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Introduction

High Dimensional, Data-Driven UQ

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

Standard Requirements

A. A computational model (e.g. FEM model or surrogate model)
B. Some representation of the input variability (e.g. fX(x)), or resampling capabilities

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability and stochastic spectral methods.
Habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand.
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Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

High dimensionality, purely data driven

A. No computational model, no surrogate in high dimension (M ∼ 102 − 106)
B. Only a limited input sample available, no inference possible

Goal: Do something better than just sample mean and sample variance
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Introduction

Why would this be useful?

Earthquake engineering

Earthquake databases

−→

Building/Local/Regional damage

Structural health monitoring

Sensor readings

−→
Residual lifespan/Power

throughput
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Reduced Dimension Resampling Principle

Principle of Reduced Dimension Resampling (RDR)

Goal: Estimate response PDF fY (y) from a dataset X ,Y

Large input dimension M
• Cannot infer fX(x) :

no X enrichment
• Cannot surrogate y =M(x) :

no Y enrichment

The idea: RDR
1 Compression X → Z

2 Reduced surrogate modeling: Y ≈ M̂(Z)
3 Infer fZ(z) from Z

4 Resample Z ′ and evaluate Y ′ = M̂(Z ′)
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Reduced Dimension Resampling DRSM

Compression and surrogate: a tight bond

Step 1: Compression and surrogate modeling

• The goal: identify g,w,M̂ and θ such that:

z = g(X,w) , Z ∈ Rm , m�M

M̂ (Z; θ) ≈M (X)

DRSM algorithm: Lataniotis et al., 2018

ŵ = arg min
w∈Dw

ε̂gen(w; θ̂(w),X ,Y),

θ̂ = arg min
θ∈Dθ

ε̂gen(θ;w,X ,Y)

Interesting DRSM features
• Non-intrusive
• Optimal DR w.r.t. the

surrogate performance
• Outcome

• Surrogate M̂(z; θ̂)
• Z = g(X ; ŵ)
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Reduced Dimension Resampling DRSM

Methodology (2/2)

Step 2: Reduced Dimension Resampling

Probabilistic modeling
• The goal: infer the joint distribution

of the reduced input: Z ∼ fZ(Z)
• 2-steps inference Torre et al., 2019

• Marginal fitting
• Advanced copula inference

Resampling + MCS
• The goal: enrich the original

response sample Y → Y ′

• Resampling + surrogate
• resample Z ′ from fZ(z) (e.g.

Rosenblatt, rejection sampling,
MCMC)

• evaluate Y ′ = M̂ (Z ′)
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Ingredients Dimensionality reduction

Dimensionality reduction

Kernel Principal Component Analysis (KPCA) Schölkopf et al., 1999

A non-linear extension of PCA

• First map the input to a high dimensional space (feature space):

x ∈ RM 7→ Φ(x;w′) ∈ H

then perform PCA in this space
• The mapping is implicit, using appropriate kernels:

κ(xi,xj ;w) = Φ(xi;w′) · Φ(xj ;w′)

• Calculates Z as projections onto the first m eigenvectors of CH = cov [Φ(X )]
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Ingredients Surrogate models

Surrogate modeling methods

Universal Kriging:

M̂(X) = βT f(X) + σ2Z(X, R(x,xED; θ̂))

θ̂ = arg min J(θ̂)

Objective function varies depending on the
estimation method (e.g. maximum likelihood,
cross-validation, etc. )

0 5 10 15
-15

-10

-5

0

5

10

15

Sparse polynomial chaos expansions:

M̂(X) =
∑
α∈A

θαΨα(X)

Ψα(X) are multivariate polynomials orthonormal with respect to fX(x)

θ̂ = arg min
θ∈R|A|

1
N

N∑
i=1

(∑
α∈A

θαψα(x(i))− y(i)

)2

+ λ ‖θ‖1
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Ingredients Resampling

Probabilistic input model inference (data-driven)

Marginal distributions inference

• Using kernel density estimation

f̂Z(z) =
1
N h

N∑
i=1

κ

(
z − z(i)

h

)
• Non-parametric technique, suitable

for data-driven applications

Copula inference Torre et al., 2019

• Using canonical vine copulas
• Constructed as a product of pair

copulas
• Copula structure and parameters

are inferred based on Aas et al.
2009

• Allow for efficient implementation
of the Rosenblatt transform
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Applications 2D heat diffusion

2D heat diffusion: problem statement

Input
d(v)

• Heat diffusion coefficient d(v)
• Lognormal random field

• Dimensionality M = 16,000

Computational model
T (v)

−∇ (d(v)∇T (v)) = 500 IA(v)

• Output: Y = 1
|B|

∫
v∈B

T (v) [oC]

Training: 800 samples Validation: 105 samples

Li, C.C and Der Kiureghian, A. (1993). Optimal discretization of random fields. J. Eng. Mech. 119 (6), pp. 1136-1154.
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Applications 2D heat diffusion

2D heat diffusion: response PDF estimation

Compression scheme: KPCA (Polynomial kernel)
DRSM results: Optimal reduced dimension: m = 20

Surrogate model: Kriging

JS(p ‖ q) =
1
2

KL(p ‖
1
2

(p + q)) +
1
2

KL(q ‖
1
2

(p + q))

KL(p ‖ q) =

∫ +∞

−∞

pX (x) log
(

pX (x)
qX (x)

)
dx ≈

nb∑
i=1

p̃i log
(

p̃i

q̃i

)

Lin, J (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information theory, 37 (1), pp. 145-151.
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Applications 2D heat diffusion

2D heat diffusion: Quantile estimation
N = 100 N = 200

N = 400 N = 800
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Applications Structural health monitoring of a wind turbine

Structural health monitoring of a wind turbine (SHM)
Input

• Inflow wind speed realisations
generated by TurbSim Jonkman, 2009

• 10 min. each, sampled at 20 Hz
• M = 12, 000 (u only), or
M = 36, 000 (u, v, w)

Computational model

• Aero-servo-elastic-simulation using
OpenFAST Jonkman, 2013

• Fatigue accumulation estimated by
damage equivalent loads (DEL)

IEC 61400-1 standard

Training: 1, 000 samples
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Applications Structural health monitoring of a wind turbine

SHM: a more advanced set of compression schemes

A

B

C

D

TSFRESH

KPCA

PCA

12,000

12,000 698

36,000

36,000 50

2,094

2,094

Christ, M., et al. (2018). Time Series FeatuRe Extraction on basis of scalable hypothesis tests (tsfresh - A Python package). Neurocomputing 307, pp. 72-77.
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Applications Structural health monitoring of a wind turbine

SHM: estimates of the response PDFs

DRSM Results: F-W DEL (Y1) F-A DEL (Y2) F-A Peak Load (Y3)
Compression scheme TSFRESH+PCA

+KPCA
TSFRESH+KPCA TSFRESH+KPCA

Input time series (u,v,w) u (u,v,w)
Reduced dimension m1 = 20 m2 = 10 m3 = 25

Surrogate sparse PCE

A multimodal behavior is identified
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Summary & Outlook

Summary & Outlook

Summary

• We introduced a novel approach for data-driven uncertainty propagation with high
dimensional inputs

• Extracts additional information form the available data (PDF, quantiles)
• Can be used in the presence of multiple types/sources of data

Outlook

• Exploration of other applications (e.g. reliability analysis)
• Further investigation of the structural health monitoring application

• Estimate the probability of a component failure within a pre-defined timeline
• Fuse additional inputs
• Sensory readings instead of simulated data
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Questions?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

The Uncertainty
Quantification

Software
www.uqlab.com

Thank you very much for your attention!
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