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Abstract. Quantifying seasonal variations in precipitation
δ2H and δ18O is important for many stable isotope applica-
tions, including inferring plant water sources and streamflow
ages. Our objective is to develop a data product that concisely
quantifies the seasonality of stable isotope ratios in precipi-
tation. We fit sine curves defined by amplitude, phase, and
offset parameters to quantify annual precipitation isotope cy-
cles at 653 meteorological stations on all seven continents.
At most of these stations, including in tropical and subtrop-
ical regions, sine curves can represent the seasonal cycles
in precipitation isotopes. Additionally, the amplitude, phase,
and offset parameters of these sine curves correlate with site
climatic and geographic characteristics. Multiple linear re-
gression models based on these site characteristics capture
most of the global variation in precipitation isotope ampli-
tudes and offsets; while phase values were not well predicted
by regression models globally, they were captured by zonal
(0–30◦ and 30–90◦) regressions, which were then used to
produce global maps. These global maps of sinusoidal sea-
sonality in precipitation isotopes based on regression models
were adjusted for the residual spatial variations that were not
captured by the regression models. The resulting mean pre-
diction errors were 0.49 ‰ for δ18O amplitude, 0.73 ‰ for
δ18O offset (and 4.0 ‰ and 7.4 ‰ for δ2H amplitude and
offset), 8 d for phase values at latitudes outside of 30◦, and
20 d for phase values at latitudes inside of 30◦. We make the
gridded global maps of precipitation δ2H and δ18O seasonal-

ity publicly available. We also make tabulated site data and
fitted sine curve parameters available to support the devel-
opment of regionally calibrated models, which will often be
more accurate than our global model for regionally specific
studies.

1 Introduction

Characterizing the stable oxygen (18O/16O) and hydrogen
(2H/1H) isotope compositions of precipitation can provide
insights into the temporal and spatial origins of water, and
of geological and biological materials that incorporate O and
H from water. However, the isotopic composition of precip-
itation is difficult and costly to measure across large spatial
scales or at high temporal frequencies, and thus precipita-
tion isotope measurements are often unavailable for the times
and locations at which they are needed. Consequently, com-
piled precipitation isotope data (e.g., Global Network for Iso-
topes in Precipitation; International Atomic Energy Agency)
and interpolations of mean and monthly precipitation isotope
data (e.g., Bowen et al., 2005; Bowen and Wilkinson, 2002)
are used across many fields of science (West et al., 2010).

Although these network datasets and interpolated maps
contain spatial and temporal information, it is often conve-
nient to simplify and average across one of those dimen-
sions. When identifying the spatial origin of water in a sam-
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ple, investigators may use spatial patterns in mean isotope
ratios (despite those patterns varying temporally and those
samples not integrating water signatures throughout years).
Additionally, when identifying the temporal origin of wa-
ter in a sample, investigators often use time series of iso-
tope data from the nearest measurement location (and thus
do not account for spatial differences). Alternatively, con-
cise representations of large-scale spatiotemporal precipita-
tion isotope patterns could be widely useful and mitigate
the need to average precipitation isotope data across space
or time. Various tools and interpolation schemes exist for
predicting precipitation isotope ratios at a given location
(e.g., Online Isotopes in Precipitation Calculator following
Bowen and Revenaugh, 2003), or for mapping spatial pat-
terns in mean or monthly values over specified intervals (e.g.,
https://isomap.rcac.purdue.edu/isomap/, last access: 11 Au-
gust 2019; see Bowen et al., 2014). However, previous meth-
ods have not explicitly supported predictions of seasonal iso-
tope cycles by first using metrics that capture isotopic tem-
poral dynamics and then interpolating those metrics.

Isotope ratios in precipitation often follow distinct sea-
sonal cycles that can be approximated by sine curves
(Bowen, 2008; Dutton et al., 2005; Feng et al., 2009; Halder
et al., 2015; Vachon et al., 2007; Wilkinson and Ivany, 2002),
and the parameters describing those sine curves are often pre-
dictable in space (Allen et al., 2018; Jasechko et al., 2016).
Sine curves concisely represent temporal dynamics because
they express continuous, cyclic time series as functions of
only three parameters (amplitude, phase, and offset). To pre-
dict isotope seasonality across the globe, values of these three
sine parameters, fitted to monthly precipitation isotope data
at monitoring stations, can be described as functions of sta-
tion climate and geography. Such mapped sinusoidal cycles
were shown to be effective in predicting monthly precipita-
tion isotope values across Switzerland (Allen et al., 2018).
Beyond being useful for predicting isotope values in spe-
cific seasons, sine curves generally aid in characterizing the
propagation of cyclic signals. For example, as precipitation
travels through hillslopes and into streams, seasonal isotope
amplitudes are dampened, reflecting transport processes that
can be quantified as a ratio of stream and precipitation ampli-
tudes (Kirchner, 2016a, b); this young water fraction, which
requires sine curve fitting of precipitation isotopes, has been
used in many recent studies (Clow et al., 2018; von Freyberg
et al., 2018; Jacobs et al., 2018; Jasechko et al., 2016, 2017;
Lutz et al., 2018; Song et al., 2017). Thus, there are imme-
diate applications for mapped sine curves that characterize
precipitation isotope cycles across the globe. More generally,
spatial data describing how precipitation isotope composi-
tions vary seasonally could facilitate interpretations of envi-
ronmental 18O/16O and 2H/1H data and support predictions
of precipitation isotope compositions in time and space.

Here we present global maps of precipitation isotope cy-
cles that capture patterns in precipitation isotope seasonality.
We first describe the strength of seasonal isotope cycles and

quantify how well sine curves explain monthly precipitation
measurements at each of 653 precipitation isotope monitor-
ing stations. We then explore how well the parameters de-
scribing those sine curves can be predicted across the globe,
as a function of site characteristics. Lastly, we produce global
maps and data that support stable isotope applications and
make these maps and data publicly available. We conduct
these analyses to support a growing need for quantifications
of seasonal cycles in precipitation isotopes, not to challenge
the methods previously used in other precipitation isotope
models.

2 Methods

2.1 Data

We used a global dataset of monthly precipitation oxygen
and hydrogen isotope measurements from 650 and 610 pre-
cipitation monitoring stations, respectively. These previously
compiled (Jasechko et al., 2016) data were collected from the
Canadian Network for Isotopes in Precipitation (Birks and
Edwards, 2009; Birks and Gibson, 2013), the US Network
for Isotopes in Precipitation (Delavau et al., 2015; Welker,
2000, 2012), and the Global Network for Isotopes in Precipi-
tation (Aggarwal et al., 2011; Halder et al., 2015). Following
Jasechko et al. (2016), we characterize seasonal cycles only
at monitoring stations that report precipitation isotope com-
positions for at least eight unique months. Monthly precipi-
tation amounts (or snow-water equivalencies) are also avail-
able from 623 of the 650 stations that measured oxygen iso-
tope ratios, and from 603 of the 610 stations that measured
hydrogen isotope ratios. All hydrogen and oxygen isotope
ratios of precipitation are denoted as δ2H and δ18O, defined
by

δ2H=

(2H/1H
)

sample−
(2H/1H

)
V-SMOW(

2H/1H
)

V-SMOW

× 1000 ‰, (1)

and

δ18O=

(18O/16O
)

sample−
(18O/16O

)
V-SMOW(

18O/16O
)

V-SMOW

× 1000 ‰, (2)

where V-SMOW refers to the Vienna Standard Mean Ocean
Water standard.

We compiled gridded climatological and geographical
data for global modeling and for inferring site character-
istics of the precipitation monitoring stations (Fig. 1). We
downloaded climate maps of monthly precipitation sums and
monthly means of daily low, high, and mean temperature, all
at 5 arcmin (i.e., 0.083◦) resolution (WorldClim; Fick and Hi-
jmans, 2017). Station climate data were inferred from these
gridded products for all but three stations that were on small
islands or stationary weather vessels, for which local mete-
orological data were acquired. The range of mean monthly
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Figure 1. Global maps of site characteristics used for predicting seasonal precipitation isotope cycles: (a) elevation of precipitation isotope
monitoring stations plotted over the elevation map, (b) distance from coast, (c) temperature range between mean temperatures of warmest
and coldest months, (d) mean annual temperature, and (e) mean annual precipitation. Values at precipitation isotope monitoring stations are
marked by circles. For b–e, station-level data are estimated as the value of the grid cells that the stations occupy.

temperatures was computed at each pixel (and each monitor-
ing station) as the difference between the highest and low-
est monthly mean values, using the WorldClim data. Annual
mean daily temperature range was calculated as the mean
differences between daily minimum and maximum temper-
atures. The WorldClim data were also used to calculate time
of peak precipitation and temperature, and seasonal ampli-
tude of precipitation and temperature, metrics which can to-
gether capture global patterns in hydroclimate (Berghuijs and
Woods, 2016). We also used a 30 s gridded elevation map
(GTOPO30; US Geological Survey, 1996) that was aggre-
gated to 5 min for consistency with the other grids. Monitor-
ing station elevation data were not inferred from the grids,
but instead downloaded directly from the isotope network
databases. Distance from oceans and seas was calculated

in ArcGIS 10.4.1 (ESRI, Redlands, USA) using published
coastline data (Wessel and Smith, 1996) for the center of each
5 min pixel and for each monitoring station.

2.2 Sine-fitting methods

We fitted sine curves (described by the parameters ampli-
tude, phase, and offset) to each monitoring station’s monthly
measured δ18O and δ2H time series using a nonlinear fitting
routine (“fitnlm” in MATLAB R2016B, Mathworks, Natick,
Massachusetts, USA). The sine curve is defined with a fixed
period of 1 year,
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precipitation δ18O or δ2H(t)= amplitude

× sin(2πt − phase)+ offset, (3)

where t is the fractional year.All fitted amplitudes and phases
were adjusted so that fitted amplitude values are positive, and
phase values are between π and−π . Phase was calculated in
radians, but we report all values in days from the summer sol-
stice. Allen et al. (2018) previously confirmed that this non-
linear fitting routine yields parameter values and component
standard errors that are equivalent to those obtained by fitting
sine curves as an additive model of sine and cosine functions
with their uncertainties calculated by Gaussian error prop-
agation. It should be noted that standard errors depend on
the length of records, and while some stations have datasets
that are as long as 57 years, shorter durations are more com-
mon (Fig. 2a). We fitted the sine curves by two alternative ap-
proaches: (a) using iteratively reweighted least squares with
a bisquare weighting function (robustly fitted), and (b) using
standard least squares with the influence of each monthly iso-
tope measurement weighted by the amount of precipitation
during that month (amount-weighted). These metrics have
different limitations. The amount-weighted cycles are less in-
fluenced by erratic values that can occur in low-precipitation
months but also do not capture the variations during drier
seasons as effectively. For example, if there was an anoma-
lously dry month in a short data record and that dry month
also had an atypical isotope value (e.g., because it was com-
posed of a single small event), that value could result in a
robust-fit exaggerating the true seasonal isotope cycle. If esti-
mates based on that sinusoid were later weighted with typical
precipitation amounts, this could introduce errors. Weighted
fits could introduce errors if drier season precipitation is im-
portant to the study system, but the dry season precipitation
has minimal influence on the fits and thus those values are
misrepresented. Weighted fits might also mischaracterize the
seasonal dynamics of a typical year in regions that are im-
pacted by extreme precipitation in some years (e.g., hurri-
canes or monsoons) if that extreme precipitation has distinct
isotope values and yields volumes that are substantial frac-
tions of annual precipitation (e.g., Price et al., 2008). We fo-
cus on the robustly fitted parameters describing the seasonal
cycles, but for comparison, the amount-weighted fits are also
reported in Supplement 2. We recommend that future users
of these data carefully consider the different limitations when
selecting between these two approaches.

2.3 Precipitation sinusoidal prediction methods

To characterize spatial variations in precipitation isotope sea-
sonality, we establish relationships between the fitted sine
parameters (amplitude, phase, and offset) and site charac-
teristics of the precipitation isotope monitoring stations us-
ing multiple linear regression. To characterize the monitor-
ing stations, we used elevation, absolute latitude, distance

Figure 2. Maps of precipitation isotope measurement stations with
colors indicating (a) the length of measurements at each site, and
goodness-of-fit, statistics (b) root mean square errors (RMSEs) and
(c) coefficients of variations (R2) of the fitting of sine curves to
monthly, empirical time series from each station. We show the ro-
bustly fitted δ18O statistics; the amount-weighted δ18O fit statistics,
and the δ2H statistics (robustly fitted and amount-weighted) are pro-
vided in the Supplement 2.

from the nearest ocean, mean annual temperature, range
of mean monthly temperatures, seasonal amplitude of pre-
cipitation amount, and mean annual precipitation amount
(Fig. 1). We chose these metrics as spatial predictors be-
cause global datasets of these metrics are publicly available
and they capture aspects of climate and circulation patterns
that are known to affect precipitation isotopic composition
(Aggarwal et al., 2016; Birks and Edwards, 2009; Rozan-
ski et al., 1993). To determine which predictors should be
included in regression models, we used a stepwise model se-
lection approach in which different combinations of predic-
tors were used to maximize R2 values while requiring that
all coefficient p values be statistically significant (p < 0.05).
This step limits model overfitting by excluding redundant
or nonsignificant predictors. We found that using these cri-
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teria more aggressively removed variables compared to the
more standard Akaike information criterion (AIC). To assess
collinearity among these variables, we calculated the vari-
ance inflation factors (VIFs) associated with a hypothetical
model that includes all six variables; we found those factors
to range from 1.4 to 7.8, and while no fitted models were
actually included all six terms, the variance inflation factors
among the six predictors are still all below the often-used
threshold of 10 (Marquaridt, 1970). After identifying the ap-
propriate model terms, models were fitted using the “fitlm”
function with robust fitting options that reduce the influence
of outliers (MATLAB R2016B). In preliminary analyses, we
also tested other metrics – precipitation phase, temperature
phase, and mean daily temperature range – but determined
that they were not consistently important (i.e., when included
in the initial model selection, they were mostly excluded).
Thus we excluded these other metrics from subsequent anal-
yses to avoid overcomplicating the models; however, they of-
ten showed interesting relationships with the sine parameters,
so they are provided in Fig. S1 in the Supplement.

For models of phase, we only used data from monitor-
ing stations where there is a distinct seasonal cycle, because
phase terms are meaningless and fitted values are unstable
where there are no sinusoidal seasonal cycles; these phase
values will also be excluded from the supporting information
data files to avoid confusion. We characterize distinct sea-
sonal cycles as ones where the phase is well constrained, with
standard errors of the fitted phase terms lower than 15 d (and
thus 95 % confidence intervals of approximately ±1 month).
Roughly 74 % of the sites (n= 479) met this criterion. We
also tested other criteria for filtering out stations with mean-
ingless phase terms, such as R2 > 0.3 (n= 425) or R2 > 0.5
(n= 232), and those yielded similar regression models for
phase. We modeled phase in middle and high latitudes (30 to
90◦; n= 349 after removing data without distinct seasonal
cycles) separately from phase in tropical and subtropical lati-
tudes (0 to 30◦; n= 130 after removing data without distinct
seasonal cycles). We took this approach because initial in-
spections of these data and past examinations of similar data
(Bowen and Revenaugh, 2003; Feng et al., 2009; Halder et
al., 2015) suggested that phase is relatively consistent within
each of these zones, with sharp transitions at approximately
30◦ N and S (roughly corresponding with Hadley Cell bound-
aries; Birner et al., 2014).

These fitted spatial regression equations for amplitude,
phase, and offset were used to map global precipitation iso-
tope seasonality using the gridded site-characteristic data.
We did not extend these maps to extrapolate Antarctic iso-
tope seasonality because there are few monitoring stations
there. We also mapped the residuals, estimated by subtract-
ing the regression model estimates of amplitude, phase, and
offset from the same variables determined from the fitted sine
curves at the precipitation monitoring stations. We interpo-
lated those residuals using inverse-distance weighting of the
residual values from the three stations that are most prox-

imal to each grid-cell center. For phase, we used nearest-
neighbor interpolation, rather than inverse-distance weight-
ing, because averages across unlike phases are poorly repre-
sentative. We then applied a Gaussian filter to smooth each
of the residual adjustment layers, with the standard devia-
tion equal to 3◦, because we assume there are measurement
uncertainties and thus the layer should not be fitted exactly
to the points; we smoothed the phase residuals separately in
absolute latitudes > 30◦ versus absolute latitudes < 30◦. For
final predictive maps, we added the smoothed residual maps
to the regression-based maps; wherever negative amplitudes
resulted, those values were forced to zero. Errors were eval-
uated by running this routine again, but while randomly ex-
cluding 65 sites (10 %) for subsequent use as independent
quality-control checks. Sine parameters for those 65 stations
were predicted using models calibrated with the other ∼ 585
sites; this Monte Carlo procedure was iterated 15 times for
both δ18O and δ2H.

We provide these predictive maps of the gridded ampli-
tude, phase, and offset values of δ18O and δ2H. We also
provide gridded amplitude, phase, and offset values for pre-
cipitation amount, which can be used to scale precipitation
isotopic inputs, in applications where amount is important.
These maps are provided (Supplement 3).

To explore sub-global variations in performance of the
spatial multiple regression models, we also performed re-
gional regression analyses in which we fitted multiple regres-
sions to data from subsections of the globe. Regressions of
amplitude, phase, and offset were calculated for 40◦× 40◦

windows using the same site characteristics that were used
in the global models: absolute latitude, elevation above sea
level, distance from coastline, range of mean monthly tem-
peratures, mean annual temperature, and annual precipita-
tion amount. These regional regressions were calculated at
all vertices of a 10◦ grid (marking the center of each 40◦

window). We used the same combination of stepwise regres-
sion model selection and robust regression fitting as in the
global analysis. Only windows that contained more than 25
precipitation isotope monitoring stations were analyzed. We
report gridded R2 and root mean square error (RMSE) val-
ues to indicate where these relationships are strongest. We
also provide fitted sine parameters and site characteristics in
the supporting information to facilitate users’ development of
other regression models for regionally specific applications
(Supplement 2).

3 Results

3.1 Seasonal cycles in precipitation isotopes

Globally, 94 % of the precipitation δ18O monitoring stations
(n= 650) have statistically significant seasonal isotope cy-
cles (p < 0.05; t test of the δ18O amplitudes), although those
cycles do not always explain the majority of the variance

www.hydrol-earth-syst-sci.net/23/3423/2019/ Hydrol. Earth Syst. Sci., 23, 3423–3436, 2019
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Table 1. Pearson and Spearman correlation coefficients of sine parameters versus site characteristics.

Sine Versus Versus Versus dist. Versus temp. Versus mean Versus mean
parameters |latitude| elevation from coast range temp. precip.

Pearson

Amplitude 0.34 0.34 0.54 0.58 −0.56 −0.35
Phase 0.76 −0.12 0.25 0.72 −0.68 −0.64
Offset −0.67 −0.16 −0.23 −0.70 0.88 0.40

Spearman

Amplitude 0.30 0.42 0.56 0.51 −0.49 −0.37
Phase 0.59 0.04 0.20 0.63 −0.64 −0.62
Offset −0.69 −0.26 −0.35 −0.65 0.87 0.40

Figure 3. Scatter plots of fitted sine parameters describing precipitation δ18O seasonal cycles – (a–f) amplitude, (g–l) phase, (m–r) offset –
versus site characteristics. For associated Spearman and Pearson correlation coefficients, see Table 1. Colors indicate absolute latitude (high
latitudes in blue, low latitudes in red) as shown in (a), (g), and (m).

in monthly isotope values (i.e., only 36 % of the stations
had R2 greater than 0.5; Fig. 2). Amplitudes range from
0 to 11 ‰ δ18O (Fig. 3), with a median value of 2.3 ‰
δ18O; here, amplitude quantifies the strength of seasonal cy-
cles as deviations from average annual values, so an am-
plitude of 2.3 ‰ δ18O corresponds to a range of 4.6 ‰ be-
tween typical values in the “higher δ18O season” and the
“lower δ18O season”. Seasonal isotope variations are larger
in colder, higher-latitude, higher-elevation, or more continen-
tal regions (Fig. 3), although no individual site characteristic
explains the majority of variation in amplitude (Fig. 3; Ta-
ble 1). The few coastal stations that have strong seasonal cy-
cles are almost exclusively located in high absolute-latitude

regions (Fig. 4a). Many of the monitoring sites within tropi-
cal latitudes also have substantial seasonal cycles; for exam-
ple, 27 % of sites in the tropics show amplitudes greater than
3 ‰ δ18O, and they are not all high-elevation sites (Fig. 3b).

Although most stations show a seasonal precipitation δ18O
cycle, the ability of sine curves to capture monthly δ18O
values varies (Fig. 2). The median percent of variance ex-
plained by sine curves is 42 %; the median RMSE of individ-
ual monthly deviations from fitted sine curves is 2.2 ‰ δ18O.
Stronger fits occur where (a) there is a strong seasonal cycle,
(b) the seasonal cycle is the dominant pattern of variation,
and (c) sine curves are the appropriate shape to characterize
precipitation isotope variations. Accordingly, the spatial pat-
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Table 2. Multiple regression coefficients and fit statistics for models describing global variations in sine parameters that capture seasonal
precipitation δ18O cycles. Dashes mark predictors that were excluded by the stepwise-regression model selection.

|Latitude| Elevation Dist. from Temp. Mean annual Mean annual Intercept RMSE R2

(◦ from (m a.m.s.l.) coast range temp. precip.
Equator) (km) (◦C) (◦C) (mm yr−1)

Amplitude
(‰ δ18O)

−0.06 0.0003 0.0013 0.08 −0.12 – 4.5 1.1 0.64

Phase
(days)a

– 0.005 – – −0.38 – 24.2 12.0 0.19

Phase
(days)b

−1.27 – – 0.78 – – −100.0 28.2 0.21

Offset
(‰ δ18O)

0.10 – – −0.11 0.55 −0.0008 −15.7 2.0 0.83

a Referring to sites in latitudes > 30◦ (N or S). b Referring to sites in latitudes < 30◦ (N or S).

tern in R2 (Fig. 2c) is broadly similar to the pattern in ampli-
tude (r = 0.74). However, RMSE also increases with ampli-
tude (r = 0.58), demonstrating that greater seasonal variabil-
ity is also generally associated with greater month-to-month
deviations from the seasonal sinusoidal cycle.

The phase term is well constrained (i.e., SE of phase
< 15 d) at most but not all sites (n= 479), and its geographic
distribution is surprisingly binary (Fig. 4b). From 30◦ S to
30◦ N (i.e., roughly corresponding with the Hadley cells),
peak isotope values occurred 104± 43 d before the summer
solstice (mean±SD). By contrast, in the middle- and high-
latitude regions, peak isotope values occurred 18.6±24 d af-
ter the summer solstice. A few exceptions are found in ab-
solute latitudes near 30◦, which may be attributable to the
effects of the Asian monsoon cycle (Cai et al., 2018) or the
migration of Hadley cell boundaries, which do not consis-
tently occur at 30◦ (Chen et al., 2014). Peak precipitation
isotope values occur within a month of peak temperature
at 89 % of the monitoring stations that are in absolute lati-
tudes above 30◦ and have well-constrained seasonal isotopic
phases (Fig. S2); however, that pattern was not ubiquitous.
On average, phase of δ2H significantly lags δ18O in absolute
latitudes over 30◦ (p < 0.01), albeit with a median difference
of only 2 d (and median absolute difference of 4 d); these
observations suggest that precipitation line-conditioned (LC)
excess, defined as δ2H−a×δ18O−b (where a is the slope and
b is the intercept of the local meteoric water line (LMWL);
(Landwehr and Coplen, 2006), may frequently have a sea-
sonal cycle, as previously described in Switzerland (Allen et
al., 2018) and suggested in global deuterium-excess varia-
tions (Pfahl and Sodemann, 2014).

Offset values, describing the central tendency of the sea-
sonal cycle, span a range of 33 ‰ in δ18O. These values are
highest (least negative) in tropical and subtropical regions,
and lowest in polar regions (Fig. 4c). Most prominent is the
strong temperature trend (0.47 ‰ δ18O per degree Celsius,

R2
= 0.77; Fig. 3; Table 1), consistent with patterns that have

been previously described (Dansgaard, 1964; Rozanski et al.,
1993). It should be noted that offsets and amplitudes are asso-
ciated differently with continentality (Fig. 4a, c); while many
of the regions with highly negative offsets also have large
amplitudes, this is untrue of coastal regions in middle and
high latitudes where highly negative offsets and small ampli-
tudes co-occur. For example, in Reykjavik, Iceland, the δ18O
offset is −8.0 ‰ and the amplitude is 0.9 ‰; a similar offset
is found in continental Iowa, USA (−8.2 ‰), but the ampli-
tude is 4.5 times larger (4.0 ‰).

3.2 Spatial patterns in parameters describing
precipitation isotopic cycles

The spatial patterns in amplitude, phase, and offset can be
described as functions of site characteristics. Of the predic-
tors examined, all have significant correlations (at p < 0.05)
with amplitude, phase, and offset (Table 1; see also Fig. 3).
Spearman rank correlations, which are less influenced by ex-
treme values, are also statistically significant for all but one
of these relationships (Table 1). However, no variables ex-
plain the majority of variation in amplitude, and only temper-
ature explained the majority of variation in offsets (Table 1).

We developed multiple linear regression models of site
characteristics and sine parameters, and used them to gen-
erate maps of δ18O sinusoidal cycles (Fig. 4). The multi-
ple regression models explain 64 % of the variation in am-
plitude (RMSE= 1.1 ‰) and 83 % of the variation in off-
set (RMSE= 2.0 ‰). The multiple regression models for
phase have low R2 values (0.19 and 0.21 for absolute lat-
itudes above and below 30◦, respectively) because there
is little variation in phase within each latitude band; thus,
phase RMSE values are small (12 and 28 d; Table 2). The
coefficients of the multiple regression equations describ-
ing mapped precipitation δ18O sinusoidal cycles are pre-
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Figure 4. Maps of fitted station values (markers) and regression-
based sine-curve parameters (shaded) that describe the seasonal cy-
cles in precipitation δ18O (a) amplitude, (b) phase, and (c) offset.
The shading reflects multiple-regression models based on landscape
characteristics, described in Table 2; for phase, separate models
were used in absolute latitudes > 30◦ versus latitudes < 30◦ (see
methods). Here, residuals were not yet added back into the model.

sented in Table 2 and analogous coefficient tables describ-
ing global regression models of δ2H, amount-weighted δ18O,
and amount-weighted δ2H cycles are presented in Table S1
in the Supplement.

Residuals from the interpolated sine parameter layers of-
ten show clusters of similar values (Fig. 5), implying that
sources of geographic variation are not fully captured by the
predictors that we have used. Consequently, regionally cali-
brated models (calculated over moving 40◦× 40◦ windows)
often yield better fits (Fig. 6). Even in regions where mul-
tiple regression models do not effectively explain the varia-
tions in precipitation isotope sine parameters (e.g., Central
America, south-central Asia), they will necessarily be fitted
to the mean regional values, so the regional multiple regres-
sion model errors (RMSEs) will usually be smaller than those
of the global regression model.

Figure 5. Maps of δ18O (a) amplitude, (b) phase, and (c) offset
residuals, where the sine parameter values predicted from the mul-
tiple regression equations (shown in the interpolated maps in Fig. 4)
were subtracted from those of parameter values fitted to measure-
ments at each precipitation isotope monitoring site (also shown in
Fig. 4). The shading shows the smoothed residual layers (see Meth-
ods).

To produce final predictive maps, we adjusted for the
geospatially clustered residuals by adding the smoothed
residual maps (Fig. 5) to the regression-based maps (Fig. 4).
These predictive sinusoidal maps of δ18O seasonality (Fig. 7)
and δ2H seasonality (Fig. S3) are made available in the Sup-
plement. They capture 88 %, 97 %, and 96 % of the global
variations in amplitude, phase, and offset, respectively. To
calculate the prediction errors, we ran this routine again but
randomly excluded 10 % of the sites from the calibration
so that the sine parameters at those sites were predicted in-
dependently; the median amplitude and offset errors were
0.49 ‰ and 0.73 ‰ δ18O (and 4.0 ‰ and 7.4 ‰ δ2H), and
median phase errors were 8 and 20 d (for absolute latitudes
above and below 30◦, respectively).
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Figure 6. Fit statistics for regionally fitted regressions that explain the spatial variations of the precipitation δ18O sine parameters. Regressions
of (a) amplitude, (b) phase, and (c) offset versus site characteristics were calculated for 40◦×40◦ pixels (centered on vertices at a 10◦ grid).
Only pixels which contained > 25 precipitation isotope measurements stations were used; for phase (b), we only used measurement stations
that had well-constrained sinusoidal cycles (i.e., the standard error of the phase was less than 15 d). These figures show that site characteristics
do not consistently explain the patterns of variations, and often theR2 values are substantially lower than those of the global regression model
(Table 2). However, the errors (RMSEs) are (almost) universally lower than those of the global regression model, implying that regionally
calibrated regressions models are better predictors of spatial patterns in precipitation isotope cycles.

4 Discussion

The occurrence of seasonal cycles in precipitation isotopes
enables the tracking of how precipitation cycles propagate
through landscapes and ecosystems. Previous research has
found that precipitation isotopes vary seasonally, and that
these seasonal patterns vary geographically (Halder et al.,
2015; Rozanski et al., 1993). This work quantifies those
seasonal patterns and their geographical variation, yielding
global maps of sinusoidal precipitation isotope cycles (i.e.,
global sinusoidal “isoscapes”) that can be used to predict sea-

sonal precipitation isotope cycles in sites or regions where
they have not been measured.

Site characteristics explain most of the global precipita-
tion isotope cyclicity, albeit with uncertainty in the regres-
sion model, the sine fits, and the raw data. Amplitude vari-
ations are mostly predictable by multiple regression (Ta-
ble 2), but there were regional clusters of substantive (±1–
2 ‰ δ18O) amplitude residuals. For example, the regression
model (Fig. 4) tended to systematically underestimate ampli-
tudes in Canada and the northern United States and system-
atically overestimate amplitudes in other regions (e.g., south-
eastern USA, eastern Asia, and eastern Africa). We partially
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Figure 7. Maps of fitted station values (markers) and the residual-
adjusted maps of sine-curve parameters (shaded) that describe the
seasonal cycles in precipitation δ18O: (a) amplitude, (b) phase, and
(c) offset. The interpolated surface is the sum of the infilled surfaces
in Figs. 3 and 4 (see Methods).

mitigated these discrepancies between model outputs and ob-
servations by interpolating and smoothing the residuals, as
is commonly done for precipitation isotope maps to improve
the fit of the maps to the data (e.g., Terzer et al., 2013). Better
fits could have been achievable through using more predic-
tor variables in the regression models; however, we chose to
limit the number of variables in the multiple regression mod-
els, even prior to the stepwise model selection; while we ex-
plored new relationships between precipitation isotope sea-
sonality and (for example) diel temperature range or precipi-
tation amount seasonality (Fig. S1), these offer little explana-
tory power that is not also captured in simpler metrics. Re-
gardless, some uncertainties are introduced by using gridded
climate products to infer site characteristics, because grid-
cell means are not always representative of individual station
locations, as demonstrated by the mismatch between the el-
evations of monitoring stations and the mean elevations of
the pixels they occupy (Fig. S4). Other uncertainties in the
regression predictions likely result from errors in the initial

sine-curve fitting, as demonstrated by the fact that the regres-
sion models improve when only stations with longer records
are used. For example, if we exclude all datasets shorter than
3 years (see Fig. 2a), the R2 of the δ18O amplitude model
increases from 0.64 to 0.73 and the R2 of the offset model
increases from 0.83 to 0.87. Any uncertainties in the models
or the underlying data, however, do not preclude widespread
estimation of precipitation stable isotope cycles at the level
of confidence indicated (e.g., in Table 2 and Figs. 5 or 2b),
which is improved upon through use of the residual-adjusted
maps. Predictions can also be improved by using multiple
regression models calibrated across individual regions of in-
terest (using the data in Supplement 2).

These maps support predictions of seasonal isotope cy-
cles, but seasonal isotope cycles are only sometimes useful
for predicting individual-month isotope values. To predict
individual-month isotope values from a sine curve, the sine
curve must be predictable (e.g., with well-constrained phase
value), but also the sine curve must capture monthly isotope
variations (e.g., R2 must be high). In only a small subset
of the monitoring stations were R2 values consistently high
(Fig. 2c). For example, at only 6 % of stations was more than
75 % of the variance explained by sine curves. Even fewer
stations had long time series that enabled us to determine
whether the high R2 values also imply that interannual varia-
tions are small (e.g., in continental or northern latitude moni-
toring stations; Fig. 2). Thus, individual month values should
be carefully inferred from sine curves (e.g., by assuming er-
rors of magnitudes like those shown in Fig. 2b), even where
precipitation isotope seasonality is predictable.

Precipitation isotope cycles are likely to be least pre-
dictable in latitudes near 30◦ S, 0◦, or 30◦ N, where our mod-
els abruptly shift in phase, approximately demarcating global
atmospheric circulation patterns. However, the intertropical
convergence zone (ITCZ) is not consistently at 0◦ and Hadley
cell boundaries are not consistently at 30◦ S and 30◦ N (in
space or time; Birner et al., 2014; Chen et al., 2014), which
may explain why most of the poor phase predictions (Fig. 5b)
occur near 30◦ N or S. There are also errors near 0◦, where
predicted phase values differ by 6 months on either side of
the Equator, which does not precisely demarcate the ITCZ
and relevant atmospheric circulations. Bowen et al. (2005)
recognized this ITCZ effect and instead used the mean ITCZ
position, rather than 0◦, to account for phase shifts that oc-
cur there; although adopting Bowen’s approach could miti-
gate some of the anomalies at 0 and 30◦ (Fig. 5), other is-
sues in predicting phase would persist (e.g., the elimination
of higher-frequency cycles; Jacobs et al., 2018). Thus, we
opt for our simpler approach and accept that our model is
sometimes uncertain in zones near 0 and 30◦, although those
uncertainties are partially mitigated in the residual-adjusted
maps.

Shortcomings in regression models may also result from
not accounting for storm trajectories or convective effects,
both of which influence precipitation isotope ratios (Aggar-
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wal et al., 2016; Hu et al., 2018; Konecky et al., 2019). Mod-
els representing those processes can aid in interpreting or
predicting stable isotope ratios (Hu et al., 2018; Risi et al.,
2010). Furthermore, the variability in tropical precipitation
isotope ratios we show here may be the result of different
storm sources and cloud types (Bailey et al., 2017; Scholl
et al., 2009). Thus, precisely predicting precipitation isotope
cycles at low latitudes without calibration data may (espe-
cially) require consideration of circulation patterns and their
temporal variability (Cai et al., 2018; Martin et al., 2018b);
an alternative option would be using regional multiple re-
gression equations, which performed well in those regions
(Fig. 6). Regardless, most systematic effects should be com-
pensated for by the residual-smoothing step, as demonstrated
by the relatively small prediction errors that we observed.

The 653 isotope monitoring stations used here span much
of earth’s climatic heterogeneity, but not all regions. The
distributions of the site characteristics associated with these
653 monitoring stations are roughly similar to the global
distributions of those characteristics (Fig. S5). However,
high-latitude, high-elevation monitoring stations are scarce
(Fig. S6). More notably, measurements are absent in large
regions of Africa, Australia, central Asia, and northern Asia.
The most interior regions of continents generally contained
the fewest monitoring stations (Fig. 1b), and we suspect that
our regression equations may underestimate the true increase
in amplitude with distance from oceans (e.g., see amplitude
underestimates in continental North America; Fig. 4a). New
precipitation isotope monitoring stations would help fill in
important gaps.

These maps of seasonal precipitation isotope cycles serve
as tools for studying terrestrial processes. In regions where
seasonal precipitation isotope dynamics are well described
by sine curves, sinusoidal isotope models are useful for pre-
dicting isotope values either at explicit points or continu-
ously in time and space. The presence of large seasonal iso-
tope cycles also enables the quantification of mixing, trans-
port, and turnover of water (or its constituent O and H) in
landscapes or biota. This is possible because (1) amplitude
dampening reflects mixing processes, (2) phase shifts reflect
advective travel times, and (3) offset differences reflect pro-
portional contributions of different seasons’ precipitation. In
hydrology, the proportion of recent precipitation in streams
can be estimated as the ratio of precipitation and streamwater
isotope amplitudes (i.e., the young water fraction; Kirchner,
2016a). Maps of precipitation isotope cycles can facilitate es-
timating average precipitation amplitudes across catchments
(Dutton et al., 2005; Jasechko et al., 2016). In such cases
isotope values should ideally be weighted by precipitation
amount, to diminish the influence of low volumes (von Frey-
berg et al., 2018). Quantifying seasonal precipitation isotope
cycles also facilitates identification of the proportion (and
over- or underrepresentation) of precipitation from differ-
ent seasons in samples such as surface waters (Bowen et al.,
2019; DeWalle et al., 1997; Halder et al., 2015), groundwa-

ter (Jasechko et al., 2014; Kalin and Long, 1994; Lee and
Kim, 2007), or plant and soil water (Allen et al., 2019). Sim-
ilarly, ecological and physiological inferences can be drawn
by observing how seasonal variations in water isotope signals
are incorporated into (or propagate through) plant and ani-
mal tissues (Csank et al., 2016; Gessler et al., 2014; Martin
et al., 2018a; Vander Zanden et al., 2015; Yang et al., 2016).
Even where phase values are poorly constrained, amplitude
and offset values are still useful identifiers of typical mean
values and magnitudes of seasonal variation. Thus, we ex-
pect that the mapped sine parameters that we have developed,
as concise characterizations of seasonal precipitation isotope
cycles, will find use in both physical and biological sciences.

These maps also indicate where precipitation isotope sea-
sonality should be considered in interpreting isotopic signals
in biological and geological samples. Annual mean precipita-
tion may poorly predict the average isotopic input to any bi-
ological or geological process that does not integrate precipi-
tation waters throughout entire years, particularly where pre-
cipitation isotopic composition is strongly seasonal (as dis-
cussed by, for example, Dutton et al., 2005). Whereas event-
to-event variations are likely to be rapidly damped by mixing
in soils, lower-frequency variations, such as seasonal cycles,
can persist and propagate through the water cycle. Where up-
take and incorporation of isotopes into organisms (Balasse et
al., 2003; Schubert and Jahren, 2015) or geologic materials
(Johnson et al., 2006) also vary seasonally, mean annual pre-
cipitation may poorly and inconsistently approximate their
average source water. For example, consider a hypothetical
case of soil water with an isotopic composition that is con-
sistently equal to that of the current month’s mean precipi-
tation. Further assume that a tree growing in this soil takes
up that soil water and incorporates its oxygen atoms into cel-
lulose during the 6 months of the warm season (e.g., when
high-δ18O precipitation falls in high latitudes). For example,
if the precipitation δ18O has a seasonal amplitude of 4 ‰,
the average composition of the water taken up by the tree
will be approximately (2/π)× 4‰≈ 2.5‰ higher than the
annual average precipitation. This bias will be larger in loca-
tions where the seasonal amplitude of precipitation isotope
cycles is larger. Thus, our maps showing precipitation iso-
tope seasonality can be used to identify locations where such
biases are potentially significant.

5 Summary

The majority of stable isotope time series measured at 653
precipitation isotope monitoring stations show significant si-
nusoidal seasonal cycles in precipitation isotopes. The fitted
parameters that define these seasonal precipitation isotope
cycles are estimated through multiple regression models of
site characteristics. These spatial models enabled us to de-
velop maps that describe global patterns in precipitation iso-
tope seasonality, although regionally calibrated spatial mod-
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els often better captured regional variations in precipitation
isotope seasonality. The global maps and associated fitted
isotope data are made available as Supplement.

Data availability. In Supplement 2, we provide all fitted sine
curves and site metadata for the 653 precipitation monitoring sta-
tions that are presented in this study. In Supplement 3, we provide
metadata and a link to a 5 min resolution gridded amplitude, phase,
and offset for δ18O and δ2H of robustly fitted sine curves. All raw
data used are synthesized from other studies or publicly available
datasets; contact Jeff Welker regarding the USNIP (US Network
for Isotopes in Precipitation) dataset at jmwelker@alaska.edu (the
website is currently under reconstruction).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-23-3423-2019-supplement.
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