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A search for anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two 
jets in proton-proton collisions at 

√
s = 13 TeV at the LHC is reported. The data sample corresponds to an 

integrated luminosity of 35.9 fb−1 collected with the CMS detector. Events are selected by requiring two 
jets with large rapidity separation and invariant mass, one or two leptons (electrons or muons), and a 
W or Z boson decaying hadronically. No excess of events with respect to the standard model background 
predictions is observed and constraints on the structure of quartic vector boson interactions in the 
framework of dimension-8 effective field theory operators are reported. Stringent limits on parameters 
of the effective field theory operators are obtained. The observed 95% confidence level limits for the S0, 
M0, and T0 operators are −2.7 < fS0/�

4 < 2.7, −1.0 < fM0/�
4 < 1.0, and −0.17 < fT0/�

4 < 0.16, in 
units of TeV−4. Constraints are also reported on the product of the cross section and branching fraction 
for vector boson fusion production of charged Higgs bosons as a function of mass from 600 to 2000 GeV. 
The results are interpreted in the context of the Georgi–Machacek model.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Measurements of vector boson scattering (VBS) processes probe 
the non-Abelian gauge structure of the electroweak (EW) inter-
actions of the standard model (SM) of particle physics. The non-
Abelian structure of the EW sector leads to self-interactions be-
tween gauge bosons via triple and quartic gauge couplings. At the 
CERN LHC interactions from VBS are characterized by the pres-
ence of two gauge bosons in association with two forward jets 
with large rapidity separation and large dijet invariant mass. The 
discovery of a Higgs boson [1–3] established that W and Z gauge 
bosons acquire mass via the Higgs mechanism. Models of physics 
beyond the SM predict enhancements in VBS processes through 
modifications of the Higgs boson couplings to gauge bosons [4,5]. 
Fig. 1 shows a representative Feynman diagram involving quartic 
vertices. An excess of events with respect to the SM predictions 
could indicate the presence of anomalous quartic gauge couplings 
(aQGCs) [6].

This paper presents a study of VBS in WW, WZ, and ZZ
channels using proton-proton (pp) collisions at 

√
s = 13 TeV. The 

data sample corresponds to an integrated luminosity of 35.9 ±
0.9 fb−1 [7] collected with the CMS detector [8] at the LHC in 2016.

� E-mail address: cms -publication -committee -chair @cern .ch.

Fig. 1. The Feynman diagram of a VBS process contributing to the EW-induced 
production of events containing a hadronically decaying gauge boson (V), a W±/Z
boson decaying to leptons, and two forward jets. New physics (represented by a 
black circle) in the EW sector can modify the quartic gauge couplings.

The first goal of this paper is to search for the presence of 
aQGCs in candidate events containing a (i) hadronically decaying 
gauge boson (V) produced with large transverse momentum pT, 
(ii) a W or Z boson decaying to one or two charged leptons (elec-
trons or muons), and (iii) two forward jets. This final state has 
a higher branching fraction of the V decay than previous aQGC 
searches at the LHC for VBS containing only leptonic boson de-
cays [9–19]. A WV final state where the W boson decays to leptons 
receives contributions from the production of W±W∓ , W±W± , 
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Fig. 2. Examples of Feynman diagrams showing the production of singly (left) and doubly (right) charged Higgs bosons via VBF.
and W±Z boson pairs. Similarly, a ZV final state where the Z bo-
son decays to leptons receives contributions from the production 
of W±Z and ZZ boson pairs. The ATLAS and CMS Collaborations 
have reported limits on aQGCs using final states with a hadroni-
cally decaying W/Z boson in pp collisions at center-of-mass energy √

s = 8 TeV [20–23].
A second goal of this paper is to search for charged Higgs 

bosons that are produced via vector boson fusion (VBF) and decay 
to W and Z bosons. Proposals exist for extended Higgs sectors with 
additional SU(2) isotriplet scalars that give rise to charged Higgs 
bosons with couplings to W and Z bosons at the tree-level [24,25]. 
Specifically, the Georgi–Machacek (GM) model [26], with both real 
and complex triplets, preserves a global symmetry SUL(2) ×SUR(2), 
which is broken by the Higgs vacuum expectation value to the di-
agonal subgroup SUL+R(2). Thus, the tree-level ratio of the W and 
Z boson masses is protected against large radiative corrections. In 
this model, singly (doubly) charged Higgs bosons are produced via 
VBF that decay to W and Z bosons (same-sign W boson pairs).

The charged Higgs bosons H± and H±± in the GM model are 
degenerate in mass (denoted as m(H5)) at tree level and transform 
as a quintuplet under the SUL+R(2) symmetry. The coupling de-
pends on m(H5) and the parameter sH, where s2

H characterizes the 
fraction of the W boson mass squared generated by the vacuum 
expectation value of the triplet fields. Fig. 2 shows representative 
Feynman diagrams for the production and decay of the charged 
Higgs bosons. The CMS Collaboration at 13 TeV [9,13,27] and the 
ATLAS Collaboration at 8 TeV [28] performed searches for charged 
Higgs bosons in these topologies and set constraints on the GM 
model.

2. The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic field 
of 3.8 T. Within the solenoid volume are a silicon pixel and strip 
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), 
and a brass and scintillator hadron calorimeter, each composed of 
a barrel and two endcap sections. Forward calorimeters extend the 
pseudorapidity (η) coverage provided by the barrel and endcap de-
tectors. Muons are detected in gas-ionization detectors embedded 
in the steel flux-return yoke outside the solenoid. A more detailed 
description of the CMS detector, together with a definition of the 
coordinate system used and the relevant kinematic variables, can 
be found in Ref. [8].

The first level of the CMS trigger system, composed of custom 
hardware processors, uses information from the calorimeters and 
muon detectors to select events of interest in a fixed time interval 
of less than 4 μs. The second level, known as the high-level trigger, 
consists of a farm of processors running a version of the full event 
reconstruction software optimized for fast processing, and reduces 
the event rate to O(1 kHz) before data storage [29].

3. Signal and background simulation

The SM EW, aQGC, and charged Higgs boson processes with 
two final-state quarks are simulated using the Monte Carlo (MC) 
generator MadGraph5_amc@nlo 2.3.3 [30] at leading order (LO) 
with four EW and zero quantum chromodynamic (QCD) vertices. 
The signatures of W±W± , W±W∓ , W±Z, and ZZ processes are 
produced separately and include diagrams with quartic vertices. 
The simulation of the aQGC processes employs matrix element 
reweighting to obtain a finely spaced grid of parameters for each 
of the anomalous couplings probed by the analysis.

The production of two gauge bosons with two final state quarks 
or gluons and at least one QCD vertex at tree level, which is re-
ferred to as QCD VV production, is considered background. The
MadGraph5_amc@nlo 2.3.3 generator at LO is used to simulate 
this process. The interference between the EW and QCD diagrams 
is evaluated using dedicated samples produced with the Phan-

tom 1.2.8 [31] generator. The effect of the interference contributes 
at the level of 1% in the signal region and is, therefore, neglected.

The W+jets and Drell–Yan processes, with up to four outgo-
ing partons at Born level, are simulated at QCD LO accuracy us-
ing MadGraph5_amc@nlo. The tt, ttW, ttZ, and single top quark 
processes are generated at next-to-leading order (NLO) accuracy 
using POWHEG 2.0 [32–35]. The simulated samples of background 
processes are normalized to the best prediction available, NLO or 
higher [36–40].

The pythia 8.212 [41] package with the tune CUETP8M1 [42,43]
is used for parton showering, hadronization, and the underlying 
event simulation. The NNPDF 3.0 [44] set is used as the default set 
of parton distribution functions (PDFs). The PDFs are calculated at 
the same order as the corresponding hard process.

The detector response is simulated using a detailed descrip-
tion of the CMS detector based on the Geant4 package [45], and 
event reconstruction is performed with the same algorithms used 
for data. Additional pp interactions (pileup) occurring in the same 
beam crossing as the event of interest are included in the simu-
lation. These events are weighted so that the pileup distribution 
matches that observed in data, which has an average of approxi-
mately 23 interactions per beam crossing assuming 69 mb for the 
inelastic pp cross section [46].

4. Event reconstruction and selection

The particle-flow algorithm [47] reconstructs and identifies 
each individual particle in an event, with an optimized combi-
nation of all subdetector information. The individual particles are 
identified as charged and neutral hadrons, leptons, and photons. 
The missing transverse momentum, �p miss

T , is defined as the mag-
nitude of the negative vector pT sum of all reconstructed particles 
in the event. Its magnitude is denoted by pmiss

T .
Jets are reconstructed using the anti-kT clustering algorithm [48]

with a distance parameter of 0.4, as implemented in the Fast-

Jet package [49,50]. Jet momentum is determined as the sum of 
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all particle momenta in the jet. Corrections are applied to the jet 
energy as a function of jet η and pT to account for detector re-
sponse nonlinearities, contribution from pileup, and residual differ-
ences between the jet energy scale in data and simulation [51,52]. 
Additional selection requirements remove spurious jets originat-
ing from isolated noise patterns in certain regions of the hadron 
calorimeter [53]. These corrections are also propagated to the pmiss

T
calculation. The b quark jet identification criteria are based on a 
multivariate technique to combine the information from displaced 
tracks with the information from secondary vertices associated 
with the jet and on the possible presence of a soft muon in the 
event from the semileptonic decay of the b quark [54].

High-energy V boson candidates, referred to as V jets, are re-
constructed using the anti-kT clustering algorithm [48] with a dis-
tance parameter of 0.8 [55]. The puppi algorithm [56] is used to 
mitigate the effect of pileup by assigning a weight to each particle 
prior to jet clustering based on the likelihood of the particle orig-
inating from pileup. The mass of the V jet (mV) is computed after 
employing the modified mass-drop tagger algorithm [57,58] to re-
move soft, wide-angle radiation from the jets. The N-subjettiness 
variable τN [59] quantifies how well the jet can be divided into N
subjets. The observable τ2/τ1 is employed to discriminate 2-prong 
objects arising from hadronic decays of W or Z bosons from those 
from light quarks or gluons.

The reconstructed vertex with the largest value of summed 
physics-object p2

T is the primary pp interaction vertex. The physics 
objects are the jets, clustered using the jet-finding algorithm [48,
49] with the tracks assigned to the vertex as inputs, and the asso-
ciated missing transverse momentum, the negative vector sum of 
the pT of those jets.

Muons are reconstructed by associating a track reconstructed 
in the inner silicon detectors with a track in the muon system. 
Selected muon candidates are required to satisfy a set of quality 
requirements based on the number of spatial measurements in the 
silicon tracker and the muon system, as well as the fit quality of 
the combined muon track [60,61].

Electrons are reconstructed by associating a track reconstructed 
in the inner silicon detectors with a cluster of energy in ECAL [62]. 
The selected electron candidates cannot originate from photon 
conversions in the inner silicon tracker material and must satisfy 
a set of quality requirements based on the shower shape of the 
energy deposit in the ECAL. Electron candidates in the transition 
region between the ECAL barrel and endcap, 1.44 < |η| < 1.57, are 
not considered because this transition region leads to lower qual-
ity reconstructed clusters because of a gap between the barrel and 
endcap calorimeters, which is filled with services and cables.

The lepton candidate tracks must be consistent with the pri-
mary vertex of the event [63] to suppress electron candidates from 
photon conversions and lepton candidates originating from decays 
of heavy quarks. The lepton candidates must be isolated from other 
particles in the event. The relative isolation for the lepton candi-
dates with transverse momentum p�

T is defined as

R iso =
[ ∑

charged
hadrons

pT + max
(
0,

∑
neutral
hadrons

pT +
∑

photons

pT − pPU
T

)]/
p�

T,

(1)

where the sums run over the charged and neutral hadrons and 
photons in a cone defined by �R ≡

√
(�η)2 + (�φ)2 = 0.4 (0.3) 

around the muon (electron) trajectory, and pPU
T denotes the con-

tribution of neutral particles from pileup [60,62]. Only charged 
hadrons originating from the primary vertex are included in the 
first sum.

Muon (electron) candidates with �R < 0.15 (0.06) are consid-
ered isolated. The lepton reconstruction and selection efficiencies 
are measured using “tag-and-probe” techniques with Drell–Yan 
events that provide an unbiased sample with high purity [64]. The 
muon (electron) candidates have an average selection efficiency of 
95 (70)%.

The event selection identifies events with one or two lep-
tons and a high-energy V boson produced with VBS topology. The 
events are triggered by the presence of at least one muon with 
pT > 24 GeV and |η| < 2.4, or at least one electron with transverse 
energy ET > 27 GeV and |η| < 2.5. These triggered muons and elec-
trons satisfy less restrictive isolation and quality requirements than 
the offline selection criteria.

In the offline analysis events with at least one isolated lep-
ton with pT > 50 GeV are accepted as candidates. The WV → �νV
decays are characterized by a significant amount of pmiss

T associ-
ated with the undetected neutrino. The Drell–Yan and QCD multijet 
background processes are reduced by requiring pmiss

T > 50 (80) GeV
in the muon (electron) final state. Candidate events with a second 
opposite-charged and same flavor isolated lepton with pT > 30 GeV
select the ZV → ��V decays. The candidate Z boson invariant mass 
must be within 15 GeV of the nominal Z boson mass [65]. The 
presence of additional muons or electron, with pT > 20 GeV and 
|η| < 2.4 (2.5) for muons (electrons), satisfying less restrictive se-
lection requirements than the signal lepton candidate selection and 
with average selection efficiencies above 95% [61,62], is used as a 
condition to further reduce events from the top quark and triboson 
background processes. Events with no Z boson candidate selected 
and with two or more leptons are rejected. Events with a selected 
Z boson candidate and with three or more leptons are also re-
jected.

Events are required to have at least one V jet with pT >

200 GeV, |η| < 2.4, τ2/τ1 < 0.55, and 65 < mV < 105 GeV. The V
jets that are within �R < 1.0 of one of the identified leptons are 
excluded. The efficiency of the N-subjettiness and mass require-
ments for the signal events is about 70%, while the probability 
of misidentifying a quark or a gluon jet as a V jet is 5%. The V
jet mass resolution is about 15%. In the case of multiple V jet 
candidates, the one with mass closest to the nominal W boson 
mass [65] is selected.

Events are required to contain at least two jets with pT >

30 GeV and |η| < 5.0, and �R(j, V) > 0.8. In the case of more 
than two jet candidates, the pair with the largest dijet mass is se-
lected. The VBS topology is targeted by requiring a large dijet mass 
mjj > 800 GeV and a large pseudorapidity separation |�ηjj| > 4.0. 
Events having one or more identified b quark jets with pT > 30 GeV
and |η| < 2.4 are rejected, decreasing the number of top quark 
background events.

The longitudinal component of the neutrino momentum in 
WV → �νV events is estimated by constraining the mass of the 
charged lepton and neutrino system to be the nominal W boson 
mass [65]. This is similar to the approach used in a previous CMS 
search [66]. The resulting quadratic equation is solved using �p miss

T
as an estimate of the neutrino transverse momentum. The solu-
tion with the closest match to the longitudinal component of the 
charged lepton momentum is selected. Only the real part is consid-
ered if no real solution is found. The momentum of the W boson 
is then uniquely determined.

Additional selection criteria are employed to enhance the sen-
sitivity to aQGCs in the WV channel. The W and V bosons in the 
VBS and VBF topologies are mostly produced in the central rapidity 
region with respect to the two selected jets. Candidate events are 
required to have z∗

V < 0.3 and z∗
W < 0.3, where z∗

x = |ηx − (ηj1 +
ηj2)/2|/|�ηjj| is the Zeppenfeld variable [67], ηx is the pseudora-
pidity of a gauge boson, and ηj1 and ηj2 are the pseudorapidities of 
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Fig. 3. Comparison between the fit results for the V+jets background processes and the data distributions of the mWV (left) and mZV (right), respectively, in the sideband 
region with 40 < mV < 65 GeV or 105 < mV < 150 GeV. The fit uncertainty is shown as a shaded band.
the two selected jets. In addition, events are required to have ϑ >

1.0, where ϑ = min(min(ηW, ηV) − min(ηj1, ηj2), max(ηj1, ηj2) −
max(ηW, ηV)) is the boson centrality. The extraction of the signal 
yields is performed with a fit to the mass distribution of the WV
or ZV system to statistically subtract the SM background contribu-
tions.

5. Background estimation

The estimation of the shape and yield of the major background 
W(Z)+jets in the WV (ZV) channel is based on the observed data 
using the sideband of the signal region defined by the mass of 
the V jet. The background estimation closely follows the methods 
used in Refs. [68–70]. An estimate of the W(Z)+jets background 
is obtained by performing a maximum likelihood fit to the mWV
(mZV) distribution in data for the events in the W(Z)+jets en-
riched control region by selecting events with 40 < mV < 65 GeV or 
105 < mV < 150 GeV and satisfying the rest of the signal selection 
criteria described in the last section. The background processes 
are modeled by fitting the mWV and mZV distributions in the re-
spective sideband regions with the parametric function f (m) =
exp [−m/(c0 + c1m)]. Fig. 3 shows the mWV and mZV data distri-
butions and the corresponding fit results in this sideband region. 
The other background processes are also modeled by the paramet-
ric function in the fit with the shape and normalization fixed to 
the prediction from simulation. The SM EW VV contribution is in-
cluded in the fit. The contribution of the SM EW VV process is 
expected to be small in the sideband region, even with enhance-
ments of the cross section due to aQGCs, with a predicted yield of 
approximately 1% of the selected events.

Transfer factors obtained from W(Z)+jets simulation are used 
to extrapolate from the sideband to the signal region. The transfer 
factors are obtained from the ratio of the W(Z)+jets yields in the 
signal and sideband regions as a function of the mWV (mZV). The 
statistical uncertainty in the transfer factor values due to the lim-
ited number of simulated events is also considered in the analysis 
and affects the normalization and shape of the W(Z)+jets. The un-
certainties in the fit parameters c0 and c1 are treated as nuisance 
parameters in the likelihood fit. The W(Z)+jets estimation is also 
performed with an alternative function ( f (m) = exp [−m/c0]) and 
the difference from the nominal prediction is taken as a systematic 
uncertainty.

The mWV (mZV) shapes of the tt, ttW, ttZ, and single top quark 
background contributions in the signal region are predicted by the 
simulation after applying corrections to account for small differ-
ences between data and simulation [54,61,62]. The event yields of 

these background processes are checked in a top quark enriched 
control sample by requiring a bottom quark jet in the final state. 
The QCD VV background contribution is also evaluated from simu-
lation.

6. Systematic uncertainties

A number of sources of systematic uncertainty can affect the 
rates and shapes of the mWV (mZV) distributions for the signal and 
background processes. Theoretical uncertainties are evaluated us-
ing the seven-point scale variation detailed in Ref. [71], where the 
renormalization and factorization scales are varied independently 
up and down by a factor of two from their nominal value in each 
event (removing combinations where both variations differ by a 
factor of four). The largest variation from the nominal prediction is 
taken as a systematic uncertainty. The effect on the signal yields 
of the aQGC and charged Higgs bosons is up to 20%, depending on 
the kinematic region. The effect on the expected yields of the SM 
EW VV and QCD VV processes reaches to 22 and 38% for larger 
mVV values, respectively.

The PDF uncertainties are evaluated according to the procedure 
described in Ref. [72] using the NNPDF 3.0 [44] set. The uncer-
tainty in the PDF results is up to 17% variation for the signal, SM 
EW, and QCD VV normalizations. The full NLO QCD and EW correc-
tions for the SM EW and aQGC signal processes are not available 
and are not considered here. The NLO EW corrections are known 
only for the same-sign dilepton and WZ → ��′�′ final states and 
reduce the cross section by approximately 15% [73–75]. The un-
certainty due to missing higher-order EW corrections in the GM 
model is evaluated to be 7% [76].

The jet energy scale and resolution uncertainties affect the 
yields and shapes of the signal and background processes from 
simulation. The effect on the expected yields reaches to above 
10% for larger mVV values. The uncertainties in the V jet selection 
efficiency and mV scale and resolution give rise to a systematic un-
certainty of 8% in the predicted yields of the simulated processes. 
The lepton trigger, reconstruction, and selection efficiency uncer-
tainties are 2.2 and 2.8% for the WV and ZV channels, respectively. 
The b quark identification efficiency uncertainty results in 3% sys-
tematic uncertainty in the top quark background normalization. An 
additional 5% uncertainty is included for the top quark background 
normalization based on the level of agreement in yields between 
data and prediction in the b quark jet enriched control region. The 
uncertainty in the pileup reweighting uncertainty in the V jet se-
lection is evaluated by varying the effective inelastic cross section 
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Table 1
Relative systematic uncertainties in the estimated signal and background yields in units of percent. The range of the uncertainty variation as a function of mVV is shown for 
the systematic uncertainty sources affecting also the shape of the mVV distribution. The values in parentheses show the systematic uncertainties in the ZV channel where 
the uncertainties differ compared to the WV channel.

Source Shape Signal (%) V+jets (%) SM EW (%) QCD VV (%) Top quark (%)

Renorm./fact. scales � 11–22 — 11–22 32–38 —
PDF � 7–17 — 4–17 5–9 —
Jet momentum scale � 2–13 — 1–17 1–20 5–20
V jet selection 8.0 — 8.0 8.0 —
GM model EW 7.0 — — — —
Bkg. normalization — 7 (16) — — 5.0
V+jets shape � — 5–200 — — —
Integrated luminosity 2.5 — 2.5 2.5 —
Lepton efficiency 2.2 (2.8) — 2.2 (2.8) 2.2 (2.8) —
Lepton momentum scale � 0.5–3.5 — 0.5–3.5 1.5–7.5 1.0–5.0
b quark jet efficiency 2.0 — 2.0 2.0 3.0
Jet/pmiss

T resolution 4.0 — 3.0 2.0 —
Pileup modeling 4.0 — 4.0 4.0 —
Limited MC event count � 1–2 — 6–20 (12–39) 7–49 (17–57) 5–50 (3–70)

Fig. 4. Distributions of mWV (left) and mZV (right) in the signal region. The gray bands include uncertainties from the predicted yields. The histograms for other backgrounds 
include the contributions from QCD VV, top quark, W+jets, and Drell–Yan processes. The predicted yields are shown with their best-fit normalizations from the background-
only fit. The dashed lines show the signal predictions for two aQGC parameters, and charged Higgs bosons in the GM model. The overflow is included in the last bin. The 
bottom panel in each figure shows the ratio of the number of events observed in data to that of the total background prediction.
by 5% [46]. The statistical uncertainties due to the finite size of 
simulated samples are also included [77].

The W(Z)+jets background normalization uncertainty is 7 (16)%, 
dominated by the statistical uncertainty arising from the fit to the 
mVV distribution in the sideband region. The uncertainties in the fit 
parameters in the sideband region and the statistical uncertainty in 
the transfer factor values (described in Section 5) affect the shape 
of the W(Z)+jets background distribution. Uncertainties affecting 
the W(Z)+jets shapes are important for large mVV values reaching 
up to 200%. The uncertainty of 2.5% in the integrated luminosity 
determination [7] is included for all processes evaluated from sim-
ulation. This uncertainty does not affect the background processes 
estimated from data. A summary of the relative systematic uncer-
tainties in the estimated signal and background yields is shown in 
Table 1.

7. Results

No excess of events with respect to the SM background pre-
dictions is observed. The events in the signal region are used to 
constrain aQGCs in the effective field theory framework [78]. Nine 
independent charge conjugate and parity conserving dimension-8 
effective operators are considered [6]. The S0 and S1 operators are 
constructed from the covariant derivative of the Higgs doublet. The 
T0, T1, and T2 operators are constructed from the SUL(2) gauge 

fields. The mixed operators M0, M1, M6, and M7 involve the SUL(2) 
gauge fields and the Higgs doublet.

Statistical analysis of the event yields is performed with a fit to 
the mass distribution of the WV or ZV system in the signal region. 
The systematic uncertainties are treated as nuisance parameters 
in the fit and profiled. The SM EW production is treated as a 
background in the statistical analysis. The mass distributions are 
binned as follows: mVV = [600, 700, 800, 900, 1000, 1200, 1500,

2000, ∞] GeV. The bin boundaries are chosen based on the limited 
number of simulated events for the background processes evalu-
ated from simulation. The distributions of mWV and mZV in the 
signal region are shown in Fig. 4. The data yields, together with 
the SM expectations for the different processes, are given in Ta-
ble 2. A nonzero aQGC enhances the production cross section at 
large masses of the VV system with respect to the SM prediction, 
as can be seen in Fig. 4. The observed number of data events with 
mVV > 1500 GeV is 3 (3) compared to the predicted SM background 
yield of 6.4 ± 1.5 (2.6 ± 1.3) in the WV (ZV) channel.

The observed and expected 95% confidence level (CL) lower and 
upper limits on the aQGC parameters f /�4, where f is the di-
mensionless coefficient of the given operator and � is the energy 
scale of new physics, are calculated using a modified frequentist 
approach with the CLs criterion [79,80] and asymptotic results for 
the test statistic [81]. The increase of the yield as a function of the 
aQGC exhibits a quadratic behavior, and a fitted parabolic function 
is used to interpolate between the discrete coupling parameters of 
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Table 2
Expected yields from various background processes in WV and ZV final states. The 
combination of the statistical and systematic uncertainties are shown. The pre-
dicted yields are shown with their best-fit normalizations from the background-
only fit. The aQGC signal yields are shown for two aQGC scenarios with f T 2/�4 =
−0.5 TeV−4 and f T 2/�4 = −2.5 TeV−4 for the WV and ZV channels, respectively. 
The charged Higgs boson signal yields are also shown for values of sH = 0.5 and 
mH5 = 500 GeV in the GM model. The statistical uncertainties are shown for the ex-
pected signal yields.

Final state WV ZV

Data 347 47

V+jets 196 ± 14 42.6 ± 6.1
Top quark 113 ± 15 0.14 ± 0.04
QCD VV 27 ± 8 5.5 ± 1.9
SM EW VV 16 ± 2 2.0 ± 0.4

Total bkg. 352 ± 19 50.3 ± 5.8

fT2/�4 = −0.5,−2.5 TeV−4 19 ± 1 6.7 ± 0.5
mH5 = 500 GeV, sH = 0.5 38 ± 1 4.1 ± 0.1

the simulated signals. This is done for each bin of the mass distri-
bution of the WV or ZV system. Table 3 shows the individual lower 
and upper limits obtained by setting all other aQGCs parameters to 
zero for the WV and ZV channels and their combination. These re-
sults give the most stringent constraints on the aQGC parameters 
for the S0, S1, M0, M1, M6, M7, T0, T1, and T2 operators. The ef-
fective field theory is not a complete model and the presence of 
nonzero aQGCs will violate tree-level unitarity at sufficiently high 
energy. It is important to note that the given limits do not include 
dipole form factors or other procedures to avoid unitarity viola-
tion [82].

Constraints on resonant charged Higgs boson production are 
also derived. The exclusion limits on the product of the charged 
Higgs boson cross section and branching fraction σVBF(H±) B(H± →
W±Z) at the 95% CL as a function of m(H±) for the W±V (up-
per left) and ZV (upper right) channels, respectively, are shown 
in Fig. 5. The exclusion limit on the doubly charged Higgs bo-
Table 3
Observed and expected lower and upper 95% CL limits on the parameters of the quartic operators S0, S1, M0, M1, M6, M7, T0, T1, and T2 in WV and ZV channels. The last 
two columns show the observed and expected limits for the combination of the WV and ZV channels.

Observed (WV) Expected (WV) Observed (ZV) Expected (ZV) Observed Expected
(TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4)

fS0/�4 [−2.7,2.7] [−4.2,4.2] [−40,40] [−31,31] [−2.7,2.7] [−4.2,4.2]
fS1/�4 [−3.3,3.4] [−5.2,5.2] [−32,32] [−24,24] [−3.4,3.4] [−5.2,5.2]
fM0/�4 [−0.69,0.69] [−1.0,1.0] [−7.5,7.5] [−5.3,5.3] [−0.69,0.70] [−1.0,1.0]
fM1/�4 [−2.0,2.0] [−3.0,3.0] [−22,23] [−16,16] [−2.0,2.1] [−3.0,3.0]
fM6/�4 [−1.4,1.4] [−2.0,2.0] [−15,15] [−11,11] [−1.3,1.3] [−1.4,1.4]
fM7/�4 [−3.4,3.4] [−5.1,5.1] [−35,36] [−25,26] [−3.4,3.4] [−5.1,5.1]
fT0/�4 [−0.12,0.11] [−0.17,0.16] [−1.4,1.4] [−1.0,1.0] [−0.12,0.11] [−0.17,0.16]
fT1/�4 [−0.12,0.13] [−0.18,0.18] [−1.5,1.5] [−1.0,1.0] [−0.12,0.13] [−0.18,0.18]
fT2/�4 [−0.28,0.28] [−0.41,0.41] [−3.4,3.4] [−2.4,2.4] [−0.28,0.28] [−0.41,0.41]

Fig. 5. Expected and observed exclusion limits at the 95% CL as a function of m(H±) for σVBF(H±) B(H± → W±Z) in the WV (upper left) and ZV (upper right) final states, 
for σVBF(H±±) B(H±± → W±W±), as a function of m(H±±) (lower left), and for sH in the GM model (lower right). The blue shaded area covers the theoretically disallowed 
parameter space [76].
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son σVBF(H±±) B(H±± → W±W±) at the 95% CL as a function of 
m(H±±) for the WV final state is also shown in the lower left panel 
in Fig. 5. A small intrinsic width of 1 GeV is assumed for the H±±
and H± bosons. The combination of the model-independent exclu-
sion limits constrains the sH-m(H5) plane by using the predicted 
cross sections at next-to-NLO accuracy in the GM model [76]. The 
excluded sH values as a function of m(H5) are shown in Fig. 5
(lower right).

8. Summary

A search for anomalous electroweak production of WW, WZ, 
and ZZ boson pairs in association with two jets in proton-proton 
collisions at the center-of-mass energy of 13 TeV was reported. The 
data sample corresponds to an integrated luminosity of 35.9 fb−1

collected with the CMS detector at 13 TeV. Final states with one or 
two leptons and a hadronically decaying W/Z boson, reconstructed 
as one large-radius jet, are considered. The contribution of the ma-
jor background process W(Z)+jets in the WV (ZV) channel is eval-
uated with data control samples. No excess of events with respect 
to the SM background predictions is observed. Constraints on the 
quartic vector boson interactions in the framework of dimension-
8 effective field theory operators are obtained. Stringent limits on 
the effective field theory operators S0, S1, M0, M1, M6, M7, T0, T1, 
and T2 are set. These are the first searches for anomalous elec-
troweak production of WW, WZ, and ZZ boson pairs in WV and 
ZV semi-leptonic channels at 13 TeV. The limits improve the sensi-
tivity of the current CMS fully leptonic results at 13 TeV [9,13,15]
by factors of up to seven, depending on the operator. The upper 
limits on VBF produced charged Higgs boson cross sections in the 
high-mass region extend the previous results at the LHC. The re-
sults are interpreted in the GM model where the observed limit 
excludes sH values greater than 0.53 for the m(H5) range from 600 
to 2000 GeV.
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