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Abstract. In materials without an inversion center of symmetry the spin degeneracy of the conducting
band is lifted by an antisymmetric spin orbit coupling (ASOC). Under such circumstances, spin and parity
cannot be separately used to classify the Cooper pairing states. Consequently, the superconducting order
parameter is generally a mixture of spin singlet and triplet pairing states. In this paper we investigate the
structure of the order parameter and its response to disorder for the most symmetric pairing state (A1).
Using the example of the heavy Fermion superconductor CePt3Si, we determine characteristic properties
of the superconducting instability. Depending on the type of the pairing interaction, the gap function is
characterized by the presence of line nodes. We show that this line nodes move in general upon temperature.
Such nodes would be essential to explain recent low-temperature data of thermodynamic quantities such
as the NMR-T−1

1 , London penetration depth, and heat conductance. Moreover, we study the effect of
(non-magnetic) impurity on the superconducting state.

PACS. 74.20.-z Theories and models of superconducting state – 71.18.+y Fermi surface: calculations and
measurements; effective mass, g factor

1 Introduction

Early studies of superconductivity in materials without
inversion symmetry addressed two-dimensional systems,
such as thin films, interfaces, and surfaces [1–4]. The re-
cent discovery of the non-centrosymmetric heavy Fermion
superconductor CePt3Si [5] has drawn attention to bulk
materials. Particular interest arose with the observation
that the upper critical field of CePt3Si exceeds the para-
magnetic limiting field considerably. The simplest inter-
pretation of this finding is in terms of spin triplet pairing.
However, this is in conflict with the common belief that
the absence of an inversion center prevents electrons from
forming spin-triplet pairs [7]. Indeed, inversion together
with time reversal are the key symmetries required for
Cooper pairing. In a time reversal invariant system, the
lack of inversion symmetry is connected with the presence
of an antisymmetric spin-orbit coupling (ASOC). This
can be represented in the single-particle Hamiltonian by
a term of the general form

αgk · S (1)

where the vector function gk is odd in k (gk = −g−k) and
α denotes the coupling strength [6]. The ASOC is indeed
detrimental for most spin triplet pairing states as noted

a e-mail: sigrist@itp.phys.ethz.ch

by Anderson [7]. However, it was also found that triplet
states whose d-vector lies parallel to gk would nevertheless
be stable. Such a spin triplet state has the full symmetry
of the crystal point group, we will therefore call it the
S-triplet state from now on.

The interpretation of the absence of paramagnetism in
terms of spin triplet pairing is not unique. Paramagnetic
limiting is also drastically reduced for spin singlet states
in the presence of ASOC [8,6,9–12]. In fact, the absence of
the inversion symmetry leads to a breakdown of the strict
classification into even-parity spin-singlet and odd-parity
spin-triplet pairing; these states are mixed, resulting in a
state containing both components [1–3]. Since all but one
spin-triplet states are suppressed by strong enough ASOC
(i.e. α� kBTc, which is usually the case), we concentrate
here on the stable S-triplet state. This “high-symmetry”
state mixes with the “s-wave” spin-singlet state (which
also has the full symmetry of the crystal point group),
since both of them belong to the same trivial A1 repre-
sentation of C4v, the generating point group in CePt3Si.
We will call this combined phase the “s-wave state”.

The presence of ASOC leads to a splitting of the
electron bands by lifting the spin degeneracy. Thus, the
discussion of the superconductivity is in some sense a
two-band problem in this case. Assuming that supercon-
ductivity is restricted to a single band the basis function
for irreducible representations of point group C4v have
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already been determined by various groups [13–15]. These
studies found that that the quasiparticle gap for the (most
symmetric) A1 state would have the form∆ ∝ k2

x+k2
y+ck2

z

which is nodeless in general. In contrast to these earlier
works, we will examine here the full two-band situation.
We also show how the symmetry properties of the pairing
interaction and the distribution of the density of states
on the two Fermi surfaces can influence the form of the
pairing state and, in particular, can introduce (accidental)
line nodes in the quasiparticle gap which are not dictated
by symmetry. We also show how these (accidental) line
nodes move in momentum space when varying the tem-
perature. It is also interesting to see how the s-wave state
is affected by non-magnetic impurities. These properties
could be important to obtain information on the complex
structure of the pairing state in this material.

2 Model with antisymmetric spin-orbit
coupling

The basic model used to describe the conduction electrons
in crystals without an inversion center can be written as

H0 =
∑

k,s,s′

[ξkσ0 + αgk · σ]ss′ c
†
ks
cks′ , (2)

where c†
ks

(cks
) creates (annihilates) an electron with wave

vector k and spin s, σ̂ = (σ̂x, σ̂y , σ̂z) is the vector of Pauli
matrices and σ̂0 is the unit matrix [6]. The band energy
ξk = εk − µ is measured relative to the chemical potential
µ. The antisymmetric spin-orbit coupling (ASOC) term
αgk · σ is different from zero only for crystals without
an inversion center and can be derived microscopically by
considering the relativistic corrections to the interaction
of the electrons with the ionic potential [9,16]. In strongly
correlated materials, as for instance in heavy Fermion, we
expect α to be strongly renormalize from its “bare” value.
For qualitative studies, it is sufficient to deduce the struc-
ture of the g-vector from symmetry arguments [6] and to
treat α as a parameter. We set 〈g2

k〉 = 1, where 〈〉 denotes
the average over the Fermi surface. The ASOC term lifts
the spin degeneracy by generating two bands with differ-
ent spin structure. The normal state Green’s function,

Ĝ0(k, iωn) = G0
+(k, iωn)σ̂0 + (ĝk · σ̂)G0

−(k, iωn), (3)

with

G0
±(k, iωn) =

1
2

[
1

iωn−ξk−α|gk|
± 1
iωn−ξk+α|gk|

]
,

(4)
and ĝk = gk/|gk| (|g| =

√
g2), can be diagonalized into

the components corresponding to the two bands, using the
unitary transformation

Û(k) = cos(θk/2)−i sin(θk/2)(cosφkσ̂y−sinφkσ̂x), (5)

where gk = |gk |(sin θk cosφk , sin θk sinφk, cos θk) defines
the angles θk and φk. This allows us to express,

Ĝ0(k, iωn) = G0
1(k, iωn)σ̂1(k) +G0

2(k, iωn)σ̂2(k), (6)

plane k
x
−k

y
plane k

x
−k

z

Fig. 1. Fermi surfaces for gk ∝ (ky,−kx, 0) as in CePt3Si.
The arrows show the structure of the quasi-particle spin. Only
along the z-axis the spin degeneracy is preserved.

through the two Green’s functions,

G0
1,2(k, iωn) =

1
iωn − ξ1,2(k)

, (7)

where the quasi-particle bands ξ1,2(k) ≡ ξk ± α|gk | are
split by the presence of the ASOC. The spin structure in
the bands is described by 2 × 2 matrixes

σ1
λ,µ(k) ≡ Uλ,1(k)U †

1,µ(k) = 1/2(σ0 + (ĝk · σ))λ,µ,

σ2
λ,µ(k) ≡ Uλ,2(k)U †

2,µ(k) = 1/2(σ0 − (ĝk · σ))λ,µ, (8)

which act as projection operators in spin space. Since the
spins of quasiparticles in the two bands have opposite di-
rections for a given momentum k, the matrices satisfy the
conditions,

σ̂1(k)σ̂2(k) = 0

σ̂2
i (k) = σ̂i(k), (i = 1, 2) (9)

and are reciprocal under the inversion operation,

σ̂1(−k) = σ̂2(k). (10)

Symmetry considerations lead to the following form for gk

in CePt3Si in lowest order expansion in the wave vector
k: gk ∝ (ky,−kx, 0). The resulting spin structure is visual-
ized in Figure 1, where we assume for simplicity that the
original Fermi surface is spherical.

The pairing interaction is generally given by

Hpair =
1
2

∑

k,k′

∑

s,s′
Vs1s2,s′

2s′
1
(k, k′)c†ks1

c†−ks2
c−k′

s′
2
ck′

s′
1
,

(11)
where Vs1s2,s′2s′1(k, k′) is the pairing potential with the
symmetry properties,

Vs1s2,s′2s′1(k,k
′) = −Vs2s1,s′2s′1(−k,k′)

= −Vs1s2,s′1s′2(k,−k′)

= V ∗
s′1s′2,s2s1

(k′,k). (12)

In unconventional superconductors, the state of knowl-
edge on the nature of the pairing potential is rather lim-
ited. However, in the context of the BCS theory, we can
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deduce the form of the attractive interaction using sym-
metry arguments. More precisely, it is possible to build
up the effective pairing potential starting from the form
of the order parameter under investigation [17,18].

We are interested here in the study of the most sym-
metric superconducting state. In the absence of the ASOC
the system is inversion symmetric in k-space and the in-
teraction factorizes in an orbital and a spin part. The most
symmetric superconducting state is in this case the con-
ventional s-wave spin-singlet state. The corresponding su-
perconducting order parameter is frequently represented
by the 2 × 2 matrix ψ(k)iσy, where ψ(k) is a basis state
of trivial representation A1g of the inversion symmetric
point group G, which can be considered in the simplest
case as a complex constant ψ(k) ≡ ψ.

When the ASOC is turned on, the point group is re-
duced to the non-inversion symmetric subgroup G′, whose
trivial representation A1 does not have a definite parity.
In fact A1 is compatible with both odd and even repre-
sentations of G, i.e. with both {A1g, Γu}, where Γu is an
odd parity irreducible representation in G, for which gk
is a basis state [21].

In other words, the symmetries of the non-inversion
symmetric point group G′ do not allow us to distinguish
between the s-wave spin-singlet state and the spin-triplet
state characterized by the order parameter d (gk · σ̂)σ̂y .
This is because the inversion element is missing in the
point group G′, thus the parity of the superconducting
state is no longer a good quantum number. The supercon-
ducting state involves both spin-singlet ψ and spin-triplet
d components. The order parameter for the “highest-
symmetry” state reads

∆̂(k) = i{ψ + d (gk · σ̂)}σ̂y. (13)

Since both spin-singlet and spin-triplet components be-
longs to the same irreducible representation A1 of G′, the
spectral form of the pairing interaction relevant for the
realisation of this superconducting state involves, in its
general form, three different terms

Vs1s2,s′2s′1(k,k′) =
V

2

{
es τ̂s1s2 τ̂

†
s′2s′1

+ et

[
(gk · τ̂ )s1s2(gk′ · τ̂ )†s′

2s′
1

]

+ em

[
(gk · τ̂ )s1s2 τ̂

†
s′
2s′

1
+ τ̂s1s2(gk′ · τ̂ )†s′

2s′
1

]}
, (14)

where τ̂s1s2 = (iσ̂y)s1s2 , and, τ̂ s1s2 = (iσσ̂y)s1s2 . To avoid
ambiguity we set V > 0, and e2s + e2t + e2m = 1.

The first two terms of equation (14) are diagonal in the
conventional s-wave pairing channel and in the S-triplet
pairing channel [6], respectively. The last term, which de-
scribes the scattering of Cooper pairs between the two
channels, is allowed by the fact that the spin-singlet ψ
and the spin-triplet d components belongs to the same
irreducible representation of the point groups. This is a
result of the absence of inversion symmetry.

The microscopic origin of pairing interaction is not the
subject of this phenomenological paper. However in Ap-
pendix A we show that the mixed pairing interaction term

em can be generated by the Dzyaloshinskii-Moriya type of
interaction [19,20] for both a weakly interacting Fermi liq-
uid and for a Hubbard model near half filling. Any quan-
titative evaluation of this term is out of the scope of this
paper. Moreover, the main results of our work do not de-
pend on the magnitude of this term.

We study the superconductivity by means of Gor’kov
equations which are formally analogous to those obtained
for systems with an inversion symmetry [22]

Ĝ−1
0 (k, iωn)Ĝ(k, iωn) + ∆̂(k)F̂ †(k, iωn) = σ̂0

Ĝ−1�
0 (−k,−iωn)F̂ †(k, iωn) − ∆̂†(k)Ĝ(k, iωn) = 0

Ĝ−1
0 (k, iωn)F̂ (k, iωn) − ∆̂(k)Ĝ�(−k,−iωn) = 0, (15)

where Ĝ and F̂ denotes the regular and the anomalous
Green’s functions, respectively. The two-band structure
of the normal state is more conveniently handled if we use
the Green’s functions G1,2 and F1,2, as is easily obtained
by the unitary transformation (5),

(
G1 0

0 G2

)
= Û †(k) Ĝ Û(k)

−
(
F1 e

−iφk 0

0 F2 e
iφk

)
= Û †(k) F̂ Û∗(−k). (16)

The phase factor −e∓iφk is introduced to cancel the phase
dependence of the anomalous Green’s functions on the two
bands [14].

The particular form of ∆̂(k), equation (13), prevents
the existence of inter-band terms in the Gorkov equations

{G0
1,2(k, iωn)}−1G1,2(k, iωn)

+∆1,2(k)F †
1,2(k, iωn) = 1

{G0
1,2(−k,−iωn)}−1F †

1,2(k, iωn)

−∆∗
1,2(k)G1,2(k, iωn) = 0, (17)

where, in this case,

∆1,2(k) = (ψ ± d|gk|). (18)

Thus, the Gor’kov equations are diagonal in the band in-
dex. The solution of the two-band Gorkov equations is
given by

G1,2(k, iωn) = − iωn + ξ1,2

(ω2
n + |∆1,2|2 + ξ21,2)

, (19)

and
F1,2(k, iωn) =

∆1,2

(ω2
n + |∆1,2|2 + ξ21,2)

. (20)

Going back to the spin basis, we find

Ĝ(k, iωn) = G1(k, iωn)σ̂1(k) +G2(k, iωn)σ̂2(k),

F̂ (k, iωn) = {F1(k, iωn)σ̂1(k) + F2(k, iωn)σ̂2(k)}iσ̂y.
(21)
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The gap functions of the two bands are obtained by solving
the self-consistent equation

∆α(k) = −kBT

∫
dk′

(2π)3
∑

n,β

V α,β

k,k′Fβ(k′, iωn). (22)

The corresponding pairing interaction is determined by

V α,β

k,k′ =
∑

γ,δ

∑

si,s′i

D∗
α,γ(k)U∗

s1γ(−k)Û†
γs2 (k)Vs1s2,s′2s′1(k,k′)

× Ûs′2δ(k
′)Û�

δs′1
(−k′)Dδ,β(k′) (23)

with D̂(k′) =diag(− exp(−iφk′),− exp(iφk′)). Using (14) it
follows

V̂k,k′ =
V

2

{[
es + et|gk ||gk′ |] σ̂0 +

[
es − et|gk ||gk′ |] σ̂x

− em

[|gk | + |gk′ |] σ̂z − iem

[|gk| − |gk′ |] σ̂y

}
.

(24)

The evaluation of ∆ = (ψ, d) is done by solving equa-
tion (22). We approximate the sum over k by

∑
k →

N0

∫
dΩ/4π

∫
dξ. After having performed the integral

over ξ, the gap equation reads

1
N0V

∆ = πkBT

εc∑

ωn>−εc

Q̂(iωn)∆ (25)

with

Q̂ =

[
Q1(iωn)

(
−es 0

em 0

)
+Q2(iωn)

(
em −es

−et em

)

+Q3(iωn)
(

0 em

0 −et

)]
(26)

where we introduced the functions

Q1 ≡ 1

2

〈
(1 + δN )√

ω2
n + |ψ + d|gk||2

+
(1 − δN )√

ω2
n + |ψ − d|gk||2

〉

k

Q2 ≡ 1

2

〈
(1 + δN)|gk|

√
ω2

n + |ψ + d|gk||2
− (1 − δN )|gk|
√
ω2

n + |ψ − d|gk||2

〉

k

Q3 ≡ 1

2

〈
(1 + δN )|gk|2

√
ω2

n + |ψ + d|gk||2
+

(1 − δN )|gk|2
√
ω2

n + |ψ − d|gk||2

〉

k
(27)

where 〈〉k denotes the integral over the Fermi surface∫
dΩk/4π. The parameter δN fixes the distribution of the

DOS at the Fermi level of the two bands, N1 = N0(1+δN)
and N2 = N0(1 − δN ).

3 Characterization of the superconducting
instability

The critical temperature and the basic structure of the
gap function ∆ = (ψ, d), which characterizes the super-
conducting instability, follow from the solution of the lin-
earized form of the self-consistent equation (25). We find

1
N0V

∆ = f1(εc, kBT )Q̂l∆ (28)

with
f1(εc, kBT ) = ln(4γεc/2πkBT ) (29)

and

Q̂l ≡
[(

−es em

em −et

)
+ δN 〈|gk|〉

(
em −es

−et em

)]
. (30)

where we have used the Euler’s constant γ = C ≈ 0.577.
For simplicity, we have assumed the same cut-off energy εc
for both bands.

Equation (28) has a non-trivial solution, if at least one
of the eigenvalues λi of the matrix Q̂l is positive. In this
case, the critical temperature follows the standard BCS
relation kBTc = 2εcγ/π exp(−1/(N0V λ

′)), where λ′ =
maxi(λi) > 0. Furthermore, the nucleating form of the
gap function follows from Q̂l∆′ = λ′∆′.

In this context, we introduce the term dominant chan-
nel to denote the channel responsible for the supercon-
ducting transition, and we call subdominant the other
channel characterized by λ′′ = mini(λi) and Q̂l∆′′ =
λ′′∆′′.

Solving the eigenstate problem Q̂l∆i = λi∆i, we find
the sets

2λ′ = −(es + et) + 2emδ + Λ (31)

∆′ ∝
(
−(es − et) + Λ

2(em − etδ)

)
, (32)

and

2λ′′ = −(es + et) + 2emδ − Λ, (33)

∆′′ ∝
(
−(es − et) − Λ

2(em − etδ)

)
. (34)

where

Λ =
√

(es − et)2 + 4(em − esδ)(em − etδ),

and δ = δN 〈|gk |〉 to simplify the notation. Our interest
lies in the characterization of the instability for all possi-
ble combinations of the three components of the pairing
potential (14). From equation (31), we determine the con-
ditions for the superconducting instability and the form
of the nucleating pairing state given by equation (32).

Obviously an attractive interaction either for spin-
singlet or -triplet pairing or both would yield a supercon-
ducting instability. If both es and et are repulsive (>0), the
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mixing term plays the decisive role. From equation (31) we
immediately see that an instability is absent for small |em|:

|em| < √
eset where es, et > 0. (35)

On the other hand, a large enough value of |em| can trigger
superconductivity, even with es, et > 0. The inter-parity
scattering can lower the pairing energy and generate a pos-
itive eigenvalue of the matrix Q̂l. This mechanism is for-
mally analogous to superconductivity driven by interband
Cooper pair scattering in a multi-band superconductor.

It remains to determine the form of the 2-dimensional
order parameter ∆ = (ψ, d) based on equation (32) which
nucleates at the superconducting transition. Before we
start discussing the conditions favoring different order pa-
rameter forms, we will consider the corresponding gap
topologies on the two bands. To be concrete, we now dis-
cuss the case relevant for CePt3Si, i.e. gk ∝ (ky,−kx, 0).
The gap on the two Fermi surfaces is given by

∆1,2(θ) = (ψ ± d C1| sin(θ)|), (36)

with C1 =
√

3/2 in the case of a spherical original Fermi
surface and, θ is the polar angle in k-space relative to
the z-axis. It is easly to see from equation (36) that the
gap topologies on the two bands depend only on the ratio
between the spin-singlet and the spin-triplet components
at the critical temperature

νl ≡ lim
T→Tc

ψ

d
= − (es − et) + Λ

2(em − etδ)
. (37)

More precisely we find that

|νl|

⎧
⎪⎨

⎪⎩

=0 point-nodes

<C1 line-nodes ⊥ z-axis

>C1 no nodes.

(38)

In case of a pure spin-triplet phase νl = 0, the two gap
functions ∆1 and ∆2 have the same amplitude and two
point-nodes appear along the z-axis. For a strongly dom-
inant spin-singlet phase with |νl| > C1, the two gap func-
tions do not show any kind of nodes. The dominant but
mixed spin-triplet phase characterazed by 0 < |νl| < C1

show the most interesting situation. In this case one of the
two gap function is characterized by the presence of two
line nodes perpendicular to the z-axis as showed in Fig-
ure 2. Now we turn to the conditions under which the order
parameter with different topologies nucleate. We expect
that point nodes, which characterize the pure spin-triplet
order parameter, appears if the spin-triplet potential et

is attractive and dominant. This is the case only if the
density of states on the Fermi levels is equal to δ = 0 and
the parity-mixing interaction em is absent. For the general
case with em 
= 0 equation (32) indicates that em = esδ
is necessary to compensate the mixing of the spin-triplet
with the spin-singlet pairing channels induced when the
DOS are different for the two Fermi surfaces δ 
= 0. If
this last condition is not satisfied, em 
= esδ, a spin-singlet
component appears giving rise to line nodes on one of the

Fig. 2. The gap amplitudes ∆1,2 of the two non-degenerated
bands for νl = 1.

two non-degenerates bands. We can then conclude that
line nodes could appear in CePt3Si as a consequence of a
dominant spin-triplet pairing interaction, et < es. Because
we can easily assume that in general a material without
an inversion center is characterized by em 
= esδ.

4 Evolution of the gaps below Tc

To obtain the magnitude of the two-dimensional order pa-
rameter ∆ = (ψ, d) as a function of the temperature, we
have to solve the self-consistent equation (25). This be-
comes simpler at T = 0,

∆ = Q̂0(∆)∆ (39)

with

Q̂0(∆) =

{
V N0

[
Q0

1(∆)

(
−es 0

em 0

)
+Q0

2(∆)

(
em −es

−et em

)

+ Q0
3(∆)

(
0 em

0 −et

)]
+

1
λ′
Q̂l

}
, (40)

where Q̂l and λ′ have been defined in equations (30)
and (31). The functions

Q0
1 ≡

〈
ln

(
γ

πkBTc
|∆1(k)|

(1+δN )
2 |∆2(k)|

(1−δN )
2

)〉

k
,

Q0
2 ≡

〈
|gk| ln

((
γ

πkBTc

)δN |∆1(k)| (1+δN )
2

|∆2(k)| (1−δN )
2

)〉

k

,

Q0
3 ≡

〈
|gk|2 ln

(
γ

πkBTc
|∆1(k)|

(1+δN )
2 |∆2(k)|

(1−δN )
2

)〉

k

are obtained from equation (27). The eigenproblem
λ0

i ∆
0
i = Q̂0(∆0

i )∆
0
i determines the ratio ν0 = ψ0/d0

between the s-wave spin-singlet ψ0 and the S-triplet d0

component at T = 0. However, the additional condition
λ0

i (∆
0
i ) = 1 is necessary to determine the magnitude of

the two components of the order parameter.
The parameters involved in equations (25) and (39)

are the three components of the pairing interaction
(es, et, em), the density of states on the two non-
degenerate bands δN and the strength of the interac-
tion 1/N0V . To simplify the study of such equations,
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it is more convenient to derive the three components of
the pairing interaction (es, et, em) from parameters which
characterize the superconducting instability. These are the
ratio νl, introduced in equation (37), and a second param-
eter ρ which characterizes the subdominant channel,

ρ ≡ 1
N0V

λ′′ − λ′

λ′λ′′
. (41)

λ′′ has been defined in equation (33). If the subdominant
channel is attractive, then ρ = ln(T ′′

c /Tc) with

kBT
′′
c = 2εcγ/π exp(−1/(N0V λ

′′)),

otherwise ρ = 1/N0Veff , where

1
N0Veff

=
1

N0V λ′
− 1
N0V λ′′

(42)

defines the effective interaction in the case of a repulsive
subdominant channel.

Introducing

1
κ
≡

∑

0≤n<( εc
2πkB Tc

− 1
2 )

2
2n+ 1

=
1

N0V λ′
(43)

and through substitution of λ′ and λ′′ in equations (37,
41, 43), we find (es, et, em) = (λs, λt, λm)/

√
λ2

s + λ2
t + λ2

m
with

λs = −κ(1 + ν2
l + 2νlδ + κν2

l (δ2 − 1)ρ)
(1 + ν2

l + 2νlδ)(δ2 − 1)(κρ− 1)

λt = − κ(1 + ν2
l + 2νlδ + κ(δ2 − 1)ρ)

(1 + ν2
l + 2νlδ)(δ2 − 1)(κρ− 1)

λm =
κ(κνl(δ2 − 1)ρ− δ(1 + ν2

l + 2νlδ))
(1 + ν2

l + 2νlδ)(δ2 − 1)(κρ− 1)
.

The case λ′′ = 0

We start the discussion considering the case where the
subdominant channel is inactive, λ′′ = 0. In this case, the
interaction parameters es, et, and, em lie on a line given by

|em| =
√
eset with es, et < 0, (44)

in this limit, the parameter |ρ| → ∞.
The only eigenvector of the matrix Q̂T=0(∆0) with a

non-vanishing eigenvalue corresponds to ∆0 = ∆′, which
is given by equation (32). Thus, the ratio between the
spin-singlet and the spin-triplet components at T = 0 is
equal to that obtained for T = Tc, i.e. ν0 = νl. This result
is a first indication that the form of the order parameter
is unchanged upon temperature when the subdominant
channel is inactive. This is confirmed by the numerical
solution of equation (25).

Figure 3 shows the spin-singlet ψ and the spin-triplet
component d as a function of temperature obtained for
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Fig. 3. The order parameter ∆ = (ψ, d) as a function of the
temperature when the subdominant channel is inactive, i.e.
λ′′ = 0. The inset plot shows the ratio ν = ψ/d. (νl = 0.5,
δ = −0.5).

ν = 0.5 and δ = −0.5. The inset shows the ratio ν = ψ/d.
This does not depend on temperature. Furthermore, in
this case there are explicit expressions for the two compo-
nents

d0γ

kBTcπ
=

exp

{
−

〈
(1 + δN )(ν + |gk|)2 ln(|ν + |gk||)

〉
〈
(1 + δN)(ν + |gk|)2 + (1 − δN )(ν − |gk|)2

〉
}

× exp

{
−

〈
(1 − δN )(ν − |gk|)2 ln(|ν − |gk||)

〉
〈
(1 + δN)(ν + |gk|)2 + (1 − δN )(ν − |gk|)2

〉
}

ψ0γ

kBTcπ
=

exp

⎧
⎪⎪⎨

⎪⎪⎩
−

〈
(1 + δN )(ν + |gk|)

2 ln
(
|1 +

|gk|
ν |
)〉

〈
(1 + δN )(ν + |gk|)2 + (1 − δN )(ν − |gk|)2

〉

⎫
⎪⎪⎬

⎪⎪⎭

× exp

⎧
⎪⎪⎨

⎪⎪⎩
−

〈
(1−δN)(ν−|gk|)2 ln

(
|1−

|gk|
ν |
)〉

〈
(1+δN)(ν+|gk|)2+(1 − δN )(ν − |gk|)2

〉

⎫
⎪⎪⎬

⎪⎪⎭

of the order parameter. For a pure spin-singlet order pa-
rameter, ν → ∞, and for the pure protected spin-triplet
state, ν = 0, we recover the standard result: ψ0/kBTc =
π/γ ≈ 1.76, and d0/kBTc = π/γ exp〈−|gk |2 ln(|gk |)〉 ≈ 1.65
for gk ∝ (ky,−kx, 0), respectively.

The case λ′′ �= 0

However, if the subdominant channel is active, the ratio
ν0 ≡ ψ0/d0 between the spin-singlet and the spin-triplet
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components,

ν0 =

− (Q0
3−Q0

2δ)(1+ν2
l +2νlδ)−(1−δ2)(Q0

3κ+νl(Q
0
2κ+νl+δ))ρ

(Q0
2−Q0

1δ)(1+ν2
l +2νlδ)−(Q0

2κ−νl+Q0
1κνl−δ)(1−δ2)ρ

(45)

at T = 0 is in general different from that obtained for
T = Tc. Moreover, ν0 depends on the cut-off energy εc
via κ. The magnitude of the order parameter, which fol-
lows combining equation (45) with the equation

ρ
[
ν2

l Q
0
1 +Q0

3 + 2νlQ
0
2

]

ν2
l + 1 + 2νlδ

=
(Q0

1Q
0
3 −Q0

2
2)

(1 − δ2)
, (46)

which is obtained from the condition λ0
i (∆

0
i ) = 1, also

depends on εc. However, no changes in the qualitative be-
haviors of the gaps as a function of temperature have been
observed solving equation (25) for different values of the
cut-off energy εc.

Comparing the condensation energy at T = 0,

Ec = −N1

4
〈|∆1(k)|2〉k − N2

4
〈|∆2(k)|2〉k

= −N0

2
(|ψ0|2 + |d0|2 + 2δψ0d0) (47)

obtained for different cases, we found that

|EA
c | > |E0

c | > |ER
c |. (48)

Here, we introduce ER
c and EA

c to denote the condensation
energy obtained in the presence of a repulsive, λ′′ < 0,
and attractive, λ′′ > 0, subdominant channel, respectively.
E0

c denotes the limit case characterized by λ′′ = 0. The
Copper pair gains condensation energy if the subdominant
channel is attractive. On the contrary, the condensation
energy of the pairs decreases in the presence of a repulsive
subdominant channel.

Figure 4 shows the order parameter as a function of the
temperature obtained for two representative cases. The
first case is characterised by a repulsive, λ′′ < 0, sub-
dominant channel with λ′′/λ′ ≈ −5000, while the second
is characterized by an attractive, λ′′ > 0, subdominant
channel with T ′′

c /Tc = 0.7. In both cases, ν = ψ/d = 0.5
and gk ∝ (ky,−kx, 0). This means that the nucleation of
the superconducting state is characterized in both cases
by two line nodes, perpendicular to the z-axis, on the gap
amplitude, ∆2(θ) = (ψ − d

√
3/2| sin(θ)|), of the second

non-degenerated band. The polar angle θ± determines the
position of those nodes. In our example, the two line nodes
are characterised by θ± = π/2±(π/2−arcsin(

√
2/3ν)) (we

suppose a native spherical Fermi surface). From the insets
of Figure 4 we see that the ratio ν between the spin-singlet
and the spin-triplet component now changes with the tem-
perature. Thus the position of the nodes also now depends
upon temperature. To the right of the graphs in Figure 4
we draw the gap structure on the second Fermi surface
schematically. The arrows show the directions along which

0.5 1
0

0.5

1

1.5

2

2.5

ψ/k
B

 T
c

d/k
B

 T
c

T/T
c

0.5 1

0.5

1

ν

T/T
c

θ−

θ+

kz

λ''<0

0.5 1
0

0.5

1

1.5

2

2.5

ψ/k
B

 T
c

d/k
B

 T
c

T/T
c

0.5 1

0.5

1

ν

T/T
c

θ−

θ+

kz

λ''>0

Fig. 4. The order parameter ∆ = (ψ, d) as a function of tem-
perature. The first plot shows the case with a repulsive, λ′′ < 0,
subdominant channel, and λ′′/λ′ ≈ −5000. The second plot
shows the result obtained when the subdominant channel is
attractive, λ′′ > 0, and characterized by T ′′

c /Tc = 0.7. The
thin lines are obtained for λ′′ = 0. ( νl = ψ/d = 0.5, δ = −0.5,
εc = 60kBTc).

the accidental line nodes move, decreasing the tempera-
ture. This last depends on the character of the subdomi-
nant channel.

In the case of an attractive subdominant channel there
is the possibility of a second phase transition. This is the
case if there is a second solution ∆′′

0 = (ψ′′
0 , d

′′
0) for equa-

tions (45, 46) with

|ψ′′
0 |2 + |d′′0 |2 + 2δψ′′

0d
′′
0 > |ψ0|2 + |d0|2 + 2δψ0d0. (49)

Our numerical investigation seems to show that in general
there is no second phase transition. The solution nucleat-
ing at the highest critical temperature seems to maintain
the highest condensation energy, changing its structure
continuously with temperature. The only exception affects
systems with constant density of state, δ = 0, and with
no mixing pairing interaction component, em = 0. In this
particular case, we could have a second transition between
a spin-triplet state and a spin-singlet state.

5 The effect of the disorder

Effects of disorder are described by potential scattering
of the quasiparticles, which in real-space representation is
given by

Himp =
∑

i

Hi, Hi =
∫
u(r − ri)ψ†

s(r)ψs(r)dr, (50)
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Fig. 5. The-self energy contributions due to impurity scatter-
ing in the Born approximation, of normal type ΣG (a) and of
anomalous type ΣF (b).

where u(r) is the potential of a non-magnetic impu-
rity, which we consider rather short-ranged, such that
s-wave scattering is dominant. We are interested in the
disorder-averaged normal and anomalous Green’s func-
tions Ĝ and F̂ ,

Gλµ(r − r′) = −〈Tτ{ψλ(r)ψ†
µ(r′)}〉

Fλµ(r − r′) = 〈Tτ{ψλ(r)ψµ(r′)}〉

F †
λµ(r − r′) = 〈Tτ{ψ†

λ(r)ψ†
µ(r′)}〉, (51)

with r = (r, τ) and where the bracket denotes the thermal
average.

For the impurity average, we use the Born approxi-
mation [22], neglecting the possibility of more than two
scattering events at the same impurity, which is valid pro-
vided that the potential is small in comparison with the
characteristic electron energy scale εF (εF = Fermi energy,
or analogue the band width).

Formally, the impurity scattering enters the self-energy
of the Greens function of the normal, Σ̂G, Figure 5a, and
the anomalous type, Σ̂F , see Figure 5b. Their mathemat-
ical expressions read

Σ̂G(iωn) =
Γ

πN0

∫
dk′

(2π)3
Ĝ(k′, iωn)

Σ̂F (iωn) =
Γ

πN0

∫
dk′

(2π)3
F̂ (k′, iωn), (52)

where Γ ≡ πnimpN0u
2 is the averaged scattering rate,

N0 ≡ (N1 + N2)/2 and N1,2 are the densities of state
(DOS) of the two bands at the Fermi level. In addition,
we have introduced the impurity concentration nimp and
the s-wave scattering potential u2.

The Gor’kov equations with these self-energy contribu-
tions are formally analogous to those obtained for systems
with an inversion symmetry [22]

(
Ĝ−1

0 (k, iωn) − Σ̂G(iωn)
)
Ĝ(k, iωn)

+
(
∆̂(k) + Σ̂F (iωn)

)
F̂ †(k, iωn) = σ̂0

(
Ĝ−1�

0 (−k,−iωn) + Σ̂�
G(−iωn)

)
F̂ †(k, iωn)

−
(
∆̂†(k) + Σ̂†

F (iωn)
)
Ĝ(k, iωn) = 0. (53)

The two-band Green’s functions G1,2 and F1,2, are de-
rived by unitary transformation (5), as already done for

the clean system (16)
(
{G0

1,2(k, iωn)}−1 −ΣG(iωn)
)
G1,2(k, iωn)

+ (∆1,2(k) +ΣF (iωn))F †
1,2(k, iωn) = 1

(
{G0

1,2(−k,−iωn)}−1 +ΣG(−iωn)
)
F †

1,2(k, iωn)

−
(
∆∗

1,2(k) +ΣF (iωn)
)
G1,2(k, iωn) = 0,

(54)

where, in this case,

ΣG(iωn) =
Γ

2πN0

∫
dk′

(2π)3
{
G1(k′, iωn) +G2(k′, iωn)

}

ΣF (iωn) =
Γ

2πN0

∫
dk′

(2π)3
{
F1(k′, iωn) + F2(k′, iωn)

}
.

(55)

Thus the Gor’kov equations are still diagonal in the band
index. The scattering on an impurity does not change the
spin of a quasiparticle and with the impurity-average a
certain translational symmetry is restored such that the
two bands do not mix in this approximation. Interband
effects occur only through virtual processes.

Introducing the modified gap functions ∆̃1,2(k, iωn) =
∆1,2(k) +ΣF (iωn) and frequencies iω̃n = iωn −ΣG(iωn),
the solution of the two-band Gor’kov equations is given by

G1,2(k, iωn) = − iω̃n + ξ1,2

(ω̃2
n + |∆̃1,2|2 + ξ21,2)

, (56)

F1,2(k, iωn) =
∆̃1,2

(ω̃2
n + |∆̃1,2|2 + ξ21,2)

, (57)

in which ∆̃1,2(k, iωn) and ω̃n have to be determined self-
consistently. The corresponding equations are given by the
substitution of equations (56) and (57) into equations (22)
and (55),

ω̃n = ωn + ω̃nΓQ1(iω̃n), (58)

ψ̃ = ψ + ψ̃ ΓQ1(iω̃n) + dΓQ2(iω̃n), (59)

1
N0V

∆ = πkBT

εc∑

ωn>−εc

Q̂(iω̃n)∆, (60)

where in the last equation ∆ = (ψ, d), and

Q̂(iω̃n) =
Q1(iω̃n)

1 − ΓQ1(iω̃n)

(
−es 0

em 0

)

+
Q2(iω̃n)

1 − ΓQ1(iω̃n)

(
em −es

−et em

)

+
{
Q3(iω̃n) +

ΓQ2
2(iω̃n)

1 − ΓQ1(iω̃n)

}(0 em

0 −et

)
(61)
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is defined using the functions Q1, Q2, Q3, which are ob-
tained by substituting ψ and ωn by ψ̃ and ω̃n in equa-
tion (27), respectively.

The effect of disorder on the superconducting insta-
bility is deduced from the solution of the linearized form
of the self-consistent system of equations (58–60). Using
standard summation techniques [18], we find

1
N0V

∆ =
{
f1(εc, kBT )Q̂l + f2(Γ, kBT )Q̂l

Γ

}
∆, (62)

where f1 and Q̂l have been defined in equations (29)
and (30), respectively. Instead, f2 is defined by

f2(Γ, kBT ) = Ψ

(
1
2

+
Γ

2πkBT

)
− Ψ

(
1
2

)
(63)

and

Q̂l
Γ = (1 − δ2N〈|gk|〉2)

(
0 −em

0 et

)
. (64)

Here we have used the digamma function Ψ(z) defined by
Ψ(z) ≡ d/dz ln(z!).

First, we would like to note that the zeros in the first
column of the matrix Q̂l

Γ are a consequence of Anderson’s
theorem [23], i.e. the conventional s-wave pairing state is
not affected by non-magnetic impurities. For more general
states in our two-dimensional order parameter space, Tc

decreases with growing disorder. We distinguish two basi-
cally different cases here: For the pure system either both
eigenvalues λ′, λ′′ are positive, or one of the two, λ′′ is
negative. In the first case, there is a second lower (bare)
critical temperature kBT

′′
c = 1.14εc exp(−1/(N0V λ

′′)).

The case λ′′ = 0

Before starting the discussion of these two general cases,
we consider the boundary situation with λ′′ = 0. The only
eigenvector of the matrix Q̂l

Γ with a non-vanishing eigen-
value corresponds to the form of ∆′ given by in equa-
tion (32). Hence, in this case, disorder would not alter the
structure of the nucleating order parameter

∆ =

(
ψ

d

)
∝ ∆′ ∝

( √
|es|

sign(em)
√
|et|

)
. (65)

The instability equation (62) becomes

1
N0V

= λ′f1(εc, kBT ) + et(1 − δ2)f2(Γ, kBT ), (66)

where et(1 − δ2) is the eigenvalue of the matrix Q̂l
Γ . We

replace f1 = ln(Tc/T ) + 1/N0V λ
′ and λ′ = −(es + et) +

2emδ in equation (66) and find

ln(Tc/T ) =
et(1 − δ2)

(es + et) − 2emδ
f2(Γ, kBT ). (67)
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Fig. 6. The critical temperature as a function of the impurity
concentration reduced so as to have a slope of −1 at t = 1 for
different values of η. For the value of η, see equation (69). This
result is valid only for λ′′ = 0.

Using equation (65) we obtain

ln
(

1
t

)
=

1
1 + η

f2(γ, t), (68)

where

η =
(ψ + δd)2

d2(1 − δ2)
, (69)

with t = T/Tc and γ = Γ/kBTc. The effect of impurity
scattering affects Tc as in unconventional superconductors
in general [24]. However, a distinctive point is the presence
of the pre-factor 1/(1 + η). A similar result was obtained
for the s+g-superconductivity in borocarbides [25].

In order to visualize the behavior of the onset temper-
ature of superconductivity depending on impurity concen-
trations, we introduce the normalization with respect to
the initial slope of Tc-reduction,

n′ =
nimp

(−dnimp/dt)t=1
=

γ̃

(−dγ̃/dt)t=1
. (70)

Figure 6 shows the evolution of t as a function of n′ for
different values of η when the subdominant channel has
λ′′ = 0.

For η > 0, the superconducting instability extends to
large impurity concentrations n′ with the asymptotical be-
havior of the critical temperature

0.88 t−η − t =
4(1 + η)

π
n′. (71)

Hence, we observe a variation of the robustness against
non-magnetic impurities. For η = 0, the standard behav-
ior of an unconventional superconductor is found, while for
η → ∞ the non-sensitivity against disorder analogous to
a conventional superconducting phase is realized. The lat-
ter case coincides with the suppression of the spin-triplet
component in the pure phase. The exponent η can be in-
terpreted as the product of two ratios

η = η1η2 with η1,2 =
〈N1∆1(k) +N2∆2(k)〉
N1,2〈∆1(k) −∆2(k)〉 , (72)
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where η1,2 corresponds to the ratio between the s-wave
spin-singlet component (numerator) and the spin-triplet
component lying in the first and second band (denomi-
nator), respectively. Once 〈N1∆1(k) + N2∆2(k)〉 �= 0, the
robustness of the superconducting state against disorder
is introduced by the presence of a s-wave spin-singlet con-
tribution.

For other unconventional pairing states which do not
belong to the trivial representation A1, the impurity con-
tribution to the self-energy of anomalous type is zero and
we recover exactly the result obtained by Larkin [24].

The case λ′′ �= 0

In this case, the eigenvectors of the two matrices Q̂l and
Q̂l

Γ are different, such that we need to diagonalize the
matrix appearing in equation (62). The highest eigenvalue
and its eigenvector read

2λ = 2λ′ f1 + c1 − c2 +
√
c22 + c3, (73)

∆ ∝

⎛

⎝ψ′ +
√

c2
2+c3−c4

f1c5

d′

⎞

⎠ , (74)

where (ψ′, d′) are normalized (ψ′2+d′2 = 1). Furthermore,
the parameters ci are defined as

c1 = (1 − δ2)
[
et −

et(et − es − 2emδ) + 2e2m
Λ

]
f2,

c2 = Λf1−
(1 − δ2)

2

{
Λ+

e2t + es[4δ(em − etδ) − es]
Λ

}
f2,

c3 = −4(e2m − eset)(em − etδ)2(δ2 − 1)2

Λ2
f2
2 ,

c4 = Λf1 + et(1 − δ2)f2,

c5 =
√

4(em − etδ)2 + (et − es + Λ)2. (75)

The equation determining the critical temperature can be
expressed as

2
N0V

= 2λ′f1(εc, kBT ) + c1 − c2 +
√
c22 + c3. (76)

When we again use the relation f1 = ln(Tc/T )+1/N0V λ
′,

we can cancel the 2/N0V term appearing on the left-hand
side of equation (76) and reach a new convenient repre-
sentation,

[
2λ′ ln

(
1
t

)
+ c1

]2

− 2
[
2λ′ ln

(
1
t

)
+ c1

]
c2 − c3 = 0.

(77)
We assume now that the second channel is attractive, λ′′ >
0, so that the clean system is characterized by a second
lower (bare) critical temperature t′′ = T ′′

c /Tc. We use the
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Fig. 7. The critical temperature as a function of the impurity
concentration and for different values of η. Those correspond-
ing to the dominant channel, thick lines, have been reduced
so as to have a slope of −1 at t = 1. The thin lines show
the evolution of the subdominant channel. This result is ob-
tained supposing that the subdominant channel is attractive
and t′′ = 0.2.

relation f1 = ln(Tc/T ) + ln(t′′)λ′′/(λ′′ − λ′) to simplify
equation (77). This leads to an equation of the second
order in ln(t) of the following form which allows us to
determine both transition temperatures (t = T/Tc or t =
T ′′/Tc)

ln
(

1
t

)
(ln(t′′) − f2(γ, t) − ln(t)) =

1
1 + η

f2(γ, t) ln(t′′),

(78)
where η is now given by the form of the order parameter
in the clean system

η =
(ψ′ + δd′)2

d′2(1 − δ2)
, (79)

and (ψ′, d′) are connected to the pairing potential via
equation (32).

Figure 7 shows the solutions of equation (78) for dif-
ferent values of η and for t′′0 = 0.2 in the pure case. The
thick line shows the onset temperature of superconduc-
tivity as a function of n′. The thin line correspond to the
bare transition temperature of subdominant instability, as
obtained from the square root appearing in equation (76).

The presence of an attractive subdominant channel
supports the survival of superconductivity under non-
magnetic impurity scattering. The lowest limit for the crit-
ical temperature is given by

lim
n′→∞

t = t
′′ 1

1+η

0 . (80)

Using equation (76) to simplify equation (74), we find that
the form of the order parameter nucleating at the critical
temperature t is given by

(
ψ

d

)
∝
(

1 + f3(t) δf3(t)

0 1

)(
ψ′

d′

)
, (81)

where we have introduced the function f3(t) defined as

f3(t) = − (1 + η) ln(t)
(1 + η) ln(t) − ln(t′′)

. (82)
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Fig. 8. The spin-singlet component ψ of the normalized order
parameter as a function of the critical temperature t and for
different values of η. This result is obtained supposing that the
subdominant channel is attractive with t′′ = 0.2 and that the
order parameter of the clean system is spin-triplet .

The spin-singlet component of the order parameter in-
creases with disorder. In the limit of a dirty system, the
character of the order parameter is purely spin-singlet.
Note that the subdominant instability is, in any case, sup-
pressed by the disorder. The larger η, the stronger the
suppression.

The behavior of the spin-singlet component ψ of the
normalized order parameter as a function of the critical
temperature t and for different values of η is shown in
Figure 8. The order-parameter of the clean system is sup-
posed to be in the spin-triplet channel.

The case with a repulsive subdominant channel, λ′′ <
0, can be easily treated within equations (78) and (82),
substituting ln(t′′) with 1/N0Veff , equation (42). From
equation (78) we find that superconductivity disappears
for sufficiently high impurity concentrations. The critical
impurity concentration n′

c is given by

0.88 e
1

N0Veff

η
1+η =

4(1 + η)
π

n′
c. (83)

Furthermore, the spin-singlet component of the nucleating
order parameter decreases with disorder evolving towards

(
ψc

dc

)
∝
(
−δd′

d′

)
(84)

at the critical impurity concentration n′
c.

6 Conclusion

In this paper we characterized the superconducting state
belonging to the trivial representation A1 in a material
without an inversion center and strong antisymmetric
spin-orbit coupling. The corresponding pairing state in-
volves spin-singlet s-wave pairing as well as a spin-triplet
component specific to the spin-orbit coupling. In addition
to the pure spin-singlet s-wave and spin-triplet pairing,

the pairing interaction includes a parity mixing contribu-
tion corresponding to an inter-parity scattering of Cooper
pairs.

The combination of the three types of pairing inter-
action (es, et, em) and the distribution of the density of
states on the two non-degenerated bands δ determine the
form of the order parameter represented by a singlet and a
triplet component ∆ = (ψ, d). The two-component struc-
ture of the order parameter allows for two distinct pairing
channels, a dominant and a subdominant one. The pairing
instability of the clean system is completely characterized
by the property of the dominant channel. For the case of
CePt3Si, we found that if |d| > |ψ| and |ψ| 
= 0, then
one Fermi surface would have accidental line nodes per-
pendicular to the z-axis in the quasiparticle gap. This is
the case if the spin-triplet pairing interaction is more at-
tractive than the spin-singlet interaction, i.e. et < 0 with
et < es and if em 
= esδ. There is important experimental
evidence confirming the realization of this superconduct-
ing state in CePt3Si. In particular, the analysis of the
results concerning the nuclear magnetic relaxation rate
1/T1T , obtained by Pt-NMR [26–28] shows two behaviors
which contradict the conventional picture of superconduc-
tivity. The NMR relaxation rate shows the Hebel-Slichter
coherence peak, indicating an s-wave-like pairing, and at
low temperature shows a power law, indicating unconven-
tional pairing. Recent numerical calculations of 1/T1T [29]
show that this situation is compatible with the realization
of the “s-wave” state which we propose.

Decreasing the temperature the structure of the order
parameter is strongly affected by the presence of the sub-
dominant channel. The condensation energy at T = 0 of
the superconducting state increases in the case of an at-
tractive subdominant channel. The displacement direction
of the line nodes as a function of the temperature will indi-
cate if the subdominant channel is attractive or repulsive.
The angle-resolved thermal conductivity and Josephson
effect could give information on the character of the sub-
dominant pairing channel. This methods are sensitive to
the position of the line nodes. A possible movement of the
line nodes with temperature should be detected.

The presence of two instabilities in the linearized gap
equation, the dominant and subdominant one, provide
the possibility that two superconducting phase transitions
might appear. From our study, this possibility seems to be
reduced to an exception.

We have also shown that depending on the properties
characterizing the two channels, the A1-phase is affected
by non-magnetic impurities in different ways. In all cases
the dependence of Tc on the impurity concentration is very
characteristic and could be used to establish the realiza-
tion of the A1-phase and the property of the subdominant
pairing state.
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Appendix A: Origin of mixed singlet-triplet
pairing interaction em

In this Appendix, we consider a microscopic origin for
the mixed singlet-triplet pairing interaction em given
in equation (13). In particular, we show that that the
Dzyaloshinskii-Moriya [19,20] (DM) magnetic interaction
gives a contribution to em. Such an interaction is well
known to exist for magnetic systems that break inversion
symmetry. We then show how this interaction can arise
from a single particle Hamiltonian with the same struc-
ture as that given in equation (2)

Hm
0 =

∑

k,s,s′

[
ξm
k σ0 + αmgk · σ

]
ss′ c

†
ks
cks′ , (85)

for both a weakly interacting Fermi liquid and for a
Hubbard model near half filling. However, the parame-
ter of this microscopical Hamiltonian equation (85) should
not be confused with those characterizing the phenomeno-
logical Hamiltonian equation (2). The microscopic and the
effective Hamiltonian can be connected by a renormalisa-
tion group treatment. This kind of connection is strongly
dependent on the shape of the Fermi surface and will not
be discussed here. However, the symmetry properties of
the Hamiltonian are not affected by this process. Thus,
our analysis suffices to show that em is not zero in general
and may be in some cases provide a substantial contribu-
tion to the superconducting condensation energy.

A.1 DM Interaction

The DM interaction can be written

HDM =
1
N

∑

q
iD(q) · Sq × S−q (86)

where D(q) is a real vector that satisfies D(q) =
−D(−q). Invariance of HDM under point group opera-
tions leads to the constraint R̃DRq = Dq , where R̃ is the
proper part of the rotation (R̃ = Det(R) ×R). Note that
g(k) satisfies the same symmetry relation (R̃g

Rk = gk).
Consequently, the two vectors D(q) and gq are not or-
thogonal. Extracting the pairing contribution from equa-
tion (86) leads to the following mixed singlet-triplet pair-
ing interaction

[−D(k − k′) · τ̂ ]s1s2
τ̂†s′

2s′
1
+τ̂s1s2 [D(k − k′) · τ̂ ]†s′

2s′
1
. (87)

If we assume the form D(k−k′) = em
m(gk′−gk) and impose

symmetry constraints that arise from Pauli exclusion, we
obtain a term of the same form as the mixed parity term
of equation (14). As will be shown below, this form for D
can be justified.

A.2 DM Interaction in a weakly interacting Fermi liquid

The DM interaction is known to exist in materials without
inversion symmetry. This implies that the DM interaction

should arise as a consequence of the existence of gk in the
single particle Hamiltonian. Here we calculate the contri-
bution of gk to the DM interaction through a calculation
of the spin susceptibility. In the normal state the static
spin-susceptibility is given by

χij(q) = −µ2
BkBT

∑

k

∑

ωn

tr{σ̂iĜ(k, ωn)σ̂jĜ(k+q, ωn))}.

(88)
Upon using the form for the normal state Green’s func-
tions and carrying out the trace over the spins it can be
shown

χij(q) = −2µ2
BkBT

∑

k

∑

ωn

{[
δij(1 − ĝk · ĝk+q)

+ (êi · ĝk)(êj · ĝk+q) + (êi · ĝk+q)(êj · ĝk)

+ i(êi × êj) · (ĝk+q − ĝk)
]
G1(k, ωn)G1(k + q, ωn)

+
[
δij(1 − ĝk · ĝk+q) + (êi · ĝk)(êj · ĝk+q)

+ (êi · ĝk+q)(êj · ĝk) − i(êi × êj) · (ĝk+q − ĝk)
]

·G2(k, ωn)G2(k + q, ωn)

+
[
δij(1 + ĝk · ĝk+q) − (êi · ĝk)(êj · ĝk+q)

− (êi · ĝk+q)(êj · ĝk) − i(êi × êj) · (ĝk+q + ĝk)
]

·G1(k, ωn)G2(k + q, ωn)

+
[
δij(1 + ĝk · ĝk+q) − (êi · ĝk)(êj · ĝk+q)

− (êi · ĝk+q)(êj · ĝk) + i(êi × êj) · (ĝk+q + ĝk)
]

+ G2(k, ωn)G1(k + q, ωn)} .

The DM interaction is antisymmetric under interchange
of i and j:

D(q) = −2µ2
BkBT

∑

k,ωn

{[G1(k, ωn)G1(k + q, ωn)

− G2(k, ωn)G2(k + q, ωn)] [ĝk+q − ĝk]

+ [G2(k, ωn)G1(k + q, ωn)

− G1(k, ωn)G2(k + q, ωn)] [ĝk+q + ĝk]
}
. (89)

Carrying out the sum over Matsubara frequencies, ex-
panding the expression for D(q) to linear order in q one
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finds

D(q) = 2µ2
B

∑

k

{[∇n2 · q
∇ξ2 · q

− ∇n1 · q
∇ξ1 · q

]
q · ∇ĝ

+ ĝq ·
[
n1 − n2

(ξ1 − ξ2)2
(∇ξ1 + ∇ξ2) −

∇n1 + ∇n2

ξ1 − ξ2

]}

(90)

where ξi = ξi(k), ni = (eβξi + 1)−1 is the Fermi distribu-
tion function for band i, and ∇ = ∇k. To linear order in
α, this gives

D(q) = −8µ2
Bα

m

3

∑

k

d2n(εmk )

dεm2
k

q · ∇kgk. (91)

For example if gk = k/kF (valid for a material with point
group O), this gives

D(q) = −8µ2
Bα

m

3
N ′m

0

q

kF
= −4

3
χm

P

αN ′m
0

Nm
0

q

kF
(92)

where N ′m
0 = dNm

0
dξF

|ξ=0 is the derivative of the density of
states evaluated at the Fermi surface and χP the Pauli
susceptibility. This is a perturbative form and the deriva-
tive of density of states is considered at the Fermi surface
in the absence of spin-orbit coupling. Estimates for αm

show that the value can be a considerable fraction of the
band width. This result shows that there is a second or-
der perturbation contribution to the mixing term em if
the derivative in the density of state N ′m

0 is different from
zero.

A.3 DM interaction within the Hubbard for finite ASOC

Here we derive the DM interaction in the strong coupling
regime by finding the effective Hamiltonian that governs
the low-energy excitations of the Hubbard model with
ASOC in the large U/t regime. The technique used to
extract the Hamiltonian for the low-energy excitations is
similar to that used for the derivation of the t-J model
starting from the Hubbard model.

We choose as zeroth-order Hamiltonian the on site
Coulomb repulsion

U = U
∑

i

ni↑ni↓. (93)

The eigenstates of U are Fock states in the Wannier rep-
resentation. U divides the Fock space into two sub spaces:

S = [|n1↑, n1↓, n2↑, · · · 〉 : ∀ni↓ + ni↑ ≤ 1]

D = [|n1↑, n1↓, n2↑, · · · 〉 : ∃ni↓ + ni↑ = 2] . (94)

D contain at least one doubly occupied site, and S are all
configurations with either one or zero electrons per site.
The hopping

T = T s + T a (95)

where

T s = −
∑

ij,ss′
tmijσ0c

†
iscjs′

T a = −
∑

ij,ss′
iαm

ij · σss′c†iscjs′ (96)

contains now an antisymmetric term (αij = −αji) corre-
sponding to the ASOC contribution. This means that also
the effective interaction resulting by the superexchange
process has an antisymmetric part. This last correspond
to the DM interaction

HDM = −
∑

ij,s1···s4

i
tmij αm

ij · (σs1s2δs3s4 − σs3s4δs1s2)
U

× c†is1
cjs2nj↑nj↓c

†
js3
cis4

=
∑

ij

4itmij
U

αm
ij · (Si × Sj) . (97)

The interaction HDM is a factor αm/tm smaller than the
usual spin-spin interaction constant J . While αm/tm will
be less than one, it is not necessarily small.
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