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Abstract

Prolonged spells with too much or too little precipitation can lead to extreme
events with severe socioeconomic and ecological impacts. Aside from the
magnitude of precipitation anomalies, the persistence of such anomalies also
strongly contributes to the extent of their impacts as persistence of precipi-
tation can drive persistence in other variables on land such as soil moisture,
water storage, and temperature. Observational evidence supports that there
have been changes in the distribution of dry and wet spells at daily to interan-
nual time scales during the 20th century in several regions around the globe,
some indicating an increase in the frequency of extremely prolonged droughts
or increase in the frequency of heavy rainfall. Thus, it is of high importance to
evaluate the capability of current general circulation models (GCMs) to simu-
late precipitation persistence in the past and present climate as it contributes
to the uncertainty of future projections of the climate extremes.

In Chapter 2 of this thesis, the persistence of droughts and wet spells at
monthly and annual scales are assessed using parameters of the statistical
Markov model in multiple global observations and GCMs. Drought is in this
study defined as negative precipitation anomaly and the persistence is calcu-
lated as a probability of a dry month (year) to be followed by another dry
month (year), and persistence of wet spells, indicated by a positive precipita-
tion anomaly, is assessed in the same manner. The transition probabilities were
used to statistically simulate dry and wet spell lengths distributions are shown
to be a good approximation of the observed distributions. Results show that
GCMs systematically underestimate the observed dry and wet persistence at
both monthly and annual scales, which is consistent with models’ underes-
timating the risk of extremely prolonged droughts identified in the previous
studies. Furthermore, the analysis of variance of the model errors suggests
that some regions would require more extended time series or consistent ob-
servational reference to validate such an underestimation.

In the second study presented in this thesis, the approach used for the
first study is applied to precipitation persistence at the daily time scale. The
transition probabilities (dry-to-dry and wet-to-wet probabilities) were found
to be less representative of the daily dry and wet spell length distributions.
The analysis focuses on the long-term mean and interannual variability of
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the two indices. Models overestimate the wet persistence with a relatively
homogeneous spatial bias pattern. In particular, models tend to overestimate
dry persistence in the Amazon and Central Africa but also underestimate
dry persistence in several regions such as southern Argentina, western North
America, and the Tibetan Plateau. The model errors are statistically robust
despite the considerable spread across different precipitation data products.
Compared to the results in the previous chapter, model errors of precipitation
persistence at the daily scale have the opposite sign as those at monthly and
annual scales. However, the contradicting signs of the error can at least be
partially explained by a general underestimation of the interannual variability
of both daily dry and wet persistence in GCM.

Chapter 4 assesses soil moisture-precipitation feedbacks in a large ensem-
ble of GCM simulations under temporal and spatial perspectives and in terms
of heterogeneity at the sub-daily time scale. Three different metrics were used
to assess the feedback in each perspective. Positive (negative) spatial feedback
indicates that afternoon rainfall occurs more frequently over the wetter (drier)
land surface than its surroundings. A positive (negative) temporal feedback in-
dicates preference over temporally wetter (drier) conditions and positive (nega-
tive) heterogeneity feedback indicates preference over more spatially heteroge-
neous (homogeneous) soil moisture conditions. Results highlight a dominantly
positive spatial feedback in the models as opposed to observations. The tem-
poral and heterogeneity feedbacks are better simulated on average, although
inter-model variability is largest for these metrics. Soil moisture-precipitation
feedback is one of the main processes in the field of land-climate interactions
that could affect precipitation persistence. In the discussion, the possible col-
lective influence of the model error of the three soil moisture-precipitation
feedbacks is analyzed. The chapter concludes that such influence may lead to
more localized precipitation persistence, both dry and wet, in models than in
observations, which corresponds to results from previous studies.

The results of this thesis highlight systematic errors of current GCMs in
simulating precipitation persistence across different time scales. The opposite
signs of the model error at longer (monthly and yearly) scales and shorter
(daily) scale indicate that the persistence of precipitation may not propagate
linearly across the time scales and different processes underlie those. The
results also show how the uncertainty in soil moisture-precipitation feedback
contributes to the error especially at a daily scale. Additionally, in the three
studies, observational uncertainty of precipitation persistence was commonly
found to be comparable to model uncertainty in several regions indicating its
importance for robust model evaluation.



Zusammenfassung

Fällt über lange Zeit zu viel oder zu wenig Niederschlag, kann dies zu Extre-
mereignissen mit drastischen sozioökonomischen und ökologischen Auswir-
kungen führen. Neben der Grösse der Niederschlagsanomalien trägt auch de-
ren Persistenz zum Ausmass ihrer Auswirkungen bei, da die Niederschlagsper-
sistenz die Persistenz anderer Landvariablen wie Bodenfeuchte, Bodenwasser-
speicherung und Temperatur beeinflussen kann. Beobachtungen legen nahe,
dass es während des 20. Jahrhunderts Veränderungen in der Verteilung von
Trocken- und Niederschlagsperioden auf täglicher und interannueller Zeitska-
la in verschiedenen Regionen der Erde gab. Tendenziell gab es einen Anstieg
in der Frequenz von sehr langen Trockenperioden aber auch von Starknieder-
schlägen. Deshalb ist die Evaluation gängiger globaler Klimamodelle (GCMs)
hinsichtlich ihrer Fähigkeit zur Simulation von Niederschlagspersistenz in der
Vergangenheit und im aktuellen Klima sehr wichtig, da diese zu Unsicherhei-
ten in zukünftigen Projektionen von Klimaextremen beiträgt.

In Kapitel 2 dieser Doktorarbeit wird die Persistenz von Trocken- und Nie-
derschlagsperioden auf monatlichen und jährlichen Skalen in verschiedenen
globalen Beobachtungsdatensätzen und GCMs betrachtet und als statistische
Markov-Kette modelliert. Dabei wird Trockenheit als negative Niederschlags-
anomalie definiert und Persistenz als Wahrscheinlichkeit berechnet, dass ein
trockener Monat (ein trockenes Jahr) auf einen trockenen Monat (trockenes
Jahr) folgt. Die Persistenz von Niederschlagsperioden, die durch eine positive
Niederschlagsanomalie definiert wird, wird auf dieselbe Art berechnet. Über-
gangswahrscheinlichkeiten werden verwendet, um die Länge der Trocken-
und Niederschlagsperioden statistisch zu simulieren. Die resultierenden Ver-
teilungen erweisen sich als gute Näherung der beobachteten Verteilungen.
Die Resultate zeigen, dass GCMs die Persistenz von beobachteten Trocken-
und Niederschlagsperioden sowohl auf monatlicher als auch auf jährlicher
Zeitskala systematisch unterschätzen, konsistent mit der aus früheren Studien
bekannten Unterschätzung des Risikos von extrem langer Trockenheit durch
GCMs. Die Varianzanalyse der Modellfehler legt nahe, dass für einige Regio-
nen längere Zeitserien beziehungsweise konsistente Beobachtungsreferenzen
nötig wären, um solche Unterschätzungen zu validieren.

In Kapitel 3 wird die Niederschlagspersistenz in verschiedenen globalen
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Beobachtungsdatensätzen und Klimamodellen auf täglicher Skala unter Ver-
wendung desselben Markov-Modells wie im vorherigen Kapitel untersucht.
Die Übergangswahrscheinlichkeiten (trocken zu trocken und nass zu nass)
erweisen sich als weniger repräsentativ für die Verteilung der Trocken- und
Niederschlagsperioden. Die Analyse beschäftigt sich mit dem langzeitlichen
Mittelwert und der interannuellen Variabilität dieser beiden Indizes. Die Kli-
mamodelle überschätzen die Persistenz von Niederschlagsperioden mit einem
ziemlich homogenen geographischen Muster. Die Persistenz von Trockenperi-
oden hingegen, wird im Amazonasgebiet und Zentralafrika überschätzt und
im Süden von Argentinien, dem westlichen Nordamerika und dem Hochland
von Tibet unterschätzt. Die Modellfehler sind statistisch robust, sogar in Anbe-
tracht der beträchtlichen Streuung der verschiedenen Niederschlagsdatenpro-
dukte. Verglichen mit den Ergebnissen des vorhergehenden Kapitels zeigen
die Modellfehler der Niederschlagspersistenz auf täglicher Skala ein entgegen-
gesetztes Vorzeichen zu den monatlichen und jährlichen Skalen. Allerdings
kann das sich widersprechende Vorzeichen der Fehler zumindest teilweise
darauf zurückgeführt werden, dass GCMs die interannuelle Variabilität und
Persistenz generell unterschätzen.

Kapitel 4 untersucht die Wechselwirkung zwischen Bodenfeuchte und Nie-
derschlag im Tagesverlauf in einem grossen Ensemble von GCM-Simulationen.
Dabei werden die räumliche und zeitliche Perspektive sowie die räumliche
Heterogenität betrachtet. Drei Metriken quantifizieren je eine dieser drei Wech-
selwirkungen. Eine positive (negative) räumliche Wechselwirkung bedeutet,
dass Nachmittagsniederschlag öfter über Landoberflächen auftritt, die feuch-
ter (trockener) sind als deren Umgebung. Eine positive (negative) zeitliche
Wechselwirkung ist gegeben, wenn Regen eher zu Zeiten feuchter (trockener)
Böden auftritt und eine positive (negative) Heterogenitätsmetrik quantifiziert
die Präferenz von Niederschlag bei räumlich heterogener (homogener) Vertei-
lung von Bodenfeuchte. Im Gegensatz zu den Beobachtungsdaten zeigen die
Modelle eine mehrheitlich positive räumliche Wechselwirkung. Die Resulta-
te für die zeitliche Wechselwirkung sowie die Heterogenitätsmetrik stimmen
besser überein, allerdings ist die Streuung zwischen den Modellen bei diesen
Metriken besonders gross. Die Wechselwirkung zwischen Bodenfeuchte und
Niederschlag ist einer der Prozesse im Bereich der Land-Klima-Interaktionen,
welche die Niederschlagspersistenz beeinflussen können. Deshalb wird der
mögliche gemeinsame Einfluss der drei Wechselwirkungen zwischen Boden-
feuchte und Niederschlag in Modellen und Beobachtungen besprochen. Das
Kapitel kommt zum Schluss, dass sie sowohl für Trocken- als auch für Nie-
derschlagsperioden zu mehr Niederschlagspersistenz führen können, was den
Ergebnissen früherer Studien entspricht.

Die Resultate dieser Doktorarbeit zeigen den systematischen Fehler ak-
tueller GCMs bei der Simulation von Niederschlagspersistenz auf verschie-
denen Zeitskalen auf. Die unterschiedlichen Vorzeichen des Modellfehlers
auf langen (monatlichen und jährlichen) und kürzeren (täglichen) Zeitska-
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len weisen darauf hin, dass die Niederschlagspersistenz sich nicht linear über
die Zeitskalen fortpflanzt und, dass ihnen verschiedene Prozesse zugrunde
liegen. Die Resultate zeigen auch, wie die Unsicherheit von Bodenfeuchte-
Niederschlagswechselwirkungen zum Fehler beitragen, besonders auf tägli-
cher Zeitskala. Darüber hinaus zeigen die drei Studien, dass die Unsicherheit
der Niederschlagspersistenz der Beobachtungen in verschiedenen Regionen
mit der Modellunsicherheit vergleichbar ist, was deren Wichtigkeit für robuste
Niederschlagsevaluierungen in Modellen zeigt.





1 Introduction

1.1 Persistence in the climate system

Many variables in the climate system feature persistence ("memory"), i.e. a ten-
dency for high values to remain high or low values to remain low for several
weeks to years depending on the processes they are associated with. For ex-
ample, sea surface temperature (SST) shows long-term persistence due to the
large thermal inertia of the ocean, and exerts such persistence to the overlying
atmosphere as well. Soil moisture, which is the main storage of water on land,
shows persistence dominantly at subseasonal to seasonal scales, regulated
by precipitation, evapotranspiration and runoff. Persistence of precipitation,
which is the main topic of this thesis, is regulated by SST in the long-term,
while serving as a main forcing for soil moisture persistence and also locally
affected by the coupling in the short-term. High precipitation persistence in-
creases the likelihood for prolonged dry and wet spells. Prolonged spells with
no rain or anomalously low rain result in droughts with high economic and
societal costs and harder recovery of plants (Trifiló et al., 2017), even with
non-extreme magnitude of drought. On the other hand, intense rainfall events
continuing for several days can cause floods or create a hazardous environ-
ment for some tree species (Rozas and García-González, 2012). Furthermore,
dry spells can lead to hot spells due to increased sensible heat and vice versa
during wet spells together with the effect of increased cloud cover can lead to
negative temperature anomalies.

Several statistical approaches have been used in the literature to quantify
persistence in climate variables. The lag autocorrelation function of order p is
one of the most commonly used measures of persistence, defined as

ρ =
cov(xn, xn+p)

σxnσxn+p

(1.1)

where xn refers to the variable of interest on a time step n (for instance day
or month). For its application in quantifying persistence of soil moisture, this
lag-correlation function was used to analyse the impact of other variables on
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soil moisture persistence. In previous studies (), based on the soil water bal-
ance equation of a single soil column, soil moisture persistence was expressed
as cswn+lag = cswn + Pn − En −Qn, where cs is the column’s water-holding
capacity, wn is the soil water content, P is precipitation, E is evapotranspira-
tion and Q is runoff. The latter three variables (P , E, and Q) are determined
to be the main influential factors on soil moisture persistence. Results of the
studies show different soil moisture persistence, estimated as 1-month lag au-
tocorrelation function, when treatments to disentangle the influence of other
variables on the soil moisture memory was handled differently (Koster and
Suarez, 2001; Orth and Seneviratne, 2012; Seneviratne et al., 2006).

Another commonly used approach to quantify persistence is to statistically
characterize spell length distributions of certain events or states, e.g. rainy
days with threshold of 1 mm/day, and the binary state first-order Markov
model was found to be a good approximation for the distribution (Moon et al.,
2018). As in lag-1 autoregressive models, a first-order Markov model predicts
the status of the current time step based on the previous time step. Under the
framework, the probability that the length of a certain status, L, is larger than
d is written as:

P (L > d) = pd (1.2)

following a geometric distribution, where p is the probability that a current
status will continue to the next time step (e.g. probability that a rainy day will
be followed by another rainy day in a given period). For large samples, P(X>d)
can be approximated as e−λd, where λτ = p(τ) when τ , the length of time step,
tends to zero. The continuation probability p (or λ) has been used as a proxy
for persistence, more frequently for droughts and dry spells (Jackson, 1975;
Moon et al., 2018; Sharma and Panu, 2014; Wilby et al., 2015), and temperature
(Pfleiderer and Coumou, 2018).

1.2 Large-scale climate variability affecting precipitation

Various modes of large-scale variability influence long-term persistence of pre-
cipitation in different regions around the globe. Such low-frequency variability
is associated with variation in ocean, which is rather a slower component of the
climate system, and its interaction with the atmosphere. In this section, some
selected large-scale modes of ocean-atmosphere variability in the tropics and
extra-tropics, and the atmospheric blocking as a synoptic-scale atmospheric
phenomenon and their impact on precipitation are mainly described.

The El Niño-Southern oscillation (ENSO) is the most dominant mode of
interannual variability in the tropics, that is characterized by positive SST
anomaly in Central/Eastern equatorial Pacific with an irregular cycle rang-
ing 3 - 8 years. During ENSO, the suface pressure gradient between east and
west gets weak resulting in shift of the convection zone towards East pacific.
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Bjerknes (1969) described such chain of processes occurring in the ocean and
atmosphere as a positive feedback loop in which initial positive SST anomaly
in Central/Eastern equatorial Pacific leads to decreased East-West SST gra-
dient then weakens the Walker circulation and thus weaker trade wind that
brings less equatorial upwelling of cold water and consequently reinforces
the positive SST anomaly. Besides the tropics, precipitation in many regions
around the globe are largely influenced by different phases of ENSO, that are
warm (El Niño) and cold phases (La Niña), usually featuring the switched
signs of changes (see Figure 2.1 for the influence of warm phase ENSO in dif-
ferent regions of the world). Meanwhile, the response of regional precipitation
can vary during different ENSO events due to interdecadal modulation in the
ENSO-rainfall teleconnection (Gershunov and Barnett, 1998).

The Madden-Julian oscillation (MJO), which is another major component
of tropical atmospheric variability, refers to the large-scale intraseasonal atmo-
spheric variability that is characterized by eastward propagation of convective
systems along the Indian and Pacific oceans. In the Kelvin-Rossby paradigm,
which is a widely accepted model for the MJO, its vertical structure is deter-
mined by the first baroclinic mode and its horizontal structure is determined
by the planetary-scale response to a moving heat source (Houze et al., 2000).
The equatorial plane of the MJO can be detected with the negative anomaly in
outgoing long-wave radiation (OLR), which works as a proxy for deep tropical
convection, or by using the zonal wind at the upper and lower troposphere,
over Indian Ocean and Indonesia (Wheeler and Hendon, 2004).

The impact of the MJO is most prominent on monsoon systems around
the globe, e.g. Australia, South Asia, West Africa, pan-American monsoons,
and it also affects precipitation outside the monsoon regions and monsoon
rainy seasons. The eastward propagation of the MJO has a major impact on
Australian monsoon as the center of convection locates over the northern part
of Australia and initiates the monsoon onset, accounting for more than 80 % of
onset dates (Wheeler et al., 2009; Zhang, 2013). The onset of the South Asian
monsoon tends to occur during the early phase of MJO when the convection
starts over the Indian Ocean and is more affected by the northward propa-
gation of the MJO which only appears during boreal summer (Zhang, 2013).
The MJO is known to be closely related to the development of ENSO. The
warm phase of ENSO indicated by warming in the eastern Pacific was found
to be enhanced by MJO activities and their associated westerly winds by 6-12
months (Zhang and Gottschalck, 2002). Observations also suggest that the
recent major ENSO warm phase events were preceded by anomalously strong
MJO episodes (McPhaden et al., 2006).

The North Atlantic Oscillation (NAO) is the dominant mode of interannual
variability in the Euro-Atlantic region during winter. It is characterized by the
sea level pressure (SLP) difference between the Icelandic Low and the Azores



4 Introduction

Figure 1.1: Probabilistic precipitation anomalies associated with the warm phase of
ENSO. From International Research Institute for Climate and Society, Earth Institute,
Columbia University (http://iridl.ldeo.columbia.edu/maproom/)

High. The positive (negative) NAO is defined with larger (smaller) SLP differ-
ence from the stronger (weaker) Icelandic Low and Azores High which causes
stronger (weaker) westerlies. A positive NAO index corresponds to positive
precipitation anomalies in northern Europe (western Scandinavia, Denmark,
and northern parts of Ireland and Great Britain) and negative anomalies in
southern Europe (the Iberian peninsula, and western Balkans) (HURRELL and
VAN LOON, 1997; Wibig, 1999), and a negative NAO index generally corre-
sponds to the switched signs of anomalies.

The Pacific North American pattern (PNA) is one of the most prominent
modes of interannual variability in the mid-latitude Pacific which is most pro-
nounced during winter, and it emerges as the second principal component of
extra-tropical SLP in the northern hemisphere. The positive phase of the PNA
is associated with positive precipitation anomalies in the Gulf of Alaska and
Pacific Northwestern United States, negative precipitation anomalies over the
upper Midwestern United States and an enhanced East Asian jet (Harding and
Snyder, 2015).

Atmospheric blocking, a persistent high pressure system that can last days
to weeks, occurs in mid-latitudes though the year but more frequently during
spring and winter when the jet stream is stronger. It can occur when the dom-
inant westerly flows are interrupted by meridional flows, and such interrup-
tion can be considered as a planetary wave breaking. A relationship between
the blocking pattern and precipitation has been generally identified with a
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decrease in precipitation at the centre of the blocked region where the high
pressure is located and a slight decrease in the flanks of the blocks (Lenggen-
hager et al., 2018). Such a relationship was observed in different regions, e.g.
in Europe (Sousa et al., 2017; Trigo et al., 2004; Yao and Luo, 2015) and South
America (Rodrigues and Woollings, 2016). The impacts are featured as persis-
tent wet or dry spells, which could lead to droughts and floods. A negative
phase of both the NAO and PNA is strongly related to an increased frequency
of atmospheric blocking in the Euro-Atlantic and mid-latitude Pacific regions
(Croci-Maspoli et al., 2007; Scherrer et al., 2006).

Large scale variability in general circulation models (GCMs) is closely re-
lated to prediction of precipitation. Coupled simulations of GCMs generally
show shorter cycles of ENSO ranging 1-3 years than observations (3-8 years)
(Bellenger et al., 2014; Jha et al., 2014), with realistic amplitude of SST anomaly
in Nino3 or Nino4 regions. For the MJO, most CMIP5 models were found to
underestimate its amplitude detected with OLR and also its eastward propa-
gation (Ahn et al., 2017). The two major modes in the northern extratropics,
NAO and PNA, are generally well represented in CMIP5 models (Ning and
Bradley, 2016). Several model experiments were conducted to quantify the sen-
sitivity of precipitation to prescribed SST in different ocean parts. The Atmo-
spheric Model Intercomparison Project (AMIP) was designed to systematically
evaluate atmospheric GCMs and participating models were prescribed with
observed monthly averaged SST and sea-ice distributions during the decade
1979-88 (Gates et al., 1999). Overall, in AMIP simulations, the global rainfall
distribution and rain-rate frequency was found to resemble the observed but
with less skill in the extratropcis (Lau et al., 1996).

1.3 Land-atmosphere interactions and precipitation

This section introduces land-atmosphere interactions that contribute to pre-
cipitation variability at smaller spatial scales and shorter time scales than the
previous section has covered.

Soil moisture-precipitation feedback refers to the two-way coupling between
soil moisture and precipitation. The main mechanisms behind this coupling
can be explained with evaporative fraction (EF), and Figure 1.2 shows a con-
ceptual framework of the feedback. Relationship A represents soil moisture-EF
coupling in which the increase in soil moisture leads to an increase EF (also
evapotranspiration) and subsequently causes a decrease in initial soil moisture
anomaly. This coupling features more strongly in regions with a transitional
soil moisture regime. [explain transitional regime] Relationship B, the EF-
precipitation coupling, is the most uncertain part of the whole feedback loop
as it involves a large number of processes. Due to different effects of EF on
precipitation at varying spatial scales, the observational and modelling studies
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Figure 1.2: Schematic description of soil moisture-precipitation coupling and feedback
loop. Positive arrows (blue) indicate processes leading to a positive soil moisture-
precipitation feedback (wetting for positive soil moisture anomaly, drying for negative
soil moisture anomaly), the negative arrow (red) indicates a potential negative feedback
damping the original soil moisture anomaly, and the red-blue arrow indicates the
existence of both positive and negative feedbacks between evaporative fraction (EF) and
precipitation anomalies. (A), (B), and (C) refer to the different steps of the feedback
loop (see text). Modified from Seneviratne et al. (2010), adapted from Guillod et al.
(2014).
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have reported both negative and positive signs of the coupling. Relationship
C depicting higher precipitation leading to higher soil moisture, is considered
as direct except for a few extreme cases where a large portion of precipita-
tion input is partitioned into runoff due too oversaturated or extremely dry
soils. In the following section, a more detailed description of soil moisture-
precipitation coupling focusing on the processes involved in relationship B is
presented.

As previously mentioned, soil moisture influences precipitation through
EF via various processes. Soil moisture-precipitation coupling was first in-
vestigated with the concept of moisture recycling, quantified as the ratio of
precipitation directly contributed by regional evapotranspiration (Dirmeyer
et al., 2006; Eltahir and Bras, 1996; Trenberth, 1999; van der Ent et al., 2010),
which is referred to as direct soil moisture-precipitation feedback. Indirect soil
moisture-precipitation feedback was mainly investigated with two types of
approaches which respectively focus on local coupling and induced mesoscale
circulation, respectively. Local coupling refers to the influence of soil mois-
ture conditions on boundary layer characteristics and convective initiation,
and thereby, precipitation formation (Alfieri et al., 2008; Duerinck et al., 2016;
Findell and Eltahir, 2003; Gentine et al., 2013; Guillod et al., 2014), and a pos-
itive feedback can appear when the increase of moisture is more critical for
the cloud formation and precipitation, often under low stability in the free
troposphere. A negative feedback corresponding to the local coupling usu-
ally appears when a strong stability barrier locates at the top of the planetary
boundary layer, which requires larger sensible heat to allow sufficient turbu-
lent mixing (Hohenegger et al., 2009). A radiative impact of albedo via an
increase of net radiation on a wetter soil due to its darker color, and thus lower
albedo, was also suggested as a main process in the local coupling but the
impact was found to be limited (Seneviratne et al., 2010). Induced mesoscale
circulation considers spatial soil moisture gradients (Taylor and Lebel, 1998)
whereby heterogenous soil dryness induces a mesoscale atmospheric circula-
tion leading to increased convergence over the drier region leads to convection
(Taylor et al., 2012a, 2011), indicating a negative feedback (Figure 1.3). Finally,
when strong gradients of soil moisture impact the atmospheric pressure and
circulation, the coupling can also appear via large-scale circulation.

Vegetation affects precipitation through its regulation on surface energy and
the water budget, which can be understood with the concept of moisture recy-
cling mentioned in the previous section (Bonan, 2008; Spracklen et al., 2012).
While the coupling between soil moisture and precipitation was mainly me-
diated through evapotranspiration, plant transpiration accounts for 45 % - 90
% of the continental evapotranspiration (Trenberth et al., 2007). The main-
tained atmospheric moisture through evapotranspiration returns to land as
rainfall in the highly vegetated region, specifically in forests. On a regional
and local scale, vegetation patterns can affect precipitation by affecting the
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Figure 1.3: Preference for afternoon precipitation over soil moisture anomalies. Low
(high) percentiles indicate where rainfall maxima occur over locally dry (wet) soil more
frequently than expected. Insets: frequency histograms of soil moisture difference in
the global control sample (purple), and the difference between the histograms of the
global event and global control samples (orange shading). Adapted from Taylor et al.
(2012a).

thermodyamic profile and development of the induced mesoscale circulation
(Garcia-Carreras and Parker, 2011). These couplings could partially affect the
soil moisture-precipitation feedback as soil moisture and vegetation are in
general positively correlated.

The Global Land-Atmosphere Coupling Experiment (GLACE) is a mod-
elling framework to investigate the strength of land-atmosphere coupling in
GCMs and a series of modelling experiments were conducted under this frame-
work, designed to assess the influence of soil moisture at different time scales
on climate. In the GLACE-1 (Koster et al., 2004), 16-member ensembles of fully
coupled, partially coupled, and uncoupled simulations were generated. The re-
sults of this first experiment highlighted the regions of strong land-atmosphere
coupling (Figure 1.4) but with considerable spread across different models.
In GLACE-2 (Koster et al., 2010), two sets of forecasts were compared, one
with realistic initial land conditions from offline land model simulations and
the other with randomly chosen initial land conditions. The GLACE-CMIP5
(Seneviratne et al., 2013) was designed to estimate long-term effects of soil
moisture on climate compared to the two former experiments. Two sets of
simulations were generated, additional to the fully coupled control simulation
in one of which the seasonal cycle of soil moisture is prescribed as the 1971-
2000 climatology and the other of which the seasonal cycle of soil moisture is
prescribed as a transient climatology. In the former simulation, a main signal
in precipitation appears as enhanced wet extremes in the tropics and in the
latter, as decreased wet extremes in the tropics and enhanced dry extremes in
Mediterranean and Australia (Lorenz et al., 2016).
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Figure 1.4: The land-atmosphere coupling strength diagnostic for boreal summer (di-
mensionless, describing the impact of soil moisture on precipitation), averaged across
the 12 models participating in the Global Land-Atmosphere Coupling Experiment
(GLACE). (Insets) Areally averaged coupling strengths for the 12 individual models
over the outlined, representative hotspot regions. No signal appears in southern South
America or at the southern tip of Africa. Adapted from Koster et al. (2004).
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Figure 1.5: Spatial distribution of 67,283 stations with precipitation climatology in
the Global Precipitation Climatology Centre (GPCC) data set. Each dot indicates a
single rain gauge. Adapted from Schneider et al. (2014)

1.4 Observational uncertainty

Precipitation is one of few climate variables that has been monitored with
extensive spatial and temporal coverage throughout the past century. Nev-
ertheless, different types of observation-based precipitation products possess
uncertainties inherited from each measurement device and data processing.
Such uncertainties can be critical when using a certain precipitation product as
a reference to evaluate models. In this section, different types of precipitation
data are introduced and their uncertainties are discussed.

Interpolated stations Uncertainty in gridded precipitation data based on
interpolated stations mainly originate from three sources, systematic errors
from rain gauge measurements, stochastic sampling error, and residual error
related to data homogeneity (Becker et al., 2013). The first type of error includes
under-catch of precipitation due to wind, and can be particularly large for
snowfall. The stochastic sampling error is largely due to sparse density of rain
gauges, in regions such as desert areas, tropical forests, and in high latitudes.
In these regions, the results are highly sensitive to interpolation methods. The
residual error occurs when there is temporal discontinuation in the record.
Different precipitation products apply quality control procedures to exclude
stations with various criteria, including those mentioned. Figure 1.5 shows
the spatial distribution of stations with long enough precipitation records (30
years or more), featuring ca. 67,200 stations overall.
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Satellite observations Satellite-based precipitation measurements have con-
tributed tremendously to the improved understanding of global precipitation
climatology with their broad spatial coverage and regular scanning frequency.
Spatial coverage and scanning frequency are determined by the type of satel-
lite orbits. Satellite platforms are equipped with instruments measuring the
properties of the atmosphere at a broad range of frequency bands. Visible and
infrared sensors were on-board some of the earliest meteorological satellite
missions and are used to mainly measure cloud-top temperatures. Precipi-
tation can be retrieved based on an empirical relationship between surface
precipitation and cloud coverage with cold tops over given time and/or space
domains. This method is most suitable when convective precipitation systems
are dominant as the amount of cold cloud is related to the amount of vertical
uplift. Passive microwave sensors detect signals in the range between 10-85
GHz, where the lower range (< 20 GHz) dominantly detects the thermal emis-
sion of raindrops or rain-size particles and the higher range (> 60 GHz) detects
the scattering of upwelling of radiation due to ice particles above the rain
layer. Both empirical (Ferraro et al., 1996) and physically based (Kummerow
and Giglio, 1994) retrieval algorithms can be applied to passive microwave
measurements, and the latter is based on a radiative transfer model in which
cloud and precipitation profiles are optimized to match with measurements
from the passive microwave sensors. Different merging techniques have been
developed, where measurements from different types of sensors complement
each other. Satellite measurements are often calibrated with observations to
provide better precipitation measurements (Kidd and Levizzani, 2011).

Reanalysis Reanalyses produce data sets of climate variables required for
monitoring analysis of climate variability by assimilating irregularly distributed
observations of various sources and model forecasts onto a common grid. Sur-
face pressure, wind speed, and surface radiative fluxes are commonly assimi-
lated variables. Uncertainties in precipitation reanalyses can be derived from
errors in observations and models used in individual reanalyses. Precipitation
uncertainty is specifically sensitive to changes in the input observation system,
e.g. newly added observations have introduced series of jumps or shifts in
precipitation trend in some reanalysis products like MERRA and ERA-Interim
(Cui et al., 2017; Rienecker et al., 2011). Precipitation as an output of a reanal-
ysis is known to be less constrained by observations than other variables and
thus, might be similar to model outputs (Kalnay et al., 1996).

1.5 Sources of uncertainty in general circulation models

GCMs are used to simulate natural processes on the land, ocean, and atmo-
sphere based on governing equations on the energy and mass conservation on
a discretized grid system. Due to the complexity or lack of understanding of
some processes and large computational cost, processes relevant for precipita-
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tion are parameterized rather than explicitly resolved. In this section, sources
of uncertainty in GCMs mainly regarding simulations of precipitation are in-
troduced. Subsequently, commonly used ensemble approaches to cope with
different sources of uncertainty in climate model predictions are introduced.

GCMs produce two types of precipitation, i.e. precipitation from stratiform
(large-scale) and convective clouds, based on their respective parameteriza-
tion schemes. In current GCMs, prognostic condensate schemes with bulk
representation of microphysics, which assumes a functional form for the cloud
particle size distribution and predicts one or more moments of the distribu-
tion, are commonly used (Morrison and Gettelman, 2008). Due to the coarse
spatial resolution of GCMs, convection is represented with rather simplified
parameterization of the actual process. The most commonly used approach for
convection parameterization is the mass flux approach (Gregory and Rown-
tree, 1990; Tiedtke, 1989), some GCMs use the convective adjustment scheme
(Betts, 1986) and the sub-grid plume and buoyancy-based scheme (Rio and
Hourdin, 2008).

Errors in convection parameterization schemes have various impacts on
aspects of simulated precipitation in GCMs. The intertropical convergence
zone (ITCZ) pattern is highly dependent on the convection schemes as they
determine the response of the convection to a given large-scale environment.
Additionally, initial errors in the convection scheme such as too early rain-
fall compared to the observed diurnal cycle of precipitation could also lead
to a larger fraction of rainfall evaporated into the atmosphere, and eventu-
ally reduce soil moisture (Lauer et al., 2018). A wrong representation of the
soil moisture-precipitation feedback in GCMs can be attributed to convection
parameterizations Hohenegger et al. (2009).

As mentioned earlier, different choice of the model configuration, such as
physical assumptions and model resolutions, contributes to modeling uncer-
tainty and error that limit their deterministic predictability. Several ensemble
approaches are widely used to compensate such a limitation by exploring
the uncertainties from different sources. A multi-model ensemble (MME) ap-
proach (weighted or non-weighted) is found to provide better prediction of
climate than individual model performances (Stensrud et al., 2000; Weigel
et al., 2008). However, individual models in the ensemble might share com-
mon systematic error and the sampling cannot span the full range of model
configurations (Lambert and Allen, 2009). Another approach is to use ensem-
ble of simulations with varying initial conditions from a single model (Kharin
and Zwiers, 2002). As climate is a highly nonlinear system it has high sensi-
tivity in responding to different initial conditions, which can be revealed by
studying the initial-condition ensembles. Another approach to generate en-
sembles using different model physical parameterizations based on a single
model. Aside from the shared core between ensembles, results from physical
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perturbation ensemble (PPE) can be treated similarly with MMEs (Knutti et al.,
2009).

1.6 Objectives and outline

Precipitation persistence at different time scales is affected by large-scale at-
mospheric variability and land-atmospheric interactions. Due to different re-
sponses of other climate variables to highly persistent dry or wet conditions,
persistence characteristics should be investigated separately to frequency of
precipitation, though highly related. This thesis therefore aims at a systematic
evaluation of precipitation persistence in current GCMs, with the following
leading research questions.

1. How is precipitation persistence at different time scales (e.g. daily, monthly,
yearly) characterized in observations and climate models?

2. Which types of uncertainty are associated with GCM evaluations regard-
ing precipitation persistence?

3. Do models show systematic errors in precipitation persistence? Are the
errors consistent across different time scales? Which processes contribute
to such errors?

This thesis consists of an introduction, followed by three chapters from
two scientific research articles that are published (Chapters 2 and 4) and one to
be submitted (Chapter 3), and conclusions and outlook are drawn in the last
chapter. Three appendices refer to the three chapters, respectively.

Chapter 2 Drought Persistence Errors in Global Climate Models This chap-
ter characterizes precipitation persistence at monthly and annual scales in mul-
tiple global observations and climate models using the Markov framework.
While a general underestimation of GCMs in both dry and wet persistences at
both time scales is found, an analysis of variance of the model errors suggests
that some regions would require longer time series or a consistent observa-
tional reference to validate such underestimations.

Chapter 3 Intercomparison of daily precipitation persistences in multiple
global observations and climate models This chapter characterizes precip-
itation persistence at the daily time scale in multiple global observations and
climate models using the same Markov framework as in the previous chapter.
As opposed to the results in Chapter 2, a general overestimation of both dry
and wet persistence is found in GCMs, while a underestimation of interannual
variability may provide a link for reasons behind the contrasting signs of the
model errors.
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Chapter 4 Soil moisture effects on afternoon precipitation occurrence in cur-
rent climate models In this chapter, the sensitivity of afternoon rainfall oc-
currence on morning soil moisture condition is assessed with the aim to quan-
tify soil moisture-precipitation coupling at the subdaily scale. Three different
metrics adopted from previous studies are used to individually quantify the
soil moisture-precipitation feedback regarding temporal, spatial and spatial
heterogeneity perspective. While a large model spread is found for temporal
and heterogeneity feedbacks, all models reveal a consistently positive spatial
feedback.



2 Drought persistence errors in
global climate models

published in Journal of Geophysical Research: Atmospheres,
doi:10.1002/10.1002/2017JD027577
Heewon Moon1, Lukas Gudmundsson 1, Sonia I. Seneviratne1

Abstract The persistence of drought events largely determines the severity of socioe-
conomic and ecological impacts, but the capability of current global climate models
(GCMs) to simulate such events is subject to large uncertainties. In this study, the rep-
resentation of drought persistence in GCMs is assessed by comparing state-of-the-art
GCM model simulations to observation-based data sets. For doing so, we consider dry-
to-dry transition probabilities at monthly and annual scales as estimates for drought
persistence, where a dry status is defined as negative precipitation anomaly. Though
there is a substantial spread in the drought persistence bias, most of the simulations
show systematic underestimation of drought persistence at global scale. Subsequently,
we analyzed to which degree (i) inaccurate observations, (ii) differences among mod-
els, (iii) internal climate variability, and (iv) uncertainty of the employed statistical
methods contribute to the spread in drought persistence errors using an analysis of
variance approach. The results show that at monthly scale, model uncertainty and
observational uncertainty dominate, while the contribution from internal variability
is small in most cases. At annual scale, the spread of the drought persistence error is
dominated by the statistical estimation error of drought persistence, indicating that
the partitioning of the error is impaired by the limited number of considered time steps.
These findings reveal systematic errors in the representation of drought persistence in
current GCMs and suggest directions for further model improvement.

2.1 Introduction

The persistence of droughts is one of the main attributes that determines the
level of their socioeconomic and ecological impacts (Bêche et al., 2009; Harou
et al., 2010; Kelley et al., 2015). Lately, several studies have highlighted that
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climate models tend to underestimate drought persistence compared to the
observational record (Ault et al., 2014; Wetter et al., 2014), which contributes
to the uncertainty of future projections of drought risk. Furthermore, the char-
acteristics of extremely prolonged droughts have been found to be similar
over different time frames, including the twentieth century and longer paleo-
climatic records (Ault et al., 2014). However, the driving mechanism of such
droughts remains controversial and likely differs between individual events
(Ault et al., 2014; Cook et al., 2015; Dai, 2011; Griffin and Anchukaitis, 2014;
Shanahan et al., 2009; Stine, 1994). Thus, an in-depth assessment of the under-
estimation of drought persistence in current climate models in the recent past
century may help to better understand similar issues found for longer time
scales.

Measures of persistence (or memory) of drought events and related climate
phenomena have been used to analyze drought variability in both models and
observations. Commonly used measures include power spectra of the time
series (Ault et al., 2014; Pelletier and Turcotte, 1997) or the Hurst exponent
(Mandelbrot and Wallis, 1969) which have been used, for example, to measure
long-term persistence in time series of drought indices (Tatli, 2015) or precipita-
tion (Bunde et al., 2013; Kumar et al., 2013). By transforming continuous time
series of drought indicators into categorical time series of dry and wet spells,
the persistence of drought can be effectively estimated through the parameters
of a binary first-order Markov chain model (Sericola, 2013). In this case the
dry-to-dry transition probability (Pdd) is used as a measure of drought persis-
tence (Jackson, 1975; Sharma and Panu, 2014; Wilby et al., 2015). The primary
assumption for this measure is that the probability of drought and nondrought
events is conditional only upon the previous time step. Interestingly, the dry
spell length distribution can also be approximated by the geometric distribu-
tion given the assumption that the dry spell lengths that are estimated are
binary sequences of independent trial results (in this case, drought and non-
drought), and the probability of success (in this case, probability of drought) is
equal for all the trials (Lee et al., 1986; Mathier et al., 1992).

Quantifications of drought persistence errors in a model ensemble are them-
selves subject to several sources of uncertainty, which include (i) uncertainty of
the considered observations, (ii) uncertainty of the individual models, (iii) in-
ternal variability, and (iv) errors related to the statistical estimation of drought
persistence (i.e., finite sample effects). Assessing the relative contribution of
each of these sources to the total uncertainty will aid interpretation in a model
validation exercise. Uncertainty in the observation-based data sets generally
refers to the combination of observational errors and the uncertainty related
to data processing methods which depend on the interpolation scheme, sta-
tion density, and quality control tools (Xie et al., 1996) as well as the subset of
selected stations. Previous studies that have assessed global climate models
(GCMs) globally usually relied on a single observational data set as a refer-
ence and sometimes accounted for observational uncertainty in the analysis by
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excluding the regions where observations were deemed unreliable. An alterna-
tive approach to account for observational uncertainty is to use independent
observation-based data sets for the analysis and to investigate the associated
spread. Model uncertainty can be characterized as the spread across different
models, mainly generated from the discrepancy in their structure. Internal
climate variability (or natural climate variability) corresponds to fluctuations
generated in the climate system without changes in external forcing and can
thus be approximated from the spread across initial condition ensembles of
individual GCMs. Lastly, the fact that model evaluation is based on finite data
sources leads to uncertainty in the statistical characterization of model perfor-
mance. This statistical estimation error is often omitted in model validation
studies, although it could affect the robustness of the analysis and hence also
the conclusions.

In this study, we aim to investigate the ability of GCMs to simulate drought
persistence, measured through the dry-to-dry transition probability (Pdd) in
a Markov chain framework. Currently, a number of drought indicators are
used in the scientific literature. Typically, these indices are tailored to specific
types of analysis and are often categorized into meteorological (Keyantash and
Dracup, 2002) hydrological (Tallaksen and van Lanen, 2004), or agricultural
drought (Quiring and Papakryiakou, 2003). In addition, indicators like the
Standardized Precipitation Index (McKee et al., 1993) or the Standardized Pre-
cipitation and Evapotranspiration Index (Vicente-Serrano et al., 2009) depend
on the choice of a model distribution which in turn needs to be calibrated and
is subject to uncertainty (Stagge et al., 2015). Finally, the choice of threshold
to discriminate droughts from nondrought events is highly contextual and
sometimes even subjective (Steinemann, 2014). Consequently, there is no sin-
gle unifying drought definition, and the choice of drought indicator is usually
dependent on the scope of individual assessments. Here we use precipitation
anomalies as a drought indicator to separate dry (negative anomalies) from
wet spells, which form the basis for estimating Pdd. The rationale underlying
this decision is that precipitation is one of the climate variables that has been
monitored with the best spatial and temporal coverage throughout the past
century, and few additional assumptions are required (see section 3). In order
to robustly assess the representation of Pdd in the models and to fully character-
ize the spread of the model error, we compare multiple observation-based data
sets with a large ensemble of GCMs runs. Finally, we assess to which degree
the spread in drought persistence error can be attributed to differences among
models, observation uncertainty, internal variability, and the statistical estima-
tion error of Pdd using an analysis of variance (ANOVA)-based approach. We
close with a discussion on the link between the drought persistence error iden-
tified in this study to the issues found in precipitation variability and suggest
potential implication of using the error partitioning method introduced in this
study for the interpretation of climate model projections.
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Table 2.1: GCMs Used in This Study

GCM Institution (country) Ensemble
members

CanESM2 Canadian Centre for Climate Modeling and
Analysis (Canada) 5

CCSM4 National Center for Atmospheric Research (United
States) 6

CESM1-CAM5
National Science Foundation, Department of
Energy, National Center for Atmospheric Research
(United States)

3

CNRM-CM5
Centre National de Recherches Météorologiques /
Centre Européen de Recherche et Formation
Avancées en Calcul Scientifique (France)

5

CSIRO-Mk3-6-0
Commonwealth Scientific and Industrial Research
Organisation in Collaboration with the Queensland
Climate Change Centre of Excellence (Australia)

10

EC-EARTH EC-EARTH Consortium 6
FIO-ESM The First Institute of Oceanography, SOA (China) 3

GISS-E2-H NASA Goddard Institute for Space Studies (United
States) 5

GISS-E2-R 5
HadGEM2-ES Met Office Hadley Centre (UK) 4

IPSL-CM5A-LR Institut Pierre Simon Laplace (France) 4

MIROC5 Atmosphere and Ocean Research Institute, The
University of Tokyo (Japan) 3

MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 3

2.2 Data

2.2.1 Precipitation From the Fifth Phase of Coupled Model Inter-
comparison Projects Model Simulations

With the international consensus on establishing global Coupled Model In-
tercomparison Projects (CMIP), there have been continued phases of CMIPs
since the early 2000s. The GCM simulations of the fifth phase of CMIP (CMIP5;
Taylor et al. (2012c)) include historical simulations for the period 1850-2005
and Representative Concentration Pathways experiments built according to
different greenhouse gas concentration scenarios from 2006 onward. Here we
consider historical simulations (1901-2005) and Representative Concentration
Pathway 8.5 simulations (2006-2010) to cover the 1901-2010 period. Only mod-
els with at least three initial condition ensemble members were included in the
analysis to account for internal variability (Table 2.1).
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Table 2.2: Observation-Based Data Set Used in This Study

Observation-based
data set Data features Provided resolution

CRU TS3.1 3,500-9,000 weather station records from
CLIMAT Monthly, 0.5◦ × 0.5◦

UDEL 4,100-18,000 weather station records mainly
from GHCN v2 Monthly, 0.5◦ × 0.5◦

GPCC 11,000-49,450 gauge stations Monthly,0.5◦ × 0.5◦ , 1.0◦ × 1.0◦ , and
2.5◦ × 2.5◦

20CR Assimilating variable: surface pressure Subdaily, daily, and monthly, 2◦ × 2◦

ERA-20C Assimilating variable: surface pressure, surface
winds

Subdaily, daily, and monthly, approximately 128
km × 128 km

2.2.2 Interpolated Precipitation Observations and Reanalysis Prod-
ucts

To quantitatively assess the performance of the considered GCM simulations,
five observation-based global precipitation data sets were selected, all covering
at least the 1901-2010 time period (Table 2.2). The Climatic Research Unit
Timeseries version 3.1 (Harris et al., 2014), University of Delaware version
3.0.1 (Matsuura and Willmott, 2012), and Global Precipitation Climatology
Centre (Schneider et al., 2014) data are generated from interpolated station
data, and each data product uses a different subset of available stations as well
as different interpolation and quality control methods. In addition, we use the
20CR (20th Century Reanalysis; Compo et al. (2006)) and the European Centre
for Medium-Range Weather Forecasts twentieth century reanalysis (Poli et al.,
2016), which assimilate different variables and differ both with respect to the
underlying models and assimilation schemes.

2.3 Methods

2.3.1 Quantifying Drought Persistence

To quantify drought persistence, we convert observed and modeled precipita-
tion values into binary time series indicating dry (negative) and wet (positive)
anomalies. For annual time series anomalies are computed by subtracting
the linear trend (least squares estimate). For the monthly resolution, the se-
ries were first detrended using linear least squares regression. Subsequently,
the long-term mean of each month was removed from the detrended time se-
ries. Drought persistence is then measured through the dry-to-dry transition
probability Pdd, which is defined as the proportion of dry-to-dry transition
out of all transitions from a dry status. The theoretical minimum of Pdd is
0.5 by construction as this value indicates a white noise system without mem-
ory (unless there is a tendency to systematically have wetter conditions after
dry conditions). In a few cases Pdd values estimated from observed or simu-
lated climate variables are slightly below the theoretical minimum, which can
be explained by the sampling uncertainty. In the analyses, we consider both
month-to-month and year-to-year transitions. In addition to the dry-to-dry
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Figure 2.1: Dependence of the dry spell length frequency distribution on different
Pdd values with constant Pww (0.5). Vertical lines indicate the 90th percentile of the
distributions for different Pdd values. The unit of x axis (dry spell lengths) is omitted
as it varies depending on the temporal scale, for example, months for monthly time
series and years for annual time series.

transition probability Pdd, also dry-to-wet (Pdw), wet-to-wet (Pww), and wet-
to-dry (Pwd) transition probabilities can be estimated from the time series. The
transition probabilities are related to each other such that Pdd = 1 - Pdw and
Pww = 1 - Pwd, implying that the dynamics of the binary series can be captured
by two parameters only. Under a first-order Markov chain assumption, these
transition probabilities can then be used to simulate stochastic ensembles re-
sembling the original binary time series, which in turn can be used to generate
estimates of the dry spell length distribution. The statistical simulation of a
Markov chain is conducted by first taking a random initial status (either dry
or wet) of which subsequent statuses are determined based on the prior sta-
tus and the corresponding transition probabilities derived from the original
time series. The process is repeated until the length of constructed binary time
series equals the length of the original time series. To facilitate the interpreta-
tion of the persistence metric (Pdd), Figure 2.1 shows how the drought length
distribution depends on the value of Pdd. For constructing this figure, 1,000
time steps were considered for the statistical simulation of binary time series
with a constant Pww value of 0.5. For each Pdd value, the statistical simulation
was repeated 1,000 times and median of the simulated samples was taken as
the best estimates of dry spell length distributions. Dry spell lengths at 90th of
each distribution are also presented, which increase with increasing Pdd.

Figure 2.2 shows an example of an annual precipitation anomaly time se-
ries at a grid cell in Eastern Europe from the Climatic Research Unit Timeseries
version 3.1 data together with the dry spell length distribution derived from
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Figure 2.2: (a) Precipitation anomaly for 1901-2010 at a randomly chosen grid cell in
Eastern Europe. The time series is taken from the Climatic Research Unit Timeseries
version 3.1 data set. (b) Dry spell length distribution derived from the observed
time series and median and 5th to 95th uncertainty range of 300 dry spell length
distributions from statistical simulation of Markov chain.

the time series with the uncertainty range obtained by statistical simulation.
Pdd and Pww estimated in this grid cell are also provided for better understand-
ing of the conversion between Markov chain parameters and dry spell length
distribution. More examples in different regions are presented in Figure A.1.

To assess whether the Markov chain model and thus also the dry-to-dry
transition probability (Pdd) later used for model validation are reasonable ap-
proximations for observed and modeled dry spell length distributions, a two
sample Kolmogorov-Smirnov (KS) test was conducted to compare dry spell
length distributions derived from the original time series to those derived from
statistical simulation. For doing so, the previously described statistical simula-
tion was repeated 1,000 times and the median of the bootstrapped distribution
(black line in Figure 2.2b; gray shading corresponds to the range spanned by
the individual simulations) compared with the observed or modeled dry spell
length distributions using the KS test with a 0.05 significance level. Failure
to reject the null hypothesis of equal distributions indicates that the Markov
chain (and thus Pdd) is a reasonable approximation of the observed and mod-
eled dry spell length distributions. Figure 2.3 shows the total number of cases
at which the KS test rejects the null hypothesis that observed and modeled dry
spell length distributions can be approximated with a Markov chain model
at the monthly time scale. For observation-based data sets, there are no cases
of rejection in most of the regions while a few grid cells located in Sahara,
Northeast Brazil, and Southeast Asia have one to five cases of rejection out of
five observation-based data sets indicating that the dry spell length distribu-
tion is not well presented with Markov chain model in the respective regions.
For model simulations, the spatial distribution of rejections is similar to the
observation-based estimates, with one to six cases out of 63 model simulations
in the same region, which in this case confirms the reliability of the Markov
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Figure 2.3: Assessment of the suitability of the Markov-chain assumption for ap-
proximating observed (a) and modeled (b) dry spell length distributions. Shown are
the number of cases at which a two-sample Kolmogorov-Smirnov test rejects the null
hypothesis that the observed (a) or modeled (b) dry spell length distribution can be
approximated by a first-order Markov chain.

chain assumption. At the annual time scale, there were no cases of rejection
for model simulations and less than 10 grid cells had one to two rejections for
observations (thus not shown in the figures).

Uncertainty in Pdd estimation is related to the finite number of samples in
the observed and modeled time series at both time scales, and it is critical to as-
sess whether this uncertainty substantially affects the model validation results.
To quantitatively assess the uncertainty due to finite sample size, which also
can be referred to as statistical estimation error, we generate the uncertainty
distribution of Pdd using parametric bootstrapping (Basawa et al., 1990; Efron
and Tibshirani, 1994). In each grid cell, 1,000 samples of binary time series
are generated through statistical simulation under Markov chain assumption
(described in the previous paragraph of this chapter) based on the Pdd and
Pwd parameters estimated from the original time series. Pdd is then calculated
for each statistical ensemble member, resulting in the uncertainty distribution
for each Pdd estimate from the observational data and the ensemble runs of
the GCMs. The bth bootstrapped sample of Pdd from observation o can be
denoted as Pdd ob and from ensemble r in model m as Pdd mrb. We compute
the drought persistence error of ensemble r in model m against observation o
as

Eomrb = Pdd mrb − Pdd ob (2.1)

so that the uncertainty range of the estimated error can be spanned by the dif-
ferences between bootstrapped samples from the observations and the models.
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2.3.2 Partitioning the Spread of the Pdd Error

To investigate the respective roles of the sources of uncertainty on the drought
persistence error, we aim at partitioning the spread of Eomrb. For doing so, we
adapt a methodology that has been previously used to partition the spread in
climate model projections (Hawkins and Sutton, 2009; Orlowsky and Senevi-
ratne, 2013), with modifications that allow to account for observation uncer-
tainty and the statistical estimation error of Pdd. Using an ANOVA-based
approach, we aim to quantify the relative contribution of (i) differences among
observational products, (ii) differences among climate models, (iii) internal
climate variability, and (iv) statistical estimation uncertainty of Pdd to the to-
tal spread of Eomrb. As ensemble members are subordinate to the models
and bootstrapped samples are subordinate to the ensemble members and ob-
servations (Figure 2.4), we apply a crossed and nested ANOVA (Krzywinski
et al., 2014). A schematic of the partitioning is shown in Figure 2.5. This
approach partitions the total sum of squares of Eomrb (SSt) into model un-
certainty (SSm), observation uncertainty (SSo), internal variability (SSi), and
sampling error (SSs) as

SSt = SSo + SSm + SSi + SSs =

No∑
o=1

Nm∑
m=1

Rm∑
r=1

Nb∑
b=1

(E2
omrb)− cf (2.2)

where No is the number of observation data sets, 5, Nm is the number of mod-
els, 13, Rm is the number of ensemble members available for each model m,
minimum 3 to maximum 10 (Table 2.1), and Nb is the number of bootstrapped
samples per observation or model, 1000. We introduce the correction factor (cf)
defined as

cf = (

No∑
o=1

Nm∑
m=1

Rm∑
r=1

Nb∑
b=1

Eomrb)
2/Nt (2.3)

to correct the sum of squares of nonnested factors (Crawley, 2005) by subtract-
ing it from the raw sum of squares of average error of each observation (E2

o...)
and model (E2

.m..) to adjust them as deviations from the total mean as

SSo = NsNb

No∑
o=1

E2
o... − cf (2.4)

and

SSm = NoNb

Nm∑
m=1

RmE2
.m.. − cf (2.5)

where Ns is total number of model simulations,
∑
Rm, and Nt is the total

number of Eomrb calculated as NoNbNs. Note that for SSi, additional terms
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Figure 2.4: Hierarchical structure of drought persistence (Pdd) error.

are subtracted from the raw sum of squares of average error of each ensemble
simulation to account for the hierarchical structure of the problem.

SSi = NoNb

Nm∑
m=1

Rm∑
r=1

E2
.mr. − (SSm + cf)

= NoNb

Nm∑
m=1

Rm∑
r=1

E2
.mr. −NoNb

13∑
m=1

E2
.m..

(2.6)

SSs is calculated as the sum of squared deviations of bootstrapped samples
from average error of each ensemble simulation against each observation or as
a residual sum of squares

SSs = SSt −Nb

No∑
o=1

Nm∑
m=1

Rm∑
r=1

E2
omr. = SSt − SSm − SSo − SSi (2.7)

2.4 Results

2.4.1 Observed Global Pdd Patterns

Figure 2.6 shows the mean dry-to-dry transition probability (Pdd) over all
observational data sets at each grid cell around the world for both monthly
and annual time scales. At the monthly scale, global mean Pdd is 0.62 (with
[0.58, 0.65] interquartile range) and at annual scale global mean Pdd is 0.57
(with [0.54, 0.60] interquartile range). The global means of observed maximum
dry spell lengths are 19.1 months and 8.9 years for each time scale.

Monthly and annual Pdd values display clear different spatial patterns (Fig-
ure 2.6), indicating that monthly persistence does not necessarily propagate
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Figure 2.5: Schematic of partitioning the spread in the error, for the case Nm = 2, No
= 2, R1 = 5, R2 = 6, and Nb = 30. See text for details and definitions.

linearly to the yearly persistence. Some of the desert areas, for example, Sa-
hara, Gobi, and Atacama, are commonly recognizable in both temporal scale
with larger Pdd values. The results of KS test (Figure 2.3) also suggest higher
uncertainty in Pdd estimation in Sahara.

2.4.2 Drought Persistence Error of CMIP5 Model Simulations

Figures 2.7a and 2.7c show the drought persistence error (Eomrb) averaged
over all observational data sets and all model simulations. Overall, the models
tend to underestimate Pdd at both monthly and annual scales, a feature that is
particularly pronounced in western North America, western South America,
Africa, and Northeast Asia. In around 40% of the land grid cells (38.9% at
monthly scale and 37.9% at annual scale) at least 80% of the model simulations
agree on the negative sign of Eomrb. For the positive sign, the same percentage
of agreement was only found in 2.7% of the land grid cells at monthly scale
and 1.5% at annual scale. Figures 2.6b and 2.6d show the global distribution
of Eomrb and for each observational data set. For all considered observational
data sets the tendency of the models to underestimate drought persistence is
visible, but it should be noted that 20CR has stronger drought persistence at
annual scale and suggests even larger negative drought persistence biases in
the climate models than when using other reference data sets. It should be
noted for this result that 20CR relies on less direct observations than the other
considered products (see Table 2.2). The "drizzle problem", where GCMs over-
estimate the number of days with light rainfall (Dai, 2006), might contribute to
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Figure 2.6: Mean drought persistence (Pdd) estimated from five observation-based
data sets for 1901-2010 at (a) monthly and (b) annual scales.

the larger biases found in desert regions.
Although the mean drought persistence bias indicates that the considered

climate models tend to underestimate drought persistence, there are a few re-
gions in which overestimation of Pdd is found. This is most pronounced at the
monthly scale in the Arabian Peninsula and India, and there is a tendency for
overestimation in the Mediterranean, southeastern South America, South Aus-
tralia, and Southeast Asia. South Australia and India also show overestimation
in annual Pdd.

Additionally, most of these regions also show underestimation of wet per-
sistence (Pww) (Figure A.2), which indicates that models are generally under-
estimating persistence of both dry and wet anomalies, at monthly and annual
time scales.

Figure 2.8 shows the mean drought length bias at the 95th percentile of
the dry spell length distribution, estimated on the multisimulation and obser-
vation mean Pdd. For doing so the observed and modeled dry spell length
distributions were estimated on the basis of the multi-observation and multi-
simulation mean Pdd and Pww values (using statistical simulation; see section
2.3). Subsequently, the difference between the observed and the modeled dry
spell length distribution at the 95th percentile was calculated. The spatial dis-
tribution of drought length bias generally follows the pattern of the drought
persistence bias in Figure 2.7. At monthly scale, the strongest underestimation
in drought length (up to 5 months) is found in Sahara. Substantial overestima-
tion of drought length in Arabian Peninsula and India is also noticeable. The
spatial pattern at annual scale is rather homogenous over all regions. Consid-
ering the scale difference, drought length bias at annual scale is considerably
smaller than monthly, unlike the larger persistence bias (Figure 2.7) which is
related to the generally smaller values of Pdd at annual scale. Drought length
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Figure 2.7: Spatial distribution of multi-simulation mean drought persistence er-
ror (Eomrb) for (a) monthly and (c) annual scales. Stippling indicates agreement
in the sign of drought persistence error among more than 80% of the model simula-
tions. Global distribution of drought persistence error for (b) monthly and (d) annual
scales. CRU = Climatic Research Unit Timeseries version 3.1; UDEL = University of
Delaware; GPCC = Global Precipitation Climatology Centre; ERA-20C = ECMWF
twentieth century reanalysis; 20CR = twentieth century reanalysis.



28 Long-term drought persistence

Figure 2.8: Spatial distribution of multi-simulation mean drought length bias against
observed mean drought length at 95th percentile for (a) at monthly scale and (b) at
annual scale.

biases at other percentiles are presented in Figure A.3.
Figures 2.9a and 2.9c show the standard deviation of model error at monthly

and annual scales. While the spread of Eomrb at monthly scale is only large in
a few regions (e.g., Amazon, central Andes, Tibetan Plateau, and Sahara), most
of the regions show substantial spread in Eomrb at annual scale. To compare
the relative magnitude of spread against the magnitude of multi-simulation
mean bias, the coefficient of variation is calculated (Figures 2.9b and 2.9d). In
many regions, the absolute value of the coefficient exceeds 1, which indicates
that the standard deviation is larger than the mean of Eomrb. Nevertheless,
pronounced underestimation can be confirmed at monthly scale, in western
North America, central, and South Africa, and at annual scale, in Greenland,
western South America, Tibetan Plateau, and mainland Southeast Asia, while
there are only few grid cells with mean overestimation larger than the spread.

2.4.3 ANOVA of Drought Persistence Error

As a substantial spread in the drought persistence error is found, we apply the
ANOVA-based partitioning to quantitatively assess the relative contribution
from the four possible sources of uncertainty to the total spread (see section
2.5.2). Figure 2.10 shows the spatial patterns determined by the relative con-
tribution from, which are observation uncertainty, model uncertainty, and
internal variability, where contribution from the statistical estimation error is
only used for indicating reliability of the partitioning. Interestingly, the overall
spatial patterns clearly differ depending on the considered time scale. The
spread in monthly drought persistence error is mostly related to differences
among the considered observational products and model uncertainty, except
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Figure 2.9: Standard deviation of drought persistence error at (a) monthly and (c)
annual scales and grid cells at which the coefficient of variation Eomrb is larger or
smaller than one for the (b) monthly and (d) annual scales. Stippling in (a) and (c)
indicates regions with absolute value of coefficient of variation less than 1.
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Figure 2.10: Partitioning the spread of the drought persistence error (Eomrb) into
model uncertainty, observation uncertainty, and internal variability for (a) monthly
and (b) annual scales. Stippled areas indicate that the summated contribution from
the other sources is smaller than contribution from statistical estimation error.

for high-latitude regions. Dominant contributions from model uncertainty are
especially pronounced in western North America, Amazon, Northeast Brazil,
Algeria, India, and Australia. Even some regions with scarce ground mea-
surements, for example, Sahara, Amazon, and Australia, show similar or even
higher contributions from model uncertainty to the spread in Eomrb at the
monthly time scale, although a higher contribution of observation uncertainty
might have been expected. In southern South America, central Africa, Arabian
Peninsula, and East Asia, observation uncertainty is dominating to the total
spread. Interestingly, a large spread among observation-based data sets for
monthly precipitation in North Africa and Arabian Peninsula and other low-
precipitation regions was reported in a previous study (Tanarhte et al., 2012).
In contrast, the spread in annual drought persistence error is dominated by a
combination from observation uncertainty and internal climate variability. In
the Arabian Peninsula, Eastern Africa, and the Tibetan Plateau, observation
uncertainty is more pronounced. Note, however, that for the annual scale, the
statistical estimation error is larger than the sum of the relative contribution of
all other sources of uncertainty at most locations, indicating that most of the
spread (Figure 2.9c) is caused by finite sample effects.

Figure 2.11 shows the global distribution of the contributions from each
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Figure 2.11: Box plots showing global distribution of contribution from each source
of uncertainty to the total spread of drought persistence error for monthly (red) and
annual (blue) scales. Each box represents the interquartile range, and the median is
shown as white line. The whiskers show the range (25th quantile - 1.5·IQR, 75th
quantile +1.5·IQR), and values outside this range are indicated as dots.

source to the total spread in drought persistence error. At the monthly scale,
overall contribution from observational and model uncertainty is clearly larger
than that from internal variability. At the annual scale, the median of the
contribution from statistical estimation error is larger than any other source,
implying that the partitioning is unreliable in most of the regions (Figure 2.10b).
In addition, a substantially lower contribution from model uncertainty is also
noticeable at the annual scale.

2.5 Discussion

2.5.1 Drought Persistence Error

While previous studies have highlighted the underestimation of interannual
to multidecadal precipitation variability in current climate models (Ault et al.,
2012; Dai, 2006; Kumar et al., 2013), we investigated here whether state-of-the-
art climate models capture meteorological drought persistence at shorter time
scales. We find a systematic underestimation of the persistence of drought at
both the monthly and annual scales in the considered CMIP5 models, when
compared to five observational reference products over the 1901 to 2010 time
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frame. This underestimation is clear, despite the large spread in drought persis-
tence error, which is in many regions attributable to observational uncertainty.
Consequently, this study complements previous research (Ault et al., 2014;
Wetter et al., 2014) by showing that the underestimation of drought persistence
already occurs if year-to-year or month-to month variability is considered.

Overall, the climate models’ ability to simulate precipitation variability at
long time scales is likely related to the representation of tropical sea surface
temperature and El Niño-Southern Oscillation variability in the GCMs, as pre-
viously suggested (Meinke et al., 2005; Schubert et al., 2016). Consequently,
it is not unlikely that drought persistence in current climate models also de-
pends on how well large-scale ocean-atmosphere variability is represented. On
shorter time scales, the general underestimation of drought persistence shown
in this study could possibly be attributed to issues in the representation of
land-atmosphere couplings, such as the soil moisture-precipitation coupling
at the regional scale (Guillod et al., 2015; Koster et al., 2006; Orlowsky and
Seneviratne, 2010; Taylor et al., 2012a). Consequently, the differences in the
spatial distribution of the drought persistence error at monthly and annual
time scales identified in this study might be related to differences in the gov-
erning processes. However, to which degree this is the case and how errors on
short time scales (e.g., day to day) translate to errors on long time scales (e.g.,
year to year) remains to be investigated.

2.5.2 Partitioning the Spread in the Drought Persistence Error

While the considered GCMs display a systematic underestimation of drought
persistence, the range of underestimation spanned by these models and by the
observational data sets is substantial. To further investigate this issue, we de-
veloped an ANOVA-based approach that allows to partition the contribution
of unprecise observations, differences among climate models, internal climate
variability, and statistical uncertainty to the total spread in the drought persis-
tence error. The partitioning method applied in this study is motivated by an
approach that is used to partition the uncertainty in future climate projections
into model uncertainty, scenario uncertainty, and internal variability (Addor
et al., 2014; Hawkins and Sutton, 2009; Orlowsky and Seneviratne, 2013; Taylor
et al., 2012b). In this study, we expand this framework for the model validation
task. To this end, we incorporated observation uncertainty together with the
statistical estimation error of Eomrb into the existing framework. The analy-
sis showed that both observational uncertainty and the statistical estimation
uncertainty can play a significant role in climate model validation.

The results of the partitioning of the spread in the drought persistence
error have interesting implications both for future model validation studies
and for model development. On the one hand, the analysis highlights that
differences among the considered climate models are in many cases larger
than the uncertainty of observations, highlighting the potential of future model
development. On the other hand, the analysis also shows that issues with the
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considered observational data products (especially in data scarce regions) as
well as finite sample effects (annual time scale) can impair the model validation
exercise. Consequently, the results highlight the importance of considering
the latter uncertainties in future model validation studies. Furthermore, the
partitioned spread in this study might be used to assess the efficiency of model
selection based on observational constraint for reducing the model spread
in future projections (Cox et al., 2013; Hall and Qu, 2006). The efficiency is
expected to be higher in the regions where the range of observation uncertainty
is substantially narrower than the model uncertainty.

2.6 Conclusions

Persistent meteorological drought triggers subsequent drying of other hydro-
logical variables on land (Van Loon, 2015) such as soil moisture or water stor-
age, which can, for example, have strong impacts on vegetation (Nicolai-Shaw
et al., 2017) and regional temperature (Seneviratne et al., 2010). In this study,
we investigated how well current generation GCMs represent drought persis-
tence over the twentieth century and the recent past. For doing so we focused
on meteorological drought and compared dry-to-dry transition probabilities
(Pdd) at yearly and monthly time scales of an ensemble of simulations from
the CMIP5 archive with observational data sets (interpolated observations and
reanalyses). Overall, the results highlight that the considered models tend to
underestimate drought persistence at monthly and annual time scales. This
is an interesting addition to previous results (Ault et al., 2014; Kumar et al.,
2013), which indicate that CMIP5 models underestimate the risk of prolonged
droughts on multidecadal time scales.

To investigate the substantial spread in the drought persistence error, we
develop a new methodology to effectively partition the spread into its main
components, which include (i) observation uncertainty, (ii) model uncertainty,
(iii) internal variability, and (iv) statistical estimation error of the considered
validation metric. At the monthly time scale, observation uncertainty (which
is often neglected in model validation studies) and model uncertainty are the
main contributors to the total spread. At annual time scales, the statistical esti-
mation error is dominant in most regions, followed by combined contributions
from internal variability and observational uncertainty. This analysis reveals
regions where improvements of GCMs or model selection can substantially
reduce the spread of model uncertainty. Reducing uncertainty of drought sim-
ulations is important for improving drought projections in a changing climate.
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Abstract Daily precipitation persistence is affected by various atmospheric and land
processes and provides complementary information to precipitation amount statistics
for understanding the precipitation dynamics. In this study, daily precipitation per-
sistence is assessed in an exhaustive ensemble of observation-based daily precipitation
datasets and evaluated in global climate model (GCM) simulations for the period of
2001 - 2013. Daily precipitation time series are first transformed into categorical time
series of dry and wet spells with a 1 mm/day precipitation threshold. Subsequently,
Pdd (Pww), defined as the probability of a dry (wet) day to be followed by another dry
(wet) day is calculated to represent daily precipitation persistence. The analysis focuses
on the long-term mean and interannual variability of the two indices. Both multi-
observation and multi-model means show higher values of Pdd than Pww. GCMs
overestimate Pww with a relatively homogeneous spatial bias pattern. They overesti-
mate Pdd in the Amazon and Central Africa but underestimate Pdd in several regions
such as southern Argentina, western North America and the Tibetan Plateau. The
interannual variability of both Pdd and Pww is generally underestimated in climate
models, but more strongly for Pww. Overall, our results highlight systematic model
errors in daily precipitation persistence that are substantially larger than the already
considerable spread across observational products. These findings also provide insights
on how precipitation persistence biases on daily time scale relate to well-documented

1Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
2Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
3Centre for Atmospheric and Oceanic Sciences & Divecha Centre for Climate Change, Indian

Institute of Science, Bangalore



36 Daily precipitation persistence

persistence biases at longer time scales in state-of-the art global climate models.

3.1 Introduction

Daily precipitation persistence on land is regulated by various regional weather
features, such as atmospheric blocking (Sousa et al., 2017), mesoscale convec-
tive systems (Tuttle and Davis, 2006), and monsoon (Trenberth et al., 2000),
that are often under the influence of large-scale modes of climate variability
which is governed by sea surface temperature (SST) variability (Chang et al.,
2000; Hoy et al., 2014; Krishnan and Sugi, 2003; Kushnir et al., 2010; Power
et al., 1999) or, in some regions to the similar degree by land processes (Koster
et al., 2004; Langford et al., 2014; Matsui et al., 2003; Small, 2001; Tuttle and
Salvucci, 2016). Prolonged dry or wet spells spanning from several days to
weeks, as a result of all such processes that affect daily precipitation dynamics
can have considerable impacts on agricultural productivity (Dash et al., 2009;
Groisman and Knight, 2008; Laux et al., 2010; Seleshi and Zanke, 2004) and
thus, on human society. Hence daily precipitation persistence is an impor-
tant criteria for evaluating precipitation data sets and models regarding their
ability to capture or simulate precipitation dynamics. Still, there is the lack
of evidence on how observations characterize daily precipitation persistence
globally and how global climate models (GCMs) simulate it.

Only a few studies have focused on analyzing daily precipitation persis-
tence in observations, and they are often very regional and mainly investigate
changes in the daily precipitation persistence. Changes in precipitation persis-
tence associated with change in the intensity of extreme rainfall were identified
in the northeastern US (Guilbert et al., 2015) and Europe (Valdes-Abellan et al.,
2017; Zolina et al., 2010) during the 20th century. In Switzerland, little change
in spell-length statistics associated with significant trends in precipitation in-
tensity during the 20th century was reported (Schmidli and Frei, 2005). Con-
versely, (Alexander et al., 2006) documented a significant decreasing trend of
annual maximum consecutive dry days (CDD) in Australia. Significant trends
with different signs and magnitude regarding the characteristics of dry and
wet spell lengths during the 20th century was identified in India (Dash et al.,
2009; Singh et al., 2014; Vinnarasi and Dhanya, 2016). While these studies show
that some regions of the world have experienced significant changes in daily
precipitation persistence, a lack of consensus on the metrics used to charac-
terize precipitation persistence makes it difficult to compare the results from
different studies.

Studies evaluating precipitation persistence in GCMs have typically fo-
cused on indices such as CDD, maximum consecutive wet days (CWD), heavy
precipitation days (number of days with rainfall more than 10 mm, R10mm)
and very heavy precipitation days (R20mm), recommended by the WMO/WCRP/JCOMM
Expert Team on Climate Change Detection and Indices (ETCCDI) (Zhang et al.,
2011), and commonly used to measure daily precipitation persistence in pre-
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vious studies (Alexander and Arblaster, 2017; Alexander et al., 2006; Sillmann
et al., 2013). While these indices measure extreme dry or wet persistence, they
are all based on yearly maxima of a given variable and do not account for
mean persistence characteristics. Furthermore they might artificially introduce
a large interannual variability (IAV) on a grid-scale analysis depending on
how the maximum values located at the beginning or end of a year are treated
(Sillmann et al., 2013).

In the following, we analyse global daily precipitation persistence using
indices that represent its mean characteristic in an exhaustive set of observa-
tional data sets and use these results to evaluate a comprehensive ensemble
of GCM simulations. Section 3.2 describes the observational data and models
used in the analysis. Section 3.3 describes the two indices representing dry
and wet precipitation persistence. In Section 3.4, comparisons of long-term
daily precipitation indices and their IAV in observational products and GCMs
are presented with discussions on the results. The major conclusions of our
analyses are presented in Section 3.5.

3.2 Data

3.2.1 Observation-based precipitation products

23 observation-based precipitation products at daily temporal and 1◦ × 1◦

spatial resolution in the Frequent Rainfall Observations on GridS (FROGS)
(Roca et al., 2019) data collection were used (Table 3.1). All considered prod-
ucts belong to one of the following categories: interpolated station measure-
ments, satellite-only products, satellite products calibrated with station mea-
surements, and atmospheric reanalysis and the common time period 2001-2013
is used in our analysis. More information regarding the observation datasets
are available in Table 2 of (Roca et al., 2019). All observational precipitation
products were aggregated to a common 2.5◦ × 2.5◦ resolution before calculat-
ing the indices to facilitate comparison with GCMs.

3.2.2 Model simulations

Daily precipitation outputs in the historical and the representative concentra-
tion pathway 8.5 (RCP8.5) simulations, covering the period 1950-2013, from
33 global climate models (GCM) belonging to the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) (Taylor et al., 2012c) have been used (Table
B.1). For the analysis in this study, the longest common observational period
2001-2013 was used. All model outputs were regridded to a to a common
2.5◦ × 2.5◦ resolution before calculating the indices.
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Table 3.1: Observational precipitation products used in this study

Product name (main reference)
Temporal
coverage Product category

GPCC-FDD-v1.0 (Schamm et al., 2015) 1988-2013
Interpolated

stations
GPCC-FDD-v2018 (Schamm et al., 2015) 1982-2016
REGEN-ALL (Contractor et al., 2019) 1950-2013
REGEN-LONG (Contractor et al., 2019) 1950-2013
TRMM 3B42-IR (Huffman et al., 2007) 1998-2016

Satellite-only

TRMM 3B42-MW (Huffman et al., 2007) 1998-2016
CHIRPv2.0 (Funk et al., 2015) 1981-2016
CMORPH-RAW (Joyce et al., 2004) 1998-2017
GSMAP-nogauges-NRT (Kubota et al., 2007) 2001-2017
GSMAP-nogauges-RNL (Kubota et al., 2007) 2001-2013
TRMM 3B42-v7 (Huffman et al., 2007) 1998-2016

Satellite calibrated
with stations

CHIRPSv2.0 (Funk et al., 2015) 1981-2016
CMORPH-v1-CRT (Joyce et al., 2004) 1998-2017
GPCP-CDR-v1.3 (Huffman et al., 2001) 1997-2017
GSMAP-gauges-NRT (Kubota et al., 2007) 2001-2017
GSMAP-gauges-RNL (Kubota et al., 2007) 2001-2013
PERSIANN-v1 (Ashouri et al., 2014) 1983-2017
CFSR (Saha et al., 2010) 1979-2017

Reanalysis
ERAi (Dee et al., 2011) 1979-2017
JRA-55 (Kobayashi et al., 2015) 1958-2017
MERRA1 (Rienecker et al., 2011) 1979-2015
MERRA2 (Rienecker et al., 2011) 1980-2017

3.3 Methods

In order to estimate day-to-day wet (i.e., rainy) and dry (i.e., nonrainy) persis-
tence, daily precipitation time series are transformed into binary time series
using a 1 mm/day precipitation threshold. Subsequently, the two precipitation
persistence indices, Pdd and Pww are calculated as the fraction of dry (wet) day
that are followed by another dry (wet) day. For the analyses conducted in this
study, the indices are calculated in two ways: annual values and long-term
values. For the calculation of long-term values, daily precipitation during 2001-
2013 is considered. Annual values are estimated using data for each year and
allow us to investigate the IAV. IAV is quantified as the standard deviation of
the yearly values and it partially also reflects the statistical uncertainty of the
indices.

To estimate the robustness of the multi-observation and multi-model mean
error of Pdd, Pww and their IAV, we use the coefficient of variation (CV), de-
fined as the ratio of the standard deviation to the mean. In this case, the
standard deviation is calculated for all combinations of observations or mod-
els, respectively. When the absolute value of CV is smaller than 1, the estimate
is considered robust.
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Besides using Pdd and Pww as indicators for precipitation persistence, pre-
vious studies also used Pdd and Pww to simulate the original daily categor-
ical time series under a first-order Markov chain assumption, whereby the
goodness-of-fit between the original and simulated dry and wet spell length
distributions was assessed using a two-sample Kolmogorov-Smirnov test (Lee
et al., 1986; Mathier et al., 1992; Moon et al., 2018). At monthly and annual
time scales, the test suggested for both observations and models that Pdd and
Pww can be used to represent the dry and wet spell length distributions. We
conducted the same statistical test at daily time scale to check whether such
approximation is valid at a shorter time scale (Figure B.1, supporting informa-
tion). For dry spell lengths, in a few regions such as eastern North America
and South Australia, its approximation using Markov model was statistically
confirmed across different observational products and models but not for other
regions. For wet spell lengths, the hypothesis does not hold mainly in the trop-
ics, while they are reproducible with Pdd and Pww in the other regions of the
world. The fact that Pdd and Pww do not allow good simulation of the spell
length distributions at daily scale might be due to strong seasonality or long-
term variability in the time series, which violates the first-order Markov chain
assumption. Hence, Pdd and Pww alone do not allow to represent dry and wet
spell length distribution at daily time scales. Nonetheless they remain useful
indicators of precipitation persistence and are used for that purpose in this
paper.

3.4 Results and Discussion

3.4.1 Long-term mean persistence characteristics of daily precipita-
tion

Figure 3.1 shows the multi-observation and the multi-model mean of daily Pdd
and Pww over the period 2001-2013. The observations and models show simi-
lar spatial patterns of Pdd and Pww. While Pdd is lowest in the regions around
the equator and increases towards the poles, Pww shows the opposite pattern,
with highest values observed over the whole tropics consistently with precipi-
tation climatologies. Also, the global mean of Pdd is generally higher than the
global mean of Pww. Equivalent results for different seasons are presented in
supporting information (Figures B.2 - B.5). Compared to monthly and annual
Pdd and Pww presented in (Moon et al., 2018), both indices expectedly show
wider range of values towards both extremes at daily scale.

Multi-model mean errors in both dry and wet persistence are shown in
Figure 3.2. The Pdd error shows a more heterogeneous spatial structure, while
the Pww error is consistently positive in most regions of the world. This is
consistent with the broad notion that models tend to rain more frequently
than that observed, although spread across the observational products in the
frequency of light precipitation events are larger than more intense categories
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Figure 3.1: Multi-observation (top) and multi-model mean (bottom) of daily dry (Pdd,
left) and wet persistence (Pww, right).

Figure 3.2: Multi-model mean error of daily dry (Pdd, left) and wet persistence (Pww,
right). The stippling indicates grid cells where the absolute value of coefficient of
variation of the model error is smaller than 1. Highlighted are regions that correspond
to Western North America (WNA), the Amazon (AMZ), and Southern Africa (SAF)
as defined in SREX (Seneviratne and Nicholls, 2012) and are considered for detailed
analysis.

of precipitation events (Sun et al., 2018). These errors are not sensitive to the
choice of threshold within the range of light intensity rainfall ( 5 mm/day)
(not shown here). In addition, in both observations and models, Pdd and Pww
are significantly correlated with total amount and frequency of precipitation in
most regions (Figure B.8). The different spatial structure between the error of
the two indices contrasts with what was identified at monthly and annual time
scale where both indices were dominantly underestimated by GCMs (Moon
et al., 2018). The positive Pdd error is largest in the Amazon and Central Africa.
Other regions including southern Argentina, western North America, central
Europe and Tibetan Plateau show a small but robust negative bias. While there
is a clear seasonality in both indices, spatial patterns of the errors are similar
across different seasons (Figures B.2-B.5).
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Figure 3.3: Multi-observation (top) and multi-model mean (bottom) of interannual
variability (IAV) of daily dry (Pdd, left) and wet persistence (Pww, right).

3.4.2 Interannual variability in daily precipitation persistence

Figure 3.3 shows the multi-observation and multi-model mean of the standard
deviation of the yearly values of daily Pdd and Pww, here also referred to
as IAV of the respective index. The spatial structure of the IAV has some
commonalities with that of the mean Pdd and Pww values (Fig. 3.1). The IAV
is large in regions with low Pdd and Pww values that are the Amazon, central
Africa, the Sahara, Australia, and South Africa. In other parts of the world, the
magnitude of IAV is relatively constant.

Figure 3.4 shows the multi-model mean error of IAV of Pdd and Pww. For
IAV of Pdd, the Amazon stands out with the largest mean error but with large
spread either across the observations or the models indicated by CV larger
than 1. Overall, there is a robust underestimation of IAV of Pww in most
regions, except for the Sahara and Middle East, where it is overestimated. The
strong underestimation in the IAV of Pww in models suggests that they are
oversimplifying some aspects of daily precipitation dynamics. This might also
explain how consistent overestimation of daily Pdd and Pww can be concurrent
with previously identified underestimation of the two indices at monthly and
annual time scales (Moon et al., 2018).

3.4.3 Observational Product Intercomparison

Based on the previously presented results, we identify four regions (Western
North America, Amazon, West Africa, and South Africa) where the errors of
daily precipitation persistence or errors of their IAV is relatively large. The
regions were defined according to the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation (SREX; (Seneviratne and Nicholls, 2012),
see Table B.2 and Figure B.7 for the definition of the regions) and are indicated
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Figure 3.4: Multi-model mean error of interannual variability (IAV) in daily dry
(Pdd, left) and wet persistence (Pww, right). The stippling indicates grid cells where
the absolute value of coefficient of variation of the model error is smaller than 1.

in Figure 3.2. In Figure 3.5, the time series of regionally averaged annual
Pdd and Pww over the period 1950-2013 are presented. The dark and light
grey shades indicate the interquartile and the total range of model simulations
whereas the black line indicates median. Colored lines indicate each category
of observational products (see also Table 3.1). Results in the all other SREX
regions are presented in the Supporting Information (Figures B.8-B.12).

For the simulations from GCMs used in this study, the year-to-year evo-
lution is not expected to agree among themselves or with observations year-
by-year, unlike the long-term mean magnitude of IAV in individual models
quantified as standard deviation (Figure 3.3). Therefore, the models’ yearly
values in Figure 3.5 cannot be directly compared to observations. A larger
(smaller) IAV in the regions with constantly very low (high) Pdd or Pww val-
ues is partially due to statistical uncertainty of the yearly indices themselves,
which is affected by number of transitions from dry or wet statuses.

In Western North America, both observations and models show relatively
small spreads in both Pdd and Pww. The IAV of the Pdd in observations are
generally small compared to other regions and shows good agreement among
observations on year-by-year variation. For Pww, the IAV differs depending
on the observation product, for instance, some of the satellite products show
different temporal behavior than the rest. Also the full range of Pww in ob-
servations is below the interquartile range of the models indicating consistent
overestimation in the models. In the Amazon, both observations and models
show large inter-product spread, evident from the magnitude of IAV in Pdd.
In particular, the reanalysis products show larger IAV than the other products.
West Africa is one of the regions with the largest spread in Pww across obser-
vational products, even larger than that of models. The range of Pww in the
reanalysis products is well separated from the rest. In South Africa, there is a
good agreement in Pdd between observations, with small spread across both.
For Pww, the median of the models is larger than any observational products,
confirming consistent overestimation of the models. The very low or high val-
ues of indices in some satellite products at the beginning of their time series in
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Figure 3.5: Time series of dry (Pdd, left) and wet persistence (Pww, right) in four
different regions. Individual lines indicate different observation products that are
grouped into four categories. Light grey and dark grey shades indicate the total range
and the interquartile range of the CMIP5 models. The black line indicates the median.



44 Daily precipitation persistence

the Amazon and West Africa are due to temporarily smaller spatial coverage.
Figure 3.6 shows the globally averaged root-mean-square differences (RMSD)

from the multi-observation mean of Pdd and Pww as well as the IAV of both
indices for observations and models. For Pdd and Pww, the reanalysis products
show largest RMSD values and while the remaining observational products
show values smaller than 0.1. Models show a similar range of RMSD of Pdd
as reanalysis products, and a higher RMSD for Pww also with a larger inter-
model spread. Similarity between the GCMs and reanalyses is likely due to
the fact that the dynamical properties of reanalysis is highly dependent on the
underlying atmospheric model and that precipitation is often not assimilated
directly. Specifically they commonly simulate more frequent rainy days (Beck
et al., 2017) which is significantly correlated with the persistent characteris-
tics (Figure B.6). The RMSD of the IAV of Pdd is similar across observational
products with slightly larger values in the reanalyses. The RMSD of the IAV
of Pww is consistent around 0.02 across all observational products. The RMSD
of the IAV in both indices for models are larger than observations by around
0.01 with small intermodel spread. As observational estimates were analyzed
in different categories based on data processing and measurement methods,
similar a priori approach could be applied to GCMs considering the shared
components between models (Annan and Hargreaves, 2017; Boé, 2018). Such
an approach may help to identify the reasons underlying the model errors
found in this study.

3.5 Conclusions

In this study, an exhaustive set of observational precipitation products was
compared to GCMs with regards to their daily precipitation persistence. A con-
sistent and statistically robust overestimation in Pww in GCMs was identified,
while the model errors in Pdd were spatially heterogeneous in both sign and
magnitude. A statistically robust underestimation in the IAV of Pww in GCMs
was identified around the globe except for the Sahara, Arabian Peninsula, and
India, where an overestimation was found. A majority of models show an
underestimation in the IAV of Pdd in the tropics. In many regions, the spread
of Pdd and Pww across all observational products is similar or even larger than
the intermodel spread, while the magnitude of year-to-year variations agree
well between the observational products. At the global scale, the reanalysis
products are found to exhibit a larger difference compared to the multi-product
mean than other groups of observational products. The results of this study
highlight the consistent model error in daily precipitation persistence, despite
the considerable spread across observational products. Contrasting model er-
rors of long-term mean of daily precipitation persistence and its interannual
variability show how a consistent overestimation of daily persistence can relate
to previously identified underestimation of dry and wet persistence at longer
time scales (e.g. monthly and yearly).
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Figure 3.6: Globally averaged root-mean-square differences (RMSD) from the multi-
observation mean of Pdd (first row), Pww (second row), and the interannual variability
(IAV) of Pdd and Pww (third and fourth rows), for observations and models. The
boxplots indicate the median, interquartile range, and full range of all observational
products (OBS) and models (CMIP5).
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Abstract Soil moisture-precipitation feedbacks in a large ensemble of global climate
model simulations are evaluated. A set of three metrics are used to assess the sensitiv-
ity of afternoon rainfall occurrence to morning soil moisture in terms of their spatial,
temporal, and heterogeneity characteristics. Positive (negative) spatial feedback indi-
cates that the afternoon rainfall occurs more frequently over wetter (drier) land surface
than its surroundings. Positive (negative) temporal feedback indicates preference over
temporally wetter (drier) conditions, and positive (negative) heterogeneity feedback
indicates preference over more spatially heterogeneous (homogeneous) soil moisture
conditions. We confirm previous results highlighting a dominantly positive spatial
feedback in the models as opposed to observations. On average, models tend to agree
better with observations for temporal and heterogeneity feedback characteristics, al-
though intermodel variability is largest for these metrics. The collective influence of the
three feedbacks suggests that they may lead to more localized precipitation persistence
in models than in observations.

4.1 Introduction

Despite substantial research over the past few decades, soil moisture-precipitation
(hereafter SMP) feedbacks remain among the most uncertain processes in the
field of land-atmospheric interactions (Santanello et al., 2017; Seneviratne et al.,
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2010). Soil moisture influence on precipitation at seasonal to interannual scales
has been investigated with the concept of moisture recycling (Dirmeyer et al.,
2006; Eltahir and Bras, 1996; van der Ent et al., 2010), here referred to as di-
rect SMP feedback. There has also been an increasing attention towards un-
derstanding indirect SMP feedback at subdaily to daily scales, which is also
the focus of our study. Indirect SMP feedback can be narrowed down to the
influence of soil moisture condition on boundary layer characteristics and con-
vective initiation. Several studies have investigated such local effects of soil
moisture using two main types of approaches. Some focused on the temporal
effect of soil moisture on rainfall based on 1-dimensional frameworks which
can yield both positive and negative effects (Alfieri et al., 2008; Duerinck et al.,
2016; Findell and Eltahir, 2003; Gentine et al., 2013; Guillod et al., 2014). A pos-
itive temporal feedback appears when the increase of moisture is more critical
for the cloud formation and precipitation, often under low stability in the free
troposphere. A negative temporal feedback usually appears under a strong
stability barrier at the top of planetary boundary layer, which requires larger
sensible heat to allow sufficient turbulent mixing (Hohenegger et al., 2009).
Another line of research considers spatial soil moisture gradients (Taylor and
Lebel, 1998) whereby locally drier soils induce a mesoscale atmospheric circu-
lation such that increased convergence over the drier region which leads to
convection (Taylor et al., 2011). Conceptually, temporal and spatial feedbacks
may interact: rainfall may produce spatial heterogeneities in soil moisture that
subsequently lead to further rainfall events over the drier regions, thereby in-
creasing precipitation occurrence over a wider area (Guillod et al., 2015; Hsu
et al., 2017).

Taylor et al. (2012a) have demonstrated that observations display a nega-
tive spatial SMP feedback, contrary to global climate models (GCMs) which
display a positive feedback. This misrepresentation of SMP feedback in GCMs
suggests issues in the dynamics of rainfall and soil moisture, and could in-
troduce systematic errors in the climate simulated by these models. Many
studies have assessed the feedback in GCMs using different approaches, in-
cluding modeling experiments. Koster et al. (2006) investigated the relative
strength of the SMP feedback across GCMs in terms of precipitation variabil-
ity explained by soil moisture and highlighted regions with stronger coupling
such as the Sahel and central North America. Several regional studies analyzed
the development of convective rainfall in model simulations with different soil
moisture perturbations, in e.g. South Africa (Cook et al., 2006), the Indian and
African monsoon region (Douville et al., 2001; Meehl, 1994), the Alpine region
(Hohenegger et al., 2009), and the Sahel (Taylor et al., 2013). These studies com-
monly concluded that simulations with parameterized convection, as applied
in most of the GCMs, are not able to simulate negative feedbacks. In addi-
tion, although the previous studies have proven the substantial contribution
of parameterized convection to SMP feedback in models, the role of the land
surface schemes should not be overlooked as surface variability induced from
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land surface processes is likely to influence the development of convection and
thus, the SMP feedback itself.

Previous studies mainly point to the spatial resolution of models and
thereby parameterization of convection as the main issue that may prevent
GCMs from correctly simulating SMP feedbacks. Nonetheless, there is a lack
of understanding in how such feedbacks are represented in current GCMs,
especially with respect to their spatial and temporal components. In this study,
for the first time we evaluate both spatial and temporal SMP feedbacks in a
large ensemble of fully coupled climate models using the diagnostics intro-
duced by Taylor et al. (2012a) and Guillod et al. (2015). Section 4.2 describes
the observational data and models used in the analysis. Section 4.3 describes
the coupling diagnostics and their application to both observations and mod-
els. The analysis of SMP feedbacks in observations and models is presented in
section 4.4.1. In section 4.4.2, the possible collective effects of spatial and tem-
poral SMP feedbacks in observations and models are discussed. Conclusions
are drawn in Section 4.5.

4.2 Data

4.2.1 Observational data

In this study, three precipitation data sets and four soil moisture data sets are
used which resulted in 12 combinations of observational estimates of the SMP
feedback metrics. Using multiple observational data sets allows to consider
observational uncertainty in identifying the SMP feedback (Ford et al., 2018;
Guillod et al., 2015). All observational data are sets commonly available over
the period 2002-2011 at 0.25◦ × 0.25◦ resolutions.

Precipitation

We use three different 3-hourly precipitation data sets that are commonly based
on multiple satellite measurements: version 1.0 of the CMORPH (Climate Pre-
diction Center morphing method, Joyce et al. (2004)) precipitation product,
PERSIANN (Precipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks, Hsu et al. (1997)), and version 7 of TRMM3B42
(from the Tropical Rainfall Measuring Mission, Huffman et al. (2007), here-
after referred as TRMM). CMORPH precipitation is derived by propagating
infrared data from geostationary satellites to precipitation estimates obtained
from passive microwave sensor aboard polar-orbiting satellites, which com-
plement each other with their different advantages on detection accuracy and
spatio-temporal coverage. The PERSIANN algorithm also uses combined in-
frared and passive microwave information from multiple geostationary and
low earth orbit satellites with an artificial neural network model of which
parameters are updated with ground-based data. TRMM precipitation is a
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combined precipitation estimates from multiple satellite systems which is ad-
justed with rain gauge observations. We adjusted the 3-hourly precipitation
data sets to local time based on longitude before the analysis.

Soil moisture data

We use Land Parameter Retrieval Model (LPRM, Owe et al. (2008)) version of
AMSR-E (The Advanced Microwave Scanning Radiometer for Earth Observ-
ing System) soil moisture (hereafter referred as AMSR), and three different
soil moisture estimates from GLEAM (Global Land Evaporation Amsterdam
Model, Miralles et al. (2011)), the latter resulting from the use of three precipi-
tation data sets described in the former section as an input to GLEAM.

The LPRM is mainly based on the relationship between polarization ra-
tios, vegetation optical depth, and the soil dielectric constant and the derived
surface soil moisture represents the uppermost 1 - 1.5 cm, as the AMSR-E
detects microwave brightness temperatures at X (8-12 GHz) and C band (4-8
GHz). We use the AMSR estimated at 1:30 am local time, which is the de-
scending overpass time of AMSR-E. The soil moisture from GLEAM is derived
as evaporative stress representing the whole root zone depth using remotely
sensed radiation, precipitation, air temperature, soil moisture, vegetation opti-
cal depth and snow water equivalent as input. The GLEAM data used in this
study (see also Guillod et al. (2015)) assimilates AMSR soil moisture available
for 2002-2011 period and was driven by the three different precipitation data
sets used in this study. Since a soil moisture estimate at a specific timing of
day (9 am) is required for calculating the SMP feedback metrics, the original
GLEAM formulation which provides estimates of daily averages (0-24 UTC)
was modified such that the input variables are aggregated at a local daily cycle
which starts and ends at 9 am local time and the estimated soil moisture hence
corresponds to instantaneous values at 9 am. Further details of this specific
version of GLEAM can be found in Guillod et al. (2015).

4.2.2 CMIP5 models

Global Climate Model (GCM) output data from historical simulations, for the
period 1976-2005, from the CMIP5 (Taylor et al., 2012c) ensemble have been
used. A longer time period (compared to observations) was necessary to en-
sure that enough afternoon rainfall events are captured in models, as their
spatial resolutions are much coarser (see also Section 3). Hence, we assume
that SMP feedback characteristics have remained constant over the considered
time period (1976-2011). Models with 3-hourly precipitation and surface soil
moisture output available at a spatial resolution finer than 2.5◦ × 2.5◦ were
chosen, leading to the nine GCMs listed in Table 4.1 together with a few rel-
evant properties. A longitude-based time adjustment was also conducted to
ensure that model outputs are arranged along local time. The surface soil mois-
ture output of the models used in this study represents the uppermost 10 cm,
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except for CNRM-CM5 of which represents the top 1 cm.

4.3 Coupling diagnostic

Diagnostics to assess SMP coupling are mainly adopted from Taylor et al.
(2012a) and Guillod et al. (2015). A set of three metrics, which assess the
sensitivity of afternoon rainfall occurrence to morning soil moisture spatially,
temporally and in terms of heterogeneity, are calculated for each afternoon pre-
cipitation event. In this section, we first provide a description of the methodol-
ogy as applied to the observational data, and we then describe the differences
introduced for the analysis of models at the end of this section.

For each day, accumulated afternoon precipitation (12 pm - 12 am) is an-
alyzed. Locations of precipitation maxima (Lmax, more than 4 mm) are first
identified. An event domain (Levt) is subsequently defined as 5 × 5 grid cells
centered at the Lmax locations, and locations of minimum rainfall on that day
within Levt are called Lmin. Grid cells with highly varying topography, wa-
ter bodies or morning (6am - 12pm) accumulated precipitation larger than 1
mm were masked out. The three metrics are then identified based on these
locations as follows: The spatial metric Ys is defined as S′Lmax − S′Lmin, where
S’ is the morning (pre-event) soil moisture anomaly obtained by subtracting
the seasonal cycle .The subscript refers to the location where S’ is taken. The
seasonal cycle of soil moisture was calculated by applying 31-day moving av-
erage filter to a multi-year daily climatology. In the case of multiple Lmins
due to zero precipitation, S′Lmin was calculated as the average soil moisture
anomaly at all corresponding grid cells. The temporal metric Yt is defined
as S′Lmax. The heterogeneity metric Yh is defined as standard deviation of
the 25 values, S′Levt. Only the convective seasons determined by latitude are
considered for the analysis, which are May-September for the North of 23◦N ,
November-March for the South of 23◦S, and all months in the tropics.

In addition to event samples which are metrics calculated for each event at
the respective locations, we define a control sample as the same metrics at the
same locations but from non-event days from the same month of all years.

All events within 5◦ × 5◦ boxes are pooled together to assess the statistical
strength of the mean metric value, which is determined by assessing whether
the differences between the event and control samples are significantly larger
(or smaller) than those generated by chance as follows: First, the climatol-
ogy of the individual locations within the 5◦ boxes is removed by subtracting
the long-term mean of the values within the control and the event samples
(pooled together from both samples for each location). Second, the difference
between the averages of the event sample and the corresponding control sam-
ple (δ(Y ) = mean(Ye)−mean(Yc)) is computed, and its strength is determined
by the corresponding quantile of the distribution of the same difference in each
of 1000 random samples. These samples consist of n values (where n is the size
of the event sample) randomly selected from all values of the event and control
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samples pooled together (as a substitute for the event sample) and the remain-
ing values within this pool (as a substitute for the control sample). Statistical
significance of a positive (negative) feedback is claimed if the strength of δ(Y)
is greater (smaller) than 0.9 (0.1). 5◦ boxes with less than 25 event samples
were masked out as they cannot provide robust results.

The models and observations differ in terms of their spatial resolution.
In addition, climate models consistently have an early initiation of afternoon
rainfall compared to observations (Dai, 2006). To account for these mismatches,
we follow previous assessments (Taylor et al., 2012a) and process observed and
modelled data differently; Time steps were used with a 3-hour shift in models
(9 am - 9 pm for afternoon, 3 am - 9 am for morning precipitation, and 6 am -
9 am for morning soil moisture), and Levt consists of 3 × 3 grid cells around
Lmax instead of 5 × 5.

As mentioned earlier, the comparatively coarse spatial resolution of climate
models requires parameterization of convection and this might itself affect the
SMP feedback. We note that in previous studies (Taylor et al., 2012a), the
metrics chosen to assess the SMP feedback were additionally calculated at
coarser resolutions from observations, which resulted in weaker but consistent
sign of the metrics. We find similar results in the Appendix C (Figure C.1),
suggesting that the spatial resolution of the data on which the metrics are
computed does not qualitatively affect the results. Nonetheless, the coarser
spatial resolution of models compared to observations may cause the former
to capture only the largest or most widespread events, while the observations
capture many more smaller events. It should be noted that the metrics do
not explicitly account for atmospheric pre-conditions (apart from the filter for
morning rainfall, which ensures that rainfall was not already present in the
morning), which might determine the preferred soil moisture condition or in
some cases inhibit moist convection (Findell and Eltahir, 2003).

4.4 Results and Discussion

4.4.1 Average statistics of observations and models

Figure 4.1 shows the fractions of observational estimates and models belonging
to each of the categories of significantly positive (> 0.9), significantly negative
(< 0.1) or non-significant feedbacks. Spatial SMP feedback (Ys) in the models is
dominantly positive as opposed to generally non-significant or negative Ys in
observations. The highest fraction of models simulating positive Ys is found
in South America, South Africa and northern Australia. Taylor et al. (2012a)
also found dominantly positive Ys in model simulations of the Atmospheric
Model Intercomparison Project (AMIP) which are forced with prescribed sea
surface temperature. Some models still capture negative Ys in the western part
of Sahel, which appears as one of the regions with the strongest negative Ys
in the observations. In North America and North Asia, most of the models
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simulate non-significant Ys.
The temporal feedback (Yt) in the models shows better agreement with

observations than the other two feedback metrics. Positive Yt in Australia,
South Africa, North Asia, and India and negative Yt in western South America
and western Sahel are reasonably well captured by the models. Yet in North
America the models show very different behaviour compared to observations,
with strong negative Yt in the eastern part. Larger variability across the models
is found in central North America, western and southern parts of Brazil, and
Central Africa (indicated by light purple). Note also that large-scale factors
such as the North Atlantic Oscillation, El Nino/Southern Oscillation or sea
surface temperature variability could substantially affect precipitation persis-
tence, which in turn may lead to a spurious correlation between soil moisture
and subsequent precipitation (Guillod et al., 2014; Salvucci et al., 2002). For in-
stance, precipitation persistence at the time scale of the order of weeks induced
by oceanic or atmospheric processes could lead to a positive temporal metric
even in the absence of SMP feedback mechanism (Orlowsky and Seneviratne,
2010; Tuttle and Salvucci, 2016). Although we cannot exclude such artifacts,
the temporal feedback metric allows for a comparison between observations
and models while providing an indication on the temporal feedback (Guillod
et al., 2015). We note that the temporal metric also exhibits a negative sign in
some regions, e.g. parts of the Sahel and Southern Great Plains, indicating that
the metric does not systematically identify positive coupling mechanisms.

While the heterogeneity feedback (Yh) is dominantly positive or non-significant
in observations, around 50 % of the models capture positive Yh correctly but
show negative Yh in most of the regions where observations indicate non-
significant Yh. In observations, Yt and Yh generally have a positive sign, if
statistically significant. In the models, similarity between Yt and Yh is much
stronger than in observations.

The feedback metrics for individual observations and models are shown
in Figure C.3 and C.4, respectively. Inter-product variability is relatively large
and clusters of model families can be identified (see also Appendix C). In ad-
dition, we note that observations and models also show substantially different
spatial coverage of the feedback metrics, reflecting that a lower number of
events are detected in several models (Figure C.4), since the same threshold
for the minimum number of events is applied for both models and observa-
tion to ensure the statistical significance of estimated SMP feedback metrics.
These differences in the number of analyzed precipitation events can be due to
differences in spatial resolution (leading to more events in observations com-
pared to models) and in the length of the time series (more events in models).
In addition, a part of the difference may be due to the known drizzle issue,
i.e. an overestimated frequency of light intensity precipitation, in GCMs (Dai,
2006; Rosa and Collins, 2013). Hence, masking out the days with morning
precipitation could be more critical for SMP diagnostics in the models.
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Figure 4.1: The three soil moisture-precipitation feedback metrics (from top to bottom:
spatial, temporal, and heterogeneity metrics) in observations (left) and CMIP5 models
(right). Colors are determined by the fraction of observation data set combinations or
models in the following three categories: negative, non-significant and positive with a
10 % significance level. 5◦ boxes with less than five valid observational or model SMP
feedback estimates were excluded.

4.4.2 Combined effects of SMP feedbacks

Figure 4.2 shows the fraction of land areas that feature combinations of the
spatial and temporal SMP feedback metrics (top) and heterogeneity feedback
metric (bottom) in observations and models. Results of the same analysis us-
ing different significant levels are presented in the Supplementary Information
(Figure C.5 and C.6). Only 5◦ × 5◦ boxes of which more than a third are land
areas were classified as land are considered and the ratio of land area is cal-
culated with area-weighted composition. Analyzing Ys and Yt in a combined
way allows for a more comprehensive comparison of the pre-rainfall morn-
ing soil moisture conditions between observations and models. Additionally,
with the consideration of Yh, we discuss possible mechanisms behind the
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Figure 4.2: Fractions of land area with different combinations of the spatial and tem-
poral SMP feedback metrics (top) and the heterogeneity feedback metric (bottom) in
observations and models. Ys, Yt and Yh indicate spatial, temporal and heterogene-
ity metric, respectively. P stands for positive sign of the feedback metrics and N
for negative. Subscripts in GLEAMC , GLEAMT , and GLEAMP indicate the
precipitation data set used to derive each of the soil moisture estimates.

commonly found combinations of SMP feedback metrics in both observations
and models and how they potentially contribute to the spatial and temporal
structure of precipitation persistence. The combination of negative (hereafter,
N) Ys and positive (hereafter, P) Yt occurs predominantly in the observations.
While each observational estimate shows a similar fraction of land area, the
regions where the combination appears vary across different observational
data sets (Figure C.2). An important implication of this combination (NYs-
PYt) is that the majority of the afternoon rainfall events occur when the whole
event domain is anomalously wet, since the location of maximum afternoon
precipitation occurs over a grid cell with positive soil moisture anomaly in the
morning (PYt) while the surrounding grid cells have even higher soil moisture
anomaly (NYs). Therefore, the dominant positive heterogeneity metric across
all observed estimations (Figure 4.2, lower left) indicates high heterogeneity
among positive soil moisture anomalies, which should be distinguished from
high heterogeneity due to mixture of dry and wet soil moisture anomalies. The
other dominant combination in observations is NYs-NYt. This combination
still reflects significantly more frequent afternoon rainfall occurrence over re-
gions drier than their surroundings, but also less precipitation persistence due
to NYt. In addition, this combination does not reveal the large scale soil mois-
ture condition in the entire event domain, unlike the former, and thus there
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is larger uncertainty in how the positive Yh is driven. It should be noted that
on Fig. 4.2, the combination of positive spatial and positive temporal metrics
(PYs-PYt) also seems to appear relatively often. However, looking at the maps
of the metrics (Figure C.2) reveals that this co-occurrence in fact stems from
various, randomly distributed grid cells and does not cluster into consistent
regions. Therefore, this signal appears not robust and should be interpreted
with caution. In models, the combination of positive Ys and Yt (PYs-PYt) ap-
pears as the most common and is, unlike in observations, also confirmed by
the maps in Figure C.4. This combination indicates localized (grid-scale) dry
or wet persistence as it means that afternoon rainfall occurs more frequently
over the temporally and spatially wetter regions. This is opposed to the ob-
served estimate. PYs-NYt is the second most common combination in the
models. PYs-NYt indicates that afternoon rainfall is more likely under dry soil
condition and occurs over wetter regions in a given area. Thus, under this
combination of feedbacks increase in precipitation likelihood might be only
possible when there are sufficient drying down periods between the precipi-
tation events, indicating a system with low precipitation persistence or high
evaporative demands. The fraction of areas with different signs of Yh varies
substantially across different models, but for each given model, the fractions of
NYh and PYh are comparable. CNRM-CM5 appears as the only model where
fraction of land areas with negative Ys and significant Yt is larger than 10 %.
IPSL-CM5A-MR simulates dominantly positive signals in all three metrics.

4.5 Conclusions

We evaluated spatial and temporal SMP feedbacks in 9 GCMs stemming from
the CMIP5 archive using three different metrics (Ys, Yt, and Yh) which quan-
tify sensitivity of afternoon rainfall occurrence to morning soil moisture condi-
tions compared to 12 observational estimates over the period of 1976-2011. We
found dominantly positive spatial feedback metric (Ys) in all coupled climate
models, contrasting to observations and consistent with the results of Taylor
et al. (2012a), which were based on AMIP-type simulations. The temporal
feedback metric (Yt) in the models shows better agreement with observations,
but with a larger inter-model spread. When interpreting Yt, one should keep
in mind that the sign of the feedback metric might be partially caused by atmo-
spheric persistence, which may induce spurious positive relationship between
soil moisture and precipitation. The heterogeneity feedback metric (Yh) and
Yt have similar spatial patterns in models, unlike in observations where Yh is
dominantly positive. The combinations of spatial and temporal SMP feedbacks
in models, mainly PYs-PYt and PYs-NYt, indicate they might introduce more
localized and stronger wet or dry persistence than the observations, where
generally negative Ys is combined with positive Yh. The SMP feedback is
an emergent property of climate models which is not parameterized, and cer-
tainly influences simulated climate or weather phenomena. In particular, it
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reveals the spatio-temporal structure of precipitation persistence that could be
favoured in a given climate model. Thus, the results in this study may help
to understand how land-climate interaction in climate models contributes to
errors in precipitation variability at different temporal scales that were iden-
tified in previous investigations (Langford et al., 2014; Moon et al., 2018), of
which substantial parts are not explained by contributions from large-scale
variability.



5 Conclusions and outlook

5.1 Conclusions

The thesis aimed to resolve research questions regarding the capability of cur-
rent climate models to simulate precipitation persistence. Chapters 2 and 3
focused directly on evaluating precipitation persistence in the models, at dif-
ferent time scales with consideration of entailed uncertainties. In Chapter 4,
representation of the spatial and temporal soil moisture-precipitation feedback
in climate models was evaluated and its possible influence on the spatial and
temporal structure of precipitation persistence was discussed. Here I provide
three main conclusions of this thesis combinedly derived from the results of
individual studies.

5.1.1 Markov framework for the representation of precipitation per-
sistence

Both Chapters 2 and 3 investigated the dry and wet precipitation persistence at
different time scales. The commonly used Markov framework for the represen-
tation of persistence was found to be sensitive to both the number of time steps
considered and seasonality in the precipitation. Two types of statistical anal-
ysis were used to quantify the representation. First, statistical uncertainty of
the dry-to-dry and wet-to-wet transition probabilities was compared to mod-
elling uncertainty, observational uncertainty and internal variability in the
model persistence error. Since the transition probabilities are estimated based
on the number of dry or wet event, relatively short time series are the reason
for uncertainty in transition probabilities estimates. In Chapter 2, the uncer-
tainty was quantified as a spread of 1000 samples generated from parametric
bootstrapping under the first-order Markov assumption. At the yearly scale,
where 110 time steps could be considered during the period of 1901-2010, the
contribution of the statistical uncertainty of both transition probabilities was
found to be larger than other sources of uncertainty, modelling uncertainty,
observational uncertainty and internal climate variability. This differs for the
analysis at the monthly scale for the same period and for the daily scale anal-
ysis for the shorter period (2003-2013) where the statistical uncertainty was
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much smaller than the contribution from the other sources, i.e. observational
and modelling uncertainty. Secondly, the two-sample Kolmogorov-Smirnov
test was applied to examine whether the transition probabilities provide a
good enough approximation of the dry and wet spell length distributions, in
other words, an approximation to the original daily categorical (dry or wet)
time series. At monthly and annual time scales, the test showed that the simu-
lated time series using transition probabilities under the Markov assumption
are a good approximation, rejecting the hypothesis of same population only
in a few grid cells. However for daily scale, the goodness-of-fit between the
simulated and original categorical time series was found to be not as good as
for the longer time scales based on the same test. This might be due to a strong
seasonality or long-term variability in the daily time series, which violates the
first-order Markov chain assumption. The results of the same test conducted
for daily time series in each 3-month season only showed a small number of
rejections, thereby indicating that effects of seasonality are indeed the reason
for the reduced representativeness of the Markov frame for daily time series
approximation. Despite the limitations listed here, the dry-to-dry and wet-to-
wet transition probabilities as parameters for the Markov framework remain
useful indicators of precipitation persistence.

5.1.2 Precipitation persistence error at different time scales

Results in Chapters 2 and 3 show systematic error of dry and wet persistence
in current climate models at daily, monthly and annual scales. Such results are
collectively presented in Fig. 5.1. The overall sign of the errors depends on the
time scale, that is underestimation of the dry and wet persistence in monthly
and annual scale and overestimation in daily scale (Fig. 5.2). While the rea-
sons for the time-scale dependence of the signs of the model error remain an
open question, the underestimation of interannual variability of the daily per-
sistence in models might provide a link. A lack of yearly fluctuation in the
daily precipitation persistence, which is closely related to the frequency, and
thus to the amount of precipitation, might force the climate system to generate
persistently high or low precipitation anomaly in a long-term. Also, precipita-
tion variability in different time scales are governed by different processes. A
long-term precipitation persistence is likely related to the large-scale modes of
climate variability such as ENSO, MJO and NAO in different regions. Likewise,
one can relate climate models’ ability to represent the precipitation persistence
at long time scales to the large-scale variability and its error in the models.
On shorter time scales, precipitation persistence could be more dominantly
affected by more regional processes, such as the soil moisture-precipitation
coupling.
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5.1.3 Potential contribution of soil moisture-precipitation feedback
on precipitation persistence error

In Chapter 4, the spatial and temporal soil moisture-precipitation feedbacks
were evaluated in nine GCMs. Positive (negative) spatial feedback indicates
that the afternoon rainfall occurs more frequently over wetter (drier) land sur-
face than its surroundings. Positive (negative) temporal feedback indicates
preference over temporally wetter (drier) conditions, and positive (negative)
heterogeneity feedback indicates preference over more spatially heterogeneous
(homogeneous) soil moisture conditions. Results show dominantly positive
spatial feedback in all models as found in AMIP simulations by Taylor et al.
(2012a), and on average, a better agreement in temporal and heterogeneity
feedbacks with a larger intermodel spread. To interpret their possible con-
tribution on precipitation persistence, combined representation of the spatial
and temporal feedbacks, with consideration of the heterogeneity metric, was
analyzed. In the observations, combination of the negative spatial feedback
and positive temporal feedback is most frequent. This combination indicates
that the majority of the afternoon rainfall events occur when the whole event
domain is anomalously wet, since the location of maximum afternoon pre-
cipitation occurs over a grid cell with positive soil moisture anomaly in the
morning. In models, the combination of positive spatial and temporal feed-
back is the most common. This combination indicates localized (grid scale) dry
or wet persistence as it means that afternoon rainfall occurs more frequently
over the temporally and spatially wetter regions, which is opposed to the ob-
servational estimates. The positive spatial and negative temporal feedbacks
are the second most common combination found in the models. It indicates
that afternoon rainfall is more likely under dry soil condition and occurs over
wetter regions in a given area. Thus, under this combination of feedbacks
an increase in precipitation likelihood might be only possible when there are
sufficient dry down periods between individual precipitation events, poten-
tially indicating high dry persistence as well as low wet persistence. These
interpretations correspond to the general overestimation of both dry and wet
persistence in the GCMs at daily scale in Chapter 3, though only a subset of
models were evaluated in Chapter 4. Though, care should be taken with this
interpretation as the positive feedback identified in the models could be par-
tially caused by atmospheric persistence, which may induce spurious positive
relationship between soil moisture and precipitation.

5.2 Outlook

Soil moisture-precipitation feedback in convection permitting models One
of the main conclusions of this thesis indicates that the misrepresentation of
soil moisture-precipitation feedback in current GCMs contributes to the model
error in precipitation persistence at daily scale (Chapter 4). This misrepresen-
tation is known to be mainly related to errors in convection parameterization
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schemes (Hohenegger et al., 2009). Therefore, it would be a rational thing
to investigate soil moisture-precipitation feedback in convection permitting
models and to check how it affects daily precipitation persistence. Several
recent studies identified major improvements in simulation of precipitation at
daily and shorter time scales in convection permitting regional climate models
(RCM) (Fosser et al., 2015).

Future projections of precipitation persistence Observations in many re-
gions show robust changes in the statistics related to persistence of precipita-
tion (Alexander et al., 2006; Dash et al., 2009; Guilbert et al., 2015; Schmidli and
Frei, 2005; Singh et al., 2014; Zolina et al., 2010). While general understanding
of changes in the persistence characteristic of precipitation is less established,
there have been consistent results from several studies generally supporting
that there have been increase in the precipitation intensity with decrease in
the precipitation frequency (Boberg et al., 2010; Semenov and Bengtsson, 2002).
Although the analyses conducted in this thesis did not focus on the temporal
variation of the precipitation persistence, and used relatively short time period
to detect changes, some of the regions showed clear trends in observations
that was distinguishable by inspection as opposed to the generally steady time
series from models. Thus, investigating future projections of precipitation per-
sistence in climate models with regards to their ability to simulate changes in
the past would be an important contribution on enhancing the current under-
standing in future projections of precipitation in general.
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A Appendix for Chapter 2

A.1 Supplementary figures



68 Appendix 1: Long-term drought persistence

Figure A.1: In each figure, left panel shows annual precipitation anomaly for 1901-
2010 in a randomly chosen grid cell in each region. The time series is taken from the
CRU TS3.1 dataset. Right panel shows dry spell length distribution derived from the
observed time series and median and 5th to 95th uncertainty range of 1000 dry spell
length distributions from statistical simulation of Markov chain. (Same as Figure 2.1
in the main article but for different regions.)
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Figure A.2: Spatial distribution of multi-simulation mean wet persistence (Pww)
error for (a) monthly and (c) annual scale. Stippling indicates agreement in the sign of
wet persistence error among more than 80% of model simulations. Global histogram
of wet persistence error for (b) monthly and (d) annual scale. (Same as Figure 2.6 in
the main article but for Pww.
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Table B.1: CMIP5 models used in this study
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Table B.2: List of acronyms of the SREX regions used in the analyses

Region Acronym
Western North America WNA
Central North America CNA
Eastern North America ENA
Central America/Mexico CAM
Amazon AMZ
Northeast Brazil NEB
West coast of South America WSA
Southeastern South America SSA
Northern Europe NEU
Central Europe CEU
Southern Europe/the Mediterranean MED
Sahara SAH
Western Africa WAF
Eastern Africa EAF
Southern Africa SAF
Northern Asia NAS
Western Asia WAS
Central Asia CAS
Tibetan Plateau TIB
Eastern Asia EAS
Southern Asia SAS
Southeast Asia SEA
Northern Australia NAU
Southern Australia/New Zealand SAU
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B.2 Supplementary figures
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Figure B.1: Number of observations and models rejecting null hypothesis of the same
population.
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Figure B.2: Multi-observation and multi-model mean Pdd and Pww and their model
model error for March-May.
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Figure B.3: Multi-observation and multi-model mean Pdd and Pww and their model
model error for June-August.
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Figure B.4: Multi-observation and multi-model mean Pdd and Pww and their model
model error for September-November.
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Figure B.5: Multi-observation and multi-model mean Pdd and Pww and their model
model error for December-February.
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Figure B.6: Correlation coefficient between dry (Pdd) and wet (Pww) persistence
indices and total amount (precipTOT) and frequency (precipFREQ) of precipitation
across different observational products (OBS) and CMIP5 models. The stippling
indicates grid cells with 5 % level of significance.
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Figure B.7: Definitions of regions used in Table B.2 and Figure B.8-B.12. Analyses
only include land areas. Adapted from Seneviratne and Nicholls (2012)
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Figure B.8: Same as Figure 3.5 in CNA, ENA, CAM, and NEB
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Figure B.9: Same as Figure 3.5 in WSA, SSA, NEU, and CEU
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Figure B.10: Same as Figure 3.5 in MED, SHA, EAF, and NAS
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Figure B.11: Same as Figure 3.5 in different regions



86 Appendix 2: Daily precipitation persistence

Figure B.12: Same as Figure 3.5 in WAS, CAS, TIB, and EAS



C Appendix for Chapter 4

C.1 Supplementary figures

This supporting information provides the sensitivity of the soil moisture-precipitation
(SMP) and number of events to spatial resolution is presented for a observa-
tional data set. Also, the SMP feedback metrics estimated by individual ob-
servational data sets and models, which are presented as mean in the main
article. The ratio of land areas with different combinations of SMP feedback
metrics with 0.1 and 0.02 significance levels are presented in Figures C.5 and
C.6. Further discussion on individual model features is presented as well.
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Figure C.4: Soil moisture-precipitation feedback metrics (Ys, Yt and Yh) from CMIP5
models; Models are alphabetically ordered in rows. 5◦ × 5◦ boxes with less than 25
events are masked out (white).
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Figure C.5: Same as Figure 4.2 but with significance level 0.1 (i.e., significantly
negative for quantile values <0.05 and significantly positive for >0.95).
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Figure C.6: Same as Figure 4.2 but with significance level 0.02 (i.e., significantly
negative for quantile values <0.01 and significantly positive for >0.99).

C.2 Supplementary texts

Figure C.2 shows the three SMP feedback metrics in each GCM. Grid cells
with insufficient observations are masked out. Models that share sub-schemes
clearly show similarities in SMP feedback representation. ACCESS1-0 and
HadGEM2-ES, which use the same atmospheric and land surface models (Ta-
ble 4.1), and ACCESS1-3, which shares substantial parts of the model config-
uration with ACCESS1-0, show similar spatial pattern in all metrics. Ys in
central and south Australia in ACCESS1-0 and HadGEM2-ES is moderately
negative, but positive in ACCESS1-3. Some systematic negative Ys is also
found in the central North America in ACCESS1-0. MRI-CGCM3 is a sub-
model of MRI-ESM1, without atmospheric chemistry and carbon cycle. Also
these two models represent the feedbacks very similarly, though the signs of Yt
and Yh in South Africa are contrasting. The strength of Ys in these two models
is weaker than in the rest of the ensemble. CNRM-CM5 shows the strongest
feedback signals also with largest spatial coverage. The strongly negative Ys
in the Sahel and North Africa is noteworthy. IPSL-CM5A-MR shows consis-
tent spatial pattern in all three metrics which are strongly positive in general,
except for the strong negative Ys and Yt in western part of the Sahel. INMCM4
also shows the consistently positive signs in all metrics but covers small area.
MIROC5 shows dominantly positive Ys with moderate strength. Yh and Yt
in Australia are rarely positive in MIROC5 contrasting to other models. In all
models, the spatial patterns of Yt and Yh are similar, unlike in observations,
and such similarities are shared across different models. Overall, the mod-
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els show dominantly negative signs in Americas and western sub-Sahara and
non-significant or positive signs in the other regions with varying feedback
strengths, except for INMCM4 and IPSL-CM5A-MR which show dominantly
positive signs in all regions. Australia is one of few regions where the observed
signs of the three SMP feedback metrics (negative Ys, positive Yt and Yh) are
simultaneously captured in some models (ACCESS1-0, HadGEM2-ES, MRI-
CGCM3). CNRM-CM5 also simulates such combination of feedback metrics
in the Sahel.
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