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Abstract
The land area covered by freely available very high-resolution (VHR) imagery has grown 
dramatically over recent years, which has considerable relevance for forest observation 
and monitoring. For example, it is possible to recognize and extract a number of features 
related to forest type, forest management, degradation and disturbance using VHR imagery. 
Moreover, time series of medium-to-high-resolution imagery such as MODIS, Landsat or 
Sentinel has allowed for monitoring of parameters related to forest cover change. Although 
automatic classification is used regularly to monitor forests using medium-resolution 
imagery, VHR imagery and changes in web-based technology have opened up new pos-
sibilities for the role of visual interpretation in forest observation. Visual interpretation 
of VHR is typically employed to provide training and/or validation data for other remote 
sensing-based techniques or to derive statistics directly on forest cover/forest cover change 
over large regions. Hence, this paper reviews the state of the art in tools designed for vis-
ual interpretation of VHR, including Geo-Wiki, LACO-Wiki and Collect Earth as well as 
issues related to interpretation of VHR imagery and approaches to quality assurance. We 
have also listed a number of success stories where visual interpretation plays a crucial role, 
including a global forest mask harmonized with FAO FRA country statistics; estimation of 
dryland forest area; quantification of deforestation; national reporting to the UNFCCC; and 
drivers of forest change.
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1  Introduction

Remote sensing plays a critical role in the estimation of forest parameters, and in the moni-
toring of disturbances and changes in forest cover. Different types of satellite sensors (i.e., 
optical, hyperspectral, LiDAR and radar at varying spatial and temporal resolutions) play 
different and complementary roles in forest monitoring. Time series of moderate resolution 
imagery (MODIS, MERIS, etc.) have been used extensively to produce land cover, forest 
cover and forest-type maps (Defourny et al. 2006; Friedl et al. 2010), forest cover change, 
tree density (DiMiceli et al. 2011), vegetation indices, gross and net primary production 
(Running et al. 2004) and forest disturbances (Justice et al. 2002). Radar and LiDAR data 
have also been used successfully to estimate biomass and canopy height (Baccini et  al. 
2008; Saatchi et  al. 2011; Simard et  al. 2011; Thurner et  al. 2014; Santoro et  al. 2015). 
With the opening up of the Landsat archive in 2008 (Wulder et al. 2012) including a time 
series of more than 40 years, it has become possible to monitor long-term changes in for-
ests at a higher resolution (Sexton et al. 2013; Hansen et al. 2013). The open data policy 
of the European Space Agency (ESA) with respect to the Sentinel satellites means more 
frequent coverage of the Earth at a higher resolution than Landsat, which is particularly rel-
evant for forest areas dominated by clouds. Sentinel 1 can also complement the monitoring 
of forest structures using radar data at a higher spatial and temporal resolution than other 
radar products such as ENVISAT ASAR.

More recently, with changes in Web 2.0 technology (Hudson-Smith et al. 2009) and the 
development of applications such as Google Earth and Microsoft Bing Maps, very high-
resolution (VHR) satellite imagery can be viewed over many parts of the world. Moreover, 
the land area now covered by VHR imagery has also grown dramatically over recent years 
(Lesiv et al. 2018b). This opens up the possibility to visually identify land cover and land 
use features, as well as the structure of forests. For the purpose of this paper, we define 
VHR imagery as having a spatial resolution of less than 2 m, while high-resolution (HR) 
imagery refers to the resolutions of Landsat (30 m) or Sentinel 2 (10 m). Forest parameters 
of interest that can be identified from VHR imagery include: the type of land cover/land 
use; identification of forest/non-forest areas; whether forest areas are homogeneous or het-
erogeneous; forest cover fragmentation; forest disturbances, degradation and change over 
time; identification of low, medium and high values of biomass; whether forests are young 
or old; differentiation between natural forests and plantation; forest and tree crops; forest 
phenology (evergreen or deciduous); and leaf types (broad leaf or needle leaf).

Although the automatic processing of remote sensing data for forest monitoring remains 
the standard procedure, visual interpretation of VHR imagery for reference data collection 
has a number of advantages over in situ data collection and can even be viewed as a bridge 
between remote sensing and in situ approaches. For example, it can be used to collect large 
amounts of training data for automatic classification algorithms. A probability-based sam-
ple design can be implemented so that the visually interpreted data can be used for the 
validation of maps produced using remote sensing. Areas with high uncertainty can then 
be identified, and additional reference data were collected to further improve automatic 
classification. Visual interpretation can also be used for deriving forest statistics directly 
from satellite imagery (Bastin et  al. 2017a). Finally, visual interpretation can be used to 
identify drivers of change, e.g., automatically generated maps of forest loss can be further 
translated to areas of clearcutting, burnt areas, disease dieback, shifting cultivation, etc. 
(Ontikov et al. 2016; Curtis et al. 2018). Note that we do not explicitly discuss applications 
of biodiversity here because extracting meaningful biodiversity information from remotely 
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sensed imagery in many forest contexts requires reliable and geographically representative 
information on the spectral and temporal signatures of species, and these traits must be 
combined with further assumptions about phylogenetic dissimilarity. Although there are 
candidate methods available, they are still highly experimental and therefore uncertain.

In this review paper, we focus on the state of the art in visual interpretation of satellite 
imagery, recognizing the continuing role of HR imagery but focusing on advances that 
are possible from VHR imagery, and highlight their unique and complementary role in 
remote sensing and in situ data collection for the observation and monitoring of forests. We 
first focus on the types of satellite imagery available and then provide an overview of the 
tools that have been developed for visual interpretation. The quality of visual interpreta-
tion is a key concern for users so we review recent work undertaken in this area. Finally, 
we highlight some successful case studies that have employed satellite imagery for forest 
observation.

2 � Availability and Utilization of Imagery in Forest Observation

2.1 � Availability and Distribution of Imagery

As a result of advancements in Earth Observation (EO), HR satellite data are being made 
openly available, e.g., free access to Landsat data by the United States Geological Survey 
(USGS) since 2008. Landsat data have played a significant role in monitoring of the Earth, 
particularly in forest observation studies, as more than 40 years of satellite data with con-
sistent spectral bands are available. The data are distributed through various platforms such 
as the USGS Earth Explorer and NASA’s Earth Data (USGS 2018; NASA 2018) as well as 
Google Earth Engine (Gorelick et al. 2017). Complementary to Landsat, ESA’s Sentinel 2 
mission was launched in 2015 (Drusch et al. 2012). Sentinel 2 data (10–60 m), along with 
other Sentinel mission data, are freely accessible to the public via the Copernicus Open 
Access Hub (Copernicus 2018).

In addition, VHR satellite data offer further possibilities for forest observation. Multi-
temporal and multispectral VHR data are acquired by passive sensors (e.g., QuickBird, 
WorldView-2, GeoEye, Pleiades) (Solano-Correa et al. 2018) and are distributed commer-
cially via DigitalGlobe, Geo-Airbus and Planet (Airbus 2018; Harris 2018; Planet 2018). 
However, some of this imagery is openly available or available upon request via the USGS 
Earth Explorer and ESA’s Earth Online portal (USGS 2018; ESA 2018). In addition to the 
data providers, there are multiple platforms that allow users to view VHR data, e.g., Micro-
soft Bing Maps and Google Earth. The latter was released in 2005 and allows seamless 
viewing and exploration of medium-resolution, HR and VHR satellite imagery globally 
(Sheppard and Cizek 2009; Bey et al. 2016). By 2011, Google Earth had been downloaded 
over one billion times (Google 2018). The appeal of these tools is evident, not only for pri-
vate users but also for scientists, policy-makers and stakeholders in tackling environmental 
and planning issues (Butler 2006). Building upon these platforms, several free and open-
source software applications have been developed to facilitate the collection and analysis 
of land and forest cover characteristics including: Geo-Wiki, the GLCF Labeling Tool, 
LACO-Wiki and TimeSync (Bey et al. 2016. In addition to using VHR imagery, these soft-
ware applications use archives of Landsat and MODIS imagery to display automatically 
generated time series of vegetation index profiles (Bey et al. 2016). A recent assessment 
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has been made of the spatial and temporal availability of VHR data in Google Earth and 
Microsoft Bing Maps (Lesiv et al. 2018b), including suitability for forest monitoring.

VHR and LiDAR imageries are also available from light-weight unmanned aerial vehi-
cles (UAV), which opens up further possibilities for detailed land and forest monitoring 
(Zahawi et al. 2015; Paz 2017). UAVs are low cost, have high spatial and temporal resolu-
tion and provide flexibility in the types of sensors used (GOFC-GOLD 2011).

2.2 � Utilization in Forest Monitoring

The use of remote sensing in forest resource assessment provides different types of infor-
mation such as the spatial extent of forest cover and its change over time, forest types and 
biophysical and biochemical properties of forests (Boyd and Danson 2005). Assessments 
using remote sensing commonly involve visual interpretation, e.g., to generate training 
or validation data sets, particularly when analyzing the spatial extent of forests and their 
change over time. For example, a global forest cover change product at a 30 m resolution 
was calibrated and validated based on reference data created via visual interpretation of 
HR and VHR satellite data (Hansen et al. 2013). Similarly, an assessment of the suitability 
of this global forest change product for forest area estimation at the national level in Gabon 
was made using an independent validation data set, visually interpreted using available sat-
ellite imagery (Sannier et al. 2016).

A hybrid approach that combines automated processing of satellite data and visual inter-
pretation is commonly used to monitor forest extent and its change over time. For example, 
Duveiller et al. (2008) assessed deforestation rates in Central Africa using sample-based 
estimation, which was created from automated image segmentation and visual interpreta-
tion of both HR and VHR satellite imagery. Sy et al. (2015) assessed the subsequent land 
use types after deforestation in South America using sample-based deforestation data from 
the UN-FAO Forest Resources Assessment (FRA), created from automated segmenta-
tion, and visual interpretation of VHR satellite imagery. In a study to create reference data 
for forest and tree cover fraction, Pengra et al. (2015) automatically classified 500 VHR 
images distributed globally and then manually edited them to obtain reference maps at a 
2 m resolution. Bey et al. (2016) applied “augmented visual interpretation” by combining 
visual interpretation of VHR images with vegetation indices computed for all dates avail-
able back to the year 2000 from MODIS, Landsat and Sentinel.

Visual interpretation of VHR images is also used in other forest assessments such as 
forest structure and biomass estimation. Examples include studies on selective forest log-
ging and its impacts (Read et al. 2003; Furusawa et al. 2004; Pithon et al. 2013), forest spe-
cies classification (Clark et al. 2005; Valérie and Marie-Pierre 2006; Kim et al. 2009; Bil-
ous et al. 2017), tree crown identification (Garzon-Lopez et al. 2013; Karlson et al. 2014) 
and biomass estimation (Hussin et al. 2014). In these studies, visual interpretation of VHR 
images was often used to create training data in the absence of in situ data.

Visual interpretation can also be used to produce statistics directly from sampling 
point approaches. In contrast to a map-based area estimation approach, this method has 
several advantages. First, when collecting information with photointerpretation, the land 
cover data collected are independent from other environmental layers. Secondly, there is no 
loss in information when upscaling to the map resolution (i.e., to Landsat, MODIS or any 
other product) because the raw information is still available. This is particularly relevant 
for regions with sparse tree cover. Moreover, this approach of directly obtaining statistics 
through visual interpretation is based on a transparent data assessment where the only 
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uncertainty is potential photointerpretation errors, e.g., as debated in Schepaschenko et al. 
(2017) and the subsequent response by Bastin et al. (2017b). If such a sampling approach 
is applied at a larger scale, then independent statistical information can even be obtained 
globally, e.g., in the global dryland assessment by Bastin et al. (2017a), in which global 
statistics on forest cover from a visual interpreted sample were derived.

Visual interpretation of HR and VHR data has been recommended as one of the 
approaches for national forest monitoring and reporting by international committees such 
as the GOFC-GOLD (2011). As a result, several tools and software applications have 
emerged for collecting reliable reference data for map calibration and validation for forest 
and forest change monitoring purposes. Some of these tools are described in more detail in 
the next section.

3 � Tools for Visual Interpretation

This section provides an overview of the main tools available for visual interpretation of 
satellite imagery. The final part of this section covers tools that exist but which are not 
openly available or they have been developed in the context of awareness raising and the 
monitoring of deforestation.

3.1 � Geo‑Wiki

Geo-Wiki was originally developed as an online tool to collect information on the accuracy 
of class descriptions from three global land cover maps (GLC-2000, MODIS and Glob-
cover 2005) when viewed on top of VHR satellite imagery from Google Earth. Users could 
choose any location on Earth, and validation was on pixel-by-pixel basis (Fritz et al. 2009). 
Users could also view the main land cover products in a single application, along with lay-
ers highlighting the areas of disagreement in cropland and forest classes. Hence, Geo-Wiki 
served as an application for exploring the accuracy of existing land cover products using 
satellite imagery, which was not previously possible via an open application.

Since 2009, the Geo-Wiki tool has evolved in a number of ways. First, the Geo-Wiki 
interface was expanded into multiple branches, each related to a specific land cover or land 
use theme. For example, the biomass branch of Geo-Wiki (https​://bioma​ss.geo-wiki.org) 
was designed to allow users to visualize all the major data sets of above ground and for-
est woody biomass on VHR imagery in order to compare the layers with one another but 
also to provide feedback on the biomass estimates at any location on Earth (Schepaschenko 
et al. 2015a).

A second key adaptation to Geo-Wiki was the use of crowdsourcing campaigns to col-
lect data related to a specific research question. The first six campaigns are documented 
in See et  al. (2015a) and resulted in the visual interpretation of around 250 K locations 
around the world (Fritz et al. 2017). The campaigns were used to validate a map of the land 
availability for biofuels (Fritz et al. 2013), to develop maps of cropland and agricultural 
field size (Fritz et  al. 2015; Lesiv et  al. 2018a), wilderness (See et  al. 2016) and global 
land cover (See et al. 2015b). The campaigns employed gamification and incentives such as 
Amazon vouchers and coauthorship.

New campaigns have since been run to collect a global validation data set for cropland 
(Laso Bayas et al. 2017a). At the same time, Geo-Wiki was also set up to run internal data 

https://biomass.geo-wiki.org
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collection campaigns to produce high-quality training and validation data sets for different 
tasks related to the development of forest maps. For example, data on forest cover were col-
lected by various experts using an interface like that shown in Fig. 1. Combined data from 
the Geo-Wiki database, in combination with several existing forest maps, have been used to 
develop a hybrid map of global forest cover (Schepaschenko et al. 2015b). More details are 
provided in Sect. 5.1. Other products include a high-resolution hybrid forest cover map of 
Ukraine along with a detailed tree species map (Lesiv et al. 2018c).

The “Human impact on forest” branch of Geo-Wiki focuses on the collection of the fol-
lowing forest and land use features: mature forest; plantations; fruit plantations; planted 
forest; clearcut, thinning; unpaved forest roads; paved roads; mosaic tree cover/cropland; 
and mosaic tree cover/urban. The “Drivers of forest cover change” Geo-Wiki branch allows 
users to record the following classes of land use change: no changes: stable tree cover, 
stable non-tree cover; tree cover loss: expansion of agriculture, shifting cultivation, urban/
infrastructure expansion, mining, wildfire/windfall/dieback, timber harvest (without land 
use change); tree cover gain: reforestation, afforestation, tree crops.

3.2 � LACO‑Wiki

LACO-Wiki is a free platform for undertaking land cover accuracy assessment (https​://
laco-wiki.net). It contains the complete workflow from uploading a map for validation, 
creating a sample and interpreting the sample using VHR satellite imagery from Google 
Maps or Microsoft Bing Maps (or other imagery provided by a Web Map Service). An 
accuracy report is then produced, which contains the confusion matrix and the indicators 
of accuracy chosen by the user. Figure 2 provides an example of the visual interpretation 
process, illustrating validation of the GlobeLand30 land cover map in Kenya. The online 

Fig. 1   An example of a Geo-Wiki interface used to collect data on forest cover (Schepaschenko et  al. 
2015b)

https://laco-wiki.net
https://laco-wiki.net
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tool, the workflow and the Kenyan validation example are described in more detail in See 
et al. (2017).

Since the legend for visual interpretation is determined by the land cover map uploaded to 
the system, LACO-Wiki can be used for collecting data on forest cover, expressed as either 
forest cover classes or percentage forest cover, or any other features defined by the users, 
which are visible from VHR satellite imagery. LACO-Wiki also allows users to upload pre-
defined sample locations, e.g., produced using a GIS, and undertake visual interpretation.

The vision of LACO-Wiki goes beyond that of just providing an online tool for accuracy 
assessment. It is also intended to be a repository for sharing land cover maps and the refer-
ence data sets generated as part of the accuracy assessment process (See et al. 2017). In 
this way, hybrid land cover or forest cover maps could be created from a mosaic of existing 
layers from the repository using a potentially much larger training data set than could be 
collected by individuals or organizations on their own.

3.3 � Picture Pile

Picture Pile is a mobile and online application designed for the rapid classification of VHR 
satellite imagery and geotagged photographs. It is a generalized version of the Cropland 
Capture game (Sturn et al. 2015; Baklanov et al. 2016; Salk et al. 2016), which focused 
on visually classifying imagery for cropland using a simple question: Is there evidence of 
cropland? Users had the choice of yes, no or maybe, swiping the image in the direction of 
the answer on mobile devices or using the cursor keys on the browser version. In this way, 
it was possible to collect millions of interpretations of the presence/absence of cropland 
over a 6-month period.

Fig. 2   An example of the visual interpretation of a sample unit using the LACO-Wiki tool
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In Picture Pile, the concept is that piles of pictures corresponding to any subject area 
(not just cropland) could be visually interpreted in a rapid manner using the same simple 
question. The first campaign run provided users with pairs of satellite images from differ-
ent time periods; the question they were asked was: “Do you see tree loss over time?” as 
shown in Fig. 3.

The idea behind this campaign was to validate the Hansen et al. (2013) tree loss and 
gain products for Tanzania and Indonesia. Preliminary results show that there are examples 
where Hansen indicates deforestation, but visual interpretation shows no tree loss and vice 
versa, i.e., no deforestation is indicated by Hansen et al. (2013), but visual interpretation 
shows clear patterns of forest loss. A new tool called Picture Paint is currently being devel-
oped that will take areas with deforestation as inputs from Picture Pile and allow users to 
shade those locations where deforestation has occurred. In this way, more accurate loca-
tions of where deforestation occurred can be recorded, which can be used to improve maps 
of deforestation and forest cover for specific time periods. Hence, Picture Pile and Picture 
Paint are two visual interpretation tools that can be used together to gather rapid and then 
more detailed forest observations.

3.4 � Collect Earth

Collect Earth is a free and open-access software tool developed by the UN-FAO for the moni-
toring of land cover and land use (Bey et al. 2016). Collect Earth allows for the collection of 

Fig. 3   An example of the rapid interpretation of deforestation from a pair of images in picture pile
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plot-level information (e.g., a square of 0.5 ha) of current and historic land properties of a given 
location using various sources of remote sensing data. Combining the information collected 
for numerous plots through a systematic or randomized sampling design, Collect Earth outputs 
can then be used (1) for the development of statistics at national, regional or even global scale 
or (2) as a set of training and validation points for wall-to-wall mapping. To develop statis-
tics with a low level of error requires considerable photointerpretation efforts, which rely on 
human capacity. For example, to characterize tree cover in drylands with less than 1% error, 
Bastin et al. (2017a) collected information at more than 200 000 points, which required the 
coordination of 236 operators in the photointerpretation effort. The list of recorded parameters 
includes: land cover type, land use category, land use change (2000–2015), year of changes, 
tree or shrub count, vegetation type, length of linear objects (vegetation, paved or unpaved 
roads), type and impact of disturbances and the accuracy of the assessment.

Collect Earth is built on Google Earth technologies and, in particular, two different 
tools: Google Earth Desktop and Google Earth Engine Code Editor. The interface of Col-
lect Earth is completely included in the Google Earth Desktop. It provides access to all 
available satellite archives of VHR images, which are used for the photointerpretation 
of predefined plots. In parallel, for each plot, Collect Earth provides access to preproc-
essed satellite information at a high-temporal resolution computed using the Google Earth 
Engine Code Editor. In particular, it provides information on the normalized difference 

Fig. 4   An example of the rapid interpretation of land use and land use change using Collect Earth, combin-
ing VHR images available in Google Earth and Bing Maps with NDVI computed since the 2000s from 
Google Earth Engine Code Editor



848	 Surveys in Geophysics (2019) 40:839–862

1 3

vegetation index (NDVI), computed since the year 2000 from MODIS, and for Landsat and 
Sentinel 2, where available. Combining both high spatial and temporal resolution for land 
monitoring, Collect Earth allows the operator to collect a considerable amount of informa-
tion about the land properties through augmented visual interpretation (Fig. 4). 

3.5 � Other Tools

Some tools for visual interpretation are not openly available, but some examples have been 
documented in the literature. For example, the VIEW-IT (Virtual Interpretation of Earth 
Web-Interface Tool) project was developed to collect land cover reference data includ-
ing classes for woody and mixed woody vegetation in order to support ongoing research 
in land cover change (Clark and Aide 2011). The system is similar to Geo-Wiki in that 
users estimate the percentage of land cover in a 250 m MODIS pixel using VHR imagery 
from Google Earth. The tool was used to collect more than 46,000 reference samples 
across Latin America and the Caribbean with a team of 30 staff and students. The authors 
admit that the first version was meant to be a proof of concept with future developments 
to include expansion to global coverage, opening up to crowdsourcing, customized sam-
ples, grid sizes and data collection (similar to what is available in LACO-Wiki) and mul-
tiple interpretations of the same sample unit. Since the publication of that paper, the tool 
does not appear to have been opened up and the reference data have not been made openly 
available.

Focusing more on the forest domain, the UN-FAO complemented the Forest Resources 
Assessment (FRA) exercise in 2010 with a remote sensing survey (RSS) using an interface 
developed for interpretation of Landsat imagery (Lindquist et al. 2012). There were 13,066 
sample sites in the RSS, each of which is a 20 km2 area located at each 1 degree intersec-
tion of latitude and longitude, except in Canada and the Russian Federation where a differ-
ent approach was used. In the framework of the TREES-3 project, the Joint Research Cen-
tre of the European Commission (JRC) took the responsibility for producing and verifying 
a large component of this global data set, particularly focusing on tropical forests. Using 
a segment-based classification and the commercial eCognition software, Landsat imagery 
from 1990, 2000 and 2005 was automatically classified to a legend that allowed the detec-
tion, at segment level, of tree cover loss and change between epochs. The individual seg-
ments were visually verified against Google Earth and other VHR imagery by both JRC 
staff and national experts, using a standalone tool developed in IDL (Simonetti et al. 2011). 
The results of the exercise (Achard et al. 2014) are available for free public download.1

A Web version of the verification/image interpretation tool described above was imple-
mented as a research prototype in the context of the EuroGEOSS project, supported by 
open standards and application programming interfaces (APIs) (Bastin et al. 2012). This 
demonstrated the feasibility of Web-enabling a well-established validation process with 
significant policy impact, and offered the advantage that no imagery needed to be down-
loaded to the desktop. However, the standalone nature of the original IDL toolkit has 
proved to be particularly useful in areas where internet connectivity is limited or sporadic, 
and it is still available for free public download and use.2 The JRC tools for mapping of 
forest change and loss have subsequently been improved and made more accessible—in 

1  http://forob​s.jrc.ec.europ​a.eu/trees​3/.
2  http://forob​s.jrc.ec.europ​a.eu/produ​cts/softw​are/other​.php.

http://forobs.jrc.ec.europa.eu/trees3/
http://forobs.jrc.ec.europa.eu/products/software/other.php
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particular, the classification step now uses entirely open-source tools and libraries (Simon-
etti et al. 2015). The entire workflow from image selection to validation is now embedded 
in a free and open-source toolkit named IMPACT.3 An example of the analysis possible 
with IMPACT is documented in Szantoi et al. (2016), and the labeled data from that analy-
sis is available through open OGC-standard Web Map and Feature Services hosted at JRC.

The Web-based version of the JRC land cover validation tool was adapted into a sys-
tem that allowed the labeling of point samples using a combination of visual interpretation 
with inspection of NDVI signatures (Bastin et al. 2013). This approach was used by the 
Royal Society for the Protection of Birds (RSPB) and Birdlife in an exercise that labeled 
user-specified sample points in and around Important Bird Area (IBAs) in order to test 
the hypothesis that legal site protection reduces the loss of natural land cover (Beresford 
et al. 2013). This interface also delivered NDVI information, by overlaying the value for 
the sample location being interpreted at the time of acquisition on a graph of historic mean/
standard deviation for the same area across the year. The point of this was for a user to see 
(a) whether the particular image they were looking at was anomalous or representative of 
the land cover at that location, and (b) the characteristic vegetation profile for that location 
over time. The NDVI information was derived from a web service based on JRC’s eSta-
tion, which compiles and delivers environmental information from remote sensing across 
Africa. An administrative interface allowed sample locations to be uploaded and allocated 
to authorized labelers, and the resulting information could then be downloaded. The result-
ing ground-truth data set was reused to validate an experimental water classification by 
Pekel et al. (2014), and is available on request from the original researchers. This web tool 
and underlying database was taken offline in 2015 because of a lack of resources, but the 
codebase is archived in an open repository.

A system for object delineation and visual interpretation of VHR imagery from Google 
Earth has been developed by the Universite Catholique de Louvain (UCL). This system, 
which is targeted at experts, was developed to collect reference data for the development 
of land cover products, e.g., GlobCover (Bontemps et al. 2011) and the ESA-CCI (Euro-
pean Space Agency Climate Change Initiative) land cover time series (ESA CCI LC 2017), 
which have been produced by researchers at UCL in collaboration with other partners. 
Medium-resolution time series or high-resolution snapshot images are also at hand to facil-
itate the labeling process. The interface was recently simplified to allow experts in remote 
sensing and agronomy from the EU-funded SIGMA project4 to collect binary cropland 
data at 4147 locations (Waldner et  al. 2018). Unfortunately, the reference data that have 
been collected through this bespoke interface over several years have not been made openly 
available.

Earth Watchers is a software tool developed by Geodan Inc. in the Netherlands for 
involving students in change detection in the context of deforestation monitoring.5 Students 
are assigned an area, which is a hexagon of around 1.6 km2. Each week, a new processed 
radar satellite image is provided (although Landsat has been used in the past) and students 
raise an alert if they see evidence of change. The ten most likely sites of change are sur-
veyed by a team on the ground, which documents their findings using photographs and 
video or they deploy UAVs for safety reasons. Any illegal activities are reported to the 

3  http://forob​s.jrc.ec.europ​a.eu/produ​cts/softw​are/impac​t.php.
4  http://www.geogl​am-sigma​.info/.
5  https​://dfa.tigwe​b.org/about​/?secti​on=earth​watch​ers.

http://forobs.jrc.ec.europa.eu/products/software/impact.php
http://www.geoglam-sigma.info/
https://dfa.tigweb.org/about/?section=earthwatchers
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local authorities who have pledged their support to the project and to halt deforestation. 
The project is currently operating in Indonesian Borneo.

3.6 � Comparison of Geo‑Wiki, LACO‑Wiki and Collect Earth

This section compares and contrasts the three main tools for visual interpretation of VHR 
imagery to which anyone can openly contribute: Geo-Wiki, LACO-Wiki and Collect Earth, 
based on a range of different features as outlined in Table 1. There are a number of similar-
ities between the tools, e.g., the research teaching communities are a main target group for 
all of the tools. However, Collect Earth also targets organizations involved in official statis-
tical reporting, while LACO-Wiki has been recommended as a validation tool for European 
Environment Agency member states. Geo-Wiki, through its crowdsourcing campaigns, tar-
gets a broader audience that includes citizens. Each system also has a mobile app although 
the Geo-Wiki Pictures app is now being replaced by ongoing developments in LACO-Wiki 
Mobile.

Overall, there are greater differences between the tools, in particular between Collect 
Earth and the other two. This is because users work directly in Google Earth Engine in 
Collect Earth so this means historical HR imagery is directly available along with other 
ancillary layers and scripts for processing the data, e.g., generation of NDVI profiles. Dif-
ferent types of information are collected with each tool as outlined in Table 1. Both Col-
lect Earth and LACO-Wiki are customizable, while Geo-Wiki must be set up internally 
in response to research needs while both Geo-Wiki (to a limited extent) and LACO-Wiki 
allow users to design their sample online while samples must be generated outside of Col-
lect Earth using a GIS package or scripts and then uploaded. At this stage, only Collect 
Earth is fully open, with code available in Github; this is not yet the case for Geo-Wiki and 
LACO-Wiki although the new mobile version of LACO-Wiki will be open source. Con-
versely, the data are not necessarily open from Collect Earth as this depends on the group 
or persons who use the tool for a particular purpose while the data from Geo-Wiki can 
either be downloaded from the website or can be found in PANGAEA (Fritz et al. 2017; 
Laso Bayas et al. 2017a). The validation data in LACO-Wiki are theoretically open through 
the licensing agreement that users agree to when registering in the system although indi-
vidual users can currently keep the data private or share it more broadly. Finally, each of 
the systems has various support mechanisms including a user forum (Collect Earth), news-
letters (Collect Earth and Geo-Wiki), a facebook group (Geo-Wiki) and contact via email 
(all three systems). Hence, it is clear from this comparison that each of these packages has 
different strengths and weaknesses, which are partly a function of how they were designed 
in response to user requirements.

4 � Issues Related to the Quality of VHR Imagery and Visual 
Interpretation

The quality of visual interpretation of VHR imagery is a function of the quality of the sat-
ellite imagery and the interpretation procedure applied to the imagery. The interpretation 
procedure can involve experts or crowdsourcing, both of which can be problematic (See 
et al. 2013; Coillie et al. 2014). In this section, we consider issues that influence the quality 
of both of these components.
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4.1 � Problems Associated with the Quality of VHR Imagery

Although the spatial coverage of VHR imagery in Google Earth and Microsoft Bing Maps 
continues to improve, visual interpretation may still be hampered by the actual quality of 
the imagery, which may lead to confusion in the resulting interpretation made by volun-
teers and experts. The most common reasons are image blurriness and the presence of 
clouds covering a scene. However, ubiquitous digital cameras have made the development 
of blur detection algorithms an active area of research (Tong et al. 2004; Li et al. 2016). 
These algorithms provide a quality score for an image, which allows a threshold to be 
specified that can be used to remove highly blurred images from an analysis. For example, 
the application of blur detection algorithms helped to detect around 2300 blurry images 
that were impossible to label correctly, even for experts (Baklanov et  al. 2016, 2017). 
These images distorted the accuracy of the results in a crowdsourcing campaign due to 
high inconsistencies, i.e., volunteers and experts changed opinions when presented with the 
same blurry image, which affected the overall results when they were combined through a 
voting procedure.

VHR images from sources such as Google Earth and Microsoft Bing Maps come with-
out a cloud mask, have very limited spectral information, and usually lack thermal bands 
that can be used for robust cloud detection (Zhu and Woodcock 2012). Thus, when work-
ing with VHR imagery from these sources, we only have a true-color RGB image. To han-
dle these images, numerous approaches (Başeski and Cenaras 2015; Bai et al. 2016; Fan 
et al. 2017) of different complexity have been developed, which have an overall accuracy 
close to that when applying one of the algorithms that uses thermal bands.

The generalization of automated approaches from optical data is very dependent on sun-
scene-sensor geometries (Barbier et al. 2011; Morton et al. 2014) and from specific inter-
action with object properties (e.g., the forest type) (Bastin et al. 2014), where this problem 
increases with spatial resolution. Hence this is a very important issue for the automated 
processing of VHR images. However, procedures for the correction of such geometries 
(Barbier and Couteron 2015) and the fusion of remote sensing metrics (Ploton et al. 2017) 
help to address some of these issues.

Finally, there are problems related to the comparison of interpretations of detailed infor-
mation from VHR resolution imagery (e.g., tree count, tree cover) with ground observa-
tions. As raised previously and although this point has been debated in the literature 
(Schepaschenko et al. 2017; Bastin et al. 2017b), Bastin et al. (2017a) demonstrated that 
photointerpretation can lead to an error that is less than 10% in estimating the extent of for-
est at a global scale.

4.2 � Approaches to Quality Assurance of Visual Interpretation of VHR Imagery

There are different approaches to quality assurance that have been applied to visual inter-
pretation of VHR imagery, which includes comparison with in  situ data/field measure-
ments or other high-quality products such as a regional or national map, when available, 
comparison with an expert or “control” data set of visual interpretations and approaches 
for combining multiple observations at a single location.

In situ data from the Land Use/Cover Area frame Survey (LUCAS), which are collected 
every 3 years by Eurostat, have also been used as ground-truth data for the 2015 FotoQuest 
Austria campaign (Laso Bayas et al. 2016). Citizens were asked to go to specific locations 
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across the Austrian landscape and collect information on land cover and land use with a 
mobile app. The results showed an agreement of up to 80% for high-level land cover and 
land use types in homogeneous areas.

Existing land cover maps have also been validated using a version of the Geo-Wiki plat-
form that can be run offline and hence used more easily in countries with less reliable inter-
net connections. Over 25,000 VHR Digital Globe images from Tanzania were classified 
by local volunteers for the degree of cropland and forests present. The land cover prod-
ucts included the ESA-CCI, GlobeLand30, FROM-GC and a regional product (Tanzania 
Land Cover 2010 Scheme II). Although the results reported in Laso Bayas et al. (2017b) 
were specifically focused on cropland, the results showed an overestimation of cropland by 
ESA-CCI and a large underestimation by the FROM-GC product. To ensure quality of the 
crowdsourced data, each location was interpreted by at least three different local people 
and combined using majority voting. A similar approach could be applied to forest cover 
data.

Geo-Wiki campaigns have made extensive use of an expert or control data set, i.e., a 
subset of the sample that is classified by a group of experts; this control data set is then 
used to calculate the performance of the crowd (See et  al. 2013; Fritz et  al. 2017; Laso 
Bayas et  al. 2017a; Lesiv et  al. 2018a). The information about performance can then be 
used to weight the data when used in subsequent applications, e.g., giving less weight to 
those interpreters who performed less well (e.g., Lesiv et al. 2018a). The control data set 
has also been used during campaigns to calculate a score based on both quality and quan-
tity of interpretations, which was then used to determine the award of prizes or other incen-
tives such as coauthorship.

The quality control of the data gathered through Collect Earth is not performed auto-
matically; it should be implemented by the operator. In the study of Bastin et al. (2017a) on 
the extent of forest in dryland biomes, two main steps were implemented: a quality control 
and an uncertainty analysis. The quality control implied the reassessment of plots identi-
fied as potentially problematic, which were identified through the definition of several logi-
cal cross-control rules. For example, all plots classified as grassland reported to have ≥ 10% 
tree canopy were reassessed by a team of experts and corrected as necessary. The uncer-
tainty analysis was performed accounting for (1) sampling error and (2) measurement error 
(i.e., the mismatch between ground truth and photointerpretation). In the study, the two 
were combined and propagated in the original data 100 times, meaning a random error was 
applied 100 times to the tree cover of each plot, following a normal distribution centered 
on the original value and with a variance equal to the sum of the two types of errors. The 
forest extent of dryland biomes was then recalculated 100 times from which the final error 
was calculated with the standard deviation.

Multiple interpretations at a single location have also been used to ensure quality. For 
this, a simple majority vote rule can be a good way to aggregate votes if volunteers are 
correct most of the time (Baklanov et al. 2016). For example, Foody et al. (2018) used a 
simple weighted average to combine interpretations from multiple participants to improve 
the overall accuracy, while in the study by Laso Bayas et al. (2017b), quality was estimated 
based on the consistency between the interpreters. However, there are numerous state-of-
the-art vote aggregation methods (e.g., see the surveys by Hung et al. 2013; Chittilappilly 
et al. 2016), which could be employed to deal with incorrect visual interpretations but have 
not yet been applied to this specific field. Salk et al. (2017) also showed that majority vot-
ing can have its limitations in visual interpretation of cropland and that the use of a control 
data set is recommended.
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5 � Success Stories of Using VHR Data for Forest Observation 
and Assessment

5.1 � Global Forest Mask

A number of global and regional maps of forest extent are available, but when compared 
spatially, there are large areas of disagreement between them. Moreover, until recently, 
there has been no global forest map available that is consistent with the national statis-
tics from the UN-FAO FRA. Geo-Wiki has been used to validate existing forest extent 
maps and to collect training data for combining diverse data sources into a single for-
est cover product (Schepaschenko et al. 2015b; Lesiv et al. 2016). From these data, it 
was possible to produce a global forest map that is more accurate (at the target 1 km 
resolution) than the individual input layers and to produce a map that is consistent with 
UN-FAO FRA statistics. Geographically weighted regression (GWR) was employed to 
integrate eight different forest products into three global hybrid forest cover maps for 
the reference year 2000. Input products included global land cover (GLC2000, GLC-
NMO, MODIS LC, GlobCover) and forest maps at varying resolutions from 30 m (Sex-
ton et  al. 2013; Hansen et  al. 2013) to 1 km, mosaics of regional land use/land cover 
products where available, and the MODIS Vegetation Continuous Fields product. The 
GWR algorithm was trained using crowdsourced data of visual interpretations collected 
via the Geo-Wiki platform, and the hybrid maps were then validated using an independ-
ent data set collected via the same system by experts. Three different hybrid maps were 
produced: two consistent with UN-FAO statistics, one at the country and one at the 
continental level, and a “best-guess” forest cover map that is independent of UN-FAO. 
Independent validation showed that the “best-guess” hybrid product had the best overall 
accuracy of 93% when compared with the individual input data sets. The global hybrid 
forest cover maps are available in a Geo-Wiki branch dedicated to biomass: http://bioma​
ss.geo-wiki.org.

5.2 � Dryland Forest Assessment

Classical approaches employed to map tree cover at the global scale are generally based 
on medium-to-high-resolution satellite image processing, showing a typical spatial reso-
lution of 10 to 250 meters. Such products are, however, known to produce very uncer-
tain results in drylands (Sexton et al. 2016). Consequently, the UN-FAO has developed 
a new assessment of dryland forest resources based on a global photointerpretation 
effort coordinated with 236 operators, including researchers and country officials. Ana-
lyzing more than 210,000 0.5-ha sample plots through Collect Earth, this new assess-
ment revealed that in 2015, 1327 million hectares of drylands had more than 10% tree-
cover, and 1079 million hectares comprised forest. This estimate was 40–47% higher 
than previous estimates, corresponding to 467 million hectares of forest that have never 
been reported before. This means that previous efforts assessing the global forest extent 
were underestimating forest cover by at least 9% (Bastin et  al. 2017a). This exercise 
has shown that a global photointerpretation effort coordinated between 236 operators 
can overcome, with some debated limitations (Schepaschenko et al. 2017; Bastin et al. 
2017b), current flaws in state-of-the-art-automated mapping methods.

http://biomass.geo-wiki.org
http://biomass.geo-wiki.org
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5.3 � Landsat‑Based Forest Loss and Gain

Landsat imagery provides the longest HR time series of land observations and has been used 
to estimate forest cover loss and gain (Hansen et al. 2013; Feng et al. 2016). To train their 
forest cover change algorithm, Feng et al. (2016) selected a stratified sample of points, which 
were visually classified as forest or non-forest cover by experienced image analysts. The deci-
sion was made based on Landsat time series images presented as multiple three-band combi-
nations, e.g., near infrared, green, blue, and shortwave infrared, as well as auxiliary informa-
tion including NDVI phenology from MODIS, HR satellite imagery and maps from Google 
Maps, and geotagged ground photos. Hansen et al. (2013) derived training data to relate to the 
Landsat metrics from image interpretation, including mapping of crown/no crown categories 
using VHR spatial resolution imagery such as Quickbird, and existing percentage tree cover 
layers derived from time series of Landsat data.

5.4 � National Forest Reference Level: The Case of Papua New Guinea

Papua New Guinea submitted their national Forest Reference Level (FRL) to the UNFCCC in 
2017 (Climate Change and Development Authority of Papau New Guinea 2017). The FRL is 
one of the elements to be developed by participating countries in the framework of REDD+ 
activity reporting, in agreement with decisions taken at several recent Conference of the Par-
ties (COP) meetings. In their report, the Papua New Guinea governmental operators esti-
mated their FRL for the year 2014 to 2018 in comparison with the reference period of 2001 
to 2013. Carbon emissions for these periods were assessed from land use and land use change 
assessments using Collect Earth, which included deforestation, degradation and carbon stock 
enhancement, among others. The conversion to carbon emissions was obtained from national 
scientific literature and using the 2006 IPCC Guidelines for National Greenhouse Gas Inven-
tories (IPCC 2006). This represents a good example of the nonscientific use of Collect Earth, 
which helped Papua New Guinea to report on LULUCF to the UNFCCC in a transparent fash-
ion, demonstrating that developing countries can monitor their own carbon emissions.

5.5 � Drivers of Forest Change

Global maps of forest loss show the scale and magnitude of forest disturbance, but they do not 
distinguish land use change (i.e., deforestation) from temporary loss of tree cover due to forestry 
or wildfires. Using visual interpretation of VHR satellite imagery, Curtis et al. (2018) developed 
a forest loss classification model to determine the spatial attribution of forest disturbance to the 
dominant drivers of land cover and land use change over the period 2001 to 2015. Their results 
indicate that 27% of global forest loss can be attributed to deforestation through permanent land 
use change. The remaining areas maintained the same land use over 15 years, and tree cover loss 
was attributed to forestry (26%), shifting cultivation (24%) and wildfire (23%).

6 � Conclusions and the Future Perspectives

This review has shown that new sources of open satellite imagery have emerged over 
the last fifteen years, in particular HR imagery in the form of Landsat time series and 
Sentinel 2, as well as VHR imagery from Google Earth and Microsoft Bing Maps. This 
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development has led to new tools for visual interpretation of VHR imagery such as Geo-
Wiki, Collect Earth and more recently LACO-Wiki, which are collectively opening up 
visual interpretation of satellite imagery to crowdsourcing and nonscientific use, as well 
as providing new possibilities for research in the field of forest observation. Yet, the cover-
age of the Earth’s surface by VHR imagery from freely open sources such as Google and 
Microsoft Bing Maps is not complete, limiting visual interpretation at these locations and 
potentially biasing the results from any probability-based sample. In fact, this number may 
be even higher in the northern latitude boreal forests where coverage by VHR imagery 
is even lower. However, the coverage is expected to continue to improve and there are 
instances where the coverage of VHR imagery from Google Maps can be complemented 
by that of Microsoft Bing Maps (Lesiv et al. 2018b). The incorporation of data from other 
new, emerging sources such as Planet may also help to fill in missing gaps in the future.

There should also be more joint efforts to bring together data sets based on visual 
interpretation from multiple sources, i.e., from the confidential data collected for indi-
vidual projects that should be shared to the openly accessible data currently growing 
in size, which could contribute to a library of multipurpose reference data collections. 
Such an approach is already embedded in the philosophy of the LACO-Wiki system 
(See et al. 2017) but requires more coordinated efforts to achieve this at a global scale.

The future will also likely see more examples of online systems that allow for visuali-
zation of VHR imagery, particularly given the ease with which the imagery can now be 
accessed through Web Map Services, the growing archive of images available in Google 
Earth, which allows for some historical or change validation, and the trend in crowdsourcing 
and citizen science applications. We will also probably see a convergence in the functional-
ity of the systems, particularly with regard to features that help with visual interpretation. 
More use of geotagged photographs and social media such as Twitter may also provide alter-
native sources of information that can aid visual interpretation efforts in the future.

Finally, it is anticipated that more VHR imagery will be opened up to the research 
community, which will allow for larger scale efforts in terms of automatic classification 
of VHR using the spectral information instead of just the RGB images from Google 
Earth or Microsoft Bing Maps, in particular deep learning approaches such as the use of 
Fully Convolutional Neural Networks (FCNs) applied to remote sensing (Maggiori et al. 
2016; Fu et al. 2017; Baklanov et al. 2018a, b). These developments will only continue 
to improve the use of remote sensing data for forest observation in the future.
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