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Abstract 

Elimination of metabolic flux imbalances in microbial cell factories is an important part in the 

establishment of viable biotechnological production processes. However, due to the high 

complexity of cellular metabolism, the limited a priori knowledge about the majority of 

production pathways and a lack of forward design standards, metabolic engineers strongly rely 

on empirical screening methodologies to achieve the required improvement of cell behavior. 

Combinatorial pathway engineering provides an interesting tool to identify global solutions for 

intricate pathways, but methods for the reduction of combinatorial library size are inevitably 

required to restrict the experimental effort to an affordable size. Here we review recent 

advances from this field by scrutinizing commonly applied diversification methods and 

highlighting crucial strategies for the minimization of experimental effort. 
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Introduction 

Metabolic engineering relies on the capability to precisely manipulate cellular metabolism in a 

targeted manner to achieve a desired system behavior, which is usually associated with the 

fabrication of economically relevant products such as fuels, commodity chemicals or 

pharmaceuticals [1,2]. The term “engineering” implies the inherent goal of this field, namely 

the design of biological systems according to predefined specifications at ever increasing 

precision [1-3]. Installation of efficient pathways strictly based on forward design rules, 

however, remains infeasible, mainly due to a significant lack of a priori knowledge about the 

target pathway and the intricate orchestration of cellular metabolism with its thousands of 

components and innumerable interactions [4,5]. As a consequence pathway flux, in particular 

within newly introduced heterologous or artificial metabolic routes, is inherently imbalanced, 

which can lead to a variety of obstacles including accumulation of (toxic) intermediates, side 

product formation, metabolic burden and ultimately growth inhibition and/or low product yield, 

to name but a few [4-6,7•]. 

Addressing the aforementioned imbalances to enable and improve target pathway flux and 

eventually create microbial cell factories for industrial application represents a major challenge 

for metabolic engineers [5]. Classically this has been done by identifying major bottlenecks in 

the initial pathway design and subsequently removing these individually by sequential 

optimization campaigns, thereby gradually optimizing pathway performance (“de-bugging”, 

“de-bottlenecking”) [7•,8]. However, these efforts require substantial a priori knowledge about 

pathway topology as well as suitable techniques to quantify relevant intermediates [7•,8,9••]. 

Moreover, due to the sequential optimization procedure holistic interactions within the 

immediate pathway as well as with overall host metabolism are neglected and globally optimal 

solutions are unlikely to be identified in this manner [9••]. 

More recently, novel approaches for pathway optimization have become feasible due to 

significantly reduced costs for commercial DNA synthesis [10], reliable in vitro and in vivo 

techniques for DNA assembly [11,12] as well as technologies for efficient and precise genome 

manipulation in a multiplexed manner [13-15]. These proceedings allow for the creation of 

variant libraries in which several pathway elements are diversified simultaneously (Figure 1) 

and thus facilitate combinatorial optimization of pathways (please note that different 

interpretations of “combinatorial” pathway optimization can be found in literature; for the 

definition used in this review please refer to Glossary Box 1). The latter can be performed with 

little prior knowledge about the pathway allowing for pragmatic and goal-oriented optimization 

schemes, and could in fact be capitalized upon for pathway characterization and establishment 

of pathway models [5]. 
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<Glossary Box 1> 

Definition of “combinatorial” pathway optimization 

For the purpose of this review we define the term “combinatorial” as a scenario in which more than one 

variable or component of a system is varied concomitantly (i.e. multivariate optimization). In the context 

of pathway engineering this boils down diversifying two or more genetically encoded entities that directly 

or indirectly influence the pathway of choice. Varied parts can comprise regulatory elements (e.g. 

promoters, ribosomal binding sites, terminators, RNase cleavage sites etc.), coding sequences (CDSs) 

and chassis (hosts), and variation can occur both for relative and absolute part abundance (e.g. different 

mRNA levels) as well as part identity (e.g. different genes homologues). 

This variation of several parts at the same time leads to the spanning of a multidimensional search 

space (reflected by the corresponding variant library, see Figure 1), which can be subsequently 

navigated by appropriate screening heuristics in order to identify mutants with improved traits. Therefore 

“combinatorial pathway optimization” should be clearly distinguished from optimization procedures in 

which several pathway components are optimized individually in a sequential manner (“de-

bottlenecking”, Figure 1). Moreover, we would like to emphasize that combinatorial pathway optimization 

can also be performed on non-genetic variables (e.g. reaction conditions etc.), which is undoubtedly an 

important part of process optimization but shall not be discussed in this review. 

<\Glossary Box 1> 

 

 

 

Figure 1: Sequential and combinatorial pathway optimization. In sequential pathway optimization 
(left) a pathway element is varied individually (blue curve) until a local optimum is identified, which is 
then fixed as a starting point for the optimization of a second element (red curve) and so forth. By 
contrast, in combinatorial optimization (right) multiple elements are varied simultaneously which allows 
to systematically screen the multidimensional space for an optimum (red point) that is not accessible by 
successive heuristics. Points indicate 25 experimental measurements for both strategies. 
 

In this review we summarize recent developments in the field of combinatorial pathway 

engineering. We discuss important diversification strategies as well as heuristics to cope with 

the problem of combinatorial explosion, which are indispensable to keep the experimental 
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effort manageable, on the basis of selected recent studies. We intend to provide useful 

guidelines for pathway optimization rather than claiming that available strategies are 

exhaustively covered. 

 

Strategies for diversification 

In order to create genetic diversity within the respective pathways of interest different basic 

strategies can be distinguished (Figure 2), which tackle i) the identity and properties of utilized 

coding sequences (or their encoded gene products), ii) the expression level of the involved 

genes by variation of gene dosage as well as transcriptional or translational engineering, and 

iii) combined strategies that tackle the pathway on different levels concomitantly. These 

strategies shall be elucidated here on the basis of recent metabolic engineering studies, which 

are also summarized in Table 1. 
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Figure 2: Diversification strategies for combinatorial pathway optimization. In order to generate 
diversity, libraries of critical pathway elements (e.g. plasmid backbones, promoters, RBSs, coding 
sequences, terminators etc.) are assembled to yield a suitable combinatorial library. Consequently, 
variability can be introduced on different levels of the pathway (e.g. gene copy number, transcriptional 
and translational regulation, coding sequence) and frequently several levels are tackled simultaneously 
in combined approaches.  
 

Variation of coding sequences 

Two basic strategies exist for the variation of coding sequences within a pathway: the first 

employs different structural or functional gene homologues, whose corresponding enzymes 

are known (or suspected) to catalyze the respective reaction steps [16,17•,18,19]. In the 

absence of suitable candidates for a desired reaction metagenomics libraries can be exploited 

to identify appropriate biocatalysts. This strategy was for instance used to graft xylose 

utilization into Saccharomyces cerevisiae by re-combining potential enzymes of the 

responsible three-step pathway from more than 20 different organisms [16]. Feher and co-

workers compellingly demonstrated that computer-aided design can be used to identify 

suitable gene homologues from enzyme and pathway databases at a comparably low 

experimental screening effort, which enabled combinatorial optimization of flavonoid 

production in Escherichia coli. This led to the retrieval of several strains capable of pinocembrin 

production, albeit at low initial titers, which could be improved 17-fold to up to 24.1 mg L-1 in a 

second round of computational optimization [17•]. 

The second strategy uses random or targeted mutagenesis to diversify coding sequences and 

ultimately enzyme activity and function, as exemplified by the simultaneous error-prone 

diversification of three genes to improve lycopene production [20] and the directed 

mutagenesis of multiple sites in three genes involved in heme biosynthesis [21] in E. coli. 

Unfortunately, both of these studies do not solely tackle the CDSs but also regulatory elements 

(promoters and ribosomal binding sites) of the involved genes, and consequently the reasons 

for the observed improvements remain elusive and may well be attributed to mere changes in 

relative and/or absolute expression levels rather than functional amino acid substitutions. 

After all, studies, in which multiple coding sequences are simultaneously varied, remain 

complicated and therefore scarce. On the one hand, preparation of combinatorial homologue 

libraries is difficult since physical acquisition of large numbers of genes from different 

organisms is either experimentally complicated (e.g. for cloning from the natural hosts) or 

costly (for commercial gene synthesis). On the other hand, diversification of multiple CDSs by 

mutagenesis, while comparably simple in preparation, very rapidly leads to combinatorial 

library sizes that exceed any available screening methods. 

 

Engineering of expression levels 

Setting up a balanced pathway with a high flux towards a desired product requires optimization 

of the relative and absolute expression levels of involved genes. This fine-tuning can be 
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achieved on different levels, which are listed below and which differ in important characteristics 

that should be considered upon selection of the optimization strategy to be applied. 

 

Gene dosage 

A commonly applied strategy in metabolic engineering to influence the number of enzyme 

copies per cell is the variation of the dosage of the corresponding genes. The latter ranges 

from one-copy systems, in which the genes of interest are integrated into the host genome or 

single-copy vectors (e.g. bacterial/yeast artificial chromosomes), to plasmids with multiple 

hundred copies per cell. A frequently applied procedure is the combination of plasmids with 

different copy numbers to balance the expression of different pathway modules (for 

modularization of pathways see paragraph below) in E. coli [22,23•] and S. cerevisiae [24]. 

Alternatively, gene copy number diversification has been achieved by multiple chromosomal 

integration of expression cassettes as a result of antibiotic selection pressure, which has been 

used to improve production of carotenoids and isobutanol in yeast [25,26]. 

However, the number of available orthogonal plasmid systems with different copy numbers is 

low and likewise chromosomal integration is limited to a small number of copies per genome 

due to recombination problems. Consequently, combinatorial optimization of expression levels 

based on gene copy number remains difficult and laborious. In order to overcome the 

somewhat “static” nature of the gene dosage, a plasmid system that allows for conditional 

adjustment of the gene copy number has been developed for E. coli [27]. 

 

Transcriptional engineering 

The most widely exploited strategy for expression level fine-tuning is based on alteration of 

gene transcript levels and has mainly been done by direct engineering of promoters (i.e. 

transcription efficiency) [28]. Alternatively, introduction of hairpins and RNase sites into the 

mRNA (i.e. transcript stability) [29,30] as well as engineering of the global transcription 

machinery by mutation of the σ70 factor [31] have been suggested. However, the two latter 

strategies have not been followed up extensively in recent years whereas promoter 

engineering remains a crucial tool for pathway engineering.  

To this end several promoter libraries have been created that allow spanning of several orders 

of magnitude in expression levels [7•,28,32-35,36••,37,38] and numerous studies have applied 

promoters or promoter libraries for the combinatorial optimization of pathways in E. coli [7•,20-

22,35,38,39••,40-42,43•] and yeast [24,34,36••,44,45]. Particularly noteworthy recent 

examples include the optimization of violacein production [7•,36••] and lycopene biosynthesis 

[24] in E. coli as well as xylose and cellobiose utilization in S. cerevisiae [34,44]. 

It should be mentioned that promoter engineering represents a highly versatile method since 

it allows expression both in conditional (i.e. inducible) as well as constitutive manner and can 
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be combined with other strategies for expression level and/or CDS variation as shown in 

several studies [20,21,24,35,39••,43•]. Drawbacks of promoter engineering include the 

necessity to express additional proteins (repressors, activators) for inducible systems, which 

can impose a substantial additional “work-load” on the host cell in particular when multiple 

different systems are required to allow differential expression of several pathway elements 

(e.g. for combinatorial optimization). Constitutive promoters are therefore frequently used to 

avoid this additional complexity, but the latter can lead to growth inhibition and do not allow to 

separate biomass formation from the actual production phase, which is an important feature in 

many industrial processes. 

 

Translational engineering 

A relatively young trend in metabolic engineering is the targeted manipulation of translation in 

order to alter expression levels. In bacteria this is mainly done by engineering of the RBS, 

which contains the well-known Shine-Dalgarno sequence upstream of the start codon. 

Engineering of the RBS has several advantages including accessibility of a wide range of 

expression levels by few base changes, individual adjustment of genes in polycistronic 

operons and applicability in a wide range of prokaryotic hosts [9••]. Several recent studies 

apply RBS libraries for combinatorial optimization of pathways in E. coli 

[9••,13,18,21,23•,35,39••,43•,46-48,49••,50] and other prokaryotic hosts [49••,51]. The small 

number of bases that need to be altered to achieve large dynamic ranges of expression levels 

makes RBS engineering a practicable approach for multiplexed genome engineering as initially 

demonstrated by Wang and coworkers [13] and later by other groups [49••,50]. Moreover, Gill 

and colleagues have recently suggested a method that allows to map genomic mutations in a 

multiplexed manner, which represents an interesting technology to track diversity within mutant 

populations [50,52]. 

A very compelling attribute of RBSs as engineering targets is the availability of predictive 

biophysical models that allow relative adjustment of expression levels by forward design [53-

56]. Based on these works a number of studies have appeared that use in silico designed 

RBSs (or libraries thereof) for combinatorial pathway engineering [9••,18,39••,43•,46-48,49••]. 

Despite these rapid developments in translational pathway engineering in the past years, the 

available methods for non-bacterial hosts such as yeasts remain scarce. The 5’ untranslated 

region (5’ UTR) has been shown to have significant influence on expression levels in 

S. cerevisiae, which can be used to influence gene expression, for instance by minimization of 

secondary structures according to thermodynamic models or by construction of suitable 

aptamers and riboswitches in the 5’ UTR of the mRNA [57-59]. However, the systematic 

exploitation of the 5’ UTR for combinatorial pathway optimization remains to be demonstrated. 
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Combined and integrated approaches 

Importantly, the aforementioned approaches to create diversity in CDSs and expression levels 

must be viewed upon as complementary rather than mutually exclusive for combinatorial 

pathway optimization. This is reflected by several studies that simultaneously integrate 

different methods for diversity creation thereby achieving substantial improvements for the 

respective applications [18,21,22,24,35,39••,43•]. The combinatorial refactoring of a 16-gene 

pathway for nitrogen fixation from Klebsiella oxytoca in E. coli achieving 57 % of wild-type 

activity by combining multiple approaches including variation of promoters, RBSs, terminators 

and gene order represents a compelling example [39••]. Following up on these works Woodruff 

and coworkers recently introduced a pipeline for the multiplexed assembly of large 

combinatorial and sequence-perfect (i.e. no mutations) operon structures from universal pools 

of composite parts by a barcode based dial-out PCR method [43•]. This allowed for the rapid 

combinatorial optimization complex multicomponent systems as demonstrated on the 

examples of nitrogen fixation and the design of complex genetic circuits. 

However, it should be mentioned that introducing diversity on multiple levels inevitably leads 

to large theoretical library sizes, which cannot be exhaustively screened by any available 

experimental method, and consequently smart strategies for search space reduction need to 

be applied to keep the screening effort manageable (see below). 

 

Man versus statistics – strategies for the reduction of experimental effort 

A major constraint of combinatorial pathway optimization is the number of permutations that 

need to be screened for their behavior in order to identify the optimal (or best) clone for a 

desired application. The latter increases linearly with the number of different variants to be 

tested per pathway component and exponentially with the number of different pathway 

components to be optimized [9••]. This problem, commonly referred to as “combinatorial 

explosion”, renders full factorial searches in many cases infeasible, even for high-throughput 

screening methodologies, and therefore strategies to reduce the experimental effort are 

inevitably required [7•,9••,36••,49••,60]. Experimental effort can be saved on different stages 

throughout the optimization process, which is schematically illustrated in Figure 3, and 

important recent studies that apply respective techniques to improve combinatorial screening 

efficiency are listed in Table 1. 
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Figure 3: Schematic workflow of combinatorial pathway optimization. Different rational approaches 
such as pathway modularization, “smart” part library construction and design of experiments (DoE) can 
be used to reduce the initial combinatorial library size and/or minimize the number of required 
experiments without extensive a priori knowledge about the pathway. The results from the subsequent 
screening/selection campaign can be harnessed to collect knowledge about the pathway, which in turn 
can be used to improve library design for iterative optimization cycles and even model-based forward 
design of optimal constructs. As a consequence combinatorial production landscapes can be efficiently 
searched and optimized pathway variants are obtained at a minimized collective effort. 
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A commonly used “trick” is the merging of several enzymatic reaction steps to pathway 

modules, which are treated as “black boxes” that are only defined by the fluxes coming in and 

out of the module. This simplification of the pathway topology can subsequently be used by 

optimizing the different pathway modules at large without the need to fine-tune single 

enzymatic steps individually [8]. Following early works of Ajikumar et al. [22] modularization 

strategies such as “multivariate modular metabolic engineering” (MMME) (for in-depth reviews 

about pathway modularization please refer to [5,8,61]) have been widely exploited for 

combinatorial pathway engineering in the past years (e.g. [7•,20,22,23•,24,62-64]). For 

instance, fatty acid synthesis was improved in E. coli (20-fold in shake flask cultivation) by 

combinatorial optimization of three modules thereby drastically reducing the effort for the 

engineered 15-step pathway resulting in a maximum titer of 8.6 g L-1  [23•]. Importantly, 

modularization is not a trivial procedure since the choice of module nodes (i.e. metabolites 

between two modules) is crucial for effective optimization [5]. Ideally, this should be done 

based on rational knowledge from experimental data and/or in silico flux models, which can 

help to identify crucial bottlenecks in the pathway and define meaningful modules. 

Another strategy is based on the design of libraries with a high content of meaningful options 

for each diversified pathway component. These “smartly condensed” libraries ensure that the 

number of options to be tested per pathway component (“resolution”) remains limited. This has 

been done using pre-characterized sets of parts that allow uniformly discretizing the 

multidimensional expression level space. This was demonstrated for promoters 

[34,36••,39••,65••] and RBSs [23•,39••,46]. Importantly, pre-characterization should be done 

individually for all CDSs due to the strong context dependency of regulatory elements [9••,53]. 

Similarly, highly condensed libraries of CDS variants can be produced from large sets of 

homologues based on metadata from enzyme and pathway databases by computer-aided 

design [17•]. Recent works by Farasat and coworkers [49••] as well as our group [9••] describe 

algorithms for the predictive in silico design of degenerate RBS sequences, which allows 

covering several orders of magnitude in expression levels by only testing few genetic variants. 

Despite significant differences in the computational approaches in these two studies, both 

enable facile and efficient searches through multidimensional expression level spaces without 

the need of anterior characterization of RBSs as demonstrated on the test-beds of 

neurosporene and violacein production in E. coli, which were improved to up to 517 µg 

(gDCW∙h)-1 [49••] and over 91% purity [9••], respectively. 

Finally, different heuristic procedures can (and must) be applied to keep the overall 

experimental effort limited. These include iterative optimization cycles, which are hierarchical 

in the sense that results from the preceding iteration determine the design of the next round of 

screening. Using a set of pre-characterized promoters, Lee and colleagues elegantly 

demonstrated that “bold” under-sampling (< 3%) of a five-dimensional expression level space 
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for violacein production in yeast is sufficient to train a linear regression model with good 

predictive properties allowing to efficiently obtain various desired phenotypes with altered 

product spectrum [36••]. Similarly, strategies of initial “coarse” sampling of production 

landscapes and subsequent fine-tuning of the pathway have been successfully applied 

[9••,41,49••]. To this end, different techniques of design of experiment (DoE) have recently 

been used in order to identify critical pathway parameters and drastically reduce the number 

of experiments required for optimization [7•,65••]. Zhou et al. used DoE to combinatorially 

diversify six genes and three media conditions to characterize bottlenecks and optimize 

performance of a pathway for 6-aminocaproate 5-fold (from 9 mg L-1 to 48 mg L-1) [65••] and 

Xu and coworkers used a statistical DoE approach to establish a model with strong predictive 

power for the 5-step production pathway for violacein (3.2-fold improvement in shake flasks 

and up to 1.31 g L-1 in a bioreactor) [7•]. 

 

Future prospects 

With this survey, we intended to elucidate the field of combinatorial pathway optimization by 

highlighting commonly applied techniques to introduce combinatorial genetic diversity into 

pathways as well as strategies to reduce the subsequent experimental screening effort 

required to obtain variants with improved behavior. 

Due to the ever-decreasing cost of de novo DNA synthesis, the appearance of more and more 

sophisticated DNA assembly technology and the ongoing standardization of genetic parts, the 

bottleneck in the field of metabolic engineering will continue shifting from physical acquisition 

of potentially interesting pathway variants (“limited by construction”) towards their highly 

parallelized and automated testing by screening or selection (“limited by evaluation”). 

Moreover, metabolic systems of higher complexity will become subject to systematic 

engineering including large pathways, intricate metabolic networks, and eventually entire 

organisms. As a consequence, one can foresee a strongly increasing demand for improved 

high-throughput screening methodologies and, more importantly, for heuristic methods, such 

as those introduced towards the end of this review, which facilitate efficient navigation of the 

vast combinatorial space associated with these complicated systems in a rational manner. This 

will inevitably require a well-orchestrated consortium of methods for rational pathway 

modularization and genetic part generation, design-of-experiments and flux modeling to name 

but a few, as well as iteration as a basis for knowledge generation, which will in turn manifest 

in the form of new and improved designs. It should be emphasized that these aforementioned 

techniques for the reduction of experimental effort must be applied in a complementary rather 

than a competitive manner in order to enable metabolic engineers of the future to successfully 

navigate the enormous complexity of metabolic systems and to tap the vast potential of 

biological entities. 
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Table 1: Selected recent studies about combinatorial pathway optimization. 
Product/Application Host(s) 

[vector] 
Combinatorial 
diversification 
target(s) 

Key features/remarks Reference 

Xylose utilization 
Ethanol production 

S. cerevisiae 
[plasmid] 

CDS 
homologues 

3-step pathway optimized using 
CDS homologues 

[16] 

Pinocembrin E. coli 
[plasmid] 

CDS 
homologues 

4-step pathway optimized with 
retrosynthetic CAD tool that 
identifies promising candidates 
from enzyme databases 

[17•] 

Isobutanol/mevalonate 
production 

S. cerevisiae 
[genome] 

Copy number Multiple chromosomal integration 
of expression cassettes by 
selective pressure, optimization of 
5-step and 8-step pathway 

[26] 

Xylose/cellobiose utilization 
Ethanol production 

S. cerevisiae 
[plasmid] 

Promoter 3-step and 2-step pathway, pre-
characterized promoters 

[34] 

Violacein S. cerevisiae 
[plasmid] 

Promoter Linear regression models based 
on random undersampling, 5-step 
pathway 

[36••] 

Xylose utilization 
Ethanol production 

S. cerevisiae 
[plasmid] 

Promoter 3-step and 8-step pathway, pre-
characterized promoters 

[44] 

6-aminocaproic acid E. coli 
[plasmid] 

Promoter Design of experiments, predictive 
model, 6-step pathway 

[65••] 

Violacein E. coli 
[plasmid] 

Promoter Statistical design of experiments, 
predictive model, 5-step pathway 

[7•] 

Lycopene E. coli 
[genome] 

RBS 24 RBSs simultaneously targeted 
with degenerate oligonucleotides 

[13] 

Carotenoid E. coli 
[plasmid] 

RBS 7-step pathway, pre-characterized 
RBSs, iterative assembly, 
genotyping barcode 

[46] 

Neurosporene E. coli 
[plasmid+genome] 

RBS Predictive RBS library design, 3-
step pathway, iterative 
optimization 

[49••] 

Violacein E. coli 
[plasmid] 

RBS Predictive design of uniform RBS 
libraries, 3-step pathway, iterative 
optimization 

[9••] 

Taxadiene E. coli 
[plasmid+genome] 

Copy number, 
Promoter 

10-step pathway divided into two 
modules 

[22] 

Fatty acids E. coli 
[plasmid] 

Copy number, 
Promoter, RBS 

15-step pathway divided into three 
modules, expression is optimized 
on different levels 

[23•] 

Nitrogen fixation E. coli 
[plasmid] 

Promoter, RBS, 
terminator, gene 
order 

full refactoring of 16-step native 
pathway, hierarchical cluster 
assembly 

[39••] ([43•]) 

Lycopene E. coli 
[plasmid] 

RBS, CDS 
homologues, 
gene order 

PCR-free assembly, 4-step 
pathway 

[18] 

Heme E. coli 
[plasmid] 

Promoter, RBS, 
CDS mutants 

PCR-based multi-site 
mutagenesis, 3-step pathway 

[21] 
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