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Abstract. Scaling down robots to miniature size introduces many new challenges including memory and program size limitations, low 

processor performance and low power autonomy. In this paper we describe the concept and implementation of learning of a safe-

wandering task with the autonomous micro-robots, Alice. We propose a simplified reinforcement learning algorithm based on one-step Q-

learning that is optimized in speed and memory consumption. This algorithm uses only integer-based sum operators and avoids floating-

point and multiplication operators. Finally, quality of learning is compared to a floating-point based algorithm. 

 

Keywords: Reinforcement Learning; Q-Learning; micro-robots. 
 

1. Introduction 

Swarm Intelligence metaphor  [1] has become a hot topic in recent years. The number of its successful applications is 

exponentially growing in combinatorial optimization [8], communication networks [17] and robotics [14]. This approach 

emphasizes collective intelligence of groups of simple and small agents like ants, bees, and cockroaches. Small robots are 

also good frameworks to study biology [12]. Small mobile machines could one day perform noninvasive microsurgery, 

miniaturized rovers could greatly reduce the cost of planetary missions, and tiny surveillance vehicles could carry equipment 

undetected. 

Miniaturizing robots introduces many problems in physical parts and behavior implementations [6]. The robot parts must 

have low power consumption. This forces the designer to add parts such as sensors conservatively. Due to simplicity of 

hardware parts, the control program must handle all additional processing such as noise filtering. The instruction set of 

processors is reduced. The robot behavior must be coded compactly and efficiently while having limitation on program size, 

memory and processing speed. Additionally, due to limited power autonomy, there is a serious limitation in long tasks such 

as learning. 

In this paper we describe how to practically tackle on-line learning problem on micro-robots with processing constraints 

and optimize it in program and memory consumption. The proposed algorithm is then verified on learning of a safe-

wandering task using the Alice micro-robots [3].  
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The next section deals with previous works in micro-robots, reinforcement learning and one-step Q-learning algorithm. 

The third section discusses the problems happening when applying simplifications to Q-learning and introduces an optimized 

algorithm in size, processing time, and memory consumption based on integer-calculation and low-level instructions. Section 

4 presents the micro-robot Alice and its hardware and software features. In the following section the learning of safe-

wandering is described and the experimental results are discussed. The 6th section compares the results to floating-point 

based algorithm and the last section contains conclusion and future works. 

2. State of the Art  

In his PhD thesis, Gilles Caprari [6] showed processing power of a micro-robot, which is related to available energy, 

scales down by L2 factor (L is length). This drastically limits control algorithm capacity. It therefore forces robot designers to 

further reduce the calculation power by using 8-bit instead of 16 or 32-bit microcontrollers. As a consequence, we have to 

accept that the intelligence of micro-robots will be limited. Nevertheless, in connection with an external supervisor 

(computer, human), an adequate collective approach or enough simplifications, small robots might still be able to fulfill 

complex learning tasks. 

Different learning algorithms have been implemented by researchers on micro-robots. Floreano et al. [9] used 

evolutionary algorithms in combination with spike neurons to train the old version of the Alice micro-robots for obstacle-

avoidance. The spiking neural networks are encoded into genetic strings, and the population is evolved. Crossover, mutation 

and fitness evaluation tasks are optimized and use bitwise operators. But, since no learning is done during fitness evaluation 

of a newly generated individual,  the training takes too much time (3 hours) even for such a simple task. 

Dean et al. [7] applied ROLNNET (Rapid Output Learning Neural Network with Eligibility Traces) neural networks to 

mini-robots for backing a car with trailers. ROLNNET [11] is a mixture of Neural Networks and Reinforcement Learning. It 

has been designed for real robots with very limited computing power and memory. Input and output spaces are divided to 

discrete regions and a single neuron is assigned to each region. Neurons are provided with regional sensitivity through the 

use of eligibility traces. Response learning takes place rapidly using cooperation among neighbor neurons. Even if the 

mathematical formulation is simple, consists of only summation, multiplication and division, the required floting point 

operations might still cause a processing problem on autonomous micro-robots with limited processing capacity. 

Various implementations of micro-robots exist, such as Sandia MARV [2], MIT Ants [15], Nagoya MARS [10], KAIST 

Kity [13] and ULB Meloe [16]. However, to our knowledge, no learning task has been implemented on them. In this paper 

we study the potential for optimization and implementation of reinforcement learning on our micro-robots. 

2.1. Reinforcement Learning 

Reinforcement learning [19] is one of the widely used online learning methods in robotics. With an online approach, the 

robot learns during action and acts during learning. Supervised learning methods neglect this feature. With reinforcement 
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learning the learner perceives the state of its environment (or conditions at higher levels), and based on a predefined criterion 

chooses an action (or behavior). This action changes the world’s state and as a result the agent  gets a feedback signal from 

the environment, called "reinforcement signal", indicating the quality of the new state. After receiving the reinforcement 

signal, it updates the learned policy based on the type of signal, which can be positive (reward) or negative (punishment). 

The reinforcement learning method that we use in this work is the one-step Q-learning method [20][21]. However, we 

have to adapt the algorithms in accordance with the robot’s limitations. In the one-step Q-learning algorithm the external 

world is modeled as a Markov Decision Process with discrete finite-time states. After each action, the agent immediately 

receives a scalar "reward" or "punishment".  

An action-value table, called Q-table, determines the learned policy of the agent. It estimates the long-term discounted 

reward for each state-action pair. Given the current state x and the available actions ai, a Q-learning agent selects action "a" 

with the probability “P” given by the Boltzmann probability distribution: 

∑
∈

=

actionsk

)/τkQ(x,a
e

)/τiQ(x,a
e

|x)iP(a                                                                              (1) 

Where τ  is the temperature parameter which adjusts exploration rate of action selection. High τ  values give high 

randomness to selection at the beginning. The exploration rate will be decreased when Q-values increase gradually, and 

make exploitation more favorable at the end.  

After selecting the favorite action based on the probability distribution, the agent executes the action, receives an 

immediate reward r, moves to the next state y, and updates Q(x,a) as follows: 

γ  V(y))  (rββ  )Q(x,a)(Q(x,a) ++−← 1                                                               (2) 

Where β is the learning rate, γ ( )0 1≤ ≤γ  is a discount parameter and V(x) is given by: 

Q(y,b)actionsbV(y) ∈= max                                                                      (3) 

Q is improved gradually and the agent learns to maximize the future rewards. 

Studies by Sutton [19] showed that convergence of reinforcement learning can be guaranteed. In all of the above and 

other used formula, numbers are floating-point numbers or at least need floating-point operations, so no discretization or 

interpolation is applied. In the next section we show what happens to the convergence when the numbers are limited to 

integers. 

3. The Compact Q-Learning Algorithm 

In order to implement Q-learning on the micro-robot Alice, we need a simplified Q-Learning algorithm that is able to 

cope with the limited memory and processing resources and by the restricted power autonomy. Thus we propose a new 

algorithm based only on integer operations. 
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3.1. Integer vs. floating point operators 

Floating-point operations take too much processing time and program memory. For the sake of comparison, in Table 1, 

we have listed the number of instructions generated by our C compiler (PCW Compiler, from Custom Computer Services 

Inc.) and the average execution time for four floating-point operations: a=b+c, a=b-c, a=b*c, and a=b/c, and we compared 

them to integer-based operations. For each operator instance (except for integer sum) there is a call overhead for preparing 

the registers and copying the results back to memory, and a function execution cost. 

Call overhead takes both processing time and program memory for every instance of operator. Function executions need 

program memory one time but takes processing time for every operator occurrence. Therefore, we prefer to use only integer 

sum operators since they have no call overhead, require just a few instructions and run very fast. Moreover, we prefer to use 

unsigned operations to save memory bits, ease computations and reduce overflow-checking. 

3.2. Q-Learning problems with Integer operators 

To our knowledge, all reinforcement learning algorithms deal with real numbers at least in the action selection 

mechanisms. The proofs for convergence are valid when numbers are real. In this section we discuss some problems that 

happen when trying to switch to integer numbers. 

The first problem rises in the Boltzmann probability distribution (1). This formula is time-intensive because of 

computation of powers of e. It also needs a float-type memory cell (generally 4 bytes) to be assigned to the probability of 

each action, since they will be used then to select an action accordingly. So, the action selection mechanism needs revision. 

From now on, let us assume a typical configuration and describe problems with integer operations. Assume at the 

beginning, Q cells are initialized to c. Since the Q-values must be of type integer, they must be incremented or decremented 

by one (not a fraction). Applying these conditions to (2) and assuming β=m/n, γ=p/q, where m, n, p, and q are integer 

numbers (to ease integer operations), it is straightforward to show that the reward value at the beginning must be at least: 

⎡ ⎤ ⎡ ⎤)1(/1/)(/ γβ −+=−+ cqpqcmn                                                                (4) 

to effect the new Q-value; otherwise the table remains unchanged and learning task will not converge. Since a typical 

learning rate is a number around 0.1, the reward value must be at least 10. Also the reward value should be increased 

according to Q-value increase (see the c factor in (4)). This implies that the reward might need too many bits. 

Furthermore, in some learning tasks there are many intermediate state-actions that do not come with any reward but lead 

the learner to near-goal or goal states. In (2) the responsibility of the γ v(y) term is to increase the value of such state-actions. 

It can be shown that the value of v(y) must be at least: 

⎡ ⎤ ⎡ ⎤γβγ //1// cpcqmpnq +=+                                                                     (5) 

For a typical β=0.1 and γ=0.9, v(y) must be at least 12 to increment the Q-value by one i.e. it takes a long time to build 

action chains from initial states to goal states. 
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Also, let’s take v(y) out and consider only rewards around zero, or punishments less than or equal to zero. There will be a 

decrement in the Q-value because of the integer division operator(Remember that e.g. 9/5 =1 in integer division) i.e.: 

⎣ ⎦ ⎣ ⎦)/n(n-m)Q(x,amr)/n,a)( (n-m)Q(x(x,a)newQ ≈+=                                                       (6) 

Which is less than or equal to Q-1. While, it is better in this case to leave the Q-value unchanged. 

Also assume, after some learning episodes, the value of a cell in the Q-table increases to a high integer value; since Q-

values are incremented by one this case easily happens. If so, the Q-values in the previous state-chain will be increased by a 

big integer number, which results in overflow in all states rapidly. Then even a big punishment cannot decrease the Q-values 

and the learning process gets caught in a local maximum. 

3.3. The proposed algorithm 

Based on the problems described in the previous section we propose a very simple algorithm dealing with only unsigned 

integer summation. We assume that Q-values are unsigned integers and have a minimum value of zero. 

The probability assignment formula is changed to Roulette Selection as following: 

∑
∈

+

+
=

Actionsk kaxQActions
iaxQ

xiaP
),(

1),(
)|(                                                                  (7) 

Where Actions  is the size of action set. Q-values are summed by one so that zero-valued actions have a small positive 

probability. Roulette Selection method has been widely used in Reinforcement Learning and Genetic Algorithm.  

In order to get and idea about the simplification, assume that there are 10 available actions in a state, 9 of them have zero 

values and the value of the 10th action changes. The assigned probability by the two selection methods to the 10th action is 

shown in Fig.1. Note that for non-positive values, the Boltzmann function assigns small and very close probabilities, around 

0.1. The Roulette function, while dealing only with non-negative numbers (and therefore saving one bit for sign), assigns the 

same 0.1 probability to non-positive actions. For the positive part, comparing the shape of the curves shows they are similar 

enough for our purpose: incremental and logarithmic. 

The Roulette Selection is capable of adjusting the exploration and exploitation rate during the learning. At the beginning 

randomness is high since all Q-values are nearly equal and the probabilities are very close. But at the end, some Q-values 

raised and then big value of the sigma term makes probability of non-efficient actions close to zero, making more 

exploitation possible. 

For implementation we can simplify the action selection mechanism even more. First, a uniform random number between 

0 and ∑
∈

+
Actionsk kaxQActions ),(  is generated. The random number then is compared to the partial sum 

∑
∈

+
..i}{k

))k(Q(x,a
1

1 in a loop starting from the first action i.e. i=1. The first action, for which the random number is less 

than or equal to the partial sum is selected. So there is no need to divide numbers to form probabilities chain in (7). 
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The policy update formula is changed to: 

), x,(),(),( yafraxQaxQ ++←                                                                   (8) 

Where r is the positive or negative reinforcement signal and f(x,a,y) is defined as following: 

⎩
⎨
⎧ <

=
otherwise

QaxQifyv
yaxf

0

),( ))(( 
),,(

θγ
                                                                      9) 

Where θ is a threshold, v(y) is the same as (3), and γ is the discount function that depends on v(y) and could be implemented 

via conditional operators without use of multiplication (e.g. if v(y)>32 then γ(v(y))=2). Using the function f limits the 

unsatisfactory effect of high-value Q-cells discussed earlier. 

We propose to use the reinforcement signal r as followed: 

⎪⎩

⎪
⎨
⎧

−
=

punishment
caretdon

reward
r

1
 '0

1
                                                                                (10) 

because it can be handled by increment and decrement operators, adapted to low-level programming. To work with unsigned 

numbers, reinforcement signals could be shifted up to 2, 1, 0 and then decremented one unit when adding to Q-value. 

A drawback of the proposed algorithm is the lack of the learning rate, but we do not have any better choices since each 

reward must result in a Q-value increment as described previously. In order to decrease negative effects of the missing 

learning rate we have to scale down r and γ as much as possible. Otherwise we have to add multiplication and division 

operators (or in the simplest case, shift operators) to compute β(r+f(x,a,y)). 

4. The Alice Micro-Robot 

The Compact Q-Learning Algorithm has been tested for a safe-wandering task  with the micro-robot Alice, equipped 

with a PIC micro-controller. Alice (Fig.2) is one of the smallest (22 x 21 x 20 mm) and lightest (5 gr) autonomous mobile 

robots in the world [3]. In its basic configuration it has two bi-directional watch motors for locomotion (up to 40 mm/s), four 

active infrared proximity sensors, a micro-controller, a NiMH rechargeable battery, and an IR TV remote receiver for 

communication, all mounted on PCB and installed in a plastic frame. . The power consumption has been highly minimized to 

12-17 mW, providing high energetic autonomy of up to 10 hours. This makes the robot suitable for collective robotics and 

learning experiments. However, the autonomy can be increased by adding an extra battery, if required.  

Alice is a programmable and modular robot and a number of modules can be added to it, such as a linear camera, 

wireless radio or IR communication, touch sensors, interface to personal computers, and recharging pack. Thanks to its 

programmability and interface with personal computers, Alice has been used in various research [5] [3] and educational 

projects [4]. 
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A PIC16F877 micro-controller from Microchip(R) is the central for controlling of the robot’s behavior. It is an 8 bit RISC 

(Reduced Instruction Set Computer) micro-controller and has only a set of 35 basic instructions, including bit-wise sum and 

conditional and unconditional branch operations. It has 8K x 14-bit words flash program memory and 368 x 8-bit RAM data 

memory. It directly drives the two low-power watch motors through 6 pins and reads the values of the proximity sensors 

through analog-digital converters.  To save energy, the clock speed is set to 4 MHz. Each instruction takes four clock-cycles, 

so each instruction takes one micro-second (except for jumps which require two instructions).  

An important percentage of the memory resources is assigned to manage the sensors and motors. The software core is 

composed of a simple real-time operating system, which handles different time-critical tasks: 

1- Communication with a TV remote controller to receive remote commands from the operator or an external computer. 

Currently there are four commands for the supervision of the learning process: 

• Start learning 

• Stop learning and behave based on the learned policy (for evaluation),  

• Save the learned policy to EEPROM so that it can be downloaded after learning, and  

• Load the saved policy from EEPROM and resume the learning task whenever the task is too long to be 

completed in one battery life cycle 

2- Proximity sensor reading and state detection 

3- Action selection  

4- Control of right and left motors to run the selected action correctly  

5- Policy update while learning, and 

6- Computing statistics and quality measures and writing them to EEPROM for later evaluation purposes. 

5. Learning Safe-Wandering Behavior 

The learning task is safe-wandering in two X- and H-shape mazes, shown in Figs. 3 and 4. The H-maze is composed of 

very narrow parts and has a complex shape. The cross-maze is simpler and walls are at larger distance to each other. The task 

of the robot is to wander in the maze while having a preference to move forward, without hitting the walls.  

The robot states are defined based on the four proximity sensor values at the front, front-left, front-right and rear side of 

the robot. Each sensor value corresponds to one bit in the state bits, and a threshold is defined for value of the sensors to 

show presence or absence of obstacles. The number of states is 16, but it can be reduced to 15 since no state exists where 

obstacles surround the robot in all directions. 

In order to reduce the size of the Q-table and save memory, we chose only three actions for the robot: move forward, turn 

right, and turn left with maximum possible speed. Each cell of the Q-table has one-byte length (15x3=45 bytes totally) and 
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the values range from 0 to 240. The purpose of setting the maximum value to 240 is to avoid overflows in add or subtract 

operations. The reward function is defined as followed: 

⎪⎩

⎪
⎨
⎧
−=

otherwise
wallthehitting

movesstraight
r

0
  1

 1

                                                                           (11) 

We defined another threshold to detect hitting of the walls, so actually the robot may receive punishment without hitting 

any wall, only because it is very close to a wall. The threshold for the discount function ( Qθ ) is 100 and the discount 

function is defined as follows: 

⎪⎩

⎪
⎨
⎧

≥>
≥

=
otherwise

yv
yv

yv
0

32)(641
64)(2

))((γ                                                                          (12) 

The learning cycle is 200 ms (5 Hz). The program reads the sensor values, and then, after state detection and action 

selection, sets “pause” of the wheels (we do not change motor velocity directly in order to simplifies the motor control)). 

During each learning cycle, the motors are controlled in one of their six operation phases. At the end the program detects the 

next state, computes the reward and updates the policy. 

Every minute, the sum of the received rewards during this period is written into the EEPROM so that it can be 

downloaded after learning for drawing learning curves. Saving the learned policy on EEPROM is on-demand based on the 

observer decision. 

Also, it is possible to stop the learning and command the robot to behave according to the learned policy. If so, the robot 

selects actions with the maximum value in each state. If the robot behavior is acceptable, the policy can be saved and if 

learning is incomplete it can be resumed from the last stopping point. 

A sample of the learned safe-wandering behavior is shown in fig.3. The figure shows that the Alice robot has learned to 

avoid obstacles and move straight efficiently. The robot moves forward and turns when sees a wall.  

The graph in fig.5 shows the changes of the received rewards during a 20 minutes learning experiment in the X-maze. 

The experiment could be stopped at 7 minutes but we intend to compare them with a floating-point based algorithm. The 

maximum received reward during this time could be 300 i.e. if the robot moves forward during all 300 actions. But some 

times the robot is forced to turn due to the specific configuration of environment and so the maximum could not be attained. 

However, you can see that after 7 minutes the learning curve converges and oscillates around 190. Oscillations in the 

received rewards at some steps are because the robot is in different locations of the maze. 

A sample of the learned path and learning curve for H-maze is drawn in Figs.4 and 6 respectively. The experiment takes 

30 minutes to complete. The sum changes from –213 at initial steps to 33 at the final steps. The minimum peak at the 5th 

point is because of a new unforeseen situation in the maze where the robot does not know how to deal with.   
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The resulted behavior is visually pretty good; however, due to special configuration of walls, the robot has to change the 

direction many times and cannot reach the maximum.  The narrow space between the walls is a very important limit for 

movements in H-maze. The robot states show only presence or absence of wall (0 or 1) and do not deal with more details. As 

a result, the robot goes beyond the threshold distance several times (especially at sidewalls) and receives punishment; but 

actually it does not hit the wall and corrects the path by turning to the opposite side. 

These two learning tasks converge in 7 and 30 minutes respectively. Comparing to 10-hour autonomy of the Alice robots, 

it seems that implementation of more complex and time-consuming learning tasks is feasible. 

6. Integer vs. Floating-point 

To measure the introduced error due to the simplification of the algorithm, we compared the proposed algorithm with the 

floating-point based algorithm (regular Q-learning algorithm). We tried combination of different learning rates from 0.01 to 

0.1 (0.01 steps) and from 0.1 to 0.5 (0.1 steps), with different temperature parameters from 0.1 to 1 (0.1 steps) on safe-

wandering task in the X-maze. Finally we found that the three best results are obtained by setting the learning rates to 0.1, 

0.2, 0.3 and temperature parameter to 0.5. The discount parameter is fixed to 0.9. Each learning experiment lasted 20 

minutes. Then learning is stopped and the robot behavior is tested for 10-minute. To reduce the heterogeneity of the learning 

episodes, the robots are placed in the same initial position at each learning or testing phase. 

We compare the methods in terms of four measures: Convergence rate, optimality, memory, and program size. The 

average received rewards during learning gives an indirect indication of convergence rate. If the learning procedure 

converges early then this average should be higher. Also, the average received rewards during test phase gives a measure to 

compare optimality of results. If any learning algorithm finds an optimal policy then its average should be higher in this 

phase. 

 

Learning measures 

The graphs in Figs. 7 and 8 show the average received rewards during each minute in learning and test phases, 

respectively. Among the three float-based experiments, β=0.1 is the most conservative in terms of learning rate, therefore its 

average during learning is less than the others (figure 7). However, the test results show that it was able to find the best 

policy (figure 8). On the other hand, while β=0.3 has the best results during learning phase (163.5), it remains almost the 

same (163.8) in test phase and is the worst among all. In this case convergence happens too early in a local maximum and the 

policy remains there for a while.  

Comparing these results to the integer-based algorithm, one can see that the time for convergence is between the β=0.3 

and β=0.1 case of the float-based experiment. Both, the convergence rate and learning quality is near the second best results 

of float-based case. Therefore it represents a good trade-off between convergence rate and finding the global optimum. 
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Implementation measures 

Moreover, regarding the implemented program, the whole learning program for the integer-based case  takes 42 % of 

data and 44% of program memory; therefore a large volume of them remains empty. It is important to know that the 

operating system took already about 29% of data and 19% of program memory. So, the learning program plus the save, load, 

and evaluation procedures occupy only 13% of data and 25% of program memory. Recall that only 3 floating-point 

operations (i.e. +, *, and /) fill 8.8% of program memory (see Table 1). On the other hand, the floating-point based program 

plus operating system takes 89% of data and 83% of program memory (60% and 64% without OS). Roughly speaking, 

since data memory size depends mainly on Q-table representation, using one-byte integers for Q-values reduces memory 

consumption by a factor of three in the comparison with the 4-byte floating-point representation. 

7. Conclusion and future works 

In this paper we described the problems faced in programming micro-robots for learning tasks. The main challenges with 

micro-robots are limitations in power autonomy, processing power and memory (both in program and in data memory). 

These limitations obliged us to avoid floating-point operations and thus to develop a simplified learning algorithm, rely 

mainly on integer-based additions and subtractions.  

We proposed a simple and fast reinforcement learning algorithm optimized for data and program memory consumption. 

It was implemented and verified on a safe-wandering task with two test environments. The fast convergence of algorithm 

made it possible to save at least 95% of power autonomy, while its optimality remains competitive to Q-learning results. The 

small number of required instructions leaves around 60% of both, program and data memory unused. Therefore, it offers 

potential for more time-critic and complex learning behaviors. 

Convergence of the proposed algorithm has been demonstrated by experiments. However mathematical analysis and 

prove has still to be made. For future works we plan to test the algorithm on other, more complex tasks, especially collective 

behaviors and cooperative learning among groups of robots.  
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Figure 1- Simplification of Boltzmann Selection to Roulette Selection 



 16

 
 

 
Figure 2: The Alice micro-robot 
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Figure 3- A sample of the learned safe-wandering behavior in X-maze 
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Figure 4-A sample of the learned safe-wandering behavior in H-maze  
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Figure 5- Received rewards during safe-wandering learning in the Cross-maze  
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received rewards during safe-wandering learning in the H-maze
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Figure 6- Received rewards during safe-wandering learning in the H-maze  
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Figure 7- Average received rewards during learning phase 
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Average recieved rewards during test
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Figure 8-average received rewards during test 
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Table 1: Comparing floating-point and integer operations on Alice micro-robots 
Floating point operator # of Instructions Call overhead  % of Alice memory for the first call Average Execution Time (us)

+, - 322* 26 4.25 154 

* 119 25 1.76 613 

/ 204 25 2.8 1121 

Total (only for one call to each operator) 8.81 % 1888 

8 bit Integer operator # of Instructions Call overhead  % of Alice memory for the first call Average Execution Time (us)

+, - 3 0 (no function 
call) 0.04 3 

* 37 7 0.54 43 

/ 21 7 0.34 87 

Total (only for one call to each operator) 0.92 % 133 

*Float numbers are represented in mantissa-exponent form. The generated code for float + becomes larger than * and / since, in +, the 
second operand is changed to have the same exponent as the first one. 
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