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The regulation of cellular behavior is complex, and emerges 
from the dynamic interplay of diverse biomolecules, including 
proteins, RNA and metabolites. Most experimental methods, 

however, can only monitor a single molecule class or reaction type 
at a time (catalysis, bimolecular interactions and unimolecular state 
changes), limiting our ability to measure complex cellular dynamics.

Furthermore, studies of networks often face a choice between 
biochemical methods—measuring dynamic (for example, time-
resolved) data only for a few network components, and ‘omics’ 
methods—measuring a large number of components, but usually 
with little dynamic information in a single sample1. This lack of 
dynamic data covering multiple network components is among the 
main limitations2–4 in developing validated mechanistic, mathemat-
ical models for cellular networks, which are key to understanding 
the underlying logic of these networks5.

To address the above challenges, we sought to devise a nuclear 
magnetic resonance- (NMR)-based approach that would (1) allow 
us to monitor ‘heterotypic’ networks and pathways—involving 
different molecule or reaction types—entirely, in a single in  vitro 
sample, and (2) provide quantitative dynamic data for modeling of 
the network mechanisms. With certain limitations on molecule size 
and concentration (≲50–100 kDa, ≳10–50 µM)6,7, solution NMR 
can monitor any reaction type or molecular class in a wide range of 
conditions, including unfractionated cell extracts and living cells8. 
The use of NMR to monitor reactions is common in chemistry9, 
and in recent years, NMR has also been used to follow the dynamics 
of small-scale reaction networks in biology. However, those stud-
ies focused on individual molecule classes; that is, metabolites10–14, 
proteins13,15,16 or RNA17–19.

We sought to monitor a more complex network by NMR, that 
comprises a wide range of different molecule and reaction types. 

Co-transcriptional RNA folding is an important cellular process 
that simultaneously involves RNA, proteins and metabolites, and is 
still poorly understood. RNA molecules of the same sequence may 
form distinct folded structures, with distinct functions and fates, 
depending on the effectors present during RNA transcription20,21. 
Insights are still limited on how the final RNA structures are influ-
enced by co-transcriptional interactions of the transcribing RNA. 
The core reactions of the underlying network are RNA synthesis 
from metabolites, RNA folding and protein–RNA interactions 
(Fig. 1a). Our aims were (1) to design an assay to monitor all main 
components of the network simultaneously by NMR spectroscopy, 
using specific signatures of different molecules in NMR spectra;  
(2) to establish a mathematical model explaining our observations 
and (3) to perturb the network with proteins and drug molecules 
to gain system-level insight into its dynamics. This assay revealed 
competitive weakening of specific hnRNP A1 protein–RNA inter-
actions by unspecific nucleotide-bearing molecules, and exposed 
the dynamic phase-separation of proteins in the course of RNA 
transcription. We termed this methodological approach ‘Systems 
NMR’—a potential generic name for NMR-driven reconstruction 
of biomolecular reaction networks.

Results
Monitoring a co-transcriptional RNA folding network. We first 
sought to investigate whether the RNA-binding protein UP1 (a nat-
ural fragment of hnRNP A1) would perturb the co-transcriptional 
folding of three cognate RNA hairpins of this protein: SMN1 and 
SMN2, two hairpins present in exon 7 of human SMN1 and SMN2 
genes, respectively22, and the stem loop 2 (EV2) of the internal ribo-
some entry site of Enterovirus 71 (ref. 23) (Fig. 1b). To distinguish 
the RNA-specific UP1 perturbations from other changes in the 
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network dynamics (pH, nucleotide triphosphate concentrations), a 
fourth, ‘non-binding’ RNA0 (RNA zero) was designed and tested as 
a control (Fig. 1b and Methods).

In our experiments, the DNA template, the nucleotide triphos-
phates (NTPs), MgCl2, the pyrophosphatase and the RNA-binding 
protein are initially mixed in an NMR tube (Fig. 2a), and then tran-
scription is triggered by addition of the T7 RNA polymerase. The 
reaction network (Fig. 1a) is subsequently monitored for ~20 h by 
repeating several NMR experiments (Fig. 2b–d and Supplementary 
Video 1): 1D (one-dimensional) 31P, to monitor the levels of metab-
olites and RNA; 1D 1H, to monitor RNA folding; and 2D (two-
dimensional) 1H-15N, to monitor protein interactions. Each set of 
measurements takes ~30 min to record, yielding an overall dataset 
of ~120–160 NMR spectra with ~40 time points for each individ-
ual spectrum type. The combined number of resolved quantifiable 
NMR signals at each time point exceeded 170: 8 in the 31P spectrum  
(Fig. 2b), more than 20 in the 1H spectrum (Fig. 2c) and over 
150 protein backbone amide signals in the 2D 1H-15N spectrum  
(Fig. 2d). For quantitative modeling of the target network, ten sig-
nals were used (Supplementary Table 1): the 31P signals of inorganic 
phosphate (PO4 (a placeholder for multiple PO4 species), refer-
ring to PO4

3– and its protonated forms), RNA phosphate, α, β and 
γ-phosphate of the NTP, α and β-phosphate of nucleotide diphos-
phate (NDP) (Fig. 2b,e); the 1H imino signals of RNA uracils U5 
(SMN1 and SMN2) or U4 (EV2) (Fig. 2f) and the 1H-15N signals 
of the selected UP1 residues reporting on RNA binding, His33 and 
Arg75 (Fig. 2g). In this study, these ten signals were sufficient to 
quantify the key parameters of the target eight-reaction network. 
The data from remaining signals can still be used in subsequent 
studies to investigate the system in more detail. For example, to ana-
lyze individual conversion rates of four NTPs, or to analyze RNA 
and protein perturbations not just via overall reaction constants, but 
with residue-level resolution.

Among the key features of NMR is the intrinsically quantitative 
nature of the observed signals, which permits direct determination 
of certain physico-chemical molecular properties with few or no 
calibrations. To quantify the metabolite and RNA concentrations, 
we measured the integrals of corresponding signals in 31P spectra 
(Fig. 2h). Linewidths of NMR signals combine information about 
the molecule size (tumbling rate) and dynamics (lifetime) of molec-
ular states, we therefore measured the linewidths of the well-sepa-
rated imino signals of the folded RNA in 1H spectra to quantify the 
RNA stability (Ura5 and Ura4, see Fig. 2i). The positions of NMR 
signals report on the chemical environment of the corresponding 
atoms. Therefore, to quantify the RNA binding to the protein, we 
measured the shifts in the positions of selected protein ‘reporter’ 
signals, which shifted systematically in the 1H-15N spectra between 
the free and bound protein states as the more RNA was bound 
(His33 and Arg75, Fig. 2j).

In summary, a quantitative NMR assay was established with 
dedicated reporter signals to monitor metabolite, RNA and protein 
dynamics in one sample (Supplementary Table 1 and Supplementary 
Video 1).

Network model from NMR data. To integrate the measured data 
and evaluate our understanding of the network dynamics, a math-
ematical model combining ordinary differential equations (ODE) 
was formulated (Methods). The initial model consisted of three 
reactions: RNA synthesis, RNA folding and protein–RNA binding 
(Fig. 1a, reactions 1–3). Unexpectedly, a reduction in the total inte-
gral of 31P-containing species was observed over time (T1-relaxation-
corrected), sometimes followed by sharp drops in the concentration 
of free PO4 species at the end of transcription (Fig. 2h, first panel, 
blue trace). Further analysis revealed that the designed assay could 
also sense the formation of soluble MgHPO4 aggregates, which are 
not directly visible in solution NMR. Extension of the network 
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model with the relevant reactions (Fig. 1a, reactions 4–8) allowed to 
quantify the MgHPO4 solubility, which matched the literature data 
(see below).

Correlating time-resolved concentrations of the synthesized 
RNA with the shifts of protein reporter signals within the same 
mathematical model, we could see that the established assay can 
sense the differences in UP1 protein affinity to the four tested 
RNAs. In particular, the smallest UP1 perturbations were observed 
in presence of the ‘non-binder’ RNA0, intermediate perturbations 
observed with the ‘moderate’-affinity SMN RNAs, and strongest 
perturbations with ‘high’-affinity EV2 RNA (Fig. 2g,j).

Validation of Systems NMR-derived reaction constants. The 
behavior of a reaction network can be predicted at any concentra-
tions of reactants if the constants (fundamental parameters) of all 
reactions are known. Deriving these fundamental constants from 
experimental data is one of the main goals of mathematical mod-
eling of reaction networks. From a single NMR assay, we could 
determine the constants of five out of the eight network reactions 
(numbers 1–3, 7 and 8, Fig. 1a), while the constants of the other  
reactions (numbers 4–6) were fixed (Methods and Supplementary 
Table 2). The five unconstrained constants were determined by  
fitting the mathematical model to the time-resolved NMR 

observables. For each RNA (RNA0, SMN1, SMN2, EV2) at least 
three NMR assay replicates were recorded and fitted (Supplementary 
Fig. 1). For validation, four out of five multiplex-derived Systems 
NMR constants were compared with the constants derived by classi-
cal approaches, when a single reaction was perturbed at a time (the 
catalytic rate constant kcat, the free energy ∆G, the affinity constant 
KD and the equilibrium constant Keq,MgHPO4). Remarkably, all tested 
constants were in agreement with classical methods.

The equilibrium constant for the formation of soluble MgHPO4 
aggregates (Keq,MgHPO4) showed an average value of 1.31 ± 0.06 mM, 
closely matching the 0.97 ± 0.05 mM value reported in the litera-
ture24 (Fig. 3a).

The expected catalytic rate constant kcat = 0.26 ± 0.07 nucleotides 
per second (nt s–1) of T7 RNA polymerase25 closely matched the aver-
age of 0.4 ± 0.12 nt s–1 for the three short RNAs in Systems NMR data-
sets (Fig. 3b). Both the literature reference and the NMR kcat constants 
are averaging the initiation and elongation phases of transcription. 
This is manifested in the roughly two-fold increase in the overall 
kcat = 0.73 ± 0.06 nt s–1 for the longer EV2 RNA (Fig. 3b), for which the 
polymerase spends more time in the faster elongation phase.

Based on the measured ultraviolet spectroscopy (UV) melting 
experiments (Supplementary Note 1), the free energy ∆G of folding 
of the two RNA hairpins (SMN1 and SMN2, differing by a single 
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base pair) are expected to be –4.64 ± 0.15 and –6.02 ± 0.37 kcal mol–1 
(Fig. 3c). Systems NMR measured –5.2 ± 0.1 and –5.6 ± 0.1 kcal mol–1 
for the respective constants (Fig. 3c). SMN2 stabilities thus matched 
within the standard deviation limits, while SMN1 stability was over-
estimated by ~0.3 kcal mol–1 in NMR compared to ultraviolet data. 
Analysis of the SMN1 U5 imino signal peak shapes revealed partial 
peak doubling (Supplementary Fig. 2), suggesting that a more com-
plex than a two-state model would be required for accurate analysis 
of SMN1 stability. RNA0 does not form hairpins, and the EV2 hair-
pin is too stable for the accurate ultraviolet-melting ∆G determina-
tion; therefore, their stabilities were not evaluated.

Isothermal titration calorimetry (ITC) was used to validate the 
affinity constants (KD) of UP1 with the four different RNAs: one con-
trol (RNA0), the two hairpins of moderate-affinity (SMN1, SMN2) 
and the high-affinity EV2 RNA. The ITC affinity constants were 
1,391 ± 331 µM for RNA0, 51.3 ± 2.5 µM for SMN1, 47.4 ± 19.7 µM for 
SMN2 and 5.1 ± 1.9 µM for EV2 (Fig. 3d and Supplementary Fig. 3).  
The corresponding constants from Systems NMR for the same 
four RNAs were 978 ± 162, 101 ± 29, 100 ± 20 and 11.1 ± 5.1 µM,  

respectively, based on 3–4 replicate measurements for each RNA 
(Fig. 3d). Systems NMR appeared therefore accurate for the KD 
measurement of the unspecific RNA0 control, but showed system-
atically weaker binding for the three specific RNA targets. This level 
of weakening could originate from unspecific UP1 interactions 
with RNA aborts (2–8 nt in length) and with free NTPs. The abil-
ity of UP1 to bind RNA aborts is evident from its 1,391 µM ITC-
derived affinity to the non-binding RNA0, whose sequence matches 
the sequence of RNA aborts in all four RNAs. Affinity of UP1 to 
free NTPs was also experimentally confirmed by standard NMR 
titrations, measuring an overall KD,UP1-NTPs of 16,200 ± 2,100 µM 
(Supplementary Fig. 4). RNA aborts increase from 0 to ~2,000 µM, 
and NTPs decrease from 20,000 to 5,000 µM during the transcrip-
tion reaction (Supplementary Fig. 1), thus both of these can weaken 
the affinity of UP1 to specific RNAs under these conditions.

In summary, Systems NMR accurately quantified all core reaction 
constants of the target network in multiplex. All validated reaction 
constants matched the reference values with <2.5-fold difference.

RNA perturbations by proteins and small molecules. The recon-
structed network was then perturbed by proteins and drug candi-
date molecules to gain insight into the network dynamics.

To probe the effect of protein on the folded RNA, the assays were 
performed under two conditions: ‘co-transcriptionally’, when the 
UP1 protein was added from the start and present during the entire 
period of RNA synthesis, and ‘post-transcriptionally’, when UP1 pro-
tein was added only near the end of transcription. The experiments 
showed that UP1 appears to (1) at least partially unwind the SMN2 
hairpin and (2) forms a 2:1 complex with the EV2 RNA when UP1 is 
added post-transcriptionally, and only a 1:1 complex with EV2 when 
UP1 is present co-transcriptionally (Supplementary Fig. 2).

To probe the effect of small molecules, the reactions with SMN2 
RNA were performed in presence of drug candidate molecules, 
recently developed to correct the aberrant splicing of exon 7 from 
the SMN2 gene26. The experiments with SMN2 ESE1 suggested that 
under given co-transcriptional conditions one of the molecules may 
influence RNA folding, and another one reduces RNA transcription 
rate (Supplementary Fig. 5).

Multiplexed monitoring of protein perturbations during RNA 
transcription. RNA-binding proteins often synergize or compete 
for binding to the same RNA. For example, the splicing of the SMN2 
exon 7 is regulated by hnRNP A1, SRSF1, hnRNP G and Tra2-β1 
(ref. 27). To facilitate the multiplexed analysis of interactions in this 
system of several RNA-binding proteins, we devised two labeling 
schemes that visualized the protein–RNA interaction interfaces in 
the RNA recognition motifs (RRM) of these proteins in one sam-
ple at the same time (Fig. 4a–c and Supplementary Note 2). RNA 
transcription was then performed in the presence of five 15N-valine-
labeled protein constructs mixed together (two independent RRMs 
in the case of SRSF1), monitoring all valines and quantifying their 
perturbations in real time (Fig. 4d,e).

During the reaction, all observed constructs except SRSF1–
RRM2 showed an unexpected bi-modal response (Fig. 4e),  
with valine signals first decreasing and then increasing their inten-
sity, many without substantial change in the signal positions. The 
samples showed evidence of liquid–liquid phase separation28, 
which was confirmed by microscopy (Fig. 4f and Supplementary  
Fig. 6). Notably, none of the protein constructs included disordered 
regions. The number of phase-separated droplets decreased more 
than ten-fold when the transcription was performed in presence  
of individual proteins at the same total concentration as in the mix-
ture of five (Fig. 4g and Supplementary Fig. 6). This suggests that  
this RNA-dependent phase separation is not driven here simply 
by high protein concentrations, but involves interactions between 
specific proteins.
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Decrease followed by increase of protein NMR signal intensities 
in the absence of substantial change of the NMR signal positions 
suggests that the proteins phase separate into larger assemblies at 
the start of transcription reaction when the RNA/protein ratio is 
low, and are partially re-dissolved later when the RNA concentra-
tion increases. This matches the recently reported RNA-dependent 
phase-separation of hnRNP A1, TDP43 and FUS proteins in vitro 
and in vivo29.

To evaluate whether the presented NMR setup could be imple-
mented under physiological conditions, we measured nuclear con-
centrations of the UP1/hnRNP A1, SRSF1, hnRNP G and Tra2-β1 
proteins in human embryonic kidney (HEK)293 cells, and found 
those to be 30, 7.6, 3.3 and 5.2 µM, respectively (Supplementary Fig. 7).  
This is close to the current NMR sensitivity limits (≥10–50 µM), 
suggesting that our setup, at least for hnRNP A1, can be tuned for 
observations under near-physiological conditions.

Discussion
The derivation of individual catalytic30, unimolecular31 and bimo-
lecular32 reaction constants by NMR is not uncommon, but the 
Systems NMR approach enables us to quantify a network with all 

elementary reaction types and main biomolecule classes in a single 
sample. Due to the non-destructive nature of NMR, each sample 
yields not just a snapshot of the network, but reveals its dynam-
ics over time or another variable condition, thereby giving deeper 
insight into the network logic.

The different reaction constants determined from individual 
multiplexed NMR assays in our study appear accurate, showing 
<2.5-fold difference with validation values (Fig. 3). The differences 
between network-based and single-reaction-based assays can reveal 
unaccounted cross-talk reactions, such as the unspecific interac-
tions of UP1 protein with the abortive RNAs and free NTPs detected 
here. Our results correlate with the recent UP1 specificity screens33 
and suggest that in vivo UP1/hnRNP A1 protein affinity to specific 
RNA targets will likely be ~1,000-fold weaker than the nM-range 
affinities anticipated from single-reaction in vitro assays23.

Another emergent behavior we detected was the RNA-driven 
in vitro phase-separation in a system of five protein domains (Fig. 4d),  
which was largely absent for individual domains under the same 
conditions. This observation suggests that Systems NMR could 
be used to probe structural perturbations of proteins in phase-
separated droplets and membraneless organelles29, an emerging 
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research area with connections to various age-related disorders28. 
The method can resolve residue-level signals of multiple proteins 
at once, does not require chemical modifications of proteins and 
allows monitoring of enzymatic activities within the same assay.

NMR assay limits. One specific requirement of the assay devel-
oped here is the need to design a ~8–10 nt-long 5′ overhang RNA 
sequence that minimizes interference of short abortive RNAs with 
specific protein–RNA interactions and RNA folding. This sequence 
is designed algorithmically and can be used as a separate control to 
identify specific RNA effects from the other network perturbations.

More broadly, for a generic reaction network, present-day 
solution NMR permits the direct observation of rigid molecules 
below ~50–100 kDa in size6,34 and at minimal concentration of 
~10–50 µM7,35. Under certain conditions, observation of 1 MDa 
complexes can be achieved36, and in combination with dissolution 
dynamic nuclear polarization technology, molecules at sub-µM 
concentrations can be transiently observed37,38.

For catalytic reactions, NMR permits quantification of kinetic 
(non-equilibrium) processes on the time-scales going from seconds 
to hours and days39. For unimolecular reactions, many NMR tech-
niques are available31,40, potentially allowing quantification of low-
populated molecular states down to fractions of percent from the 
main species (~5–10 kcal mol–1 in free energy difference). For bimo-
lecular interactions, NMR currently permits direct quantification of 
dissociation constants in the low-µM to medium-mM range32. And 
by monitoring competitive displacement of weak-affinity ligands, 
also low-nM dissociation constants can be quantified41.

As suggested by the selective labeling experiments shown here 
(Fig. 4) and the recent multiplexed NMR kinase assays42, at least 
a few dozen of protein-focused reactions should be observable by 
NMR in one sample in parallel. The same multiplexing is also fea-
sible for metabolites43,44, but may be challenging for RNAs due to the 
higher degeneracy of their NMR signals45.

While small-molecule NMR signals can mostly be interpreted 
ab initio, the assignment of observed signals to specific molecular 
epitopes in macromolecules requires time. Nevertheless, the NMR 
signal assignments from ~7,000 unique protein and ~600 unique 
RNA NMR structures are already available in the Protein Data Bank 
(pdb.org), providing an already vast starting ground for NMR net-
work reconstructions.

Mathematical ODE models of reaction networks can be easily 
formulated using rule-based modeling46, and computational meth-
ods exist to efficiently estimate network parameters and perform 
model selection47–49, with virtually no limitations for moderately-
large networks expected in NMR assays.

Applications. The generalized workflow in Systems Biology con-
sists of four steps: experiment, modeling, prediction and testing 
of predictions, often repeated iteratively50. By uniquely providing 
both multiplexed and dynamic data from single samples at the first 
experimental stage, Systems NMR can accelerate the downstream 
development of accurate mathematical models, the understanding 
of network dynamics and the resulting predictions. Because NMR 
can dynamically monitor molecules in complex environments 
including living cells10,12,13, the determination of true rates and con-
stants for cellular networks in their natural context can generate 
reusable data for modeling and prediction of network dynamics.

Another advantage is that in  vitro Systems NMR reconstruc-
tions provide an experimental ground of intermediate complexity, 
between simplified single-reaction in  vitro assays and often very 
complex in vivo networks. Such moderate complexity may already 
reveal emergent network properties, such as phase-separation of 
RNA-binding domains observed here.

Considering specific applications, Systems NMR can advance 
studies of ‘heterotypic’ networks involving different molecule  

and/or reaction types. For example, concurrent quantification of 
perturbations in different parts of a biochemical network such as 
RNA transcription, folding and protein interactions observed here; 
or simultaneous quantification of catalysis and allosteric interac-
tions in synthetic biology networks51, or monitoring cross-talk 
between metabolic and signaling pathways52,53.

In conclusion, combining the dynamic resolution of biochemical 
assays and the multiplexing ability of omics, we expect Systems NMR 
to pave the way to a deeper systems-level understanding of biological 
network dynamics both in fundamental and applied contexts.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0495-7.
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Methods
A Supplementary Protocol describing how to set up and analyze data using Systems 
NMR for the presented here network is available at Protocol Exchange (https://doi.
org/10.21203/rs.2.9160/v1) and the most recent version can be found at github.
com/systemsnmr/ivtnmr.

RNA construct design. The sequence of the control RNA0 was designed 
algorithmically, using custom-built MATLAB scripts (github.com/systemsnmr/
ivtnmr), from all possible sequences using four requirements: starts with G; 
contains no purine pairs that are recognized specifically by UP1 protein; contains 
≥30% purines, to reduce RNA polymerase dissociation/abortion at the initiation 
stage; does not form stable dimers or hairpins with itself or target SMN and EV2 
RNA sequences. This resulted in seven variants, of which (5′-GCACCACACG-3′) 
was chosen, as it showed fewest unspecific signals in the NMR imino region during 
transcription. The hairpin RNAs included non-native single-stranded 5′ overhang 
matching the sequence of the control RNA0 to make the abortive RNA products 
uniform in all constructs, and contained two non-native closing GC pairs to offset 
the instability caused by the 5′ single-stranded overhang.

DNA templates. For RNA transcription, corresponding sequences 
were cloned into pTX1 vector54 at SapI sites, using double-
stranded DNAs from commercial (Microsynth AG) single-stranded 
oligos: RNA0 (ATAGCACCACACG, TCACGTGTGGTGC), 
SMN1 (ATAGCACCACACGGGTTTCAGACAAAATCCG, 
TCACGGATTTTGTCTGAAACCCGTGTGGTGC), 
SMN2 (ATAGCACCACACGGGTTTTAGACAAAATCCG, 
TCACGGATTTTGTCTAAAACCCGTGTGGTGC), EV2 (ATAGCACCACAG
GATCAATAGCAGGTGTGGCACACCAGTCATACCTTGATCC, TCAGGATCA
AGGTATGACTGGTGTGCCACACCTGCTATTGATCCTGTGGTGC). Plasmids 
were purified using the Nucleobond Xtra Midi kit (Macherey Nagel) and the final 
pellets washed three times with 70% ethanol, dried and linearized by BsaI (NEB) 
enzyme for 15 h at 50 °C in NEB3.1 buffer.

Proteins. All constructs and purification procedures were described earlier: UP1 
(ref. 55), SRSF1-RRM1 and RRM2 (ref. 56), Tra2-β1 (ref. 57) and hnRNP G58. After 
purification, proteins were transferred into transcription-NMR buffer (40 mM 
Tris-HCl, 0.01% Triton-X100, 5 mM dithiothreitol (DTT), pH 7.7) by dialysis, then 
flash-frozen and stored at –20 °C.

In vitro transcription in NMR tube. Reactions were performed at 30 °C, 40 mM 
Tris-HCl, 0.01% Triton-X100, 5 mM DTT, pH 7.7 supplemented with 5 mM of 
each nucleotide triphosphate (AppliChem), 24 mM MgCl2, 1 U per ml inorganic 
pyrophosphatase from baker’s yeast (Sigma), 5% D2O, 50 µM 4,4-dimethyl-
4-silapentane-1-sulfonic acid, 280 nM T7 RNA polymerase and 33 nM DNA 
template. Protein concentrations were 150 µM in single-protein reactions, and 
83 µM of each protein was used for multi-protein reactions. In multi-protein 
experiments, 50 mM l-Arg and 50 mM l-Glu (AppliChem) were added to reduce 
protein aggregation, which have also likely reduced the systems’ propensity for 
phase separation. T7 RNA polymerase was purified at 4 °C using Ni–NTA HisTrap 
chromatography (GE Healthcare), and stored at 70 µM concentration in 25 mM 
Tris-HCl pH 8, 50 mM NaCl, 0.5% β-mercaptoethanol (β-ME) and 50% w/v 
glycerol at –20 °C.

NMR experiments. Experiments were measured on Bruker AVIII-600 MHz 
with a CPQCI cryoprobe, and consisted of repeating series of 1D 1H-watergate 
(spectral width (SW) 22 ppm; acquisition time (AQ) 0.62 s; D1 (interscan delay) 
1 s; number of scans (NS) 128), 2D 1H-TOCSY (SW 10/9 ppm; AQ 0.17/0.018 s; 
D1 0.5 s; NS 4), 1D 31P (SW 50 ppm; AQ 0.66 s; NS 256; carrier –8.22 ppm; D1 
0.8 s), 1D 1H-SOFAST (SW 24 ppm; AQ 0.053 s; D1 0.1 s; NS 1,536; 1H excitation 
with Pc9 pulse, 5 ppm wide, centered at 12.9 ppm) and 2D 1H15N-SOFAST-HMQC 
(H/N: SW 16/23.5 ppm; AQ 0.106/0.035 s; D1 0.2 s; NS 24; 15N carrier 117.8; 1H 
excitation with Pc9 pulse, 4 ppm wide, centered at 7.95 ppm). BEST–TROSY 
2D HN(CO) for analysis of selectively labeled proteins was provided by F. Lohr 
(BMRZ, Goethe Universitat Frankfurt) and measured with (H/N: SW 12/16 ppm; 
AQ 0.107/0.090 s; D1 0.2 s; NS 16; 15N carrier 117.8; 1H excitation with Pc9 pulse, 
4.2 ppm wide, centered at 8.5 ppm). NMR spectra were sorted, processed and 
analyzed using TopSpin 3.x (Bruker), custom-built Python and MATLAB scripts 
and the rbnmr routine (N. Nyberg, RBNMR, MATLAB Central File Exchange no. 
40332, 2013). Chemical shifts of protein residues in 2D HN spectra were traced 
in CARA (cara.nmr.ch). SOFAST, selective optimized flip-angle short-transient; 
HMQC, heteronuclear multiple quantum coherence; BEST-TROSY, band-selective 
excitation short-transient transverse relaxation optimized spectroscopy.

NMR observables. For final network modeling, ten signals were used: 31P spectra: 
(1) PO4 (PO4

3– and its protonated forms), (2) RNA, (3–5) αNTP, βNTP, γNTP, 
(6–7) αNDP, βNDP; (8) 1H spectra: U5 (SMN1/2) or U4 (EV2) imino signals; 
(9–10) 2D HN spectra—His33 and Arg75 residues of UP1. Populations of 
phosphate-containing species were calculated stoichiometrically from 31P integrals 
using αNTP integral at time = 0 as 20 mM internal calibration. Each 31P integral 

was T1-relaxation-weighted using the ratios of corresponding integrals measured 
in the reference 31P spectra with 30 and 0.8 s interscan delays at the end of the 
transcription reaction, that is, (I31P, corrected = I31P × (I31P,ref,d1=30s/I31P,ref,d1=0.8s)). NTP and 
NDP populations were quantified from αP integrals, MgHPO4 was calculated 
from decrease of the total T1-weighted 31P integral of all species. For long RNAs 
(⪆20 nt), the 1D 31P signals became too broad, preventing accurate quantification 
at a reasonable time-resolution, so RNA concentrations were calculated from the 
decay of NTP signals. Due to the NMR signal degeneracy, the fractions of RNA 
and aborts could not be quantified within the NMR assay, and were fixed to 30 
and 70%, by nucleotide mass, based on quantitative ultraviolet (260 nm) high-
performance liquid chromatography (HPLC) analysis of reaction end-products.

The fraction of bound UP1 protein was derived from the chemical shift 
perturbation (CSP) of HN signals of His33 and Arg75. These residues were chosen 
as reporters for two reasons. First, they appeared to sense the same molecular 
epitope in all four protein–RNA complexes, as they all displayed signals moving in 
the same direction during transcription (Fig. 2g). Based on the existing UP1-RNA/
DNA structures (PDB: 4YOE, 2UP1), these two residues are located near the RNA-
binding pocket, but do not directly interact with the RNA, which explains how they 
could sense the same epitope changes independent of the RNA sequence. Second, 
these signals were sensitive to the differences in affinity of the RNA binding, as the 
magnitude of the 1H-15N CSP varied for four different protein–RNA complexes  
(Fig. 2g,j). In assays with 150 µM UP1 concentration, both signals appeared 
predominantly in fast exchange with respect to the NMR time scale, and so the fast 
exchange assumption59 was used during modeling. The experimental HN CSPs 

were calculated using ΔHN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔH2 þ ðΔN ´ 0:2Þ2
� 

=2
q

I

. The effect of pH change 
on histidine signal position was assumed negligible because the transcription  
buffer pH = 7.7 is far from the histidine pKa ≈ 6, and the chemical shifts of other 
surface-exposed UP1 histidines did not exhibit the same perturbation effects. 
Calculating the fraction of the bound protein under the fast exchange regime  
requires information on protein signal positions in the free and fully bound states. 
The shifts of the bound state are usually estimated as one of the parameters of the  
KD fitting procedure, as the asymptote of the protein saturation curve. The 150 µM 
UP1 protein data did not approach this saturation under the assay conditions,  
because of the low RNA/protein ratio, since the final concentrations of specific  
RNAs reached only ~120 µM, giving only ~0.8:1 RNA/protein ratio. Addition of 
pure RNA to saturate the protein under these conditions consistently led to protein 
precipitation, which correlates with UP1’s ability to phase-separate and aggregate  
in presence of RNA. Therefore, to estimate the HN signal positions of His33 and 
Arg75 in the saturated protein, an additional set of transcription experiments  
was recorded using 20 and 30 µM UP1 and the ‘high-affinity’ EV2 RNA. This 
allowed to increase protein saturation by reaching ~6:1 and 4:1 RNA/protein ratios 
(~120/20 and 120/30 µM, respectively) at the end of the reaction. Due to the poor 
NMR sensitivity at 20–30 µM protein concentrations, the 2D HN spectra in these 
experiments required ~10 h acquisition time and could only be recorded as non-
time-resolved spectra at end of transcription reaction, when the system reached 
equilibrium. The combined CSP data from the datasets with high (150 µM) and  
low (20–30 µM) protein concentrations gave an imperfect fit with the single-site 
binding model, suggesting that UP1 is already close to saturation in the assays  
with 150 µM protein concentration (Supplementary Fig. 8). This is likely due to 
additional weak UP1 binding sites in the EV2 RNA, as suggested by Arg75 peak 
splitting in assays with 20–30 µM UP1 concentration. The chemical shifts of His33 
and Arg75 residues in the fully saturated protein state for the final ODE modeling  
of the four main datasets (RNA0, SMN1, SMN2, EV2 at 150 µM UP1) were taken  
as the shifts giving best fit when simultaneously fitting the data from EV2 RNA 
datasets with 150, 30 and 20 µM UP1 protein concentration (Supplementary Fig. 8).

All above 31P and HN data was used for global parameterization of  
the ODE model, and 1H imino signals were used for line shape analysis  
and RNA ∆G derivation.

Mathematical modeling. The model was built using the BioNetGen language60 
and resulted in eight rate equations and nine differential equations:

Rate equations

v1 synthesis of RNAð Þ ¼ kcat;RNA ´NTP
v2F; 2R RNA foldingð Þ ¼ analytical solution; see below

ð1Þ

v3F binding of protein to RNAð Þ ¼ kon ´ protein ´RNA ð2Þ

v3Rðdissociation of protein2RNA complexÞ ¼ koff ´ ½protein2RNA complex
ð3Þ

v4 synthesis of abortsð Þ ¼ kcat; aborts ´NTP ð4Þ

v5 ðhydrolysis of pyrophosphateÞ ¼ kcatPPi ´PPi
v6F;6R ðformation of Mg2NTP complexesÞ ¼ fixed constant; see below

ð5Þ

v7F formation of MgHPO4 salt
� �

¼ kprecip ´PO4 ð6Þ

Nature Methods | www.nature.com/naturemethods

https://doi.org/10.21203/rs.2.9160/v1
https://doi.org/10.21203/rs.2.9160/v1
http://www.nature.com/naturemethods


ArticlesNature Methods

v7Rðdissociation of MgHPO4 saltÞ ¼ kdissolve ´MgHPO4 ð7Þ

v8ðdephosphorylation of NTPsÞ ¼ kdephos:NTP ´NTP ð8Þ

Differential equations

dNTP
dt

¼ �v1 � v4 � v8 ð9Þ

dRNA
dt

¼ þ v1
RNA length

� v3F þ v3R ð10Þ

dPO4
dt

¼ þ2 ´ v5 � v7F þ v7R þ v8 ð11Þ

dPPi
dt

¼ þv1 ´
RNA length� 1
RNA length

þ v4 ´
Aborts length� 1
Aborts length

� v5 ð12Þ

dMgHPO4

dt
¼ þv7F � v7R ð13Þ

dNDP
dt

¼ þv8 ð14Þ

dAborts
dt

¼ þ v4
Aborts length

ð15Þ

dProtein
dt

¼ �v3F þ v3R ð16Þ

d½RNA2protein complex
dt

¼ þv3F � v3R ð17Þ

At the given hairpin stability (≈ –5.5 kcal mol–1) the SMN and EV2 RNAs 
are predominantly in a single state (99,99% folded). The expected rate of hairpin 
folding (v2F = 8–51 × 103 s–1 for ~30 nt hairpin)61 is three orders of magnitude faster 
than protein–RNA encounters at the unbiased diffusion rate (~105 M–1 s–1)62. For 
these reasons the final ODE model treats the folded and unfolded RNA as a single 
species, and the stability of RNA is derived independently from imino signal line 
shape analysis at each reaction time point (see below). Because of the sequence 
identity with the abortive products, RNA0 length is used as a weighted sum of 10 nt 
full length RNA0 and the 4 nt average length of corresponding abortive products: 
0.3 × 10 + (1 – 0.3) × 4 = 5.8 nt. The final ODE model was deposited in BioModels63 
(MODEL1812270001).

Model fitting. The ODE model was fitted to the NMR-based observables 
employing the gradient based Trust-Region method, using a custom-built set 
of MATLAB routines (github.com/systemsnmr/ivtnmr) based on earlier code47. 
Model parameters, their boundaries and initial optimization conditions are given 
in Supplementary Table 2. The experimental errors were assumed to follow a 
Gaussian distribution and the standard deviations of individual data points were 
calculated from spectral noise for 31P integrals, and from the variance of protein 
HN chemical shifts at the end of the reaction (when the network is approaching 
equilibrium state). The values and standard deviations of the derived network 
parameters were obtained with two alternative approaches. In the first method, 
we calculated the standard deviation between estimates that were obtained in 
independent ODE model fits of several NMR replicate datasets, varying batches of 
the protein and/or DNA template preparations (Fig. 3 and Supplementary Fig. 1).  
In the second method, parameter uncertainties were estimated with bootstrap 
analysis. Here, we generated 200 model fits using resampling of the full data 
vector with replacement. The confidence intervals obtained by bootstrapping 
(Supplementary Fig. 9) were narrower than the variability between the 3–4 
experimental replicates, and therefore the values from the replicate analysis were 
chosen as the ones more realistically reflecting the parameter variance.

Derivation of final constants. The specific constants used in the rate equations of 
the ODE model were converted to more general constants—for comparison with 
other experiments and literature data.

The T7 RNA polymerase enzyme (280 nM) is assumed to be saturated by the 
substrate (4–20 mM NTPs) during the reaction, so the KM can be ignored and the 
concentration of the active enzyme can be defined by the limiting concentration of 
the DNA template (33 nM).

kcat ¼
ðkcat;RNA þ kcat;AbortsÞ

33 nMðconcentration of DNA templateÞ ð18Þ

Because reactions 3 and 7 (Fig. 1a, protein binding and aggregation of 
MgHPO4) equilibrate faster than the time-resolution of the current setup, only 

the equilibrium constants (Keq and KD, ratios of kinetic rate constants) for these 
reactions could be parameterized.

Keq ¼ KD ¼ koff
kon

ð19Þ

Pyrophosphate hydrolysis can be quantified from the specific pyrophosphate 
(PPi) observable, but this rate was too rapid for meaningful quantification. 
Therefore, this constant was fixed based on the enzyme activity provided by the 
manufacturer (Sigma).

kcatPPi ¼ 1mMmin�1 ð20Þ

The formation of soluble Mg–PO4 aggregates depends on the concentration  
of the free Mg. Apart from Mg–PO4, the free Mg can also participate in  
Mg–NTP and Mg–RNA complexes. The fraction of the free Mg was estimated 
from the published KD,Mg–NTP = 0.3 mM (ref. 64) using the general bimolecular 
binding isotherm65 denoted with 𝑓 in the equation below. For the calculation 
the concentration of free Mg available for Mg–PO4 salt formation was assumed 
constant during the reaction.

Mgfree ¼ f Mgtotal; NTPtotal; KD;Mg:NTP
� �

¼ f 24; 20; 0:3ð Þ ¼ 5:1mM ð21Þ

Keq;MgHPO4
¼ kprecip

kdissolve
´

1
Mgfree

ð22Þ

RNA folding ΔG from imino signal line shape analysis. For fitting, 1D 
1H-SOFAST spectra were Fourier-transformed with no apodization function. Imino 
signals were fitted to a single-Lorentzian function using the lorentzfit routine  
(J. Wells, Lorentzfit, MATLAB Central File Exchange no. 33775, 2015). The fits used 
0.2 ppm fitting window and assumed a baseline fixed at zero signal intensity. In the 
single-Lorentzian fit, the intrinsic broadening of a signal cannot be distinguished 
from broadening due to overlapping signals, thus accurate quantification requires 
well-resolved signals. The fitted linewidth parameter (full width at half maximum) 
was used to derive the unfolding-driven imino-exchange rate (kex,unfolding).

kex ¼ linewidth ´ π ð23Þ

kex ¼ kex;unfolding þ kex;base�flipping þ R2 ð24Þ

The contribution of B0 field inhomogeneity (R2(B0)) is considered negligible. 
The combined contribution of base-flipping (kex,base-flipping)31 and transverse 
relaxation rate (R2) was determined from linewidths of imino signals in 
purified SMN2 hairpin additionally stabilized by terminal GCs (13-base pair, 
GGCGGGUUUUGGC-AGAC-GCCAAAAUCCGCC). In this stabilized RNA, 
the exchange by global unfolding is suppressed (∆G = –23 kcal mol–1), which was 
confirmed by the negligible dependence of its imino integrals on temperature 
(not shown). The combined (kex,base-flipping + R2) value for imino signals in an UA 
pair flanked by GU and UA pairs, under transcription buffer conditions, was 
determined to be 61.4 s–1.

Imino linewidths depended on pH (the concentration of imino-exchange 
catalyst), indicating that the system is under the bimolecular exchange regime 
(EX2)66, and hence the measured kex reports on the equilibrium constant of RNA 
unfolding/opening (Keq,unfolding = Kop). The intrinsic exchange rate kex,intrinsic (same as 
the exchange from the open state, kex,open) in the transcription buffer was measured 
to be ~106 s–1 for both UTP and GTP, using a protocol described elsewhere67.  
The final free energy of folding was determined using:

Keq; unfolding ¼
kex;unfolding
kex;intrinsic

ð25Þ

ΔGfolding ¼ �ΔGunfolding ¼ R ´T ´ logðKeq;unfoldingÞ ð26Þ

where R is the gas constant and T is the absolute temperature.

RNA purification. RNAs for ITC and ultraviolet-melting experiments were 
purified by anion-exchange HPLC under denaturing 6 M urea, 80 °C conditions, 
followed by n-butanol extraction, snap-cooling and lyophilization.

Ultraviolet temperature melting. For the melting experiments the RNA hairpins 
were produced without the single-stranded 5′ overhang to eliminate ultraviolet 
baseline distortions caused by this single-stranded region. The experiments used 
2 µM RNAs in 10 mM sodium-cacodylate, pH 7.35, 5 mM MgCl2 and 25 mM l-
Arg/l-Glu buffer. Details of the analysis are shown in Supplementary Note 1.

ITC. Experiments used conditions approximating those at the end of transcription-
NMR reaction: 40 mM Tris-HCl, 0.01% Triton-X100, 2.5 mM β-ME, pH 7.5, 37 mM 
NaPO4, 2.6 mM NTPs, 24 mM MgCl2 and 303 K. DTT was replaced with β-ME due 
to its instability and background heat changes. For each RNA, an RNA-to-buffer  
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titration was performed and subtracted from the RNA-to-protein data. Data 
from the first injection point was discarded. To better represent the pool of 
unspecific RNAs in the transcription reaction, RNA0 was purified as a combined 
pool of 2–10 nt RNAs from transcription reaction. The concentration of this 
RNA0 + aborts pool was normalized by the average size of 5.8 nt based on HPLC-
ultraviolet-weighted composition of the corresponding transcription mixture 
(30% full length RNA × 10 nt + 70% aborts × 4 nt average). For RNA0, SMN1 and 
SMN2 RNAs the ITC data was fitted with the one-site interaction model using 
MicroCal Origin (Supplementary Fig. 3a–c). A one-site KD was needed for all 
RNAs to compare it with the one-site binding model used in the ODE analysis. 
The standard fitting protocol of MicroCal Origin encountered local minima when 
fitting the one-site model to the EV2-UP1 ITC data (likely due to the known 
bi-modal binding of UP1 to this RNA23). Therefore for EV2-UP1, the apparent 
one-site KD constant was derived as a mean of three different fitting protocols 
(Supplementary Fig. 3d–g): (1) high-affinity KD from two-site model in MicroCal 
Origin, (2) one-site KD fitted using a stoichiometric 1:1 equilibrium model in 
Affinimeter software (affinimeter.com) and (3) one-site KD fitted using a general 
ligand:target equilibrium binding isotherm65, which only parameterizes the KD 
constant (without considering ∆H) and assumes N = 1. All three fitting procedures 
yielded comparable KD for EV2-UP1 binding (4.8, 7.1 and 3.3 µM, respectively).

Perturbation experiments. Post-transcriptional perturbations by UP1 protein 
were performed by adding, 13 h after transcription start, 67.5 nmol of 15N-UP1. 
Protein was ~1,500 µM concentration, to achieve ≤10% dilution of the mixture. In 
small-molecule perturbation experiments, the SMN2 ESE1 transcription mixture 
was spiked co-transcriptionally with 200 µM of one of three molecules (NVS-
SM1, smn-C5 and smn-C7 (ref. 26) in 1% DMSO) or 1% DMSO alone. In these 
experiments, SMN2 DNA template used an earlier version of the 5′ overhang 
sequence (5′-GCGCCGUA-3′), before it was optimized at three positions (3,7,8) to 
reduce its self-complementarity.

Imino signal broadening on UP1 protein binding. Imino signal linewidths could 
be primarily influenced by the (1) changes in kex exchange rate of iminos due to 
unfolding of the stem, (2) kex changes due to base-flipping and (3) line broadening 
due to enhanced transverse relaxation (R2) and B0 field inhomogeneity (R2(B0)). 
Thus, overall linewidth equals ∆ν1/2 = (kex,unfolding + kex,base-flipping + R2 + R2(B0))/π. 
Contribution of B0 field inhomogeneity is considered negligibly small. The R2 
relaxation increase on formation of a 1 to1 RNA–UP1 protein complex was 
estimated to be 41/π Hz, given 22.25 kDa UP1 mass, at 303 K, in phosphate buffer 
saline (0.001 kg m−1 s−1), assuming spherical shape of the protein with rw = 2.4 Å 
(hydration layer) and R2 = 5 × τc (correlation time)68.

Cell culture and nuclear extracts. Extracts were prepared using published 
procedures69 from HEK293 cells grown to confluence.

Mass spectrometry for quantification of specific protein concentrations in 
cells. Pure recombinant uniformly 15N-labeled proteins were spiked into nuclear 
extracts at a 0.15–0.2 µM concentration. Resulting extracts were reduced, alkylated 
and digested using trypsin before peptide desalting and purification as previously 
described70. Selected reaction monitoring (SRM) on a triple-quadrupole mass 
spectrometer was used for targeted proteomic measurements. SRM assays were 
generated as previously described71 by selecting the 4–5 most intense transitions 
from samples with pure 15N-labeled recombinant proteins digested with the same 
protocol. Sum peak areas of transitions for each peptide were used to calculate 
the intensity ratio between 15N reference and 14N endogenous peptide signals. The 
mean and standard deviation of all peptides for each protein were used to find the 
concentration of endogenous proteins in nuclear extracts.

Selective labeling. Proteins were expressed in minimal M9 medium supplemented 
with 15N-Val and 13C-Phe, and with all amino acids and nucleosides in unlabeled 
form (Supplementary Table 3). A limiting amount of unlabeled Phe/Val was added 
for transaminase suppression. The 13C/15N-labeled amino acids were added only 
10 min before induction. Cells were harvested 3–5 h post-induction.

Statistics. Statistical analyses and experiment replicate numbers, where 
applicable, are described in the corresponding figure legends and method 

sections. Unless otherwise indicated the derived values and error bars correspond 
to the mean ± s.d.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw NMR data from the main experiments was deposited in Zenodo (10.5281/
zenodo.2554066). Source data for the main figures are included in the online article. 
SRM-MS-Proteomics data was deposited in PeptideAtlas (PASS01365). The ODE 
network model was deposited in BioModels54 (MODEL1812270001). RNA-encoding 
plasmids were deposited in AddGene (ID nos. 126040, 126041, 126042, 126043). 
Further data and code are available from the corresponding authors upon request.

Code availability
Main code with examples and a protocol for the Systems NMR setup is available at 
github.com/systemsnmr/ivtnmr.
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Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials RNA-encoding plasmids were deposited in AddGene (ID #126040, #126041, #126042, #126043). Further plasmids (e.g. for 
protein production) are available upon request.
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293T (human embryonic kidney) cells were obtained from the European Collection of Cell Cultures (ECACC No. 
85120602).

Authentication Cell lines were not authenticated.

Mycoplasma contamination Cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Based on ICLAC register, no commonly misidentified lines were used.


