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Spectral Quantification of Nonlinear Elasticity using
Acousto-elasticity and Shear-Wave Dispersion

Corin F. Otesteanu, Bhaskara R. Chintada, Marga B. Rominger,
Sergio J. Sanabria, Orcun Goksel

Abstract—Tissue biomechanical properties are known to be
sensitive to pathological changes. Accordingly, various techniques
have been developed to estimate tissue mechanical properties.
Shear-wave elastography (SWE) measures shear-wave speed
(SWS) in tissues, which can be related to shear modulus.
Although viscosity or stress-strain non-linearity may act as con-
founder of SWE, their explicit characterization may also provide
additional information about tissue composition as a contrast
modality. Viscosity can be related to frequency dispersion of
SWS, which can be characterized using multi-frequency measure-
ments, herein called spectral shear-wave elastography (SSWE).
Additionally, non-linear shear modulus can be quantified and
parameterized based on SWS changes with respect to applied
stress; a phenomenon called acousto-elasticity (AE). In this work,
we characterize the non-linear parameters of tissue as a function
of excitation frequency by utilizing both AE and SSWE together.
For this, we apply incremental amounts of quasi-static stress
on a medium, while imaging and quantifying SWS dispersion
via SSWE. Results from phantom and ex-vivo porcine liver
experiments demonstrate the feasibility of measuring frequency-
dependent non-linear parameters using the proposed method.
SWS propagation in porcine liver tissue was observed to change
from 1.8 m/s at 100 Hz to 3.3 m/s at 700 Hz, while increasing by
approximately 25% from a strain of 0% to 12% across these
frequencies.

Index terms—Ultrasound, elastography, acousto-elasticity, tis-
sue non-linearity, shear-wave dispersion

I. INTRODUCTION

Early detection of diseases is of high importance for the
timely treatment and a positive outcome for the patient.
Diseases such as liver fibrosis [1] and steatosis [2], tumors [3],
atherosclerosis [4] have been shown to change the biome-
chanical tissue parameters, when compared to healthy tissue.
For this reason, noninvasive methods that characterize tissue
mechanical properties are of great interest as they can aid
diagnosis and treatment [5].

Ultrasound shear-wave elastography (SWE) is a noninvasive
imaging technique in which acoustic radiation force is used
to induce shear-waves in tissue. The propagating shear-wave
is observed using ultrasound imaging to determine the shear-
wave speed (SWS) which is directly related to the underlying
tissue shear modulus [6]. This method is currently used in
many clinical applications for disease diagnosis, such as liver
fibrosis and breast cancer [1], [7]. While having good sensitiv-
ity in the case of breast cancer diagnosis, SWE may result in

C.F. Otesteanu, B.R. Chintada, S.J. Sanabria, and O. Goksel are with the
Computer-assisted Applications in Medicine (CAiM) group, Swiss Federal
Institute of Technology (ETH), Zurich, Switzerland. (email: ogoksel@ethz.ch)

M.B. Rominger is with the Department of Diagnostic and Interventional
Radiology, University Hospital of Zurich (USZ), Zurich, Switzerland.

many false positives due to a relatively poorer specificity [8].
Similarly, in the case of liver, challenges in the diagnosis
of fibrosis staging may arise, especially at early stages of
fibrosis and in patients with steatosis [9]. It has been previously
shown that due to its viscosity, tissue exhibits dispersive
behavior, which affects SWS measurement accuracy [10],
[11]. Moreover, the degree of compression applied to the
tissue is a confounder, which was also shown to affect SWS
measurements by up to 50% [12].

For a better understanding and diagnosis of pathological
changes in tissue, multi-parametric diagnostics are desirable,
for which additional tissue biomarkers should also be mea-
sured. It was shown previously that mechanical parameters
such as viscosity [2], [1] or shear modulus non-linearity [13],
[14] can complement shear modulus measurements and aid
in early diagnosis. At the same time, their measurement
would also diminish the confounding effect they have on
SWS. It was shown in [13] that, while benign and malignant
breast tumors had similar elastic moduli at low strains, at
larger strains the elastic modulus of the malignant lesions
elevated up to 2.5 times, because of the non-linear stress—
strain response of such tissues [13]. More recently, tissue
non-linearity was characterized in a tissue-mimicking phantom
using SWE at increasing compression levels by measuring the
change in shear-wave velocity due to the acousto-elasticity
(AE) phenomenon [15]. This effect describes the change in
wave speed propagation as a function of quasi-static stress
applied to an elastic and nearly-incompressible body. Based
on AE, several studies [16], [17], [18], [19] investigated the
non-linear behavior of tissue by quantifying the third order
non-linear modulus (cf. [20]). In [16] the non-linear properties
of liver samples have been investigated. In a clinical study
in [17] it was shown that benign and malignant breast tumors
can be differentiated by their non-linear shear modulus. In
[18] changes in non-linear modulus was studied in bladder
samples before and after treatment with formalin. In [19]
the effect of compression area and direction was investigated
in kidney samples. Other works employed the Demiray-Fung
hyperelastic model to quantify non-linear properties of ex-vivo
porcine liver tissue [21] and ex-vivo brain tissue [22]. In these
studies, tissue non-linear parameters were characterized at the
excitation frequency of the induced shear-wave. However, it
was shown in [23], [24] that the non-linear parameters also
change with excitation frequency. Therefore, it is essential to
study non-linearity also as a function of frequency.

The acoustic radiation force induces an impulsive response
(push), which contains a broadband frequency range. Thanks
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to this large bandwidth of the induced shear-wave, SWS can
be characterized at different frequencies using conventional
SWE alone by measuring the speed for individual frequen-
cies — without requiring any additional setup or hardware.
This has been extensively studied in the literature, and is
referred to herein as spectral shear-wave elastography (SSWE).
Frequency dependent SWS have been measured in several
different ways: e.g. by relating the SWS to the phase shift
detected across the propagated distance [25], [26]; by us-
ing a 2D Fourier transform of the shear-wave propagation
movie [27], [28]; by estimating the relaxation time of an
acoustic radiation force induced stress [29]; by estimating the
complex shear modulus using an analytical model [30]; by
using a local model based estimator of the impulse response
of the shear-wave displacement curves [10]; and by using
an analytical expression that is independent of shear-wave
propagation model or viscoelastic model of the medium [31].

In this paper, we aim at characterizing tissue non-linear
properties as a function of excitation frequency by simulta-
neously utilizing acousto-elasticity theory and spectral shear-
wave elastography (SSWE). As it was theoretically shown
in [32] that applying strains larger than a few percent is
sufficient to perceive the influence of the fourth order elas-
ticity constant, this parameter is also studied herein. For
this purpose, incremental quasi-static external compressions
(stresses) are applied to the tissue, while at each compres-
sion step measurements of SWS dispersion via SSWE are
performed. Phantom and ex-vivo porcine liver studies are
conducted herein to asses the feasibility of using this method to
characterizing the non-linear parameters of tissue as a function
of frequency. To our knowledge, this is the first study that uses
shear-wave elastography to quantify non-linear properties of
liver as a function of frequency.

II. MATERIAL AND METHODS

A. Data acquisition
In this work, the elastic parameters of tissue are determined

from the propagation of induced shear-waves inside tissue,
generated using a supersonic shear-wave imaging (SSI) tech-
nique [33]. SSI consists of two steps: Generation of shear-
waves by using the radiation force from focused ultrasound
beams (push mode) and high-speed (ultrafast) imaging of
their propagation (imaging mode). A cylindrical shear-wave
was generated using a push sequence, where three ultrasound
beams are focused at 3 different points with a separation
distance of 5mm along the ultrasound transducer axis with a
push duration of 100 µs. The resulting shear-wave is a broad-
band signal (50-1000 Hz).

A research ultrasound machine (Verasonics, Seattle, WA,
USA) was used to program the transmit (Tx) sequence and
to acquire raw receive (Rx) radio-frequency (RF) data for
all transducer elements (channels) in parallel. Imaging was
performed using a 128 linear-array transducer (Philips, ATL
L7-4) at 5 MHz center frequency. After the ultrasound system
is switched from push to imaging mode, the generated shear-
waves were measured using high-speed plane wave imaging
at a frame rate of 10 kHz. For improved accuracy with ro-
bustness to noise, images at three plane wave angles (-4,0,4

degrees) were collected alternately, with every three frames
compounded before further processing.

A 1-D Cross correlation method [34] was used for esti-
mating SWS from the particle velocity profiles obtained after
using the 2D autocorrelator by Loupas et al. [35] on the
acquired images. Estimated SWS is denoted with vg, and
referred to herein as group velocity of the shear-wave. Since
this approach assumes a purely elastic medium, this group
velocity encompasses in a single term the effect of all the
frequency components of the shear-wave.

B. Shear-wave velocity dispersion

Tissue displacement fields u(x, z, t) obtained from the
procedure described above are used to extract the shear-
wave phase velocity information. Estimating the frequency
dependence of SWS is more difficult than estimating the group
velocity, because the amount of energy for each frequency
component is much smaller than the total energy of the
signal. Therefore, a high measurement and tracking signal-
to-noise ratio (SNR) is required. To achieve this, a trade-off
between spatial resolution and SNR is achieved by averaging
the tissue displacement fields along the axial direction, z,
inside a region of interest (ROI). A schematic describing the
procedure is illustrated in Fig. 1. An averaging window height
between 2 mm and 10 mm was suggested in [36] and [26].
In this work, a ROI with a height of 5 mm was chosen. The
resulting spatio-temporal map lateral direction. In a following
step a 2D Fourier transform (2DFT) [28] is applied to the
spatio-temporal map, which becomes a function of wavelength
(λ) and temporal frequency (f ), U( 1λ , f). By finding for
each temporal frequency the wavelength at which the FT
amplitude is maximal, a frequency-dependent SWS can be
reconstructed; as the phase velocity v(f) at each frequency
f . Since v = λf , the phase velocity can be obtained by
multiplying the spatial wavelength by the temporal frequency.
As a confidence interval, the standard deviation of such phase
velocity was also computed separately for several individual
depths of the 5 mm ROI — as shown with the error-bars in
the phase-velocity dispersion plot in Fig. 1.

C. Acousto-elasticity in nearly incompressible soft solids

In weakly non-linear isotropic elasticity theory, the strain
energy density, W , can be expanded in terms of invariants of
the Green-Lagrange strain tensor E, i.e.

I1 = tr(E), I2 = tr(E2), I3 = tr(E3), (1)

where tr is the trace and

E =
1

2
(F TF − I), (2)

where F is the deformation gradient.
Considering an incompressible medium, Hamilton et. al [37]

expanded the strain energy density up to fourth-order and
showed that only three elastic constants are required for its
characterization, i.e.

W = µI2 +
A

3
I3 +DI22 , (3)
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Fig. 1. Schematic describing the procedure to determine the dispersion curves for soft tissue. In a first step, averaging along the axial direction is performed
to increase signal-to-noise (SNR), then a 2D Fourier transform is applied and finally the dispersion curve is reconstructed from the maxima of the 2D FT
along each temporal frequency. Error-bars indicate the range of phase velocities computed separately for SWE at individual depths of the 5 mm ROI.

where I2 and I3 are the second and third-order Lagrangian
strain invariants as defined in (1), µ is a Lamé parameter,
A is the third oder elastic coefficeint as defined by Landau-
Lifschitz, and D is the fourth order elastic coefficient as
defined by Hamilton. These last three are, respectively, the
second-, third-, and fourth-order elasticity constants of weakly
non-linear incompressible isotropic elasticity. In this work to
estimate these non-linear coefficients, AE measurements are
performed on tissues, by applying varying stresses (preloads)
on the target tissue and measuring the corresponding wave
propagation speeds. A schematic describing the process can
be seen in Fig. 2.

Considering only the first two terms of (3) for the strain
energy density function and using the equations of motion
for elastic waves in a uni-axially stressed solid, Gennisson et
al. [15] derived the linear AE dependence of the squared wave
speed on the uni-axial stress. For a shear-wave polarized along
the axis of deformation (e.g. for the transducer generating the
shear-waves placed along the applied uni-axial compression),
they obtained

ρv2g = µ0 − σ
A

12µ0
, (4)

where µ0 is the shear modulus in a stress free condition,
A is the third order elastic constant, and σ is the applied
stress and ρ is the tissue density. For homogeneous elastic
materials, shear-wave velocity can be related to shear mod-
ulus as µ = ρv2. Considering nearly-incompressible isotropic
materials (i.e., Poisson’s ratio ≈0.5), this yields to the relation
for Young’s modulus E = 3ρv2.

With the aforementioned assumptions of µ = 1
3
dσ
dε , the

stress at each compression step can be computed using

σi = σi−1 + 3µi(εi − εi−1), (5)

with σ0 being the stress at an initial loading step. For imaging
using an ultrasound transducer that is barely in contact with
tissue, a negligible stress (i.e. σ0 = 0Pa) can be assumed.
Using summation from zero loading to a given compression
step, (5) can then be rewritten as

σi =

i∑
j=1

3µj(εj − εj−1). (6)

Replacing (6) in (4) yields the SWS at each compression step
as

ρv2gi = µ0 − [

i∑
j=1

3µj(εj − εj−1)]
A

12µ0
, (7)

which can be used to approximate (3) for small deformations,
i.e. under small strain assumption, where the effect of the
quadratic term and hence the elastic constant D in (3) would
be negligible. The shear modulus at each compression step j
was recovered from the shear wave speed measurement at that
compression step, i.e. µj = ρv2j .

Considering larger deformations of tissues, all the terms
in (3) should be taken into account. Relying on the large
AE effect and starting from (3), Destrade et al. [32] related
the squared wave speed of an infinitesimal wave traveling in
an incompressible solid to the corresponding small-magnitude
uni-axial pre-deformation. For a shear-wave polarized along
the axis of deformation, they obtained:

ρv2g = µ0 + (
A

4
)ε+ (2µ0 +A+ 3D)ε2, (8)

with D the fourth order elastic constant– which does not
appear in (7) under small strain assumption.

In this paper we will use both approaches above, i.e. equa-
tions (7) and (8), for investigating the non-linear parameter
estimation. Note that parameter A can be estimated using
both equations, while (8) in addition allows for estimating
parameter D. We average the stress and strain values over
the ROI, so these quantities throughout the rest of this paper
should be interpreted as apparent stress and apparent strain.

D. Phantom Experiments

For validation of the proposed methods, a standard elasticity
quality assurance phantom, CIRS 049 Elasticity QA, was
used. This phantom is nearly-incompressible, has negligible
viscosity, and has a background Young’s modulus of 23 kPa
around the homogeneous region it was imaged. The phantom
experimental setup can be seen in Fig. 3(b). The imaging
protocol described in Sec II-A was used for the purpose of
characterizing the frequency dependent non-linearity of the
phantom and for validation. To increase signal-to-noise ratio
(SNR), the displacement fields from 10 consecutive SSWE
acquisitions were averaged similarly to [26]. Using the 2D
FT method in Sec. II-B, the shear-wave phase velocity was
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Fig. 2. Schematic illustrating the overall procedure of determining the non-linear parameters for soft tissue. From successive compressions and concurrent
shear-wave measurements, shear-modulus – stress and shear-modulus – strain plots are computed. non-linear parameters can be extracted by fitting Eqs. (7)
and (8) on these readings. Note that the displacement at the push location cannot be observed, so for the illustrative purposes of this figure such values were
interpolated from surrounding readings.

Fig. 3. Experimental setups: (a) Automated motorized linear-stage; (b) the
experimental setup with the CIRS elastography phantom, (c) setup of ex-vivo
experiments with livers placed on a flat plastic container surface.

computed. AE was then applied using successive compressions
in steps (with a speed of 1 mm/s for each step) of 0.3 mm
up to a total of 3 mm (corresponding to ε = 3.3%). To
allow for tissue relaxation for a quasi-static assumption, we
took the shear-wave measurements following a 1s delay after
each compression step. A motorized 3-axis linear stage seen in
Fig. 3(a) was used for accurate positioning and for repeatable
compressions and measurements. Fitting the obtained phase
velocity measurements to the non-linear models using (7) and
(8) as in Sec. II-C, third and fourth order frequency dependent
non-linear parameters A and D can be determined. In order
to obtain a more stable parameter D, parameter A was first
obtained by fitting (7) and it was kept fixed when subsequently
fitting (8) to obtain D, as in [38]. Polynomial fitting using a
least squares method from the curve fitting toolbox in Matlab
was used to estimate these elastic parameters.

E. Ex-vivo liver study

To test the feasibility of using SSWE and AE for estimating
the frequency dependent non-linear parameters of actual tissue,
an ex-vivo study was performed on six porcine livers from
a local slaughterhouse. The livers were placed in a plastic
container that confined their motion in two lateral sides. The
ex-vivo experimental setup is shown in Fig. 3(c). A similar
procedure as described in II-D was used for data acquisition,
however for an improved SNR in ex-vivo tissue, displacement
fields from 30 consecutive SSWE acquisitions were averaged
in these experiments prior to further processing, leading to an
improvement of 12.6 dB. The SNR corresponding to 1, 10
and 30 average acquisitions was 11.4 dB, 20.3 dB and 24 dB.

Compressions in steps of 0.5 mm up to a total of 5 mm were
applied, corresponding to a strain of 12.5% to 15%, depending
on the thickness of the particular liver sample. Third and fourth
order non-linear parameters were determined in a consecutive
order as described above in Sec. II-D.

F. Characterization of phantom and liver experiments

For all of the experimental results presented in this paper,
the group velocity, vg, was calculated as described in Sec. II-A
using a cross correlation method on the displacement profile,
u(x, z, t), obtained from the 2D-Loupas correlator. Phase
velocities, v(f), were also computed by applying the 2D
FT method in Sec. II-B (cf. Fig. 1) on the spatio-temporal
map. In the following, our results will be described also
in terms of phase velocity at the frequency corresponding
to the center of gravity of the magnitude spectrum, using
an approach similar to that described in [39]. A frequency-
dependent weight corresponding to the absolute value of the
FT was assigned for each frequency using

w(f) = |F{u(t)}|, (9)

where w(x, f) is the weight corresponding to frequency f at
position x. The center of gravity, denoted by fc, is defined
as [39]

fc =

∑
f · w(f)2∑
w(f)2

. (10)

Then the phase velocity at the center of gravity, denoted by
vc is

vc = v(fc). (11)

With the AE experiment, the SWS obtained at multiple
compression levels can be used to extract the non-linear
parameters. These parameters were determined by fitting cor-
responding models to the group, phase, and center of gravity
phase velocity. The frequency-dependent non-linear parame-
ters will be denoted as A(f) and D(f), the ones obtained
from the group velocity as Ag and Dg, and those from the
phase velocity at center of gravity as Ac and Dc.



5

G. Simulations

It was previously shown that the constitutive relation be-
tween loads (stresses) and deformations (strains) for liver
parenchyma is non-linear and depends on the loading rate [40].
Additional complexity is introduced due to boundary condi-
tions and non-homogeneous deformation distributions within
the liver, thus the validation of the SWS values measured
in experiments is important. For this purpose, the results
presented in [23] on in-vivo liver mechanical characterization
under different loading conditions using an aspiration device
are compared to the ones presented in this paper. To do this,
the model parameters extracted in [23] are used to simulate
an experimental setup similar to ours.

3D simulations were performed with the finite element
program Abaqus (Abaqus 6.10-EF1, DS Simulia Corp., Prov-
idence RI, USA). Geometrical dimensions were set based
on the experiments. Two symmetry planes were introduced
to quarter the computational field-of-view. Both liver and
transducer were modeled as rectangular objects, with the liver
being displacement-constrained on both lateral sides and left
free on top and bottom sides with respect to the imaging plane,
modeling the experimental setup. The transducer was modeled
as a rigid body, while the liver parenchyma was represented
with a hyperelastic incompressible material model (element
type C3D8H) given by the volumetric strain-energy function
(2nd order reduced polynomial):

W = C10(I1 − 3) + C20(I1 − 3)2, (12)

where C10 and C20 are model parameters and I1 = tr(FF T ).
The interaction between transducer and parenchyma was mod-
eled as frictionless in the tangential direction, and hard contact
(displacement boundary) in the normal direction. Deformation
dependent tangent stiffness arising from material non-linearity
was extracted using the user output subroutine UVARM and
the shear-wave speed was calculated as vg =

√
E1212

ρ , where
ρ is the density that was assumed to be 1000 kg/m3 (density of
water) and E1212 is the tangent stiffness component relating
the shear stress σ12 and the shear strain ε12.

The mechanical behavior of the parenchyma is known to
depend on the loading rate. The two extremes for the excitation
timescale are quasi-static (qs) and quasi-instantaneous (qi),
resulting in two different sets of model parameters as shown
in [23] and presented in Table I. Global compression steps of
the parenchyma with the transducer were considered quasi-
static. Shear-wave excitation via acoustic radiation force is a
transient, broad-band excitation, and thus is expected to behave
somewhere between these two extremes (qs and qi). Thus, the
tangent stiffness and the corresponding shear-wave speed were
determined separately using both sets of model parameters in
Table I, in order to analyze where our ex-vivo experimental
lie with respect to these two extreme cases.

III. RESULTS

A. Phantom results

CIRS phantom results are presented in Fig.4. The two
dimensional velocity map that results from combining acousto-

Fig. 4. Quantification of shear-wave speed variation with frequency (phase
velocity) and amount of strain (non-linearity) on a CIRS quality assurance
phantom with a theoretical background elasticity value of 2.77 m/s and a
viscosity of 0 Pas, suggesting the phantom material to be relatively linear
across frequencies. (a) shows phase velocities at strain levels of {0,1,2,3}%.
(b) shows the AE effect at frequencies {250,500,800,1200}Hz. The error-bars
represent the standard deviation of velocity estimates inside the measurement
ROI.

elasticity and spectroscopy, v(f, ε) is presented as a 1D func-
tion of frequency for several strain levels ε = {0, 1, 2, 3}% in
Fig.4 (a), and as a function of strain for several frequencies
f = {250, 500, 800, 1200}Hz Fig.4 (b).

The phantom properties specified by the manufacturer are
Young modulus E=23 kPa, Poisson’s ratio ν=0.5, density
ρ=1000 kg/m3, and viscosity η=0 Pas. From the given Young’s
modulus, we can infer the shear modulus µ = E

2(1+v) =

7.67 kPa and expect the shear-wave speed vg =
√

E
3ρ =

2.77m/s.
Results in Fig.4 (a) indicate that the stress-free phase veloc-

ity ranges between 2.75 and 2.86 m/s, which is in agreement
with the value specified by the manufacturer. A minor phase-
velocity increase of ≈ 4 − 5%/1000Hz is observed for any
strain level, suggesting a minor viscous effect in the phantom.
Similarly, from a zero strain condition to a strain level of
3.3%, only a minor SW group velocity increase of ≈ 2.5−4%
is observed regardless of frequency. For validation purposes,
the phantom viscosity was estimated from the phase velocity
dispersion using the Kelvin-Voigt spring-dashpot viscoelastic
model by [41]

v(ω) =

√
2(µ2 + ω2η2)

ρ(µ+
√
µ2 + ω2η2)

, (13)

which yields the negligible viscosity value of η=0.23 Pas for
the phantom, corroborating with the manufacturer reported
value.

Figure 5 illustrates the non-linear parameters of the CIRS
phantom calculated after estimating vg, v(f), and vc from

TABLE I
SIMULATION PARAMETER VALUES FOR QUASI-STATIC AND

INSTANTANEOUS COMPRESSIONS.
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Fig. 5. Frequency-dependent non-linear parameters A(f) and D(f) (in blue)
estimated in the background of the CIRS phantom with a known SWE of
2.77 m/s and viscosity of 0 Pas. A and D parameters extracted from the group
velocity (vg in red) are also shown for reference. The error-bars represent the
95% confidence interval range for the parameters.

Fig. 6. non-linear parameter estimation for an ex-vivo porcine liver that was
subjected to quasi-static compressions of 0.5 mm steps for a total of 5 mm
(≈ 14% strain). The A parameter is estimated first (a), using the measured
shear-wave speeds in eq. (7), with D extracted from Eq. (8).

the shear-wave speeds obtained at multiple compression levels
(strains) using (7) and (8). The error-bars in Fig. 5 represent
the 95% confidence interval range of these non-linear param-
eters. Parameter A estimated from vg, vc, and v(f) were,
respectively, -48.9 kPa, -51.9 kPa and [-67.4, -32.9] kPa. Simi-
larly, the estimated parameter D, respectively, were 23.5 kPa,
6.2 kPa, and [5.3, 21.1] kPa.

B. Ex-vivo liver study results

The feasibility of estimating the frequency dependent non-
linear parameters of soft tissue using combined SSWE and
AE was tested on six ex-vivo porcine livers, subjected to
compressions corresponding to strain levels of 12-15%. Sim-
ilar to Sec. II-D, the shear-wave speeds at different strains
were used to extract the non-linear parameters. Parameter A
is estimated by fitting the linear model (7) to the the tangent
shear modulus–stress curve, as seen in Fig. 6(a). Parameter D
is estimated by fitting the quadratic model (8) to the tangent
shear modulus–strain curve as in Fig. 6(b).

Figure 7 shows the ex-vivo results of one porcine liver sam-
ple (#1) of 36 mm thickness, subjected to quasi-static compres-
sions of 0.5 mm steps for a total of 5 mm (≈14% strain). The
velocity map is presented as a function of frequency at several
strain levels ε = {0, 4, 8, 12}% in Fig. 7(a), and as a function
of strain at several frequencies f = {100, 200, 400, 600}Hz
in Fig. 7(b). Results in Fig. 7(a) show an increase in phase

velocity of ≈ 68−86%/500Hz at any given strain level, sug-
gesting a viscous medium. Using (13) and assuming a stress-
free state, viscosity can be estimated as 1.3Pas. Similarly, a
shear-wave speed increase of ≈ 21−41% can be observed for
all frequencies at a strain level of 14%, suggesting a non-
linear material. The group velocity is plotted in Fig. 7(c),
with the upper and lower phase velocity limits of 100 Hz and
600 Hz shown with dashed lines and chosen as described in
Section III-A. Figure 8 illustrates the non-linear parameters of
the six ex-vivo porcine liver samples. Ag were in the range
of [-127.7, -55.1] kPa with a mean value of -78.1 kPa, while
Ac were in [-120.3, -43.8] kPa with a mean of -74.7 kPa. A
large span of [-257, -26.1] kPa was obtained for the frequency
dependent A(f) parameter. A substantial change in A(f) with
frequency can be seen in Fig. 8 for all liver samples, with an
increase of ≈ 12 − 33 kPa/100 Hz. Similarly, Dg were in the
range of [31.8, 110.0] kPa with a mean value of 53.2 kPa, while
Dc were in [21.3, 109.4] kPa with a mean value of 49.9 kPa. A
large span of [8.5, 252.4] kPa was obtained for the frequency
dependent parameter D(f). A substantial change in D(f) with
frequency is observed for all liver samples, with an increase
of ≈ 10− 38 kPa/100 Hz.

All mechanical parameters for all liver samples are pre-
sented in Table II, together with their 95% confidence inter-
vals.

C. Simulation Results

The mechanical simulation model and the results using the
reduced polynomial model and the model parameters from
Table I are presented in Fig. 9(a,b). Stress–strain curves are
shown for quasi-static and quasi-instantaneous excitations,
with an increase in stress observed for the latter case. These
were then fitted using the models described in (7) and the non-
linear parameter A was extracted from the quasi-static (qs)
and quasi-instantaneous (qi) stress–strain plots, respectively,
as Aqs=−34.5 kPa and Aqi=−101.9 kPa, with the error-bars
in Fig. 9(c) showing the 95% confidence intervals. The sim-
ulation is used as a means to compare our (A) parameter
range with those obtained in the in-vivo study [23], where
a different model was used. Therefore, the simulation helped
to interpret the model parameters used in our experiments in
the context of the model (RP) parameters presented in [23]
in a uniaxial experiment. In order to make a comparison with
our ex-vivo experiments, we also placed in this figure the A
values obtained from one liver sample. For this purpose, we
picked our liver sample closest to that used earlier in [23]
by choosing the one with a stress-free shear modulus value
near the average of the shear-moduli of observed quasi-static
and quasi-instantaneous simulations. This assumes the acoustic
radiation force inducing a shear-wave excitation somewhere in
the middle of quasi-static and quasi-instantaneous behaviours.
For the simulations, one can estimate the quasi-static and
quasi-instantaneous shear moduli algebraically from Table I
using µ=2C10, which leads to the stress-free values of µ0qs =
1.4 kPa and µ0qi = 4.4 kPa. The liver sample closest to their
mean of 2.9 kPa is then sample #6. Accordingly, Ag from
sample #6 is also shown in Fig. 9(c) to lie between the values
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Fig. 7. Quantification of shear-wave speed variation with frequency (phase velocity) and amount of strain (non-linearity) on an ex-vivo porcine liver that was
subjected to quasi-static compressions of 0.5 mm steps for a total of 5 mm (≈ 14% strain). In (a) phase velocity at strain levels of {0,4,8,12%} are shown.
The acousto-elasticity effect at frequencies of {100,200,400,600 Hz} is presented in (b).The error-bars represent the standard deviation of velocity estimates
inside the ROI.

Fig. 8. Frequency dependent non-linear parameters A(f) and D(f) (in blue) extracted from 6 ex-vivo porcine livers that were subjected to quasi-static
compressions of 0.5 mm steps for a total of 5 mm (≈ 12-15% strain). A and D parameters extracted from the group velocity (vg in red) are also shown for
reference. Error-bars represent the 95% confidence interval range for the parameters.



8

TABLE II
ESTIMATED MECHANICAL PARAMETERS AND THEIR 95% CONFIDENCE INTERVAL RANGE (±) FOR THE CIRS PHANTOM AND THE EX-VIVO PORCINE

LIVER SAMPLES. SHEAR MODULUS (µ0) AND NON-LINEAR PARAMETERS A AND D WERE ESTIMATED FROM BOTH GROUP VELOCITY (·g), AND PHASE
VELOCITY AT CENTER OF GRAVITY (·c) WHEREAS VISCOSITY (η) WAS ESTIMATED FROM THE DISPERSION CURVE AT STRESS-FREE STATE.

Fig. 9. (a) Simulation model (b) Stress-strain curves from simulations based
on the reduced polynomial model for quasi-static (qs) and quasi-instantaneous
(qi) excitation. (c) The non-linear parameter A estimated from simulations
(Aqs, Aqi) in comparison with experimental group (Ag) and phase velocity
(A(fl),A(fu)) values for sample #6, where fl and fu are the lower and upper
cut-off frequencies.

of Aqs and Aqs. Furthermore, as seen in Fig. 9(c), frequency-
dependent parameter A(f) estimated for #6 at the lower and
upper frequency cut-off values do also lie within quasi-static
and quasi-instantaneous extremes.

IV. DISCUSSION

Results indicate the feasibility of estimating frequency-
dependent non-linear parameters using the proposed method,
which could facilitate differentiation between tissue types. For
the CIRS phantom, our estimations (vg=2.82 m/s, η=0.23 Pas)
strongly corroborate the manufacturer specified parameters
(v=2.77 m/s, η=0 Pas), with the differences being < 0.05m/s
(< 2%) for SW group velocity and 0.23 Pas for viscosity. The
minor SW group velocity change of 0.12 m/s with frequency
seen in Fig. 4(a) suggests that the phantom material is indeed
non-dispersive. Similarly, we observe a small group velocity
increase of 0.08 m/s (2.8%) for the applied strain range of

3.3%. It is worth mentioning that while standard deviations
are large when compared to the overall increase in speed
with frequency and strain in the phantom experiment from
Fig. 4, similar standard deviation values were obtained in
experimental studies in [26], [10]. This can be attributed to
the noisy processes when computing the shear-wave speed for
each frequency. However, owing to the multiple experimental
repetitions performed, we do not expect this to change our
conclusions.

To the best of our knowledge, ground-truth non-linear
parameters for the particular CIRS phantom we used have
not been reported in the literature, against which we can
validate our results. Nevertheless, our estimated parameter
Ag=−48.9 kPa is comparable to the non-linear parameters
reported for similar synthetic phantoms: In [17], a mean
value of -34.7±5.3 kPa for parameter A was reported across
5 phantoms. Our higher A parameter value can be explained
by the higher shear modulus in our phantom (µ0g=7.6 kPa)
compared to theirs (µ0=3.4 kPa).

Figure 5(a) shows a variation of the parameter A within
a range of ±18 kPa around a mean point of 50 kPa. No
significant trend being observed in this variation suggests
that it is due to noise. This agrees with the large confidence
intervals of ≈ ±20 kPa at each frequency. This corroborates
the expectation of the phantom behaviour to be frequency-
independent. A similar observation can also be made for pa-
rameter D in Fig. 5(b), with much larger confidence intervals
of ≈ ± 90 kPa. This may be due to the stress applied on
the phantom not being sufficiently large in order to accurately
observe the fourth order elastic constant D, since very large
stresses were avoided not to damage the phantom. Even so,
no significant change in D was observed across frequencies.

These results obtained from applying AE and SSWE to
the CIRS phantom indicate that it is possible to measure
the frequency (in)dependent non-linear parameters using the
proposed method. In the case of the CIRS phantom, where
lateral stresses are present because of its containment in a box,
the acousto-elasticity parameters approximated with a uniaxial
stress assumption are accurate only within an error margin.
Moreover, a small range of strain (3.3%) was applied to avoid
phantom damage, which may have prohibited the observation
of a non-linear response.

A close similarity between the group velocity and the
phase velocity at the center of gravity was obtained for the
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phantom experiments, with a difference of < 2%. On the
other hand, while still close, a larger difference of 5%− 15%
was obtained for the ex-vivo liver experiments. Since the SW
velocity is connected to the non-linear parameters, the same
can be observed when comparing the difference between the
parameter A based on group and phase velocity at center
of gravity (1 − 17%). As was shown in [10], this can be
explained by the assumption of negligible viscosity when
using a cross-correlation based method for estimating group
velocity. The impact of viscosity on the cross-correlation group
velocity estimation was shown in [10] to be more prominent
at higher viscosity levels. This is due to frequency-dependent
attenuation which causes lower frequencies, and implicitly
the corresponding phase speeds, to become more dominant
with the increase of distance from the source, distorting the
shear-wave profile and introducing a bias. Due to the non-
viscous nature of the phantom, where the SW velocity was
relatively constant across frequencies, the shear-wave profile
was distorted less, limiting such a bias above. The higher
error-bars in the group velocity estimation compared to the
phase velocity estimation can also be explained by this effect.
Viscosity levels between 1-4 Pas were theoretically shown to
increase the shear-wave speed estimation error between 4-7%
when using the cross-correlation method. The 2D FT method,
used for phase velocity estimation, was shown to have an error
of only 1-3% for the same viscosity levels [10].

As opposed to the phantom case, the liver results from
Fig. 7(a&b) show a larger increase in SW group velocity with
frequency (1.5-2 m/s) and with strain (0.5-1 m/s), which are
both to be expected for a viscous non-linear material such as
liver. Due to the larger standard deviations seen in Fig. 7(b)
at lower frequencies (≤ 100Hz) and at higher frequencies
(≥ 600Hz), only the parameters within these intervals were
displayed in Fig. 8.

Figure 8 reveals an increase in absolute value of both non-
linear parameters with frequency, indicating that the non-
linear effects elevate with frequency. There is certain vari-
ability in frequency response among the tested liver samples
based on their estimated non-linear parameters A (≈ 12 −
33 kPa/100 Hz) and D (≈ 10− 38 kPa/100 Hz.). The potential
for these parameters being new mechanical biomarkers is to
be further investigated, e.g. with controlled biological and/or
chemical changes applied to tissues or with in-vivo studies
with known pathological states. For instance, comparing Ag

in the phantom (-48.9 kPa) and the liver sample #5 (-55.1 kPa),
similar values can be observed with highly overlapping confi-
dence interval bounds. However, by looking at the frequency
dependent parameter A(f), a clear distinction between these
two can be made, cf. Fig. 10(a). A similar differentiation can
be made also between liver samples #1 and #4, based on the
variation A(f), cf. Fig. 10(b). Whether this difference has
clinical relevance should be the subject of further study.

As seen in Fig. 9(c), the parameters estimated from the ex-
vivo samples exhibit a good agreement with the parameters
estimated from the 3D finite-element simulations based on
the parameters with an aspiration device presented in [23].
Similar ranges for the parameter A can be observed between
the simulations ([-101.9, -34.5] kPa) and the experimental re-

Fig. 10. Comparison of group velocity based (Ag) and frequency-dependent
(A(f)) parameter: (a) between CIRS phantom and the sample #5, and (b)
between liver samples #1 and #4.

sults ([-116.1, -39] kPa). A larger upper limit (i.e. absolute
value) would be expected from the simulations for the quasi-
instantaneous response case when compared to the experi-
mental results. This can be attributed to the fact that in the
work of [23], on which our simulations are based, the quasi-
instantaneous response parameters were measured in in-vivo
mechanical tests. Therefore the strain rates (and frequency re-
sponse) were limited because of physical constraints and hence
a true quasi-instantaneous response was not measured. The
actual strain rates in their experiments were ≈1–3 mm· s−1,
comparable to the ones induced in our shear-wave experiments
of ≈0.5–1 mm·ms−1.

The stress free shear modulus ([2.8, 3.9] kPa) and viscosity
([1.03, 1.43] Pas) values obtained in our liver study were
similar to other values reported in the literature. Porcine liver
studies performed in [42] using multiple harmonic excitations,
revealed a mean shear modulus of 2.2 kPa and viscosity of 1.8
Pas. Studies in [41] using shear-wave dispersion ultrasound
vibrometry resulted in a mean shear modulus of 5.4 kPa and
viscosity of 1.43 Pas. Third order non-linear parameters have
been previously studied in the literature [16], [17] however
not on porcine but bovine liver pieces embedded in gelatin
blocks. In [16] the parameter A was estimated in the range
of [-576, -128] kPa with a mean value of -335 kPa using
SSI and a large rigid compression plate. Values closer to
ours were obtained in [17], with A within [-115, -98] kPa
with a mean of -114 kPa, also using SSI but with a smaller
compression plate attached to the transducer. While the results
are similar, there could be several reasons for the differences
to the parameters in our experiments (A=[-128, -55], mean
of -78 kPa). Our measurements were performed on whole
livers as opposed to small liver pieces (1-2 cm3) embedded
in gelatin. Moreover, it was shown in [19] that differences
of up to 50% in the parameter A measurement may occur
from using a compression plate of 11.5×4.5 cm as opposed
to only using the ultrasound probe for compression. This is
because the different stress distributions do not fulfill the uni-
axial stress assumption in the latter case. To our knowledge,
the fourth order parameter D has not been investigated on
liver in the literature before. A study on porcine brains in [22]
revealed a mean D of 5.8±1.4 kPa and A of −13.6±7.1 kPa,



10

which would confirm that brain tissue is significantly more
linear than liver. The large difference in A parameters (from
highly non-linear towards more linear) between bladder [18],
liver [17], kidney [19] and brain [22] show the importance of
non-linear parameters in tissue. On the other hand, we have
shown that there is a significant variation of these parameters
with frequency. Because of this, it is not possible to accurately
quantify tissue non-linearity between ultrasound equipments
that provide different excitation frequencies or bandwidths.
For this reason, our work proposes the study of non-linear
parameters in a frequency dependent manner. The model used
in this manuscript is based on the assumption of a nonlinear
but purely elastic material. Since tissues are not homogeneous,
but instead contain micro structures at multiple scales (e.g.,
cells, fibers, vessels, etc), waves at different frequencies may
”see” different such structures and thus encounter different
nonlinear responses. Accordingly, tissues are known to ex-
hibit dispersive effects. Often, the choice of material model
is a trade-off between accuracy (for representativeness) and
simplicity (for robustness) for a given measurement setting
and application scenario. There have been various studies,
where the elastic model was based on (3) [15], [16], [17], [18],
[19], or on a plethora of other different (hyperelastic) models
[43], [21], for describing the behaviour of dispersive tissue.
Herein we estimate tissue nonlinear parameters as a function of
frequency of the applied stress, where a wide range of variation
is observed. These are argued to be potentially beneficial for
tissue differentiation. Nevertheless, the mechanisms leading
to these differences are not herein investigated, i.e. if mode
conversion or attenuation at different frequencies may play a
role in the observations. One limitation of this method is that
the estimation of non-linear parameters using (7) and (8) relies
on the application of uni-axial stress. In clinical scenarios,
this can be challenging due to the tissue geometry and the
depth of target tissue inside the body. This variation of the
estimated non-linear parameters in the presence and absence
of a compression plate was studied in [19]. Note that with the
ROI based estimation of shear-wave phase velocity, we achieve
quantification with a ROI but without any spatial variation.
Alternatively, a point based estimation can be adopted for
better spatial distribution, similarly to [10]. While whole livers
were used in our study, a possible limitation is the lack of liver
perfusion and pressurization as encountered in in-vivo cases,
which could alter the non-linear parameters. In future work,
healthy and pathological livers shall be investigated to asses
the importance of frequency based non-linear parameters as a
potential biomarker.

V. CONCLUSIONS

In this work, a study on extracting frequency dependent non-
linear parameters has been presented using shear-wave elastog-
raphy and quasi-static compressions. Thanks to the broadband
characteristics of the induced shear-wave, shear-wave spec-
troscopy could be coupled with acousto-elasticity measure-
ments giving access to frequency- and strain-dependent shear-
wave measurements. By fitting these to mathematical models,
frequency-dependent parameters were obtained. Results on a

CIRS elastography phantom revealed no significant change
in elastic parameters with frequency, confirming the linear
behavior of the phantom. A study with 6 ex-vivo porcine
livers with dispersion characteristics has revealed a signifi-
cant variation in both non-linear parameters A and D with
frequency. Frequency-independent group velocity and center
of gravity phase velocity parameters were computed. These
have demonstrated a good agreement and were both within
the limits determined by the upper and lower boundaries of
the frequency dependent parameters.

We have demonstrated that it is possible to estimate fre-
quency dependent non-linear parameters using the proposed
method, with the estimated group velocity parameter values
being in agreement with those reported previously in the liter-
ature. The measurement technique can be applied to different
body areas and disease entities using a conventional ultrasound
machine. It has potential to add further information to the
detection and characterization of diseases.
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