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Dynamic Locomotion on Slippery Ground

Fabian Jenelten1, Jemin Hwangbo1, Fabian Tresoldi1, C. Dario Bellicoso1, Marco Hutter1

Abstract— Dynamic locomotion on unstructured and uneven
terrain is a challenging task in legged robotics. Especially
when it comes to slippery ground conditions, common state
estimation and control algorithms suffer from the usual no-
slip assumption. In fact, there has been only little research
on this subject. This paper addresses the problem of slipping
by treating slip detection and recovery tasks separately. Our
contribution to the former is a probabilistic slip estimator
based on a Hidden Markov Model. In the second part of this
paper, we propose impedance control and friction modulation
as useful tools to recover stability during traction loss. We
demonstrate the success of our estimation/control architecture
by enabling ANYmal, a quadrupedal torque-controllable robot,
to dynamically walk over slippery terrain.

I. INTRODUCTION

The potential of legged robots to assist or replace humans
in complex, tedious and dangerous workplaces is tremen-
dous. Inspection, maintenance and search and rescue are
particularly interesting fields for legged systems as they are
not constrained to flat ground. To fulfill associated mission,
it is required that the robot can safely traverse terrains that
might be partially slippery. Examples are wet floors in a
sewer, dust in a construction site, mud in a mine, oily
surfaces on an offshore platform, ice on a street or marble
floors.

The slip phenomenon is highly non-linear and difficult
to model. It does not come as a surprise that slip-aware
controllers have not yet found its way into the legged
robotics community. However, the issues related to slippage
are critical. As soon as traction is lost, the desired contact
force might not be realizable. The limb accelerates along the
surface until it can no longer provide support for the torso,
and the system unavoidably collapses.

The quadrupedal robot Spot, developed by Boston Dy-
namics, has shown its remarkable skills while walking over
frozen ground, even while being disturbed.1 Unfortunately,
only little is known about the underlying control system.

An attempt to compensate for traction loss on bipedal
robots was shown in [1]. After the horizontal acceleration of
a grounded foot reaches a threshold, the robot accelerates the
hip in the direction perpendicular to the contact plane. This
method is limited to short slip events since the maximum
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Fig. 1. ANYmal can walk blindly over ice and handle slipping contacts.
A probabilistic slippage estimator triggers impedance control and friction
modulation to stiffen the motion.

attainable torso height is constraint by the kinematics. For
the bipedal robot HRP-2 [2], a slip observer based on ground
reaction forces has was formulated. A stabilizing reaction
was achieved by adjusting the desired footholds to compen-
sate for the torso rotation caused by the sliding motion. The
quadrupedal robot TITAN-VIII [3] reacts to slippage, detected
in terms of leg-acceleration, by adapting the gait pattern vari-
ables. Gait adaptation was shown to be effective, but the long
converge time does not guarantee immediate stabilization.
To this end, a contact force perturbation perpendicular to the
local ground is applied to the supporting foot to potentially
push the contact force back into the friction cone. A combi-
nation of slip detection and recovery strategy was presented
for HyQ [4] and verified in simulation. A velocity-based slip
detector triggers a parameter estimator that corrects surface
normals and friction coefficients. In [5], a method was shown
where contact probabilities are learned from six-dimensional
contact-wrench measurements. Slippage was indicated if one
or more of the six contact probabilities were significantly
lower than the others. Neither slip detection nor recovery
was treated in this work. Recent publications dealing with
contact estimation are not addressing the slip problem [6],
[7] or do not differentiate between slip and swing phases [8].
However, slip information can be useful on the locomotion
(initiate reactive behavior) and on the state estimation side
(avoid drift in the odometry). Mechanical devices s.a. tactile
sensors [9], [10] or shear force sensors [11] might be used for
slip detection as well. Since these kind of sensors are difficult
to maintain on a legged system due to repeated impacts, we
do not consider such mechanical mechanisms.

ANYmal (see Fig. 1), a rugged quadrupedal robot devel-
oped for outdoor operations, has recently demonstrated the
ability to dynamically walk using a variety of gaits [12].
Reference trajectories are generated using a Zero-Moment
Point (ZMP) [13] based approach and tracked through a hier-



Fig. 2. Combined contact and slip estimation framework. The state estima-
tor provides an estimate of the generalized coordinates q, the velocities u
and the accelerations u̇ using - among other measurements - the contact/slip
state of the previous iteration as inputs. Two probabilistic state machines
compute for each end-effector the contact probability P (Xt | q̂, û, ˆ̇u)
and the slip probability P (Yt | q̂, û, ˆ̇u). Since the state machines are
updated independently of each other, a correction step ⊗ is required (see
(10) and (11)). Contact state Xt ∈ {N = on, F = off} and slip state
Yt ∈ {S = slip, D = ground-fixed} follow by thresholding the associated
probabilities.

archical whole-body controller (WBC) [14]. Neither the set-
point generation nor tracking algorithm is aware of slippage,
which limits the application to specific terrains.

In the following, we introduce an approach to overcome
this limitation. The main contribution is a method for robust
slip detection that may be applied to any legged system
interacting with the environment through point feet or non-
actuated flat feet. End-effectors are modeled as 3 degrees
of freedom (DOF) points and both, contact and slip states
are considered binary. We farther show how the slip state
can be employed in a WBC-based locomotion framework in
order to stabilize sliding contacts. Finally, we demonstrate
the success of the combined estimation/control pipeline in a
series of experiments with ANYmal.

II. CONTACT AND SLIP ESTIMATION

Since both sliding and stable contacts impose related
constraints on the end-effector2, it makes sense to combine
their estimation in one single framework. We build upon the
probabilistic contact estimator presented in [6] and add a
probabilistic slip detector in parallel. As depicted in Fig. 2,
both estimators are tightly integrated into our state estimation
framework [15], which fuses information from leg kinemat-
ics and IMU data. The kinematic constraints used in the
state estimator rely on accurate contact flags. A slip event is
thereby treated as a swing event.

2For instance, no velocity along the perpendicular direction of the contact
plane. Additionally, a stable and a sliding contact can both give sufficient
support to stabilize the torso due to non-trivial ground reaction forces.

A. Probabilistic Contact Estimation

We have implemented a probabilistic state machine pre-
sented in [6]. To the author’s knowledge, it is the first time
that this algorithm is used in robotics for contact estimation.
For clarification of following formulas, we briefly recapit-
ulate the underlying idea. The model under consideration
consists of a measurement model (reflecting the likelihood
of observing the robot’s state given the contact state) and
a transition model (indicating the lift-off or touch-down
probability). We will use the notation introduced in [6], i.e.,
the contact state is denoted by Xt ∈ {N,F} where N means
on and F off the terrain. The generalized coordinates and
velocities of the robot are denoted by q and u. For their
measured or estimated counterpart we write q̂ and û.

The measurement model combines information from the
dynamics, the differential kinematics, and the kinematics.
According to the rule of conditional probability distribution
function (PDF), we can write

P (q̂t, ût, ˆ̇ut | Xt) =

P (ˆ̇ut | Xt, ût, q̂t)︸ ︷︷ ︸
dynamics

·P (ût | Xt, q̂t)︸ ︷︷ ︸
diff. kinematics

·P (q̂t | Xt)︸ ︷︷ ︸
kinematics

, (1)

where q̂t = q̂(t) for the sake of brevity. As an example,
P (q̂t | Xt) is the probability of observing the robot in the
kinematic configuration q̂t given the contact state Xt.

The transition model can be expanded using the Bayes
theorem as

P (Xt | Xt−1, q̂t−1, ût−1, ˆ̇ut−1) =

P (q̂t−1, ût−1, ˆ̇ut−1 | Xt, Xt−1) · P (Xt | Xt−1)∑
Xt
P (q̂t−1, ût−1, ˆ̇ut−1 | Xt, Xt−1) · P (Xt | Xt−1)

. (2)

We are seeking for a general formulation that is independent
of the locomotion controller. Compared to the original for-
mulation, we have dropped the dependency on the gait. Since
we do not have any prior guess, we set P (Xt | Xt−1) =
0.5. The measurement and transition models are combined
together through a Hidden Markov Model (HMM) of the
form

α(Xt) = P (q̂t, ût, ˆ̇ut | Xt)·∑
Xt−1

P (Xt | Xt−1, q̂t−1, ût−1, ˆ̇ut−1)α(Xt−1). (3)

The contact probability can be obtained as

P (Xt = N | q̂1:t, û1:t, ˆ̇u1:t) =
α(Xt = N)∑
Xt
α(Xt)

. (4)

Finally, the contact state can be inferred by thresholding the
contact probability

Xt =

{
N P (Xt = N | q̂1:t, û1:t, ˆ̇u1:t) > 0.5

F otherwise
. (5)

Hwangbo et al. [6] used a Monte-Carlo sampling approach
to compute the transition model. It is computationally expen-
sive and requires the touch-down location to be known a pri-
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Fig. 3. Signals used for transition indication for contact estimation. The
signal P∆X has a positive peak at lift-off, two peaks at the height extremum
of the swing trajectory, and a negative peak at touch-down. The two peaks
corresponding to swing-up can be separated from the swing-down phase
by considering only positive (red) or negative (blue) vertical end-effector
velocities.

ori, which is not the case for blind locomotion. Therefore, we
propose the following lightweight velocity-based approach.

Consider the estimated end-effector velocity v̂Ci of a
limb i in control frame C.3 We consider only the vertical
component v̂Ciz and assume that its squared value follows an
exponential PDF, i.e., Exp[(v̂Ciz)

2] = λe−λ(v̂C
iz)2 with λ a

tuning parameter.
Let Cexp[x] = 1 − e−λx be the cumulative distribution

function (CDF) of Exp[x]. If the beginning (lift-off ) and the
end (touch-down) of a swing phase happen at a non-trivial
acceleration, then Exp[(v̂Ciz)

2] will rapidly change at such
an event. This observation leads to the idea of using

P∆X = Cexp[(v̂Ciz,t)
2]− Cexp[(v̂Ciz,t−1)

2] (6)

as a transition indication. Figure 3 shows such a signal
recorded in simulation for a trotting gait 4(d). We need to
eliminate the two peaks at the height extremum of the swing
leg motion and associate the two remaining peaks to the
correct event. To do so, we write v̂Ciz = ṽiz̄ + ṽiz with
ṽiz̄ ≡ max{v̂Ciz, 0} and ṽiz ≡ min{v̂Ciz, 0}, and

P (ût−1 | Xt = N,Xt−1 = F ) =

−min
{
Cexp[ṽ2

iz,t]− Cexp[ṽ2
iz,t−1], 0

}
(7)

P (ût−1 | Xt = F,Xt−1 = N) =

max
{
Cexp[ṽ2

iz̄,t]− Cexp[ṽ2
iz̄,t−1], 0

}
. (8)

The measurement models as proposed in [6] are further
adapted to flat but tilted terrain by performing all Cartesian
space computations in control frame rather than in world
frame.

B. Probabilistic Slip Estimation

Similar to the contact state, we define a slip state Yt ∈
{S,D} with S for slipping and D for ground-fixed. The
state machine is once again described as a HMM, but this

3The control frame C is aligned with the local terrain orientation and
with the heading direction of the robot. Terrain orientation is obtained by
fitting a plane through the recent contact points [16].

time, we only take into account the differential kinematics.
For a dynamic description of a slip event, we would need
an accurate estimate of the friction coefficient. A kinematic
description is also difficult to realize as the location, where
the slip will end is difficult to predict. The HMM stated in
(3) simplifies to

β(Yt) = P (ût | Yt, Xt)∑
Yt−1

P (Yt | Yt−1, ût−1)β(Yt−1). (9)

The measurement model P (ût | Yt), which will be
introduced later, can be excited during swing phases and
thereby force the slip probability to grow. Since a foot can
only slip while it is grounded, we introduce the following
heuristic correction

P (ût | Yt = S,Xt) := P (ût | Yt = S)·
P (Xt = N | q̂1:t, û1:t, ˆ̇u1:t) (10)

P (ût | Yt = D,Xt) := P (ût | Yt = D)·
P (Xt = N | q̂1:t, û1:t, ˆ̇u1:t)

+ P (Xt = F, | q̂1:t, û1:t, ˆ̇u1:t). (11)

Similar to (2), the transition model is written as

P (Yt | Yt−1, ût−1) =
P (ût−1 | Yt, Yt−1)∑
Yt
P (ût−1 | Yt, Yt−1)

. (12)

The probability of slipping can be computed through
marginalization as

P (Yt = S | û1:t, Xt) =
β(Yt = S)∑
Yt
β(Yt)

, (13)

and thresholding leads to the slip state.
As an indicator of sliding motion we propose a squared

tangential foot velocity, i.e., ṽ2
im = (v̂Cix)

2 + (v̂Ciy)
2. We

assume that the measurement noise of estimate v̂Ci is zero-
mean Gaussian distributed and the noise is described by the
variance Var[v̂Ci ] = Diag[σ2

v ] with Diag being a diagonal
matrix. Since v̂Cix and v̂Ciy are by assumption independent,
ṽ2
im follows an exponential PDF Exp[ṽ2

im] = λe−λṽ
2
im with

gain λ = 1
2σ2

v
. The associated CDF is used to formulate the

measurement model,

P (u | Yt = S) = Cexp[ṽ2
im] (14)

P (u | Yt = D) = 1− Cexp[ṽ2
im]. (15)

Assuming a slip-stick phenomenon, a slip event will be
initiated at high acceleration and stops at high acceleration.
In this case, the signal

P∆Y = Cexp[ṽ2
im,t]− Cexp[ṽ2

im,t−1] (16)

will exhibit two peaks during a slip event, one corresponding
to a stick-to-slip and one to slip-to-stick event. We can
separate these two by writing

P ( ˙̂qt−1 | Yt = S, Yt−1 = D) = max{P∆Y , 0} (17)

P ( ˙̂qt−1 | Yt = D,Yt−1 = S) = −min{P∆Y , 0}. (18)



III. MOTION PLANNING AND CONTROL

We use a ZMP-based motion planner to compute the
desired torso trajectory as described in [12]. A WBC [14],
[17] converts the planned torso and swing-leg trajectories to
joint torques by solving a cascade of prioritized tasks. The
output of the WBC is a vector of joint torques τ ref,wbc ∈ Rn
with n being the number of DOF.

In order to improve the overall tracking in operational
space as well as to avoid sudden movements and loss of
stability during slippage, we introduce joint-level impedance
control. Let Kp, Kd ∈ Rn×n be diagonal positive-definite
matrices and let qa, ua ∈ Rn denote the generalized
coordinates and velocities of the actuated DOF, then

τ ref = τ ref,wbc +Kp(qa,ref − q̂a) +Kd(ua,ref − ûa). (19)

The matrices Kp, Kd serve as tuning parameters that are
scheduled w.r.t. the ground reaction state {Xt, Yt}, i.e.,

Kp/v =


Kp/v,contact Xt = N, Yt = D

Kp/v,swing Xt = F

Kp/v,slip Xt = N, Yt = S

. (20)

Given a desired state of the end-effector i in Cartesian
space {pi,ref, vi,ref}, we obtain joint positions qa,ref and
velocities ua,ref through inverse kinematics. In the following,
we describe our approach to find the desired end-effector
state depending on the ground reaction state.

A. Swing Leg

A swing trajectory, obtained as a composition of splines
fitted through the previous stance foot position and a desired
foothold [16], [18], defines the desired motion of a swinging
foot. Trajectory sampling delivers a reference state for the
WBC and the impedance controller.

B. Stance Leg

Assuming a stable contact, we can set pi,ref = p̂i and
vi,ref = 0 with p̂i the estimated end-effector position.

C. Slip Leg

In case a leg is slipping, we want the end-effector to
approach towards to the position p̂i0 where traction was lost.
We propose an iterative approach

p̂s =
p̂i0 − p̂i
||p̂i0 − p̂i||2

(21)

vi,ref = p̂s · κ, pi,ref = p̂i + vi,ref · Ts (22)

with p̂s the sliding vector, κ > 0 a tuning parameter and
Ts the sampling time of control system. We suggest to
chose the impedance gains according to the rule Kp/v,slip �
Kp/v,stance > Kp/v,swing.

During a slip event of leg i, we decrease the friction
coefficient used in the WBC for leg i to half of its default
value. It is reset to the default as soon as the leg has spent
more than 0.5 s in a stable contact.

The impedance control stiffens the joints and thus prevents
the slipping leg to diverge, while the friction modulation

(a) Crawl

(b) Dynamic Lateral Walk

(c) Pace

(d) Trot

(e) Running trot

Fig. 4. Phase domain description of the gait patterns used in our
experiments. Swing phases are indicated with a dot while stance phases
are indicated with a colored box. The acronyms represent individual legs:
LF for left front, RF for right front, LH for left hind and RH for right hind.

reduces the demanded traction. Notice that, unless the shrunk
friction coefficient is not smaller than the real one, the robot
is allowed to slip. Also notice that no further adjustments
are required to the WBC. In particular, this means that the
tracking controller internally does not distinguish between a
stable and a sliding contact.

IV. EXPERIMENTS

To verify our approach, we have conducted several ex-
periments on ANYmal [19], a fully torque-controllable
quadrupedal robot. State estimation, contact/slip detection
and control run together on an on-board computer (Intel i7-
7600U, 2.7. . . 3.5 Ghz, dual-core 64-bit) and are updated at a
frequency of 400Hz. The contact/slip estimation introduces
significant overhead in terms of computation: the update step
takes roughly 0.11ms. However, it still meets our real-time
requirements.

For all gaits used in the following experiments, the same
probability distributions and tuning weights have been used.

A. Contact Estimation

We have collected data sets of ANYmal walking on
flat and non-slippery ground (lab conditions) at an average
velocity of 0.3m/s. In a first experiment, we used a crawl
4(a). The difficulty associated with this gait is the low
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Fig. 5. Contact estimation for the left-front foot of ANYmal while crawling
over flat and non-slippery ground. The top plot shows the measurement
model and the bottom plot shows the transition model. Shortly before the
leg lifts off, the exerted load on that leg is small as the torso leans to the
right side. The touch-down event of the left-hind leg further reduces the
load which explains the spikes in the dynamics model.

loading factor of a leg shortly before lift-off. In our previous
method, the contact state was obtained by thresholding the
norm of the ground-reaction force. Such a purely force-based
approach may indicate a loss of contact during a stance
phase. Consequently, the leg reestablishes the contact by
pushing towards the ground. This behavior may cause high-
frequency vibrations as the re-bouncing effect can trigger an
oscillation. The fusion of three different measurement models
robustifies the estimations and eliminates high-frequency
contact switches (see Fig. 5).

Another interesting gait is running trot 4(e), because
impact forces are comparably large, leading to a re-bouncing
effect of the end-effectors during touch-down. As Fig. 6
demonstrates, a contact is established only once at touch-
down, and the re-bouncing does not trigger a loss in contact.

In general, the probabilistic approach detects a switch
in the ground reaction state at roughly the same speed as
our previous contact detector. However, we have observed
a significant improvement regarding false detected contact
switches.4

B. Slip Estimation on high friction Ground

During a stable contact, it is important that the joints are
not unnecessarily stiffened. Otherwise the tracking will be
no more optimal in the sense of the cost function used in

4Our previous estimator detected typically two consecutive contacts at
the height extremum of the swing phase.
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Fig. 6. Contact estimation for the left-front foot of ANYmal while running
over flat and non-slippery ground. The top plot shows the measurement
model and the bottom plot the transition model. A re-bouncing effect after
touch-down can be observed for all three measurement models.

TABLE I
FALSE DETECTED SLIP MEASURED AS (1) TIME SPEND IN SLIP AND (2)

NUMBER OF COUNTED SLIP EVENTS.

Gait slip-time per
leg [%]

peaks/second
per leg [−]

trot, crawl 0.0 0.0

running trot 0.34 0.24

dynamic lateral walk 0.01 0.13

the WBC. Therefore, slippage should only be detected if the
end-effectors do indeed slide.

To verify the robustness against false slip detection, we set
up the following experiment: An operator navigates ANYmal
through a predefined path on flat and non-slippery ground.
The path includes forward, backward and yawing motion at
different speeds. We assume that all detected slip events are
false positives. Table I presents the results for four different
gaits. False detected slip events are due to deformation of the
end-effector at touch-down (running trot) or due to vibrations
caused by a low loading factor of a leg (dynamic lateral walk,
4(b)).

C. Slip Estimation on low friction Ground

A reaction to slip can only occur if the event is also
detected as such. Accurate and fast estimation is thus a
crucial task for blind locomotion. The experimental set-up
used for repeatable slip excitation consists of a whiteboard
moistened uniformly with water. In a first experiment, ANY-
mal is placed on the whiteboard, and the left-front leg is
manually displaced (see Fig. 7).



Fig. 7. Slip estimation for the left-front end-effector of ANYmal during
manual displacement of that leg. The transition model triggers the slip
probability to grow in the beginning and to decay at the end of the applied
disturbance. Contact is indicated with a gray background while slippage
occurs in the red shaded area.

Fig. 8. Slip estimation for the left-front end-effector of ANYmal while
pacing over a wet whiteboard. The contact is stable if the background is
gray and sliding if it is red.

In a second experiment, our robot walks over the white-
board using a pacing gate 4(c). The recorded slip probabili-
ties are depicted in Fig. 8.

Since it is very difficult to get the actual ground truth
of the ground reaction state, validation is shown in terms
of control robustification. In order to compare the proposed
method to our old configuration, we let ANYmal trot in place
with a fixed yawing velocity on top of the wet whiteboard.
The experiment was repeated five times per configuration.
According to table II, ANYmal could walk three times
longer before falling, if the slip compensation was enabled.
Moreover, the average time spent in a slip state was reduced
by almost a factor of four.

TABLE II
CONTROL PERFORMANCE ON SLIPPERY GROUND USING A TROT.

slip compensation slip-time per leg [%] time until collapse [s]

yes 0.88 69.8

no 3.20 24.1

Our locomotion pipeline has been extensively tested in
real-world conditions. ANYmal has recently shown to walk
robustly over coarse graveled hills5 and has thereby demon-
strated to successfully handle slippage similar effects. These
effects occurred due to the local displacement of the gravel
in the vicinity of the touch-down locations.

In Fig. 9 we show ANYmal recovering from falling after
slipping on uneven and frozen ground. A small section of
recorded data is displayed in figure 10.

V. CONCLUSION

We developed a probabilistic approach for contact and slip
estimation, based on a HMM introduced in [6]. The method
was extensively tested under laboratory conditions and in
field experiments where we demonstrated very reliable de-
tection of the ground reaction state. A slip recovery approach
has been presented that relies on invasive impedance control
and friction modulation. Field tests on a frozen ground have
verified that the presented pipeline can successfully stabilize
ANYmal while losing traction.

For the future, we plan to incorporate dynamics and
kinematics measurement models to robustify the slip esti-
mation. Next, we can fuse the probabilistic contact and slip
estimator into one single state machine. This would allow
direct transitions from swing to slip.
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