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An n-vertex graph is called C-Ramsey if it has no clique or independent set of size

C log n. All known constructions of Ramsey graphs involve randomness in an essential

way, and there is an ongoing line of research towards showing that in fact all Ramsey

graphs must obey certain “richness” properties characteristic of random graphs.

Motivated by an old problem of Erdős and McKay, recently Narayanan, Sahasrabudhe,

and Tomon conjectured that for any fixed C, every n-vertex C-Ramsey graph induces

subgraphs of Θ(n2) different sizes. In this paper we prove this conjecture.

1 Introduction

An induced subgraph of a graph is said to be homogeneous if it is a clique or

independent set. A classical result in Ramsey theory, proved in 1935 by Erdős and

Szekeres [16], is that every n-vertex graph has a homogeneous subgraph with at least
1
2 log2 n vertices. On the other hand, Erdős [14] famously used the probabilistic method

to prove that there exists an n-vertex graph with no homogeneous subgraph on 2 log2 n

vertices. Despite significant effort (see e.g., [7, 11, 12, 20]), there are no non-probabilistic

constructions of graphs with comparably small homogeneous sets.

For some fixed C, say a graph is C-Ramsey if it has no homogeneous subgraph of

size C log2 n. It is widely believed that C-Ramsey graphs must in some sense resemble

random graphs, and this belief has been supported by a number of theorems showing
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1622 M. Kwan and B. Sudakov

that certain “richness” properties characteristic of random graphs hold for all C-Ramsey

graphs. The 1st result of this type was due to Erdős and Szemerédi [17], who showed

that C-Ramsey graphs have density bounded away from 0 and 1. Further research has

focused on showing that certain statistics or substructures can take many different

values. Improving a result of Erdős and Hajnal [15], Prömel and Rödl [23] proved that

for every constant C there is c > 0 such that every n-vertex C-Ramsey graph contains

every possible graph on c log2 n vertices as an induced subgraph. Shelah [24] proved

that every n-vertex C-Ramsey graph contains 2Ω(n) nonisomorphic-induced subgraphs.

Fairly recently, answering a question of Erdős, Faudree, and Sós (see [18, 19]), Bukh and

Sudakov [9] showed that every n-vertex C-Ramsey graph has an induced subgraph with

Ω(
√

n) different degrees.

Two significant open problems in this area concern variation in the numbers of

edges and vertices in induced subgraphs. For a graph G, let

Φ(G) = {e(H) : H is an induced subgraph of G},
Ψ (G) = {(v(H), e(H)) : H is an induced subgraph of G}.

Erdős and McKay (see [18, 19]) conjectured that for any C there is δ > 0 such

that for every n-vertex C-Ramsey graph G, the set Φ (G) contains the interval {0, . . . , δn2}.
Erdős, Faudree, and Sós (see [18, 19]) conjectured that for any fixed C and any n-vertex C-

Ramsey graph G, we have |Ψ (G)| = Ω(n5/2). The best progress on the former conjecture

is due to Alon et al. [4], who proved it with nδ in place of δn2. The best progress on the

latter conjecture is due to Alon et al. [1] (improving work of Alon and Kostochka [3]), who

proved it with 2.369 in place of 5/2. We also remark that strengthenings of both these

conjectures have been shown to hold for random graphs [3, 10].

Recently, Narayanan, Sahasrabudhe, and Tomon [21] proposed a natural weaken-

ing of the aforementioned Erdős–McKay conjecture in the spirit of the Erdős–Faudree–

Sós conjecture. Specifically, they conjectured that |Φ (G)| = Ω(n2) for every n-vertex

C-Ramsey graph G, and proved the weaker result that |Φ (G)| = n2−o(1) (to be precise,

they explain that their methods actually give a bound of the form n2/eΘ(
√

log n)). In this

paper we prove Narayanan, Sahasrabudhe, and Tomon’s conjecture.

Theorem 1. For any fixed C and any n-vertex C-Ramsey graph G we have |Φ (G)| =
Ω(n2).

We remark that the order of magnitude n2 is best possible, because Φ (G) ⊆
{(0, . . . ,

(n
2

)} for any n-vertex graph. Very loosely speaking, the general approach of our
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Subgraphs of Quadratically Many Sizes 1623

proof is similar to the proof in [21], but we make a number of simplifications and

introduce some new ideas that we hope will be useful for other problems.

1.1 Notation and basic definitions

We use standard asymptotic notation throughout, and all asymptotics are as n → ∞
unless stated otherwise. Floor and ceiling symbols will be systematically omitted where

they are not crucial.

For two multisets A and B, let A�B be the set of elements that have different

multiplicities in A and B (so if A and B are ordinary sets, then A�B is the ordinary

symmetric difference (A\B)∪(B\A)). For a set A, we denote by
(A

2

)
the set of all unordered

pairs of elements of A.

We also use standard graph theoretic notation throughout. In particular, in a

graph, the density of a set of vertices A is defined as d (A) = e (A) /
(|A|

2

)
, where e (A) is

the number of edges, which are contained inside A. Similarly, for any two sets A and

B, the density between them is d (A, B) = e (A, B) / |A| |B|, where e (A, B) is the number

of edges between A and B. For a vertex v and a set of vertices A, we denote the set of

neighbours of v in A by NA (v) = N (v) ∩ A and we denote the degree of v into A by

dA (v) = ∣∣NA (v)
∣∣.

We also make some less standard graph theoretic definitions that will be

convenient for the proof. For a pair of vertices v = {
v1, v2

}
, let N (v) (NU (v), respectively)

be the multiset union of N
(
v1

)
and N

(
v2

)
(of NU

(
v1

)
and NU

(
v2

)
, respectively). Let

d (v) = d
(
v1

) + d
(
v2

)
(dU (v) = dU

(
v1

) + dU

(
v2

)
, respectively) be the size of N (v) (of

NU (v), respectively), accounting for multiplicity.

2 Ideas of the Proof and Previous Work

As mentioned in the introduction, our proof builds on some ideas of Narayanan,

Sahasrabudhe, and Tomon in [21]. This work in turn builds on the ideas of Bukh and

Sudakov in [9]. In this section we briefly outline the relevant ideas in both these papers

and discuss the new ideas in this paper.

In [9], Bukh and Sudakov proved that n-vertex Ramsey graphs have subgraphs

with Ω(
√

n) distinct degrees. To do this, they introduced the notion of diversity, as

follows. Say an n-vertex graph is (c, δ)-diverse if for each vertex x ∈ V, we have

|N (x) �N (y)| < cn for at most nδ vertices y ∈ V. Roughly speaking, this means the
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1624 M. Kwan and B. Sudakov

neighbourhoods of most pairs of vertices are very different. Bukh and Sudakov went on

to prove that for any C and δ > 0, all C-Ramsey graphs have (Ω(1), δ)-diverse induced

subgraphs of linear size.

Now, in an n-vertex (c, δ)-diverse graph G, consider a random vertex subset U

obtained by including each vertex with some fixed probability p independently. By the

diversity assumption, for most pairs of vertices u, v their degrees dU (u), dU (v) into U

are not too strongly correlated, and the probability that they are exactly equal turns

out to be O(1/
√

n) (a simple intuitive reason for this probability is that dU (u) − dU (v)

is approximately normally distributed with standard deviation Θ(
√

n)). One may then

compute that the expected number of pairs of vertices with the same degree into U is

O(n3/2 + n1+δ), so provided δ < 1/2, one may use Turán’s theorem to show that there

is an outcome of G [U] with Ω(
√

n) different degrees. This fact has some immediate

consequences for |Φ(G)|: for example, Bukh and Sudakov observed that one can obtain

Ω(
√

n) subgraphs with different numbers of edges simply by choosing different vertices

of U to delete from G[U].

There are two straightforward ways one might hope to improve on this simple

bound. First, we can repeat the above argument for many different values of p, and

second, instead of deleting single vertices, we might hope to obtain a richer variety

of subgraphs by adding and deleting different combinations of vertices. Narayanan,

Sahasrabudhe, and Tomon [21] combined both these ideas, as follows.

In an n-vertex (c, δ)-diverse graph G, first use the pigeonhole principle to identify

a set W0 of Θ(
√

n) vertices with degrees contained in a narrow interval [d, d + √
n], for

some d = Ω(n). Then, for Θ(
√

n) well-separated values of p, do the following. Let U

be a random subset of the vertices not in W0, obtained by including each vertex with

probability p. Using the diversity of G, one may compute that the expected number of

pairs of vertices of W0 that have the same degree into U is O(|W0|2/
√

n + |W0|nδ) =
O(n1/2+δ), so one can show with Turán’s theorem that there is an outcome of U such that

W0 contains a subset W of Ω(n1/2−δ) vertices with different degrees into U. Moreover,

since the initial degrees d(w) were chosen to be very similar, one can show that actually

the dU(w) are likely to still lie in an interval of length O(
√

n).

Because the degrees of vertices in W are so well behaved, one can then show that

many different values e (G[U ∪ Z]) can be obtained with different subsets Z ⊆ W. Indeed,

by varying the number of vertices in Z, one can change e (G[U ∪ Z]) by increments of

Θ(n), and by swapping low-degree vertices with high-degree vertices, one can change

e (G[U ∪ Z]) by increments of about
√

n. That is to say, by choosing subsets Z ⊆ W
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Subgraphs of Quadratically Many Sizes 1625

of certain types, one can obtain Ω(n1−2δ) different values of e (G[U ∪ Z]) separated by

Ω(
√

n) from each other.

The above ideas yield |Φ(G)| = Ω(n3/2−2δ) in a relatively straightforward

fashion. Since the diversity lemma of Bukh and Sudakov allows δ to be arbitrarily small,

this proves that n-vertex O(1)-Ramsey graphs G have |Φ(G)| = n3/2−o(1). In order to

improve this to n2−o(1), one would ideally like to be able to show that for each of the

Ω(n1−o(1)) choices of Z described above, one can add an additional vertex w ∈ W to

Z in n1/2−o(1) different ways to obtain about
√

n different values of e (G[U ∪ Z ∪ {w}])
that “fill in” the interval between consecutive values of e (G[U ∪ Z]). Unfortunately, while

by construction the degrees dU(w), for w ∈ W, are different, it does not follow that the

dU∪Z(w) are also different. In order to make this approach work, the authors of [21] came

up with a way to introduce some limited randomness into the choice of the sets Z, and

with a rather delicate combination of concentration and anticoncentration arguments

they were able to show that there are likely to be many different values of dU∪Z(w).

There are two main obstacles that need to be overcome to prove |Φ(G)| = Ω(n2)

with the above strategy. Most obviously, there is a factor of nδ that must be eliminated.

Recall that this factor originates from the upper bound O(|W0|2/
√

n + |W0|nδ) on the

expected number of pairs of vertices of W0 that have the same degree into U. It does not

seem that this estimate itself can be improved, but the unwanted factor of nδ would

disappear if we could arrange for W0 to have size Ω(n1/2+δ) instead of size Θ(
√

n).

Unfortunately, if we want W0 to be asymptotically larger than
√

n, it is no longer

possible to guarantee that the degrees of vertices in W0 fall within an interval of length

O(
√

n), and this would cause problems in other parts of the argument. The way we

overcome this issue is by allowing two possibilities for the structure of W0. Either W0

is a set of vertices as before or W0 is a set of disjoint pairs of vertices
{
x1, x2

}
with

similar values of d
({

x1, x2

}) = d(x1) + d(x2). We may then treat these pairs as we would

treat single vertices in the above argument, considering sets Z that are the union of

some subset of the pairs in W0. Note that there are Θ(n2) pairs of vertices in G, but

only O(n) possibilities for d
({

x1, x2

})
, so this relaxation gives us a lot of flexibility. This

idea actually allows us to take W0 to be of size Ω(n3/4), but also introduces some new

complications that must be taken care of. In particular, Bukh and Sudakov’s notion of

(c, δ)-diversity is not strong enough to deal with pairs of vertices, so in Section 3 we

introduce a new notion of (δ, ε)-richness.

The 2nd main obstacle concerns the final part of the argument, where one shows

that there are likely to be many different values of dU∪Z(w) amongst the w ∈ W. In

[20], for this part of the argument the main random set U had already been fixed, so
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1626 M. Kwan and B. Sudakov

the only source of randomness was the much smaller set Z. In this setting, in order to

find close to
√

n different values of dU∪Z(w) it does not merely suffice to consider the

variation induced by the random set Z; one must also take advantage of the separation

between different dU(w), and show that this approximately corresponds to separation

between the dU∪Z(w). It seems that with this approach there is an unavoidable loss of

a logarithmic factor, and it is not clear how to prove a result stronger than |Φ(G)| =
Ω(n2/ log n).

In the present paper we take a somewhat different approach, with a “double-

exposure” technique. Specifically, we obtain our random set U as a random subset of

about half of the vertices of a larger random set U0. Using the ideas sketched above, we

can first use the randomness of U0 to show that there are subsets Z ⊆ W0 that give Ω(n)

different values of e
(
G

[
U0 ∪ Z

])
separated by Ω(

√
n) from each other. Then, we can use

the randomness of U ⊆ U0 to show that for most Z there are Ω(
√

n) different values of

dU∪Z(w), leading to Ω(
√

n) different values of e (G [U ∪ Z ∪ {w}]) closely clustered around

e (G [U ∪ Z]). Of course, we also need to show that this 2nd round of randomness did not

cause too much damage to the separation we established with the 1st round; we need

to show that the e (G [U ∪ Z]) are likely to be well separated from each other, using the

fact that the e
(
G

[
U0 ∪ Z

])
were chosen to be well separated from each other. This can be

done by taking advantage of the particular structure of the sets Z, and considering an

appropriate notion of what it means for a sequence of values to be “well separated”.

3 Basic Tools

In this section we give a number of general results, which will be useful in the proof of

Theorem 1. Some of these are well known and some are new.

First, as mentioned in the introduction, the following lemma is due to Erdős and

Szemerédi [17].

Lemma 2. For any C there exists ε > 0 such that every C-Ramsey graph has edge

density between ε and 1 − ε.

Next, we need the notion of diversity, introduced by Bukh and Sudakov [9]. Recall

from Section 2 that an n-vertex graph is (c, δ)-diverse if for each vertex x ∈ V, we have

|N (x) �N (y)| < cn for at most nδ vertices y ∈ V. Roughly speaking, this means the

neighbourhoods of most pairs of vertices are very different. As in [9, 21], the significance

of this notion for us is that in a diverse graph, if U is a random set of vertices, then for

most pairs of vertices their degrees into U are not too strongly correlated. In addition
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Subgraphs of Quadratically Many Sizes 1627

to this basic notion of diversity we also introduce a notion of diversity for pairs of

vertices. Say an n-vertex graph is (c, δ, α)2-diverse if for each pair of vertices x = {
x1, x2

}

such that |N (
x1

)�N
(
x2

)| ≥ αn, one cannot find nδ other pairs y = {
y1, y2

}
, disjoint to

x and each other, such that |N (x)�N (y)| < cn (recall from Section 1.1 the nonstandard

multiset definitions of N (x) , N (y), and N (x)�N (y)).

In this paper, it will be convenient to deduce diversity from a slightly stronger

condition. Say an n-vertex graph is (δ, ε)-rich if for any vertex subset W with |W| ≥ δn,

at most nδ vertices v have |N (v) ∩ W| < ε |W| or |N (v) ∩ W| < ε |W|.

Lemma 3. Let G be a (δ, ε)-rich graph on a set V of n vertices, with δ ≤ 1/2. Then,

1. G is (ε/2, δ)-diverse;

2. G is (αε/2, δ, α)2-diverse for any α ≥ 2δ;

3. G has at most n1+δ pairs
{
x1, x2

} ∈ (V
2

)
with |N (

x1

) �N
(
x2

)| < (ε/2) n.

Proof. For the 1st statement, for each vertex x either |N (x)| ≥ n/2 or |N (x)| ≥ n/2. In

the former case, for all but at most nδ vertices y we have |N (x)∩N (y)| ≥ ε |N (x)| ≥ εn/2,

and in the latter case for all but at most nδ vertices y we have |N (x) ∩ N (y) | ≥ ε|N (x)| ≥
εn/2. In either case, there are at most nδ vertices y with |N (x) �N (y)| < εn/2, as desired.

For the 2nd statement, note that if |N (
x1

) �N
(
x2

)| ≥ αn then
∣∣N (

x1

) ∩ N
(
x2

)∣∣ ≥
(α/2) n or |N (

x1

) ∩ N
(
x2

)| ≥ (α/2) n. Suppose that there were a pair x and a collection Y

of nδ pairs contradicting (αε/2, δ, α)2-diversity, and suppose without loss of generality

that
∣∣N (

x1

) ∩ N
(
x2

)∣∣ ≥ (α/2) n ≥ δn. Then, for each vertex y in each y ∈ Y,

|N (y) ∩ N
(
x1

) ∩ N
(
x2

) | ≤ |N (x) �N (y)| < (αε/2) n ≤ ε
∣∣N (

x1

) ∩ N
(
x2

)∣∣ ,

and the set of all such y would contradict (δ, ε)-richness.

For the 3rd statement, we will show that for each of the n choices of x1 there

are at most nδ pairs
{
x1, x2

} ∈ (V
2

)
with |N (

x1

) �N
(
x2

)| < (ε/2) n. Consider any vertex

x1 and suppose without loss of generality that
∣∣N (

x1

)∣∣ ≥ n/2. There are at most nδ

vertices x2 with N
(
x2

) ∩ N
(
x1

)
< εn/2, and for all other x2 we have |N (

x1

) �N
(
x2

)| ≥∣∣N (
x2

) ∩ N
(
x1

)∣∣ ≥ (ε/2) n. �

Now, we show that every C-Ramsey graph contains a rich induced subgraph of

linear size. The proof approach is based on a related lemma due to Bukh and Sudakov

[9, Lemma 2.2], which in turn uses ideas from [23, 24].
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1628 M. Kwan and B. Sudakov

Lemma 4. For any C, δ > 0, there exist ε = ε (C) > 0 and c = c (C, δ) > 0 such

that every n-vertex C-Ramsey graph contains a (δ, ε)-rich induced subgraph on at least

cn vertices.

Proof. Suppose for the purpose of contradiction that every set of at least cn vertices

fails to induce a (δ, ε)-rich subgraph, for c, ε to be determined. For some large K = K (C)

to be determined, we will inductively construct a sequence of induced subgraphs G =
G

[
U0

] ⊇ G
[
U1

] ⊇ · · · ⊇ G
[
UK

]
and disjoint vertex sets S1, . . . , SK such that for all i,∣∣Ui

∣∣ ≥ (δ/4) |Ui−1|, ∣∣Si

∣∣ = (cn)δ /2, Si ⊆ Ui−1, and

[d(Si, Sj) < 4ε for all j > i] or [d(Si, Sj) > 1 − 4ε for all j > i]. (1)

This will suffice, as follows. Without loss of generality suppose that the 1st case of

Equation (1) holds for at least half of the choices of i, and let S be the union of the

corresponding Si. Then one can compute d (S) < 4ε + 2/K. For sufficiently small ε and

large K this density is too low for G [S] not to contain a homogeneous subgraph of size

C log n, by Lemma 2.

Let U0 = V (G). For 1 ≤ i ≤ K we will construct Ui, Si, assuming U0, . . . , Ui−1,

S1, . . . , Si−1 have already been constructed. For c ≤ (δ/4)K we have |Ui−1| ≥ cn, so by

assumption Ui−1 contains a set W of at least δ|Ui−1| vertices and a set Y of (cn)δ vertices

contradicting (δ, ε)-richness. Suppose without loss of generality that |NUi−1
(v) ∩ W| ≤

ε |W| for half the vertices v ∈ Y, and let Si be the corresponding subset of Y. Then, let

U = W\Si, so |U| ≥ |W| /2, and let Ui ⊆ U be the set of vertices v ∈ U with d
({v} , Si

) ≤ 4ε.

Now, we just need to show
∣∣Ui

∣∣ ≥ (δ/4) |Ui−1|. To this end, first observe that for all y ∈ Si

we have d ({y} , U) = dU (y) / |U| ≤ (ε |W|) / (|W| /2) = 2ε. Then,

4ε
∣∣U\Ui

∣∣ <
∑

v∈U\Ui

d
({v} , Si

) ≤ e
(
U, Si

)
∣∣Si

∣∣ = |U|∣∣Si

∣∣
∑
y∈Si

d ({y} , U) ≤ 2ε |U| ,

implying that
∣∣Ui

∣∣ > |U| /2 ≥ (δ/4) |Ui−1|, as desired. �

Next, we will use a very slight variation of the Erdős–Littlewood–Offord theo-

rem. Say a random variable is of (n, p)-Littlewood–Offord type if it can be expressed

in the form X = a1ξ1 + · · · + anξn + C, where a1, . . . , an ∈ Z\ {0} and C ∈ Z are fixed

and ξ0, . . . , ξn are independent, identically distributed p-Bernoulli random variables

(taking the value 1 with probability p and the value 0 with probability 1 − p). The
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Subgraphs of Quadratically Many Sizes 1629

following variation of the Erdős–Littlewood–Offord theorem follows from, for example,

[8, Lemma A.1].

Lemma 5. Suppose X is of (n, p)-Littlewood–Offord type, for p = Ω (1) and 1 − p =
Ω (1). Then for any x ∈ Z, Pr (X = x) = O(1/

√
n).

Finally, throughout the proof we will use Markov’s inequality, Chebyshev’s

inequality, the Chernoff bound, the Azuma–Hoeffding inequality, and Turán’s theorem.

Statements and proofs of all of these can be found, for example, in [5].

4 Proof of Theorem 1

Very broadly, as outlined in Section 2, the basic idea of our proof is similar to the proof

in [21]. We will find many induced subgraphs G[U] with “well-separated” numbers of

edges, and we will augment these subgraphs in many different ways. To be precise,

Theorem 1. will be an immediate consequence of the following lemma.

Lemma 6. For any C there is c = c(C) > 0 such that the following holds. For any n-vertex

C-Ramsey graph G and any m satisfying cn2 ≤ m ≤ 2cn2, there are disjoint subsets U,

W ⊆ V with |e (U) − m| = O(n3/2) and |W| = O(
√

n) such that

|{e (U ∪ Z) : Z ⊆ W}| = Ω(n3/2).

Proof of Theorem 1 given Lemma 6. For any U, W as in Lemma 6, we have

|e (U ∪ W) − e (U)| = O(n3/2),

because |W| = O(
√

n) and each w ∈ W has fewer than n neighbours in U ∪ W. That is to

say, the Ω(n3/2) values of e (U ∪ Z) are contained in an interval of length O(n3/2) centred

at e (U). By applying Lemma 6 to Ω(
√

n) values of m each separated by a sufficiently

large multiple of n3/2, we therefore get Ω(n2) different subgraph sizes. �

The sets W in Lemma 6 will be comprised of multiple disjoint subsets S, T,

X with different roles. Roughly speaking, given some Z ⊆ W containing exactly one

element of X, we will be able to increase the number of edges in e (U ∪ Z) by Θ (n) by

adding an element of S to Z, we will be able to increase the number of edges by Θ(
√

n)

by exchanging an element of S in Z with an element of T, and we will be able to modify
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1630 M. Kwan and B. Sudakov

e (U ∪ Z) very finely by Θ(
√

n) different amounts by making different choices for the

single element of X in Z. With different combinations of these operations we will be

able to obtain Ω(n3/2) different values of e (U ∪ Z).

As outlined in Section 2, due to some technical obstacles we were not actually

able to construct sets U, S, T, X that give us control over subgraph sizes in such a

simplistic way. Perhaps our most important new idea, which gives us a lot of flexibility,

is that we may allow S, T, X to be sets of disjoint pairs of vertices rather than just vertex

sets. The following lemma will be a starting point for our construction.

Lemma 7. For any C there is c > 0 such that the following holds. For any n-vertex C-

Ramsey graph G and any m satisfying cn2 ≤ m ≤ 2cn2, there is a vertex set U0 ⊆ V with∣∣e (
U0

) − 4m
∣∣ = O(n3/2) and sets S, T, X of size Θ(

√
n) such that

1. either U0, S, T, X ⊆ V are disjoint sets of vertices or S, T, X ⊆ (V
2

)
are sets of

disjoint pairs of vertices such that no vertex appears in more than one of

U0, S, T, X;

2. there is d = Θ (n) such that dU0
(x) = d + O(

√
n) for each x ∈ S ∪ T ∪ X;

3. the degrees from S into U0 are smaller by Ω(
√

n) than the degrees from T into

U0 (i.e., minx∈T dU0
(x) − maxx∈S dU0

(x) = Ω(
√

n));

4. for each {x, y} ∈ (X
2

)
, we have |NU0

(x) �NU0
(y) | = Ω (n).

Note that when we write a variable name in bold, it may be a single vertex or a

pair of vertices. Also, we emphasise that we are thinking of C as a fixed constant, so the

constants implied by the asymptotic notation in Lemma 7 may depend on C (but nothing

else).

We will prove Lemma 7 in Section 4.1. Without going into too much detail about

the proof, the idea is to first apply Lemma 4 to reduce to an induced subgraph with rich

neighbourhoods, then use the pigeonhole principle to find a large set L of either vertices

or pairs of vertices with very similar degrees. Then, we choose U0 randomly and choose

S, T, X ⊆ L based on this random outcome to satisfy the properties in Lemma 7.

Now, consider a C-Ramsey graph G, let c be as in Lemma 7, and consider some

m satisfying cn2 ≤ m ≤ 2cn2. Apply Lemma 7 to obtain sets U0, S, T, X, and let c′ be a

constant such that

min
x∈T

dU0
(x) − max

x∈S
dU0

(x) ≥ 8c′√n (2)

(such a constant exists by the 3rd property of Lemma 7).
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Subgraphs of Quadratically Many Sizes 1631

Fix an ordering of the elements of S and of T, and let P be the set of pairs

(k, i) ∈ Z
2 with c′√n ≤ k ≤ 2c′√n and 0 ≤ i ≤ c′√n. For each (k, i) ∈ P, define the set

Zk,i to contain the vertices of the 1st k − i elements from S and the 1st i elements from

T. Note that e(Zk,0 ∪ U0) − e(Zk−1,0 ∪ U0) = Θ (n) for each k, because dU0
(x) = Θ (n) for

each x ∈ S by the 2nd property of Lemma 7. Also note that e(Zk,i ∪ U0) − e(Zk,i−1 ∪ U0) =
Θ(

√
n) for each k, i, by the 2nd property of Lemma 7, Equation (2) and the fact that

e(Zk,i) − e(Zk,i−1) ≤ 2c′√n. Therefore, as (k, i) varies lexicographically, the e(Zk,i ∪ U0)

comprise Ω (n) roughly evenly spaced values.

Now, let U be a random subset of U0, where each vertex is present with

probability 1/2 independently. We would like some approximation of the spacing

described above still to hold for the collection of random values e(Uk,i), where Uk,i =
Zk,i ∪ U. Also, we want to use the randomness of U to show that for most k, i, the x ∈ X

have Ω(
√

n) different degrees dUk,i
(x) into Uk,i. In Section 4.2 we will prove the following

lemma, from which Lemma 6 will easily follow.

Lemma 8. Let G be a C-Ramsey graph, let S, T, X, d be obtained from an application of

Lemma 7, and let Zk,i, U, Uk,i be as defined above. Then, there are constants M, β, Q > 0

(with Q ≥ 3β) such that for each c′√n ≤ k ≤ 2c′√n, the following hold:

1. With probability at least 0.99, there is a set Ik of (1 − β/ (2M)) c′√n values

of i with the following property. For each i ∈ Ik, there is a set Xk,i ⊆ X of

size Ω(
√

n) such that the dUk,i
(x), for x ∈ Xk,i, are distinct, and all lie in the

interval between d/2 − Q
√

n and d/2 + Q
√

n.

2. Let ek,i = e(Zk,i) + e(Zk,i, U) = e(Uk,i) − e (U). With probability at least 0.99,

|ek,0 − Eek,0| ≤ Qn.

3. With probability at least 1/2, ek,c′√n − ek,0 ≥ 3βn.

4. Let Δk,i = ek,i − ek,i−1. With probability at least 0.99,

∑

|Δk,i|≥M
√

n

|Δk,i| ≤ βn

(that is to say, the “unusually large” increments Δk,i have low total volume).

Again we emphasise that we are thinking of C as fixed, so M, β, Q may depend on

C, via c′ and the constants implied by the asymptotic notation in Lemma 7.

Now we can prove Lemma 6 given Lemmas 7 and 8.
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1632 M. Kwan and B. Sudakov

Proof of Lemma 6. Apply Lemma 7 to obtain U0, S, T, X, and define P, U, Zk,i, Uk,i as

above. We will prove the statement of the lemma for W being the set of all the vertices

in S ∪ T ∪ X.

For each c′√n ≤ k ≤ 2c′√n, with probability at least 0.4, all four parts of

Lemma 8 are satisfied. Let K be the set of such k. Then E[c′√n − |K|] ≤ (0.6) c′√n,

so by Markov’s inequality, with probability at least 1 − 0.6/0.8 = 1/4 we have |K| ≥
(0.2) c′√n. Also, note that |Ee (U) − m| = O(n3/2) and there are O(n3) pairs of edges in

G whose presence in G [U] are dependent (this can only occur if they share a vertex). So,

Var e (U) = O(n3) and by Chebyshev’s inequality, |m − e (U)| = O(n3/2) with probability

at least 0.9. Fix an outcome of U satisfying both these events, which hold together with

probability at least 0.15.

For each k, we have

Eek,0 − Eek−1,0 = (e(Zk,0 ∪ U0) − e(Zk−1,0 ∪ U0))/2 = Θ(n),

since EdU (x) = dU0
(x) /2 for each x ∈ S. Let K′ ⊆ K contain every qth element of K, for

sufficiently large q such that the values of Eek,0, for k ∈ K′, are separated by at least

4Qn. Then, |K′| = Θ(
√

n), and by part 2 of Lemma 8, the values of ek,0, for k ∈ K′, are

separated by at least 2Qn.

Next, by part 3 of Lemma 8 we have ek,c′√n − ek,0 ≥ 3βn for each k ∈ K′.
Consider the range of integers between ek,0 and ek,0+3βn, and within this range consider

2β
√

n/M intervals of length M
√

n, each separated by a distance of M
√

n/2 = Ω(
√

n).

By part 4 of Lemma 8, at most β
√

n/M of these intervals contain no value of ek,i.

Consider a representative ek,i from β
√

n/M different intervals, and let I ′
k be the set

of corresponding indices i. Let I ′′
k = Ik ∩ I ′

k, so that |I ′′
k | ≥ β

√
n/M − βc′√n/ (2M) ≥

β
√

n/ (2M). By construction, |ek,i − ek,0| ≤ 3βn for each i ∈ I ′′
k , and the values of ek,i,

for i ∈ I ′′
k , are separated by Ω(

√
n). We are assuming that Q ≥ 3β, so amongst choices

of k ∈ K′, i ∈ I ′′
k , we already have a total of Ω (n) different values of e(Uk,i) separated

by Ω(
√

n).

Now, consider every qth of these values (in increasing order), for sufficiently

large q such that each resulting pair of values are separated by at least 2Q
√

n. Let P ′ ⊆
{(k, i) : k ∈ K′, i ∈ I ′′

k } be the corresponding set of indices (so |P ′| = Ω (n)). For each

(k, i) ∈ P ′, we have i ∈ Ik, so by part 1 of Lemma 8 there is Xk,i such that the values

dUk,i
(x), for x ∈ Xk,i, are all different yet are all in a fixed interval of length 2Q

√
n.

Therefore, amongst choices of (k, i) ∈ P ′ and x ∈ Xk,i, there are Ω(n3/2) different values

of e(Uk,i ∪ x) = e(U ∪ (Zk,i ∪ x)), as desired. �
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4.1 Proof of Lemma 7

Proof of Lemma 7. First, consider ε = ε (C) from Lemma 4 and note that we can

assume G is (δ, ε)-rich, for δ = ε/4. To see this, first apply Lemma 4 to obtain a Ω (n)-

vertex (δ, ε)-rich induced subgraph G[V ′] ⊆ V . Since log |V ′| ≥ (1/2) log n, G[V ′] is still

2C-Ramsey, so by tweaking some constants it suffices to find our desired sets U0, S, T, X

inside G[V ′].
So, we make the aforementioned richness assumption. By Lemma 3 with α = ε/2,

this means that G is both (ε/2, δ)-diverse and (ε2/4, δ, ε/2)2-diverse, and there are at

most n1+δ pairs of vertices
{
x1, x2

}
with |N (

x1

) �N
(
x2

)| < (ε/2) n. Note that each of the

Ω
(
n2

)
sums d (x) = d

(
x1

) + d
(
x2

)
, for x = {

x1, x2

} ∈ (V
2

)
, lie between 0 and 2n, so by the

pigeonhole principle there is some d′ and a collection of Ω(n3/2) pairs H ⊆ (V
2

)
such that

d (x) = d′ + O(
√

n) for all x ∈ H. Interpret H as a graph on the vertex set V with Ω(n3/2)

edges, and obtain a further graph H ′ by deleting the O(n1+δ) = o(n3/2) edges
{
x1, x2

}

with |N (
x1

)�N
(
x2

)| < (ε/2) n. Now, H ′ either has a vertex v with d (v) = Ω(n3/4) or

it has a matching with Ω(n3/4) edges. In the former case let d′′ = d′ − d (v) and let

L ⊆ NH (v) be a set of Ω(n3/4) neighbours of v in H. In the latter case let d′′ = d′ and let

L be a set of Ω(n3/4) pairs comprising a matching in H ′. In both cases, for each x ∈ L, we

have d (x) = d′′ + O(
√

n).

Next, let F ⊆ (L
2

)
be the set of {x, y} ∈ (L

2

)
with |N (x) �N (y)| < (ε2/4)n. By one of

our two diversity assumptions, interpreting F as a graph, it has |L| = Ω(n3/4) vertices

and maximum degree at most nδ ≤ n1/4, so by Turán’s theorem it has an independent

set A with size Ω(|L| /n1/4) = Ω(
√

n). That is to say, for every {x, y} ∈ (A
2

)
, we have

|N (x) �N (y)| = Ω (n).

Now, by Lemma 2 and the C-Ramsey property, e (G) ≥ 800cn2 for some c > 0. For

cn2 ≤ m ≤ 2cn2, let p = √
4m/e (G) (so p = Ω (1) and p ≤ 0.1) and let U0 be a random

subset of V obtained by including each element with probability p independently. We

make a few observations.

Claim. The following five events each hold with probability greater than 4/5:

1.
∣∣e (

U0

) − 4m
∣∣ = O(n3/2);

2. there is Q ⊆ A involving no vertices of U0, with |Q| ≥ (2/3) |A|;
3. there is R ⊆ A with |R| ≥ (2/3) |A| and dU0

(x) = pd′′ + O(
√

n) for each

x ∈ R;

4. |NU0
(x) �NU0

(y) | = Ω (n) for each {x, y} ∈ (A
2

)
;

5. the equality dU0
(x) = dU0

(y) holds for O(
√

n) pairs {x, y} ∈ (A
2

)
.
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1634 M. Kwan and B. Sudakov

Proof of claim. For the 1st property, note that Ee
(
G

[
U0

]) = 4m and there are O(n3)

pairs of edges in G whose presence in G
[
U0

]
are dependent (this can only occur if

they share a vertex), so Var e
(
G

[
U0

]) = O(n3). The desired result then follows from

Chebyshev’s inequality, for a sufficiently large constant implicit in “O(n3/2)”.

For the 2nd property, note that the size of the subset Q ⊆ A of elements of A that

contain no vertices of U0 has mean at least (1 − p)2 |A| and variance O (|A|); since 1 − p

≥ 0.9 the desired result again follows from Chebyshev’s inequality.

For the 3rd property, for each x ∈ A we have EdU0
(x) = pd′′ + O(

√
n) and

Var dU0
(x) = O (n), so with at probability at least 0.99 we have dU0

(x) = pd′′ + O(
√

n).

Let R be the set of x satisfying this bound; we have E |A\R| = (0.01) |A|, so by Markov’s

inequality, with probability at least 4/5 we have |A\R| ≤ (1/3) |A|.
For the 4th property, recall that |N (x) �N (y)| = Ω (n) for each {x, y} ∈ (A

2

)
.

Note that NU0
(x) �NU0

(y) = (N (x) �N (y)) ∩ U0, so that |NU0
(x) �NU0

(y) | has a bino-

mial distribution with parameters |N (x) �N (y)| and p. Then, Pr(|NU0
(x)�NU0

(y) | <

(p/2) |N (x) �N (y)|) = e−Ω(n) by the Chernoff bound, and the desired result follows from

the union bound.

For the 5th property, for {x, y} ∈ (A
2

)
, note that the random variable dU0

(x) −
dU0

(y) is of (|N (x) �N (y)| , p)-Littlewood–Offord type. So, recalling that |N (x) �N (y)| =
Ω (n), we have Pr(dU0

(x) = dU0
(y)) = O(1/

√
n). The expected number of pairs {x, y} ∈(A

2

)
satisfying dU0

(x) = dU0
(y) is therefore O(

√
n), and the desired result follows from

Markov’s inequality. �

Fix an outcome of U0 satisfying all five of the above properties, and arbitrarily

divide R ∩ Q, which has size at least |A| /3, into two subsets Y and X of size Ω(
√

n).

Consider the graph on the vertex set Y of all {x, y} ∈ (Y
2

)
with dU0

(x) = dU0
(y). This

graph has O(
√

n) edges, so by Turán’s theorem it has an independent set B of size Ω(
√

n).

Order the x ∈ B by dU0
(x), let S be the 1st |B| /3 elements in this ordering and let T be

the last |B| /3 elements. Since each such dU0
(x) is distinct, this means minx∈T dU0

(x) −
maxx∈S dU0

(x) ≥ |B|/3 = Ω(
√

n). Let d = pd′′ and note that d = Ω (n), because otherwise

it would be impossible to simultaneously satisfy properties 3 and 4.

4.2 Proof of Lemma 8

Proof of Lemma 8. The constants β, M, Q will be determined in that order, in terms of

each other. Therefore it is convenient to prove the four parts of Lemma 8 in a slightly

different order than they are stated.
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For the 3rd part, note that |e(Zk,i) − e(Zk,i−1)| ≤ 2c′√n and recall Equation (2).

We have

E[ek,i − ek,i−1] ≥ 1

2
(e(Zk,i, U0) − e(Zk,i−1, U0)) − 2c′√n ≥ 2c′√n,

for each i. Let β = 2(c′)2/3, so Δk := ek,c′√n − ek,0 has expectation at least 3βn. But

Δk is of (Ω (n) , 1/2)-Littlewood–Offord type and is therefore symmetrically distributed

around its expectation. The desired result follows.

For the 4th part, note that Δk,i has mean O(
√

n) and is affected by 1 or 2 by the

addition or removal of an element to/from U. So, by the Azuma–Hoeffding inequality,

Pr(|Δk,i| ≥ t) = exp(−Ω(t2/n)). Now, for any nonnegative integer random variable ξ , we

have Eξ = ∑∞
t=1 Pr (ξ ≥ t), so

E

[
|Δk,i|1|Δk,i|≥M

√
n

]
=

∞∑
t=1

Pr
(
|Δk,i|1|Δk,i|≥M

√
n ≥ t

)

= M
√

n Pr(|Δk,i| ≥ M
√

n) +
∞∑

t=M
√

n

Pr(|Δk,i| ≥ t)

= M
√

ne−Ω(M2) +
∞∑

t=M
√

n

exp(−Ω(t2/n)) = e−Ω(M2)
√

n,

uniformly over M. The desired result follows for sufficiently large M, by linearity of

expectation and Markov’s inequality.

Now we prove the 1st part. For each k, i, and each {x, y} ∈ (X
2

)
, the random

variable dUk,i
(x) − dUk,i

(y) is of (|NU0
(x) �NU0

(y) |, 1/2)-Littlewood–Offord type. So, we

have Pr(dUk,i
(x) = dUk,i

(y)) = O(1/
√

n). Let Hk,i be the graph of pairs {x, y} ∈ (X
2

)

satisfying dUk,i
(x) = dUk,i

(y), so we have Ee(Hk,i) = O(
√

n). By Markov’s inequality,

with probability at least 1 − β/ (400M) we have e(Hk,i) = O(
√

n), in which case by

Turán’s theorem Hk,i has an independent set Yk,i of size 2γ
√

n, for some constant

γ = γ (β, M) > 0. The expected proportion of values of i for which this fails to occur

is β/ (400M), and by Markov’s inequality again, with probability at least 0.995 it fails

for only a β/ (2M) proportion.

Also, for each x ∈ X, we have EdU (x) = d/2 + O(
√

n) and Var dU (x) = O (n), so

by Chebyshev’s inequality, for sufficiently large Q we have
∣∣dU (x) − d/2

∣∣ ≤ Q
√

n with

probability at least 1 − γ /200. By Markov’s inequality, with probability at least 0.995

there is a set Y with at least (1 − γ ) |X| elements of X satisfying dU (x) = d/2 + O(
√

n).
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For sufficiently large Q, this means that for each x ∈ X, dU (x) lies in the interval between

d/2 − Q
√

n and d/2 + Q
√

n.

With probability at least 0.99 both the above events occur, and we can take Xk,i =
Yk,i ∩ Y for a (1 − β/ (2M)) proportion of possibilities of i. This proves the 1st part of

the lemma.

Finally we prove the 2nd part. Note that ek,0 is a translation of
∑

u∈U dZk,0
(u),

which is of (O (n) , 1/2)-Littlewood–Offord type, with all coefficients O(
√

n). So,

Var ek,0 = O(n2) and the desired result follows from Chebyshev’s inequality for

sufficiently large Q (note that enlarging Q cannot make the 1st part fail to hold). �

5 Concluding Remarks

In this paper we proved that for any fixed C, if G is an n-vertex graph with no

homogeneous subgraph on C log n vertices, then G induces subgraphs of Ω(n2) different

sizes. This is best possible, but there are a number of other related questions one could

ask about Ramsey graphs. For example, as proposed to us by Tuan Tran, we could ask

for Ω(n3) induced subgraphs with different numbers of triangles. The methods in this

paper might be helpful for this question, but the main obstacle seems to be that one

would want a fairly strong anticoncentration inequality for quadratic polynomials in

place of Lemma 5.

Actually, we think it would be interesting in general to explore the extent to

which anticoncentration phenomena occur in random subsets of Ramsey graphs. For

example, consider the following problem. Let A be the adjacency matrix of an O(1)-

Ramsey graph G and let x ∈ {0, 1}n be a uniformly random 0–1 vector, so that xTAx

is the number of edges in a uniformly random induced subgraph of G. Is it true that

Pr(xTAx = c) = O(1/n) for all c ∈ Z? This is closely related to a conjecture of Costello (13,

Conjecture 3), essentially characterising the matrices A for which this approximately

holds.

Another interesting further direction of research would be to consider the

situation where larger homogeneous subgraphs are forbidden (see [2, 4, 6, 22] for some

examples of theorems of this type). In particular, a natural weakening of an ambitious

conjecture of Alon et al. [4] is that if G is an n-vertex graph with no homogeneous

subgraph on n/4 vertices, then this is already enough for G to induce subgraphs of

Ω (e (G)) different sizes.
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