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SUMMARY 

The physiological mechanisms maintaining the balance between energy intake and 

energy expenditure are complex and not fully understood. Peripheral metabolic signals 

have long been implicated in the control of eating, but it is still unknown by which 

mechanisms metabolites or their utilization affect eating; do they trigger a signal that 

is transmitted to the brain via afferent nerves or are they metabolized in the brain to 

affect eating? In this thesis, we started to test both possibilities.  

In the first part, we examined whether the monocarboxylate transporter-2 (MCT2) in 

vagal afferent neurons (VAN) plays a role in the control of eating. To this end, we 

knocked down the MCT2 by bilateral nodose ganglia injection of a viral vector with 

shRNA targeting MCT2, or a non-target sequence, and recorded food intake in rats 

eating chow or a high fat diet (HFD, 60% fat). The MCT2 transports monocarboxylates 

such as lactate, pyruvate and beta-hydroxybutyrate across cell membranes and thus 

provides the basis for these metabolites’ intracellular utilization. The knockdown 

efficiency was only 28%.  Nevertheless, when the animals were eating chow, the MCT2 

knockdown (MCT2kd) prolonged average meal duration and, after a 16 h fast, it almost 

doubled the size and duration of the second meal, indicating a substantial contribution 

of VAN MCT2 to meal size control under this condition. After the animals were switched 

to HFD, MCT2kd rats temporarily increased 12 h light phase food intake by increasing 

meal number, suggesting a role of VAN MCT2 in satiety. Overall, by showing that VAN 

MCT2 is involved in the control of eating under certain conditions, our data indirectly 

support the idea of a peripheral metabolic contribution to the control of food intake by 

VAN signaling. 
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In the second part, we used the inducible CreERT2-loxP system to test whether 

overexpression or knock-out of Sirtuin3 (SIRT3) specifically in glial fibrillary acidic 

protein (GFAP) expressing astrocytes affects food intake and metabolism in mice fed 

a low fat control diet or a high fat diet (HFD, 60% energy from fat). SIRT3 is a major 

mitochondrial deacetylase that deacetylates and, hence, activates several 

mitochondrial enzymes involved in different metabolic pathways, but in particular in 

fatty acid oxidation and ketogenesis. The astrocyte-specific SIRT3 knock-out 

(SIRT3ko) did not affect energy homeostasis or eating under both feeding conditions. 

The same was true for the astrocyte-specific SIRT3 overexpression (SIRT3ki) in mice 

on the control diet. However, the SIRT3ki caused changes in energy homeostasis and 

glucose metabolism in mice fed the HFD for 12 weeks. These mice exhibited an overall 

anabolic state with increased food intake but decreased energy expenditure, and a 

hypersecretion of insulin. These findings suggest that SIRT3ki in GFAP astrocytes can 

modulate central nervous system (CNS) metabolic signaling and whole body energy 

homeostasis and metabolism. The failure to verify the SIRT3ko for technical reasons 

and the comparatively small SIRT3 overexpression of 20% limit these interpretations.   

Taken together, our results suggest a possible contribution of VAN metabolic sensing 

to the control of eating under certain conditions. Furthermore, astrocyte SIRT3 

presumably does not play a major role in CNS metabolic sensing as part of the 

regulation of energy homeostasis. However, because of the unconfirmed (SIRT3ko) 

and limited (SIRT3ki) changes in SIRT3 expression that were achieved, these 

interpretations may underestimate the role of astrocyte SIRT3.   
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ZUSAMMENFASSUNG 

Die physiologischen Mechanismen, welche die Balance zwischen Energieaufnahme 

und Energieverbrauch sicherstellen, sind sehr komplex und bis heute nicht vollständig 

aufgeklärt. Periphere metabolische Signale sind schon seit langem mit der Steuerung 

des Essverhaltens in Verbindung gebracht, dennoch ist bis heute nicht bekannt über 

welche Mechanismen Metaboliten oder deren Abbauprodukte die Nahrungsaufnahme 

beeinflussen; lösen sie ein Signal aus, welches über die vagalen Afferenzen zum 

Gehirn übertragen wird oder ist deren Verstoffwechselung im Gehirn für die Steuerung 

des Essverhaltens zuständig? In dieser Dissertation begannen wir, beide 

Möglichkeiten zu untersuchen. 

Im ersten Teil der Arbeit untersuchten wir, ob der Monocarboxylat-Transporter-2 

(MCT2) in den Afferenzen des Nervus vagus (VAN) eine Rolle bei der Steuerung des 

Essverhaltens spielt. Hierfür injizierten wir bei Ratten bilateral in die Ganglia nodosa 

einen viralen Vektor mit gegen MCT2 gerichteter shRNA oder (ungerichteter RNA) 

durch, um die Expression des MCT2 zu reduzieren (knock-down) und massen die 

Futteraufnahme von Ratten beim Verzehr einer Standard- oder Hochfettdiät (HFD, 

60% Fett). Der MCT2 ist für den Transport von Monocarboxylaten wie Lactat, Pyruvat 

und Beta-Hydroxybutyrat über die Zellmembran zuständig und ermöglicht dadurch ihre 

intrazelluläre Verstoffwechselung. Die Knock-Down-Effizienz war nur 28%. Als die 

Tiere mit der Standarddiät gefüttert wurden, führte die Reduktion der Expression von 

MCT2 (MCT2kd) dennoch zu einer Verlängerung der mittleren Mahlzeitendauer. Nach 

einer 16-stündigen Fastenperiode war bei den MCT2kd-Ratten im Vergleich zu den 

Kontrollratten die zweite Mahlzeit deutlich vergrössert und verlängert, was für eine 

substantielle Beteiligung von VAN MCT2 an der Steuerung der Mahlzeitgrösse unter 
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diesen Bedingungen spricht. Nach der Umstellung auf die HFD, zeigten die MCT2kd-

Ratten vorübergehend während der 12-stündigen Hellphase eine erhöhte 

Mahlzeitenanzahl und Futteraufnahme. Dies weist darauf hin, dass der MCT2 in VAN 

unter diesen Bedingungen an der Aufrechterhaltung der Sättigung beteiligt ist. 

Der Befund, dass der MCT2 in VAN unter bestimmten Bedingungen an der Steuerung 

der Nahrungsaufnahme beteiligt ist, unterstützt indirekt die Hypothese einer 

peripheren metabolischen Komponente der Steuerung der Nahrungsaufnahme über 

Signale in VAN.  

Im zweiten Teil der Arbeit verwendeten wir das induzierbare CreERT2-loxP System, 

um zu untersuchen, ob eine Über- oder Unterexpression des Sirtuin3 (SIRT3), 

spezifisch in GFAP- (glial fibrillary acidic protein) exprimierenden Astrozyten, während 

der Aufnahme einer fettarmen oder fettreichen Diät (HFD), die Nahrungsaufnahme und 

den Metabolismus von Mäusen beeinflusst. SIRT3 ist eine wichtige Deacetylase, 

welche durch Deacetylierung mehrere mitochondriale Enzyme in unterschiedlichen 

Stoffwechselwegen, jedoch hauptsächlich in der Fettsäureoxidation und Ketogenese, 

aktiviert. Die Astrozyten-spezifische SIRT3 Unterexpression (SIRT3ko) zeigte unter 

beiden Fütterungsbedingungen keinen Einfluss auf die Nahrungsaufnahme oder 

Energie-Homöostase der Mäuse. Analoges traf auch bei Mäusen mit Astrozyten- 

spezifischer SIRT3 Überexpression bei fettarmer Fütterung zu. Die SIRT3 

Überexpression führte hingegen bei Mäusen, die vorher 12 Wochen der HFD 

ausgesetzt waren, zu Veränderungen der Energie- und Glukosehomöostase. Mit 

erhöhter Futteraufnahme und verringertem Energieverbrauch zeigten diese Mäuse 

insgesamt das Bild einer anabolen Stoffwechsellage parallel zu einer Hypersekretion 

von Insulin. Diese Ergebnisse deuten darauf hin, dass die SIRT3 Überexpression in 

GFAP-Astrozyten metabolische Signale im Zentralnervensystem (ZNS) sowie die 
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Energiehomöostase des Organismus beeinflussen kann. Die missglückte Verifizierung 

des SIRT3ko aus technischen Gründen und die vergleichswese geringe (20%) 

Überexpression von SIRT3 bei den SIRT3ki-Mäusen limitieren allerdings diese 

Interpretationen. 

Insgesamt lassen unsere Ergebnisse unter bestimmten Bedingungen eine Beteiligung 

der VAN an der Erfassung und Weiterleitung peripherer metabolischer Signale bei der 

Steuerung der Nahrungsaufnahme vermuten. Des Weiteren deuten die Resultate 

darauf hin, dass SIRT3 in Astrozyten keine wesentliche Rolle bei der Registrierung 

metabolischer Signale im ZNS im Rahmen der Regulation der Energiehomöostase 

spielt. Wegen der unklaren (SIRT3ko) beziehungsweise limitierten (SIRT3ki) 

Veränderungen in der Expression von SIRT3 könnte diese Interpretation allerdings die 

Rolle von SIRT3 in Astrozyten unterschätzen. 
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1. Obesity 

Energy homeostasis (EH) results from a physiological regulatory process balancing 

energy intake and energy expenditure, but the exact mechanism remains not fully 

understood. A dysfunction in this regulatory system can cause an excessive 

accumulation of fat, leading to overweight or obesity. Comorbidities such as type 2 

diabetes and cardiovascular diseases characterize the clinical picture of obesity, which 

is evolving into a major global health burden. A better understanding of how energy 

homeostasis is regulated might help identify the pathophysiology of obesity and guide 

the way to effective intervention (1). 

2. Peripheral signals modulating food intake 

2.1. General 

For the control of food intake (FI) and energy expenditure (EE) the central nervous 

system (CNS) relies on receiving and processing numerous peripheral signals 

“reporting” on the metabolic status of the body. In this context, we distinguish between 

two categories of signals: i) Circulating nutrients, gastrointestinal peptides, and signals 

derived from mechanosensors in the stomach wall promote primarily meal termination 

(satiation) and are referred to as short-term acting satiation signals. ii) Long-term 

signals, on the other hand, are hormones released in proportion to the amount of stored 

fat. These adiposity signals provide “tonic” signals, which determine how potent short-

acting satiation signals inhibit eating (2). 
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2.2. GI peptides 

Enteroendocrine cells (EEC) are spread along the whole gastrointestinal (GI) tract and 

are localized among the gastric and intestinal epithelial cells. EEC are chemosensing 

cells that monitor the luminal nutrient content and secrete GI peptides in response to 

a meal (3). These gut-derived peptides signal nutrient availability to the brain either by 

acting directly on central nervous system receptors (endocrine fashion) or on afferent 

nerves of the autonomic nervous system, primarily on vagal afferent nerves (VAN) 

(paracrine fashion) (4). Cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and 

peptide tyrosine tyrosine (PYY) are considered important GI satiation peptides, 

whereas ghrelin is the only GI peptide that stimulates eating (5, 6). Ghrelin is secreted 

primarily by X/A‐like cells in the stomach during fasting and shortly before anticipated 

meals. It is an orexigenic hormone and acts mainly directly on the brain, on reward 

pathways to enhance the attractiveness of the available food. Ghrelin also increases 

GI motility (7). CCK is secreted form I-cells in the small intestine mainly in response to 

lipid and protein breakdown products and it potently inhibits eating by reducing meal 

size. This effect appears partly related to an inhibition of gastric emptying (8). GLP-1 

is produced by L-cells in response to carbohydrates and fats. Intriguingly, L-cells 

increase in density throughout the small and large intestine. Similar to CCK, GLP-1 

reduces meal size and inhibits gastric emptying, but also acts as an incretin, i.e., it 

enhances glucose-dependent insulin release (9). PYY is also produced by L-cells, 

where it is coexpressed and co-released with GLP-1. It is secreted in proportion to the 

caloric load (10, 11). 
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2.3. Adiposity signals 

The circulating level of the prototypical adiposity signal leptin supposedly reflects the 

size of the available energy stores and thus enables the brain to adjust FI and EE 

accordingly (12). Leptin is produced by white adipocytes, and leptin plasma levels are 

approximately related to adipocyte size (13, 14). Leptin can inhibit FI and stimulate EE 

in large part by acting on its receptor in the arcuate nucleus (ARC) of the hypothalamus 

(15). A lack of leptin or its receptor results in a metabolic syndrome phenotype. Thus, 

leptin treatment of leptin-deficient mice reverses the phenotype (16). To influence food 

intake in individual meals, adiposity hormones must interact with satiation signals. 

Leptin and GI peptides interact at the level of the VAN and in the brain (17, 18). Leptin 

levels do scarcely change before or after a standard mixed mid-day-meal (1000 kcal) 

(19). Rather, leptin provides a “tonic” background signal in relation to the general 

energy status, thus determining how efficiently satiation signals act (20, 21). Moreover, 

it is important to note that low leptin levels are physiologically more relevant than high 

leptin levels because by not enhancing satiation signals, low leptin levels allow for an 

increase in meal size when energy stores are depleted.  Medium or high leptin levels, 

on the other hand, display no differences in efficacy (22-26). Talking about adiposity 

signals, one must also mention insulin. Although insulin secretion changes in relation 

to meals, circulating insulin, and in particular cerebrospinal fluid insulin levels, reflect 

adiposity (27). Also similar to leptin, insulin enhances the effect of satiation signals.  

2.4. Metabolic signals 

The ultimate goal of eating is to provide energy and nutrients for the whole body to 

ensure normal function. Based on physiological principles of regulated systems it is 

therefore reasonable to assume that some measure of energy or energy availability 
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influences eating. Several hypotheses have been proposed in this context, which either 

focused on single metabolites (e.g., glucose) and their utilization or on a general 

measure of energy (e.g., fuel oxidation or the intracellular ADP/ATP ratio) (28-31). 

Consistent with the original glucostatic hypothesis (32), parenteral glucose 

administrations often inhibited (33, 34), whereas an inhibition of glucose utilization 

stimulated (35-37), eating. Similar to the administration of glucose, also the parenteral 

administration of other metabolites, such as glycerol, L-malate, L-lactate, pyruvate or 

ß-hydroxybutyrate (BHB) reduced FI in rats (38). Prandial lactate infusion into the 

hepatic portal vein or vena cava also reduced FI (39). The FI reducing effects of these 

metabolites were eliminated after hepatic branch vagotomy (elimination of most of the 

hepatic and part of the proximal intestinal vagal innervation) arguing for a VAN 

mediation of the eating inhibitory effects of these metabolites (40). Moreover, the 

reduction in FI was associated with the generation of reducing equivalents in the 

mitochondria produced by the first oxidative step of the injected metabolites (31).  

Reduced FI was also recorded after intraperitoneal (IP) administration of fatty acid 

oxidation (FAO) stimulators such as oleoylethanolamine (OEA) and WY-14643 (an 

exogenous peroxisome proliferator-activated receptor-alpha (PPARα) agonist) (41, 

42).  Moreover, the interventions caused an increase in carnitine palmitoyltransferase-

I (CPT1) and hydroxymethylglutaryl-CoA synthase-2 (HMGCOAS2) expression, the 

key FAO and ketogenesis (KG) enzymes, in the small intestine. Concomitantly, the 

treatments produced increased BHB levels in the hepatic portal vein. Intragastric 

infusion of a diacylglycerol acyltransferase-1 inhibitor  (DGAT-1i), an enzyme involved 

in the last step of triglyceride synthesis, also increased circulating BHB levels and 

reduced  FI (43). The observed effects of OEA, WY-14643, and DGAT-1i were not 

abolished after subdiaphragmatic vagal deafferentation (SDA), suggesting a non-vagal 



20  CHAPTER 1: GENERAL INTRODUCTION 

 

mediation, but this needs to be further investigated (44). In another series of 

experiments, transgenic mice constitutively overexpressing the mitochondrial protein 

Sirtuin3 (SIRT3) specifically in the enterocytes and fed a high-fat diet (HFD) displayed 

increased KG associated with improved glucose homeostasis without changes in 

eating or body weight (45). Taken together, these data indicate that metabolic signals 

are involved in the control of FI and regulation of EH and suggest a possible role of 

intestinal FAO and KG.  Nevertheless, in general, the idea that metabolic changes 

within the physiological range can affect eating is somewhat controversial, and in any 

case, metabolic signals are certainly only one component in the complex control of 

eating. 

3. Gut-brain-axis 

3.1. General 

The autonomic nervous system (ANS) transfers information, encoded by many of the 

peripheral signals mentioned above, to the brain.  In effect, these signals shape the 

efferent responses, i.e., modulate EE and eating behavior to regulate EH. The resulting 

bidirectional information flow between the GI tract and the brain is referred to as the 

“gut-brain-axis”. The ANS consists of the parasympathetic and sympathetic nervous 

system (PNS and SNS, respectively), which comprise the extrinsic innervation of the 

GI tract and the enteric nervous system (ENS), the intrinsic innervation of the GI tract. 

3.2. Enteric nervous system 

The ENS is referred to as the “gut-brain”. In humans, it is composed of 200-600 million 

neurons and consists of a “mesh-like-system” of neurons that govern GI functions. 
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ENS neurons are distributed in many thousands of small ganglia, the vast majority of 

which are found in the submucosal (Meissner’s) and myenteric (Auerbach’s) plexus. 

Most of the interactions between ENS and the extrinsic innervation occurs there (46). 

For instance, intestinofugal neurons, with their cells bodies in enteric ganglia and with 

their axons reaching the sympathetic ganglia, represent a significant connection 

between the intrinsic and extrinsic neurons, allowing for the transmission of intestinal 

signals to centers in the brain stem (47).  

3.3. Parasympathetic and sympathetic innervation 

The SNS and PNS generally act in a reciprocal or antagonistic fashion. The SNS 

stimulates the “fight or flight” response, mediating mainly catabolic processes; the PNS 

stimulates the “feed and breed” response, mainly mediating anabolic processes.  

The sympathetic efferent innervation of the GI tract runs mostly in parallel with spinal 

nerves and spinal afferents. Spinal afferents pass through sympathetic prevertebral 

ganglia and synapse either with neurons of the myenteric or submucosal plexus of the 

ENS or terminate in the lamina propria of the mucosa of the GI tract (46). The cell 

bodies of sympathetic afferents, which relay the information to the spinal cord, are 

located in the dorsal root ganglia.  

Vagal efferents convey motor signals mostly from the nucleus ambiguous and dorsal 

motor nucleus of the vagus to the GI tract (48). VAN, which relay the information to the 

nucleus tractus solitarii (NTS) in the brain stem, have their cell bodies located in the 

nodose ganglia (NG) (49). Approximately 80% of the vagal fibers are afferents (41). As 

the major CNS entry point of afferent nerves from the GI tract, the NTS constitutes a 

key component of the gut-brain axis (50). Distally, similar to sympathetic afferents, 
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vagal afferents synapse either with neurons of the myenteric or submucosal plexus of 

the ENS or terminate in the lamina propria of the mucosa of the GI tract (46).  

3.4. Role of the vagus nerve in the control of food intake 

Intestinal VAN, in essence, encode the amount and nutrient composition of a meal, 

thus providing an interface between the “food environment” and the body (51, 52). 

Gastric VAN react to gastric distension and thus convey mainly information about the 

volume of ingested food (53). In contrast, nutrient infusion into the proximal small 

intestine revealed a nutrient-specific pattern of activation in intestinal VAN, indicating 

that intestinal VAN are predominately involved in chemosensing rather than 

mechanosensing (54, 55). As a result, GI peptides released by EEC in relation to 

luminal nutrients act primarily on VAN relaying sensory input of the type of ingested 

nutrients (54). GI peptides are also able to modulate VAN mechanosensitivity, i.e., 

many VAN, in particular in the proximal small intestine, are polymodal, i.e., react to 

chemical as well as mechanical signals (56). Moreover, in addition to this kind of 

“indirect” sensing of volume and type of ingested food by VAN, they can also directly 

sense glucose, amino acids and fatty acids (FA) (57-59). Also direct sensing of 

metabolic intermediates such a lactate and KB by VAN has been proposed (38, 40, 

44).  Indeed, VAN are not only ideally positioned to sense the GI peptides released by 

EEC, but also to respond to digestion products or mediators released by enterocytes 

(60). First, VAN are present within the lamina propria and are thus in close proximity 

to intestinal epithelial cells (61). Second, in addition to GI peptide receptors, VAN also 

express receptors for a wide range of metabolites (57, 58, 62). Overall, VAN signaling 

appears to be mainly involved in the control of meal size and duration (63). 

Interestingly, VAN also express the leptin receptor, and leptin modulates GI satiation 
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signals already at the level of VAN (64). Thus, VAN are presumably also involved in 

the regulation of long-term energy balance.  

Except for the mechanosensitivity of VAN in the stomach and proximal small intestine, 

all the mechanisms of VAN activation described so far are related to the binding of 

ligands (gut peptides or metabolites) to G-protein-coupled receptors (GPCR) or to 

enzyme-linked receptors (leptin and cytokines) located in the VAN membrane (62). 

There may however also be a mechanism of modulation of VAN activity related to the 

intracellular metabolism of fuels. For instance, Niijima showed more than 40 years ago 

that hepatic branch vagal afferent signaling is modulated by glucose metabolism (65). 

More recently, it was reported that VAN are able to sense glucose through intracellular 

glycolysis. Thus, GLUT3, Glucokinase, and KATP channels were detected and required 

for glucosensing in NG (66). Nevertheless, although glucose is the major energy 

substrate for the brain, under specific conditions such as during breast-feeding, 

starvation, and diabetes, ketone bodies (KB) provide an energy source as well (67). 

Also lactate is an essential energy substrate for neurons (67). Both, KB and lactate are 

produced in the brain (by astrocytes) or imported from the circulation to “feed” the 

neurons (68-71). In addition, both enter neurons via monocarboxylate transporters 

(72). Monocarboxylate transporters are a family of proton-linked transport proteins (72, 

73) which are located in the plasma and mitochondrial membranes and transport 

metabolic intermediates such as pyruvate, lactate, and KB. Among those, the 

monocarboxylate transporter-2 (MCT2) is described as the essential transporter in 

neurons, which is required for lactate and KB to enter the cell (74, 75).  

Whereas VAN glucose utilization has been implicated in the control of eating, it is so 

far unknown if changes in VAN utilization of lactate or KB can modulate VAN signaling 
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and, perhaps, also affect eating. We began to address this question by studying the 

role of VAN MCT2 in the control of FI (see CHAPTER 2). 

4. CNS control of energy balance 

4.1. General 

Most of the original theories of the metabolic control of eating posited that the brain is 

a major, or even the only, place in the body where the availability or utilization of 

metabolites is sensed and processed to generate the adequate output. Importantly, 

however, peripheral signals also influence brain energy metabolism itself, which in turn 

affects the processing of metabolic inputs (76). Thus, brain energy metabolism 

“products” are involved in shaping the brain`s behavioral and autonomic output. Brain 

energy metabolism is seen as a neuroglial metabolic cooperation. A particular focus in 

this context is the astrocyte-neuron metabolic unit (77).  

4.2. Neuronal circuits  

Three functionally distinct, but highly connected brain areas are the key operators in 

the control of FI and regulation of energy homeostasis, i.e., the hypothalamus, the 

hindbrain, and the forebrain. 

The hypothalamic circuit is a major regulator of energy homeostasis, being in charge 

of the maintenance of energy balance by integrating input on energy intake, energy 

storage and aligning it with the various energy-demanding activities such as 

sleep/wake cycle, thermoregulation and sexual activity (78, 79).  
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In the hypothalamus, metabolic mechanisms appear to be directly coupled to the 

control of FI. Andersson and colleagues showed that humoral or pharmacological 

activation or deactivation of the ubiquitous cellular energy sensor AMP kinase, which 

is activated in response to decreases in cellular energy availability, was sufficient to 

increase or decrease FI, respectively (80). Similar observations were made in the NTS 

(81, 82).  

The hypothalamic circuit consists of several tightly interconnected nuclei, in particular 

i) the arcuate nucleus (ARC) ii) the paraventricular nucleus (PVN) iii) the ventromedial 

hypothalamus (VMH) and iv) the lateral hypothalamus (LH). 

A primary function of the ARC is metabolic signaling and control of FI. Its position next 

to the third ventricle allows hormones and nutrients in the systemic circulation as well 

as the cerebrospinal fluid to access the ARC easily (83). Consequently, several ARC 

neurons are first-order neurons on which peripherally derived nutrients, but also 

hormones such as ghrelin, insulin and leptin, act. A portion of ARC neurons comprise 

two distinct neuronal populations: 1) Neurons expressing the orexigenic neuropeptides 

neuropeptide-Y (NPY) and agouti-related peptide (AgRP), and 2) neurons producing 

the anorexigenic neuropeptides alpha-melanocyte-stimulating hormone (α-MSH), 

derived from proopiomelanocortin (POMC), and cocaine-amphetamine-regulated-

transcript (CART). AgRP and POMC neurons project to second-order neurons located 

in the PVN, VMH, and LH as well as in many other brain areas (84). When α-MSH is 

released and binds to the melanocortin receptors (MCR) 3 and 4 on these second-

order neurons, catabolic pathways are activated, leading to an inhibition of FI and a 

stimulation of EE (85). In contrast, AgRP acts as an endogenous inverse agonist of 

MCR3 and MCR4, thus, in essence blocking the effects of α -MSH (86). ARC neurons 

are also able to sense glucose. They are in fact prototypic metabolic sensing neurons, 



26  CHAPTER 1: GENERAL INTRODUCTION 

 

i.e., POMC neurons are excited by glucose, leptin and insulin, NPY neurons are 

inhibited by glucose, leptin and insulin (87, 88). Many of them can also sense fatty 

acids. All this is interesting because these neurons can therefore integrate metabolic 

and endocrine signals from the periphery. Glucosensing neurons in particular are 

scattered throughout the brain and take part in a wide spectrum of physiological, 

metabolic and behavioral processes (89-93). 

The PVN consists of neurons producing and secreting primarily catabolic 

neuropeptides such as corticotrophin-releasing hormone, thyrotropin-releasing 

hormone, somatostatin, vasopressin, and oxytocin, and some of them are also 

metabolic sensing neurons.  The PVN also stimulates the SNS (94, 95) and, 

consequently, PVN stimulation promotes lipolysis and FAO in peripheral metabolic 

organs. 

The VMH is densely innervated by both populations of ARC neurons mentioned above. 

VMH neurons project to the dorsomedial hypothalamus, the LH and back to ARC as 

well as to the brain stem (96). Also many VMH neurons are metabolic sensing neurons, 

and the VMH is important for the maintenance of glucose homeostasis and the 

generation of satiety (97, 98). 

The LH has long been considered a “feeding center”, as its destruction leads to 

hypophagia and weight loss (99). Two neuronal populations, both producing orexigenic 

neuropeptides, are located in the LH: melanin-concentrating hormone (MCH) and 

orexin also termed hypocretin (100). 

The hindbrain circuit is involved in the processing of gastrointestinal sensory, oral 

sensory and motor events in relation to the act of eating. An important nucleus of the 

hindbrain is the NTS. The NTS receives GI tract-derived signals mainly via VAN and 
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via splanchnic afferents (101). However, the NTS is close to the area postrema, which 

is a circumventricular organ with a leaky blood-brain barrier and, hence, like the ARC 

in a supreme position to react to peripheral circulating signals (102). The NTS is mostly 

responsible for the control of meal size and meal duration. Strong bidirectional 

projections between the hindbrain and the hypothalamus account for the incorporation 

of eating circuits into the regulation of EH. The NTS also controls other efferent 

responses, regulating GI motility and EE (103). 

Forebrain reward circuits are responsible for the hedonic control of FI based on 

palatability (104). The mesolimbic and mesocortical dopaminergic pathways are major 

components of these hedonic circuits.  Palatable foods trigger dopamine release in the 

ventral tegmental area (VTA), which further activates neurons in the nucleus 

accumbens (105). In addition to ghrelin (see above) (106), also adiposity signals 

control hedonic eating. For instance, leptin and insulin can suppress FI by acting on 

dopaminergic neurons in the VTA (107).  

In sum, in conditions of energy deficit the homeostatic circuitries increase the 

motivation to eat, whereas under conditions of energy abundance the hedonic control 

is responsible for the desire to consume highly palatable foods (104). Nevertheless, 

the overall energy status also determines the rewarding effects of food, illustrating the 

strong interconnection among all three circuits.  

4.3. Astrocytes, helper or master 

Although glia cells make up approximately half of the brain volume, neurons have long 

been considered the primary cell types of the CNS receiving, processing, and 

transmitting information, as well as being the only cells relevant for reasoning and 
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awareness. Nowadays, however, the significance of glial contribution to the formation 

of neuronal responses has become a focus of attention (76). 

Oligodendrocyte, microglia, astrocytes, and tanycytes are different types of glia cells. 

All of them, to various degrees, contribute to the regulation of EH (108). Their functions 

differ substantially: Oligodendrocytes provide the myelin sheets of axons and are thus 

important for fast signal transmission. Microglia represent the brain’s immune system, 

protecting against infections and dealing with harmed cells. Tanycytes are specialized 

ependymoglial cells (classified as astroglia), which line the floor of the third ventricle 

and are involved in hypothalamic functions. Finally, the astrocytes’ key functions are 

to nourish and support neurons (109). 

In particular hypothalamic astrocytes appear to play a pivotal role in the regulation of 

whole-body EH (110). Astrocytes are the most abundant type of glial cells, and the 

cytological connections among astrocytes, brain capillary endothelial cells and neurons 

are crucial for the astrocytes’ unique role (111, 112). Astrocytes surround brain 

capillaries through specialized “perivascular end-feet” (113). This indicates that 

astrocytes function as gatekeepers, forming the first cellular barrier that nutrients and 

humoral signals entering the brain parenchyma encounter. This location puts 

astrocytes also in a primary position to distribute energy substrates. Astrocytes also 

form processes that engulf synaptic contacts (114) and express receptors and uptake 

sites, which enable direct interaction with neurotransmitters during synaptic activity 

(115). Those two features allow astrocytes to monitor and influence synaptic activity. 

Taken together, astrocytes are ideally suited and positioned to link changes in energy 

metabolism with adaptations in neuronal activity. Those exquisite structural and 

functional characteristics endow astrocytes with the prerequisites for the following 

functions: 
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i) Neurovascular coupling, which is the spatiotemporal coupling between 

neuronal activity and increased cerebral blood flow to ensure appropriate 

metabolic supply (116). 

ii) Neurotransmitter recycling and anaplerosis (replenishing of Krebs cycle 

intermediates), which is the removal of neurotransmitters from the synaptic 

cleft, terminating synaptic transmission, thus maintaining neuronal 

excitability (117-119).  

iii) The glutamate-glutamine shuttle; glutamate is the primary excitatory 

neurotransmitter in the brain, and overstimulation of neurons is neurotoxic 

(excitotoxicity). Astrocytes take up glutamate, convert it to glutamine by the 

astrocyte-specific enzyme glutamine synthetase, and transfer the glutamine 

back to neurons where it is re-converted into glutamate to fill the 

neurotransmitter pool (119). 

iv) The glutamate-stimulated uptake of glucose by astrocytes provides the 

direct coupling of synaptic activity to glucose utilization (120). 

v) The astrocyte-neuron lactate shuttle; compared to glucose, lactate is a 

“ready to use” energy fuel that is energetically favored, in particular in 

situations of high-energy demand, when maintenance of high ATP levels are 

critical (70). 

vi) The astrocyte-neuron ketone body shuttle; astrocytes are the only cell type 

in the brain oxidizing FA for KB synthesis. During specific conditions such 

as suckling and starvation, the neurons rely on KB utilization (121, 122).  

vii) Glycogen storage; storage of energy in the brain is exclusively localized in 

astrocytes. During metabolic needs, glycogen breakdown mostly results in 

lactate production and release for the uptake by neurons (123, 124). 
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Those prerequisites emphasize the close functional metabolic partnership between 

astrocytes and neurons representing the astrocyte-neuron metabolic unit, which 

underlines the astrocytes’ significance in brain energy metabolism. 

In addition to those local tasks, further astrocyte features are emerging that highlight 

the astrocytes’ involvement in whole-body energy homeostasis. These include the 

following: 

i) Hypothalamic astrocytes are involved in glucose sensing and in forming the 

neuronal response to fluctuations in glucose availability (125-127). 

ii) Hypothalamic astrocyte-derived KB influence neuronal signaling and FI. KB 

thus even override glucose and fatty acid sensing (71).  

iii) Lactate, most probably derived from astrocytes, also functions as an 

intracellular signaling molecule modulating FI (128). 

iv) Astrocytes express receptors for hormones involved in EH such as GLP-1, 

ghrelin, leptin, and insulin, and astrocyte-specific insulin receptor knockdown 

revealed the astrocytes’ involvement in EH (129-132). 

In summary, there is growing evidence that interactions between astrocytes and 

neurons are not only dedicated to fueling actions but also to signaling events, hence 

participating in neuronal signaling and whole-body EH.  

4.4. Astrocyte metabolism  

As mentioned above, neurons and astrocytes prefer different metabolic pathways, 

which is partly related to cell-type specific expression patterns of key metabolic 

regulatory genes. Thus, neurons and astrocytes differ with respect to their metabolic 

profiles; they are complementary and, as a result, pave the way for an indispensable 
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metabolic cooperation (77). The three key metabolic differences are i) the exclusive 

glycogen storage by astrocytes (123) ii) their high glycolytic rate (133, 134) and iii) their 

ability to oxidize FA and produce KB (71, 135, 136).  

Astrocytes and neurons possess equal capacity to oxidize glucose and/or lactate 

(137), but neurons sustain a higher rate of oxidative metabolism compared to glia cells, 

whereas astrocytes display a higher glycolytic rate (133). Unlike astrocytes, neurons 

also metabolize lactate, which enables them to use the lactate provided by astrocytes 

due to their high glycolytic rate (124, 138). In addition, astrocytes store the surplus 

energy as glycogen, a phenomenon called the “glycogen shunt” (139, 140). Moreover, 

astrocytes are the only cell type in the brain able to oxidize fatty acids for the synthesis 

of KB. As mentioned above, KB, like lactate, are implicated as signaling molecules 

(71).  

Sirtuin 3 (SIRT3) an NAD+ dependent mitochondrial deacetylase deacetylates, and 

thereby activates, numerous enzymes involved in several metabolic pathways (141). 

Prominent is its function to upregulate FAO and KG while downregulating glycolysis 

(142).  Investigating the involvement of SIRT3 in astrocyte mitochondrial metabolism 

and, in particular, KG might allow for a better understanding of the roles of SIRT3 and 

astrocytes in whole-body energy homeostasis. 

5. Aims of the thesis 

This thesis aims at a better understanding of the possible involvement of intracellular 

metabolism in the sensing and signaling of energy availability in the periphery and the 

CNS with respect to energy homeostasis. 
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1) Based on early work suggesting that mitochondrial oxidation of various metabolites, 

including lactate (38), affected eating via VAN signaling (40), and prompted by recent 

findings suggesting a role of enterocyte-derived KB in the control of eating (44), we 

started to address the possible role of VAN MCT2 in the control of eating. More 

specifically, we knocked down MCT2 specifically in VAN of rats by bilateral NG 

injections of an AAV-shRNA targeting rat MCT2 and characterized the animals’ eating 

behavior on chow and after the switch to HFD (CHAPTER 2). 

2) Accumulating evidence indicates that astrocytes play a role in CNS metabolic 

sensing and in the regulation of energy homeostasis (76). Following up on studies 

implicating astrocyte fatty acid oxidation and KB production in the control of eating (71), 

we attempted to manipulate astrocyte metabolism by downregulating or 

overexpressing Sirtuin3 (SIRT3), specifically in GFAP expressing astrocytes, using the 

inducible CreERT2-loxP system in mice fed either low fat or HFD. SIRT3 deacetylates 

and, hence, activates various mitochondrial enzymes involved in several metabolic 

pathways, in particular in fatty acid oxidation and ketogenesis (CHAPTER 3).  
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Introduction 

The “energostatic hypothesis” proposed that a common metabolic measure of energy 

rather than the concentration or utilization of a single nutrient controls eating (1). This 

hypothesis remained controversially discussed over the years, but is recently gaining 

new attention (2). Back in 1986 Langhans and Scharrer demonstrated that 

intraperitoneal (IP) injection of the fatty acid oxidation (FAO) inhibitor mercaptoacetate 

(MA) stimulated food intake (FI) in rats fed ad libitum a fat-enriched (18% fat) diet (3). 

The original idea was that the effects of FAO inhibitors originate in the liver and that 

the generated signal reaches the brain via vagal afferents (4, 5). Yet, changes in 

hepatic FAO proved to be neither necessary nor sufficient for FAO inhibitors to 

stimulate eating (6, 7), and liver parenchyma scarcely contains any vagal afferent fibers 

(8). Moreover, it was shown that a constitutively enhanced hepatic FAO in mice 

stimulated rather than inhibited eating (9). On the other hand, MA failed to stimulate 

eating in rats after subdiaphragmatic vagal deafferentation (SDA), a procedure that 

eliminates all vagal afferents from below the diaphragm. This finding therefore 

indicates that the effect of MA originates in the abdominal cavity, but “outside” the liver. 

In several studies, a pharmacological stimulation of FAO inhibited FI and induced the 

protein expression of key enzymes involved in FAO and ketogenesis, such as carnitine 

palmitoyltransferase-1A (CPT 1A) and mitochondrial 3-hydroxy-3-methylglutaryl-CoA 

synthase (HMGCoAS2), in the small intestine, but not in the liver (10-13). Furthermore, 

in some of these studies, the treatments increased hepatic portal vein β-

hydroxybutyrate (BHB) levels without a concomitant change in circulating non-

esterified fatty acid (NEFA) levels (10, 13). These and other findings suggest that 

oxidation of dietary-derived fatty acids in enterocytes generates a signal that 

modulates eating. Enterocytes can produce ketone bodies (KB), and BHB has often 
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been shown to inhibit eating after exogenous administration. For instance, 

subcutaneously injected BHB inhibited eating in rats fed chow diet ad libitum 

presumably through a metabolic mechanism and via a vagus nerve-mediated path (14-

16). Recent findings (17) further support this view in confirming that hepatic branch 

vagotomy eliminated the hypophagic effect of intraperitoneally injected BHB also in 

mice. Moreover, the effect observed in WT mice was also present in mice deficient of 

the GPR109A, the major BHB receptor (18, 19), indicating that the vagal afferent signal 

generated was not due to activation of a membrane receptor. In other studies, hepatic 

branch vagotomy not only blocked the hypophagic effect of BHB, but also that of other 

subcutaneously injected metabolites such as glycerol, L-malate, L-lactate or pyruvate 

(15).  Prandial lactate infusions into the hepatic portal vein or vena cava lead to similar 

decreases in meal size, supporting the idea of an extrahepatic sensing mechanism 

(20). Finally, the observed reduction in food intake caused by different metabolites 

appeared to be linked to the generation of reducing equivalents in the mitochondria 

produced by the first oxidative step of the injected metabolite (21).  

Based on all these studies, it is reasonable to speculate that enterocyte-derived KB or 

lactate may be taken up by intestinal VAN to affect signaling and, hence, eating  via a 

metabolic mechanism. Lactate and KB may enter the VAN via one of the 

monocarboxylate transporters (MCTs), with the most likely one being the MCT2 (22). 

Therefore, we first examined whether rat vagal afferent primary neurons express 

MCT2. Then we knocked down MCT2 expression in nodose ganglia (NG) by injecting 

an AAV-shRNA targeting rat MCT2 and assessed food intake (FI) and body weight 

(BW) on chow and with high-fat diet (HFD) feeding. The MCT2 knockdown distinctly 

affected meal patterns under both feeding conditions (chow and HFD): On chow, it 

prolonged dark phase meal duration, and after food deprivation, it increased meal size 
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as well, whereas after the switch to HFD it increased meal number specifically during 

the light phase. The latter effect translated into increased 24 h FI and increased BW 

during the first week after the switch to HFD. Overall, our findings suggest that the 

MCT2 in VAN is involved in the control of eating. The MCT2 knockdown may stimulate 

eating by limiting the VAN uptake and metabolization of intermediates such as BHB 

and lactate produced in enterocytes from ingested nutrients.   
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Methods 

Animals and housing 

The cell culture and immunohistochemistry experiment was performed by Myrtha 

Arnold in Professor Helen Raybould’s laboratory at UC Davis (Davis, CA, USA). Male 

Sprague Dawley rats (Harlan Industries, Indianapolis, IN), weighing 207  1 g upon 

arrival were group-housed (four animals/cage) in a climate-controlled room (22 ± 2 °C 

and 55 ± 5% relative humidity) with a 12/12 dark/light cycle and ad libitum access to 

water and food (standard chow diet; Lab Diet 5001 rodent diet, St. Louis, USA; crude 

protein 23.0%, crude fat 4.5%, nitrogen free extract (NFE) 48.7%). All experimental 

procedures were in accordance with protocols approved by the Institutional Animal 

Care and Use Committee (University of California, Davis). 

The NG shRNA injection experiment with food intake monitoring was performed in our 

laboratory at ETH Zürich in Schwerzenbach. Male Sprague-Dawley rats (Charles 

River, Sulzfeld, Germany), weighing 140-180 g upon arrival, were group-housed (four 

animals/cage) in a climate-controlled room (22 ± 2 °C and 55 ± 5% relative humidity) 

with a 12/12 dark/light cycle and  ad libitum access to water and food, unless otherwise 

noted (standard chow diet #3433 or 3436 Kliba-Nafag, Switzerland; crude protein 

18.5%, dry matter 88%, crude fat 4.5%, NFE 54.2% or 54.0% respectively). Animals 

were adapted to the housing conditions for at least 7 days prior to the surgical 

procedure (see below) and then single-caged for 10 days before food intake recordings 

began. In the experiment, rats were fed either standard chow (#3433 or 3436 Kliba-

Nafag, Switzerland; crude protein 18.5%, dry matter 88%, crude fat 4.5%, NFE 54.2% 

or 54.0% respectively) or high-fat diet (HFD, #E15742-34 Ssniff, Germany; 60 kJ % 

fat; crude protein 24.4%, crude fat 34.6%, crude fibre 6%, crude ash 5.5%, starch 
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0.1%, sugar 9.4%). All experimental procedures were approved by the Veterinary 

Office of the Canton of Zürich. 

Cell culture and immunohistochemistry  

After an overnight (light phase) food deprivation animals were euthanized with CO2. 

Harvested nodose ganglia (NG) were dissected under aseptic conditions and digested 

for 2 h at 37°C in HBSS (Ca2+ and Mg2+ free Hank’s balanced salt solution) containing 

2 mg/ml collagenase A (Roche Diagnostics, Indianapolis, IN). Cells were dispersed, 

washed twice with HEPES-buffered DMEM containing 10% fetal calf serum 

supplemented with 3% antibiotic/antimycotic solution, and plated onto four-well 

chamber slides (Millipore E-Z 4-chamber slides). Cells were maintained in DMEM (+ 

supplements, see above) at 37°C in 5.5% CO2. The medium was changed every 48 h. 

After 3 days, the cultured vagal afferent neurons (VAN) were fixed in 4% para-

formaldehyde in PBS, processed for immunohistochemistry, and stained for MCT2 

(1:100, sc-14926, Santa Cruz, Dallas, USA) and Pan cadherin (1:100, Abcam 6528, 

Cambridge, UK).  The samples were mounted in Vectashield with 4′,6-diamidino-2-

phenylindole (DAPI; Vector Laboratories, Peterborough, UK) for nuclear localization. 

Staining was visualized under the microscope (Olympus Production Fluorescence 

Microscope). 

Virus details and NG injection 

An adeno-associated-viral construct (AAV) expressing either a scrambled shRNA or a 

shRNA targeting MCT2 (2.5 x 107 infectious particles (InP)/l) (AAV-MCT2) was 

provided by Prof. Luc Pellerin, University of Lausanne, Switzerland. Rats (weighing 
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200-260 g on surgery day) were anesthetized with isoflurane (IsoFlo, Abbott 

Laboratories), and nodose ganglia (NG) were exposed. With a Picospritzer III injector 

(Parker Hannifin) and a glass capillary (50 µm tip), 1.5 l of viral solution, AAV-MCT2 

or scrambled shRNA, was administered into each NG at a speed of 0.5 µL/min, 

followed by additional 3 min resting time (23). Animals were allowed to recover for 

2 weeks before body weight monitoring was used for data collection.  

Food intake and meal pattern recording 

Feeding cups were placed on scales (XS4001S; Mettler-Toledo) and accessible 

through a niche in the cage. A custom-designed software (LabX meal analyzer 1.4; 

Mettler Toledo) on a computer connected to the scales continuously recorded the 

weight of the feeding cups, allowing for precise meal pattern analysis. A minimum food 

removal of 0.3 g separated from other food removals by at least 15 min of eating 

inactivity was defined as a meal. Food recordings always started with dark phase onset 

and lasted for 23 hrs. Recording recess was necessary for food cup refill or scale reset 

to 0.0 and body weight monitoring. Food intake recordings during chow feeding started 

8 weeks after virus injection to ensure expression of the viral construct (24). Food 

intake data are presented as means of individual animal averages of three recording 

days. In a second experiment three weeks later, animals had no access to food for 

16 h (12 h light phase and 4 h dark phase) before the food intake measurement. 

Fourteen weeks after virus injection the animals were switched from chow to HFD at 

dark onset, and food intake recording was started. Food intake recording data of the 

first day on HFD are presented as a single independent experiment. 
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NG collection and gene expression analysis 

Animals were anesthetized with isoflurane (IsoFlo, Abbott Laboratories) and 

transcardially perfused with PBS (RT, Gibco # 10010-15-015 pH 7.4) for 5 min at a 

speed of 30 ml/min. Both NG were harvested, pooled, immediately frozen in liquid 

nitrogen and stored at -80 °C. RNA was extracted using Trizol (Life Technologies) and 

transcribed to cDNA using the High-Capacity cDNA Reverse Transcription kit 

(ThermoFisher, 4368814). RT-qPCR was performed using FAST SYBER green in a 

Viia7 Real Time PCR system machine (Applied Biosystems). Data were analyzed 

using the 2ddCt method with β-actin (FW 5’: aaggccaaccgtgaaaagat; RV 5’: 

accagaggcatacagggaca) as the reference gene and MCT2 (FW 5’: 

ctggctgtcatgtacgcagga; RV 5’: aagccgacggtgaggtaaagt) as the gene of interest. 

Experimental design 

 

Schematic timeline of the experiments.  

BW = body weight; FI = food intake; HFD = high-fat diet; kd= knockdown; w = weeks. 

Statistical analysis 

GraphPad Prism (version 7.03) was used for all statistical analyses and graph 

generation. Data normality was verified using the Shapiro-Wilk test, and outliers were 

detected using the Grubb`s test. For unpaired, normally distributed values of equal 
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variance, differences were analyzed using the Student t-test. Where the dependent 

variable was affected by two factors, data were analyzed using two-way ANOVA. Post-

hoc analyses were performed using the Bonferroni/Sidak correction. Data are 

presented as means ± SEM. Differences were considered significant when p < 0.05. 
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Results 

Rat VAN express MCT2, and AAV-MCT2sh RNA injection decreased MCT2 gene 

expression in NG of rats 

As MCT2 expression varies among species and tissues (25), MCT2 expression in rat 

VAN was examined in primary rat NG neurons (Fig 1A). Staining for MCT2 revealed 

MCT2 expression along cell body and axons. The bilateral NG injection of AAVshMCT2 

led to a 28% reduction in MCT2 mRNA expression compared to control treated animals 

injected with an AAV carrying a scrambled shRNA (Figure 1B). 

 

Figure 1: Rat VAN express MCT2, and AAV-MCT2sh RNA injection decreased MCT2 
gene expression in NG of rats 

(A) Visualization of MCT2 protein expression (green), calcium-dependent adhesion 

transmembrane proteins (Pan cadherin, red), and nucleus (DAPI, blue), in a rat vagal afferent 

primary cell culture neuron; representative picture. (B) Relative MCT2 mRNA expression in 

nodose ganglia of MCT2 knockdown (MCT2kd) and control animals (CTR) (n=6/7), Student`s 

t-test, p < 0.05. Results are presented as means ± SEM; * = p < 0.05. 
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NG MCT2 knockdown did not affect cumulative food intake, but prolonged meal 

duration when rats were fed chow diet ad libitum 

To investigate the role of VAN MCT2 in the control of eating, we first assessed whether 

the NG MCT2 knockdown influenced eating in rats fed chow diet ad libitum. MCT2 

knockdown did not affect 24 h food intake, nor dark- or light phase food intake (Fig 2A-

C), but it prolonged meal duration specifically during the dark phase (Fig 2D-F). Dark 

phase meal size tended to be increased, but this effect did not reach significance (Fig 

2H). Also, the number of meals remained unaffected (Fig 2J-L)). The MCT2 knockdown 

also did not affect first and second dark phase meal parameters (data not shown). After 

a 16 h fast, MCT2 knockdown animals showed a markedly increased and prolonged 

2nd meal (Fig 3B and 3D). Four-hour cumulative food intake and 12 as well as 24 h 

food intake were unaffected (data not shown).  
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Figure 2: NG MCT2kd animals on chow displayed a prolonged meal duration but no 
difference in meal size or meal number. 

A-M: Food intake of MCT2kd and control animals on ad libitum chow, presented as means of 

individual animal averages of 3 days of recordings (n=6/7). (A) 24 h food intake, (B) 12 h dark 

phase and (C) 12 h light phase, Student`s t-test, all ns. (D) Average meal duration over 24 h, 

(E) 12 h dark phase and (F) 12 h light phase, Student`s t-test, p < 0.05, p < 0.05, and ns, 

respectively. (G) Average meal size over 24 h, (H) 12 h dark phase and (I) 12 h light phase, 

Student`s t-test, all ns. (J) Number of meals over 24 h, (K) 12 h dark phase and (L) 12 h light 
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phase, Student`s t-test, all ns. Results are presented as means ± SEM; ns = not significant; * 

= p < 0.05. 

 

Figure 3: After a 16 h fast NG MCT2kd animals on chow showed bigger and longer 2nd 
meals. 

A-D: Meal pattern recording of MCT2kd and control animals on ad libitum chow after 16 h of 

fasting (n=6/7). (A) 1st meal size dark phase, (B) 2nd meal size dark phase, Student`s t-test, 

ns, p < 0.05, respectively. (C) Duration of 1st meal, (D) Duration of 2nd meal, Student`s t-test, 

ns, p < 0.05, respectively.  Results are presented as means ± SEM; ns = not significant; * = p 

< 0.05. 

NG MCT2 knockdown did not affect body weight when rats were fed chow diet 

ad libitum 

Body weight and body weight gain did not differ between MCT2 knockdown and control 

rats during the entire duration of the experiment when they were fed chow diet (Fig 4A 

and 4B).  
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Figure 4:  NG MCT2kd animals on chow showed no difference in body weight and body 
weight gain. 

(A) Body weight of MCT2kd and control animals monitored over 13 weeks on chow feeding 

after surgery (n=6/7), 2 way-ANOVA, time x group ns, time p < 0.0001, group ns. (B) 

Consecutive weekly body weight gains over the last 3 weeks on chow diet (n=6/7), Student`s 

t-tests, all ns. Results are presented as means ± SEM; ns = not significant; * = p < 0.05. 

When switched to the HFD, the MCT2 knockdown rats increased light phase food 

intake by increasing the number of meals 

Different from what we saw when the animals were fed chow, on the day they were 

switched to HFD, MCT2 knockdown rats ate more than control rats during the light 

phase, but not during the dark phase (Fig 5A-C). The increase in food intake during 

light phase was big enough to increase 24 h food intake, and it was due to an increase 

in the number of meals (Fig 5L), whereas meal size and meal duration remained 

unaffected (Fig 5D-I). MCT2 knockdown did also not affect 1st and 2nd meal size when 

animals were fed a high-fat diet (data not shown). 
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Figure 5: When switched to high-fat diet, NG MCT2kd animals displayed increased 12 h 
light phase food intake which was also reflected in increased 24 h food intake and due 
to a greater number of meals during 12 h light phase. 

A-M: Food intake and meal patterns of MCT2kd and control animals on 1st day of ad libitum 

high-fat diet (n=6/7). (A) 24 h food intake, (B) 12 h dark phase and (C) 12 h light phase, 

Student`s t-test, p < 0.05, ns, p < 0.05, respectively. (D) Average meal duration over 24 h, (E) 

12 h dark phase and (F) 12 h light phase, Student`s t-test, all ns. (G) Average meal size over 

24 h, (H) 12 h dark phase and (I) 12 h light phase, Student`s t-test, all ns; (J) Number of meals 
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over 24 h. (K) 12 h dark phase and (L) 12 h light phase, Student`s t-test, ns, ns, p < 0.05, 

respectively. Results are presented as means ± SEM; ns = not significant; * = p < 0.05. 

When switched to the HFD, the MCT2 knockdown rats showed increased 5 day 

cumulative FI and increased BW 

The MCT2 knockdown animals did not compensate for the increased food intake 

shown in the first 24 h on HFD. Rather, a continuous small, non-significant daily 

difference added up to a significant cumulative food intake difference on Days four and 

five after the diet switch (Fig 6A). Thereafter, when 24 h food intake was recorded once 

a week until week 5 after the switch to HFD, no difference between MCT2 knockdown 

and control animals was observed (Fig 6B). 

 

Figure 6: NG MCT2kd animals increased 5 day cumulative FI after switch to HFD. 

(A) Cumulative food intake of MCT2kd and control animals monitored over 5 days after the 

switch to HFD (n=6/7), bars represent the exact average difference in cumulative FI on each 

day, 2 way-ANOVA, time x group p < 0.05, time p < 0.0001, group p < 0.05; Multiple t-test, day 

1-3 ns, day 4 and 5 p < 0.05. (B) 24 h food intake recorded once a week for 5 weeks after the 

switch to HFD (n = 6/7), Student`s t-tests, Day 1 p < 0.05, week 1 – 5, all ns. Results are 

presented as means ± SEM; ns = not significant; * = p < 0.05. 

In the first week after the switch from chow to HFD, MCT2 knockdown animals gained 

more weight than control animals. In line with the disappearance of the increased food 
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intake of MCT2 knockdown animals, there was also no difference in body weight gain 

beyond the 1st week of HFD feeding (Fig 7B). Overall body weight assessed over 10 

weeks on HFD revealed no significant differences between MCT2 knockdown and 

control animals (Fig 7A). 

 

Figure 7: NG MCT2kd animals showed increased body weight gain in the first week after 
the switch to HFD. 

(A) Body weight of MCT2kd and control animals monitored over 10 weeks of high-fat diet 

feeding (n=6/7), 2 way-ANOVA, time x group ns, time p < 0.0001, group ns. (B) Consecutive 

body weight gain over the first 3 weeks of 10 monitored weeks (n = 6/7), Student`s t-tests, p < 

0.05, ns, ns, respectively. Results are presented as means ± SEM; ns = not significant; * = p 

< 0.05. 
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Discussion 

VAN signaling is involved in the control of eating, but to which extent VAN also relay 

energy-related metabolic signals to the brain is debatable. MCT2, the key neuronal 

pyruvate, lactate and KB transporter supposedly links neuroenergetics with neuronal 

signaling. Here we addressed the role of VAN MCT2 in the control of eating and 

demonstrate that a moderate knockdown of MCT2 in the NG has subtle effects on meal 

patterns and temporarily promotes eating when animals are food deprived or switched 

from chow to HFD. 

So far, the MCT2 has been shown to be expressed in various areas of the mouse brain 

(26, 27), but, to our knowledge, little is known about its distribution in the peripheral or 

in the autonomic nervous system.  There is one report on MCT2 expression in mouse 

dorsal root ganglia (DRG) neurons (28). However, considering that MCT2 is scarcely 

conserved across species and differs in tissue expression profile (25, 29), we first 

examined whether MCT2 is also present in the rat NG. Visualization with 

immunocytochemistry revealed that rat primary NG neurons express MCT2 and that it 

is distributed all over the cell body and axon as described previously for Purkinje cells 

(30). This also indicates that neurons are the major cell type in NG that expresses 

MCT2.  The moderate MCT2kd (28%) in NG in vivo induced by bilateral NG injection 

of an AAV-shMCT2 was sufficient to cause subtle changes in meal patterns, i.e., an 

increase in meal duration and size (after food deprivation) when the rats were eating 

chow, and an increase in light phase meal number, when rats were switched to HFD. 

In the latter situation, the increase in meal number also caused a transient increase in 

24 h food intake and body weight. The NG MCT2kd did however not affect energy 

balance chronically. Of course, we cannot exclude that a more pronounced knockdown 

could have caused greater effects on food intake and, perhaps, body weight. To our 
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knowledge, there are scarcely any directly comparable studies, except for the NG GLP-

1-receptor knockdown study from our own laboratory by Krieger et al. (23). They 

achieved a 52.5 % knockdown with a bilateral NG injection of a lentivirus containing a 

GLP-1-R- targeting shRNA construct and found a sustained increase in meal size, 

whereas total 24 h FI remained unaffected because of a concomitant reduction in meal 

frequency. Body weight was unaffected too. Thus, it is not unusual to see only changes 

in meal patterns after interfering with vagal afferent signaling.  

In the present experiment, with chow feeding, the MCT2kd prolonged meal duration 

specifically in the dark phase, indicating that in this situation the diminished presence 

of MCT2 in VAN delayed satiation. Meal size tended to be increased, but this difference 

did not reach significance. The small number of meals during the light phase may have 

prevented the detection of small differences in meal duration and/or meal size, if they 

existed, during this part of the diurnal cycle. Interestingly, after food deprivation, second 

meal size and duration, both, increased substantially in MCT2kd rats, indicating that in 

this situation the VAN MCT2 was an essential part of the normal control of meal size. 

We can only speculate why this effect did not manifest itself in the first meal: Perhaps 

the first meal was simply too big (around 12 g) and too long (> 50 min) for any further 

increase to occur (ceiling effect). In any case, considering the comparatively small 

knockdown efficiency, the fact that after food deprivation second meal size and 

duration basically doubled in MCT2kd rats reflects a substantial contribution of VAN 

MCT2 to meal size control under these conditions, i.e., when the system is challenged 

by prior food deprivation and the subsequent initial hyperphagia. This also suggests a 

role of VAN intracellular metabolism in meal size control. Nevertheless, these effects 

were obviously short-lived because no differences in 24 h food intake or body weight 

were observed at any time. 
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The monocarboxylate involved in this effect under these conditions was presumably 

lactate rather than BHB because with chow feeding the intestine has been shown to 

be a net producer of lactate, i.e., to primarily produce lactate during meals (31), 

whereas BHB levels drop substantially in all blood vessels as soon as a chow meal 

starts (31). The enterocytes release lactate into the interstitial fluid, which bathes the 

VAN terminals in the wall of the small intestine, i.e., VAN could easily take up 

enterocyte-derived lactate. Silberbauer and colleagues reported that lactate (1 or 

1.5 mmol) infused during the first spontaneous dark phase meal into the hepatic portal 

vein or the vena cava decreased meal size, and the higher dose of lactate also 

decreased meal duration. These results correspond to our observation and indicate 

that lactate can have an immediate effect on meal size. The study by Silberbauer and 

colleagues did not allow differentiating whether lactate triggered an eating-inhibitory 

signal by acting on the lactate receptor GPR81 (18) or whether lactate uptake and 

metabolism was involved. However, the GPR81 has been shown to be expressed in 

the brain (32), but does not appear to be expressed in VAN (33). This appears to be 

more consistent with an effect based on uptake and metabolism. Together with 

previous findings with exogenous lactate and pyruvate (15, 20, 21, 31), also our study 

provides indirect evidence supporting the latter possibility. The MCT2kd in our model 

presumably reduces the transport of lactate across the VAN plasma membrane as well 

as the transport of pyruvate across the VAN mitochondrial membrane (29, 34), hence 

affecting VAN metabolism because it limits fuel availability, i.e., the entrance of glucose 

or lactate-derived pyruvate into the mitochondria to enter the TCA cycle.  Therefore, 

the decreased mitochondrial pyruvate uptake in our MCT2kd model would ultimately 

decrease ATP production from carbohydrates. This appears to be consistent with 
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previous findings (24) and the idea of an energostatic (1) or ischymetric (35, 36) 

contribution to the control of eating involving VAN metabolic sensing. 

When switched to the HFD, MCT2kd rats temporarily increased meal number, 

indicating that in this case the maintenance of satiety after meals was compromised, 

in particular during the light phase. This suggests a role of VAN MCT2 and, hence, 

enterocyte-derived monocarboxylates and/or their oxidative metabolism in satiety. The 

effect resulted in a transient increase in 24 h food intake and even body weight.  In this 

situation, the enterocyte-derived monocarboxylate might be predominantly BHB rather 

than lactate because HFD intake was shown to increase enterocyte oxidation of 

dietary-derived fatty acids that enter the cell through the apical membrane (37) and to 

release BHB in response to a meal. Interestingly, detailed analysis of HFD meal-

induced changes in hepatic portal vein and intestinal lymphatic metabolites showed 

that the enterocytes apparently start producing and releasing BHB after a HFD fat meal 

with the most pronounced production of BHB between 1 and 2 hours after meal 

termination (M. Arnold, unpublished results). These dynamics may be related to the 

fact that in this case postprandial satiety rather than satiation was affected in the 

MCT2kd rats, but further studies are needed to examine this possibility. That the 

diminished uptake and, presumably, intracellular utilization of endogenous BHB in VAN 

can increase food intake is consistent with several findings of decreased food intake 

after peripheral administration of exogenous BHB (12, 14, 42). It should be mentioned 

in this context that similar to CNS neurons, peripheral nerves are able to oxidize ketone 

bodies (16, 38).  

That the observed increase in FI was primarily due to an increase in meal number 

during the light phase is reminiscent of the eating-stimulatory effect of the FAO inhibitor 

MA, which initiated eating, i.e., shortened satiety, and did so with greater potency 



66  CHAPTER 2: MONOCARBOXYLATE TRANSPORTER-2 KNOCKDOWN IN NODOSE 
GANGLIA AFFECTS EATING 

 

during the light phase than during the dark phase (39).  Although it is clear that MA 

stimulates food intake mainly by acting on the GPR40 rather than by inhibiting fatty 

acid oxidation (40, 41), it is equally clear that MA requires intact abdominal vagal 

afferents to stimulate eating (42). The MA findings therefore indicate that VAN signaling 

is also involved in the maintenance of satiety. The observed circadian differences in 

the MCT2kd effect on FI during dark and light phase may be related to circadian clock-

driven changes in metabolism, with lipolysis and FAO prevailing during the inactive 

phase of the light cycle. The circadian clock machinery controls the expression of 

enzymes that regulate the rate-limiting steps of metabolic pathways or nuclear 

receptors and nutrient sensors (43, 44), such as PPARα, a key regulatory nuclear 

factor of FAO and ketogenesis. In nocturnal rodents such as rats and mice, PPARα is 

upregulated during the light, when animals are generally in a fasting state that requires 

KB, and inhibited during dark, when food-derived hexoses are the primary fuel source 

(45, 46). Thus, in a metabolic state when FAO and KB utilization is favored, the 

compromised transport into and, hence, reduced utilization inside VAN may stimulate 

eating, whereas these effects do not suffice to stimulate eating during dark, when the 

organism is tuned into other metabolic fuels. Circadian variations in the phenotype of 

VAN are ascertained (47). Although not specifically in VAN, circadian regulation of 

BHB dehydrogenase was reported as well (48). Certainly, its regulation by the 

circadian clock in VAN needs to be tested, but if so, this could provide additional 

support for the idea proposed above. 

The effects of chronic HFD exposure on vagal afferent sensitivity may explain the 

transient nature of the eating stimulatory effect of the MCT2kd when the rats were 

switched to the HFD. One day of HFD feeding is enough to introduce changes in the 

VAN phenotype. Thus, 24 h HFD exposure caused an upregulation of mRNA 
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expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and TNFα in the 

nodose ganglia and hypothalamus of mice (49). Only three days of HFD consumption 

reduced the percentage of VAN in which glucose modulates vagal afferent responses 

to 5‐HT (50). 

Clearly, our study had several limitations. First, the n of 6-7 rats/group might have 

hampered detection of the overall rather subtle changes in meal patterns, which are 

notoriously variable.  Second, the switch from chow to HFD took place 14 weeks after 

the AAV injection. Adeno-associated viruses do not integrate into the genome, and 

although neurons do not replicate, a loss of knockdown efficiency might already have 

occurred at this time point, compromising the findings with the HFD. Third, given the 

various examples of changes in overall metabolism in relation to pharmacological or 

genetic manipulations of enterocyte metabolism (11, 13, 51) it would be very interesting 

to have assessments of insulin sensitivity as well as energy expenditure 

measurements. Both should be performed in follow-up studies. Last, but not least, it 

would be interesting to address the possible influence of compromised learning 

mechanisms on the transient effects observed after the switch to the HFD. As many 

peripheral signals in the control of eating require learning (52), it is conceivable that 

the MCT2kd rats took longer to gauge the energy content of the HFD than the control 

rats because they were lacking important afferent signals derived from 

monocarboxylate uptake into, and utilization in, VAN. 

In summary, our study demonstrates for the first time that VAN MCT2 are involved in 

the control of eating, at least under certain conditions. In doing so, our findings 

indirectly support and provide novel aspects in relation to “old” ideas of a peripheral 

metabolic contribution to the control of eating that depends on VAN signaling. Further 

studies are required to examine the exact mechanisms involved.    
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Introduction 

Accumulating evidence indicates a fundamental role of glia cells in brain and whole 

body energy homeostasis. This also identifies new mechanisms for a possible 

involvement of glia cells in the development of obesity. To understand the possible role 

of glia cells in this regard, it is crucial to explore the effect of nutrient availability on glia 

cell metabolism and the conceivable involvement of glia cell metabolism in whole body 

energy homeostasis and, in particular, the control of eating (1, 2).  

Astrocytes constitute a major part of the glia cell population. They are versatile, and 

their predominant functions such as modulation of synaptic transmission and transport 

of nutrients and other circulating factors from the blood vessels to neurons attract 

attention regarding energy homeostasis (3). Astrocytes are called the “metabolic 

workhorses of the brain”, providing not only for themselves but also for neurons and 

other glia cells (3). The astrocytes’ metabolic profile differs from that of the other glia 

cells and neurons mainly because of three major characteristics: i) Their substantial 

pool of glucose, where a surplus of pyruvate is converted into lactate as an efficient 

oxidative fuel for neurons, in the so called astrocyte-lactate shuttle (4). ii) Astrocytes 

are the only cells providing an energy reservoir in the brain by storing glycogen (5). iii) 

Last, but not least, astrocytes oxidize fatty acids and produce ketone bodies (6). 

Therefore, it is reasonable to hypothesize that astrocyte-derived metabolites might 

affect brain function. Indeed, it was shown that astrocyte-derived lactate activates 

lateral hypothalamic orexin/hypocretin neurons (7). During periods of fasting or high-

fat diet feeding, a surplus of fatty acids is taken up into the astrocytes (8-10). 

Intriguingly, some studies observed changes in food intake and hepatic glucose 

production upon central inhibition or stimulation of key enzymes involved in fatty acid 

synthesis and fatty acid oxidation, without targeting a specific cell type (11, 12). 

Whereas the neuronal ability to oxidize fatty acids is still debatable, the astrocytes’ 

capability to do so and to produce ketone bodies is well established (6, 13). Therefore, 

the observed effects in response to manipulations of central nervous system fatty acid 

metabolism were most likely due to changes in astrocytes’ fatty acid metabolism. Le 

Foll and colleagues provided evidence for a role of astrocyte-derived ketone bodies in 

the control of eating in rats (13), whereas others showed that disruption of lipid uptake 

into astrocytes exacerbates diet-induced obesity (DIO) (14). Moreover, viral-mediated 

astrocyte-specific knockdown of mitochondrial 3-hydroxy-3methylglutaryl-CoA 
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synthase 2 (HMHCOA2), the rate-limiting enzyme in ketogenesis, in the basolateral 

hypothalamus of rats was sufficient to enhance satiation and decrease the respiratory 

exchange ratio in animals fed a low-fat diet. When switched to high-fat diet (HFD), 

HMGCOAS2 knockdown animals exhibited a prolonged latency to eat (Fedele et al. 

unpublished). The astrocytes’ indispensability in overall metabolic signaling was nicely 

demonstrated several times (15-17). For instance, astrocyte-specific insulin receptor 

knock-down reduced glucose sensing in the hypothalamus, impaired whole-body 

glucose homeostasis and influenced food intake (18). This suggests that insulin 

resistance occurring at the level of the astrocyte contributes to the development of 

obesity and is worth investigating. 

To further unravel how astrocyte metabolism participates in systemic metabolic control, 

we aimed at testing whether increasing or decreasing astrocyte mitochondrial 

metabolic function affects whole-body energy homeostasis in diet-induced obesity 

(DIO). Sirtuin-3 (SIRT3), the primary ubiquitous mitochondrial NAD⁺-dependent 

deacetylase, acts as a cellular energy sensor and modulates metabolic processes. 

SIRT3 is activated by high NAD+ levels, caused by a low cellular energy status. Hence, 

SIRT3 inhibits glycolysis, while stimulating fatty acid oxidation and ketogenesis. 

Naturally, SIRT3 expression is upregulated in fasting or caloric restriction, whereas it 

is downregulated in the obese state (19). Many beneficial effects of caloric restriction 

have been related to increased SIRT3 levels (20), and whole body SIRT3 knockdown 

mice exhibited exacerbated DIO (21). Consequently, SIRT3 activation supposedly 

protects against the metabolic syndrome (22). Therefore, elucidating SIRT3’s role in 

astrocyte metabolism and examining the possible consequences for whole-body 

energy homeostasis might provide new insights into the pathogenesis of DIO. To this 

end, we used a tamoxifen-inducible CreERT2-LoxP system with a glial-acid protein 

(GFAP) promotor to knock-in or knock-out SIRT3 specifically in astrocytes. We found 

the astrocyte SIRT3 knock-out to increase glucose tolerance in mice fed control (low-

fat) diet, but not when the mice were fed a 60% high fat diet, which was introduced 

immediately after tamoxifen injection. On the other hand, astrocyte-specific SIRT3 

overexpression did not produce any metabolic changes when mice were fed the control 

diet. When the astrocyte-specific SIRT3 overexpression (SIRT3ki) was initiated after 

the mice had been exposed to HFD for 12 weeks, the SIRT3ki produced a distinct 

phenotype: SIRT3ki mice showed improved glucose tolerance and insulin sensitivity 

as well as an increased insulin secretion. Concomitantly, SIRT3ki mice stored more 
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fat, which was reflected in greater body weight gain compared to control mice. Finally, 

SIRT3 overexpression increased the respiratory exchange ratio (RER), decreased 

energy expenditure (EE) and locomotor activity and, concomitantly, increased food 

intake. Overall, our results suggest that astrocyte SIRT3 can affect whole body energy 

homeostasis. 
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Methods 

Animals 

Mice with an inducible astrocyte-specific SIRT3 overexpression hemizygous (he) for 

the knock-in of SIRT3 (SIRT3ki; cre/+ fl/+) were generated by crossing hemizygous 

transgenic mice with a floxed STOP cassette preceding an additional SIRT3 gene 

(FlKi; fl/+) (23) (mice were received from the laboratory of Professor Eric Verdin at UC 

San Francisco (San Francisco, CA, USA)) with hemizygous hGFAP-Cre-ERT2 mice 

expressing Cre recombinase under the astrocyte-specific promotor GFAP (Cre; cre/+) 

(24) (mice were received from the laboratory of Professor Frank Kirchhoff at University 

of Saarland, Germany). The mice with an inducible astrocyte-specific SIRT3 knock-out 

(SIRT3ko; cre/+ fl/fl) were generated in two breeding steps. First, hemizygous 

transgenic mice floxing the SIRT3 gene itself (FlKo-he; fl/+) (mice were received from 

the laboratory of Professor Eric Verdin at UC San Francisco (Sanc Francisco, CA, 

USA)) were crossed with hemizygous hGFAP-Cre-ERT2 mice (Cre; cre/+). These mice 

(cre/+ fl/+) were, in a second step, crossed once again with hemizygous FlKo-he (fl/+) 

mice or later with homozygous (ho) FlKo-ho (fl/fl) mice to obtain inducible astrocyte-

specific SIRT3 knock-out animals homozygous for the knock-out of SIRT3 and 

heterozygous for Cre recombinase expression (SIRT3ko; cre/+ fl/fl). Cre and Fl mice 

were used as controls, and wild-type mice were used for the isolation of primary 

astrocytes. Genotyping of all mice was performed at the age of 3 to 4 weeks 

immediately after weaning and reconfirmed post mortem. Gene recombination was 

achieved by repetitive intraperitoneal injection of Tamoxifen (Sigma) every 24 h over 5 

days (100 µl of 20 mg/ml Tamoxifen in corn oil and 10% ethanol per adult mouse). All 

mice were on C57Bl6\J background, and all the breedings were carried out in our in-

house specified and opportunistic pathogen free (SOPF) animal facility.  After weaning 

mice were fed autoclaved chow diet (#3807, Kliba-Nafag, Switzerland; crude protein 

24.0%, dry matter 88.1%, crude fat 4.9%, NFE 47.5%)) in the SOPF breeding facility. 

Male mice at the age of 8-10 weeks were moved into the experimental rooms with a 

12h/12h dark/light cycle and controlled temperature and humidity (22 ± 2 °C and 55 ± 

5 %, respectively). All animals had ad libitum access to chow and water unless 

otherwise specified, and their body weights were monitored on a regular basis as 
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indicated. Mice were group-housed (2-4 animals per cage) before they were single 

caged 5 days prior indirect calorimetry measurements. Animals were fed standard 

chow diet (#3430 Kliba-Nafag, Switzerland; crude protein 18.5%, dry matter 88%, 

crude fat 4.5%, NFE 54.2%) before being switched to either a low-fat control diet (CD, 

#S9213-E001 Ssniff, Germany; 10 kJ % fat; crude protein 18.2%, crude fat 4.3%, crude 

fibre 4.8%, crude ash 5.3%, starch 42.7%, sugar 7.5%) or a high-fat diet (HFD, 

#E15742-34 Ssniff, Germany; 60 kJ % fat; crude protein 24.4%, crude fat 34.6%, crude 

fibre 6%, crude ash 5.5%, starch 0.1%, sugar 9.4%). All experimental animal 

procedures were approved by the Veterinary Office of the Canton of Zürich. 

Primary astrocyte isolation 

Viable primary astrocytes of adult mice were isolated by combining two isolation 

methods. First, the “Cold Spring Harbour Protocol of Purification of Rat and Mouse 

Astrocytes by immunopanning” (25) was applied to obtain a single cell suspension of 

a whole brain lysate. This astrocyte isolation protocol is designed to preserve the 

viability of the fragile astrocytes during isolation, but is limited to the isolation of 

astrocytes from 10 day post-natal mice or rats. Therefore, we proceeded with the Anti-

ASCA-2 Microbead Kit mouse (MACS Miltenyi Biotec, 130-097-678) to isolate 

astrocytes out of the single cell suspension. With this, a magnetic field allows for the 

selection of ASCA-2 positive cells, which were magnetically labeled with anti-ASCA-2 

microbeads. The obtained cell pellets with approximately 2 x 106 isolated cells per brain 

were frozen in liquid nitrogen and stored at -80 °C for further RNA analysis. Cells 

isolated from wild-type animals were used to determine the isolation efficiency and 

contamination with neurons or other glial cells. Cells isolated from SIRT3ki or SIRT3ko 

animals and their corresponding controls were used to verify astrocyte-specific SIRT3 

overexpression or downregulation, respectively. 

Real time quantitative polymerase chain reaction (RT-qPCR) analysis 

The Trizol reagent (Life Technologies) was used to extract RNA from isolated 

astrocytes following the manufacturer’s protocol. Isolated RNA was further treated with 

DNAse (Quiagen). cDNA was synthesized using the High-Capacity cDNA Reverse 
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Transcription Kit (Applied Biosystems) and RT- qPCR was performed using FAST 

SYBER green in a Viia7 Real-Time PCR system machine (Applied Biosystems). Data 

were analyzed using the 2ddCt method with GAPDH as the reference gene. Primers 

used are listed in Table 1. 
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Table 1: qPCR primer list 

 

 

10-formyltetrahydrofolate dehydrogenase (Aldh1l1) FW 5` GCAGGTACTTCTGGGTTGCT

RW 5` GGAAGGCACCCAAGGTCAAA

Glial fibrillary acidic protein (GFAP) FW 5` AGAAAGGTTGAATCGCTGGA

RW 5` CGGCGATAGTCGTTAGCTTC

Vimentin (Vim) FW 5` AGACCAGAGATGGACAGGTGA

RW 5` TTGCGCTCCTGAAAAACTGC

Myelin oligodendrocyte glycoprotein (Mog) FW 5` CACCGAAGACTGGCAGGACA

RW 5` CCACAGCAAAGAGGCCAATG

Gap junctional intercellular communication 2 (Gjic2) FW 5` CTTGTGCATCTCCAGGTCCCA

RW 5` TGTCAGCACAATGCGGAAGA

Integrin subunit alpha M (Itgam) FW 5` TGGCCTATACAAGCTTGGCTTT

RW 5` AAAGGCCGTTACTGAGGTGG

Transmembrane protein 119 (Tmem119) FW 5` GTGTCTAACAGGCCCCAGAA

RW 5` AGCCACGTGGTATCAAGGAG

Cluster of differentiation 68 (Cd68) FW 5` ACTGGTGTAGCCTAGCTGGT

RW 5` CCTTGGGCTATAAGCGGTCC

Allograft Inflammatory Factor 1 (Aif1) FW 5` GGATCAACAAGCAATTCCTCGA

RW 5` CTGAGAAAGTCAGAGTAGCTGA

Synatosomal associated protein 25 (Snap25) FW 5` AGCAAGGCGAACAACTCGAT

RW 5` AGGCCACAGCATTTGCCTAA

Synaptogamin-1 (Syt1) FW 5` CGCTCCAGTTTCCCTCTGAAT

RW 5` GGATGTTGGTTGTTCGAGCG

 Neurofilament light (Nefl) FW 5` CAAGGACGAGGTGTCGGAAA

RW 5` TGATTGTGTCCTGCATGGCG

Glycerinaldehyd-3-phosphat-Dehydrogenase (GAPDH) FW 5` ATG GTG AAG GTC GGT GTG A

RW 5` AAT CTC CAC TTT GCC ACT GC

SIRT3 FW 5` GCT GGA CAT AGG ATG ATC TGC

RW 5` TCT TAT GCA GCG GGA ACG)

SIRT3-flag FW 5` ACAAGAACTGCTGGATCTTATGC

RW 5` CGTCATCCTTGTAATCTCTGTCC
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Body composition 

To assess body fat and lean mass, awake mice were scanned using the EchoMRI 3-1 

analyzer (Echo-MRITM). Measurements were taken at various time points shown in 

the individual experimental timelines. 

Oral glucose tolerance test (OGTT) 

After food deprivation during the first 6 h of the dark phase, the mice received a bolus 

of 20% glucose solution (in water; 2 g/kg body weight) by gavage. Tail blood glucose 

levels were monitored using a glucometer (Accu-check Aviva, Roche) at baseline and 

15, 30, 60, 90 and 120 min following glucose administration. For insulin measurements, 

an additional OGTT was performed on a separate experimental day. In this case, tail 

vein blood was collected using micro hematocrit capillaries (Sigma, Brand) at baseline 

and 15 and 120 min after glucose administration. Blood samples were centrifuged 

(8,700 g, 4 °C, 10 min) and plasma was collected and analyzed using a Mouse/Rat 

Insulin Kit (catalog no. K152BZC-2) for the Meso Scale MULTY-ARRAY Assay System 

(Meso Scale Discovery, USA). The tests were performed at times shown in the 

experimental timelines. 

Insulin sensitivity test (IST) 

Mice were food deprived 2 h after dark phase onset for 4 h before Actrapid HM human 

insulin (Novo Nordisk) was injected intraperitoneally (0.4 and 0.6 mU/g body weight 

insulin in NaCl, for CD- or HFD-fed mice, respectively). Tail blood glucose levels were 

measured at the time points indicated using a glucometer (Accu-check Aviva, Roche). 

The test was performed at the times shown in the experimental timelines. 

Plasma Metabolites 

Tail vein blood was collected using micro hematocrit capillaries (Sigma, Brand) at 

baseline (BL, considered as pre-prandial), 1 h before dark phase onset after an 11 h 
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light phase food deprivation, and in a fed state 4 h after dark phase onset (considered 

as postprandial, PP). Blood samples were centrifuged (8,700 g, 4 °C, 10 min) and 

plasma was collected and stored at -80°C until required. Standard colorimetric and 

enzymatic methods adapted for the Cobas MIRA auto analyzer (Hoffman LaRoche) 

were used to measure plasma glucose, non-esterified fatty acids (NEFA), β-

hydroxybutyrate (BHB), cholesterol (Chol), triacylglycerol (TAG) and free glycerol. Free 

glycerol values were subtracted from the measured TAG values to obtain the final TAG 

values. The experiment was performed according to the corresponding experimental 

timelines. 

Food intake and indirect calorimetry 

Metabolic measurements were carried out in Promethion metabolic cages (SS, Sable 

Systems International). Mice were adapted in their housing room for 5 days to single 

housing in cages similar to the SS metabolic cages before being transferred to the 

corresponding system. Data were collected after an additional 3 days of habituation in 

the metabolic cage system. In both SIRT3ki experiments (with mice on CD or HFD), in 

addition to the SS recordings, food intake was measured manually every 12 h at the 

beginning of the dark or light phases at a later time point (please see the corresponding 

experimental timelines). 

Statistical analysis 

All statistical analyses and graph generation were performed using GraphPad Prism 

(Version 8.0). Data normality was verified using the Shapiro-Wilk test, while outliers 

were detected using the Grubb’s test. Student t-test was applied to analyze differences 

of unpaired normally distributed values of equal variance. A one-way ANOVA was used 

to analyze differences for sample groups > 2 if normality was met. Multiple 

comparisons were assessed with Tukey’s test. Where the dependent variable was 

affected by two factors, data were analyzed using a two-way ANOVA. Post-hoc 

analyses were performed using the Bonferroni/Sidak correction. Data are presented 

as mean ± SEM. Differences were considered significant when p < 0.05. 
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Results 

Isolated primary astrocytes were contaminated with oligodendrocytes but free 

of neurons and microglia  

Primary astrocytes from wild type mice were isolated to validate the isolation method 

(25). The purity of the isolated astrocyte fraction was tested by assessing gene 

expression of neuronal, microglial, oligodendrocyte and astrocyte markers compared 

to whole brain lysate. The isolated astrocyte fraction was devoid of neurons according 

to the three neuronal marker genes Snap25, Syt1 and Nefl (Figure 1A). We detected 

contamination with microglia (approximately 25%) when we screened for four 

microglial marker genes (Itgam, Tmem119, Cd68 and Aif1; Figure 1B). However, the 

astrocyte fraction contained as many oligodendrocytes as astrocytes, judging by the 

threefold higher expression of oligodendrocyte and astrocyte-specific marker genes 

Mog and Gjic2 or Adh1/1 and Vim, respectively, than control (Figure 1C, D). We found 

Gfap, the astrocyte-specific marker used in our transgenic mouse model as promotor 

for specific astrocyte SIRT3 knock-in or knock-out, to be 50% less expressed 

compared to control (Figure 1D). 
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Figure 1: Validation of the astrocyte isolation method revealed oligodendrocyte 
contamination but purity for neurons and microglia. 

A-D: Relative mRNA expression of specific neuronal, microglial, oligodendrocyte and astrocyte 

genes in the fraction of primary isolated astrocytes (AS) or whole brain lysate (CR) from a wild 

type, chow-fed mouse (n = 1; normalized to GAPDH; SEM corresponds to technical triplicates). 

(A) Neuron specific genes; Snap25: Synaptosomal-associated protein-25; Syt1: 

Synaptogamin-1; Nefl: Neurofilament light. (B) Microglia specific genes; Itgam: Integrin subunit 

alpha-M; Tmem119: Transmembrane protein-119; Cd68: Cluster of differentiation 68; Aif1: 

Allograft Inflammatory Factor-1. (C) Oligodendrocyte specific genes; Mog: Myelin 

oligodendrocyte glycoprotein; Gjic2: gap junctional intercellular communication-2. (D) 

Astrocyte specific genes: Adh1/1: Alcohol dehydrogenase-1; Vim: Vimentin; Gfap: Glial 

Fibrillary Acidic Protein. Results are presented as means ± SEM and data were analyzed using 

Student`s t-test, * = p < 0.05.  
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SIRT3 knock-in study on control diet 

 

Figure 2: Experimental design of SIRT3ki on control diet 

Schematic timeline of the experiments. Measurements and tests: BW = body weight; FI = food 

intake; IC = indirect calorimetry; IST = insulin sensitivity test; MRI = magnetic resonance 

imaging; OGTT = oral glucose tolerance test; TAM = tamoxifen injections; VL = voluntary 

locomotion; w = weeks. 

No difference in glucose tolerance was observed between SIRT3ki and control 

animals (Cre mice and FlKi mice) when fed CD 

The study started when the mice were switched from chow to control diet (CD) at the 

age of 8 weeks. After 14 weeks of CD feeding a first oral glucose tolerance test (OGTT-

1) was performed to examine the glucose responses of all three genotypes, Cre, FlKi, 

and SIRT3ki, before TAM injections, i.e., prior to the induction of astrocyte SIRT3 

overexpression in SIRT3ki animals (Figure 3A). A follow-up OGTT-2 performed 

4 weeks after TAM injection revealed unchanged similar glucose tolerance of all three 

genotypes (Figure 3B). An insulin sensitivity test (IST) performed 6 weeks after TAM 

injection showed also no genotype differences (Figure 3C). 
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Figure 3: Glucose tolerance of SIRT3ki, Cre, and FlKi mice on control diet was similar. 

A-B: Oral glucose tolerance tests (OGTT-1 and OGTT-2) (n=4-8). (A) OGTT-1: Tail blood 

glucose values measured at the time points indicated after an oral bolus of glucose (2 g/kg/BW) 

after 14 weeks on CD and before TAM injection; 2-way ANOVA, genotype ns, time p < 0.0001, 

genotype x time ns. (B) OGTT-2: Tail blood glucose values measured at the time points 

indicated after an oral bolus of glucose (2 g/kg/BW) after 20 weeks on CD or 4 weeks after the 

last TAM injection; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time ns. (C) 

Insulin sensitivity test (IST), tail blood glucose values measured at the time points indicated 

after an intraperitoneal injection of insulin (0.4 mU/g body weight) after 22 weeks on CD or 6 

weeks after the last TAM injection (n = 4-8); 2-way ANOVA, genotype ns, time p < 0.0001, 

genotype x time ns. Data are presented as means ± SEM; ns = not significant. 

Similar levels of circulating pre- and postprandial metabolites were observed 

between SIRT3ki and control animals (Cre mice and FlKi mice) when fed CD 

Plasma metabolite analyses from tail vein blood samples collected 2 weeks after TAM 

injections, after an 11 h food deprivation during the light phase, one hour before dark 

phase onset (pre-prandial=baseline (BL)), and 4 h after dark phase onset (postprandial 

(PP)) revealed no differences in concentrations of glucose, non-esterified free fatty 

acids (NEFA) or β-hydroxybutyrate (BHB) among the three genotypes (Figure 4A-C). 
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Figure 4: Baseline and postprandial blood plasma metabolite levels of SIRT3ki animals 
and control animals (Cre mice and FlKi mice) on CD measured 2 weeks after TAM 
injection were similar. 

A-C: Tail vein blood plasma metabolite levels 2 weeks after TAM injection, at baseline (BL= 

pre-prandial) corresponding to levels obtained after an 11 h fast during the light phase and 

postprandial (PP) metabolite levels obtained from tail vein blood plasma collected 4 h after 

dark-phase onset (n = 4-8). (A) Glucose; BL and PP One-way ANOVA all ns. (B) Non-esterified 

fatty acids (NEFA); BL and PP One-way ANOVA all ns. (C) β-hydroxybutyrate (BHB); BL and 

PP One-way ANOVA all ns. Data are presented as means ± SEM; ns = not significant. 

A similar metabolic profile was observed between SIRT3ki and control animals 

(Cre mice and FlKi mice) when fed CD 

Indirect calorimetry was performed 5 weeks after the last TAM injection. Data of 48 h 

recording did not reveal any statistically significant genotype differences in RER 

(Figure 5A), EE (Figure 5B), cumulative voluntary locomotor activity or cumulative food 

intake (Figure 5C and D, respectively). 
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Figure 5: The metabolic profile of SIRT3ki animals and control animals (Cre mice and 
FlKi mice) on CD measured 5 weeks after TAM injection was similar. 

A-D: Indirect calorimetry data (Sable System) of SIRT3ki animals compared to Cre and FlKi 

animals 5 weeks after TAM injection (n = 6-7). The white and grey background areas represent 

the light or dark phases, respectively. (A) Respiratory exchange ratio (RER) as mean values 

of 1 h bins; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time p < 0.05. (B) Energy 

expenditure (EE) as mean values of 1 h bins; 2-way ANOVA, genotype ns, time p < 0.0001, 

genotype x time ns. (C) Cumulative locomotor activity of 1 h bins; 2-way ANOVA, genotype ns, 

time p < 0.0001, genotype x time p < 0.05. (D) Cumulative food intake of 1 h bins; 2-way 

ANOVA, genotype ns, time p < 0.0001, genotype x time ns. Data are presented as means ± 

SEM; ns = not significant. 

No change in body composition was observed between SIRT3ki and control 

animals (Cre mice and FlKi mice) when fed CD  

An Echo MRI performed after 14 weeks of CD feeding before TAM injection showed 

no difference in body composition among all three genotypes (Cre, FlKi and SIRT3ki 
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mice) at baseline (Figure 6A). The delta MRI data, which represent the difference 

between body composition data measured at baseline and 6 weeks after the last TAM 

injection, also revealed no differences among the genotypes (Figure 6B). Further, body 

weight gain at 3 or 6 weeks after TAM injection as well as food intake measured in the 

7th week after TAM injection showed no differences among genotypes (Figure 6C and 

D, respectively). 

 

Figure 6: The body composition of SIRT3ki animals and control animals (Cre mice and 
FlKi mice) on CD measured 6 weeks after TAM injection was similar.  

(A-B) Body composition assessed by a mouse Echo MRI (n = 4-8). (A) Baseline MRI 

performed after 14 weeks on CD, before TAM injection; One-way ANOVA BW, all ns; One-

way ANOVA Fat mass, all ns; One-way ANOVA Lean mass, all ns. (B) Delta MRI = MRI 

performed 6 weeks after TAM injection minus baseline MRI data; One-way ANOVA BW, all ns; 

One-way ANOVA Fat mass, all ns; One-way ANOVA Lean mass, all ns. (C) Body weight gain 

3 and 6 weeks after the last TAM injection (n = 4-8); 2-way ANOVA, genotype ns, time ns, 

genotype x time ns; One-way ANOVA 3 w, all ns, One-way ANOVA 6 w, all ns. (D) Manually 

collected food intake data in the 7th week after the last TAM injection (n = 4-8); 2-way ANOVA, 
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genotype ns, time p < 0.0001, genotype x time p < 0.05. One-way ANOVA 24 h, all ns; One-

way ANOVA 12 h dark, all ns; One-way ANOVA 12 h light, all ns. Data are presented as means 

± SEM; ns = not significant. 

SIRT3 knock-in study on high-fat diet 

 

Figure 7: Experimental design of SIRT3ki on high-fat diet 

Schematic timeline of the experiments. Measurements and tests:  AS = astrocytes; BW = body 

weight; FI = food intake; HFD = high-fat diet; IC = indirect calorimetry; IST = insulin sensitivity 

test; MRI = magnetic resonance imaging; OGTT = oral glucose tolerance test; TAM = 

tamoxifen injections; VL = voluntary locomotion; w = weeks. 

An improved glucose tolerance was observed in SIRT3ki compared to control 

animals (Cre mice and FlKi mice) when fed HFD 

The study started as mice were switched from chow to HFD at the age of 8 weeks. 

After 12 weeks on HFD, we performed a first oral glucose tolerance test (OGTT-1) to 

examine the glucose response of all three genotypes Cre, FlKi, and SIRT3ki before 

TAM injections, i.e., prior to the induction of astrocyte SIRT3 overexpression in SIRT3ki 

animals (Figure 8A). Four weeks after the last TAM injection, we performed the 

OGTT-2 and found a better glucose tolerance (p < 0.05, at 30 min after glucose bolus) 

in SIRT3ki mice than in Cre and FlKi control mice (Figure 8B). The IST at 6 weeks after 

the last TAM injection revealed a more pronounced glucose response to insulin at 15, 

60 and 90 min after injection in SIRT3ki animals than in Cre and FlKi control mice 

(Figure 8C). The OGTT-3 at 10 weeks after the last TAM injection, in which we also 
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measured insulin at baseline and 15 and 120 min after the glucose bolus, showed a 

greater insulin release (p < 0.05 at 15 min) in SIRTki animals than in Cre control mice 

(Figure 8D). 

 

Figure 8: An improved glucose homeostasis was observed in SIRT3ki mice compared 
to control animals (Cre and FlKi mice) on HFD. 

A-B: Oral glucose tolerance tests (OGTT) (n = 6-8). (A) OGTT-1: Tail blood glucose values 

measured at the time points indicated after an oral bolus of glucose (2 g/kg/BW) after 12 weeks 

on HFD and before TAM injection; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x 

time ns. (B) OGTT-2: Tail blood glucose values measured at the time points indicated after an 

oral bolus of glucose (2 g/kg/BW) after 18 weeks on HFD or 4 weeks after the last TAM 

injection; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time ns, followed by 

Tukey`s multiple comparison test at 30 min, Cre vs. FlKi ns, Cre vs. SIRT3ki p < 0.05, FlKi vs. 

SIRT3ki p < 0.05. Area under the curve (AUC) one-way ANOVA, all ns. (C) Insulin sensitivity 

test (IST), tail blood glucose values measured at the time points indicated after an 

intraperitoneal injection of insulin (0.6 mU/g body weight) after 20 weeks on HFD (6 weeks 

after the last TAM injection)(n = 6); 2-way ANOVA, genotype p < 0.0001, time p < 0.0001, 

genotype x time ns, followed by Tukey’s multiple comparison test at 15, 60 and 90 min, Cre 
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vs. FlKi ns, Cre vs. SIRT3ki p < 0.05, FlKi vs. SIRT3ki p < 0.05. Area under the curve (AUC) 

with one-way ANOVA, Cre vs. FlKi ns, Cre vs. SIRT3ki p = 0.0519, FlKi vs. SIRT3ki p < 0.05.  

(D) OGTT-3 performed as in A or B after 24 weeks on HFD (10 weeks after the last TAM 

injection), tail vein blood plasma was collected at the time points indicated and plasma insulin 

measured (n = 6-7); Multiple t-test, at 0 min ns, at 15 min p < 0.05, at 120 min ns. Data are 

presented as means ± SEM; ns = not significant; * = p < 0.05. 

Overall differences in the metabolic profile were observed between SIRT3ki and 

control animals (Cre mice) when fed HFD 

Indirect calorimetry was performed 8 weeks after the last TAM injection. Data of 48 h 

recording revealed no significant differences, but a trend towards a higher RER of 

SIRT3ki compared to Cre control mice (Figure 9A). On the other hand, SIRTki mice 

displayed a significantly lower EE than Cre control mice during the dark phase, but not 

during the light phase (Figure 9B-C). Further, SIRT3ki mice showed significantly lower 

cumulative voluntary locomotor activity than Cre control mice (Figure 9D, F). Finally, 

SIRT3ki animals displayed a lower cumulative food intake compared to Cre control 

mice (Figure 9E, F). 
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Figure 9: Overall differences in the metabolic profile of SIRT3ki and cre control mice 
were observed on HFD measured 8 weeks after TAM injection  

A-D: Indirect calorimetry data (Sable System) of SIRT3ki mice compared to Cre control mice 

8 weeks after TAM injection (on HFD for 22 weeks) (n = 3-4). The white and grey background 

areas represent the light or dark phases, respectively. (A) Respiratory exchange ratio (RER) 

as mean values of 1 h bins; 2-way ANOVA, genotype p < 0.05, time p < 0.0001, genotype x 

time ns. (B) Energy expenditure (EE) as mean values of 1 h bins; 2-way ANOVA, genotype p 

< 0.05, time p < 0.0001, genotype x time p < 0.05. (C) EE Area under the curve (AUC) with 

Student’s t-test for the first and second dark phase, respectively p < 0.05, p < 0.05. (D) 

Cumulative voluntary locomotor activity of 1 h bins; 2-way ANOVA, genotype p < 0.05, time p 

< 0.0001, genotype x time p < 0.05, followed by Sidak’s multiple comparison test for 27- 48 h,  

Cre vs. SIRT3ki p < 0.05. Multiple t-test for 25-48 h, p < 0.05. (E) Cumulative food intake of 1 

h bins; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time p < 0.05, followed by 

Sidak’s multiple comparison test for 33-34 h and 45- 48 h, Cre vs. SIRT3ki p < 0.05. Multiple 

t-test for 32-48 h, p < 0.05. (F) Cumulative voluntary locomotor activity of 1 h bins (= activity), 

area under the curve (AUC) with Student’s t-test, p < 0.05; Cumulative food intake of 1 h bins, 

Area under the curve (AUC) with Student’s t-test, p = 0.063. Data are presented as means ± 

SEM; ns = not significant; * = p < 0.05. 
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Similar levels of circulating pre- and postprandial metabolites were observed in 

SIRT3ki and Cre control mice when fed HFD 

Tail tail vein blood samples collected 11 weeks after the last TAM injection following 

11 h food deprivation during the light phase, one hour before dark phase onset 

(preprandial = baseline (BL)) and 4 h after dark phase onset (postprandial (PP)) 

showed no differences in the concentrations of plasma glucose, non-esterified free 

fatty acids (NEFA), β-hydroxybutyrate (BHB), triacylglycerol (TAG) and cholesterol 

(Chol) between SIRT3ki and Cre control mice (Figure 10A-E). 

 

Figure 10: Similar baseline and postprandial blood plasma metabolite levels were 
measured in SIRT3ki mice and Cre control mice on HFD 11 weeks after TAM injection. 

A-C: Tail vein blood plasma metabolite levels at baseline (BL= pre-prandial), obtained after an 

11 h fast during the light phase, and postprandial (PP) metabolite levels obtained from tail vein 

blood plasma collected 4 h after dark-phase onset (25 weeks on HFD, 11 weeks after the last 

TAM injection) (n = 5-6). (A) Glucose; BL and PP Student’s t-test ns and ns. (B) Non-esterfied 

fatty acids (NEFA); BL and PP Student’s t-test ns and ns. (C) β-hydroxybutryrate (BHB); BL 

and PP Student’s t-test ns and ns. (D) Triglycerides (TAG); BL and PP Student t-test ns and 

ns. (E) Cholesterol (Chol); BL and PP Student’s t-test ns and ns. Data are presented as means 

± SEM; ns = not significant. 
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Greater body weight gain and fat mass were observed in SIRT3ki mice compared 

to control animals (Cre and FlKi mice) when fed HFD 

An Echo MRI performed after 12 weeks HFD feeding before TAM injection showed no 

difference in body composition among all three genotypes Cre, FlKi and SIRT3ki at 

baseline (Figure 11A). The delta MRI data, which represent the differences between 

body composition assessed at baseline and 12 weeks after the last TAM injection (after 

26 weeks on HFD), revealed a greater body weight gain and fat mass of SIRT3ki mice 

compared to Cre and FlKi control mice (Figure 11B). Food intake, measured manually 

in Week 13 after the last TAM injection, did not differ among genotypes (Figure 11D). 

 

Figure 11: Greater body weight gain and fat mass of SIRT3ki animals compared to 
control animals (Cre and FlKI mice) were observed on HFD measured 12 weeks after 
TAM injection. 

A-B: Body composition assessed by a mouse Echo MRI (n = 4-7). (A) Baseline MRI performed 

after 12 weeks on HFD, before TAM injection; One-way ANOVA BW, all ns; One-way ANOVA 
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Fat mass, all ns; One-way ANOVA Lean mass, all ns. (B) Delta MRI= MRI performed 12 weeks 

after TAM injection (total 26 weeks on HFD) minus baseline MRI data; One-way ANOVA BW 

Cre vs. FlKi ns, Cre vs. SIRT3ki p < 0.05, FlKi vs. SIRT3ki p < 0.05; One-way ANOVA Fat 

mass Cre vs. FlKi ns, Cre vs. SIRT3ki p < 0.05, FlKi vs. SIRT3ki p < 0.05; One-way ANOVA 

Lean mass, all ns. (C) Body weight gain 9 and 12 weeks after the last TAM injection (total 23 

or 26 weeks on HFD, respectively)  (n = 4-7); 2-way ANOVA, genotype ns, time p < 0.0001, 

genotype x time ns, followed by Tukey`s multiple comparison test at 9 w, all ns, at 12 w: Cre 

vs. FlKi ns, Cre vs. SIRT3ki p = 0.0564, FlKi vs. SIRT3ki p < 0.05. One-way ANOVA 9 w, all 

ns; One-way ANOVA 12 w, Cre vs. FlKi ns, Cre vs. SIRT3ki p < 0.05, FlKi vs. SIRT3ki p < 

0.05. (D) Manually collected food intake data in the 13th week after the last TAM injection (total 

27 weeks on HFD) (n = 4-7); 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time 

ns. One-way ANOVA 24 h, all ns; One-way ANOVA 12 h dark, all ns; One-way ANOVA 12 h 

light, all  ns. Data are presented as means ± SEM; ns = not significant; * = p < 0.05. 

The astrocyte-specific knock-in of SIRT3 in SIRT3ki animals was successful as 

assessed at the mRNA level.  

Twelve weeks after the last TAM injection the primary isolated astrocyte fraction from 

SIRTki and FlKi animals on HFD showed a similar purity profile for all samples (FlKi 

and SIRT3ki), which was in line with the profile observed in the validation of the 

isolation method, except for a greater oligodendrocyte contamination (Figure 12A and 

Figure 1, respectively). Although an increased SIRT3 expression in primary isolated 

astrocytes of SIRTki mice compared to the control FlKi mice was not detected at the 

mRNA level, a greater mRNA expression was found for the SIRT3flag gene in SIRT3ki 

mice (Figure 12B). 
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Figure 12: Astrocyte-specific knockin of SIRT3 in SIRT3ki animals was successful as 
assessed at the mRNA level. Astrocyte isolation efficiency was equal for SIRT3ki or 
control animals. 

(A) Relative mRNA expression of a specific neuronal (Neuro, Syt1: Synaptogamin-1), 

microglial (Micro, Aif1: Allograft Inflammatory Factor 1), oligodendrocyte (Oligo, Gjic2: gap 

junctional intercellular communication 2) and astrocyte (Astro, Vim: Vimentin and Gfap: Glial 

Fibrillary Acidic Protein) genes in the fraction of primary isolated astrocytes (AS) of SIRT3ki 

(n = 4) and FlKi (n = 4) animals relative to whole brain lysate (REF) from a wild type mouse 

(n = 1, SEM corresponds to technical triplicates). All animals fed HFD, all animals at age of 32 

weeks, 24 weeks on HFD and 12 weeks after TAM injection (normalized to GAPDH). Student 

t-test of FlKi vs. REF and SIRT3ki vs. REF, for all p < 0.05. (B) Relative mRNA expression of 

SIRT3 and SIRT3flag in the fraction of primary isolated astrocytes (AS) of SIRT3ki (n = 4) and 

FlKi (n = 4) animals (normalized to GAPDH), Student t-test ns, p < 0.05 respectively. Results 

are presented as means ± SEM; ns = not significant; * = p < 0.05. 

SIRT3 knock-out study on control diet 

 

Figure 13: Experimental design of SIRT3ko on control diet 
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Schematic timeline of the experiments. Measurements and tests: BW = body weight; CD = 

control diet; FI = food intake; IC = indirect calorimetry; IST = insulin sensitivity test; MRI = 

magnetic resonance imaging; OGTT = oral glucose tolerance test; TAM = tamoxifen; VL = 

voluntary locomotion; w = weeks. 

An improved glucose tolerance was observed in SIRT3ko compared to control 

animals (Cre and Flko mice) when fed CD 

To examine the glucose tolerance of all genotypes, we performed a first OGTT with 

approximately 9-10 weeks old mice on chow diet prior to the TAM injections. This 

OGTT-1 revealed a similar glucose tolerance of all genotypes (Figure 14A). The 

second OGTT (OGTT-2), performed 12 weeks after the switch to CD, equivalent to 

12 weeks after the last TAM injection, revealed a significantly faster glucose uptake in 

SIRT3ko mice than in control mice at 15 and 30 min after the glucose bolus (Figure 

14B). The IST performed 16 weeks after the last TAM injection revealed no difference 

in the glucose response to insulin between SIRT3ki and control mice (Figure 14C). The 

OGTT-3 performed 20 weeks after the last TAM injection, in which we also measured 

insulin at baseline and 15 and 120 min after the glucose bolus, did not reveal any 

differences in the glucose response to insulin among the three genotypes (Figure 14D). 
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Figure 14: An improved glucose tolerance of SIRT3ko compared to control animals (Cre 
and FlKo mice) was observed on CD  

A-B: Oral glucose tolerance tests (OGTT) (n=6-8). (A) OGTT-1: Tail blood glucose values 

measured at the time points indicated after an oral bolus of glucose (2 g/kg/BW), animals on 

chow, before TAM injection; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time ns.  

(B) OGTT-2: Tail blood glucose values measured at the time points indicated after an oral 

bolus of glucose (2 g/kg/BW) after 12 weeks on CD or 12 weeks after the last TAM injection; 

2-way ANOVA, genotype p < 0.05, time p < 0.0001, genotype x time ns, followed by Tukey’s 

multiple comparison test at 15 and 30 min, Cre vs. FlKi ns, Cre vs. SIRT3ki p < 0.05, FlKi vs. 

SIRT3ki p < 0.05. Area under the curve (AUC) one-way ANOVA, Cre vs. FlKi ns, Cre 

vs.SIRT3ki p < 0.05, FlKi vs. SIRT3ki p < 0.05. (C) Insulin sensitivity test (IST), tail blood 

glucose values measured at the time points indicated after an intraperitoneal injection of insulin 

(0.3 mU/g body weight) after 16 weeks on CD or 16 weeks after the last TAM injection (n = 6-

8); 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time ns. (D) OGTT-3 performed 

as in A or B 20 weeks on CD or 20 weeks after TAM injection, tail vein blood plasma was 

collected at the time points indicated and plasma insulin measured (n = 6-7); Multiple t-test, at 
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0 min ns, at 15 min ns, at 120 min ns. Data are presented as means ± SEM; ns = not significant* 

= p < 0.05. 

A similar metabolic profile was observed in SIRT3ko and control animals (Cre 

and FlKo mice) when fed CD 

Indirect calorimetry was performed 14 weeks after the last TAM injection, equivalent to 

14 weeks after the switch to CD. The data revealed no genotype differences in RER 

(Figure 15A), EE (Figure 15B), cumulative voluntary locomotor activity or cumulative 

food intake (Figure 15C and D, respectively). 

 

Figure 15: The metabolic profile of SIRT3ko animals and control animals (Cre and FlKo 
mice) on CD measured 14 weeks after TAM injection was similar. 

A-D: Indirect calorimetry data (Sable System) of SIRT3ko animals compared to Cre and FlKi 

animals 14 weeks after TAM injection and switch to CD (n = 7-8). The white and grey 

background areas represent the light or dark phases, respectively.  

(A) Respiratory exchange ratio (RER) as mean values of 1 h bins; 2-way ANOVA, genotype 

ns, time p < 0.0001, genotype x time ns. (B) Energy expenditure (EE) as mean values of 1 h 

bins, 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time ns. (C) Cumulative 
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locomotor activity of 1 h bins; 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time 

ns. (D) Cumulative food intake of 1 h bins; 2-way ANOVA, genotype ns, time p < 0.0001, 

genotype x time p < 0.05. Data are presented as means ± SEM; ns = not significant. 

No differences in body composition were observed between SIRT3ko and 

control animals (Cre and FlKo mice) when fed CD  

An Echo MRI performed after 20 weeks CD feeding before TAM injection showed no 

differences in body composition among all three genotypes Cre, FlKi and SIRT3ko at 

baseline (Figure 16A). The delta MRI data, which represent the difference between  

body composition data measured at baseline and 20 weeks after the last TAM injection 

revealed no difference among all genotypes (Figure 16B). Body weight gain at 12, 16 

and 20 weeks after TAM injection also showed no differences among genotypes 

(Figure 16C). 

 

Figure 16: Body composition of SIRT3ko animals on CD measured 20 weeks after TAM 
injection did not differ from that of control animals (Cre and FlKo mice). 

(A-B) Body composition assessed by a mouse Echo MRI (n = 6-8). (A) Baseline MRI 

performed before TAM injection, animals on chow, One-way ANOVA, BW all ns; One-way 

ANOVA Fat mass, all ns; One-way ANOVA Lean mass, all ns. (B) Delta MRI= MRI performed 

20 weeks after TAM injection and switch to CD minus baseline MRI data; One-way ANOVA 

BW, all ns; One-way ANOVA Fat mass, all ns; One-way ANOVA Lean mass, all ns. (C) Body 

weight gain 12, 16 and 20 weeks after the last TAM injection or switch to CD (n = 6-8); 2-way 

ANOVA, genotype ns, time p < 0.0001, genotype x time p < 0.05. One-way ANOVA 12 w, all 
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ns; One-way ANOVA 16 w, all ns; One-way ANOVA 20 w, all ns. Data are presented as means 

± SEM; ns = not significant. 

SIRT3 knock-out study on high-fat diet 

 

Figure 17: Experimental design of SIRT3ko on high-fat diet 

Schematic timeline of the experiment. Measurements and tests: BW = body weight; FI = food 

intake; HFD = high-fat diet; IC = indirect calorimetry; IST = insulin sensitivity test; MRI = 

magnetic resonance imaging; OGTT = oral glucose tolerance test; TAM = tamoxifen; VL = 

voluntary locomotion; w = weeks. 

No difference in glucose tolerance was observed between SIRT3ko and control 

animals (Cre and FlKo mice) when fed HFD 

To examine the glucose tolerance of all genotypes before TAM injection, we performed 

a first OGTT (OGTT-1) with approximately 9-10 weeks old animals on chow diet just 

prior the start of TAM injections. All animals showed similar glucose tolerance (Figure 

17A). A follow-up OGTT-2 was performed 12 weeks after TAM injection or switch to 

HFD and revealed no difference in glucose tolerance among all genotypes either 

(Figure 17B). One week later, 13 weeks after TAM injection, an IST showed similar 

glucose responses to the insulin injection in SIRT3ko animals and control animals 

(Figure 17C). 
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Figure 17: Glucose tolerance of SIRT3ko animals on HFD remained unaffected. 

A-B: Oral glucose tolerance tests (OGTT) (n = 6-7).  

(A) OGTT-1: Tail blood glucose values measured at the time points indicated after an oral 

bolus of glucose (2 g/kg/BW) before TAM injection, animals on chow; 2-way ANOVA, genotype 

ns, time p < 0.0001, genotype x time ns. (B) OGTT-2: Tail blood glucose values measured at 

the time points indicated after an oral bolus of glucose (2 g/kg/BW) after 12 weeks on HFD or 

12 weeks after the last TAM injection; 2-way ANOVA, genotype ns, time p < 0.0001, genotype 

x time ns. (C) Insulin sensitivity test (IST), tail blood glucose values measured at the time points 

indicated after an intraperitoneal injection of insulin (0.6 mU/g body weight) after 13 weeks on 

HFD or 13 weeks after the last TAM injection (n = 6-7); 2-way ANOVA, genotype ns, time p < 

0.0001, genotype x time ns. Data are presented as means ± SEM; ns = not significant. 

No differences in the metabolic profiles were observed between SIRT3ko and 

control animals (Cre and FlKo mice) when fed HFD 

Fourteen weeks after TAM treatment or switch to HFD 48 h indirect calorimetry was 

performed. The data showed no differences among the genotypes in RER (Figure 

18A), EE (Figure 18B), cumulative voluntary locomotor activity or cumulative food 

intake (Figure 18C and D, respectively). 
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Figure 18: The metabolic profile of SIRT3ko animals and control animals (Cre and FlKo 
mice) on HFD measured 14 weeks after TAM injection did not differ. 

A-D: Indirect calorimetry data (Sable System) of SIRT3ko animals compared to Cre and FlKi 

animals 14 weeks after TAM injection or switch to HFD (n = 4-5). The white and grey 

background areas represent the light or dark phases, respectively.  

(A) Respiratory exchange ratio (RER) as mean values of 1 h bins; 2-way ANOVA, genotype 

ns, time p < 0.0001, genotype x time ns. (B) Energy expenditure (EE) as mean values of 1 h 

bins, 2-way ANOVA, genotype ns, time p < 0.0001, genotype x time ns. (C) Cumulative 

locomotor activity of 1 h bins (n = 4-5); 2-way ANOVA, genotype ns, time p < 0.0001, genotype 

x time ns. (D) Cumulative food intake of 1 h bins (n = 4-5); 2-way ANOVA, genotype ns, time 

p < 0.0001, genotype x time ns. Data are presented as means ± SEM; ns = not significant. 

No differences in body composition were observed between SIRT3ko and 

control animals (Cre and FlKo mice) when fed HFD  

Body composition measured at baseline with an echo MRI when the animals were on 

chow and before TAM injection revealed no differences among all three genotypes 
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(Cre, FlKo, and SIRT3ko) (Figure 19A). The delta MRI data, which represents the 

difference between body composition data at baseline and 14 weeks after TAM 

injection or switch to HFD, revealed no differences among all genotypes (Figure 19B). 

Also, body weight gain at 4, 8 and 12 weeks after TAM injection showed no differences 

among genotypes (Figure 19C). 

 

Figure 19: Body composition of SIRT3ko animals and control animals (Cre and FlKo 
mice) on HFD measured 14 weeks after TAM injection was similar. 

(A-B): Body composition assessed by a mouse Echo MRI (n = 6-8). (A) Baseline MRI 

performed before TAM injection, animals on chow; One-way ANOVA BW, all ns; One-way 

ANOVA Fat mass, all ns; One-way ANOVA Lean mass, all ns. (B) Delta MRI = MRI performed 

14 weeks after TAM injection or switch to HFD minus baseline MRI data; One-way ANOVA 

BW, all ns; One-way ANOVA Fat mass, all ns; One-way ANOVA Lean mass, all ns. (C) Body 

weight gain 4, 8 and 12 weeks after the last TAM injection or switch to HFD (n = 6-8); 2-way 

ANOVA, genotype ns, time p < 0.0001, genotype x time ns. One-way ANOVA 4 w, all ns; One-

way ANOVA 8 w, all ns; One-way ANOVA 12 w, all ns. Data are presented as means ± SEM; 

ns = not significant. 

The astrocyte-specific knock-out of SIRT3 in SIRT3ko animals failed as assessed 

at the mRNA level 

Primary isolated astrocyte fraction from SIRTko, Cre and FlKo animals on chow diet, 

12 weeks after TAM injection, revealed an equal purity profile for all samples (CR and 

SIRT3ko) and was in line with the profile observed during validation of the isolation 

method (Figure 20A and Figure 1, respectively). A decreased SIRT3 expression in 
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primary isolated astrocytes of SIRTko animals compared to control animals could not 

be confirmed at the mRNA level (Figure 20B). 

 

Figure 20: Astrocyte-specific knockdown of SIRT3 in SIRT3ko animals failed as 
assessed at the mRNA level. Astrocyte isolation efficiency was equal for SIRT3ko and 
control animals. 

(A) Relative mRNA expression of a specific neuronal (Neuro, Syt1: Synaptogamin-1), 

microglial (Micro, Aif1: Allograft Inflammatory Factor 1 ), oligodendrocyte (Oligo, Gjic2: gap 

junctional intercellular communication 2) and astrocyte (Astro, Vim: Vimentin and Gfap: Glial 

Fibrillary Acidic Protein) gene in the fraction of primary isolated astrocytes (AS) of SIRT3ko (n 

= 4) and  pooled control (CR, Cre (n = 2) and FlKo (n = 2)) animals relative to whole brain 

lysate (REF) from a wild type mouse (n=1; SEM corresponds to technical triplicates). All 

animals fed chow, all animals at age of 20 weeks and 12 weeks after TAM injection (normalized 

to GAPDH). Student t-test of CR vs. REF and SIRT3ko vs. REF, for all p < 0.05. (B) Relative 

mRNA expression of SIRT3 in the fraction of primary isolated astrocytes (AS) of SIRT3ko (n=4) 

and pooled control (CR, Cre (n=2) and FlKo (n=2)) animals (normalized to GAPDH), Student 

t-test ns. Results are presented as means ± SEM; ns = not significant; * = p < 0.05. 
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Discussion 

Astrocytes, the most abundant glia cells, are literally the rising stars in governing not 

only brain, but also whole body energy homeostasis (1). Yet, little is known to which 

extent the response of astrocyte metabolism to nutrient availability affects metabolic 

signaling within the brain and beyond. Sirtuin-3 (SIRT3), a key regulatory enzyme of 

mitochondrial metabolism, modulates mitochondrial responses to nutrient availability 

(26). In this study, we attempted to challenge astrocyte metabolism by overexpressing 

or downregulating SIRT3 in mice fed a low-fat control diet (CD) or a high-fat diet (HFD) 

and we phenotyped these transgenic mice with respect to several metabolic 

parameters. We found that the inducible astrocyte-specific SIRT3 knock-out (SIRT3ko) 

had no significant effect on whole-body energy homeostasis neither under low-fat CD, 

nor under HFD feeding conditions. This was also true for mice with an astrocyte-

specific SIRT3 overexpression (SIRT3ki) on the low-fat diet, but introduction of SIRT3 

overexpression in mice fed HFD provoked changes in energy homeostasis.  

Tamoxifen-induced astrocyte-specific overexpression of SIRT3 in adult mice in a 

physiologically healthy state on the regular CD did not elicit changes in metabolic 

parameters measured up to 6 weeks after tamoxifen injection. Neither glucose 

homeostasis, body composition, plasma metabolites (fasted and fed states), energy 

expenditure and food intake, nor activity differed among the genotypes. SIRT3ki 

animals showed the same phenotype as the control animals, indicating that with low-

fat feeding SIRT3 overexpression in astrocytes has no effect on whole-body energy 

homeostasis. The complex metabolism of astrocytes and the redundant functions of 

SIRT3 targets in metabolic regulation leave room for many speculations about the 

reason for the missing phenotype. First, to our knowledge, there are no studies so far 

reporting on beneficial or harmful effects on energy homeostasis of manipulated SIRT3 



108  CHAPTER 3: ROLE OF ASTROCYTE SIRTUIN-3 IN ENERGY HOMEOSTASIS 

 

expression in any single tissue in a physiologically healthy state. Combined with our 

results, this argues for an inconspicuous role of SIRT3 in mitochondrial metabolism 

under normal conditions, independent of the cell type. Nevertheless, SIRT3 

overexpression supposedly increases overall cellular energy turnover and 

consequently alters mitochondrial release of metabolites and molecules such as Ca2+, 

ATP, NAD+, NADH and NO, which again regulate numerous signaling pathways (27). 

ATP, for instance, is released by astrocytes and functions as a gliotransmitter, thus 

actively regulating synaptic properties (28). It was therefore reasonable to speculate 

that SIRT3 overexpression might have an influence on astrocyte metabolism and 

signaling.  

When adult mice were fed HFD for 12 weeks before astrocyte-specific overexpression 

of SIRT3 was induced, SIRT3ki animals exhibited a distinct metabolic phenotype. 

Interestingly, SIRT3ki animals displayed a higher respiratory exchange ratio (RER) and 

lower locomotor activity as well as energy expenditure (EE), but increased food intake 

(FI) compared to control animals. This suggests on one hand that SIRT3 

overexpression can modify astrocyte metabolism and on the other hand that astrocyte 

metabolism can affect the overall central nervous system regulation of energy 

homeostasis.  The findings also support the general idea that SIRT3 has a more 

prominent role in maintaining mitochondrial homeostasis after stress, in this case HFD 

exposure (29), than under normal conditions. Taken together, the observed phenotype 

reflects the picture of activated central anabolic neuronal circuits that stimulate eating, 

which may be related to an activation of agouti-related peptide (AgRP) and 

neuropeptide Y (NPY) and a simultaneous inhibition of pro-opiomelanocortin 

(POMC)/cocaine and amphetamine-regulated transcript (CART) neurons in the 

hypothalamic arcuate nucleus (ARC) (30). Further, SIRT3ki animals displayed less 
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locomotor activity than control animals.  Here, a possible explanation might be the 

inhibition of orexin-A and B neurons in the lateral hypothalamic area (LHA), which are 

known to promote locomotor activity (31). Melanin-concentrating hormone (MCH) 

could contribute as  well, a neuropeptide also localized in the LHA and activated by 

anabolic signaling from the ARC, increases food intake and decreases locomotor 

activity (32, 33). A stimulation of the ARC in SIRT3ki mice might also be involved in 

the higher RER and enhanced fat storage of SIRT3ki mice compared to control 

animals. Cavalcanti-de-Albuquerque et al. (2016) showed that prolonged AgRP 

activation rapidly increased RER and carbohydrate utilization while decreasing fat 

utilization (34). This effect was coupled to metabolic shifts towards lipogenesis in well-

fed animals.  

We found SIRT3ki mice to be better able to regulate their blood glucose levels in 

response to exogenous glucose or insulin than control mice, but they also exhibited an 

enhanced insulin secretion upon a glucose bolus.  No differences in other pre- and 

post-prandial plasma metabolites were found between SIRT3ki and control animals. 

Also, SIRT3 mice gained more weight and accrued more fat, presumably promoted by 

the increased insulin secretion in addition to food intake. These changes in glucose 

homeostasis may also be related to AgRP activation. Activation of AgRP neurons 

supposedly first raises insulin secretion and then impairs systemic insulin sensitivity 

and glucose tolerance (35). This appears similar to what we observed. We saw 

improved glucose tolerance in an OGTT, but most likely mainly because of increased 

insulin secretion. SIRT3ki animals may therefore develop insulin resistance earlier than 

control animals. In sum, the observed phenotype suggests an activation of anabolic 

circuits, stimulating food intake and sparing energy stores. 
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The most prominent feature of SIRT3 activation is the downregulation of glycolytic 

pathways and the concurrent activation of fatty acid oxidation (FAO) pathways and 

ketogenesis (KG) (26). Global SIRT3ko studies revealed reduced ketone bodies (KB) 

in the plasma of HFD fed mice (36), and hepatic overexpression of SIRT3 showed 

increased mitochondrial FAO (37). Therefore, astrocyte SIRT3 overexpression may 

also lead to an increased KB production. The role of KB in the CNS regulation of energy 

homeostasis is controversial (38-40). The observed discrepancies may be partly 

related to the different experimental approaches, i.e., exogenous KB infusion vs. 

inhibition of endogenous KB production. Other differences, such as the brain regions 

studied or the feeding regimen employed, may also contribute. One study that 

measured KB via microdialysis in the VMH of low and high-fat diet-fed rats concluded 

that KB produced by astrocytes during HFD feeding have an anorectic effect (13). 

Consistent with this interpretation, pharmacological inhibition of 3-hydroxy-3-

methylglutaryl-CoA synthase-2, the regulatory enzyme of the rate-limiting step in KG, 

in the VMH and ARC, transiently abolished the observed reduction in food intake when 

animals were consuming HFD.  Carneiro et al. (2016), on the other hand, infused KB 

for 24 h through a catheter inserted in the carotid artery, i.e., targeting the brain, in 

mice on chow and found a stimulation of hypothalamic orexigenic neuropeptides as 

well as increased insulinemia. These authors concluded that KB had an orexigenic 

effect (41). Assuming that astrocytes of SIRT3ki mice overproduced KB, our 

observations of enhanced insulin secretion, food intake and weight gain appear to fit 

these findings, but we did neither asses astrocyte KB production nor the effects of 

SIRT3ki on hypothalamic neuropeptides, and our mice were on HFD, whereas their 

mice were on chow. Another major difference is that we introduced the overexpression 

of SIRT3 in astrocytes, which normally should be downregulated during HFD feeding 

(42-44). In the study of Carneiro et al., mice were in a normal metabolic state. In this 
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situation, KB, which are typically produced in the liver during fasting, stimulated FI 

when they were infused towards the brain. In Le Foll and colleagues’ microdialysis 

study, the rats were on HFD, and astrocyte-derived KB inhibited FI. On a HFD, KB are 

already produced in the periphery and presumably taken up and produced, at least to 

some extent, by astrocytes as well. In this case, SIRT3 overexpression would only 

enhance the already ongoing KB production in the astrocytes. Therefore, our mouse 

phenotype should have matched the observations of Le Foll et al., i.e., astrocyte-

derived KB should have inhibited FI.  

We can only speculate about reasons for this discrepancy.  Of course, we manipulated 

SIRT3, not KB. SIRT3 is upregulated during fasting and downregulated during HFD 

feeding (42-47).  During prolonged fasting, the body depends mainly on fatty acids and 

KB to cover its energy needs, whereas on a normal HFD the body has an energy 

surplus of fat, but also enough glucose. SIRT3 deacetylates and thereby activates 

about 1/5 of all mitochondrial enzymes (29). Increased proteome acetylation is found 

with caloric restriction (CR) and HFD feeding (43, 48). However, if we look at a specific 

SIRT3 target, i.e., long-chain acyl-CoA dehydrogenase (LCAD), which is the major 

enzyme responsible for the first step of long-chain fatty acid (LCFA) beta-oxidation, it 

is deacetylated during CR, but not during HFD (43, 47), consistent with the 

upregulation and downregulation of SIRT3 in these situations. Not much is known 

about the regulators of SIRT3 expression or activity.  SIRT3 activity depends on NAD+, 

which is increased during CR but not during HFD (49, 50).  Peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α), a key regulator of SIRT3 and 

energy metabolism is also suppressed during HFD (51-53). In sum, it looks as if 

changes in SIRT3 protein expression represent the significant differences between CR 

and HFD-fed state.  Thus, by shaping mitochondrial acetylation SIRT3 presumably 
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regulates the overall metabolic effect (29). In our animals eating the HFD, the 

upregulation of SIRT3 in astrocytes may have prevailed compared to the 

downregulation by HFD exposure, and hence contributed to changes comparable to 

the observations of Carneiro and colleagues, i.e., a stimulation of FI with a concomitant 

decrease in EE.  

We also attempted to examine possible metabolic consequences of a reduced 

astrocyte SIRT3 expression in CD- and HFD-fed mice. SIRT3 knock-out mice 

(SIRT3ko) on control diet displayed no metabolic differences in any of the parameters 

measured, except for a better glucose response upon an OGTT measured 12 weeks 

after the induction of the knock-out.   The faster glucose uptake in the OGTT suggests 

greater insulin sensitivity, but we can only speculate how and why this effect occurred.  

Overall, a decreased SIRT3 expression in astrocytes does not seem to play a major 

role in astrocyte metabolism when mice are fed CD.  Also when SIRT3ko mice were 

switched to HFD immediately after TAM treatment, no metabolic differences compared 

to control animals were observed up to 14 weeks after TAM injection. Therefore, also 

in this situation astrocyte SIRT3 does not seem to play a major role in the regulation of 

energy homeostasis. Global SIRT3ko mice on HFD exhibited an exacerbated 

metabolic syndrome (20).  Our data therefore suggest that the knock-out in astrocytes 

is not crucial for this effect.  

The major limitation of all interpretations of the SIRT3ko findings is of course that we 

were not able to validate the astrocyte-specific knock-out, i.e., we can not be sure that 

astrocyte SIRT3 was really diminished. This is most likely due to our astrocyte isolation 

method, which did not target specifically GFAP expressing astrocytes, which account 

for only ~15 % (observed by staining) of all astrocytes depending on the brain region 

(54, 55).  Consequently, changes in SIRT3 expression could not be detected in the 
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non-specific GFAP astrocyte fraction. Nevertheless, the additional flag binding to 

SIRT3 in the SIRT3 overexpression model allowed for the verification of an astrocyte 

SIRT3 overexpression. Other important limitations of our study, which also hamper 

interpretation of the SIRT3ki findings, are the lack of central nervous system KB 

measurements and that our gene-manipulation method did not allow for targeting 

specific brain regions. 

Taken together, our findings indicate that astrocyte SIRT3 does not play a major role 

in CNS metabolic signaling and whole-body energy homeostasis. Only under 

conditions of chronic HFD exposure, astrocyte SIRT3 overexpression, presumably 

through its effects on astrocyte metabolism, produced some effects, but overall these 

were negative (increased food intake, body weight and body fat, hypersecretion of 

insulin) rather than positive. Unless the technical limitations mentioned above can be 

overcome, our observations scarcely warrant further investigations into the 

mechanisms of astrocyte SIRT3 regulation and actions in relation to the development 

of obesity. 
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1. Overview of the findings 

The two projects presented in this thesis aimed at contributing to a better 

understanding of the possible involvement of intracellular metabolism in the sensing 

and signaling of energy availability by vagal afferent nerves (VAN) and astrocytes in 

the regulation of energy homeostasis.  

The first study used a rat model of viral vector-mediated RNA interference in the 

nodose ganglia (NG) to address the role of VAN MCT2 in the control of eating. MCT2 

is a crucial transporter for the uptake of monocarboxylates such as lactate and KB into 

cells as well as of pyruvate into the mitochondria. The results indicate that VAN MCT2 

is involved in eating control if the organism is acutely challenged by food deprivation 

or high-fat diet (HFD) exposure. These findings indirectly support the hypothesis of a 

peripheral metabolic contribution to the control of food intake by VAN signaling. They 

extend previous findings and ideas in suggesting that the VAN do not only pick up 

some kind of metabolic or other signal from compounds released by other cells (e.g., 

from hepatocytes or enteroendocrine cells) acting on VAN cell membrane receptors 

(e.g. GPCR), but rather that VAN metabolism itself constitutes the signaling 

mechanism.  

The second study used a mouse model with conditional knock-in or knock-out of SIRT3 

specifically in GFAP expressing astrocytes to examine whether manipulations of 

astrocyte metabolism, in particular FAO and ketogenesis, would affect energy 

homeostasis in a physiologically healthy state and in DIO. SIRT3 is a vital 

posttranslational regulatory enzyme of mitochondrial metabolism; it adjusts and 

controls mitochondrial responses to nutrient availability. The results indicate that 

astrocyte-specific SIRT3ko does not play a critical role in energy homeostasis in both, 

low-fat or HFD feeding conditions. SIRTR3 overexpression (SIRT3ki) did also not 
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affect energy homeostasis on a low-fat diet, but caused an increase in body weight 

and body fat together with lower locomotor activity and energy expenditure and greater 

food intake as well as an improved glucose tolerance with hypersecretion of insulin 

when the mice were chronically fed a HFD. These findings suggest that astrocyte 

SIRT3 is not important for energy homeostasis under normal conditions and with a 

HFD challenge, and that it’s enhanced function may even have negative systemic 

effects.  
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2. VAN MCT2 in the control of food intake 

Today, it is generally accepted that vagal afferent neurons (VAN) play a role in the 

control of food intake (FI).  An additional recent development is the realization that VAN 

might be more involved in fine-tuning neuronal responses to the nutritional and 

metabolic status than originally believed (1).  Another recent development is that vagal 

afferent nerve “blockade”, which actually appears to result in an afferent stimulation, is 

proposed as an obesity treatment (2, 3). Furthermore, the same VAN fibers can 

obviously transmit orexigenic or anorexigenic signals, triggered by different substances 

(e.g. mercaptoacetate and CCK), and they possess substantial plasticity, regulating 

receptor density and expression of neuromediators according to nutritional status (1, 

4, 5). Nevertheless, it remains to be clarified whether metabolic metering of ingested 

macronutrients, in particular carbohydrates and fats, can also modulate VAN signaling 

that controls FI.  

While SDA, the most specific method to disconnect all subdiaphragmatic vagal 

afferents, provided evidence for the necessity of intact VAN for signal transduction of 

anorexigenic GI peptides such as CCK, it also showed that intact VAN are not 

necessary for the FI inhibiting effects of direct or indirect FAO stimulators such as Wy-

14643, OEA and DGAT-1i (5, 6). This suggests that the observed increase in FAO or 

ketogenesis in the duodenum or jejunum is not essential for the FI inhibitory effect of 

those compounds and/or that these processes or the resulting signaling molecules do 

not affect VAN activity (6-9). Interestingly, the eating inhibitory effect of intraperitoneally 

(IP) injected OEA was just recently proposed to be a side effect of the concomitant 

locomotor impairment (10). Thus, even if these substances have been shown to 

enhance fatty acid oxidation, their eating inhibitory effects may be related to other 

mechanisms. The failure of SDA to block these effects therefore does not necessarily 
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argue against a VAN mediation of a FAO- or ketone body-derived signal that inhibits 

eating.   

Our MCT2 knockdown manipulated metabolite transport and did not interfere with 

specific intracellular metabolic pathways. Our findings therefore only indicate, but do 

not prove, that the VAN signal that caused the behavioral changes resulted from 

intracellular metabolism of BHB or lactate/pyruvate. It is conceivable that MCT2 could 

act as a receptor in addition to its transporter function. This has been shown for the 

CD36 fatty acid transporter, which is involved in hypothalamic neuronal FA sensing 

(11, 12). Recently the term “transceptor” or “sensor” has been coined for membrane-

proteins that combine both transport and receptor-like signaling function (13, 14).  As 

MCT2`s features are still partly unclear, it may also have such a transceptor function.  

Glucose can stimulate or inhibit glucose-sensing neurons in different ways. Two 

pathways have been identified that can activate glucose-excited neurons. Either 

neuronal depolarization is triggered by the elevation of the ATP/ADP ratio inactivating 

ATP-sensitive K+ (KATP) channels (15, 16), or by AMP-activated protein kinase (AMPK) 

and a KATP-independent channel (17, 18). Grabauskas and colleagues reported that a 

subset of gastric VAN or NG neurons requires intracellular glucose metabolism for 

glucose sensing (19). They showed that GLUT3, glukokinase (GK) and KATP channels 

are required for VAN or NG glucosensing. Intracellular metabolization of KB could 

trigger neuronal depolarization by the same pathways. Glucose can also interact with 

a sodium-cotransporter and trigger membrane depolarization without intracellular 

glucose metabolism (20), but to our knowledge, such an effect has not been shown for 

neuronal signaling induced by lactate or KB. In any case, follow-up experiments should 

involve silencing lactate dehydrogenase and 3-hydroxybutyrate dehydrogenase, which 

catalyze the first oxidative step to pyruvate or acetoacetate, respectively. This could 
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reveal whether the sensing occurs through lactate or BHB metabolism, if the 

attenuated lactate or KB utilization would regenerate the phenotype that we observed 

in our MCT2kd animals.  

The study of Grabauskas et al. also shows that VAN are polymodal, relaying and 

integrating mechanical and metabolic signals. This is relevant because our data 

indicate that VAN function as metabolic sensors in particular when the system is 

challenged, i.e., this function might come into play when a particularly large meal has 

been ingested, as observed after a prior food deprivation with the subsequent initial 

hyperphagia, or when the body is acutely confronted with HFD. In both cases, a 

positive synergistic interaction of the metabolic signal with mechanical or peptidergic 

stimuli appears feasible. A metabolic-peptidergic interaction in hepatic branch VAN 

was shown by Burcelin and colleagues, reporting that the GLP-1 receptor is needed 

for the proper function of hepatoportal glucose sensing (21).  

Interestingly, MCT2 expression in hypothalamic nuclei has been shown to be 

enhanced by HFD feeding (22, 23), and prolonged fasting leads to MCT2 upregulation 

in the brainstem (24). This raises the possibility that these metabolic states of the 

organism also affect VAN MCT2 expression. If so, an upregulated MCT2 expression 

in response to fasting and HFD exposure could be yet another reason for the stronger 

effects of the VAN MCT2 knockdown on eating behavior in the challenged states of 

our rats. Thus, the MCT2 knockdown might have markedly attenuated the natural 

increase in MCT2 expression occurring in the control animals, which might have 

increased the difference in MCT2 expression between control and MCT2kd rats. MCT2 

appears to be predominantly localized in the PDS area of several glutamatergic 

synapses in several brain areas (25, 26), suggesting that this synaptic localization 

ensures an adequate supply of energy substrates to postsynaptic terminals upon 
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excitation.  We found MCT2 to be expressed all over the NG neurons, which allows for 

the speculation that VAN MCT2 might also be close to the central synapse of the 

pseudobipolar VAN.  At least with high circulating lactate and/or KB levels, the VAN 

MCT2kd might therefore also influence signaling at the central synapse of the VAN 

neurons (27, 28).  

To summarize, we demonstrated for the first time that VAN MCT2 is involved in the 

control of eating under certain conditions, but further studies are necessary to identify 

the exact mechanisms involved. Accumulating evidence indicates that MCT2 

expression is regulated to adjust monocarboxylate supply to demand and to link 

neuroenergetics to synaptic transmission. Our findings therefore make MCT2 a 

promising candidate to study its potential role in VAN energostatic nutrient sensing.  
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3. Astrocyte SIRT3 in energy homeostasis  

Our data presented in CHAPTER 3 questioned a major role of astrocyte SIRT3 in the 

regulation of energy homeostasis, but suggested some capability of astrocyte SIRT3 

to influence whole-body energy homeostasis under certain conditions. This does not 

add much to the accumulating evidence for a role of astrocytes in energy homeostasis. 

From a more general perspective, our data reiterate that it matters under which 

conditions the expression and function of an enzyme, in our case SIRT3, is 

manipulated.  

For any interpretation of these findings, however, the top priority is a proper validation 

of astrocyte-specific SIRT3 overexpression or downregulation. We originally aimed at 

isolating vital astrocytes, from SIRT3ki/ko animals, to capture their metabolic status 

and thus allowing for a metabolic characterization via the Sea-horse metabolic flux 

analyzer. Therefore, we attempted to use the immune-panning isolation method 

described by Foo et al. (29). As the isolation of astrocytes from adult mice turned out 

to be harder than anticipated, we combined it with the microbeads isolation method. 

Unfortunately, the microbeads isolation targets the ASCA-antigen and thus separates 

specifically ASCA-expressing, but not GFAP-expressing, astrocytes. The fact that only 

~15% of all astrocytes express GFAP (30, 31) and that our isolation did not specifically 

target GFAP astrocytes explain the extremely low GFAP-expression measured at the 

mRNA level. For the other astrocyte markers examined, we found an approximately 4-

fold increase in gene expression compared to control. If we take the pool of the 

astrocytes with the 4-fold marker expression as the 100% of all astrocytes in the brain, 

a 0.5-fold expression equals 12.5 %, which is close to the expected 15 % GFAP 

expressing astrocytes, thus indirectly validating our isolation method. Isolated 

astrocytes were almost devoid of neurons and microglia, but were substantially 
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contaminated with oligodendrocytes. This incomplete dissociation of astrocytes and 

oligodendrocyte was confirmed by the high mRNA expression of gap junction gamma-

2 (Gjc2), which encodes connexin-47, a protein involved in the gap junction coupling 

between astrocytes and oligodendrocytes and among oligodendrocytes. This 

oligodendrocyte contamination “diluted” the astrocyte pool and compromised the 

validation of manipulated SIRT3 expression.  Moreover, only about ~15% of astrocytes 

express GFAP (30, 31), and in the case of the SIRT3ki we had to use heterozygous 

mice because a genotyping verification of the homozygous SIRT3ki is impossible. This 

hampered the validation of the transgenic mouse model. Nonetheless, the flagged 

SIRT3ki allowed us to detect a small SIRT3 overexpression of 20% in isolated 

astrocytes of SIRT3ki animals on HFD. In contrast, measuring SIRT3 (without a flag) 

expression did not capture the presumably small differences in SIRT3 overexpression 

or downregulation (although the SIRT3ko model was homozygous for SIRT3). In sum, 

the difficulties to assess SIRT3 expression at the mRNA level emphasize that a 

verification of SIRT3 expression at the protein level with this astrocyte isolation method 

is illusive. Therefore, a functional validation of the model was impossible.  

A possible way to overcome these difficulties would be to achieve a single cell 

suspension via the immune-panning method and then to FACS sort the cells directly 

using a GFAP antibody. A pure GFAP cell population might allow for the detection of 

manipulated SIRT3 expression on the mRNA and protein level. In case of confirmed 

differences at the protein level, detection of the acetylation level of all proteins would 

provide a direct functional test. A downregulation of SIRT3 expression would be 

expected to lead to increased acetylation, whereas the SIRT3ki should decrease 

acetylation of all proteins (32). Should these tests fail, mass spectrometry would be the 

next approach to screen for the acetylation profile of GFAP positive cells.  
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After a successful validation, the first experiment should be to test for the exclusive 

targeting of GFAP-expressing astrocytes by our CreERT2-loxP system. This is 

important because GFAP is also expressed in various other tissues relevant for 

metabolic control. For instance, it was detected in stellate cells from rat pancreas (33) 

and rat liver (34). Another important experiment would be to establish SIRT3ki/ko 

efficiency timelines by examining the up- or downregulation of SIRT3 after tamoxifen 

injection on a weekly basis. Astrocytes, unlike neurons, can replicate, and especially 

in animals on HFD astrocytes develop astrogliosis and perhaps apoptosis (35). It is 

therefore crucial to validate how long the TAM induction of SIRT3 lasts and if a 

subsequent 2nd TAM injection is necessary to prolong the modulated SIRT3 

expression.  

Most of the knowledge about SIRT3 expression and function so far relies on the 

examination of peripheral metabolic tissues. Those data show SIRT3 is upregulated 

during fasting or caloric restriction as well as during short-term HFD feeding, but 

downregulated with long-term HFD exposure (32). The same regulation pattern might 

apply to astrocytes, but this needs to be examined before any conclusions can be 

drawn.  

If our transgenic manipulation had the desired effect, the obvious follow-up 

experiments for the SIRT3ki-HFD study would be: 1) Punctures of the most prominent 

hypothalamic nuclei involved in EH, and mRNA screening for up- and downregulation 

of their neuropeptides would show whether our speculation on upregulated anabolic 

neuropeptides, explaining the increased FI and EE observed, is correct. This is 

important because our transgenic mouse-line targets GFAP expressing astrocytes in 

the whole brain. 2) Metabolic sensing neurons display a great heterogeneity in cell-

type, function and location. For instance, glucose-sensing neurons are not only found 
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in the hypothalamus, but also in the basal ganglia, medulla and amygdala (15). We do 

not know which effects the metabolic challenge of all astrocytes might exert. Therefore, 

a future experiment should include viral targeting of specific brain areas, starting with 

the hypothalamus, to localize the origin of the observed phenotype. 3) Although SIRT3 

is known for upregulating FAO and KG (36), we have to test for increased KB 

production, which could be done by microdialysis.  It is already known that KB are able 

to modulate neuronal activity (37, 38), but we modulated SIRT3 activity, which has 

several other targets; hence we cannot exclude that other mechanisms contributed to 

the observed phenotype. Therefore, if the SIRT3ki does enhance KB production, 

targeted inhibition of KB production in SIRT3ki animals could provide some 

clarification. Nevertheless, an enhanced FAO and KG are only one big effect of 

increased SIRT3 activity. The other important effect is SIRT3 scavenging of reactive 

oxygen species (ROS) (39-42). Chronic ROS overproduction in the brain is associated 

with type 2 diabetes (43, 44). ROS signaling in the hypothalamic regulation of EH was 

studied intensively in the last 10-20 years (45), indicating that increased ROS 

production in the hypothalamus upon increased mitochondrial respiration due to 

glucose or lipids is able to inhibit FI (46-48). Increased ROS activates POMC neurons 

whereas decreased ROS levels were found to activate NPY/AgRP neurons (49). If, in 

our case the astrocyte-SIRT3ki attenuated ROS production, as it supposedly does 

according to other studies (39-41), ROS might be another signaling molecule 

contributing to our observed phenotype.  

Some of these speculations might be worth investigating. Because a global SIRT3ko 

has been shown to exacerbate the DIO-induced metabolic phenotype (50, 51), our 

original assumption was that SIRT3 upregulation in astrocytes might have beneficial 

effects with respect to energy homeostasis. Contrary to this assumption, astrocyte 
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SIRT3 overexpression in DIO mice aggravated the DIO-induced metabolic phenotype. 

The “natural” downregulation of SIRT3 in astrocytes upon long-term HFD exposure 

may therefore represent a “protective response”. In the previous paragraphs, I picked 

only two likely candidate signaling molecules modulated by SIRT3, i.e., KB and ROS, 

to speculate on possible links to and explanations for the phenotype that we observed. 

Clearly, there are more than these two candidates, and in the end, most likely a 

combination of several factors leads to the observed phenotype in response to SIRT3 

manipulations.  

The OGTT and IST revealed a faster glucose uptake in SIRTki compared to control 

mice, but also an increased insulin secretion. We could further pursue these data by 

performing a euglycemic clamp or analyze metabolic tissue for insulin pathway 

markers via western-blot after insulin administration to examine if insulin sensitivity is 

affected. The development of insulin resistance and the increase in adiposity due to 

increased FI and decreased EE may accelerate the development of the metabolic 

syndrome in SIRT3ki animals compared to control animals. 

Finally, the lack of a phenotype in SIRT3ki and SIRT3ko animals on the control diet as 

well as in SIRT3ko animals on the HFD may be due to our GFAP-promotor. GFAP is 

not just an astrocyte marker, but also a marker for astrocyte activation (35, 52, 53). 

HFD exposure leads to astrogliosis, which is presumably accompanied by an 

increased expression of GFAP. The use of the GFAP promoter in this situation may 

lead to a greater percentage of over- or under-expression reflected in the phenotype 

that we saw in HFD-fed SIRT3ki mice. The lack of an effect in our mice on the CD may 

therefore also be related to the particularly small number of GFAP-positive astrocytes 

under this condition. The assumption of an astrogliosis effect on GFAP gene regulation 

is supported by a study in GFAPCreERTdTomato mice, showing a minimal Cre-mediated 
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recombination when the mice were on control diet, but a markedly increased 

recombination when the mice were injected with TAM after 6 weeks of HFD intake (54).  

The lack of a phenotype in SIRT3ki animals on CD and SIRT3ko on both diets might 

therefore simply be due to inefficient Cre-recombination and SIRT3 over- or 

downregulation. This would in effect limit any interpretation with respect to the role of 

astrocyte SIRT3 at the given metabolic states (to avoid confusion, it is important to 

emphasize that the SIRT3ki flag validation refers to SIRT3ki animals on HFD).  

All in all, SIRT3 in astrocytes presumably does not play a major role in CNS metabolic 

sensing in the regulation of energy homeostasis, but given the many limitations of the 

employed experimental techniques (see above), this interpretation may underestimate 

the function of astrocyte SIRT3 and can certainly not be extended to astrocyte fatty 

acid oxidation and KG.  If the technical problems can be solved, our findings suggest 

some directions that future studies might take.  
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