect. 2.1. Such constructions constitute only a part of the
spectral (resp. exponential) network, namely the geometric data. In order to ex-
tract meaningful information about BPS states, such as BPS indices, from the
geometry one needs to introduce certain combinatorial data on the network.
This was accomplished for spectral networks in [21,32] through insightful stud-
ies on the interplay between tt∗ geometry, Hitchin systems and 2d–4d systems.
This led to a powerful framework to compute 4d BPS spectra. On the other
hand, the appropriate combinatorial data for exponential networks has been
missing so far, since the definition provided in [34] is purely geometric. One of
our main results, developed in Sect. 3, will be to fill this gap and to develop
a framework to compute 5d BPS spectra. The motivation for our proposal
comes from the interplay between 3d tt∗ geometry and 3d–5d systems. Having

7This is an affine version of the Weyl symmetry of soliton data in ADE spectral networks
constructed in [53].
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reviewed both above, we now set out to explain how the two are naturally tied
to exponential networks.

2.4.1. Spectral Networks. Let us first review of how spectral networks fit in
the world of 2d–4d systems and tt∗ geometry. The BPS spectrum of N = 2
supersymmetric gauge theories in 4d can be most conveniently repackaged in
terms a spectral curve. Following [10,47,69,70], the basic idea is to embed the
gauge theory into a higher dimensional one, rendering the spectral geometry
as a part of the spacetime. BPS particles in 4d are then realized geometrically
as extended objects calibrated by the Seiberg–Witten differential, associated
with the spectral curve. BPS spectra for a large class of such theories, known
as “class S”, can be studied geometrically thanks to the pioneering work of
[32].

Theories of class S are defined as partially twisted dimensional reductions
of the 6d (2, 0) ADE theories, on a punctured Riemann surface. Each such
theory is completely characterized by the choice of ADE algebra g, a Riemann
surface C and by certain defect data corresponding to punctures. Class S
theories of A type may be naturally embedded into M theory, arising as the
worldvolume low-energy dynamics of rank(g) M5 branes on R

1,3 ×C ⊂ R
1,3 ×

T ∗C × R
3. At a generic point on the Coulomb branch in the IR, the stack of

fivebranes merges into a single fivebrane wrapped on R
1,3 × Σ. Here Σ → C is

the spectral cover
{λ : det(φ − λI) = 0} ⊂ T ∗C, (43)

where φ is a one form valued in g parametrizing the Coulomb branch of the
theory.

For convenience, let us restrict to g = su(k). In 6d the string like exci-
tations arise as boundaries of M2 branes ending on the stack of M5 branes.
When dimensionally reduced on C, they give rise to particles in 4d, provided
they are extended along a path in C. Hence with respect to a local choice of
trivialization for the spectral covering map, the paths can be labeled locally
by a pair i, j of integers indexed in 1, . . . , k. These are BPS strings, if and only
if the equality holds below

M =
∫

|λ(ij)| ≥ ∣

∣

∫

λ(ij)

∣

∣ = |Z| (44)

where λ(ij) = λi − λj , where λi is the Liouville one form on T ∗C restricted to
the i-th sheet of Σ. This condition is satisfied only if Im(e−iϑλ(ij)) = 0 (and
Re(e−iϑλ(ij)) is the volume form), which defines BPS trajectories on C labeled
by ij. It is not hard to see that this geometric constraint arises from pulling
back the BPS Eq. (11) for BPS solitons on surface defects from the W plane
onto the manifold of vacua Σ, and then further projecting it to C [10]. We will
sometimes refer to this as the geometric BPS equation.

Heuristically, spectral network is the evolution of such BPS trajectories.
The boundary conditions for these trajectories are of two types. A trajectory
of type ij can either end on a branch point where λi −λj = 0 or on a junction
where BPS strings of types jk and ki meet, all having the same phase ϑ. BPS
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states of the 4d theory in this case arise from finite webs of BPS strings. A
finite web may include both junctions and branch points, but always lifts to a
closed homology class on the spectral curve, therefore defining the charge of a
4d BPS particle [71,72].

For the BPS indices from the counting of the finite webs, one has to take
into account that finite webs might exist in continuous families, of which the
spectral networks produce some critical members. The generic members do
not pass through the branch points. However, they are still calibrated locally
by the one form and they also satisfy the junction rules. The deformation
modes of the finite webs geometrically realize the zero modes of the BPS
particles in four dimensions [73]. One of the ways to determine BPS spectrum
would be to quantize the zero modes, however this proves especially hard for
higher spin BPS states, which have been shown to occur commonly [55,56]. A
different route was proposed in [32]. The incipit of this route was to consider
BPS states in presence of various types of BPS line and surface defects. Then
the consistency with the wall-crossing behavior of such particles bound to the
defects led to constraints that solved the 4d BPS spectra.

Such consistency constraints have a beautiful geometric interpretation,
which leads to a connection to tt∗. The curve C is identified as the parameter
space of UV couplings of a “canonical” surface defect. The finite webs with an
open endpoint at z are identified with a particle bound to the surface defect
Sz. Line defects on the other hand are engineered by infinitely heavy particles
arising from M2 branes whose boundary stretched along the direction, as well
as along a path ℘ on C. Viewing a line defect as an interface between a surface
defect and itself (choosing a basepoint on ℘), its spectrum of “framed” BPS
states can be computed by counting intersections with open BPS strings of the
network. Physical arguments lead to the conclusion that the partition function
F (℘, ϑ) of framed BPS states must depend only on the homotopy class of ℘,
since it is a UV observable. In other words, F (℘, ϑ) must be the holonomy
of a flat connection over C and this can, loosely speaking, be identified with
the Lax connection of tt∗ geometry. Indeed ℘ is a path in the moduli space
of 2d theories on the surface defect, deformed by the coordinates on C, and
may be viewed as a BPS domain wall in the 2d theory. As ℘ crosses the
network, its partition function gets corrected by 2d–4d states corresponding
to the open webs. This statement is analogous to the IR expansion of the
CFIV index discussed above, in fact the latter is also closely related to the
tt∗ connection and the coefficients of the expansion denoted μ(a) are identified
with the “soliton data” of the spectral network. Rather elegantly, invariance of
the framed BPS partition function under homotopic deformations of ℘ imposes
relations on the 2d–4d BPS states encoded by the network, which turn out to
completely fix the soliton data of the spectral network.

Four-dimensional degeneracies are computed at values of ϑ where the
network becomes degenerate, since this is the condition that leads finite BPS
webs to appear. The degeneration induces a jump of the topology of the net-
work, and therefore of the soliton data. This is interpreted as the fact that
some 2d–4d states bounded together to form a 4d BPS particle, and left the
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2d–4d spectrum. Comparing the network soliton data before and after the
jump leads to information about the phase space for such boundstates/decays
and allows to compute the BPS index of the 4d BPS state responsible for the
jump.

2.4.2. Geometric Setup for Exponential Networks. Let us now recall the geo-
metric definition of exponential networks in the context of Lagrangian branes
in toric Calabi–Yau threefolds, following [34]. Here we will mainly focus on
reviewing background on the geometric setting in which exponential networks
arise. Only a very brief mention of the networks will be made, since a detailed
discussion will be given in Sect. 3, where we will also focus on the definition
of the soliton data.

Just like the standard spectral networks, the geometric data of exponen-
tial networks also consists of trajectories determined by the geometry of a
curve Σ. This curve is now identified with the mirror curve of a pair (L,X)
where L is the support of a Lagrangian brane in a toric Calabi–Yau threefold
X. The mirror geometry is described by Y = {uv = H(x, y)} ⊂ C

2 × (C∗)2,
with H = 0 defining Σ ⊂ (C∗)2. If Ω is the holomorphic top form on a Calabi–
Yau threefold, the stable A-branes which are special Lagrangian submanifolds
S, are real three-dimensional submanifolds satisfying

Ω|S = eiϑ |Ω| , (45)

where the phase ϑ is related to the stability condition for the branes. The power
of the geometric approach to BPS spectra is that the study of the A-branes can
be reduced to the mirror curve Σ, endowed with a differential λ = log yd log x
following ideas of [47]. This is accomplished by integrating the holomorphic
top form over fibers of the map (x, y, u, v) �→ (x, y) which takes Y �→ (C∗)2.
Over each point in the (x, y)-plane the equation H(x, y) = uv can be viewed
as an equation for (u, v), describing an affine conic bundle reducible precisely
when H(x, y) = 0.

Next we come to the important aspect of framing. As was mentioned
before, in the A-model the support of the toric brane L has the topology
R

2 × S1. The toric brane which is mirror to the v = 0 fiber is specified by a
point on the toric diagram. The vertex which is closest in the toric diagram is
surrounded by three faces corresponding to the divisors z1, z2, z3. The brane
is specified by

|z2|2 − |z1|2 = 0, (46)
and the real position modulus is given by

r ∼ |z3|2 − |z1|2. (47)

The U(1) bundle L → L is characterized by the longitudinal and meridian
holonomies x, y on the T 2 = ∂L. Classically, the meridian holonomy is trivial,
because L is flat and the meridian cycle S1

y ∼ ∂R
2 is contractible. However, at

the quantum level the geometry of the brane is corrected by open worldsheet
instantons, such as disks ending on L, whose boundaries introduce nontrivial
corrections to the meridian holonomy [23,24]. These corrections are suppressed
by e−Area, where the area of a holomorphic disk ending on L depends on the
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position of the brane through r. For this reason in the semiclassical regime,
which is when the brane sits far away from the vertex, the framing ambiguity
is suppressed. However, in the quantum regime the moduli space of L becomes
the mirror curve, with quantum corrections becoming more important in the
vicinity of the vertex. There is then an ambiguity in defining the longitudi-
nal holonomy by arbitrary meridian shifts x → xyf . Geometrically x ∼ er,
therefore this ambiguity translates into

r ∼ |z3|2 − |z1|2 + f(|z2|2 − |z1|2) (48)

in fact the second piece is classically vanishing (i.e., at infinity along a toric
leg).

Having discussed the curve geometry, let us now come to calibrated cycles
which correspond to BPS states. The holomorphic top form on the mirror curve
can be written as

Ω = ResH=uv

(

dudvdxdy

xy(uv − H)

)

, (49)

where all the periods can be reduced to the integration over Σ of the form [74],

ResH=0

(

log H(x, y)
dxdy

xy

)

= log y
dx

x
(50)

preserving the symplectic form on (C∗)2, namely the form dxdy
xy preserved,

up to a sign. There is a well-known reparametrization group for Σ which is
SL(2, Z) � Z2 acting as

(

a b
c d

)

· (x, y) = (xayb, xcyd). (51)

In particular, change of framing acts as
(

1 f
0 1

)

· (x, y) = (xyf , y). (52)

To conclude this mini-review let us consider a couple of examples. First
of all, the main example that will be analyzed later in the paper, namely C

3.
Although the simplest of all, it is perhaps the most important, since it is the
building block of all toric diagrams. In this case, there is no gauge group for
the 5d theory, and hence there is no group action. The mirror curve is given
by

∑3
i=1 yi which up on quotienting by C

∗, we have the well-known result
H = x + y + 1. Changing the framing, one has

Hf (x, y) = xyf + y + 1. (53)

A presentation of the LG superpotential which will play crucial role later is

W = (X − iπ)Y +
f

2
Y 2 + Li2(−eY ), (54)

where x = eX and y = eY , respectively. Then the mirror curve from is recov-
ered as exp(∂W/∂Y ) = 1. In Sect. 4, we will particularly focus on the case
f = −1 for simplicity, although this choice can be relaxed.

For completeness let us also consider the next-simplest example. The
resolved confold geometry gives rise to a 5d gauge theory with a U(1) gauge
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group, and there are two phases which are birationally equivalent by the Atiyah
flop. The mirror D-term equation is given by y1y2 = e−ty3y4 which gives rise
to again the well-known curve

H(x, y) = 1 + x + y + e−txy. (55)

Incorporating the framing, one has

Hf (x, y) = 1 + xyf + y + e−txyf+1, (56)

from which one can compute the LG superpotential

W = (X − iπ)Y +
f

2
Y 2 + Li2(−eY ) − Li2(−e−teY ), (57)

from which the mirror curve can be recovered again as exp(∂W/∂Y ) = 1.

3. Flat Connections for Mirror Curves and Soliton Counting

3.1. Data of Exponential Networks

Here we collect some basic definitions about exponential networks, in order to
set the stage for the rest of this section. The data of exponential networks are
of two types: geometric data and combinatorial data (a.k.a. soliton data). For
the definition of the former, we follow [34] with minor modifications, whereas
the definition of the latter is novel and will be developed in greater detail.

3.1.1. Geometric Data. Let Σ be an algebraic curve in C
∗
x ×C

∗
y, endowed with

the natural projection π : Σ → C ≡ C∗
x. This projection is K : 1 and presents

Σ as a ramified covering of C. By a genericity assumption, we assume that
all branch points are of square-root type. A choice of trivialization involves
choosing branch cuts for π, and a labeling for sheets of Σ away from the cuts.
A choice of trivialization will henceforth be assumed, and the different sheets
will be denoted by yi(x) for i valued in a set of K elements.

Let ϑ ∈ R/2πZ, the exponential network W(ϑ) is a web of trajectories on
C related to the covering π. Trajectories are called E-walls,8 and are labeled
by an ordered pair of sheets of Σ and an integer (ij, n). The shape of a wall is
determined by a differential equation9

(log yj − log yi + 2πi n)
d log x

dt
∈ eiϑ

R
+. (58)

The boundary conditions for this equations provide the starting points for E-
walls, and they come in two types: a wall can either start at a branch point
(a primary wall) or at the intersection of two walls (a descendant wall). A
primary wall of type (ij, n) must start at a branch point where yi = yj and
moreover it must have n = 0. When walls E , E ′ intersect, they may generate
one or more descendant walls E ′′, whose types are determined by those of E , E ′.

The main difference between geometric data of E-walls and S-walls (walls
of standard spectral networks) stems from the extra integer label n, which

8The name is a variant of the original S-walls of spectral networks.
9Note that the convention is opposite to the one used by the authors of [34]. Our choice is
dictated by convenience when defining soliton data later on.
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originates in the multivaluedness of the logarithms in (58). In order for this
label to be well-defined, it is necessary to introduce a second covering map
π̃ : ˜Σ → Σ with branching at those points (x, y) ∈ Σ where yi(x) approaches
either zero or infinity. A choice of trivialization for this second covering map
is fixed by specifying “logarithmic” branch cuts on Σ, and by labeling with
N ∈ Z different sheets of ˜Σ away from these cuts. For convenience, we often
represent the “logarithmic cuts” of π̃ by their π-projection on C, however it is
important to keep in mind that they actually live on Σ. The curve ˜Σ can be
presented as an infinite-sheeted covering of C by composition π ◦ π̃

˜Σ π̃−→Σ π−→ C. (59)

This is the viewpoint that we usually adopt, since exponential networks live
on C. Above x ∈ C there are infinite families of sheets labeled by (i,N),
corresponding to points of ˜Σ located at (x, log yi(x) + 2πiN).

When an E-wall p of type (ij, n) crosses a branch cut of square-root type
that permutes sheets of Σ as i → σ(i), its label changes in the obvious way to
(σ(i)σ(j), n). On the other hand, across a logarithmic cut (more properly, its
projection to C) the integer label n may change, the specific behavior depends
on the finite labels ij. To determine the behavior, one needs to consider a lift
of the wall to Σ

π−1(p) = p(j) − p(i) (60)
consisting of the preimages of the wall p lifted to sheets i and j with oppo-
site orientations (on sheet j the orientation agrees with that of the wall on
C). Suppose that p(j) (resp. p(i)) crosses the logarithmic cut on Σ, such that
log yj → log yj + 2πi δnj (resp. log yi → log yi + 2πi δni) crossing the cut in
the direction specified by the orientation of p(j) (resp. p(i)). Then n jumps by

n → n + δnj − δni. (61)

3.1.2. Combinatorial Data. Each E-wall carries combinatorial data, also known
as soliton data. In order to characterize it, let us fix any x on the wall and
consider the (affine) lattice

Γij,N,N+n(x) = Hrel
1 (˜Σ; (i,N), (j,N + n), Z). (62)

This is the relative homology lattice of open paths a ⊂ ˜Σ starting at (i,N)
and ending at (j,N + n). Physically each homology class corresponds to a
possible charge for a 3d–5d BPS particle, an uplift of 2d–4d BPS states studied
in [21]. We will use both terminologies “soliton path” and “soliton charge”
interchangeably. We return to the physical picture of these 3d–5d BPS particles
in Sect. 5. The central charge of a soliton a is the chain integral

Za =
1

2πR

∫

a

Y (x)
dx

x
, (63)

where Y (x) = log y(x) + 2πiN , with N the appropriate branch of the loga-
rithm corresponding to an actual path on ˜Σ representing the homology class
a. The denominator features the radius R of the compactification circle (see
Sect. 2.2.2).
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While the shape of the E-wall only depends on the fixed integer n, its
soliton data are classified by a pair of integers N,N + n whose difference is
fixed. To lighten notation we also introduce the union of charge lattices for
different solitons supported by the same wall:

Γij,n(x) =
⊔

N∈Z

Γij,N,N+n(x). (64)

The soliton data of the network are the assignment of an integer μ(a)
to each a ∈ Γij,n(x) on each E-wall. The rules that fix these integers will be
determined in the remainder of this section.

3.2. Nonabelianization Map

Let ∇ab be a flat GL(1) connection on ˜Σ, a nonabelianization map is the
construction of a flat GL(N) connection ∇na on C in terms of the abelian
connection ∇ab. In this subsection, we build a nonabelianization map ΨW :
∇ab → ∇na using the data of an exponential network W. To formulate the
map explicitly, it is convenient to choose coordinates on the respective moduli
spaces of these flat connections, such as their respective holonomies, or more
generally their parallel transports (even along open paths).10

Let ℘ be an open path on C, the corresponding parallel transport is

F (℘) = P exp
∫

℘

∇na. (65)

Likewise let a will be an open path on ˜Σ, the corresponding parallel transport
is

Xa = P exp
∫

a

∇ab. (66)

These variables obey the usual multiplication rule

XaXb =
{

Xab end(a) = beg(b)
0 otherwise (67)

where endpoints of paths a and b must match on ˜Σ, which requires both match-
ing the sheet label i and the log-branch label N of the common endpoint. For
both types of transport, flatness of the connection ensures that these quantities
only depend on the relative-homotopy classes of the paths ℘, a. Actually this
is not entirely correct, due to a small but important subtlety. More precisely
we need to work with twisted flat connections as in [32]. One way to think
about this is to take any path ℘ (resp. a) and consider its tangent framing lift
to a circle bundle over C (resp. ˜Σ). Let ℘, ℘′ (resp. a, a′) be two paths that
differ by k units of winding, then

F (℘′) = (−1)kF (℘) Xa′ = (−1)kXa (68)

For more details about this twisting, we refer the reader to [32]. We will often
omit any mention of the twisting in what follows except where it plays an

10When working with transport along open paths we implicitly make a choice of trivialization
for the vector bundles associated to either connection.
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important role, but it will be understood that we always work with twisted
flat connections on C, ˜Σ.

In the remainder of this subsection, we shall detail how to construct F (℘)
from Xa explicitly. The construction follows the same general strategy as the
nonabelianization map of spectral networks [32].

3.2.1. Diagonal Connection. Suppose that ℘ ⊂ C\W, i.e., the path does not
intersect the network. Then

F (℘) = D(℘) (69)

where we define

D(℘) =
∑

i

∑

N∈Z

X℘(i,N) =
∑

N∈Z

DN (℘) (70)

with ℘(i,N) the lift of ℘ to sheet (i,N) on ˜Σ. If ∂℘ = x′ − x we may say that

℘(i,N) ∈ Γii,N,N (x, x′), (71)

by a self-explanatory extension of notation in (62). Note that i = j and N+n =
N for these paths, in this sense the connection is purely “diagonal”.

This definition enjoys some obvious properties:

– D(℘) only depends on the relative-homotopy class of ℘
– concatenation works as expected D(℘)D(℘′) = D(℘℘′) if end(℘)

= beg(℘′) on C.

3.2.2. Detours Along E-Walls. When ℘ crosses an E-wall p at x the formal
parallel transport gets corrected by soliton data. Split ℘ into the concatenation
℘0℘1 with

∂℘0 = x − x0 ∂℘1 = x1 − x. (72)

Suppose p is of type (ij, n), and define

Ξij,n(p) =
∑

a∈Γij,n(x)

μ(a)Xa (73)

then the parallel transport along ℘ gets corrected to

F (℘) = D(℘0) eΞij,n(p) D(℘1). (74)

This detour rule defines a correction of the diagonal transport in terms of
soliton data {μ(a)} on the E-wall p. If i �= j this definition reduces to a slight
generalization of the usual detour rule of spectral networks, in fact

F (℘) =
∑

k,N

X℘(k,N) +
∑

N

∑

a∈Γij,N,N+n

μ(a) X
℘

(i,N)
0 ·a·℘(j,N+n)

1

= D(℘0) (1 + Ξij,n(p)) D(℘1).
(75)
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However, when i = j there are important differences, in fact the correction is
much more complicated

F (℘) =
∑

k,N

X℘(k,N)

+
∑

k≥0,N∈Z

∑

a1∈Γii,N,N+n

...
ak∈Γii,N+(k−1)n,N+kn

μ(a1) · · · μ(ak)
k!

X
℘

(i,N)
0 ·a1···ak·℘(j,N+nk)

1

(76)
Note in particular the infinite sum over k and the appearance of fractional
coefficients like 1/k!. These are novel features that were not encountered in
standard spectral networks. We elaborate on the meaning of these fractional
coefficients from the viewpoint of soliton counting in “Appendix A”, in con-
nection to tt∗ geometry and the CFIV index of [29].

3.2.3. Shift Maps for Open Paths. Although the charge lattice of soliton data
(64) has infinitely many sectors, it turns out that there is a high degree of
symmetry in the soliton data of exponential networks. In this subsection, we
introduce two types of maps that relate soliton paths in different charge sectors,
they will be important when describing symmetries of soliton data.

The first shift map is denoted by a superscript ( · )(+�). It acts by “trans-
porting” a soliton path of type (ij,N,N +k) into a path of type (ij,N +�,N +
� + k).

(+�) : Γij,N,N+k(x) −→ Γij,N+�,N+�+k(x)

(+�) : a �→ a(+�)
(77)

Note that i may or may not be equal to j, the map applies to both cases. The
map is defined by the following relations

a(+�) = d−1ac & Za = Za(+�) , (78)

where c, d are relative homology classes of type11

c ∈ Γjj,N+k,N+�+k(x) d ∈ Γii,N,N+�(x). (79)

This map is simply a way of transporting both endpoints of a from sheets
(i,N), (j,N +k) to sheets (i,N +�) and (j,N +k+�). The transports are made
via c and d−1, and the definition implies that the closed cycle (a(+�))−1d−1ac =
0 ∈ H1(˜Σ, Z) is trivial. Together with the condition on the central charge, this
ensures that the transport is independent of the specific choice of c, d. In fact
consider another pair c′, d′ that satisfy both conditions and define a potentially
different new path

ac′ = d′a′(+�) & Za = Za′(+�) (80)

11The inverse path d−1 ∈ Γii,N+�,N (x) is obtained by reversing the orientation of d, it is

the unique relative homology class that concatenates with d to the trivial path.
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Under these assumptions

Za(+�)·(a′(+�))−1 = Za(+�) − Za′(+�) = Za − Za = 0. (81)

Now a(+�) · (a′(+�))−1 is a closed path which belongs to H1(˜Σ, Z). Since the
physical charge lattice involves a quotient by H1(˜Σ, Z)/kerZ (see e.g., [53])
this implies that a(+�) · (a′(+�))−1 is trivial, and therefore

a(+�) � a′(+�). (82)

This proves that the map does not depend on the specific choice of c, d. There
is one shift map like (77) for each � ∈ Z, from its explicit form it follows
immediately each one is invertible. It is easy to see that they obey the simple
additive algebra

(+�) ◦ (+k) = (+(k + �)). (83)

The second map we wish to define is denoted by ( · )(i→j,+�), and “trans-
ports” a path of type (ii,N,N + k) into a path of type (jj,N + �,N + � + k).

(i → j,+�) : Γii,N,N+k(x) −→ Γjj,N+�,N+�+k(x)

(i → j,+�) : a �→ a(i→j,+�)
(84)

The map is defined as follows:

a(i→j,+�) = d−1ac & Za = Za(i→j,+�) (85)

where c, d are now relative homology classes of paths of the following types

c ∈ Γij,N+k,N+�+k(x) d ∈ Γij,N,N+�(x), (86)

By the same argument as above, the definition is independent of the specific
choice of c, d. When i = j, this map reduces to a special case of the previous
one. Indeed together they satisfy the following algebra

( · )(i→j,+�) ◦ ( · )(+k) = ( · )(+k) ◦ ( · )(i→j,+�) = ( · )(i→j,+(�+k))

( · )(i→j,+�) ◦ ( · )(j→i,+k) = ( · )(j→j,+(�+k))

( · )(i→i,+�) = ( · )(+�)

(87)

In the following, we therefore drop the distinction between the two maps and
refer to them collectively as the “shift map”.

3.3. Soliton Data from Flatness

The construction of Sect. 3.2 provides a definition of the parallel transport
F (℘) in terms of the abelian transport Xa and of the data of an exponential
network W. What the construction still lacks is a proof that F (℘) is the
parallel transport of a flat connection, in this subsection we study this property.
Following a strategy adopted in [32] we will show that requiring that F (℘) only
depends on the homotopy class of ℘ uniquely fixes all soliton data {μ(a)} on
the E-walls of W. When ℘ doesn’t intersect the network the parallel transport
is diagonal as in (69), and it follows immediately that F (℘) only depends on
the (twisted) homotopy class of ℘. This property becomes less trivial when ℘
intersects the network, and we consider three different cases: moving ℘ across
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a branch point, across the intersection of walls of type (ij, n) and (jk,m) and
finally across the intersection of walls of types (ij, n) and (ji,m).12

3.3.1. Branch Points. Consider paths ℘, ℘′ across a branch point of type ij,
as shown in Fig. 2. Splitting each path at the intersections with walls as ℘ =
℘0℘1℘2 and ℘′ = ℘′

0℘
′
1, the two parallel transports are simply

F (℘) = D(℘0)

⎛

⎝1 +
∑

a∈Γji,0(x1)

μ(a)Xa

⎞

⎠D(℘1)

⎛

⎝1 +
∑

b∈Γij,0(x2)

μ(b)Xb

⎞

⎠D(℘2)

=
∑

N

⎡

⎣DN (℘0)

⎛

⎝1 +
∑

a∈Γji,N,N (x1)

μ(a)Xa

⎞

⎠

×DN (℘1)

⎛

⎝1 +
∑

b∈Γij,N,N (x2)

μ(b)Xb

⎞

⎠DN (℘2)

⎤

⎦

=
∑

N

FN (℘)

(88)
and

F (℘′) = D(℘′
0)

⎛

⎝1 +
∑

c∈Γij,0(x′
1)

μ(c)Xc

⎞

⎠D(℘′
1)

=
∑

N

⎡

⎣DN (℘′
0)

⎛

⎝1 +
∑

c∈Γij,N,N (x′
1)

μ(c)Xc

⎞

⎠DN (℘′
1)

⎤

⎦

=
∑

N

FN (℘′) (89)

where we slightly abuse notation for the diagonal piece, which actually contains
off-diagonal ij and ji pieces

DN (℘′) = X℘(ij,N) + X℘(ji,N) +
∑

k �=i,j

X℘(k,N) (90)

due to the crossing of the ij-branch cut.
Demanding homotopy invariance requires setting

FN (℘) = FN (℘′). (91)

For each N the analysis of this equation is essentially identical to the one
involved in spectral networks, therefore we omit the details and refer the reader
to [32]. The result is that the soliton data of each E-wall consists of an infinite
tower of soliton paths: for example in Γji,0(x1) there is a path aN ∈ Γji,N,N (x1)

12We omit the study of a fourth case, which is when ℘ is deformed across a single E-wall, in
a sort of Reidemeister II move. The proof of homotopy invariance for this case is essentially
identical to the one found in [32].
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Figure 2. Homotopy across a branch point

for each N , which runs from x
(j,N)
1 into the branch point and then out to x

(i,N)
1 .

The degeneracy of this path is

μ(aN ) = +1, (92)

while the degeneracy vanishes for all other charges in the lattice Γji,0(x1).
Moreover, central charges of these solitons are all equal because

ZaN
=

∫

aN

log Y (x)
dx

x
=

∫ x1

b.p.

(log yi + 2πiN − log yj − 2πiN) d log x (93)

does not depend on N .

3.3.2. ij−jk Joints. Next let us consider homotopic paths ℘, ℘′ placed across
an intersection of ij and jk E-walls, as shown in Fig. 3. Splitting paths at the
intersections with walls as ℘ = ℘0℘1℘2 and ℘′ = ℘′

0℘
′
1℘

′
2℘

′
3, we can express

the respective parallel transports read as follows. For ℘ the parallel transport
is

F (℘) = D(℘0)

⎛

⎝1 +
∑

a∈Γij,n(x1)

μ(a, p)Xa

⎞

⎠D(℘1)

×
⎛

⎝1 +
∑

b∈Γjk,m(x2)

μ(b, r)Xb

⎞

⎠D(℘2)

=
∑

N

DN (℘) + F (℘)ij,N,N+n + F (℘)jk,N,N+m + F (℘)ik,N,N+n+m

=
∑

N

FN (℘)

(94)
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Figure 3. Homotopy across a joint

where

F (℘)ij,N,N+n =
∑

a∈Γij,N,N+n(x1)

μ(a, p)X
℘

(i,N)
0 a℘1℘

(j,N+n)
2

F (℘)jk,N,N+m =
∑

b∈Γjk,N,N+m(x2)

μ(b, r)X
℘0℘

(j,N)
1 b℘

(k,N+m)
2

F (℘)ik,N,N+n+m =
∑

a,b

μ(a, p)μ(b, r)X
℘

(i,N)
0 a℘

(j,N+n)
1 b℘

(k,N+n+m)
2

(95)

Whereas for ℘′ the parallel transport is

F (℘′) = D(℘′
0)

⎛

⎝1 +
∑

b∈Γjk,m(x′
1)

μ(b, r′)Xb

⎞

⎠D(℘′
1)

×
⎛

⎝1 +
∑

c∈Γik,n+m(x′
2)

μ(c, q′)Xc

⎞

⎠D(℘′
2)

×
⎛

⎝1 +
∑

a∈Γij,n(x′
3)

μ(a, p′)Xa

⎞

⎠D(℘′
3)

=
∑

N

DN (℘′) + F (℘′)ij,N,N+n + F (℘′)jk,N,N+m + F (℘′)ik,N,N+n+m

=
∑

N

FN (℘′)

(96)
where

F (℘′)ij,N,N+n =
∑

a∈Γij,N,N+n(x′
3)

μ(a, p′)X℘′
0℘′

1℘′
2
(i,N)a℘′

3
(j,N+n)

F (℘′)jk,N,N+m =
∑

b∈Γjk,N,N+m(x′
1)

μ(b, r′)X℘′
0
(j,N)b℘′

1℘′
2℘′

3
(k,N+m)

F (℘′)ik,N,N+n+m =
∑

c∈Γik,N,N+n+m

μ(c, q′)X℘′
0℘′

1
(i,N)c℘′

2℘′
3
(k,N+n+m)

(97)
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Homotopy invariance requires FN (℘) = FN (℘′), and this works out as
follows. First of all it is obvious that DN (℘) = DN (℘′). The respective pieces
with paths connecting vacua (i,N) and (j,N + n) match if

μ(a, p′) = μ(a, p) a ∈ Γij,N,N+n ∀N. (98)

Likewise the respective pieces with paths connecting vacua (j,N) and (k,N +
m) match if

μ(b, r′) = μ(b, r) b ∈ Γjk,N,N+m ∀N. (99)

Finally the respective pieces with paths connecting vacua (i,N) and (k,N +
n + m) match if

μ(c, q′) =
∑

(

ab∼c
∣

∣

∣

a∈Γij,N,N+n
b∈Γjk,N+n,N+n+m

)

(−1)w(c,ab)μ(a, p)μ(b, r)
(100)

with c ∈ Γik,N,N+n+m and for all N ∈ Z. Thus the soliton data on walls
p′, q′, r′ are entirely determined in terms of the soliton data of the incoming
walls p, q by requiring flatness of F (℘). The equations that describe outgoing
soliton data are a natural generalization of the ones found in [32] and this
is no surprise, since the underlying physics is that of the Cecotti–Vafa wall-
crossing formula in both cases. Note however that the interplay of soliton data
is already a bit more complicated than we saw for the branch point, since now
there are solitons connecting different logarithmic branches that mix with each
other.

3.3.3. ij − ji Joints. Next we consider homotopic paths ℘, ℘′ placed across
an intersection of (ij, n) and (ji,m) E-walls called p and r, as shown in Fig. 4.
Note that this situation cannot arise in spectral networks, because such walls
would always be anti-parallel in that setting. However, such intersections can
occur in exponential networks, as long as n �= −m. In the picture we draw two
incoming walls p, r and infinitely many outgoing walls, organized into four
main families: p′

k, r′
k, q′

k, q̄′
k of types indicated in figure. While p′

k, r′
k are all

distinct as trajectories, walls q′
k, q̄′

k are all overlapping with each other, but
carry different soliton data. The appearance of these four infinite families of
walls will be clarified shortly by studying the requirement of flatness of the
parallel transport.

Without further ado, let us study the parallel transport equations. For
the transport along ℘ we find

F (℘) = (1 + Ξij,n(p))(1 + Ξji,m(r))

= 1 + Ξij,n(p) + Ξji,m(r) + Ξij,n(p)Ξji,m(r).
(101)

To lighten notation, we suppressed trivial contributions like D(℘). For the
homotopic path ℘′ we obtain
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Figure 4. Intersecting E-walls of types (ij, n) and (ji,m)
give origin to an infinite family of new walls

F (℘′) =

⎛

⎝

↗
∏

k≥1

eΞji,m+(k−1)(n+m)(r
′
k)

⎞

⎠

⎛

⎝

∏

k≥1

eΞii,k(n+m)(q
′
k)

⎞

⎠

×
⎛

⎝

∏

k≥1

eΞjj,k(n+m)(q̄
′
k)

⎞

⎠

⎛

⎝

↘
∏

k≥1

eΞij,n+(k−1)(n+m)(p
′
k)

⎞

⎠

=

⎛

⎝1 +
∑

k≥1

Ξji,m+(k−1)(n+m)(r′
k)

⎞

⎠

⎛

⎝

∏

k≥1

eΞii,k(n+m)(q
′
k)

⎞

⎠

×
⎛

⎝

∏

k≥1

eΞjj,k(n+m)(q̄
′
k)

⎞

⎠

⎛

⎝1 +
∑

k≥1

Ξij,n+(k−1)(n+m)(p′
k)

⎞

⎠

= (1 + Σji) (1 + Σii) (1 + Σjj) (1 + Σij)
= 1 + Σii + [Σji + ΣjiΣii] + [Σij + ΣiiΣij ]

+ [Σjj + ΣjiΣij + ΣjiΣiiΣij ] . (102)

Note that we didn’t specify the ordering of factors of types ii/jj, this will be
justified later on, in Sect. 4.2.2, when we show that all such factors actually
commute.13

For convenience let us introduce

Θ := Ξij,n(p)Ξji,m(r), Θ := Ξji,m(r)Ξij,n(p), (103)

the former counts (ii, n+m) solitons, while the latter counts (jj, n+m) solitons.
Comparing the ii components of F (℘), F (℘′) gives

Σii = Ξij,n(p)Ξji,m(r) = Θ. (104)

Since we defined
Σii =

∏

k≥1

eΞk(n+m)(q
′
k) − 1, (105)

13Commutativity of ii factors with jj factors is obvious, because the respective paths don’t
concatenate. However, mutual commutativity of ii factors among themselves is nontrivial
(similarly for jj factors).
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it follows that the soliton data on the qk walls must be14

Ξii,k(n+m)(q′
k) = −1

k
(−Θ)k

. (107)

Comparing the ij components gives

Σij + ΣiiΣij = Ξij,n(p), (108)

which implies Σij = (1 + Θ)−1 · Ξij,n(p) and therefore

Ξij,n+(k−1)(n+m)(p′
k) = (−Θ)k−1 · Ξij,n(p) = Ξij,n(r) · (−Θ)k−1. (109)

Similarly comparing the ji components gives

Σji + ΣjiΣii = Ξji,m(r), (110)

which leads to

Ξji,m+(k−1)(n+m)(r′
k) = Ξji,m(r) · (−Θ)k−1 = (−Θ)k−1Ξji,m(p). (111)

Turning to the jj-component, this vanishes for F (℘) therefore
Σjj + ΣjiΣij + ΣjiΣiiΣij = 0, (112)

substituting what we found previously for Σij ,Σji and Σii we obtain

Σjj = −Ξji,m(r) · (1 + Θ)−1(1 + Θ)(1 + Θ)−1 · Ξij,n(p)

= −Ξji,m(r) ·
⎛

⎝

∑

k≥0

(−Θ)k

⎞

⎠ · Ξij,n(p)

=
∑

k≥1

(−Θ
)k

=
−Θ

1 + Θ
(113)

Since we defined
Σjj =

∏

k≥1

eΞk(n+m)(q̄
′
k) − 1, (114)

it follows that the soliton data on walls q̄′
k must be15

Ξjj,k(n+m)(q̄′
k) =

1
k

(−Θ
)k

. (116)

Once again we find that the requirement of flatness completely fixes the
soliton data on the outgoing walls (the four infinite families p′

k, r′
k, q′

k, q̄′
k) in

14This is easily seen from the identity

Σii = ex1+x2+x3+··· − 1 = Θ = exp log(1 + Θ) − 1 = exp

(

Θ − Θ2

2
+

Θ3

3
+ · · ·

)

− 1.

(106)

15To see this use the identity

Σjj = ex̄1+x̄2+x̄3+··· − 1 =
−Θ

1 + Θ

= exp
(− log(1 + Θ)

) − 1 = exp

(

−Θ +
Θ

2

2
− Θ

3

3
+ · · ·

)

− 1

(115)
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terms of the soliton data of the incoming ones. Next we wish to make some
considerations about symmetry. Reversing the orientation of ℘, ℘′ would give
similar equations, related to the ones above by the replacements

i ↔ j, Θ ↔ Θ, p ↔ r, q′ ↔ q̄′, p′
k ↔ r′

k, m ↔ n, (117)

and the flip of certain signs, to which we will return shortly. Of course, con-
sistency of nonabelianization requires that the soliton data of the outgoing
E-walls is a fixed function of Ξij,n(p),Ξji,m(r), regardless of how we choose
℘, ℘′. It is quite amusing that such a symmetry is indeed realized on the soli-
ton data of the single walls, whereas it is completely hidden when looking
at components of the parallel transport [for example Σii and Σjj turned out
to be quite different, but the symmetry is nevertheless manifest in (107) and
(116)]. The realization of this symmetry on the soliton data of single walls is
rather subtle, and relies crucially on the exponential nature of the detour rule
(74). The fact this symmetry is realized is a highly nontrivial check on our
construction of the nonabelianization map for exponential networks.16

A striking feature of the soliton data carried by walls q′
k and q̄′

k is the
presence of fractional degeneracies with denominator k. In view of the physical
interpretation of these degeneracies in terms of soliton counting, the presence
of rational numbers may appear puzzling. In fact a similar situation is encoun-
tered in the context of tt∗ geometries of systems with collinear vacua, where
the 1/k factors are associated with the presence of multi-particle states [37].
More details on the physical origin of fractional degeneracies can be found
in “Appendix A”.

3.3.4. ii-Type Walls at Special Phases. We have seen above that walls of type
ii may be generated at junctions of other E-walls. These are a special feature of
exponential networks, which is not encountered in standard spectral networks,
as first noted in [34]. The differential equation describing their geometry takes
this form

2πin
d log x

dt
= eiϑ. (118)

Since this equation depends only on n, it is clear that ii-type walls can only ex-
ist for logarithmic differentials. Note that the geometry of ii-walls is completely
insensitive to the geometry of the mirror curve Σ because any dependence on
yi(x) drops out. Another characteristic property of ii-walls worth noting, is
the fact that when ϑ = 0, π their shape is exactly circular on C

∗
x. In fact let x0

16To be more precise, there is a perfect symmetry between (107) and (116) only after
we take into account the presence of certain relative signs. The signs seem to pose a
problem because reversing the orientation of paths ℘, ℘′ one gets the following equations

Ξii,k(n+m)(q
′
k) = 1

k
(−Θ)k and Ξjj,k(n+m)(q̄

′
k) = − 1

k

(−Θ
)k

. Superficially, this appears to

clash with (107) and (116), but this is not so. The sign comes from the small arcs that
arise in the concatenation of ii (resp. jj) solitons among themselves, due to the fact that we
are working with a twisted flat connection subject to (68). As a result, carefully unpacking
either equation for Ξii,k(m+n) and Ξjj,k(m+n) gives identical expressions for μ(c), μ(c̄)’s on

q′
k, q̄′

k in terms of μ(a), μ(b) on p, r.
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Figure 5. Behavior of an ii-wall for ϑ < 0 (left), ϑ = 0
(center), and ϑ > 0 (right). The red dot indicates the starting
point of integration x0, which for simplicity is kept constant
in ϑ, the black dot indicates x = 0. This behavior is universal,
it does not depend on the geometry of the mirror curve (color
figure online)

be the point where the wall originates (the position of the junction between
ij/ji walls), then the outgoing ii wall has a trajectory that takes the form

x = x0 exp
(

t eiϑ

2πin

)

, t ∈ R
+. (119)

Near the phase ϑ = 0 the behavior of an ii-wall is shown in Fig. 5.
This behavior of ii paths has some implications for nonabelianization,

which will be important later. Fix a path ℘ that crosses an ii wall at the
phase ϑ = 0, its parallel transport will pick up contributions from the solitons
of type ii described in (107), as well as from their extension around x = 0,
due to the periodic geometry of the wall. Let a be an ii soliton sourced at
the junction, and let a(+k) be its continuation along the wall going k times
counterclockwise around the puncture. The parallel transport F (℘) will pick
up detour contributions of the form eΞ with

Ξ =
∑

k∈N

∑

N∈Z

∑

�≥1

∑

a∈Γii,N,N+�(m+n)

μ(a)Xa(k) . (120)

Also note that there may be branch cuts both of logarithmic and square-
root type ending on the puncture, which must be crossed by a each time it is
extended to get a(k). This implies that a(k) will be charged in a different lattice
than a, for example in Γjj,N ′,N ′+�′(m+n) or in Γii,N ′,N ′+�′(m+n) for some N ′, �′

that depend on k. We will see an explicit instance of this in Sect. 4.
ii-walls are an example of periodic walls for ϑ = 0, π, but they may not

be the only one. An important feature of periodic walls is that they may,
under certain circumstances, support novel kinds of BPS states akin to the
“pure-flavor” states that appear as cycles near punctures in Spectral Networks
[21,32]. We provide a brief discussion of these in “Appendix F”. The question
arises of how to count these states properly, since nonabelianization is (mostly)
blind to them. In fact, the nonabelianization construction is only well-defined
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when E-walls are non-degenerate, but these states typically appear for values
of ϑ corresponding to a degenerate network (one where two or more E-walls
overlap non-transversely, like at a K-wall). We will show in Sect. 3.5.2 that
contributions of ii-type E-walls always drop out from K-wall computations
that capture 5d BPS states.17

3.4. Shift Symmetry

In Sect. 3.3 we determined all soliton data on an exponential network W(ϑ)
for a generic phase ϑ. A novel feature compared to standard spectral networks
is that E-walls typically carry infinitely many solitons, significantly increasing
the complexity of computations. In this subsection we argue that the soliton
data carried by each E-wall enjoys a certain symmetry, which effectively orga-
nizes infinitely many solitons into (often) finitely many orbits of the symmetry
group. The presence of this symmetry will greatly simplify computations in
concrete examples.

The soliton data of W are determined combinatorially, starting with the
solitons on primary walls given in (92), and proceeding with the soliton data on
descendant walls as determined by the joint equations of Sects. 3.3.2 and 3.3.3.
It is already clear from (92) that the soliton data of primary walls enjoys a
shift symmetry. We are going to show that this symmetry is preserved by the
joint equations of both types ij − jk and ij − ji. Let us first give a precise
definition of the symmetry, and then come back to its proof.

Recall that we defined two slightly different types of shift maps, in (77)
and (84) The shift map of the first type relates solitons which are in different
charge lattices of the same E-wall. We claim that it is a symmetry of its soliton
data in the following sense

μ(a) = μ(a(+k)) ∀k ∈ Z. (121)

The second type of shift map applies to E-walls of type ii, and relates them
to solitons valued in charge lattices of different E-walls. We claim that it is a
symmetry of this soliton data in the following sense

μ(a) = μ(a(i→j,+k)) ∀k ∈ Z. (122)

As we learned from the ij − ji joint analysis, the walls of types (ii, k) and
(jj, k) are always created together, so if a wall of type ii goes through a point
x ∈ C, we also expect the presence of the wall of type jj. For this reason, the
statement of this symmetry makes sense.

Let us now check these claims. Consider E-walls p, r shown in Fig. 3, and
assume that they enjoy the shift symmetry (121). From (98) and (98) it’s clear
that likewise walls p′, r′ must enjoy the same symmetry. For q′ we use (100)

17Nevertheless, the BPS states counted by these walls may contribute to framed 2d–4d wall-
crossing of generic supersymmetric interfaces, in analogy with pure-flavor states in Spectral
Networks.
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μ(c, q′) =
∑

(

ab∼c
∣

∣

∣

a∈Γij,N,N+n
b∈Γjk,N+n,N+n+m

)

(−1)w(c,ab)μ(a, p)μ(b, r)

=
∑

(

ab∼c
∣

∣

∣

a∈Γij,N,N+n
b∈Γjk,N+n,N+n+m

)

(−1)w(c(+�),a(+�)b(+�))μ(a(+�), p)μ(b(+�), r)

=
∑

(

ab∼c
∣

∣

∣

a∈Γij,N+�,N+n+�
b∈Γjk,N+n+�,N+n+m+�

)

(−1)w(c,ab)μ(a, p)μ(b, r)

≡ μ(c(+�), q′)
(123)

where in the second line we used the shift symmetry for p, r and in the last line
we simply relabeled the summation variables by absorbing the (+�)-shift in the
soliton lattices. This analysis reveals a simple property of the shift symmetry of
the first type (121): the product of shift-symmetrc soliton generating functions
also enjoys shift symmetry.

Next consider E-walls p, r shown in Fig. 4, and assume that they enjoy
the shift symmetry (121). From definitions (103) it follows that both Θ and Θ
are shift-symmetric in the sense of (121), because the symmetry is preserved
by the product, as we have just seen. This also applies to powers Θk and Θ

k
,

therefore from (107) and (116) we see that soliton data on q′
k, q̄′

k must enjoy the
shift symmetry as well. Likewise (109) and (111) are shift-symmetric because
they are products of symmetric generating functions, this proves that soliton
data of walls p′

k, r′
k enjoys the symmetry of the first type (121).

The last statement we need to prove is that soliton data on walls q′
k and

q̄′
k are related by the symmetry of the second type (122). According to their

expressions (107) and (116), all we need to show is that Θ and Θ are related
by (122). This follows by direct inspection of their definitions:

Θ = Ξij,n(p)Ξji,m(r)

=
∑

N

∑

a∈Γij,N,N+n

b∈Γji,N+n,N+n+m

μ(a, p)μ(b, r)Xab

Θ = Ξji,m(r)Ξij,n(p)

=
∑

N

∑

b̄∈Γji,N,N+m

ā∈Γij,N+m,N+m+n

μ(ā, p)μ(b̄, r)Xb̄ā

(124)

The map ( · )(i→j,+0) can be described explicitly as follows

(ab)(i→j,+0) = b(−n)a(+m) (125)

This satisfies the requirement that Z(ab)(i→j,+0) = Zab, since

Z(ab)(i→j,+0) = Zb(−n)a(+m) = Zb(−n) + Za(+m) = Zb + Za = Zab. (126)
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To see that it maps Θ into Θ, we should collect all terms within the same
relative homology class

Θ =
∑

N

∑

c∈Γii,N,N+m+n

θ(c)Xc, Θ =
∑

N

∑

c̄∈Γjj,N,N+m+n

θ̄(c̄)Xc̄, (127)

where

θ(c) =
∑

(

a ∈ Γij,N,N+n

b ∈ Γji,N+n,N+m+n

∣

∣

∣ab∼c

)

μ(a, p)μ(b, r), (128)

θ̄(c̄) =
∑

(

ā ∈ Γij,N+m,N+m+n

b̄ ∈ Γji,N,N+m

∣

∣

∣b̄ā∼c̄

)

μ(ā, p)μ(b̄, r). (129)

Now if we fix a c̄ such that
c̄ = c(i→j,+0) (130)

then there is a 1:1 map between
(

a ∈ Γij,N,N+n

b ∈ Γji,N+n,N+m+n

∣

∣

∣ab ∼ c

)

↔
(

ā ∈ Γij,N+m,N+m+n

b̄ ∈ Γji,N,N+m

∣

∣

∣b̄ā ∼ c̄

)

. (131)

This map is precisely
ā = a(+m), b̄ = b(−n). (132)

This is a bijection because the shift map is a bijection (it is invertible as
discussed in Sect. 3.2.3). Furthermore, this map also guarantees that Zc =
Za + Zb = Za(+m) + Zb(−n) = Zā + Zb̄ = Zc̄. The path b(−n)a(+m) is a soliton
with charge in Γjj,N,N+m+n, i.e., it is valued in the same charge lattice as
c̄, and since its central charge is the same as that of c̄, the two effectively
coincide. Now since μ(a(−m), p) = μ(a, p) and μ(b(+n), r) = μ(b, r) it follows
from substitution of (132) into (129) that θ(c) = θ(c̄) when c, c̄ are related
as in (130). This proves the statement that the soliton data of E-walls q′

k, q̄′
k

(with same label k) are related by the second type of shift-symmetry (122).

3.5. Jumps of the Nonabelianization Map

The nonabelianization map of Sect. 3.2 is defined using the data of an expo-
nential network W, which is defined by the equations developed in 3.3. In the
derivation of these rules, we always assumed that W(ϑ) is generic, in the sense
that there are no degenerate walls, except for ii and jj walls created at ij − ji
joints. The soliton degeneracies carried by each wall are then determined com-
binatorially, and they depend essentially on the topology of W, rather than
its geometry.

At certain values of the phase ϑ the network can however become de-
generate, as observed initially in [32] for spectral networks, and later in [34]
for exponential networks. Let the critical phase be denoted by ϑc, the critical
network W(ϑc) contains pairs of E-walls of opposite types that overlap par-
tially or entirely, as well as (possibly) regular one-way walls. We refer to these
double-walls as two-way streets. W(ϑc) admits two natural resolutions into
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Figure 6. Left: the path ℘ (dashed) crossing a two-way
street of type (ij, n)/(ji,−n) before the critical phase (Amer-
ican resolution). Right: after the critical phase (British reso-
lution)

Figure 7. Left: the path ℘ (dashed) crossing a two-way
street of type ii before the critical phase (American resolu-
tion). Right: after the critical phase (British resolution)

generic networks, obtained by perturbing the phase to ϑ±
c = ϑc ± ε. Examples

of these resolutions are depicted in Figs. 6 and 7.
Since the topologies of W(ϑ±

c ) are different, the nonabelianization map
that defines F (℘) must jump at ϑc. The are known as K-wall jumps. Physi-
cally they are a manifestation of the mixing of BPS solitons supported on the
codimension-2 defect, and the BPS spectrum of the bulk theory [32] (also see
Sect. 2). We shall study this phenomenon by computing the jump in F (℘) for
a path ℘ crossing some two-way street p. Again we will find many similarities
with spectral networks, the main novelty comes from the fact that each wall
carries now infinitely many solitons. A more analogous situation is the one of
ADE spectral networks [53], where the soliton data on each wall was found
to come in representations of a Weyl-type symmetry. In the case of exponen-
tial networks, this is replaced by the shift symmetry studied in Sect. 3.4. The
K-wall jumps of exponential networks can indeed be described in a similar
way to those of ADE networks [53]. We will briefly describe the salient points,
the interested reader should have no difficulties recovering the fine details by
translating the treatment on ADE networks into the present setting.

3.5.1. ij 2-Way Walls. Consider a path ℘ crossing a two-way street p of type
(ij, n)/(ji,−n), see Fig. 6.

Let us split ℘ into ℘+℘−, consisting, respectively, of the piece before the
intersection with the E-wall, and the piece after the intersection. Before the
critical phase the parallel transport is
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F (℘, ϑ−
c )ii,N,N = X

℘
(i,N)
+

⎛

⎜

⎜

⎜

⎝

1 +
∑

a∈Γij,N,N+n

b∈Γji,N+n,N

μ−(a)μ−(b)XaXb

⎞

⎟

⎟

⎟

⎠

X
℘

(i,N)
−

F (℘, ϑ−
c )ij,N,N+n = X

℘
(i,N)
+

⎛

⎝1 +
∑

a∈Γij,N,N+n

μ−(a)Xa

⎞

⎠X
℘

(j,N+n)
−

F (℘, ϑ−
c )ji,N,N−n = X

℘
(j,N)
+

⎛

⎝1 +
∑

b∈Γji,N,N−n

μ−(b)Xb

⎞

⎠X
℘

(i,N−n)
−

F (℘, ϑ−
c )jj,N,N = X℘(j,N) (133)

where μ− denote the soliton degeneracies determined by the topology of the
network computed at the phase ϑ−

c . After the critical phase the parallel trans-
port becomes

F (℘, ϑ+
c )ii,N,N = X℘(i,N)

F (℘, ϑ+
c )ij,N,N+n = X

℘
(i,N)
+

⎛

⎝1 +
∑

a∈Γij,N,N+n

μ+(a)Xa

⎞

⎠X
℘

(j,N+n)
−

F (℘, ϑ+
c )ji,N,N−n = X

℘
(j,N)
+

⎛

⎝1 +
∑

b∈Γji,N,N−n

μ+(b)Xb

⎞

⎠X
℘

(i,N−n)
−

F (℘, ϑ+
c )jj,N,N = X

℘
(j,N)
+

⎛

⎜

⎜

⎜

⎝

1 +
∑

b∈Γji,N,N−n

a∈Γjj,N−n,N

μ+(b)μ+(a)XbXa

⎞

⎟

⎟

⎟

⎠

X
℘

(j,N)
−

(134)
To describe this jump, let us combine the soliton data into a new kind of
generating function.

QN (p) = 1 +
∑

a∈Γij,N,N+n(p)

b∈Γji,N+n,N (p)

μ(a)μ(b)Xcl(ab) (135)

Note that we have omitted the superscript from μ±, since it turns out that
μ+(a) = μ−(a) (and similarly for b) [32]. Moreover shift symmetry implies
that

QN (p) = QN+1(p). (136)
Note that unlike the generating functions that we have considered so far, QN (p)
depends on variables Xγ associated with closed homology classes. By a gener-
icity assumption18 we can restrict QN (p) to depend on a single variable Xγc

.
More precisely, for different N the generating functions QN (p) may contain

18That is, by choosing the complex moduli of ˜Σ generically, in such a way that the phases
of BPS central charges are non-degenerate.
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formal variables associated with different primitive homology classes γN on
˜Σ. However, the periods of the one-form λ ∼ Y (x) d log x around these cycles
are all equal, because of shift symmetry (see discussion around (162)). We
then identify all these cycles by taking a quotient on the homology lattice by
ker Z, and denote by γc the equivalence class in this quotient. For the physical
meaning of this quotient see for example [10,53] and references therein.

To the two-way street p, we associate a set of integers αγ(p) by factorizing
QN (p) as

QN (p) =
∞
∏

k=1

(

1 + Xkγc

)αkγc (p)
, αγ(p) ∈ Z. (137)

Then a standard argument (see [32]) shows that the jump of the parallel trans-
port can be cast into the following form

F (℘, ϑ+
c ) = K (

F (℘, ϑ−
c )

)

(138)

where K is a change of variables, provisionally defined as

K(X℘(i,N)) = X℘(i,N)

∞
∏

k=1

(

1 + Xkγc

)−αkγc (p)

K(X℘(j,N)) = X℘(j,N)

∞
∏

k=1

(

1 + Xkγc

)αkγc (p)

(139)

while leaving other variables unchanged.
For later convenience, note that this jump can be written in a slightly

different way. Let p be a two-way street formed by walls of type (ij, n)/(ji,−n),
the canonical lift of p is the formal sum

π−1(p) =
∑

N∈Z

(

+p(j,N+n) − p(i,N)

)

. (140)

Here p(i,N) is the lift of p to sheet (i,N) of ˜Σ and the positive/negative sign
denotes the orientation of the lift, relative to that of the underlying (ij, n)
E-wall. Since 〈π−1(p), ℘(i,N)〉 = −1 = −〈π−1(p), ℘(j,N)〉 for any N , the change
of variables K can be cast into the following more compact form

K(Xa) = Xa

∞
∏

k=1

(

1 + Xkγc

)αkγ(p)〈π−1(p),a〉
. (141)

3.5.2. ii 2-Way Walls. Next we consider the K-wall jump of F (℘) for a path
crossing a 2-way street of type ii. Such a 2-way street is made of distinct one-
way E-walls of opposite types and orientations, such as (ii, �)/(ii,−�). Let us
focus for now on a single E-wall of type (ii, �): this must be generated at a
joint of type ij − ji, therefore it must always come together with an infinite
family of walls of type (ii, k(m + n)), which overlap entirely. In addition to
this, there is another infinite family of walls of type (jj, k(m + n)) that also
overlaps with the former. All walls in these two families have the same shape
and orientation. Going back to the two-way street, it consists of two copies of
this setup: there is an infinite family of E-walls (ii, k(m + n))/(jj, k(m + n))
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all running in the same direction, as well as an infinite family of walls of types
(ii,−k(m + n))/(jj,−k(m + n)) that runs in the opposite direction.

Now let ℘ be a path crossing a two-way street p of type (ii, n)/(ii,−n)
as shown in Fig. 7. Before the critical phase, the parallel transport is

F (℘, ϑ−
c )ii,N,N+�(m+n) = X

℘
(i,N)
+

⎛

⎝

∏

�≥1

eΞ−
ii,N,N+�(m+n)

⎞

⎠

×
⎛

⎝

∏

�′≥1

e
Ξ−

ii,N,N−�′(m+n)

⎞

⎠X
℘

(i,N+�(m+n))
−

F (℘, ϑ−
c )jj,N,N+�(m+n) = X

℘
(j,N)
+

⎛

⎝

∏

�≥1

eΞ−
jj,N,N+�(m+n)

⎞

⎠

×
⎛

⎝

∏

�′≥1

e
Ξ−

jj,N,N−�′(m+n)

⎞

⎠X
℘

(j,N+�(m+n))
−

F (℘, ϑ−
c )ij,N,N ′ = 0

F (℘, ϑ−
c )ji,N,N ′ = 0

(142)

After the critical phase the parallel transport becomes

F (℘, ϑ+
c )ii,N,N+�(m+n) = vX

℘
(i,N)
+

⎛

⎝

∏

�′≥1

e
Ξ+

ii,N,N−�′(m+n)

⎞

⎠

×
⎛

⎝

∏

�≥1

eΞ+
ii,N,N+�(m+n)

⎞

⎠X
℘

(i,N+�(m+n))
−

F (℘, ϑ+
c )jj,N,N+�(m+n) = X

℘
(j,N)
+

⎛

⎝

∏

�′≥1

e
Ξ+

jj,N,N−�′(m+n)

⎞

⎠

×
⎛

⎝

∏

�≥1

eΞ+
jj,N,N+�(m+n)

⎞

⎠X
℘

(j,N+�(m+n))
−

.

F (℘, ϑ+
c )ij,N,N ′ = 0

F (℘, ϑ+
c )ji,N,N ′ = 0 (143)

Note that the only differences between these expressions are the replacement
of Ξ−

(··· ) → Ξ+
(··· ) and the permutation of the infinite products in parentheses.

Now we would like to ask if the two expressions can be related in some way
like (138). First of all, we should ask whether the parallel transport changes
at all going from ϑ−

c to ϑ+
c . Recall from Sect. 3.5.1 that soliton data on one-

way streets of type ij/ji remains the same, i.e., μ+(a) = μ−(a). Then recall
from Sect. 3.3.3 that all data on streets of type ii/jj are determined entirely
in terms of the ij/ji soliton data of the walls that generate the joint. Since the



Vol. 20 (2019) Exploring 5d BPS Spectra with Exponential Networks 4101

ij/ji one-way data are unchanged, we conclude that the ii/jj outgoing one-
way data is also unchanged, implying that Ξ+

(··· ) = Ξ−
(··· ) in all the expressions.

Finally, a simple computation based on shift symmetry reveals that the two
products in parentheses always commute with each other (we also provide a
proof in “Appendix C”). Since the only change in the parallel transport is the
permutation of the two infinite products, it follows that the parallel transport
of a path ℘ crossing only an ii/jj two-way street does not change at all when
the network jumps.

Going back to the main question, we can still describe the (non-)jumping
of the formal parallel transport by a formula like (138), by simply defining

K(X℘(i,N)) = X℘(i,N)

∞
∏

k=1

(

1 + Xkγc

)0 = X℘(i,N)

K(X℘(j,N)) = X℘(j,N)

∞
∏

k=1

(

1 + Xkγc

)0 = X℘(j,N)

(144)

Furthermore, the vanishing exponent can once again be cast in terms of inter-
section pairing of the lifts of ℘ and p to ˜W. The canonical lift of a two-way
street of type (ii, k(m + n))/(ii,−k(m + n)) is

π−1(p) =
∑

N∈Z

(

+p(i,N+n) − p(i,N)

)

(145)

Here p(i,N) is the lift of p to sheet (i,N) of ˜Σ and the positive/negative signs
denote the orientation of the lifts relative to that of the underlying wall of type
(ii, k(m + n)). Unlike in the case of ij-walls, this formal sum now evaluates to
zero! This implies that we can once again describe the K-wall jump of F (℘)
by the general formula (141).

An important difference from the case in ij/ji two-way streets is that now
αγ(p) is not fixed by the K-wall jump of the formal parallel transport. Since the
intersection pairing always vanishes, αγ(p) cannot be determined by comparing
F (℘, ϑ±

c ) this time: the value of αγ(p) for ii/jj streets is undetermined by the
K-wall jump. Later on, we will fix these constants according to other criteria.
However, it is worthwhile to stress that their value is immaterial for the validity
of the K-wall formula: the general formula (141) is always valid regardless of
how we choose to fix αγ(p) for these particular 2-way streets.
3.5.3. General K-Wall Formula and 5d BPS States. In Sects. 3.5.1 and 3.5.2,
we proved that the jump of the formal parallel transport at ϑc is described by
a universal change of variables

F (℘,Wϑ+
c
) = K(

F (℘,Wϑ−
c
)
)

, (146)

where K is a certain change of abelian parallel transport variables. While
we proved the formulae for paths ℘ intersecting only a single two-way street
of type ij/ji or ii/jj, the composition properties of the parallel transport
F (℘, ϑ±

c )F (℘′, ϑ±
c ) = F (℘℘′, ϑ±

c ) allow to extend formula (141) to an arbitrary
path ℘. The proof of this statement follows a standard argument that we shall
not repeat here, since various versions of this idea can be found in the literature.
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See [32] for the case of spectral networks, and [53] for the more similar case of
ADE networks.

The upshot is that there exists a one-chain L on ˜Σ such that the parallel
transport along an arbitrary path ℘ jumps according to the following change
of variables

K(Xa) = Xa

∏

n≥1

(

1 + Xnγc

)〈L(nγc), a〉
. (147)

L(nγc) is defined as a weighted sum of canonical lifts of the 2-way streets, with
weights determined by the soliton data:

L(γ) :=
∑

p∈Wc

αγ(p)π−1(p) =
∑

N

LN (γ). (148)

It is then clear that, when ℘ is a short path crossing only a single two-way
street, (147) reduces to (141).

This definition requires some clarification: as it is written it is ambiguous,
because the weights αγ(p) for ii/jj 2-way streets are undetermined. On the
other hand, we also showed that the precise value of αγ(p) for these streets
does not affect the validity of the K-wall formula, therefore we are free to fix
these coefficients arbitrarily. We choose to fix them in such a way that LN (γ)
is a closed cycle: this implies the assumption that it is always possible to do
so, and that this criterion fixes the coefficients. Although we do not have a
rigorous proof of this fact, we find it a fairly reasonable assumption based on
concrete examples.

As homology classes [LN (γ)] should all fall in the same equivalence class
after quotient described above (137)

[LN (γ)] = [LN ′(γ)]. (149)

A standard argument (see [32,53]) leads to the following formula for the de-
generacies of bulk BPS states

Ω(γ) = [LN (γ)]/γ. (150)

We will test this formula in a concrete example in the next section.

4. An Example

This section is entirely devoted to a detailed study of exponential networks for
the mirror curve of the toric Lagrangian brane of C

3. We will work in a fixed
choice of framing, chosen so that Σ has two sheets.19 After a careful analysis
of the covering maps π, π̃, we study the exponential network at various phases.
We find a single K-wall jump which, despite the simplicity of this mirror curve,
turns out to be quite complicated to analyze. We conclude this section with
comments on the implications of our results for the BPS spectrum of this
theory, and on the 2d–4d limit R → 0.

19This is the simplest choice, and it is made for illustration purposes. Our construction of
nonabelianization maps applies also to other choices of framing in which Σ has more than
one sheet.
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4.1. Geometry

4.1.1. Covering Maps and Trivialization. The moduli space of a toric brane
of C

3 is captured by the mirror curve Σ ⊂ C
 × C

 described by the following
equation

xyf + y + 1 = 0, (151)

where f accounts for the dependence on framing [24]. In order to best make
contact with [34] we will fix f = −1, and rewrite the curve as

y2 + y + x = 0. (152)

Presented as a covering of the x-plane, Σ has two sheets

y± =
−1 ± √

1 − 4x

2
, (153)

which meet at a square-root branch point located at x = 1/4. Since there are
only two sheets, in this section we shall replace labels ij for sheets of Σ with
±. Going around the branch point once (either cw or ccw) exchanges y+ and
y−, therefore an E-wall of type (−+, n) determined by

(log y+ − log y− + 2πin)
d log x

dt
∈ eiϑ

R
+ (154)

will pick up a monodromy that turns it into a wall of type (+−, n).
The differential λ = log y d log x further has logarithmic branching. Near

x = 0
λ+ ∼ log x d log x λ− ∼ d log x (155)

so the two branches have different behavior here.20 While λ− ∼ dx/x has a
simple pole, λ+ ∼ log x

x dx has logarithmic branching and is therefore multi-
valued around x = 0. This means that there is a logarithmic cut on sheet +
of Σ starting above x = 0 and running to infinity. An E-wall of type (−+, n)
winding ccw around x = 0 will pick up a monodromy that shifts n → n + 1,
whereas a wall of type (+−, n) would pick up a shift n → n − 1.

Around x = ∞, in the local coordinate w = 1/x the two sheets of λ
behave as

λ± = − log y± d log w

∼
[

1
2

log w ± 1
2
(

πi + i
√

w + · · · )
]

dw

w
.

(156)

Both branches have the same logarithmic singularity now, so a wall of type
(±∓, n) or (±±, n) will not pick up any monodromy from log w. There is
however square-root branching of sheets at infinity, because taking w → we2πi

takes

λ+ − λ− → λ− − λ+ − 2πi
dx

x
. (157)

20This is in marked contrast with the situation in spectral networks, where the behavior of
different branches of a Seiberg–Witten differential is qualitatively the same on all sheets: if
there is a simple pole for one sheet at x0, all other sheets also have a simple pole there.
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Figure 8. Cuts for the trivialization of the mirror curve of
C

3 in framing p = −1, shown on C
∗
x. The wavy line is the

square-root cut of π while the dashed line is the logarithmic
cut of π̃ projected down to C

∗
x. The relative position of the

cuts matters, it is consistent with the monodromies in table
(159)

Therefore, a wall of type (−+, n) turns into one of type (+−, n − 1) going
(locally) ccw around x = ∞. The momodromy of other types of walls can be
obtained from the behavior of single sheets, which we summarize below

λ+ → λ− − 2πi dx
x (ccw)

λ+ → λ− (cw)
λ− → λ+ (ccw)
λ− → λ+ + 2πi dx

x (cw).

(158)

When studying individual soliton paths, it is important to keep track of
each sheet separately when the wall supporting the soliton crosses some cut
(recall that the sheets of Σ are identified with the vacua connected by a soliton).
Accordingly we introduce a slightly refined notation, replacing (ij, n) with
(ij)NL,NR

with the understanding that NR = NL +n. We can now summarize
the monodromies of soliton charges at the various branch points and punctures

Branch point/puncture Before ccw cw
x = 0 (++)NL,NR

(++)NL+1,NR+1 (++)NL−1,NR−1

(−−)NL,NR
(−−)NL,NR

(−−)NL,NR

(+−)NL,NR
(+−)NL+1,NR

(+−)NL−1,NR

(−+)NL,NR
(−+)NL,NR+1 (−+)NL,NR−1

x = ∞ (++)NL,NR
(−−)NL−1,NR−1 (−−)NL,NR

(−−)NL,NR
(++)NL,NR

(++)NL+1,NR+1

(+−)NL,NR
(−+)NL−1,NR

(−+)NL,NR+1

(−+)NL,NR
(+−)NL,NR−1 (+−)NL+1,NR

x = 1
4 (±±)NL,NR

(∓∓)NL,NR

(±∓)NL,NR
(∓±)NL,NR

(159)

We choose to trivialize π◦ π̃ : ˜Σ → C by introducing a square-root cut between
x = 1/4 and x = ∞, and a logarithmic cut between x = 0 and x = ∞, see
Fig. 8.

4.1.2. The Exponential Network at Various Phases. Here we describe the gen-
eral features of the exponential network plotted for various values of the phase
ϑ. Some details on plotting network can be found in “Appendix B”. There is
only one square-root branch point, therefore the network is generated by ex-
actly three primary walls. As these walls propagate along the x-plane, they may



Vol. 20 (2019) Exploring 5d BPS Spectra with Exponential Networks 4105

mutually intersect or even self-intersect, giving rise to secondary walls. Since
the model only has two sheets, the only nontrivial joints are of ij − ji types,
featuring an infinite number of descendant walls.21 The network is shown for
various values of ϑ in Fig. 9.

The network is non-degenerate as long as 0 < ϑ < π. There is a single
K-wall jump at ϑ = π (accompanied by the CPT-conjugate jump at ϑ = 0),
shown in greater detail in Fig. 10. At the critical phase we find infinitely many
two-way streets, this is the first hint that we may expect an infinite BPS
spectrum of states with charge nγ for a certain primitive γ. We will confirm
this expectation below, with a careful analysis of the K-wall jump of soliton
data.

For later convenience, let us be more precise about the generating charge
γ of the whole BPS spectrum of this model. This arises naturally in the critical
network shown in Fig. 10. Two-way streets of primary walls are shown in black
in the picture on the left, taking their lift gives

π−1 (−r1 ∪ −p1 ∪ −r′
1 ∪ −p′

1) =
∑

N

γN . (160)

The sum over N arises from the infinite logarithmic covering, in the picture
on the right we provide the explicit form of γN=0. For example a label (+−)1,0

next to an oriented wall means that we take its lift to sheet (−, 0) with the
same orientation together with the lift to sheet (+, 1) with the opposite ori-
entation. It is straightforward to verify that this gives a closed cycle, by γN

we denote its homology class on ˜Σ. The period of the differential Y (x)dx
x on

γN is independent of N , therefore all these homology cycles are identified by
the quotient by kerZ that defines the physical charge lattice. This equivalence
class is the definition of γ

[γN ] = [γN ′ ] ≡ γ. (161)
The actual period is easy to compute, it evaluates to

Zγ =
∮

γN

λ = −2π

R
. (162)

The normalization of λ and the definition of R are discussed around Eq. (63).
The fact that Zγ is real and negative reflects the fact that γ is the charge of a
BPS state that appears at ϑ = π. It also turns out that Zγ is exactly one unit
of KK momentum when the 3d–5d system is placed on a circle of radius R, as
we will see later this fits naturally with our results on the BPS spectrum of
this theory.

4.2. Analysis of the K-Wall Jump

We now focus on the K-wall jump that occurs at ϑ = π. We will study the
soliton content on the two-way streets that appear, and use it to compute the
spectrum of bulk BPS states.

21This should be contrasted with the case of spectral networks. For example, the AD1

Argyres–Douglas theory described in [10] also features a single branch point, but the spec-
tral network of that theory is very simple, consisting of just three primary walls and no
descendants.
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Figure 9. The exponential network for C
3 at framing −1.

From ϑ = 0 (top left) to ϑ = π (bottom right)

The critical network at ϑ = π features an infinite tower of 2-way streets,
see Fig. 10. There are two distinguished points in the sub-network of 2-way
streets: the branch point (on the left, in the first picture), and the joint where
all walls intersect. We would like to consider two resolutions of this degenerate
network, defined at ϑ = π± ε (called, respectively, British and American), and
study the soliton data for each of these.
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Figure 10. Left: showing only the two-way streets of the
critical network W(ϑ = π), with primary walls in black, sec-
ondary walls of types ij/ji in blue, and secondary walls of
type ii/jj in red. Right: showing only primary walls and de-
tails of soliton charges supported on them (color figure online)

In principle the results of Sect. 3.2 completely fix the soliton data in either
resolution. However, in practice it is convenient to handle these computations
without having to keep track of the single underlying E-walls. Each two-way
street of the network in Fig. 10 is made of infinitely many E-walls running
in either direction, but we can just as well cluster all the E-walls with the
same orientation together, and model each 2-way street as a union of just two
E-walls. This will help lighten notation.

4.2.1. ij − ji 2-Way Joints. Let us start from the most complex part of the
problem: the propagation of soliton data across the two-way ij − ji joint that
appears within the critical network. We label the generating functions of soli-
tons (previously called Ξij,n) as in Fig. 11, generating functions ν carry soliton
paths that go into the junction, while τ carry solitons that come out. The goal
is to solve for the generating functions of outgoing solitons in terms of the
in-going ones.

The types of solitons carried by each wall are as follows

s τs νs

rk (ij,−m − (k − 1)(m + n)) (ji,m + (k − 1)(m + n))
qk (ii,−k(m + n)) (ii, k(m + n))
q̄k (jj,−k(m + n)) (jj, k(m + n))
pk (ji,−n − (k − 1)(m + n)) (ij, n + (k − 1)(m + n))
r′
k (ji,m + (k − 1)(m + n)) (ij,−m − (k − 1)(m + n))

q′
k (ii, k(m + n)) (ii,−k(m + n))

q̄′
k (jj, k(m + n)) (jj,−k(m + n))

p′
k (ij, n + (k − 1)(m + n)) (ji,−n − (k − 1)(m + n))

(163)

where for the sake of generality we introduced new sheet labels, which reduce
to

i = + j = − n = −1 m = 0 (164)

with the choice of trivialization of subection 4.1.
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Figure 11. ij − ji joint of two-way streets in British reso-
lution. This appears in the K-wall jump for exponential net-
works of C

3

The parallel transport equations for paths ℘, ℘′ shown in Fig. 11 are

F (℘) =

⎛

⎝

↗
∏

k≥1

(1 + τrk
)(1 + νrk

)

⎞

⎠

⎛

⎝

∏

k≥1

eτqk eτq̄k eνqk eνq̄k

⎞

⎠

×
⎛

⎝

↘
∏

k≥1

(1 + τpk
)(1 + νpk

)

⎞

⎠
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F (℘′) =

⎛

⎝

↗
∏

k≥1

(1 + νp′
k
)(1 + τp′

k
)

⎞

⎠

⎛

⎝

∏

k≥1

e
τq′

k e
τq̄′

k e
νq′

k e
νq̄′

k

⎞

⎠

×
⎛

⎝

↘
∏

k≥1

(1 + νr′
k
)(1 + τr′

k
)

⎞

⎠ . (165)

We will next turn to a detailed study of these equations.

4.2.2. Factoring Out q, q′, q̄, q̄′ Contributions. Writing down the parallel
transport equations component-by-component, it turns out that most of the
complexity in (165) stems from the terms in the middle parentheses. As it
turns out, they can be actually factored out of the equations, leading to a
great simplification. Let us introduce

Q :=
∏

k≥1

eτqk eτq̄k eνqk eνq̄k Q′ :=
∏

k≥1

e
τq′

k e
τq̄′

k e
νq′

k e
νq̄′

k (166)

Let us recall that, since the K-wall appears at ϑ = 0, π we also have the
periodicity effects explained in Sect. 3.3.4 related to ii/jj walls. This implies
that each soliton a comes with a semi-infinite tower of its extensions a(k)

around the puncture. In writing (166) the various generating functions νq, τq

are understood to include extended copies of solitons generated in this way.
All factors in these products commute, so there are no ordering ambiguities.
A proof can be found in “Appendix C”. Therefore, we can split Q and Q′ into
commuting pieces of different types

Q = QiiQjj = QjjQii Q′ = Q′
iiQ

′
jj = Q′

jjQ
′
ii (167)

with

Qii =
∏

k

eτqk eνqk =
∑

�∈Z

Qii,� Qjj =
∏

k

eτq̄k eνq̄k =
∑

�∈Z

Qjj,�

Q′
ii =

∏

k

e
τq′

k e
νq′

k =
∑

�∈Z

Q′
ii,� Q′

jj =
∏

k

e
τq̄′

k e
νq̄′

k =
∑

�∈Z

Q′
jj,�

(168)

where Qii,�,Qjj,� are generating functions of solitons with shifts of the loga-
rithmic branch by �(m + n), and can be expressed in terms of ν, τ ’s (similarly
for Q′). Other components are just zero Qij = Qji = Q′

ij = Q′
ji = 0.

Each term Qii,� can be expressed as a function of τ, ν as follows. Let k
be a non-negative integer, and consider a partition

(λ1, . . . , λ1
︸ ︷︷ ︸

δ1

, λ2, . . . , λ2
︸ ︷︷ ︸

δ2

, . . . , λn, . . . , λn
︸ ︷︷ ︸

δn

) s.t.
n
∑

i=1

δiλi = k (169)
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Define
⎛

⎝

∏

m≥1

eνqm

⎞

⎠

k

=
∑

∑

i δiλi=k

1
δ1! · · · δn!

(νqλ1
)δ1 · · · (νqλn

)δn

⎛

⎝

∏

m≥1

eτqm

⎞

⎠

k

=
∑

∑

i δiλi=k

1
δ1! · · · δn!

(τqλ1
)δ1 · · · (τqλn

)δn

(170)

Then

Qii,� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

s≥0

(

∏

m≥1 eνqm

)

s+�

(

∏

m≥1 eτqm

)

s
� > 0

∑

s≥0

(

∏

m≥1 eνqm

)

s

(

∏

m≥1 eτqm

)

s+�
� < 0

∑

s≥0

(

∏

m≥1 eνqm

)

s

(

∏

m≥1 eτqm

)

s
� = 0

(171)

For later convenience, let us further split these generating series into

Qii,� =
∑

N∈Z

Qii,N,N+� (172)

where the N -th term on the rhs counts soliton paths connecting vacua (i,N)
and (i,N + �(m + n)). Note these functions satisfy slightly non-standard rela-
tions, when multiplied with the standard soliton generating functions

ΞijQii = Ξij ΞjiQjj = Ξji. (173)

These do not vanish due to the fact that Qii,0 includes the constant 1.
Let us now get back to the main claim we wish to prove, which is that

Q,Q′ actually drop out of the equations. In order to show this, we shall need
two technical results. The first result, proven in “Appendix E.1”, states that
given any shift-symmetric generating functions Ξii and Ξjj

Qii,�Ξii,m = Ξii,mQii,� (174)
Qii,�Ξij,m = Ξij,mQjj,�. (175)

The second result, whose proof is given in “Appendix E.2”, states that

Qii = Q′
ii, Qjj = Q′

jj . (176)

Since each component of the flatness Eq. (165) is linear in the factors
Qii,Qjj and Q′

ii,Q
′
jj , we can use properties (174)–(175) to collect them as

overall factors both in F (℘) and F (℘′). Moreover since Qii,Qjj ,Q
′
ii,Q

′
jj are

invertible by definition, they can be canceled on either side of the equations
by virtue of (176). As a result we can rewrite (165) by simply omitting the
factors Q,Q′. We define reduced parallel transports as follows

F̃ (℘) =

⎛

⎝

↗
∏

k≥1

(1 + τrk
)(1 + νrk

)

⎞

⎠ ·
⎛

⎝

↘
∏

k≥1

(1 + τpk
)(1 + νpk

)

⎞

⎠

F̃ (℘′) =

⎛

⎝

↗
∏

k≥1

(1 + νp′
k
)(1 + τp′

k
)

⎞

⎠ ·
⎛

⎝

↘
∏

k≥1

(1 + νr′
k
)(1 + τr′

k
)

⎞

⎠

(177)
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Figure 12. Tilting the paths from Fig. 11 gives equivalent
flatness equations

Note that due to the path-concatenation algebra of the generating functions
involved in the flatness identity, this is a nontrivial simplification. Henceforth
we shall study this simplified form of the flatness equations.

4.2.3. Breaking Down the Equations by Path Tilting. Equation (177) still look
rather daunting. The most obvious approach to solving them would be to con-
sider each component individually, however this turns out not to be particu-
larly effective. A better (but ultimately equivalent) strategy is to conjugate the
equations by pieces of parallel transport, so that we produce new (equivalent)
equations for tilted paths. More precisely, we replace ℘, ℘′ by ℘(k), ℘

′
(k) defined

by tilting the former clockwise (k > 0) or counterclockwise (k < 0) across |k|
2-way streets. See Fig. 12.

Let us start with k > 0, focussing on the following components of the
parallel transport equations (to lighten notation we suppress trivial terms like
X℘(i))

F̃ (℘(k))ii,0 =
∏

s≥k+1

Q(rs) F̃ (℘′
(k))ii,0 =

∏

s≥k+1

Q(r′
s). (178)
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where Q(rs) appearing here is related to QN (rs) defined in (135) by Q(rs) =
∑

N∈Z
QN (rs).22 The two parallel transports given above must be equal for

each k, therefore
Q(rs) = Q(r′

s) s ≥ 1. (179)

Likewise, tilting with k < 0 we obtain the analogous

F̃ (℘(k))jj,0 =
∏

s≥k+1

Q(ps) F̃ (℘′
(k))jj,0 =

∏

s≥k+1

Q(p′
s). (180)

Since this holds for each k, we find

Q(ps) = Q(p′
s) s ≥ 1. (181)

The global structure of the critical network (see Fig. 10) further implies that
Q(rs) = Q(p′

s). Therefore, we introduce

Qk := Q(rs) = Q(ps) = Q(r′
s) = Q(p′

s). (182)

Let us now turn to another component of the flatness equations, namely
the sector (ij,−m − k(m + n)). With k > 0 we find

F̃ (℘(k))ij,−m−k(m+n) = τrk+1

⎛

⎝

∏

s≥1

Q(ps)

⎞

⎠

(

k
∏

s=1

Q(r′
s)

)

,

F̃ (℘′
(k))ij,−m−k(m+n) =

⎛

⎝

∏

s≥k+2

Q(r′
s)

⎞

⎠ νr′
k+1

,

(183)

using (182) this simplifies to

τrk
= Q−1

k

(

k−1
∏

s=1

Qs

)−2

νr′
k
. (184)

Keeping the same tilted paths, but looking at sector (ij,m + k(m + n)) gives

F̃ (℘(k))ij,m+k(m+n) = νrk+1

⎛

⎝

∏

s≥k+2

Q(rs)

⎞

⎠ ,

F̃ (℘′
(k))ij,m+k(m+n) =

⎛

⎝

∏

s≥1

Q(p′
s)

⎞

⎠ τr′
k+1

(

k
∏

s=1

Q(r′
s)

)

,

(185)

again this simplifies once we take into account (182), leading to

τr′
k

= Q−1
k

(

k−1
∏

s=1

Qs

)−2

νrk
. (186)

22Each QN includes a ‘1’ in the definition, they should be considered as identity operators
restricted to the (ii, N, N) sector. Then the sum

∑

N is effectively a direct sum of operators.
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Similarly, choosing paths with negative tilting k < 0 and studying the
(ji,±(n + k(m + n))) components of the parallel transport, we obtain

τpk
= Qk

(

k−1
∏

s=1

Qs

)2

νp′
k
, τp′

k
= Qk

(

k−1
∏

s=1

Qs

)2

νpk
. (187)

In fact the two way streets junction appearing in this case for C
3 appears

to be sufficiently generic to deserve study in further details. In “Appendix D”,
we give the full form of the parallel transport equations before implementing
various properties, for example, periodicity of the C

3 network.

4.2.4. Soliton Data of Primary Walls. We are now in a position to obtain
explicit solutions for the soliton data on the E-walls p1, r1, p

′
1, r

′
1. The global

topology of the C
3 network implies

τrk
=̇ νp′

k
νrk

=̇ τp′
k

k ≥ 1
τpk

=̇ νr′
k

νpk
=̇ τr′

k
k ≥ 2

(188)

where the =̇ is a reminder that identifications are understood upon transport-
ing a soliton along a loop around the puncture at infinity.

It follows that
Q(rk) = Q(p′

k) k ≥ 1

Q(pk) = Q(r′
k) k ≥ 2.

(189)

From homotopy invariance around the branch point (in the British resolution,
see Fig. 13) it is straightforward to derive the following relations

νr′
1

= τp1 +
∑

N

XbN
νp1 =

∑

N

XaN
. (190)

Solitons aN are sourced from the branch point along p1 while bN are sourced
form the branch point and run along r′

1.

Figure 13. Soliton propagation near the branch point of the
network of C

3, just after the critical phase (British resolution)
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Using the identities derived in Sect. 4.2.3, we can compute Q(p1)

Q(p1) = 1 + τp1νp1

= 1 + νp′
1
Q(p1)νp1

= 1 + τr1Q(p1)νp1

= 1 + νr′
1
Q(r′

1)
−1Q(p1)νp1

= 1 +

((

∑

N

XγN

)

τp1 +
∑

N

XbN

)

Q(r′
1)

−1Q(p1)νp1

= 1 +

((

∑

N

XγN

)

τp1νp1 +
∑

N

XbN aN

)

Q(r′
1)

−1Q(p1)

= 1 +

((

∑

N

XγN

)

(Q(p1) − 1) +
∑

N

XγN

)

Q(r′
1)

−1Q(p1)

= 1 +

(

∑

N

XγN

)

Q(p1)2Q(r′
1)

−1. (191)

Here γN is the closed cycle obtained by canonical lift (cf. Sect. 3.5.1) of two-way
streets p1, r1, p

′
1, r

′
1 to the N -th sheet of the cover ˜Σ. The insertion of

∑

N XγN

in front of τp1 is justified by the fact that the latter has been transported all
the way along the 2-way wall by application of the various identities, and
therefore each 2d–4d soliton (open path) inside τp1 should be transported.
Moreover, given a path a ∈ Γji,N,N−n, its transport will be of the type XγN

Xa

or XaXγN−n
where γN ∈ Γjj,N,N . Since concatenation of paths can only occur

if the endpoints match, the whole sum over N simply distributes one such
concatenation for each soliton.

Now thanks to (182) we immediately obtain

Q1 =

(

1 −
(

∑

N

XγN

))−1

. (192)

In terms of the generating functions QN (p) defined in (135), we have

QN (p1) = QN (r1) = QN (p′
1) = QN (r′

1) = (1 − XγN
)−1

. (193)

Due to (161) all γN are identified, therefore we finally obtain

αγ(p1) = αγ(r1) = αγ(p′
1) = αγ(r′

1) = −1. (194)

We can also solve for the 2d–4d generating functions: the same manipu-
lations as in (191) lead to

τp1 =

(

∑

N

XγN

)

τp1 +
∑

N

XbN
, (195)

therefore

τp1 =
∑

N

XbN

(

1 −
∑

N ′
XγN′

)−1

=
∑

N

XbN
(1 − XN )−1

, (196)
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where use used the fact that γN = aNbN ∈ Γii,N,N can only concatenate with
bM if N = M . The remaining soliton data of primary walls can be obtained
in a similar way, and reads

νp′
1

= τp1Q
−1
1 =

∑

N

XbN
, (197)

τr1 = νp′
1

=
∑

N

XbN
, (198)

νr′
1

= τr1Q1 =
∑

N

XbN
(1 − XγN

)−1
, (199)

τp′
1

= ν(p1)Q1 =
∑

N

XaN
(1 − XγN

)−1, (200)

νr1 = τp′
1

=
∑

N

XaN
(1 − XγN

)−1, (201)

τr′
1

= νr1Q
−1
1 =

∑

N

XaN
. (202)

4.2.5. Soliton Data of Descendant Walls. To compute Qk for k > 1, we follow
a different strategy, going back to the parallel transport equations. Let us
consider the horizontal paths ℘, ℘′ of Fig. 11, and study components (ii,−m−
n)

F̃ (℘)ii,−m−n = τr1

⎛

⎝

∏

k≥2

Q(pk)

⎞

⎠ τp1

F̃ (℘′)ii,−m−n =
∑

s≥1

τp′
s
νp′

s+1

⎛

⎝

∏

k≥1

Q(r′
k)

⎞

⎠+ :
∑

s≥1

⎛

⎝

∏

k �=s,s+1

Q(r′
k)

⎞

⎠ νr′
s+1

τr′
s

(203)
Dividing each side by

∏

k≥1 Qk brings the equality of these expressions into
the form

τr1 τp1

Q1
=

∑

k≥1

(

τp′
k
νp′

k+1
+

νr′
k+1

τr′
k

QkQk+1

)

. (204)

On the other hand, combining (184)–(186) together with the periodicity prop-
erties (188)

νr′
k+1

= τrk+1Qk+1Q
2
k · · · Q2

1 =̇ νp′
k+1

Qk+1Q
2
k · · · Q2

1, (205)

τr′
k

= νrk
Q−1

k Q−2
k−1 · · · Q−2

1 =̇ τp′
k
Q−1

k Q−2
k−1 · · · Q−2

1 , (206)

therefore
νr′

k+1
τr′

k

QkQk+1
=̇ τp′

k
νp′

k+1
, (207)

where the symbol =̇ is a reminder that a transport of soliton endpoints has
been employed, and needs to be properly taken into account. We show how to
do this in “Appendix E.3”, the correct expression turns out to be
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νr′
k+1

τr′
k

QkQk+1
= −

(

∑

N

XγN

)

τp′
k
νp′

k+1
. (208)

Therefore, (204) becomes

τr1 τp1

Q1
=

(

1 −
∑

N

XγN

)

∑

k≥1

τp′
k
νp′

k+1
. (209)

A similar analysis for components (ii,m+n) of the parallel transport leads to
a similar equation

νr1 νp1

Q1
=

(

1 −
∑

N

XγN

)

∑

k≥1

τr′
k+1

νr′
k
. (210)

Without loss of generality let us define θk, θ̄k, Ck, C̄k as

τp′
k

= Ckθkτp′
k−1

νp′
k

= θ̄kνp′
k−1

νr′
k

= C̄kνr′
k−1

θ̄k τr′
k

= τr′
k−1

θk.
(211)

θk is a formal series involving paths of type (ii,m+n), while θ̄k carries paths of
type (jj,−m − n). Ck, C̄k are functions of closed homology variables like Xγ ,
they commute with all other factors. Note that periodicity relations among
r′
k, p′

k and rk, pk in (188) fix the relation between τpk
, τpk−1 etc. in terms of

θk, θ̄k, Ck, C̄k. For convenience also introduce θ̃k, ˜̄θk defined by

θkΞij = Ξij θ̃k, ˜̄θkΞij = Ξij θ̄k, (212)

for any Ξij carrying paths of type ij and enjoying shift symmetry.23

Combining (186) with (188) we obtain

τr′
k
τp′

k−1
=

(

∑

N

X−γN

)

Q−1
k Q−1

k−1τr′
k−1

τp′
k
,

νp′
k
νr′

k−1
=

(

∑

N

X−γN

)

Q−1
k Q−1

k−1νp′
k−1

νr′
k
,

(213)

where X−γN
was introduced to keep track of the transport of soliton paths

implicit in (188), and denoted by =̇ in that expression.24 These relations fix
Ck, C̄k to be

Ck = C̄k =

(

∑

N

XγN

)

QkQk−1. (214)

Moreover from

Qk = 1 + τp′
k
νp′

k
= 1 +

(

∑

N

XγN

)

QkQk−1θk
˜̄θk(Qk−1 − 1), (215)

23Essentially the addition of ˜ is an involution that switches i ↔ j, much like in (175) this
relies on the property of shift symmetry for each term in the equation.
24A way to see why this correction is necessary is by consistency with (208).
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it follows

θk
˜̄θk =

∑

N X−γN

QkQk−1

Qk − 1
Qk−1 − 1

. (216)

Without loss of generality, we can express θk, θ̄k in terms of a universal piece
containing open paths times a k-dependent piece that only depends on Xγ

θk = νp1νr1 fk, θ̄k = τp1τr1 f̄k,

θ̃k = νr1νp1 fk, ˜̄θk = τr1τp1 f̄k.
(217)

Then (216) turns into a relation for fk, f̄k:

fkf̄k =
∑

N X−γN

QkQk−1

Qk − 1
Qk−1 − 1

1
(Q1 − 1)2

. (218)

Moreover, repeated application of (211) gives

τp′
k
νp′

k+1
= ˜̄θk+1(Qk − 1), τr′

k+1
νr′

k
= θ̃k+1(Qk − 1). (219)

Substitution into the flatness Eqs. (209) and (210) gives

1
1 − ∑

N XγN

= Q1

∑

k≥1

f̄k+1(Qk − 1),

1
1 − ∑

N XγN

= Q1

∑

k≥1

fk+1(Qk − 1).
(220)

from which we deduce fk = f̄k. Taking into account (218), we propose the
following solution

fk =
1

Qk−1 (Q1 − 1)
, (221)

which implies

Qk =

(

1 −
∑

N

Xk
γN

)−1

. (222)

It can be checked that this indeed solves both (218) and (220). In terms of the
generating functions QN (p) defined in (135), we have

QN (pk) = QN (rk) = QN (p′
k) = QN (r′

k) = (1 − Xk γN
)−1

. (223)

These equations alone are not sufficient to fix all the fk, one needs to consider
other terms in the parallel transport equations as well. We checked that this
proposal provides a nontrivial solution to components (ii,±(2m + 2n)) and
(jj,±(2m + 2n)) of the parallel transport equations.

Expression (221) is our proposal to the solution to the flatness equations.
This determines θk through (217), and therefore determines all generating
functions of solitons on walls rk, pk, r′

k, p′
k through the relations (211) and the

known expressions for τr1 , νr1 , . . . obtained in Sect. 4.2.3.
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4.2.6. Full BPS Spectrum. The BPS spectrum can be computed from the for-
mula (150). By factoring QN (p) for each 2-way street p in the critical network,
we found

αkγ(r�) = αkγ(p�) = αkγ(r′
�) = αkγ(p′

�) = −δk,�. (224)

As we explained in Sect. 3.5.3 the analogue quantities for ii/jj 2-way streets
are ambiguous, but can be fixed by requiring that a certain 1-chain LN (kγ)
defined in (148) is closed. This can be achieved by taking the following values25

αkγ(q�) = αkγ(q′
�) = δk,�+1,

αkγ(q̄�) = αkγ(q̄′
�) = 0.

(225)

With this choice we find,

Ω(γ) =
[LN (γ)]

γ
=

[π−1
N (−r1 ∪ −p1 ∪ −r′

1 ∪ −p′
1)]

γ
= −1 (226)

for k = 1, as well as

Ω(kγ) =
[LN (kγ)]

kγ

=
[π−1

N

(−rk ∪ −pk ∪ −r′
k ∪ −p′

k ∪ qk−1 ∪ q′
k−1

)

]
kγ

= −1.

(227)

for k > 1. Here the notation π−1
N stands for the restriction of (140) to a single

closed cycle on ˜Σ.
We thus find a tower of BPS states with central charges k · Zγ for k ≥ 1,

all have the same degeneracy Ω = −1. The result we found has a straight-
forward interpretation: these are the KK modes of a single BPS state of the
five-dimensional bulk theory on a circle. In fact, this is the expected BPS spec-
trum for the theory [1]. In fact in (162) we computed the unit central charge
to be one unit of KK momentum, therefore BPS states with charge kγ are
naturally identified with a half-tower of KK modes, while the corresponding
anti-particles with charges −kγ complete the other half of the KK tower. In
the limit R → 0 all these BPS states should become infinitely massive and are
expected to disappear from the spectrum. We discuss this limit next.

From the viewpoint of M theory on a circle, this spectrum captures KK
modes of the massless fields in eleven-dimensional supergravity. Alternatively,
from the viewpoint of Type IIA string theory it is the spectrum of boundstates
of D0 branes. The masses of D0 particles are in fact reproduced by the periods
Znγ .

25Monodromy around the puncture at infinity includes a square-root type action, which
switches i ↔ j. Therefore, the fact that we choose α differently for qi and q̄′

i may seem
puzzling for two reasons: first these two-way streets have the same soliton content since they
are the continuation of each other; second, the lift may appear to be “broken” at the branch
cut. The first motivation is addressed by recalling that αγ(q) are not defined in terms of
soliton content. The second motivation is instead addressed by a careful analysis of the lifted
paths: the reader can check that the different strands of lifted streets in (227) concatenate

correctly into closed cycles on ˜Σ. An important role is played by the novel BPS solitons
carried by periodic ii-walls, see Sect. 3.3.4.
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4.3. 2d–4d Limit (R → 0)
In order to define a limit R → 0, recall that the exponential network probes
the BPS spectrum of a 3d–5d system, which in our case is described by the 3d
N = 2 theory associated with a toric brane C

3. This is a U(1) gauge theory
with a massive charged chiral multiplet. Following [75,76] we view the theory
on a circle as a 2d model with an infinite number of fields, most of them
massive since they correspond to Fourier modes of the 3d fields. The twisted
effective superpotential is

˜W =
1

2πR

(

Li2(e−2πR σ)
)

+ πR

(

κeffσ2 +
i

R
σ

)

+ 2πR ζσ (228)

where
σ = φ + iA2, m = mR + iA

(F )
2 . (229)

Here φ is the real adjoint scalar of the 3d vectormultiplet, A is the gauge field,
mR denotes the 3d real mass and A

(F )
2 is the flavor background holonomy.

As observed in [76], there are several ways to take limits R → 0,∞. We take
ζ ∼ 1/R since this keeps the masses of solitons finite in the 2d limit.

For finite R the vacuum manifold is defined by exp
(

∂˜W/∂σ
)

= 1. In-
troducing

x = e−2πR ζ , y = e2πR σ (230)

the vacuum manifold is the algebraic curve

yκeff+1 − yκeff
+ xy = 0. (231)

Indeed this coincides with (151) upon identifying p = −κeff + 1.
Let’s therefore take the model with p = −1 hence κeff = 2. Taking R → 0

we keep the following combination finite

t = 2πR ζ + log (2πRμ) (232)

this is identified with the complexified FI coupling of the 2d theory in the limit
R = 0. The twisted superpotential in fact becomes

˜W → σ (log σ/μ − 1) + σ log(2πR μ) + πRκeff σ2 + iπσ + 2πRζσ

= σ(t + iπ) + σ (log σ/μ − 1)
(233)

this is the twisted effective superpotential of a 2d (2,2) GLSM with gauge group
U(1) and a massless chiral multiplet with charge +1. The 2d FI coupling is t,
which is now probing the region of the mirror curve at

x = e−2πRζ = e−t+log(2πRμ) = 2πRμ e−t R→0→ 0. (234)

The limiting curve has in fact a single sheet, corresponding to the single vac-
uum of the model, located at

σ = μet. (235)
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It is interesting to study how this curve arises from the mirror curve: as men-
tioned above it simply corresponds to zooming near x̃ = 0. The mirror curve
has two sheets26 ỹ±(x̃), which behave as follows in the limit R → 0

σ+ =
1

2πR
log (−ỹ+) R→0→ ∞ σ− =

1
2πR

log (ỹ−) R→0→ μe−t (236)

One vacuum therefore runs off to infinity, while the other remains at finite
distance and defines our IR 2d limit. This kind of behavior was observed for
some models in [76].

From the viewpoint of solitons supported on the exponential network,
zooming near x = 0 pushes the branch point (which is the source for primary
walls) infinitely far away, and all solitons paths become extremely massive.
This agrees with the observation that only one tower of the vacua (−, N)
remains at finite distance while the other (+, N) flows to infinity, hence giving
infinite mass to any solitons of type (±∓, n) interpolating between these towers
of vacua. The only solitons that may remain massless are instead of types
(±±, n). However, the network predicts that there are no such BPS states
near x = 0 therefore we expect a trivial BPS spectrum in the R → 0 limit.
Since the branch point is removed from the picture, there is no wall of the
network remaining at finite distance in the R → 0 limit, in agreement with
the expectation of a trivial soliton spectrum on the codimension-two defect.

4.4. tt∗ Analysis

Above we have recovered the expected BPS spectrum for the five-dimensional
theory from the K-wall jump of the spectrum. Now we would like to perform
some checks on the claim that soliton data on the exponential network actually
computes 3d–5d BPS states in agreement with the CFIV index. For this pur-
pose, we analyze the 3d theory on the defect in its own right, studying the 3d
BPS spectrum using the techniques of three-dimensional tt∗ geometry directly.
We then compare the result with predictions from the nonabelianization map.

4.4.1. Shift Symmetry. As reviewed in Sect. 2.3.3, a fundamental assumption
behind the development of tt∗ geometry in three dimensions is the existence
of a shift-symmetry for the spectrum of solitons. In the context of exponential
networks, we have indeed encountered such a symmetry arising in full gen-
erality, this was discussed in Sect. 3.4. Here we study the existence of shift
symmetry from the viewpoint of the 3d quantum field theory. As we will see,
its realization is much less trivial than it appears in the geometric setting –
this is another advantage of the latter.

Let us consider an LG model (W, Cs) (i.e., a LG model with s chirals),
whose vacua, given by Crit(W ) (W, C), are isolated points in C

n. The energy
of a soliton interpolating between the vacua p0, p1 ∈ Crit(W ) is bounded by

E01 ≥ 2
∣

∣

∣

∣

∫ +∞

−∞
dσ∂σY i∂iW

∣

∣

∣

∣

. (237)

26For convenience we pass to coordinates x̃ = −x and ỹ = −y.



Vol. 20 (2019) Exploring 5d BPS Spectra with Exponential Networks 4121

The BPS solitons are then solutions of the equation

∂tY
i = αGij̄∂ j̄W (238)

where α can be written as

α :=

∫ +∞
−∞ dσ∂σY i∂iW

∣

∣

∣

∫ +∞
−∞ dσ∂σY i∂iW

∣

∣

∣

. (239)

They saturate the bound (237) and so, their central charge is given by

Z01 =
∫ +∞

−∞
dσ∂σY i∂iW. (240)

for the cases that W (Y ) is given by a holomorphic single valued function in
Y ∈ C

s, then Z01 simply reduces to the difference of critical values ΔW01 =
W (p1) − W (p0), and α = ΔW01

|ΔW01| , as in (11) in Sect. 2.3.1 and so the phase α

is completely fixed by the boundary conditions of the BPS equation. However,
in our cases we have multivalued superpotential on the Y -plane, for example
(54) and (57). In such cases, one has to choose the integration cycle for Z01

appropriately. For a path γ running from p0 to p1, we write

Z01 =
∫

γ

dY i∂iW. (241)

To lighten the discussion, we focus on the case s = 1. Hence

Z01 =
∫ Y1

Y0

dY ∂Y W (242)

where {Yk} denote critical points (which can be infinitely many). Since we
want to consider the case where W (Y ) is multivalued; hence, it has branch
cuts in the Y -plane. In such a case, the value of (242) depends crucially in
the homotopy of γ, on the Y -plane. Every time that the path γ crosses one
of these branch cuts, W undergoes monodromy. An example of this is shown
in Fig. 1. If we denote Mb the monodromy of W when crossing the branch
cut b and γ crosses the branch cuts in the order b1, b2, . . . , bk (where bj ’s are
not necessarily distinct), then the central charge of the soliton sij(γ), i.e., the
soliton interpolating between Yi and Yj via a path γ in the Y -plane, will be
given by:27

Zij(γ) = Mbk
◦ · · · ◦ Mb1 ◦ W (Yj) − W (Yi) = Mγ ◦ W (Yj) − W (Yi) (243)

where we think of Mb as parallel transport operators. Hence, the BPS equation
becomes much more complicated, since α no longer depends in the boundary
conditions but also on the integration path. We will concentrate in the case of
collinear vacua, that is, we will have multiple ‘towers of vacua’ {Yα,k} where
α = 1, . . . , q, k ∈ Z and Yα,k − Yα,h ∼ (k − h) (Fig. 14).

27A word of caution: if we are dealing with a vector valued function F (z) that undergoes
linear monodromy as z goes around the points bα, this means F (Lbz) = Mb · F where Mb

is an invertible matrix, then the monodromy of a path that goes first around b1 and then b2
is given by M1M2 · F , i.e., the order of multiplication is reversed.
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Figure 14. An example of integration path in the Y -plane.
Dashed lines indicate branch cuts of W (Y )

We will say that the theory enjoys a shift symmetry:

T : Yα,k → Yα,k+1 for all α, k (244)

if each soliton ((α, k), (β, l); γ) is mapped to a soliton ((α, k + 1), (β, l + 1); γ′)
with the same central charge, i.e.,

Z(α,k),(β,l)(γ) = Z(α,k+1),(β,l+1)(γ′) (245)

Note that this definition is equivalent to the shift map of Sect. 3.2.3, hence the
paths γ, γ′ belongs to the relative homology groups:

γ ∈ Γα,β,k,l γ′ ∈ Γα,β,k+1,l+1 (246)

in the following we will focus on the case of mirror C
3.

Case of C
3 at framing f . The superpotential for C

3 is given by (54) which we
repeat below for succinctness

W = (X − iπ)Y +
f

2
Y 2 + Li2(−eY ) f ∈ Z (247)

and the vacua is given by

Yα,k = Yα + 2πik α = 1, . . . , |f | − 1
2
(sgn(f) − 1) (248)

where yα = exp(Yα) are the roots of

xyf + y + 1 = 0, (249)

which is the mirror curve for C
3. Before proceeding further, let is recapitulate

some well-known facts about the dilogarithm function and its monodromy.

Dilogarithm and its monodromy. The dilogarithm function has the integral
representation

Li2(u) = −
∫ u

0

log(1 − u)d log u. (250)

There are two equivalent ways to express the monodromy [77]. In the first
picture, one assembles a vector with three entries Li2, log and 1. Analytic con-
tinuation along a loop in P

1\{0, 1,∞} leads to the monodromy representation
⎛

⎝

Li2(u)
log(u)

1

⎞

⎠ , M0 =

⎛

⎝

1 0 0
0 1 2πi
0 0 1

⎞

⎠ , M1 =

⎛

⎝

1 −2πi 0
0 1 0
0 0 1

⎞

⎠ . (251)
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which is a representation M : π1(P1\{0, 1,∞}) �→ GL(3, C). Going around a
loop in counterclockwise direction, enclosing both 0, 1, one gets a monodromy

⎛

⎝

Li2(u)
log(u)

1

⎞

⎠ �→ M ·
⎛

⎝

Li2(u)
log(u)

1

⎞

⎠ , M =

⎛

⎝

1 −2πi 0
0 1 2πi
0 0 1

⎞

⎠ (252)

For the record, we define the group commutator as M = M0M1M
−1
0 M−1

1 .
Going around k times in the counterclockwise loop around both 0 and 1 gives
an action by

Mk =

⎛

⎝

1 −2πik 2π2(k2 − k)
0 1 2πik
0 0 1

⎞

⎠ =⇒
Li2(u) �→ Li2(u) − 2πik log(u)

+2π2(k2 − k)
log u �→ log(u) + 2πik

1 �→ 1
(253)

In the alternative picture, consider the complexified Heisenberg group HC

of upper triangular 3 × 3 matrices with ones in diagonal. The representative
element is

L(u) =

⎛

⎝

1 −Li1(u) −Li2(u)
0 1 log(u)
0 0 1

⎞

⎠ (254)

and left operations with HZ generates the multivaluedness. The left-multipliers
are

h0 =

⎛

⎝

1 0 0
0 1 2πi
0 0 1

⎞

⎠ , h1 =

⎛

⎝

1 2πi 0
0 1 0
0 0 1

⎞

⎠ . (255)

One can view this as the following. Starting from (a, b|α) → (r, s) = (ea, eb) a
bundle over C

∗
r × C

∗
s with fiber (2πi)2Z\Cα (isomorphic to C

∗ by α → S :=
eα/2πi)

HZ\HC

↓
C

∗
r × C

∗
s = (2πi)2Z\Ca,b

. (256)

One now just needs to pullback to get the Heisenberg bundle H over
P

1\{0, 1,∞}
H HZ\HC

P
1\{0, 1,∞} C

∗ × C
∗

(2πi)2Z\C
1−z,z

A section of H has the form HZ(−Li1z, log z|α) and L(z) is a flat section.

Shift symmetry for soliton masses. Now getting back to C
3, Yα’s are functions

of X and are in general multivalued. So the prescription is as follows. Start
with a reference point X0 and a set of reference values Yα(X0). Then

Yα(X) =
∫ X

X0

∂uYα(u) (257)
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where the integration is over some path. The choice of path is what we mean
by the choice of prescription. We will use this approach whenever we have
to evaluate multivalued functions. Hence this is relevant when manipulating
critical values of W , as we will see shortly. We will consider the value of X as
fixed, so we will assume a prescription as chosen to evaluate Yα(X) but it will
not be relevant for us. Also, if we move on paths Γ(x)n,m in the X-plane, it
will act by just interchanging the critical points Yα,k(X).

What will be important for us is to define the critical values W (Yα,k). As
it stands, this equation is not a priori well defined for the reasons we discussed
before. Nevertheless, we can still define the problem of counting the solitons
joining vacua, for a given value of central charge, in a completely unambiguous
way. Start by defining

Wα(a, b) := W (Yα,0) + 2πiaYα,0 + 2π2b a, b ∈ Z (258)

where some choice of prescription has been made to evaluate W (Yα,0), but we
will see this is indeed irrelevant when stating the soliton counting problem.
The above formula is a consequence of the fact that when one defines Wα,
one has to choose a specific path which starts form Yα(X0) as was mentioned
above. Because of the monodromy of the dilogarithm now, it depends on how
one crosses the respective branch cuts and what “word” of monodromy group
generator shows up. However, the statement is that, for any such path, there
exists a pair of such integers a, b. This also defines the lattices of points:

Lα := {Wα(a, b)}a,b∈Z. (259)

The reason for this is the following: suppose we choose a prescription to eval-
uate W at Yα,k = Yα,0 + 2πik. Then, we get

W (Yα,k) = W (Yα,0)+f(2π2(k2−k)−2πikYα,0)+2πisYα,0−2π2(s2−s) (260)

where s is valued in Z, and the second term comes from the evaluation of
Li2(− exp(Yα,k)) due to the action of monodromy as stated above. As we can
see this as exactly the form of a point in Lα. If we change the prescription
to evaluate Li2 (which is the only choice to be made), it will just be another
point on Lα. Now we are ready to state the soliton counting problem. First,
if we want to count the solitons interpolating between Yα,k and Yβ,l we must
solve Eq. (238) with phase

α(α,β)[(a, b), (c, d)] :=
Wβ(a, b) − Wα(c, d)
|Wβ(a, b) − Wα(c, d)| (261)

and with boundary conditions Y (−∞) = Yα,k, Y (∞) = Yβ,l for all Wβ(a, b) ∈
Lβ and Wα(c, d) ∈ Lα. This will give us all the solitons with central charges
Wβ(a, b) − Wα(c, d). Hence, we will argue for shift symmetry, if the solitons
interpolating between Yα,k and Yβ,l, with fixed central charge, satisfy the same
counting problem as solitons interpolating between Yα,k+1 and Yβ,l+1 (Fig. 15).

For the simplest case of f = 0, there is only a single root, so we can drop
the index α and write

Yk = iπ + log(1 + x) + 2πik k ∈ Z (262)
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Figure 15. The branch cuts of Li2 on the Y -plane: dashed
black line are the branch cuts at −iπ+2πiZ. The orange lines
are Im(Y ) = 2πZ (they are branch cuts on y-plane). γ0 and
γ1 is the path around y = 0 and y = −1, respectively (color
figure online)

here, the central charge depends only on the differences a− c and b−d and so,
we have an explicit realization of the shift symmetry. The case with f �= 0, 1
are more difficult though because of multiple roots.

To understand the latter cases, let us start by considering the generic
form of the superpotential, provided our prescription:

W (Yα,0) − W (Yβ,0) + 2πiaYα,0 − 2πicYβ,0 − 2π2(b − d). (263)

This clearly means that there is a symmetry which we dub as the “shift symme-
try” given (b, d) �→ (b+1, d+1). Let us clarify the last point a bit further. Given
two values Yα,0 and Yβ,0, following specific paths, computing monodromies
coming from dilogarithm appropriately, one can build up the superpotential
at Yα,k and Yβ,l following (260). Of course, these representations are ambigu-
ous and tacitly depend on the choice of paths which we reiterate again. Our
goal is to find the solutions to the BPS Eq. (238). For most of the choices of α
and β, there does not exist any solution. But the crucial point is that, if there
is one solution for some α, β, one gets an infinite set of solution due to freedom
coming from s in (260). In terms of Lefschetz thimbles, this has a clear inter-
pretation. In fact, these are the objects which are captured by our exponential
network. Given vacua labeled by α and β, if the thimbles intersect for some
k and l, one can find a family of such Lefschetz thimbles whose intersections
contribute to the degeneracy of the same 3d CFIV index. This precisely fits
our computations using exponential networks (and its application to C

3).
A parallel way to describe shift symmetry in the soliton masses is directly

using the exponential network set up. Start with the wall emanating from the
branch point (ij, 0), or vis-a-vis (ij,N,N) type soliton for N ∈ Z. Now one
can compute
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W (x, Y
(N)
j ) − W (x, Y

(N)
i ) =

∫

a

λ =
∫

π(a)

(log yj − log yi)d log x, (264)

where π is the projection map defined before.
As before, the difference does not depend on N and moreover, now we give

an explicit realization of it in terms of the chain integral. Individually, the mon-
odromy of the dilogarithm does indeed affect how one goes from W (x, Y

(N)
i )

to W (x, Y
(N+1)
i ). But as long as we define W (x, Y

(N)
j ) = W (x, Y

(N)
i ) +

∫

aN
λ,

for all N , the soliton mass is independent of this N . The exponential network
provides the definition of such paths aN .

4.4.2. tt∗ Metric for Toric Lagrangian Theory of C
3. We now study the tt∗

equations and compute their predictions for the soliton spectrum of the 3d
theory on the defect engineered by an M5 brane wrapped on the toric La-
grangian brane of C

3. For the purpose of comparing with predictions from the
nonabelianization map, we will work with framing f = −1.

The fundamental field of the model is Y , with superpotential

W = (X − iπ)Y +
f

2
Y 2 + Li2(−eY ) (265)

X is the deformation parameter and Y is the operator by which we deform
the theory. Critical points are labeled by (i,N) with i = ± and N ∈ Z

Y±,N = log y±(x) + 2πiN, y±(x) =
−1 ± √

1 − 4x

2
. (266)

The chiral ring is the ring of functions of Y , generically denoted φ(Y ),
modulo dW = 0. This means that

y2 + y = −x (267)

is proportional to the identity operator.

R = {φ(Y )}/(e2Y + eY + eX = 0). (268)

Operators in the chiral ring are holomorphic functions φ(Y ). They are there-
fore entirely characterized by their values at the critical points

φ(Y ) ↔ {(φ)±,N}N∈Z := {φ(Y±,N )}N∈Z. (269)

Ring multiplication is the multiplication of such functions.
Choosing a basis φα, we could write the topological metric as (see [31,

eq. (2.10)])

ηαβ =
∑

i=±,N∈Z

φα(Yi,N )φβ(Yi,N )
HW (Yi,N )

(270)

It is convenient to work in the point basis which is defined by

φα(Yi,N ) → aj,M (Yi,N ) = δijδMN (271)
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or in more shorthand notation (aj,M )i,N = δijδMN . That is, ai,N (Y ) is a
certain function of Y such that it is 1 at vacuum Yi,N and zero at all other
vacua. The metric in the point basis is simply

η(i,N)(j,M) = ηiδijδMN =
(

η+

η−

)

ij

⊗ IMN . (272)

where

η± =
1

HW (Y±,N )
= −1

2

(

1 ± 1√
1 − 4x

)

(273)

is in fact independent of N . We also introduced x = eX , and absorbed 2πR
into X,Y compared to the discussion of the previous subsection, in order to
lighten notation.

We can express the deformation operator φX in the point basis easily

φX := Y =
∑

i=±,N∈Z

Yi,Nai,N (274)

in components this reads

(φX)(i,N),(j,M) = Yi,NδijδMN

=
(

log y+(x)
log y−(x)

)

ij

⊗ IMN + 2πiN Iij ⊗ IMN

(275)
This is a good opportunity to work out the chiral ring structure constants for
φλ in the point basis:

φXa(i,N) = C
(j,M)

X,(i,N) aj,M = Yi,Nδj
i δ

M
N a(j,M) (276)

Therefore, we can express in point basis

(Cλ)(j,M)
(i,N) = Yi,Nδj

i δ
M
N =

(

log y+(x) + 2πiN
log y−(x) + 2πiN

)j

i

⊗ I
M
N .

(277)
As argued above, W is invariant under shift symmetry

T : Y → Y + 2πi (278)

This symmetry is reflected by the tt∗ metric gij̄ . In the point basis it acts on
vacua as

T · |i,N〉 = |i,N + 1〉, (279)

and implies
g(i,N),(j̄,M̄) = g(i,N+1),(j̄,M+1). (280)

Then the metric only depends on the difference gi,j̄(N−M). To take advantage
of this symmetry it is convenient to introduce the Bloch basis

|i, θ〉 =
∑

k∈Z

eikθ|i, k〉 (281)
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where |k〉 is the k-th vacuum in the point basis. Then28

gij̄(θ) =
∑

n∈Z

einθ gij̄(n). (282)

as a side remark, note that n here is the same n that labels E-walls in the
exponential network as (ij, n).

The tt∗ metric is hermitian, this imposes constraints on its components.
To understand what this means in the Bloch basis, note that conjugation acts
as follows (gij̄)∗ = 〈j̄|i〉∗ = 〈j |̄i〉 = g∗̄

ij
therefore

g∗̄
ij(θ) =

∑

n

einθg∗̄
ij(n) =

∑

n

e(−i)n(−θ)g∗̄
ij(n) = [gij̄(−θ)]∗. (283)

Likewise transposition of the matrix in point basis becomes

gT
j̄i(θ) =

∑

n

einθgT
j̄i(−n) =

∑

n

ei(−n)(−θ)gT
j̄i(−n) = [gij̄(−θ)]T . (284)

Therefore, overall the hermitian conjugate of g then takes the usual matrix
form,

g†(θ) = [g(θ)]†. (285)

Thus hermiticity implies that we can parametrize the metric as

g(θ) =
(

A(θ) B(θ)
B∗(θ) D(θ)

)

(286)

where A,D are real functions of X, θ, while B is complex. Finally, given the
definition of g in terms of inner products of vacuum states and their adjoints, it
follows that A and D must be positive functions. Additional constraints come
from CPT invariants in the form of the reality condition (22); however, in the
present case these are not particularly useful and will be omitted.

The tt∗ Eq. (30) in the case of a single variable reads

∂X̄

(

g∂Xg−1
)

= [CX , gC†
X̄

g−1] (287)

To study them we need to express CX given in (277) in Bloch basis (281)

CX(θ) =
(

log y+(x) + 2π ∂
∂θ

log y−(x) + 2π ∂
∂θ

)

,

C†
X̄

(θ) =
(

log(y+(x))∗ − 2π ∂
∂θ

log(y−(x))∗ − 2π ∂
∂θ

)

.

(288)

Let us now study these equations in a specific regime, near X = +∞
where massive vacua are well-separated. Recall that this corresponds to the
puncture on the right in Fig. 9. From the exponential network perspective we
see immediately why this is a convenient regime to analyze: there should be
only two (towers of) solitons ending there. On the contrary, had we chosen
to study the region near x = 0 we may expect infinitely many solitons. In

28The definition by g(θ) = 〈θ|g|θ′〉 would produce an extra infinite sum over δ functions,
but restricting the range of θ within [0, 2π[ gets rid of it.
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the point basis, the asymptotic behavior of g is expected to take the following
general form (see [31])

gīi ∼ 1
|HW (Yi)|

gij̄ = (gīigjj̄)
1/2

∑

a

(αij(a))1/2

(4πzij̄(a))1/2
e−2zij̄(a) (i �= j)

(289)

where
zij̄(a) = 2 |W (Yj) − W (Yi) + Zf (a)| (290)

is the mass of a soliton with charge a, and the sum runs over all solitons in
the topological sector i → j̄. In our parametrization this means that

A(θ) ∼ |η+| → 1
2

D(θ) ∼ |η−| → 1
2

B(θ) ∼ (|η+η−|)1/2

(4π)1/2
α(θ)

e−2z+−

(z+−)1/2

(291)

where in the second line the sum over a disappeared and has been replaced
by α(θ), by virtue of the fact that there is a single tower of solitons of type
(+−) based on network observations, and that they all have the same central
charge.29 Since all solitons interpolate between vacua shifting the logarithmic
branch by the same amount, which we shall denote by n, we expect that
α(θ) = α0e

inθ for some fixed constant α0.
As explained at length above, the central charge of these solitons should

be computed with care, by finding the appropriate analytic continuation of
the dilogarithm so that soliton masses are shift-symmetric. In point basis, the
critical values of the superpotential are

W
(k)
± = −(iπ − X) (log y±(x) + 2πik) − 1

2
(log y±(x) + 2πik)2

+ Li2
(−y±(x)e2πik

)

.
(292)

A careful choice of the branch of Li2, engineered to cancel the quadratic de-
pendence on k, leads to the following leading behavior for the central charge
at large X > 0:

W
(N)
+ − W

(M)
−

X→+∞∼ 2πi(N − M)X. (293)

Here we take N − M = n for all solitons in the tower, where this is precisely
the same n appearing in the exponent of α. Therefore,

z+− = 4πn |X|. (294)

Therefore,

B(θ) ∼ (|η+η−|)1/2

(4π)1/2
α0 einθ e−8πn|X|

(4πn|X|)1/2
=

1
2

α̃0
einθ−8π n|X|

|X|1/2
(295)

where we absorbed 4πin1/2 into α̃0.

29There is also a tower of (−+) solitons, encoded by B∗.
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We have used data from exponential networks to predict the asymptotic
form of the tt∗ metric in the IR regime where X → +∞. Next we would like to
check that this is in fact a solution to the differential Eq. (287) defined by the
geometry of the chiral ring. To do that we also need the asymptotic behavior
of CX , this is immediately obtained by noting that

log y±(x) ∼ X

2
. (296)

Then CX becomes asymptotically proportional to the identity and equal to

CX(θ) =
X

2
+ 2π

∂

∂θ
, C†

X̄
(θ) =

X̄

2
− 2π

∂

∂θ
. (297)

Here X̄ denotes the complex conjugate of X.
The lhs of the tt∗ differential equation is

∂X̄(g∂Xg−1) = −4π2n2 e−8πn|X|

|X|1/2

(

0 α̃0 einθ

α̃∗
0 e−inθ 0

)

+ · · · (298)

up to sub-leading corrections in 1/|X|. The rhs is instead

[CX , gC†
X̄

g−1] = −4π2 n2 e−8πn|X|

|X|1/2

(

0 α̃0 einθ

α̃∗
0 e−inθ 0

)

+ · · · (299)

again up to sub-leading corrections in 1/|X|. Therefore, to leading order we
find a perfect match, confirming the expectation that the geometry supports
a single tower of solitons of type (+−), and a single tower of solitons of type
(−+) near X → +∞.

5. Discussion and Future Directions

In this work, we developed new tools to study BPS states in M theory com-
pactifications on Calabi–Yau threefolds. In addition to being of interest for the
physical problem of BPS counting, we hope that our construction may provide
a new angle on related questions of enumerative geometry. We conclude with
remarks on the new questions raised by this work, and with suggestions for
future directions.

5.1. More Calabi–Yaus

The most natural next step would be to apply nonabelianization to more in-
teresting toric threefolds. Our main example, C

3, does not have any nontrivial
two- or four-cycles, which leads to a rather uninteresting spectrum featuring
only D0 branes. In [34] it was argued that exponential networks should be
sensitive to boundstates including also D2 and D4 branes.30 This can also
be argued on field-theoretic grounds. While D2 would appear as instanton-
dyons of the 5d gauge theory, the D4 would correspond to magnetic monopole
strings. Going down to four dimensions, the two types of states gain simi-
larities: the former descend to BPS particles, while the strings wrapping the

30Contributions from D4 branes can arise on a similar footing as D2 branes, via a symplectic
rotation [4].
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circle become magnetic monopoles. Therefore, both (more precisely, their KK
modes) are expected to be captured by the 2d–4d wall-crossing described by
the nonabelianization map.

It would be especially interesting to carry out the computations in the
conifold, to compare with [41,43]. Other interesting cases include local P

2

and elliptic fibrations over Hirzebrüch surfaces or del Pezzo surfaces. The 5d
gauge theories engineered by the latter admit Lagrangian descriptions and
the chamber structure of their Coulomb branches have been studied long ago
[78–80]. Compactifying these theories on a circle leads to interesting questions
on wall-crossing, regarding the relation between 5d and 4d BPS spectra [38].
We expect that these questions may be appropriately approached through our
framework. Another application of computing such BPS spectra would be the
study of D-instanton corrections to metrics on hypermultiplet moduli spaces
of type II string theory [81–83].31

5.2. Soliton Data in Field Theory: Kinky Vortices

Another pressing question that was postponed throughout this work regards
the physical interpretation of the soliton data in the nonabelianization map.
In Sect. 2 we introduced the picture of 3d–5d systems as the main motiva-
tion for the claim that the (K-wall jumps of the) nonabelianization map really
count 5d BPS states. However, this argument strictly relies on considering 3d–
5d systems on a circle, which can be viewed as 2d–4d systems of the related
Kaluza–Klein modes. Through this perspective, we can view wall-crossing phe-
nomena involving 3d–5d BPS states as emerging from the better-understood
2d–4d wall-crossing of [21]. A satisfactory field-theoretic description of 2d–4d
states and their interactions with 4d BPS states is indeed available, While we
believe that this picture is correct for the purpose of counting 5d BPS states
(more properly, their KK modes), it would be more satisfactory to have a
intrinsic three-dimensional interpretation of soliton data.

The M5 brane wrapping the Lagrangian L engineers a 3d N = 2 theory
T [L], which can be described as a U(1) gauge theory with charged chiral mat-
ter. In general, such theories feature a Higgs branch with BPS vortex states.
When T [L] is placed on a spatial circle Rt ×Rx ×S1, there are vortex-like BPS
field configurations that are static along the time direction Rt, and resemble
vortices on the cylinder Rx × S1. At the two ends of the cylinder, the fields
are required to approach vacuum configurations. When the circle shrinks, the
vacua |i〉 coincide with those of the 2d N = (2, 2) theory obtained in this limit.
The BPS spectrum of the 2d theory contains μij kinks interpolating between
vacua |i〉 and |j〉. At finite radius however the vacuum field configurations are
labeled by an extra integer |i,N〉, related to the holonomy of the gauge field at
the end of the cylinder. The 2d kinks are lifted to vortices on a cylinder, labeled
by the pair of vacua |i,NL〉, |j,NR〉 at the endpoints of the cylinder. Physical
properties of these BPS states, such as their vortex flux and their mass can
be shown to depend only on NR − NL. The similarities between these field
configurations and the soliton data of the nonabelianization map are rather

31This was one of the initial motivations for this work.
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compelling, and we expect that these “kinky vortices” (vortices with kink-like
features) are the physical field configurations counted by the latter.

5.3. Soliton Data in String Theory: M2 Branes and Domain Walls for Toric
Lagrangians

Another interpretation of the soliton data is from the viewpoint of string the-
ory. As noted by [34] the string theoretic setting in which Exponential Networks
arise presents some important differences from the class S setting of Spectral
Networks. In the context of spectral networks, a soliton interpolating between
two vacua (two points on the Seiberg–Witten curve) may be identified with
a domain wall between semi-infinite M2 branes placed at those points. This
picture doesn’t immediately carry over to Exponential Networks.

The Seiberg–Witten curve is replaced by the mirror curve, which encodes
the Coulomb branch geometry of the 5d gauge theory engineered by the toric
Calabi–Yau X. The mirror curve is also a moduli space for the Lagrangian
brane on which the M5 defect brane is wrapped: points on Σ can be inter-
preted as configurations for L and its gauge bundle. In this picture, solitons
of the nonabelianization map, which are defined as open paths connecting two
points on Σ, get naturally interpreted as BPS domain walls connecting two
configurations of L.

Let us consider this geometry in the context of Type IIA string theory,
with a D4 brane placed on L. The effective worldvolume dynamics on the D4 is
described by a 2d N = (2, 2) model, which appears as a surface defect theory
within the ambient 4d N = 2 theory engineered by X. The 2d theory has a
discrete set of massive vacua, each of whom corresponds to a configuration for
L and its gauge bundle. A BPS kink is engineered by a D2 brane wrapping a
holomorphic curve in X and ending on the D4. In spacetime, the D2 extends
along a time-like worldline in R

2 corresponding to a kink between vacua |i〉
and |j〉. To understand how the D4 is deformed by the presence of the kink,
it is best to view its worldvolume as fibered of the spacetime R

2. With the
soliton kink localized near x = 0, the D4 brane configuration evolves from a
configuration Li for x → −∞ to Lj for x → +∞.32 Lifting these configurations
on a circle to five dimension introduces contributions from massive KK modes
which deform ˜Weff and the corresponding vacuum geometry. D2 branes lift to
M2 branes located at a point on the space-like cylinder S1

R ×Rx, these are the
“kinky vortices” described above.

It is important to distinguish these BPS states from the usual counting of
worldsheet instantons computed by the open topological string wavefunction.
The latter is defined at a fixed choice Lagrangian modulus, whereas D2 branes
counted by nonabelianization interpolate between different configurations of
the D4 brane. Nevertheless a connection between the two should exists: a
certain sector of D2 branes engineering domain walls on a D4 brane appears

32A related interpretation of open paths on the mirror curve was proposed in [84], where
they are interpreted as large gauge transformations in the Chern–Simons gauge theory on
L.
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to be counted by the (square of the) open topological string partition function
[85]. In our language, these should correspond to solitons of type (ii, n)

5.4. Calabi–Yau BPS Graphs: Quivers and Wall-Crossing Invariants

In [86] a relation between spectral networks and BPS quivers was proposed,
in the context of class S theories. The quiver is dual to a distinguished spec-
tral network, defined at points in the Coulomb moduli space where all central
charges are maximally aligned. Tuning the phase ϑ to the common phase of all
central charges gives a degenerate spectral network known as “BPS graph”.
In [57] it was further shown that the topology of the BPS graph encodes the
Kontsevich–Soibelman wall-crossing invariant. The existence of a BPS graph
depends on whether the moduli space contains (at least) one point where all
central charges have the same phase. In the case of class S theories, the exis-
tence of such points is partially established, thanks to mathematical theorems
for A1 theories, and by direct inspection for certain higher-rank theories.

The notion of BPS graph carries over naturally to exponential networks,
where the Coulomb branch should be replaced, roughly, by the complexified
Kahler moduli space of X. It would be very interesting to find explicit exam-
ples of such BPS graphs for some toric Calabi–Yau threefolds. One immediate
application of CY BPS graphs would be to derive the dual BPS quivers. An
indication that this should be possible comes from the work of [34], where
certain BPS states arising from exponential networks were identified with spe-
cific quiver representations. Another application of CY BPS graphs would be
to study the wall-crossing invariants of 5d BPS spectra by extending work of
[57] to five dimensions and Calabi–Yau geometries.

5.5. Applications to Knot Theory

An interesting generalization of our work arises from relaxing the restriction to
the toric Lagrangian branes of [23]. Indeed, the same field-theoretic arguments
that led us to formulate the counting of 3d–5d BPS states with exponential
networks would apply to other choices of Lagrangian branes. An especially
interesting class is provided by knot conormals in the resolved conifold [45].
The 3d N = 2 field theory arising from wrapping an M5 brane on a knot
conormal LK is generally more complicated than a simple U(1) GLSM. On the
other hand, several key aspects of these theories have been recently elucidated
and UV descriptions of their 3d–5d systems are available for large classes
of knots [20,87,88]. The critical set of the twisted superpotential of the 3d
theory T [LK ] coincides with the augmentation variety of the knot K [89], and
its geometry encodes information on holomorphic disks ending on LK in a
configuration parameterized by a point on the curve.

The nonabelianization map associates new topological data to the ge-
ometry of the mirror curve, namely its soliton data. This differs markedly
from standard open Gromov–Witten invariants, which are counted by the open
topological string wavefunction.33 It would be interesting to explore what kind

33An obvious reason is that a soliton of the exponential network is associated to two points
on the mirror curve, and thus appears much like a domain wall for the Lagrangian LK . This
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of information the soliton data encodes about the knot K. A natural inter-
pretation is that it should count holomorphic maps between two copies of the
knot, corresponding to the Lagrangians LK and LK′ parametrized by the two
points on Σ connected by the soliton.
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Appendix A. Collinear Vacua and Fractional Indices

The aim of this section is to check some of the predictions about the appearance
of fractional CFIV indices in systems with collinear vacua, which we derived in
Sect. 3.3.3. For this purpose, it is actually unnecessary to study tt∗ geometry
of a 3d system, because features such as collinear vacua are also encountered
in a larger class of models, which go by the name of periodic tt∗ geometries
[33].

One of the well-studied models for periodic tt∗ geometry is that of the
free chiral 2d multiplet with the twisted mass mtwisted = 4πiμ. The twisted
effective superpotential is given by

Footnote 33 continued
is in contrast to the worldsheet instantons, which are counted for LK in a single configuration
(a single point on Σ).
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˜Weff = μ(log μ − 1). (300)

This theory admits a Landau–Ginzburg description involving a periodic field
Y with the superpotential

W (Y ) = μY − eY , (301)

with the periodic identification

Y ∼ Y + 2πi. (302)

This LG theory has a single vacuum given by

Y = log μ. (303)

Plugging this back to W returns indeed ˜Weff . The target space M of this
LG model is non-simply connected with the topology of R × S1. Periodicity
of Y means that the vacuum is unique, in particular the different branches
corresponding to log μ + 2πiN with N ∈ Z are physically identified.

The distinction between standard tt∗ and periodic tt∗ geometry stems
from the fact that the latter consists of studying deformations of the theory
associated with flavor symmetries, instead of chiral operators. In particular,
one should view the term μY in the superpotential as playing a role similar
to the standard FI term tσ of the U(1) GLSM. Then as we would study tt∗
geometry over the space of t parameters, we will vary μ in this case.

The quantity
dW = ∂μW dμ = Y dμ (304)

is a one form on M whose periods compute the twisted masses of the theory,
similar to the periods of the Seiberg–Witten differential in the context of 2d–
4d systems, where they appear as the twisted masses of the theory. Since ∂μW
is multivalued, dW is closed but not exact. Its periods correspond to the shifts
of ˜Weff by the twisted mass:

ΔW =
∫

dW =
∫

Y dμ =
∫

log μdμ = μ(log μ− 1)+2πiμn, n ∈ Z, (305)

where n is the number of times we integrate around μ = 0 in the μ-plane.
One can view the ambiguity in W in two ways actually. On the one hand,

it simply originates from the multivaluedness of the twisted superpotential
˜Weff = W (Y = log μ), as a function of μ. On the other hand, from the LG
viewpoint, it is modeled by the periodicity of the variable Y , inducing the
multivalued behavior of W . This brings forth the fact that the mirror theory
must be modeled by a periodic variable, reflecting the fact that the original
theory (free massive chiral) had a multivalued twisted superpotential ˜Weff .

Moving to the LG description, the target space is M and W (Y ) is multi-
valued on it. This means that the unique vacuum is replicated infinitely many
times on the W -plane, along a tower with spacing 2πiμ. An alternative way
to view this is pass to the universal cover ˜M �→ M, where W is single valued.
In this way, the single vacuum |i〉 gets lifted to a whole tower on the (cover of
the) Y -plane

|i,N〉 ↔ Y = log μ + 2πiN. (306)
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In this basis of vacua, we can compute the Cμ operator corresponding to
the deformation by the operator Y : it is a diagonal matrix with size the number
of vacua (infinite in this basis), whose diagonal elements are the critical values
of the superpotential

〈i,N |Cμ |i,N〉 = (∂μW )Y =log μ+2πiN = log μ + 2πiN. (307)

It is natural to pass to a Fourier-transformed description (Bloch-waves)

|i, x〉 =
∑

N∈Z

e2πi N x |i,N〉. (308)

with x ∼ x + 1 valued in S1 ∼ R/Z. In this basis, the C matrix becomes a
differential operator acting on |i, x〉 vacua

Cμ = ∂x + log μ (309)

In this way, the tt∗ geometry is formulated in terms of a three-dimensional
parameter space C × S1 with coordinates μ, μ̄, x. This situation is slightly
different from standard tt∗ in that the parameter space has odd real dimension
(instead of even), thanks to the extra coordinate x arising in the Bloch basis.
To write down the tt∗ equations let us momentarily revert to the |i,N〉 basis.
Then ‘i’ takes only one value (corresponding to the variation along μ) and

Cμ = 2πi · 1 ⊗ Nμ + Bμ ⊗ 1 (310)

where Nμ|μ,N〉 = N |μ,N〉 is an infinite-dimensional diagonal matrix with
eigenvalues N , and Bμ|μ,N〉 = log μ |μ,N〉 a 1 × 1-dimensional matrix (since
there is a single tower of vacua).

Within the tower of vacua, there is no distinguished one, since they are
all equally spaced and because we are always free to add a constant shift to
the superpotential. Therefore, the system has a shift symmetry group Z. This
implies that physical quantities can only depend on the difference N −N ′ and
not on N itself. In particular one expects

〈j̄, N̄ |i,N〉 = gij̄,N,N̄ (t, t̄) = gij̄,N̄−N (t, t̄) (311)

Now switching to the Bloch basis, we can compute34

〈j̄, y|i, x〉 = δ(x − y)
∑

n

e−2πinygij̄,n(μ, μ̄)

= gij̄(μ, μ̄, x)δ(x − y)
(312)

where we defined n as N̄ = N + n and gij̄(t, t̄, x) as the Fourier transform of
gij̄,n(t, t̄).

In standard 2d tt∗ geometry the differential equations for the metric in
holomorphic gauge take the form ∂ī(g∂jg

−1) =
[

Cj , g(Ci)†g−1
]

. Taking the
trace yields then ∂ī∂j log det g = 0. It is shown in [33] that a similar argument
in the case of periodic tt∗ leads to

det g(μ, μ̄, x) = gμμ̄(μ, μ̄, x) = exp (L(μ, μ̄, x) − a(μ) − ā(μ̄)) (313)

34The computation produces an infinite sum of delta-functions
∑

k δ(x − y − k) but recall

that x, y are valued in R/S1.
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with L a harmonic function which is periodic in x and a, ā are holomorphic
and anti-holomorphic functions of μ. To write down the tt∗ equations note
that

Cμ = ∂x + log μ (314)

C̄μ̄ = g (Cμ)†
g−1 = eL−a−ā (−∂x + log μ̄) e−L+a+ā

= −∂x − ∂xL + log μ̄ (315)
Dμ̄ = ∂μ̄ (316)

Dμ = −eL−a−ā∂μe−L+a+ā = ∂μ + ∂μL − ∂μa (317)

Since g(μ, μ̄, x) = g(|μ|, x) is a real and positive function, L = L(|μ|, x) must
also be real, and that ā(μ̄) = (a(μ))∗.

The reality condition reads

1 = MM∗ = (η−1g)(η−1g)∗ = eL(|μ|,x)+L(|μ|,−x)e−a(μ)−ā(μ̄)−c.c. (318)

where we used the fact that we are always working in a basis in which the
topological metric η = 1. Taking into account the restriction to |μ|-dependence
mentioned above, we learn that

a(μ) = 0 = ā(μ̄), L(|μ|, x) + L(|μ|,−x) = 0. (319)

We can then expand L as follows

L(|μ|, x) =
∑

m≥1

am sin(2πmx)�m(|μ|) (320)

with am, �m ∈ R. From the tt∗ equations it follows that L must be harmonic

1
|μ|

∂

∂|μ|
(

|μ| ∂

∂|μ|L
)

+ 4
∂2

∂x2
L = 0 (321)

which implies
∂2

∂|μ|2 �m +
1
|μ|

∂

∂|μ|�m − (4πm)2�m = 0 (322)

which is the Bessel differential equation, with imaginary variable. Its solutions
are the modified Bessel functions

�m(|μ|) = K0(4πm|μ|) (323)

To fix the am one needs to consider UV and IR boundary conditions.
To fix the boundary conditions, we use the CFIV index, which is related

to the metric in a simple way in the one variable case. According to [30] the
CFIV index in canonical coordinates is

Q = −1
2
g |μ|∂|μ|g−1

= −1
2

∑

m≥1

am (−4πm) sin(2πmx) |μ|K1(4πm|μ|).
(324)

Now let’s use the UV limit first. To do that we need some basic obser-
vations, which are most convenient in the point basis. Since there is a single
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tower of vacua let us lighten notation |i,N〉 → |N〉 from now on. Define the
chiral operators in point basis operators as usual by

lN |M〉 = δN,M |M〉. (325)

Clearly they have the following algebra

lN lM = δN,M lN . (326)

The Bloch operators are “dual” to the Bloch states defined above, and they
are

Ox =
∑

N

e2πiNxlN (327)

It is straightforward to see that they satisfy

Ox|N〉 = e2πix|N〉
OxOx′ = Ox+x′ .

(328)

Moreover, let T be the shift-symmetry operator:

T |N〉 = |N + 1〉 (329)

Then we have
Ox T |N〉 = e2πix T Ox |N〉 (330)

Therefore, if we define ωx, τ by Ox = eωx , T = eτ , they have the following
commutation relations (by Baker–Campbell–Hausdorff formula)

[ωx, τ ] = 2πix (331)

then we can compute the shift-symmetry charge of Ox as

[τ,Ox] = 2πixOx. (332)

The operator with minimal charge is O0+ whereas the one with maximal charge
is O1− . In fact, these are two distinguished operators:

O0 |N〉 =
∑

M

�M |N〉 = |N〉 ⇒ O0 = 1

O1 |N〉 =
∑

M

e2πiM �M |N〉 = e2πiN |N〉 ⇒ O1 = eX = ∂2W/∂X2 = H(X)

(333)
The second identification can be derived by noting that upon shifting our W
by a constant −μ(log μ − 1), it evaluates to W (X = XN ) = (μX − eX −
μ(log μ − 1))X=XN

= 2πiNμ at XN = log μ + 2πiN . The shift-symmetry
prevents different Ox from mixing with each other under RG flow.

Now in the UV limit, the CFIV index should approach the (shifted) R-
charge of chiral primaries. Concretely, if we define the UV limit of Q to be
q(x):35

q(x) = lim
|μ|→0

Q(|μ|, x) =
1
2

∑

m≥1

am sin(2πmx) (334)

35Note that limz→0 zK1(az) = a−1.
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then the R-charge should be

q̂(x) = q(x) − q(0) (335)

so that q̂(0) = 0 which is the charge of the identity operator Ox=0. Then, since
the chiral ring has the structure OxOx′ = Ox+x′ we expect q̂ to be linear,
hence q too. Moreover, we also know that Q is odd, since it only contains
sin(2πmx) (this came up because of the reality constraint). The only function
that is linear and odd on the circle is

q(x) = α(2πx − π) (336)

for some α. Note that this is indeed discontinuous at x = 1, as expected.
Comparing with (334), we can use this to fix am:

2πx − π = −2
∑

m≥1

sin 2πmx

m
⇒ am = −4α/m (337)

Now we should also compare with the IR limit of the CFIV index. This gives
the constraint

α = K/(2π) (338)
therefore the UV limit of the CFIV index is

q(x) = K
2πx − π

2π
(339)

and the discontinuity is q(x = 1) − q(x = 0) = K. Since the discontinuity
should equal the central charge ĉ at the UV fixed point, this is K = 1 for the
free 2d chiral.

From the IR interpretation, we also learn something else: taking the in-
verse Fourier transform we can compute the CFIV index for solitons inter-
polating between vacua |i,N〉 and |i,N + n〉. Notice that these are precisely
the ii-solitons that are encountered in the ij − ji one-way joint of exponential
networks! See Sect. 3.3.3. By shift-symmetry, the answer only depends on n
and not on N

Qn(|μ|) =
∫ 1

0

dx e2πinx Q(|μ|, x) = − sign(n)
4i

a|n||nμ|K1(|nμ|) (340)

since on general grounds this should be in the IR

Qn � −iμ(CFIV )
n eiπfn

1
2π

(Mn)K1(Mn) (341)

with Mn the mass of the soliton we are considering (hence Mn = n|μ|) and
μ

(CFIV )
n the usual CFIV index. This gives

an = sign(n)
2
π

μ(CFIV )
n (342)

Combining with what we found from the UV limit this entails

μ(CFIV )
n = sign(n)

π

2

(

−2K

πn

)

= −sign(n)
K

n
(343)

Note that we know that K = 1 for n = 1 hence μn=1 = ±1. But for higher n

we can get fractional μ
(CFIV )
n for ii-type solitons.
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A more geometric picture in [37] was given. It was stressed that in pres-
ence of collinear vacua, the soliton multiplicities μij as defined by the IR
asymptotics of the index Qij belong to the Lie algebra sl(n, Q). For several
collinear vacua, it was argued that appearance of 1/n in the CFIV index is in
fact quite natural and expected. This provides a nontrivial check for the re-
sults of computations through the exponential networks of the CFIV indices.
In particular, the appearance of 1/n for the CFIV indices of the ii-type solitons
that we derived in Sect. 3.3.3.

Appendix B. Plotting

To plot the networks shown in Sect. 4, we adopt the following change of coor-
dinates

w =
x

x + 1/4
x =

w/4
1 − w

, (344)

which takes the puncture at x = ∞ to w = 1 and the branch point at x = 1/4
to w = 1/2. The curve is then

H(y, w) = y2 + y +
w/4

1 − w
= 0. (345)

Note that d log x = (1 − w)−1d log w, therefore the equation of a (ji, n) E-wall
should now be plotted as the solution to the following differential equation

(log yi − log yj + 2πin)
1

1 − w

d log w

dt
= eiϑ. (346)

The lhs requires some care when plotting, because of multivaluedness. We
get around this difficulty by a trick of [34, App. A], considering instead an
equivalent set of differential equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẇ = eiϑ w(1 − w)
vi(w) − vj(w) + 2πin

v̇i = −∂wH(y, w)
∂vH(y, w)

ẇ

(347)

with v = log y. In order to draw trajectories on the w-plane, we need to fix
the boundary conditions for this differential equation. This may be achieved
by taking (w, y) on the curve: the ramification point is at

w∗ = 1/2 y∗ = −1/2, (348)

therefore we pick three starting points at wm = w∗ + δwm with

δwm =
(

3
4
√

κy∗w∗(1 − w∗)eiϑ (Δt)
)2/3

e
2πi
3 m m = 0, 1, 2 (349)

together with

log ym,± = log
(

y∗ ± 3
4

y∗w∗(1 − w∗)eiϑ(Δt)
wm − w∗

)

(350)
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and where

κ = −1
2

(

∂2H

∂y2

)

(w∗,y∗)

(

∂H

∂w

)−1

(w∗,y∗)

. (351)

Appendix C. Proof of Commutativity of ii/jj-Soliton
Generating Functions

Here we prove that soliton generating functions of type ii (and jj for i �=
j) always commute among themselves. For concreteness, let us consider the
generating functions featured in (166), our goal is to show that there are no
ordering ambiguities in those infinite products.

It is clear that [τqk
, τq̄�

] = [νqk
, νq̄�

] = [τqk
, νq̄�

] = [νqk
, τq̄�

] = 0 because
ii paths do not concatenate with jj paths. So we only need to show that
[νqk

, νq�
] = [τqk

, τq�
] = [τqk

, νq�
] = 0 and their counterparts with q → q̄. The

proof is essentially the same for each case, so let us focus on the first one.
Given the incoming data on qk, q� in the general form

νqk
=

∑

N

∑

a∈Γii,N,N+k(m+n)

μ(a, qk)Xa,

νq�
=

∑

N

∑

b∈Γii,N,N+�(m+n)

μ(b, q�)Xb,
(352)

their products are simply

νqk
νq�

=
∑

N

∑

a∈Γii,N,N+k(m+n)

b∈Γii,N+k(m+n),N+(k+�)(m+n)

μ(a)μ(b)Xab

=
∑

N

∑

c∈Γii,N,N+(k+�)(m+n)

m(c)Xc,

νq�
νqk

=
∑

N

∑

a∈Γii,N+�(m+n),N+(�+k)(m+n)

b∈Γii,N,N+�(m+n)

μ(a)μ(b)Xba

=
∑

N

∑

c′∈Γii,N,N+(k+�)(m+n)

m′(c′)Xc′ .

(353)

On both sides, there are generating series of solitons in the same lattices c, c′ ∈
Γii,N,N+(k+�)(m+n). There is a 1:1 correspondence between the two sets of
solitons and their degeneracies, in fact, at fixed N

m(c) =
∑

(

a ∈ Γii,N,N+k(m+n)
b ∈ Γii,N+k(m+n),N+(k+�)(m+n)

∣

∣

∣ab∼c

)

μ(a)μ(b),

m′(c′) =
∑

(

a ∈ Γii,N+�(m+n),N+(�+k)(m+n)
b ∈ Γii,N,N+�(m+n)

∣

∣

∣ba∼c′
)

μ(a)μ(b).
(354)
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Given paths a, b such that ab = c there is a corresponding pair of paths
a(+�(m+n)), b(−k(m+n)) such that

a(+�(m+n)) ∈ Γii,N+�(m+n),N+(�+k)(m+n), b(−k(m+n)) ∈ Γii,N,N+�(m+n),
(355)

and c′ = b(−k(m+n))a(+�(m+n)) has central charge

Zc′ = Zb(−k(m+n)) + Za(+�(m+n)) = Zb + Za = Zab = Zc, (356)

because the shift map preserves central charge, and because c is uniquely fixed
by its soliton type (ii,N,N + (k + l)(m + n)) and by its central charge. This
establishes a bijection between the sets

(

a ∈ Γii,N,N+k(m+n)

b ∈ Γii,N+k(m+n),N+(k+�)(m+n)

∣

∣

∣ab ∼ c

)

1:1←→
(

a ∈ Γii,N+�(m+n),N+(�+k)(m+n)

b ∈ Γii,N,N+�(m+n)

∣

∣

∣ba ∼ c′
)

.

(357)

Moreover by shift symmetry

μ(a(+�(m+n))) = μ(a), μ(b(−k(m+n))) = μ(b), (358)

therefore

m(ab) = m′(ba). (359)

This concludes the proof that all factors commute.

Appendix D. Flatness Equations for a Two-Way Street Joint

Here we give the detailed version of the flatness equations studied in Sect. 4.2.3.
Referring to Fig. 11, one can compute the following (we used the commutation
rules for Q and Q′ in (175)).

For the paths indicated in Fig. 11, the ij components of the parallel
transports are

F (℘)ij = Qii

⎛

⎝

∑

k≥1

⎛

⎝

k
∏

β=1

Q(rk)

⎞

⎠

τrk

Q(rk)

⎞

⎠

(

1
∏

α=∞
Q(pα)

)

+Qii

( ∞
∏

α=1

Q(rα)

)

⎛

⎝

∑

k≥1

νpk

Q(pk)

⎛

⎝

1
∏

β=k

Q(pβ)

⎞

⎠

⎞

⎠

+F1(℘)ij + F2(℘)ij + F3(℘)ij + F4(℘)ij (360)
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The last four terms “higher order” contributions and their form is as
follows

F1(℘)ij = Qii

⎡

⎢

⎢

⎣

∑

k≥1

l>k

⎛

⎝

k
∏

β=1

Q(rβ)

⎞

⎠

τrk

Q(rk)

(

νrlτrl+1

)

⎤

⎥

⎥

⎦

(

1
∏

α=∞
Q(pα)

)

+Qii

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k≥1

l>k

⎛

⎝

k
∏

β=1

Q(rβ)

⎞

⎠

τrk

Q(rk)
(νrlQ(rl+1)τrl+2 )

+
∑

k≥1

l1>k
l2>l1+1

⎛

⎝

k
∏

β=1

Q(rβ)

⎞

⎠

τrk

Q(rk)
(νrl1

τrl1+1νrl2
τrl2+1 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(

1
∏

α=∞
Q(pα)

)

+ · · · , (361)

F2(℘)ij = Qii

( ∞
∏

α=1

Q(rα)

)

⎡

⎢

⎢

⎣

∑

k≥1

l>k

(νpl+1τpl )
νpk

Q(pk)

⎛

⎝

1
∏

β=k

Q(pβ)

⎞

⎠

⎤

⎥

⎥

⎦

+Qii

( ∞
∏

α=1

Q(rα)

)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k≥1

l>k

(νpl+2Q(pl+1)τpl )
νpk

Q(pk)

⎛

⎝

1
∏

β=k

Q(pβ)

⎞

⎠

+
∑

k≥1

l1>k
l2>l1+1

(νpl2+1τpl2
)(νpl1+1τpl1

)
νpk

Q(pk)

⎛

⎝

1
∏

β=k

Q(pβ)

⎞

⎠ + · · ·

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (362)

F3(℘)ij = Qii

∑

k,k′≥1

l>k

⎛

⎝

k
∏

β=1

Q(rα)

⎞

⎠

τrk

Q(rk)
(νrlτrl+1 )

(

τpk′+1
νpk′

Q(pk′+1)Q(pk′ )

)

(

1
∏

α=∞
Q(pα)

)

+Qii

∑

k,k′≥1

l>k

⎛

⎝

k
∏

β=1

Q(rα)

⎞

⎠

τrk

Q(rk)

⎧

⎨

⎩

(νrlQ(rl+1)τrl+2 +
∑

l′>l+1

(νrlτrl+1νrl′ τrl′+1
)

⎫

⎬

⎭

×
(

τpk′+1
νpk′

Q(pk′+1)Q(pk′ )

)

(

1
∏

α=∞
Q(pα)

)

+Qii

∑

k,k′≥1

l>k

⎛

⎝

k
∏

β=1

Q(rα)

⎞

⎠

τrk

Q(rk)
(νrlτrl+1 )

⎧

⎨

⎩

τpk′+2
νpk′

Q(pk′+2)Q(pk′+1)Q(pk′ )

+
∑

l′>k′+1

τpl′+1
νpl′

Q(pl′+1)Q(pl′ )

τpk′+1
νpk′

Q(pk′+1)Q(pk′ )

⎫

⎬

⎭

(

1
∏

α=∞
Q(pα)

)

+ · · · , (363)
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F4(℘)ij = Qii

∑

k,k′≥1

l′>k′

⎛

⎝

∞
∏

β=1

Q(rα)

⎞

⎠

τrkνrk+1

Q(rk)Q(rk+1)
νpl′+1

τpl′
νpk′

Q(pk′ )

(

1
∏

α=k′
Q(pα)

)

+Qii

⎡

⎢

⎢

⎢

⎣

∑

k,k′≥1

l′>k′

⎛

⎝

∞
∏

β=1

Q(rα)

⎞

⎠

{

τrkνrk+2

Q(rk)Q(rk+1)Q(rk+2)

+
τrkνrk+1

Q(rk)Q(rk+1)

∑

l>k

τrlνrl+1

Q(rl)Q(rl+1)

}

⎤

⎥

⎥

⎥

⎦

νpl′+1
τpl′

νpk′
Q(pk′ )

(

1
∏

α=k′
Q(pα)

)

⎤

⎥

⎥

⎥

⎦

+Qii

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

k,k′≥1

l′>k′

⎛

⎝

∞
∏

β=1

Q(rα)

⎞

⎠

τrkνrk+1

Q(rk)Q(rk+1)

×
⎡

⎣(νpl′+2
Q(pl′+1)τpl′ ) + (νpl′+1

τpl′ )
∑

l′′>l′+1

(νpl′+1
τpl′ )

⎤

⎦

× νpk′
Q(pk′ )

(

1
∏

α=k′
Q(pα)

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+ · · · (364)

The ij component of the parallel transport for the complementary path ℘′ is

F (℘′)ij = Q′
ii

∑

k≥1

(

k+1
∏

α=∞
Q(r′

α)

)

νr′
k

+ Q′
ii

∑

k≥1

τp′
k

Q(p′
k)

( ∞
∏

α=k

Q(r′
α)

)

+ F ′
1(℘

′)ij + F ′
2(℘)ij + F ′

3(℘
′)ij + F ′

4(℘
′)ij

(365)

where again the nonlinear contributions are collected in the last four terms,
which read

F ′
1(℘

′)ij = Q′
ii

∑

k≥1

l>k

τp′
k

Q(p′
k)

νp′
l
τp′

l+1

Q(p′
l)Q(p′

l+1)

( ∞
∏

α=k

Q(p′
α)

)

+Q′
ii

∑

k≥1

l1>k
l2>l1

τp′
k

Q(p′
k)

νp′
l2

τp′
l2+1

νp′
l1

τp′
l1+1

Q(p′
l1

)Q(p′
l1+1)Q(p′

l2
)Q(p′

l2+1)

( ∞
∏

α=k

Q(p′
α)

)

+Q′
ii

∑

k≥1

l>k

τp′
k

Q(p′
k)

νp′
l
τp′

l+2

Q(p′
l)Q(p′

l+1)Q(p′
l+2)

( ∞
∏

α=k

Q(p′
α)

)

+ · · · , (366)

F ′
2(℘

′)ij = Q′
ii

∑

k≥1

l>k

(

k
∏

α=∞
Q(r′

k)

)

νr′
l+1

τr′
l

Q(r′
l+1)Q(r′

l)
νr′

k

Q(r′
k)
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+Q′
ii

∑

k≥1

l1>k
l2>l1+1

(

k
∏

α=∞
Q(r′

α)

)

νr′
l2+1

τr′
l2

νr′
l1+1

τr′
l1

Q(r′
l1

)Q(r′
l1+1)Q(r′

l2
)Q(r′

l2+1)
νr′

k

Q(r′
k)

+Q′
ii

∑

k≥1

l>k

(

k
∏

α=∞
Q(r′

α)

)

νr′
l+2

τr′
l

Q(r′
l+2)Q(r′

l+1)Q(r′
l)

νr′
k

Q(r′
k)

+ · · · (367)

F ′
3(℘

′)ij = Q′
ii

∑

k,k′≥1

l>k

τp′
k

Q(p′
k)

νp′
l
τp′

l+1

Q(p′
l)Q(p′

l+1)

( ∞
∏

α=k

Q(p′
α)

)

(τr′
k′+1

νr′
k′ )

+Q′
ii

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k,k′≥1

l>k

τp′
k

Q(p′
k)

νp′
l
τp′

l+2

Q(p′
l)Q(p′

l+1)Q(p′
l+2)

( ∞
∏

α=k

Q(p′
α)

)

(τr′
k′+1

νr′
k′ )

+
∑

k,k′≥1

l1>k
l2>l1+1

τp′
k

Q(p′
k)

νp′
l1

τp′
l1+1

Q(p′
l1

)Q(p′
l+1)

νp′
l2

τp′
l2+1

Q(p′
l2

)Q(p′
l2+1)

( ∞
∏

α=k

Q(p′
α)

)

(τr′
k′+1

νr′
k′ )

+
∑

k,k′≥1

l>k

τp′
k

Q(p′
k)

νp′
l
τp′

l+1

Q(p′
l)Q(p′

l+1)

( ∞
∏

α=k

Q(p′
α)

)

(τr′
k′+2

Q(r′
k′+1)νr′

k′ )

+
∑

k,k′≥1

1>k
l′>k′

τp′
k

Q(p′
k)

νp′
l
τp′

l+1

Q(p′
l)Q(p′

l+1)

( ∞
∏

α=k

Q(p′
α)

)

(τr′
l′+1

νr′
l′
)(τr′

k′+1
νr′

k′ )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ · · ·

(368)

F ′
4(℘

′)ij = Q′
ii

∑

k,k′≥1

l>k

(τp′
k′ νp′

k′+1
)

νr′
l+1

τr′
l

Q(r′
l+1)Q(r′

l)

(

k
∏

α=∞
Q(r′

α)

)

νr′
k

Q(r′
k)

+Q′
ii

⎡

⎢

⎢

⎣

∑

k,k′≥1

l>k

(τp′
k′ νp′

k′+1
)

νr′
l+2

τr′
l

Q(r′
l+2)Q(r′

l+1)Q(r′
l)

(

k
∏

α=∞
Q(r′

α)

)

νr′
k

Q(r′
k)

+
∑

k,k′≥1

l1>k
l2>l1+1

(τp′
k′ νp′

k′+1
)

νr′
l2+1

τr′
l2

Q(r′
l2+1)Q(r′

l2
)

νr′
l1+1

τr′
l1

Q(r′
l1+1)Q(r′

l1
)

(

k
∏

α=∞
Q(r′

α)

)

νr′
k

Q(r′
k)
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+
∑

k,k′≥1

1>k
l′>k′

(τp′
k′ νp′

k′+1
)(τp′

l′
νp′

l′+1
)

νr′
l+1

τr′
l

Q(r′
l+1)Q(r′

l)

(

k
∏

α=∞
Q(r′

α)

)

νr′
k

Q(r′
k)

+
∑

k,k′≥1

l>k

(τp′
k′ Q(p′

k′+1)νp′
k′+2

)
νr′

l+1
τr′

l

Q(r′
l+1)Q(r′

l)

(

k
∏

α=∞
Q(r′

α)

)

νr′
k

Q(r′
k)

⎤

⎥

⎥

⎦

+ · · ·

(369)

Due to the cumbersome nature of these equations, in the following, we will
only report the analysis for the ii-type components. The other two cases ji and
jj can be computed in the same fashion. Next we consider the ii components
of the parallel transports for paths ℘, ℘′. We have

F (℘)ii = F1(℘)ii + F2(℘)ii + F3(℘)ii + F4(℘)ii, (370)

where

F1(℘)ii = Qii

( ∞
∏

α=1

Q(rα)

)

+ Qiiτr1

(

2
∏

α=∞
Q(pα)

)

τp1

+Qiiτr1

∑

k≥2

(

k
∏

α=∞
Q(pα)

)

τpk

Q(pk)

+Qii

∑

k≥2

(

k
∏

α=1

Q(rα)

)

τrk

Q(rk)

⎛

⎝

2
∏

β=∞
Q(pβ)

⎞

⎠ τp1

+Qii

∑

k,l≥2

(

k
∏

α=1

Q(rα)

)

τrk

Q(rk)

⎛

⎝

l
∏

β=∞
Q(pβ)

⎞

⎠

τpl

Q(pl)
(371)

F2(℘)ii =

( ∞
∏

α=1

Q(rα)

)

Qii

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k≥1

τrk
νrk+1

Q(rk)Q(rk+1)

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

k≥1

τrk
νrk+2

Q(rk)Q(rk+1)Q(rk+2))

+
∑

k1≥1

k2>k1+1

τrk1
νrk1+1τrk2

νrk2+1

Q(rk1)Q(rk1+1)Q(rk2)Q(rk2+1)

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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+

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑

k≥1

τrk
νrk+3

Q(rk)Q(rk+1Q(rk+2)Q(rk+3))

+
∑

k1≥1

k2>k1+1

τrk1
νrk1+1τrk2

νrk2+2

Q(rk1)Q(rk1+1)Q(rk2)Q(rk2+1)Q(rk2+2))

+
∑

k1≥1

k2>k1+2

τrk1
νrk1+2τrk2

νrk2+1

Q(rk1)Q(rk1+1)Q(rk1+2)Q(rk2)Q(rk2+1))

+
∑

k1≥1

k2>k1+1
k3>k2+1

τrk1
νrk1+1τrk2

νrk2+1τrk3
νrk3+1

Q(rk1)Q(rk1+1)Q(rk2)Q(rk2+1))Q(rk3)Q(rk3+1)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

+ · · ·

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(372)

F3(℘)ii = Qii

( ∞
∏

α=1

Q(rα)

)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑

k≥1

νpk+1τpk

+

⎡

⎢

⎢

⎣

∑

k≥1

νpk+2Q(pk+1)τpk
+

∑

k1≥1

k2>k1+1

νpk2+1τpk2
νpk1+1τpk1

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k≥1

νpk+3Q(pk+2)Q(pk+1)τpk

+
∑

k1≥1

k2>k1+2

νpk2+1τpk2
νpk1+2Q(pk1+1)τpk1
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+
∑

k1≥1

k2>k1+1

νpk2+2Q(pk2+1)τpk2
νpk1+1τpk1

+
∑

k1≥1

k2>k1+1
k3>k2+1

νpk3+1τpk3
νpk2+1τpk2

νpk1+1τpk1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

+ · · · , (373)

F4(℘)ii =

( ∞
∏

α=1

Q(rα)

)

Qii

⎡

⎣

∑

k,l≥1

τrk
νrk+1

Q(rk)Q(rk+1)
νpl+1τpl

+

⎧

⎨

⎩

∑

k,l≥1

τrk
νrk+2

Q(rk)Q(rk+1)Q(rk+2)
νpl+1τpl

+
∑

k1,l≥1

k2>k1+1

τrk1
νrk1+1τrk2

νrk2+1

Q(rk1)Q(rk1+1)Q(rk2)Q(rk2+1))
νpl+1τpl

+
∑

k1,l≥1

l2>l1+1

τrk
νrk+1

Q(rk)Q(rk+1)
νpl2+1τpl2

νpl1+1τpl1

+
∑

k,l≥1

τrk
νrk+1

Q(rk)Q(rk+1)
νpl+2Q(pl+1)τpl

⎫

⎬

⎭

+ · · ·
⎤

⎦ . (374)

For the complementary path, we split the terms again.

F (℘′)ii = F ′
1(℘

′)ii + F ′
2(℘

′)ii + F ′
3(℘

′)ii + F ′
4(℘

′)ii, (375)

where

F ′
1(℘

′)ii = Q′
ii

[(

1
∏

α=∞
Q(r′

α)

)

+ τp′
1

( ∞
∏

α=2

Q(p′
α)

)

τr′
1

+
∑

k≥2

τp′
k

Q(p′
k)

( ∞
∏

α=k

Q(p′
α)

)

τr′
1

+τp′
1

( ∞
∏

α=2

Q(p′
α)

)

∑

k≥2

τr′
k

Q(r′
k)

⎛

⎝

1
∏

β=k

Q(r′
β)

⎞

⎠

+
∑

k,l≥2

τp′
l

Q(p′
l)

( ∞
∏

α=l

Q(p′
α)

)

τr′
k

Q(r′
k)

⎛

⎝

1
∏

β=k

Q(r′
β)

⎞

⎠

⎤

⎦ , (376)
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F ′
2(℘

′)ii = Q′
ii

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑

k≥1

τp′
k
νp′

k+1

+

⎡

⎢

⎢

⎣

∑

k≥1

τp′
k
Q(p′

k+1)νp′
k+2

+
∑

k1≥1

k2>k1+1

τp′
k1

νp′
k1+1

τp′
k2

νp′
k2+1

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k≥1

τp′
k
Q(p′

k+1)Q(p′
k+2)νp′

k+3

+
∑

k1≥1

k2>k1+1

(τp′
k1

νp′
k1+1

)(τp′
k2

Q(p′
k2+1)νp′

k2+2
)

+
∑

k1≥1

k2>k1+2

(τp′
k1

Q(p′
k1+1)νp′

k1+2
)(τp′

k2
νp′

k2+1
)

+
∑

k1≥1

k2>k1+1
k3>k2+1

(τp′
k1

νp′
k1+1

)(τp′
k2

νp′
k2+1

)(τp′
k3

νp′
k3+1

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ · · ·

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(

1
∏

α=∞
Q(r′

α)

)

,

(377)

F3(℘′)ii =

(

1
∏

α=∞
Q(r′

α)

)

Q′
ii

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

k≥1

νr′
k+1

τr′
k

Q(r′
k)Q(r′

k+1)

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

k≥1

νr′
k+2

τr′
k

Q(r′
k)Q(r′

k+1)Q(r′
k+2)

+
∑

k1≥1

k2>k1+1

νr′
k2+1

τr′
k2

νr′
k1+1

τr′
k1

Q(r′
k1

)Q(r′
k1+1)Q(r′

k2
)Q(r′

k2+1))

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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+

⎧

⎨

⎩

∑

k≥1

νr′
k+3

τr′
k

Q(r′
k+3)Q(r′

k+2)Q(r′
k+1)Q(r′

k)

+
∑

k≥1

k2>k1+1

νr′
k2+2

τr′
k2

νr′
k1+1

τr′
k1

Q(r′
k2+2)Q(r′

k2+1)Q(r′
k2

)Q(r′
k1+1)Q(r′

k1
)

+
∑

k≥1

k2>k1+2

νr′
k2+1

τr′
k2

νr′
k1+2

τr′
k1

Q(r′
k2+1)Q(r′

k2
)Q(r′

k1+2)Q(r′
k1+1)Q(r′

k1
)

+
∑

k≥1

k2>k1+2
k3>k2+1

νr′
k3+1

τr′
k3

νr′
k2+1

τr′
k2

νr′
k1+1

τr′
k1

Q(r′
k3+1)Q(r′

k3
)Q(r′

k2+1)Q(r′
k2

)Q(r′
k1+1)Q(r′

k1
)

+ · · ·

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (378)

F ′
4(℘

′)ii =

(

1
∏

α=∞
Q(r′

α)

)

Q′
ii

⎡

⎢

⎢

⎣

∑

k,l≥1

τp′
k
νp′

k+1

νr′
l+1

τr′
l

Q(r′
l)Q(r′

l+1)

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

k,l≥1

(τp′
k
Q(p′

k+1)νp′
k+2

)
νr′

l+1
τr′

l

Q(r′
l+1)Q(r′

l)

+(τp′
k
νp′

k+1
)

νr′
l+2

τr′
l

Q(r′
l+2)Q(r′

l+1)Q(r′
l)

+
∑

k1,l≥1

k2>k1+1

(τp′
k1

νp′
k1+1

)(τp′
k2

νp′
k2+1

)
νr′

l+1
τr′

l

Q(r′
l)Q(r′

l+1)

+
∑

k,l1≥1

l2>l1+1

(τp′
k1

νp′
k1+1

)
νr′

l2+1
τr′

l2
νr′

l1+1
τr′

l1

Q(r′
l2

)Q(r′
l2+1)Q(r′

l1
)Q(r′

l1+1)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+ · · ·

⎤

⎥

⎥

⎦

(379)

From these (and also similar ji, jj components), one can check the claims
in Sect. 4.2.3, after factoring out Q and Q′ and implementing various properties
of C

3 directly.

Appendix E. Factorization of ii/jj Contributions in the
K-Wall Jump of C

3

Here we provide proofs to some technical identities used in Sects. 4.2.2 and 4.2.5
in the study of the K-wall jump of the exponential network of C

3.
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Appendix E.1. Multiplication Rules for Q,Q′

This subsection provides a derivation of (174) and (175).
Both types of shift symmetry (121) and (122) apply to the soliton data

in E-walls qk, q′
k, q̄k, q̄′

k, because they are E-walls of type ii. Let q be their
coefficients, namely

Qii =
∑

�

Qii,� =
∑

�,N

∑

a∈Γii,N,N+�(m+n)

qii,�(a)Xa

Qjj =
∑

k

Qjj,k =
∑

k,M

∑

b∈Γii,M,M+k(m+n)

qjj,k(b)Xb

(380)

the shift symmetry implies the following identities

qii,�

(

a(+r)
)

= qii,�(a), qjj,�

(

b(+r)
)

= qjj,�(b),

qii,�(a) = qjj,�(a(i→j,+r)).
(381)

Note that these symmetries never mix Qii,� with Qii,k if � �= k.
Now let c ∈ Γij,N,N+k be a generic path. We can consider left-

multiplication by Qii

Qii,�Xc =
∑

M

∑

a∈Γii,M,M+�(m+n)

qii,�(a)XaXc

=
∑

a∈Γii,N−�(m+n),N

qii,�(a)Xac,
(382)

as well as right-multiplication by Qjj

XcQjj,� =
∑

M

∑

b∈Γjj,M,M+�(m+n)

qjj,�(b)XcXb

=
∑

b∈Γjj,N+k,N+k+�(m+n)

qjj,�(b)Xcb.
(383)

The soliton paths appearing in the resulting generating functions are of re-
spective types

ac ∈ Γij,N−�(m+n),N+k cb ∈ Γij,N,N+k+�(m+n), (384)

therefore shift symmetry (381) implies

qii,�(a) = qjj,�(b) for b = a(i→j,+(k+�(m+n))). (385)

This merely says that the terms of series (382) and (383) are in 1:1 correspon-
dence. But these sums are not equal, because these are related to each other
and correspond to paths from different charge lattices.

Let us replace Xc with a generating function Ξij,k which enjoys shift
symmetry of type (121)

Ξij,k =
∑

N

∑

c∈Γij,N,N+k

μ(c)Xc (386)
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then
Qii,�Ξij,k =

∑

N

∑

a∈Γii,N,N+�(m+n)

c∈Γij,N+�(m+n),N+�(m+n)+k

qii,�(a)μ(c)Xac

Ξij,kQjj,� =
∑

N

∑

b∈Γjj,N+k,N+k+�(m+n)

c′∈Γij,N,N+k

qjj,�(b)μ(c′)Xc′b.
(387)

Using the 1:1 map c′ = c(−�(m+n)) together with the map (385) we obtain
Xac = Xc′b and qii,�(a)μ(c) = qjj,�(b)μ(c′). Therefore, the two expressions in
(387) are immediately seen to be identical, proving (175).

A similar argument prove (174): consider a generic Ξii,m

Ξii,m =
∑

M

∑

b∈Γii,M,M+m

μ(b)Xb, (388)

enjoying the shift symmetry μ(b) = μ(b(+k)). Then a simple computation yields

Qii,�Ξii,m =
∑

N

∑

a∈Γii,N,N+�

∑

b∈Γii,N+�,N+�+m

qii,�(a)μ(b)Xab

Ξii,mQii,� =
∑

N

∑

b′∈Γii,N−m,N

∑

a′∈Γii,N,N+�

qii,�(a′)μ(b′)Xb′a′ .

(389)

Now shift symmetry says that there is a 1:1 map between soliton paths b′ ∈
Γii,N−m,N and b ∈ Γii,N+�,N+�+m denoted by b′(+(�+m)) = b, and that this
map is a symmetry of the soliton data μ(b′(+(�+m))) = μ(b). This proves (174).

Appendix E.2. Proof of Qii = Q′
ii

Here we provide a proof of (176), the argument relies on two key facts: the
periodic identification of q, q̄ with q̄′, q′ and the shift symmetry property of
their soliton generating functions.

Let us sketch the rough idea for the argument, a more detailed proof will
follow. Shift symmetry of type (122) relates τqk

↔ τq̄k
as well as τq′

k
↔ τq̄′

k
.

The global topology of the critical network, shown in Fig. 10, implies that
qk, q′

k walls are periodically identified. Therefore, the relations between τ -type
soliton generating functions get translated into relations between νqk

↔ νq̄k

and νq′
k

↔ νq̄′
k
. Combining all of these together implies that the coefficients of

the following generating functions are mapped into each other

Qii ↔ Qjj , Q′
ii ↔ Q′

jj . (390)

Periodic identification of streets finally establishes the desired relation between
Qii ↔ Q′

ii and Qjj ↔ Q′
jj .

In table (159), we summarized the monodromy of sheets around the punc-
ture at infinity for the covering ˜Σ. Written in terms of (164) it reads

CW : (i,N) → (j,N − m), (j,N) → (i,N − n) (391)
CCW : (i,N) → (j,N + n), (j,N) → (i,N + m). (392)



Vol. 20 (2019) Exploring 5d BPS Spectra with Exponential Networks 4153

Going back to Fig. 11, let us consider the generating function of solitons τqk
:

these are solitons on wall qk supported at some x ∈ C close to the junction, and
coming out of it. The pairs of walls qk, q̄k winds around the puncture at infinity
and feeds back into walls q′

k, q̄′
k, which attach to the joint from below. This

implies that the solitons carried by τqk
, τq̄k

(coming out from above the joint)
must determine those carried by νq′

k
, νq̄′

k
(going into the joint from below).

Let’s consider a soliton of τqk

a ∈ Γii,N,N−k(m+n) (393)

whose endpoints lie just above the junction, on sheets (i,N) and (i,N −k(m+
n)). Transporting this soliton path’s endpoints ccw along qk around the punc-
ture involves crossing both the logarithmic cut and the square-root cut. The
monodromy computed above implies that a becomes a soliton of type

Γjj,N+n,N−m−(k−1)(m+n) (394)

therefore a actually becomes a contribution for νq̄′
k

(as opposed to νq′
k
). In

fact, when a is transported around the puncture, it gets concatenated with
two “extension” paths attached to its endpoints

a → (γij,N→N+n
∞ )−1 · a · γij,N−k(m+n)→N−m−(k−1)(m+n)

∞ . (395)

Here γij,NL,NR∞ is a path winding ccw around infinity starting from above the
junction on sheet (i,NL) and ending back above the junction on sheet (j,NR).
This concatenation is exactly the definition of the shift map (84). Therefore,
the above equation can be written more simply as

a → a(i→j,+n). (396)

These are thus the contributions to νq̄′
k
:

νq̄′
k

=
∑

N

∑

a∈Γii,N,N−k(m+n)

μ(a)X
(γij,N→N+n∞ )−1·a·γij,N−k(m+n)→N−m−(k−1)(m+n)

∞

=
∑

N

∑

a(i→j,+n)∈Γjj,N+n,N−m−(k−1)(m+n)

μ(a(i→j,+n))Xa(i→j,+n)

(122)
= τq̄k

.

(397)
where in the last step we used the relation between soliton data of outgoing ii
and jj walls derived in the context of the one-way ij − ji joint in Sect. 3.3.3.
In a similar fashion, we derive

νq′
k

= τqk
νqk

= τq′
k

νq̄k
= τq̄k

. (398)

Taken together with the definitions (168) these imply (176).

Appendix E.3. Transport of Soliton Generating Functions Around the Punc-
ture at
Infinity

Let’s analyze the transport involved in (205) in detail. νr′
k+1

carries solitons
of type (ij,−m − k(m + n)), the prototype being a path starting on sheet
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(i,N) and ending on (j,N − m − k(m + n)). In the first equality, we simply
move the endpoints across the junction, by an infinitesimal amount. In the
second equality instead we transport the endpoints along rk+1 ∼ p′

k+1 in the
ccw direction. This involves attaching two paths running around infinity: the
first one α1 starts on sheet (j,N + n) (starting point for a soliton in νp′

k+1
),

runs cw around the puncture, and ends on sheet (i,N) (starting point of a
soliton in τrk+1); the second one α2 starts on sheet (j,N − m − k(m + n))
(endpoint of a soliton in τrk+1), runs ccw around the puncture, and ends on
sheet (i,N − k(m + n)) (endpoint of a soliton in νp′

k+1
).

Let’s also analyze the transport involved in (206) in detail. τr′
k

carries
solitons of type (ji,m + (k − 1)(m + n)), the prototype being a path starting
on sheet (j,N) and ending on (i,N +m+(k−1)(m+n)). In the first equality,
we simply move the endpoints across the junction, by an infinitesimal amount.
In the second equality instead we transport the endpoints along rk+1 ∼ p′

k+1 in
the ccw direction. This involves attaching two paths running around infinity:
the first one β1 starts on sheet (i,N + m) (starting point for a soliton in τp′

k
),

runs cw around the puncture, and ends on sheet (j,N) (starting point of a
soliton in νrk

); the second one β2 starts on sheet (i,N + m + (k − 1)(m + n))
(endpoint of a soliton in νrk

), runs ccw around the puncture, and ends on
sheet (j,N + k(m + n)) (endpoint of a soliton in τp′

k
).

Now to compute the effect of these transports of soliton endpoints on
(207) we wish to compute their contribution to the central charge. It helps to
consider a shifted version of the prototype paths αi, βi, to properly take into
account canceling of different contributions. Shifting a path changes its central
charge as

Z
α

(+k)
1

= Zα1 +
1

2πR

∫

α1

(2πi k)dx/x = Zα1 − kZγ ,

Z
α

(+k)
2

= Zα1 +
1

2πR

∫

α2

(2πi k)dx/x = Zα2 + kZγ ,

(399)

where the integral is really taken along the projection π ◦ π̃(αi), and relative
sign difference is due to opposite orientations. The same holds for β1, β2. Then
notice

Z
α

(−n)
1

+ Z
β

(−n−(k−1)(m+n))
2

=
∮

cw

λ(j,N)→(i,N+m−n) +
∮

ccw

λ(i,N+m−n)→(j,N)

=
(∮

cw

−
∮

cw

)

λ(j,N)→(i,N+m−n)

= 0

(400)

Z
α

(+k(m+n))
2

+ Zβ1 =
∮

ccw

λ(j,N)→(i,N) +
∮

cw

λ(i,N)→(j,N)

=
(∮

ccw

−
∮

ccw

)

λ(j,N)→(i,N)

= 0.

(401)
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Therefore,

Zα1 + Zα2 + Zβ1 + Zβ2

=
(

Z(−n)
α1

+ (−n) Zγ

)

+
(

Z(k(m+n))
α2

− (k(m + n)) Zγ

)

+Zβ1 +
(

Z
(−n−(k−1)(m+n))
β2

− (−n − (k − 1)(m + n)) Zγ

)

= −(m + n)Zγ

= Zγ . (402)

Recall that Zγ is the period of an infinite number of homology cycles on ˜Σ,
denoted by γN in (161). The generating functions in (207) in fact contain an
infinite tower of solitons labeled by N ∈ Z, and each of these gets transported
separately by the addition of γN . We deduce that the correct form of (207) is
actually

νr′
k+1

τr′
k

QkQk+1
= −

(

∑

N

XγN

)

τp′
k
νp′

k+1
. (403)

The sign has been added to account for the twisting of the flat connection (cf.
discussion in Sect. 3.2).

Appendix F. More on Periodic Walls

One of the main novelties of exponential networks is the appearance of walls
of type ii [34]. The differential equation that describes their geometry, given
in (118), is peculiar in that it does not depend at all on the global geometry of
Σ. This implies that the shape of ii-walls must be determined entirely by ϑ.36

In fact, as is shown in Fig. 5, these walls are simply spirals flowing into the
puncture at x = ∞ if −π < ϑ < 0 and into the puncture at x = 0 if 0 < ϑ < π.
For ϑ = 0 or π, they become periodic.

But ii-walls are not the only types of periodic solutions to the E-wall
Eq. (58). Consider a curve Σ corresponding to a given choice of framing f .
By definition punctures on Σ ⊂ C

∗
x × C

∗
y are located at the intersections with

the loci x = 0,∞ and y = 0,∞ (upon compactification of the ambient space
to P

1
x × P

1
y). These are the places where the differential log y d log x becomes

singular. The number of punctures on Σ is invariant under changes of framing,
moreover it can be argued that, for f large enough, all punctures must lie at
x = 0 or at x = ∞.

Let us distinguish between logarithmic punctures defined as the points
where y → 0,∞ and regular punctures, defined as the points where x → 0,∞
but y remains finite. By definition, regular punctures lie above x = 0,∞. So
we only need to argue that logarithmic punctures will do the same for large-
enough framing. Let F (x, y) be an irreducible polynomial in (non-negative
powers of) x, y. Setting y = 0 would kill all monomials containing x if f is
large enough. If F is irreducible and f is large, after setting y → 0 then F

36The dependence on n in (118) can be absorbed in a rescaling of the proper time t.
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must reduce to a non-zero constant (otherwise it would reduce to zero, implying
that F = yk · (· · · ) can be reduced simply by dividing by yk). But that implies
that x must approach infinity for y → 0. This proves that punctures where
y → 0 must lie above x = ∞. A similar argument can be applied to show that
logarithmic punctures at y = ∞ must lie at x = 0.

Given a curve Σ with sufficiently many punctures, it follows that there
will be at least two regular punctures above the same point (either x = 0 or
x = ∞, or both). At regular punctures, the differential is λi ∼ midx/x for
some constant mi, therefore the E-wall Eq. (58) becomes

(mj − mi + 2πin)
d log x

dt
∼ eiϑ. (404)

This equation has periodic trajectories for ϑ ∼ arg(mj − mi + 2πin) ± π/2,
for any n ∈ Z. In fact, there will be typically a one-parameter family of such
closed trajectories in the neigborhood of the puncture. Closed trajectories of
this type also appear in the context of spectral networks [21,32], where they
are interpreted as 2d BPS particles of the defect theory in a 2d–4d system. This
interpretation is substantiated by the fact that the lifts of these trajectories to
Σ give rise to closed paths interpolating between a vacuum i and itself (as well
as an additional path of type jj). In fact this suggests that they describe field
configurations corresponding to a particle sitting in a single vacuum (both a
particle in vacuum i and one in vacuum j), rather than a soliton interpolating
between vacua ij. In the context of exponential networks, it is natural to view
these closed trajectories in a similar way, namely as the KK modes of particle
states of the 3d theory. From the viewpoint of Σ̃, these particles sit in a single
vacuum (i,N), since the path begins and ends at the same point.37

One may also wonder if there exist BPS solitons parametrized by a peri-
odic path around a logarithmic puncture, whose lift to Σ̃ starts at (i,N) and
ends at (i,N + k), after wrapping k times around the puncture, since that
would induce a shift of the logarithmic branch N . While the shape of the tra-
jectory on C

∗
x resembles that of an ii-wall at ϑ = 0, π, this kind of soliton path

(on Σ̃) does not correspond to a soliton carried by ii-walls, therefore it would
be yet another type of BPS soliton.38 Nevertheless, one may wonder if the BPS
soliton equations of the 3d field theory admit such a solution. It turns out that
this cannot happen: near a logarithmic puncture on Σ the differential behaves
as log y d log x ∼ d(log x)2 and therefore the solution to log y d log x/dt = eiϑ

would be aperiodic for any ϑ, due to the integration constant.

37The logarithmic branch cannot change, since the logarithmic cut emanates from logarith-
mic punctures, while these particles are localized near regular punctures.
38A standard soliton carried by ii-walls of type (i, N) → (i, N + m + n), upon transport
of its endpoints around the logarithmic puncture, would end up being a soliton of type
(i, N + k)+ → (i, N + m + n + k).
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