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Quantifying the Benefits of Ride Sharing

Claudio Ruch, ChengQi Lu, Lukas Sieber, and Emilio Frazzoli, Senior Member, IEEE

Abstract—In unit-capacity mobility-on-demand systems the
vehicles transport only one travel party at a time whereas in ride-
sharing mobility-on-demand systems, a vehicle may transport
different travel parties at the same time, e.g, if paths are partially
overlapping. We evaluate both the efficiency-related benefits and
drawbacks of ride sharing for mobility on demand in detail
with a transportation simulator under the influence of different
fleet operational policies and transportation scenarios. For this
purpose, an open-source simulation environment is introduced
which is capable of evaluating a large class of operational policies
for ride-sharing mobility-on-demand systems. Then, the impact
of ride sharing on efficiency and service level is assessed for
several benchmark operational policies from the literature. First
in a dense urban scenario, then on a line-shaped, rural one. In
the urban scenario, ride sharing is able to reduce the vehicle
miles traveled by 11% and the fleet size by 29% at the cost
of 15% increased total travel time. 76 % of trips are with no
more than 2 travel parties on board. In the rural case, a 28%
fleet size reduction and a 12% reduction in vehicle miles traveled
were achieved at the cost of 3% increased total travel time. 98
% of trips are with no more than 2 travel parties on board.
We conclude that efficiency gains due to ride sharing in mobility
on demand are present but limited and may not be sufficient to
compensate for the drawbacks of reduced convenience, loss of
privacy, and higher total travel and drive times. Furthermore,
the study clearly demonstrates that systems should be designed
with small 4-6 seat vehicles capable of handling occasional ride
sharing rather than, e.g., larger and more costly minibuses.

Index Terms—Ride Sharing | Mobility on Demand | Opera-
tional Policies

Mobility on Demand (MoD) transportation systems promise
to unite the convenience of motorized individual transport with
the environmental friendliness and price of conventional public
transit [1]. They are expected to increase their mode share
significantly with the forthcoming introduction of the fully
autonomous vehicle which may resolve some of the major
shortcomings of today’s MoD systems, namely inbalance [2],
lack of system-wide coordination [3] and driver availability.
In the most commonly described type of mobility on demand,
a large fleet of vehicles, each with enough capacity for one
travel party is used, e.g., 4 seats. Each vehicle serves one party
at a time by transporting them from their origin directly to
their travel destination. After dropping off the travel party, the
vehicle may be dispatched to the next customer or relocated.
Such systems are called unit-capacity mobility-on-demand
systems (1MoD). In contrast to this, the vehicles used in ride-
sharing mobility-on-demand systems (RMoD) may have larger
capacity and might transport several travel parties at the same
time. As an example, when two travel parties have a close-by
origin and are traveling in a similar direction, it is efficient to
transport both simultaneously as illustrated in Figure 1.

The resulting efficiency gains were predicted to improve the
efficiency of car and taxi transportation greatly [4] by reduc-
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Fig. 1: In a 1MoD system, at every time only one travel party
is transported. For RMoD systems, several parties can be in a
vehicle at the same time.

ing the fleet size, the vehicle miles traveled and associated
emissions [5]. A transportation scenario must exhibit certain
characteristics in order for ride sharing to have positive effects
on system efficiency, namely that a large enough fraction
of requests must have at least partially aligned paths and
arrive to the system approximately at the same time. There
are scenarios which do not have these characteristics, e.g., an
early-morning situation with small arrival rates. However, the
current literature suggests that the benefits of ride sharing can
be harvested in most cases. An example are the theoretically
derived estimations provided in [4]. Based on macroscopic
parameters including the area of the city, the average traffic
speed, the total trip arrival rate and the maximum delay toler-
ated due to ride sharing, the results suggest that only relatively
small arrival rates may be necessary to share almost 100 %
of trips. For San Francisco, it is estimated that approximately
97% of trips can be shared with a delay of no more than
5 [min] at an arrival rate of 1,200 trips per hour. Generalizing
the results to other cities, a potential to share almost 100%
of trips in Amsterdam, Newcastle, Paris, Prague, Rome and
Santiago with an arrival rate of 8.5 trips per hour and square
kilometer is recognized.

Several attempts have been made to quantify the benefits
of ride sharing in simulation and field studies. A survey
of approximately 30,000 carpool commuters in the 1970s
estimated a 23% reduction of vehicle miles traveled due to ride
sharing [6]. In a study on the impacts of taxi sharing in New
York City, it was concluded that ride sharing would reduce
cumulative trip length by 40% or more [7]. A simulation study
for Prague [8] concluded that ride sharing can decrease the
total miles traveled by a mobility-on-demand fleet by 65%
without prolonging the travel times by more than 10 minutes.
In [9] a slightly more conservative estimate of 13% savings
in vehicle miles traveled (VMT) at 25% more trips served
is made. The positive impact of ride sharing on mobility on
demand is also subject of other studies, e.g., [10], [11], [12],
[13]. Indeed, instances of real-world implementations of ride-
sharing schemes exist: jitneys or dollar-vans are small buses
that (often informally) operate in larger cities and transport
passengers on temporarily fixed routes which are adjusted as
needed. As an example, the informal but successful jitney
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system in New York City serves about 120,000 riders daily
[14]. Another example presented in [15] are shared-ride taxis
in Little Rock, Arkansas that were serving more than 1.7
million people per year in 1977. Ride sharing schemes were
also introduced to the market by large ride-hailing companies,
e.g., UberPOOL.

Yet, it is unclear whether the benefits are sufficient to
outweigh the drawbacks both from a user and from an operator
perspective in large-scale and general settings. Ride sharing
increases drive times for passengers. Even at reduced total
travel times, this might be perceived as a nuisance. The loss
of privacy inherent to ride sharing may also be a concern,
e.g., from a safety viewpoint [16]. Taking this into account, it
is an open question whether price reductions are necessary
to compensate for these drawbacks and if the savings in
operational cost are sufficiently large to offset them. For the
operator, the larger vehicles necessary to provide ride sharing
increase operational costs, which can only be compensated
with high enough fraction of shared trips. At least in some
cases, it is questionable if such a sharing rate can be achieved.
As an example, a simulation study for Austin, Texas revealed
that at a mode share of 11% in a small central and dense area
of the city, only 4.83% of vehicle miles traveled were ride-
shared. The study also reported a reduction of vehicle miles
travelled by only 4.5 to 8.7 % [17]. Another aspect that makes
the discussion more complex is the possible competition of
ride sharing and public transit, e.g., bus lines. In some cases,
ride-sharing services were judged as unfair competition to
public transportation by local authorities. According to this
viewpoint, the (private) schemes only serve the profitable
fraction of trips at the expense of conventional public trans-
portation. Some studies support this view, e.g., the work on
San Francisco carpoolers presented in [18] estimated that 75%
of new carpoolers in the San Francisco Bay area have used
public transit previously and only 10% were previously using a
privately owned vehicle.The viewpoint that the applicability of
ride sharing is limited is supported by a history of discontinued
implementation attempts. An example is microtransit, a formal
version of the jitney services. Low utilization and sharing rates
have been reported for several of these services, see, e.g., [19].
The Group Ride Vehicle project in New York was intended
to replace closed public transit connections with ride-sharing
taxis but the service was discontinued only months after it
was started [14]. Some ride-sharing services were discontinued
shortly after introduction, partly due to low match rates [15].
Car pooling of private vehicles has remained on low levels of
about 9% ever since it peaked in the 1970s at 20% [15].

The current situation of ambiguity makes it necessary to
conduct more quantitative studies in order to compare the
trade-off of costs and benefits of ride sharing for realistic
transportation scenarios. The state of knowledge is charac-
terized by two shortcomings. First, the operational policies
used to control fleets of mobility-on-demand services were
shown to be an important factor that cannot be neglected
[20]. Many existing studies do not take this into account as
they are based on simplified assumptions or heuristic fleet
control policies. Second, ride sharing must be analyzed and
compared coherently across different transportation scenarios

including detailed road network representations and using
high-resolution demand profiles. Our work aims at filling
these gaps and at providing a tool to the research commu-
nity to quantitatively assess ride-sharing mobility-on-demand
systems.

Contributions: Our contributions are threefold. First, we
provide a general interface for ride-sharing operational policies
in AMoDeus [21]. The open-source interface is described in a
reduced but complete manner that allows implementation and
comparison of operational policies in advanced mesoscopic
transportation simulation. Second, based on this interface,
we have implemented four state-of-the-art operational poli-
cies from the literature. We apply these operational policies
to an urban and a rural mobility-on-demand scenario and
quantitatively assess the impact of ride-sharing on efficiency
and service level under static demand. Organization: We
explain the simulation environment, ride-sharing interface and
the implemented operational policies in Section I. Then, we
present the simulation setup in Section II. The urban and rural
case studies are presented in Sections III and IV, respectively.
Finally, a conclusion is drawn in Section V.

I. RIDE-SHARING OPERATIONAL POLICIES

The key objective of our research is the quantitative analysis
of (ride-sharing) mobility-on-demand systems. The principal
classes of tools suitable for this task are (i) custom-made
simulators such as the one used in [22], (ii) comparable
real system instances, e.g., taxi schemes and (iii) general
transportation simulators, e.g., [23], [24] and [25]. Custom-
made simulators generally lack the ability to be extended and
they are of limited use when results should be compared within
the research community. Real systems naturally come with
high cost and limited range of possible experiments. For this
reason, our research is based on the class of general, open-
source transportation simulators which are used for multiple
purposes by a wide research community. They provide high
accuracy results and are validated by a user community of
transportation scientists. Within the class, there are several
subcategories. Microscopic transportation simulators such as
[25] model traffic dynamics and the dynamics of cars them-
selves. This level of detail is unnecessary for our scope.
Macroscopic transportation simulators such as [26] on the
other hand will exhibit very fast simulation times but come
with more limitations. For this reason, our work is based on
the category of mesoscopic simulators that allow just enough
granularity to capture the processes that determine the service
level and efficiency of mobility-on-demand systems. Building
on existing, optimized traffic simulators allows a high network
resolution with respect to the number of trips: in this work,
we have a ratio of trips to network links of ~ 0.1 while
for various existing approaches this value is substantially
higher, e.g., = 42 in [7]. In order to provide a general and
user-friendly interface between transportation research and
algorithmic research, AMoDeus [21] was created as an add-
on to the mesoscopic transportation simulator MATSim [23]
to emulate mobility-on-demand systems with advanced fleet
operational policies and algorithms. For 1MoD systems, the
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Fig. 2: A vehicle is commanded to execute a ride-sharing
schedule.

fleet operational policy was shown to be a decisive factor
determining the system service level and efficiency [20]. In
this work, we extend the scope of our research to ride-sharing
operational policies for which we developed a generic interface
for evaluation in realistic transportation scenarios.

Operational Policy Simulation Interface: The underlying
mathematical problem that needs to be solved when designing
ride-sharing mobility-on-demand operational policies is NP-
complete [9]. Proposed solution methods from the literature
are based on heuristics [17], efficient setup and maintenance of
data structures [9], on mixed-integer linear programming [11],
[27], or on combinations of these approaches. As the decision
space is considerably larger in the RMoD than in the 1MoD
case, the problem is even more complex to solve. In the 1MoD
case, a vehicle has only two possibilities for actions: it can
either pick up a travel party and transport it to the destination
or it can reposition to another location in the operational
domain, a process referred to as rebalancing, or repositioning.
In the ride-sharing mobility-on-demand case, the order of
pickups, dropoffs and eventual rebalancing actions can be
arranged in many different ways. Specifically, a schedule of
future pickups and dropoffs as well as rebalance type trips has
to be maintained for every vehicle at all times as illustrated in
Figure 2. These schedules must satisfy constraints, namely that
every pickup has to be followed by exactly one dropoff and
that the number of travel parties in the vehicle must not exceed
its capacity at any point in time. Our open-source interface
allows to implement a large class of ride-sharing policies and
evaluate them in advanced transportation scenarios, thereby
leveraging the underlying simulation engine MATSim [23]
and executes all commands as specified. The implementation
allows schedules to be changed as long as picked up travel
parties are also dropped off and it also allows to modify the
routing logic of vehicles if desired by the user. For this work,
we have used fastest-route routing. Based on the interface
described in the previous paragraphs, we have implemented
several state of the art operational policies which are described
next.

High Capacity Shared Autonomous Mobility-on-Demand
Algorithm: (HCRS) [11] The principle of this well formalized
operational policy for the ride-sharing mobility-on-demand
problem is the relatively efficient exploration of all possible
options with integer linear programming. HCRS composes so-
called trips out of two elements: (1) the vehicle, including
the set of passengers on board and (2) the set of passengers
the vehicle is scheduled to pick up. During the exploration
step, trips are constrained to a maximum wait time and a
maximum increase of the total travel time with respect to the
shortest path. These constraints also apply to all passengers
who have already boarded cars. After exploration, the cost

of each possible trip is computed as the sum of the total
travel delay of all the passengers involved in it. A passenger
may also be deliberately ignored by the system at a high
cost. The solution that minimizes the sum of costs of chosen
trips is then computed with an integer linear program. After
each assignment, if there are both ignored requests and idling
vehicles at the same time, the algorithm will send the idling
vehicles driving towards these requests minimizing the sum of
Euclidean distances of these assignments.

T-Share Policy: The T-Share policy presented in [9] was
one of the first contributions exploring the efficiency gains
that result from sharing single-use taxis by multiple travel
parties. Specifically, the algorithm assumes that a unit-capacity
mobility-demand system is in place. Then, it acts on the
collection of vehicles currently transporting a single travel
party and evaluates if additional travel parties can be added to
the vehicle. This process is done in two steps. First, whenever
a customer transportation request arrives, an algorithm called
“dual side taxi searching” is used to find a set of occupied
vehicles which could potentially host the transportation request
by adapting the current schedule. This set is of smallest
possible cardinality, i.e., the iterative algorithm terminates as
soon as it finds a nonempty set. Then, for this set of potential
taxis the algorithm “insertion feasibility check” determines the
vehicle and schedule insertion permutation that can handle
the additional request with minimal additional mileage while
respecting constraints on latest pickup and latest arrival of the
passenger. In this work, the T-share operational policy was
extended in order to allow adding a travel party to a vehicle
also in the case when more than one travel party is already in
the vehicle.

Dynamic Ride Sharing Strategy: (DRSS) The operational
policy presented in [17] builds on previous work for the
1MoD case [28]. In each time step, for all unassigned travel
parties a suitable vehicle is identified and if possible bindingly
assigned to a request. Ride-sharing assignments are searched
with highest priority and subject to five conditions: the total
travel time of the scheduled parties may increase by at most
20%. The remaining travel time of the scheduled parties must
not increase by more than 40%. The total travel time of the
unassigned party may increase by no more than the greater
value of 3 minutes and 20% compared to the expected travel
time of a direct drive. The unassigned party must be picked
up within the next five minutes. The total planned time to
serve all travel parties must be shorter than the time to serve
the scheduled parties plus the time to serve the unassigned
party individually. If no valid ride sharing possibility can be
found, the second priority is to assign the closest free vehicle
to a travel party. Idle vehicles are rebalanced using a so called
block-balance method, in which the local imbalance of free
vehicles and demand between adjacent cells is used to compute
rebalancing commands.

Extended Demand Supply: (Ext-DS) This policy is an
extension of the 1MoD policy presented in [29] with a ride-
sharing heuristic. For the unit-capacity assignment, an over-
supply and an under-supply case are distinguished with more
available vehicles than open requests or vice versa. Then the
set with higher cardinality is iterated in random order for each
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vehicle (or request) and the closest request (or vehicle) is
assigned. The ride-sharing extension additionally searches for
every vehicle if there are open requests within a radius of no
more than 0.62 miles with a deviation of their destination of
not more than 5 degree from the on-board passengers. These
requests are also picked up by the travelling vehicle.

II. SIMULATION SETUP

In this study, we focus on the comparison of costs and
benefits of ride sharing with respect to efficiency, specifically
on the reduction of fleet size and on vehicle miles traveled.
We track the occupancy of each vehicle to assess what vehicle
sizes are actually required to enable ride sharing, the maximum
capacity is not limited. For this analysis, we have chosen
a fixed demand profile, which is served by a mobility-on-
demand system of varying fleet size operating on a detailed
road network guided by different operational policies. Next to
the conventional metrics of total journey time, sharing rate and
vehicle miles traveled, we also record the occupancy of each
vehicle. For every scenario, we compare the four ride-sharing
operational policies and additionally a basic 1MoD policy. In
order to have a globally applicable reference not specific to
any particular scenario, we have chosen the Global Bipartite
Matching (GBM) policy presented in [21] which minimizes
the Euclidean distance between locations of open requests
and available vehicles by solving a bipartite matching problem
with the Hungarian method [30]. The solution is recomputed
at every time step to take into account possible improvements
to the assignment.

III. THE CASE OF URBAN MOBILITY ON DEMAND

An often cited use case for ride-sharing mobility on demand
are dense urban areas. As a representation of such a case, we
have analyzed taxi traces recorded in the city of San Francisco
presented in [31] and created a reproducible mobility-on-
demand scenario with the same requests [21]. The scenario
contains a total of 16,439 requests which are served by the
mobility-on-demand system on a road network with a total
of 153,327 roads. A series of simulations with different fleet
sizes and operational policies yields the resulting mean total
travel times shown in Figure 3, the sharing rates in Figure 4
and the vehicle miles traveled in Figure 5.

For this case, we identify 350 vehicles as a sensible opera-
tion point with ~ 4:46 [min] average wait time as an increased
fleet size will only result in minor service level improvements.
The resulting efficiency gains for this case are summarized in
Table I. An RMoD operation with 250 vehicles would result
in an acceptable increase in total travel time of 15% and yield
29% in fleet size reduction and 11% in reduction of vehicle
miles traveled. The occupancy of vehicles during the day is
shown in Figure 6. Interestingly, 40 % of requests are served
with a single travel party and only 24 % of requests have more
than one other travel party on board during a trip section.

An important consideration, especially for the urban case, is
the density of requests. How close together in space and time
must travel requests be in order for ride sharing to pay off?
To ensure that the number of requests in this urban scenario is
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Fig. 3: Mean total travel time for the urban mobility-on-
demand case.
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Fig. 4: Sharing rate for the urban mobility-on-demand case.

Operational Policy | Fleet Vehicle Miles | Mean Total
Size Traveled Travel Time
IMoD (GBM) 350 137,022 miles | 15:39 min
RMoD (HCRS) 350 120,587 miles | 16:52 min
RMoD (HCRS) 300 121,301 miles | 17:13 min
RMoD (HCRS) 250 123,686 miles | 17:58 min
RMoD (HCRS) 200 120,956 miles | 23:09 min

TABLE I: Efficiency gains of RMoD compared to 1MoD
under a basic global bipartite matching policy in the urban
scenario.

high enough we have taken the constant ratio of total request
to vehicles of 13232 ~ 47 and evaluated the sharing rate for
different numbers of requests. The resulting graph shown in
Figure 7 reveals that the critical density to harvest the benefits
of ride sharing was reached and that further increase of request

density would only lightly increase system efficiency.
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Fig. 6: Daily distribution of vehicles with respect to the
number of travel parties on board. 6576 trips were unshared,
5983 shared trip segments with at most 1 other, 2685 with at
most 2 other and 1194 with 3 to 6 other travel parties.

IV. SUBSTITUTION OF PUBLIC TRANSPORTATION LINES

The potential efficiency gains of ride sharing certainly de-
pend on the spatio-temporal distribution of the travel demand.
While the study in the urban setting utilizes high request
density, this case attemps to exploit the spatial distribution
of requests. To explore this possibility, we have analyzed a
scenario in which a train line in a rural area is substituted
with a hypothetical RMoD system. The travel demand of
1,000 daily requests that is currently served by train is now
served door to door by the taxi fleet. The road network has
a total of 9,049 roads, for details see [32]. As in the urban
case, the scenario was evaluated in simulation using [21]
under all the operational policies and for different fleet sizes.
The resulting mean total travel times are shown in Figure 8§,
the sharing rates in Figure 9 and the daily fleet distance in
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Figure 10. We identify 35 vehicles (= 2:32 [min] average wait
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Fig. 8: Mean total travel time for the substitution of a rural
public transportation line.

time) as a sensible operation point after which an additional
increase in fleet size will not significantly improve service
level. The resulting efficiency gains for this operation point
due to ride sharing are summarized in Table II. Assuming that

Operational Policy | Fleet Vehicle Miles | Mean Total
Size Traveled Travel Time
IMoD (GBM) 35 6,447 miles 12:31 min
RMoD (HCRS) 35 5,637 miles 12:12 min
RMoD (HCRS) 25 5,649 miles 12:56 min
RMoD (HCRS) 15 5,140 miles 15:58 min
RMoD (HCRS) 10 4,365 miles 23:01 min

TABLE 1I: Efficiency gains of RMoD compared to 1MoD
under a basic global bipartite matching policy in the rural
scenario.

the stakeholders would not like to increase the total travel time
of the system when introducing RMoD, they could chose an
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operating point with 25 vehicles which represents a reduction
of the fleet size by 28% and a reduction of the vehicle miles
traveled by 12% at the cost of 3% increased mean total travel
time. Figure 11 reveals that also in this case, a large percentage
of 68% of trips travels with a single travel party, only 8.6%
share their trip with 2 to maximum 5 other travel parties.

V. CONCLUSION

We have implemented a generic interface to test operational
policies for ride-sharing mobility-on-demand systems in a
high-fidelity transportation simulator. We have implemented
four operational policies and have applied them to an urban
and a rural scenario. In both cases, we have measured the
efficiency gains in terms of fleet size reduction and reduction
of vehicle miles traveled due to ride sharing. These efficiency
gains compared to the unit-capacity mobility-on-demand case
are present but of modest size. We conclude that it is debatable
if these efficiency gains and associated fare reductions are
sufficiently high to compensate for the potential loss of privacy
and for the higher drive times. Furthermore, we identified that
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Fig. 11: Daily distribution of vehicles with respect to the

number of travel parties on board. 678 trips were unshared,
236 shared trip segments with at most 1 other, 61 with at most
2 other and 25 with 3 to 5 other travel parties.

for a majority of shared trips, at most 3 travel parties share
a vehicle. We see this as a clear sign that small autonomous
vehicles designed for 4-6 people would be preferential to larger
and more costly minibuses. This suggests that the design of
mobility systems should aim for an efficient combination of
unit-capacity mobility on demand with small vehicles and
high-capacity transit links such as subways or trains. We
aim to continue research in three directions. First, we plan
to implement and compare additional operational policies.
Second, we aim to theoretically evaluate the difference of
high-capacity public transportation systems, e.g., subways to
ride-sharing mobility on demand. Specifically, we aim to
understand if there are cases in which ride-sharing mobility
on demand would be advantageous both in comparison to
such high-capacity public transit systems and unit-capacity
mobility-on-demand systems. Finally, we plan to explore other
applications of ride sharing, specifically to employ ride-sharing
as a tool to relieve congestion.
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