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DeneRD: high-throughput 
detection of neurons for brain-wide 
analysis with deep learning
Asim iqbal  1,2, Asfandyar Sheikh1 & theofanis Karayannis1,2

Mapping the structure of the mammalian brain at cellular resolution is a challenging task and one that 
requires capturing key anatomical features at the appropriate level of analysis. Although neuroscientific 
methods have managed to provide significant insights at the micro and macro level, in order to obtain a 
whole-brain analysis at a cellular resolution requires a meso-scopic approach. A number of methods can 
be currently used to detect and count cells, with, nevertheless, significant limitations when analyzing 
data of high complexity. To overcome some of these constraints, we introduce a fully automated 
Artificial Intelligence (AI)-based method for whole-brain image processing to Detect Neurons in 
different brain Regions during Development (DeNeRD). We demonstrate a high performance of our deep 
neural network in detecting neurons labeled with different genetic markers in a range of imaging planes 
and imaging modalities.

Similar to other disciplines, neuroscience has entered the realm of ‘big data’, which brings forth the need for the 
development of methods that can enable researchers to explore their datasets in an unbiased and high-throughput 
manner. To allow for the application of comprehensive approaches in the study of the structure and function 
of the nervous system, a series of technological advancements are required, both at the hardware and software 
end. There has been a significant advancement of hardware development in the last couple of decades to record 
the activity of thousands of brain cells at a time through multichannel recording probes1 or large field of view 
fluorescent microscopes2, although the cells are usually confined to a given brain region. At the same time, big 
consortia and prime institutes world-wide e.g. Allen Brain Institute3, Blue Brain4, and Human Brain Project5 are 
producing high-throughput genetic and structural imaging data that capture and visualize many different types 
of neurons in the whole brain with spatially precise single-cell-resolution. Although many efforts have been made 
for providing a number for cell count in the entire brain6, these methods rely on different stereology techniques7, 
each of which has its strengths and weaknesses. Importantly, most approaches analyze a small area of brain and 
then extrapolate to the entire volume, assuming a normal Poisson distribution of cells, or use a non-histological 
method to count all the cells, but lose crucial information on the 3D position of the cells, as well as their type8,9. 
Recent advances in computational methods to identify individual cells in defined regions have provided a pow-
erful tool to perform high-throughput analysis of cell numbers in situ10,11, but these methods are limited in scope 
due to a large variation of size, shape, and density of neurons in different regions of the brain.

To overcome such significant drawbacks there is a need to develop and implement unbiased high-throughput 
approaches that allow for any labeled cell in a given brain region or even the whole brain to be counted, while 
preserving the exact cell location. Deep Learning (DL) methods are gaining increasing attention in the biological 
and health sciences. These approaches are used in order to provide fast and comprehensive screening for a change 
in biological samples over time or in healthy versus potentially diseased human data12,13, but so far their use in 
mouse brain samples is sparse14–16. The advantage of AI-based methods over traditional computer vision-based 
techniques in object detection tasks is their power to capture the variance in an object’s structures without updat-
ing the set of hyperparameters for every given data sample. Such an approach is key to analyzing complete brains, 
owing to the existence of large diversity in scale, morphology and intensity of neuronal elements within and 
across different brain samples. Although, efforts have been made to detect cells using machine learning-based 
methods in the past, their performance has been limited to a specific tissue sample17–20.
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In this study we develop a deep neural network-based method to detect neurons expressing a variety of genetic 
markers and captured with different imaging modalities during the course of mammalian brain development.

Results
A novel method for neuron detection using a Deep neural network. To expedite brain-wide anal-
ysis of neuronal distributions in brain sections in situ, we introduce here a Deep Learning method (DeNeRD 
- Detection of Neurons for Brain-wide analysis with Deep Learning), which is based on the state-of-the-art in 
object detection network called Faster Regions with Convolutional Neural Network (Faster RCNN)21 (Fig. 1a). 
DeNeRD takes images of mouse brain sections as input and after some pre-processing, it detects the neuronal 
populations in the pre-registered brain areas as shown in Fig. 1b–i. The architecture of our deep neural network is 
demonstrated in Fig. 2 with a step-by-step processing of an input brain section through convolutional stages. The 
detailed structure of the architecture is explained in the Methods section.

In order to test our network, we used three common brain markers: CaMKIIa, GAD1 and VGAT. These brain 
sections were taken from the online publicly available datasets at Allen Institute’s Online Public Resource (OPR)3. 
These markers label the largest and the second largest population of neurons in the mammalian brain. CaMKIIa 

Figure 1. Workflow of the deep learning-based system, DeNeRD. (a) Block diagram showing the input of 
brain images from various postnatal (P) time points that are processed by the Neuron Detector (top) unit. 
Each brain image is serially passed through the Faster Regions with Convolutional Neural Network (R-CNN)-
based architecture, which detects and labels the neurons present in the entire brain section image. The same 
image is also passed through the Brain Registrator (bottom) unit, which automatically registers it with the 
Allen developing mouse brain atlas. Automated registration is performed through optimization of an affine 
transformation algorithm. The outputs of the Neuron Detector and the Brain Registrator are then combined to 
label all the detected neurons in the brain regions color-coded in the Allen mouse brain atlas. The output on 
the right side shows the clusters of neurons in different brain regions in both lateral and medial brain section 
images. (b–e) The output of the Neuron Detector on a P14 GAD1 sample mouse brain image is shown. The blue 
boxes delineate the zoomed-in images in c-e, where the detection of labeled neurons with their classification 
scores over the bounding boxes can be seen for different neuronal density areas. (f–i) The same P14 GAD1 
brain section is passed through the Brain Registrator module, where the bounding boxes of detected neurons are 
colored with respect to the Allen brain atlas regions. (g–i) The performance of the Neuron Detector is shown at 
three randomly selected zoomed-in brain regions (pre-thalamus, hindbrain and midbrain). The original brain 
sections are obtained from3. Image credit: Allen Institute.
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labels excitatory cells, whereas GAD1 is the enzyme that regulates the production of GABA and VGAT, the trans-
porter responsible for packing it into vesicles (hence both label inhibitory cells).

Since the deep neural network needs to go through a training session, we first had to generate the training 
(ground-truth) data. To expedite this process, we constructed a Simple Graphical User Interface (SiGUI) software, 
as shown in Supplementary Fig. S1, through which human experts annotated the bounding boxes on top of the 
neurons (Supplementary Fig. S2). Users can freely scroll towards left and right in the directory to jump on differ-
ent brain images and draw and remove bounding boxes by selecting the “draw/remove” bounding box options 

Figure 2. The Deep Neural Network architecture in the DeNeRD (Neuron Detector) pipeline for neuron 
detection. (a) The block diagram of Faster R-CNN in DeNeRD. A small brain section image is used as input 
that goes through a series of convolutional stages, RPN (Region Proposal Network), ROI (Region of Interest) 
Pooling and RCNN classifier. The outputs of RPN and ROI Pooling are combined and then fed as input to 
the RCNN classifier, which distinguishes the neurons from the background class. (b) RPN Architecture with 
convolutional, ReLU (Rectified Linear Unit) and pooling layers. (c) RCNN architecture with convolutional, 
ReLU, pooling and fully connected layers. The purple and brown colored nodes represent the different layers 
in the deep neural network which have functionally distinct roles in the feature processing of the input brain 
section images.
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from the right panel of the GUI. The intensity-thresholded (expression) versions of the in situ brain images were 
used as a reference to differentiate the real neural signal from the background noise (Supplementary Fig. S3). It is 
interesting to observe that the deep neural network is able to learn the features of neuronal structure during the 
procedure of training (Supplementary Fig. S4).

Using CaMKIIa, GAD1 and VGAT and focusing on different brain regions across three different post-natal 
(P) developmental time points (P4, P14 and P56), we explored the power of our method to capture the large 
variation in expression pattern, neuronal shape and size. Figure 3 demonstrates the performance of DeNeRD 
in detecting neurons in the neural dataset of GAD1 and VGAT in situ hybridized (ISH) brain sections. These 
markers cover about 20% of all cortical neurons in the adult mouse cortex, hence presenting themselves as a rea-
sonably challenging detection task for the deep neural network. We generated a dataset of 210 human-annotated 
images, where 1/2 of them (randomly selected) are used for training and the other 1/2 for testing purpose (see 
also Methods). We show that DeNeRD performs well in detecting inhibitory cells, with a mean average-precision 
(mAP) score of 0.9.

In order to further explore the performance of DeNeRD, we generated a ground-truth dataset of human 
annotated neurons in 140 images labeled with fluorescently-tagged CaMKIIa (converted into grayscale; see 
Methods), a marker that accounts for about 80% of cortical neurons. These brain sections are also obtained from 
the Allen Institute’s OPR. Detecting neurons in this dataset is a bigger challenge for DeNeRD due to a very low 
signal-to-noise ratio since the neuronal population is highly dense in most of the brain regions, which can lead 
to more cells overlapping that also have a large variation in size with lower background contrast. We, therefore, 
trained the deep neural network on 2/3 of randomly selected images from this dataset and tested its performance 
on the remaining 1/3. We observed a mean average-precision score of 0.75, with the mean precision of 0.87. 
However, to avoid any bias, no intensity and detection thresholding is applied here prior to feeding the testing 
data to the DNN. This may result in detection of low intensity neural signal, which can also be considered as 
background noise in some cases.

To further challenge the performance of our method we used other Allen Institute images, from sections 
processed also for fluorescence in situ hybridization (FISH): GAD1-tdTomato(red)-Pnmt-Cre-Ai14(green), 
GAD1-tdTomato(red)-CamkIIa-Cre-Ai14(green), GAD1-tdTomato(red)-Gpr26-Cre-KO250-Ai14(green), as 
well as Nissl. These images contain fluorescently-labeled cells in different colors (green and red), where each of 
them represents a different genetic marker (Figs 4 and 5), which, interestingly, the network has not been trained 
on. The network performs quite well in detecting neurons in these samples. The bounding boxes are colored as 
red, green and purple to visualize the detections in different neurons. In some cases (e.g. Figs 4c,d, 5c), DNN 
seems to detect a few extra neurons which can easily be avoided after intensity and detection thresholding. In 
terms of density, the biggest challenge for DeNeRD was detecting cells in Nissl-stained brain sections, because in 
principle it should label all neurons in the brain. Nevertheless, DeNeRD is still able to detect most, if not all, the 
labelled cells with a good coverage as shown in Fig. 5d. More importantly, although DeNeRD was trained on a 
single fluorescently labeled genetic marker, our results show that its performance is high even when applied on 
brain images that it has not been trained on, especially evident in the case of Nissl-stained brain sections.

comparison with alternative cell detection techniques. Currently, a number of approaches for 
large-scale cell quantitation exist with most of them using feature detection, intensity thresholding and region 
accumulation22. Although these methods perform reasonably well with sparse cell distributions, they are chal-
lenged when cells have a high density, as is the case of Nissl-stained brain sections or specific brain regions in our 
dataset (e.g. the reticular thalamic nucleus for GAD1). Moreover, different neuronal populations in the brain can 
vary in size by one or higher orders of magnitude. This, in fact, is also showcased when quantifying the cell body 
size of different types of GAD1-positive inhibitory cells in the cortex. One sub-population of inhibitory neurons 
labeled for Parvalbumin (PV) for example typically have large and irregular cell bodies, compared to another one 
labeled for Vasoactive Intestinal Peptide (VIP), which have significantly smaller and round-shaped somata. This 
can also be the case for the same kind of cells located in different regions, for example PV-positive Purkinje cells 
are quite morphologically distinct to PV-positive bistratified cells in the hippocampus.

In order to assess the power of our deep neural network-based method, we compared DeNeRD’s performance 
with some of the most commonly used cell detection methods. The result showed that our network outperforms 
other methods22 (Figs 6 and 7b,c) and provides a minimum neural offset with a high mean average-precision 
score (0.9) as demonstrated in Fig. 7a. The advantage of our deep learning-based neuron detection method over 
the existing methods is its power to learn the neuronal features from the labelled training data hence providing 
a generalized performance on testing datasets. In the compared methods, there exists a limitation in detecting 
neurons when they encounter a high degree of variability in the dataset. Feature detection method detects any 
object in the image with features similar to the neuronal shape without taking the neuronal signal intensity into 
account. In contrast, intensity thresholding and region accumulation methods are able to capture the neuronal 
signal but they are poor in detecting the neuronal features. All in all, the results show that our method is scalable 
to detect neurons in brain images that it has never “seen” before and is invariant to size, density and expression 
intensity of neurons in many different brain areas.

Registering sections of the developing brain to a reference atlas. To take full advantage of the 
power of DeNeRD, once it has been applied to a neural dataset to detect the cell populations of interest in whole 
brain sections, the following necessary step for researchers would be to extract the numbers and density per given 
area, region or sub-region. To achieve this, there is a need to register the processed image onto a reference atlas. 
A common way to apply image registration in an automated manner makes use of either rigid or non-rigid image 
transformation methods23. The Allen Institute provides the brain atlases at some post-natal time points in their 
database that are pre-registered only to their respective standard Nissl sections. In order to automatically register 
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the brain image (ISH and FISH) sections, we first needed to transform the pre-registered Nissl brains to the given 
brain images and then apply their transformation matrices to the respective reference atlas. In this way, a given 
brain section (e.g. GAD1/VGAT) is registered to its corresponding reference atlas in the Allen Institute’s common 

Figure 3. DeNeRD is shown detecting, counting and localizing neurons (different color bounding boxes 
depending on the region) of different shapes, sizes and intensities with a variety of backgrounds. Neuron 
detection in various brain regions with different neural densities at three postnatal (P) ages is shown on example 
images of in-situ hybridized (ISH) brain sections for GAD1. (a,b) The trained deep neural network detects 
neurons in cortical regions (P4-hippocampus and P56-isocortex). (c,d) Performance of deep neural network 
in detecting neurons in the hindbrain region of P4 and P14 mouse brain sections is shown. (e,f) Deep neural 
network is able to localize the neurons in pre-thalamus region of P56 and P14 mouse brains. The original brain 
sections are obtained from3. Image credit: Allen Institute.
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a Anterior section (coronal plane) with zoomed-in cortical region (neuron detection with DeNeRD)

b Posterior section (coronal plane) with zoomed-in cortical region (neuron detection with DeNeRD)

c Anterior section (coronal plane) with zoomed-in thalamic region (neuron detection with DeNeRD)

d Posterior section (coronal plane) with zoomed-in thalamic region (neuron detection with DeNeRD)

Figure 4. Performance of DeNeRD in detecting neurons labeled by a variety of brain markers and obtained via 
different imaging modalities at a coronal plane. (a) The performance of DeNeRD is shown in detecting neurons 
in a coronal section from the anterior part of a postnatal (P) 57 mouse’s brain which are fluorescently labeled for 
GAD1 tdTomato (red) and Pnmt-Cre/Ai14 (green). The detections of the deep neural network can be visualized 
as red (tdTomato) and green (Pnmt-Cre/Ai14) bounding boxes on top of neurons. The red box is the area shown 
as zoomed-in on the right side. (b) The performance of the method in detecting neurons in a posterior section 
from the mouse brain fluorescently labeled for GAD1 tdTomato (red) and Pnmt-Cre/Ai14 (green) is shown. 
Zoomed-in image from the CA1/subiculum hippocampal region is shown with neuron detection on the right 
side. (c) An anterior section from an adult brain labeled for CamkIIa by mRNA in situ hybridization is shown 
with neuron detection. Performance of the deep neural network in detecting excitatory neurons in the thalamus 
(purple bounding boxes) is shown on the right side. (d) A posterior section from the CamkIIa brain is shown with 
neuron detection. Performance of the deep neural network-based method in detecting neurons in the brainstem is 
showcased on the right side (zoomed). The original brain sections are obtained from3. Image credit: Allen Institute.
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a Lateral section (sagittal plane) with zoomed-in cortical region (neuron detection with DeNeRD)

b Lateral section (sagittal plane) with zoomed-in hippocampal region (neuron detection with DeNeRD)
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c Lateral section (sagittal plane) with zoomed-in cortical region (neuron detection with DeNeRD)

d Lateral section (sagittal plane) with zoomed-in hippocampal region (neuron detection with DeNeRD)

Figure 5. Assessing the performance of DeNeRD in detecting neurons in images of adult brain sections labeled 
neurons with a variety of brain markers taken with bright field and fluorescent microscopy at a sagittal plane. (a) 
The results obtained with DeNeRD in detecting a variety of neurons fluorescently labeled with GAD1 tdTomato 
(red) and CamkIIa-Cre/Ai14 (green) in a lateral image of a sagittal postnatal (P) 77 female mouse brain section. 
The red box is the area shown as zoomed-in on the right side. Further zoom is shown with the detected cells 
and their bounding boxes in the granular and infragranular cortical layers. (b) Performance of the Deep Neural 
Network (DNN) in detecting neurons labeled for GAD1 tdTomato (red) and Gpr26-Cre-KO250/Ai14 (green) in 
a P28 female brain section is shown. Zoom in on hippocampus and cerebellum is shown with the performance 
of deep neural network in neuron detection. (c) Lateral section from a CamkIIa-stained adult brain, labelling 
pyramidal neurons with the DNN detections on top. Zoomed-in sample is shown with purple bounding boxes 
for neuron detection in cortical region. (d) Nissl-stained adult (P56) brain section, labeling all neurons is 
shown, together with the DNN detections (purple bounding boxes) on top. Zoomed-in image is shown with the 
performance of deep neural network in detecting neurons in hippocampal region. The original brain sections 
are obtained from3. Image credit: Allen Institute.
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Figure 6. Performance comparison of DeNeRD with other commonly used neuron detection techniques. DeNeRD 
outperforms these methods in almost all the examples. For cases with <10 number of neurons in a given image 
(a,b), the other three methods show relatively low neural offset (ground_truth–prediction) score, but in examples 
containing >10 number of neurons (c–e), their neural offset score is increasingly high. Column 1 shows five 
cropped example images from brain sections with increasing neural density and complexity from top to bottom 
(mRNA in-situ hybridized with their expression images below each one). Column 2 shows the ground-truth 
(human annotated) bounding boxes (blue) on top of the neurons in brain images in column 1 with the number of 
neurons. Performance of DeNeRD in neuron detection on the given images in column 1 is shown in column 3 with 
red bounding boxes on top of the neuron detection along with the neural offset at the top. Performance of feature 
detection-based method is shown with neuron detection (brown bounding boxes) and neural offsets in column 
4. Intensity thresholding-based method’s predictions are shown for neuron detection (green bounding boxes) 
along with the neural offsets in column 5. Region accumulation-based (watershed) algorithm is shown with the 
performance for neuron detection in pink bounding boxes with neural offsets in column 6.
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coordinate framework. For automated registration, we optimized an affine transformation algorithm (elastix)24 
by adding a recurrent feedback loop that goes through multiple iterations until the minimum error is reached. 
Supplementary Figs S5 and S6 show the automated registration procedure of a medial and lateral brain section. 
This strategy is visually represented in Supplementary Fig. S7a and it allowed for an optimal registration of the 
brain images of all post-natal ages as shown in Fig. 8 and Supplementary Fig. S7b. Additionally, we extract differ-
ent areas in a given brain section based on the developmental origin, covering the whole brain. Supplementary 
Figs S8–S11 show the reference Nissl brains and their corresponding colored atlases that we can select for the 
purpose of automated registration. Furthermore, one can also extract the signal from sub-areas of the cortex, as 
well as individual cortical layers (Fig. 8) whenever a detailed atlas is available, which is only provided for the adult 
brain (P56) at Allen Institute. Once the step of atlas registration is achieved, one can subsequently apply neuron 
detection identification of the underlying cellular signal in brain regions and measure the neural densities of 
different neuronal types based on the expression of a marker in any given brain region during the course of brain 
development.
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Precision-Recall curve of our method on the testing dataset. The deep neural network achieves a high score in 
detecting neurons with a mean average-precision (mAP) of 0.9. (b) Performance comparison of DeNeRD with 
commonly used neuron counting methods. DeNeRD gives the minimum offset (error between the ground-
truth and prediction) on the testing dataset. The horizontal bar indicates the mean error on the complete testing 
dataset and each data point represents the error for a single brain section (n = 110). (c) DeNeRD performs well 
with an increase in complexity of neural structures and population density, whereas other methods drop off 
their performance. Brain sections are ranked according to their neural densities in the x-axis whereas the y-axis 
labels the number of neurons in the corresponding brain section.
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Discussion
In this study, we have developed a deep neural network-based neuron detection method that works with a high 
performance on a variety of imaging planes, modalities and genetic markers. We show the detection of neu-
rons with high precision on the most commonly used genetic markers such as CaMKIIa, GAD1 and VGAT. We 
demonstrate the performance of our method in a variety of imaging modalities such as in situ hybridization and 
fluorescence in situ hybridization, even for markers that the deep neural network has not been trained on such as 
Nissl. Using the power of DeNeRD and the atlas registration steps, one can ask a number of interesting questions, 
which include differences in the cell death, or differential neurogenesis of individual cell types (e.g. pyramidal and 
GABAergic cells) in various brain regions during development, and explore core principles of brain organization 
and development which would otherwise remain masked in the complexity and scale of the data. Beyond the neu-
roscience community, we believe that our method can be a valuable tool for the biology community in general.
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Figure 8. Automated registration of sagittal and coronal mouse brain (bright field and fluorescent) images 
to the detailed Allen brain atlas. Image registration is performed through the optimization of an affine 
transformation algorithm by adding a recurrent feedback loop that goes through multiple iterations until the 
minimum image registration error is achieved. (a–f) Sagittal or coronal brain sections obtained from different 
genetically modified animals are shown before and after automated image registration. The top rows show the 
brain images before and the bottom rows after image registration with the Allen brain mouse atlas.
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Methods
Mouse brain sections. Images of brain sections used in this study were collected by mining the on-line 
open source database of the Allen Institute for Brain Science. According to the Institute’s website, their experi-
mental data was collected in accordance with the guidelines and regulations of Allen Institute for Brain Science. 
Furthermore their experimental protocol for collecting the in situ hybridization tissue data was approved by the 
Allen Institute for Brain Science under Standard Operating Procedures (SOPs). The developing mouse brains 
were chosen at three unique post-natal time points: P4, P14 and P56, for two different markers: GAD1 (Glutamate 
decarboxylase 1) and VGAT (GABA vesicular transporter). Along with the in situ hybridized (ISH) brain sec-
tions, intensity-thresholded sections of the same brains were also imported which are utilized for ground-truth 
dataset generation. These ISH brain sections are 20 μm thick, sectioned at 200 μm apart – covering an entire 
hemisphere from lateral to medial. A couple of lateral and medial examples from adult mouse brain are shown in 
Supplementary Figs S5b and S6b, respectively. In total, six brains were utilized – a pair of GAD1 and VGAT brains 
at each developmental time point for the generation of inhibitory neural dataset. Similarly, two CamkIIa brains 
(P28+) were collected from the Allen Institute to generate the excitatory neural dataset.

neural dataset generation for training the deep neural network. A large dataset of six different 
brains is collected from Allen Brain’s OPR, in total 220 (P4 GAD1: 16 + 16, P4 VGAT: 18 + 18, P14 GAD1: 
17 + 17, P14 VGAT: 19 + 19, P56 GAD1: 20 + 20 and P56 VGAT: 20 + 20) high resolution images. A pair of two 
brains from each post-natal development time points (P4, P14, P56) is selected. For each brain, both ISH and 
intensity-thresholded images are utilized. ISH images are used for the classification of neurons and the corre-
sponding expression/intensity-thresholded images are used for applying the color threshold filter in order to dif-
ferentiate the neural signal from the background. Initially, selected high-resolution brain sections are segmented 
into smaller images by dividing a brain section into 100 × 100 smaller sections, whereas each smaller image con-
tains ~20 neurons. These small images are transferred to a specific directory, which is imported into the SiGUI. 
In total, 220 randomly selected sections are used for human annotation, where half of them (110) are randomly 
used for training and the other half (110) for testing purpose. Supplementary Fig. S2 shows the brain sections, 
followed by their expression versions in Supplementary Fig. S3. In case of CamkIIa brain dataset, we generated 
the ground-truth data on 140 brain sections that are taken from P28+ ages of mice from Allen Brain’s OPR. We 
converted these images into grayscale before training the deep neural network in order to test the performance of 
the network on different imaging modalities.

Ground-truth labelling. A Simple Graphical User Interface (SiGUI) software is developed to produce the 
ground-truth data. Ground truth labels were generated by three human experts who annotated the bounding 
boxes on top of the neurons as shown in Supplementary Figs S1,S2. Users can freely scroll left and right in the 
directory to jump on different images and draw/remove bounding boxes by selecting the “draw/remove” bound-
ing box options from the right panel of the GUI. The expression versions of the same brain sections were used as 
a reference to differentiate the real neural signal from background noise (Supplementary Fig. S3).

Deep neural network architecture. The architecture of our network is inspired by the Faster RCNN21, 
as shown in Fig. 2. Designing of the network architecture, training and testing is performed in MATLAB. A 
four-step training procedure is applied that includes: (i) Training of the Region Proposal Network (RPN), (ii) 
Using the RPN from (i) to train a Fast RCNN, (iii) Retraining RPN by sharing weights with Fast RCNN of (ii). 
Finally, (iv) Retraining Fast RCNN using updated RPN. Epoch size of 500 is used with initial learning rate of 
1 × 10−5 and 1 × 10−6 in stages (i-ii) and (iii-iv) respectively. Furthermore, box pyramid scale value of 1.2 is set, 
with positive and negative overlapping ranges of [0.51] and [00.5]. Number of box pyramidal levels are set to 15, 
with the minimum object size of [2.2]. For all the convolutional stages, a padding size of [1, 1, 1, 1] is selected, 
with [1, 1] as the size of strides, whereas a grid size of [2, 2] is set in the RoI pooling layer. Training is performed 
using NVIDIA Quadro P4000 GPU. Our network is trained by minimizing the multi-task loss which corresponds 
to each labeled Region of Interest, RoI (i.e. neuronal body), through a stochastic gradient descent algorithm25. 
Supplementary Fig. S4 shows the network learning features of neurons (weight vector) after training. Similar to21, 
loss of our network is described as following:

L L Lcls reg= +

Here, Lcls is the classification loss of neuron, calculated as a log loss for neuron vs. non-neuron classes, and Lreg 
is the regression loss of bounding box, where Lcls and Lreg are defined by following:

∑ ∑λ= +⁎ ⁎L p q
n
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qi = bounding box coordinates of predicted RoI/anchor
qi* = bounding box coordinates of a positive anchor
ncls = normalization parameter of classification loss, Lcls
nreg = normalization parameter of regression loss, Lreg
λ = weight parameter
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neural detector pipeline. Each brain section is serially processed by the neural detector. After some 
pre-processing, an input brain section (B) of size p × q pixels is divided into smaller brain sections (bn) by divid-
ing B into s × t equal sections, here, s = t = 100. Zero padding is performed on each section in bn, hence the 
dimensions of a single image, bi, are increased to (s + 1 × + 1). Now each bi (i = 1  → n) is passed through the deep 
neural network (Fig. 2a) which detects the neurons in each small section and returns the corresponding bounding 
boxes against each neural location. Finally, a binary image (α) of the same dimension (s + 1 × t + 1) as bi is gener-
ated, where α ϵ {0, 1}. The center of each bounding box location in a given bi is set to 1 in α and 0 otherwise. After 
removing the zero padding, α is stored with the corresponding iteration # i, and a similar process is repeated until 
the nth brain section. Once all the smaller sections (b1→n) are passed through the detector and the corresponding 
binary sections (α1→n) are produced, these binary sections are concatenated as following to create a single binary 
image (A) with neural locations as 1 s and background pixels as 0 s. The dimension of A will be the same as the 
input brain section, p × q.

α α α α α= …×A p q n( ) 1 2 3 4

Brain registrator pipeline. For the purpose of brain registration, standard Nissl sections of P4, P14 and P56 
mouse brains are also collected from Allen Institute’s OPR. For instance, lateral and medial Nissl sections of an 
adult brain are shown in Supplementary Figs S5c and S6c, respectively. Allen developing mouse brain reference 
atlases are pre-registered with these Nissl sections as shown in Supplementary Figs S5e and S6e, respectively.

Affine algorithm in elastix toolbox24 is optimized for the purpose of registration of brain sections. The affine 
transformation takes a fixed as well as a moving image as input and returns a transformed parameter map which 
can be applied to the moving image. The un-registered brain section (B) along with the corresponding registered 
Nissl section (N) are passed to the pipeline as fixed and moving images. B and N are first down-sampled by a rea-
sonable ratio (r) such as to reduce the computational cost of brain registrator pipeline, without compromising the 
image quality of brain sections. N is first converted to gray scale, then both B and N are passed through a Gaussian 
filter (B × g(μ, σ) and N × g(μ, σ)) with σ = 1, to normalize brain sections with respect to the background noise. 
The corresponding reference atlas (R) of Nissl section is also down sampled to the same ratio, r.

After preprocessing, N is registered and transformed to the dimensions of B and the final metric score (error 
of registration/cost function) is calculated. The same procedure is repeated for n times and the final metric score 
is plotted against every registration step as shown in Supplementary Fig. S7a to find the minimum of error, here 
n = 20. Intermediate steps of registration for the first ten iterations in medial and lateral sagittal sections are 
shown in Supplementary Figs S5a and S6a respectively. The corresponding image, N, at the minimum of cost 
function is used for the purpose of registration. The transform parameter map is applied to the corresponding 
reference atlas, R. Supplementary Figs S5f and S6f shows the reference atlas, R, overlaid on top of the original 
brain section, B, after registration whereas Supplementary Figs S5d and S5d show the overlaid reference atlas 
before registration.

neural density measurement. Registered reference atlases (Ri) of brains are collected from brain registra-
tor, and binary neural images (Ai) are imported from neural detector pipeline. Each brain region (Ri) has a unique 
RGB color code, brain regions (RN) are filtered by their respective RGB codes and temporarily stored in the form 
of binary images where active Ri pixels are 1 s, and 0 s otherwise:

=






=

≠
R x

x r g b
x r g b

( )
1, [ , , ]
0, [ , , ]i

i i i

i i i

Afterwards, neural density (Di) of a particular brain region (Ri) can be calculated by taking its dot product 
with the binary neural image of a given brain section (Ai) and normalizing it by dividing with the area of the brain 
region, Ri .

=
⋅D R A

Ri
i i

i

The same process is repeated for the rest of the brain regions (RN-1) on a given Bi. Once, the neural density is 
measured for a single brain section (Ai) then next brain section in the pipeline can be analyzed and so on until AN 
for a particular mouse age, where N denotes the total number of brain regions.

Software availability. The code and datasets generated and/or analyzed during the current study are availa-
ble from the corresponding author on a reasonable request. DeNeRD is available online on Github (https://github.
com/itsasimiqbal/DeNeRD) and Bitbucket (https://bitbucket.org/theolab/) for the neuroscience community.
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