ETH zürich

Combining machine learning and surrogate modeling for data-driven uncertainty propagation in highdimension

Other Conference Item

Author(s): [Lataniotis, Christos](https://orcid.org/0000-0002-2888-4050) **D**; [Marelli, Stefano](https://orcid.org/0000-0002-9268-9014) **D**; [Sudret, Bruno](https://orcid.org/0000-0002-9501-7395) **D**

Publication date: 2019-06-24

Permanent link: <https://doi.org/10.3929/ethz-b-000352572>

Rights / license: [In Copyright - Non-Commercial Use Permitted](http://rightsstatements.org/page/InC-NC/1.0/)

Combining machine learning and surrogate modeling for data-driven uncertainty propagation in high-dimension

Introduction

High Dimensional, Data-Driven UQ

Standard Requirements

- **A.** A computational model (e.g. FEM model or surrogate model)
- **B.** Some representation of the input variability (e.g. $f_X(x)$), or resampling capabilities

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability and stochastic spectral methods. Habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand.

Introduction

High Dimensional, Data-Driven UQ

High dimensionality, purely data driven

- **A**. No computational model, no surrogate in high dimension $(M \sim 10^2 10^6)$
- **B.** Only a limited input sample available, no inference possible

Goal: Do something better than just sample mean and sample variance

Introduction

Why would this be useful?

Earthquake engineering

Building/Local/Regional damage

Structural health monitoring

Outline

1 Introduction

- ² Reduced Dimension Resampling
- ³ Ingredients
- **4** Applications
- **6** Summary & Outlook

Outline

1 Introduction

² Reduced Dimension Resampling

³ Ingredients

4 Applications

6 Summary & Outlook

Goal: Estimate response PDF $f_Y(y)$ from a dataset X, Y

Large input dimension *M*

- Cannot infer $f_{\mathbf{X}}(x)$: no X enrichment
- Cannot surrogate $y = \mathcal{M}(x)$: no Y enrichment

Goal: Estimate response PDF $f_Y(y)$ from a dataset X, Y

Large input dimension *M*

- Cannot infer $f_{\mathbf{X}}(x)$: no $\mathcal X$ enrichment
- Cannot surrogate $y = \mathcal{M}(x)$: no Y enrichment

The idea: RDR

0 Compression $X \to Z$

Goal: Estimate response PDF $f_Y(y)$ from a dataset X, Y

Large input dimension *M*

- Cannot infer $f_{\mathbf{X}}(x)$: no $\mathcal X$ enrichment
- Cannot surrogate $y = \mathcal{M}(x)$: no Y enrichment

The idea: RDR

- **0** Compression $\mathcal{X} \to \mathcal{Z}$
- **②** Reduced surrogate modeling: $\mathcal{Y} \approx \widehat{\mathcal{M}}(\mathcal{Z})$

Goal: Estimate response PDF $f_Y(y)$ from a dataset X, Y

Large input dimension *M*

- Cannot infer $f_{\mathbf{X}}(x)$: no $\mathcal X$ enrichment
- Cannot surrogate $y = \mathcal{M}(x)$: no Y enrichment

The idea: RDR

- **0** Compression $\mathcal{X} \to \mathcal{Z}$
- **②** Reduced surrogate modeling: $\mathcal{Y} \approx \widehat{\mathcal{M}}(\mathcal{Z})$
- **3** Infer $f_z(z)$ from \mathcal{Z}

Goal: Estimate response PDF $f_Y(y)$ from a dataset X, Y

Large input dimension *M*

- Cannot infer $f_{\mathbf{X}}(x)$: no $\mathcal X$ enrichment
- Cannot surrogate $y = \mathcal{M}(x)$: no Y enrichment

The idea: RDR

- **0** Compression $\mathcal{X} \to \mathcal{Z}$
- **②** Reduced surrogate modeling: $\mathcal{Y} \approx \widehat{\mathcal{M}}(\mathcal{Z})$
- **3** Infer $f_z(z)$ from \mathcal{Z}
- **0** Resample \mathcal{Z}' and evaluate $\mathcal{Y}' = \mathcal{M}(\mathcal{Z}')$

Reduced Dimension Resampling DRSM

Compression and surrogate: a tight bond

• The goal: identify g, w, \widehat{M} and θ such that:

$$
z = g(X, w), Z \in \mathbb{R}^m, m \ll M
$$

$$
\widehat{\mathcal{M}}(Z; \theta) \approx \mathcal{M}(X)
$$

Reduced Dimension Resampling DRSM

Compression and surrogate: a tight bond

• The goal: identify g, w, \widehat{M} and θ such that:

$$
z = g(X, w), Z \in \mathbb{R}^m, m \ll M
$$

$$
\widehat{\mathcal{M}}(Z; \theta) \approx \mathcal{M}(X)
$$

DRSM algorithm: Lataniotis et al., 2018

$$
\begin{aligned} &\widehat{\boldsymbol{w}} = \argmin_{\boldsymbol{w} \in \mathcal{D}_{\boldsymbol{w}}} \, \widehat{\varepsilon}_{\text{gen}}(\boldsymbol{w};\widehat{\boldsymbol{\theta}}(\boldsymbol{w}),\mathcal{X},\mathcal{Y}), \\ &\widehat{\boldsymbol{\theta}} = \argmin_{\boldsymbol{\theta} \in \mathcal{D}_{\boldsymbol{\theta}}} \, \widehat{\varepsilon}_{\text{gen}}(\boldsymbol{\theta};\boldsymbol{w},\mathcal{X},\mathcal{Y}) \end{aligned}
$$

Compression and surrogate: a tight bond

• The goal: identify g, w, \widehat{M} and θ such that:

$$
z = g(X, w), Z \in \mathbb{R}^m, m \ll M
$$

$$
\widehat{\mathcal{M}}(Z; \theta) \approx \mathcal{M}(X)
$$

DRSM algorithm: Lataniotis et al., 2018

$$
\begin{aligned} &\widehat{\boldsymbol{w}} = \argmin_{\boldsymbol{w} \in \mathcal{D}_{\boldsymbol{w}}} \, \widehat{\varepsilon}_{\mathsf{gen}}(\boldsymbol{w};\widehat{\boldsymbol{\theta}}(\boldsymbol{w}),\boldsymbol{\mathcal{X}},\boldsymbol{\mathcal{Y}}),\\ &\widehat{\boldsymbol{\theta}} = \argmin_{\boldsymbol{\theta} \in \mathcal{D}_{\boldsymbol{\theta}}} \, \widehat{\varepsilon}_{\mathsf{gen}}(\boldsymbol{\theta};\boldsymbol{w},\boldsymbol{\mathcal{X}},\boldsymbol{\mathcal{Y}}) \end{aligned}
$$

Interesting DRSM features

- Non-intrusive
- Optimal DR w.r.t. the surrogate performance
- Outcome

• Surface
$$
\widehat{\mathcal{M}}(z;\widehat{\theta})
$$

•
$$
\mathcal{Z} = g(\mathcal{X}; \widehat{\boldsymbol{w}})
$$

Methodology (2/2)

Step 2: Reduced Dimension Resampling

Probabilistic modeling

- **The goal:** infer the joint distribution of the reduced input: $Z \sim f_{\mathbf{Z}}(\mathbf{Z})$
- **•** 2-steps inference Torre et al., 2019

- Marginal fitting
- Advanced copula inference

Methodology (2/2)

Probabilistic modeling

- **The goal:** infer the joint distribution of the reduced input: $Z \sim f_{\mathbf{Z}}(\mathbf{Z})$
- **•** 2-steps inference Torre et al., 2019

- Marginal fitting
- Advanced copula inference

Resampling + MCS

- **The goal:** enrich the original response sample $\mathcal{Y} \rightarrow \mathcal{Y}'$
- **Resampling + surrogate**
	- resample \mathcal{Z}' from $f_{\mathbf{Z}}(z)$ (e.g. Rosenblatt, rejection sampling, MCMC)

• evaluate
$$
\mathcal{Y}' = \widehat{\mathcal{M}}(\mathcal{Z}')
$$

Outline

1 Introduction

2 Reduced Dimension Resampling

³ Ingredients

- **4** Applications
- **6** Summary & Outlook

Dimensionality reduction

Kernel Principal Component Analysis (KPCA) Schölkopf et al., 1999

A non-linear extension of PCA

• First map the input to a high dimensional space (feature space):

$$
\boldsymbol{x}\in\mathcal{R}^M\mapsto\Phi(\boldsymbol{x};\boldsymbol{w}')\in\mathcal{H}
$$

then perform PCA in this space

The mapping is implicit, using appropriate kernels:

$$
\kappa(\boldsymbol{x}_i,\boldsymbol{x}_j;\boldsymbol{w})=\Phi(\boldsymbol{x}_i;\boldsymbol{w}')\cdot\Phi(\boldsymbol{x}_j;\boldsymbol{w}')
$$

• Calculates $\mathcal Z$ as projections onto the first *m* eigenvectors of $C_{\mathcal H} = \text{cov}[\Phi(\mathcal X)]$

Surrogate modeling methods

Universal Kriging:

$$
\widehat{\mathcal{M}}(\boldsymbol{X}) = \boldsymbol{\beta}^T \boldsymbol{f}(\boldsymbol{X}) + \sigma^2 Z(\boldsymbol{X}, R(\boldsymbol{x}, \boldsymbol{x}_{\text{ED}}; \widehat{\boldsymbol{\theta}}))
$$

$$
\widehat{\boldsymbol{\theta}} = \arg \min J(\widehat{\boldsymbol{\theta}})
$$

Objective function varies depending on the estimation method (e.g. maximum likelihood, cross-validation, etc.)

Sparse polynomial chaos expansions:

$$
\widehat{\mathcal{M}}(X) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \theta_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(X)
$$

 $\Psi_{\alpha}(X)$ are multivariate polynomials orthonormal with respect to $f_{\mathbf{X}}(x)$

$$
\widehat{\boldsymbol{\theta}} = \argmin_{\boldsymbol{\theta} \in \mathbb{R}^{|\mathcal{A}|}} \frac{1}{N} \sum_{i=1}^N \left(\sum_{\boldsymbol{\alpha} \in \mathcal{A}} \theta_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right)^2 + \lambda \left\| \boldsymbol{\theta} \right\|_1
$$

Probabilistic input model inference (data-driven)

Marginal distributions inference

Using kernel density estimation

$$
\widehat{f}_Z(z) = \frac{1}{N h} \sum_{i=1}^N \kappa \left(\frac{z - z^{(i)}}{h} \right)
$$

• Non-parametric technique, suitable for data-driven applications

- Using canonical vine copulas
- Constructed as a product of pair copulas
- Copula structure and parameters are inferred based on Aas et al. 2009
- Allow for efficient implementation of the Rosenblatt transform

Outline

1 Introduction

2 Reduced Dimension Resampling

³ Ingredients

- **4** Applications
- **6** Summary & Outlook

2D heat diffusion: problem statement

- Heat diffusion coefficient *d*(*v*)
- Lognormal random field

T(*v*)

$$
-\nabla (d(\boldsymbol{v})\nabla T(\boldsymbol{v})) = 500 I_A(\boldsymbol{v})
$$

• Output:
$$
Y = \frac{1}{|B|} \int_{\boldsymbol{v} \in B} T(\boldsymbol{v}) \, [^{\circ}C]
$$

Training: 800 samples Validation: 10⁵ samples

Li, C.C and Der Kiureghian, A. (1993). Optimal discretization of random fields. J. Eng. Mech. 119 (6), pp. 1136-1154.

2D heat diffusion: problem statement

- Heat diffusion coefficient *d*(*v*)
- Lognormal random field
- **Dimensionality** $M = 16,000$

T(*v*)

$$
-\nabla (d(\mathbf{v})\nabla T(\mathbf{v})) = 500 I_A(\mathbf{v})
$$

• Output:
$$
Y = \frac{1}{|B|} \int_{\boldsymbol{v} \in B} T(\boldsymbol{v}) \, [^{\circ}C]
$$

Training: 800 samples Validation: 10⁵ samples

Li, C.C and Der Kiureghian, A. (1993). Optimal discretization of random fields. J. Eng. Mech. 119 (6), pp. 1136-1154.

2D heat diffusion: Quantile estimation

Structural health monitoring of a wind turbine (SHM)

Input 10 u (m/s) 10 (m/s) 10

- Inflow wind speed realisations generated by TurbSim Jonkman, 2009
- 10 min. each, sampled at 20 Hz
- $M = 12,000$ (*u* only), or $M = 36,000 \ (u, v, w)$

Computational model

- Aero-servo-elastic-simulation using OpenFAST Jonkman, 2013
- Fatigue accumulation estimated by damage equivalent loads (DEL)

IEC 61400-1 standard

Training: 1*,* 000 samples

SHM: a more advanced set of compression schemes

SHM: estimates of the response PDFs

SHM: estimates of the response PDFs

SHM: estimates of the response PDFs

A multimodal behavior is identified

Outline

1 Introduction

- **2** Reduced Dimension Resampling
- ³ Ingredients
- **4** Applications
- **6** Summary & Outlook

Summary & Outlook

Summary

- We introduced a novel approach for data-driven uncertainty propagation with high dimensional inputs
- Extracts additional information form the available data (PDF, quantiles)
- Can be used in the presence of multiple types/sources of data

Summary & Outlook

Summary

- We introduced a novel approach for data-driven uncertainty propagation with high dimensional inputs
- Extracts additional information form the available data (PDF, quantiles)
- Can be used in the presence of multiple types/sources of data

Outlook

- Exploration of other applications (e.g. reliability analysis)
- Further investigation of the structural health monitoring application
	- Estimate the probability of a component failure within a pre-defined timeline
	- Fuse additional inputs
	- Sensory readings instead of simulated data

Questions?

Chair of Risk, Safety & Uncertainty Quantification <www.rsuq.ethz.ch>

The Uncertainty Quantification Software

<www.uqlab.com>

Thank you very much for your attention!

References

盯

- Christ, Maximilian, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018. "Time Series FeatuRe Extraction on basis of scalable hypothesis tests (tsfresh–A Python package)." Neurocomputing 307:72–77.
- Jonkman, Bonnie J. 2009. TurbSim user's guide: Version 1.50. Technical report. National Renewable Energy Lab.(NREL), Golden, CO (United States).

- Lataniotis, Christos, Stefano Marelli, and Bruno Sudret. 2018. "Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a data-driven approach." arXiv preprint arXiv:1812.06309.
- Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. 1998. "Nonlinear Component Analysis As a Kernel Eigenvalue Problem." Neural Comput. 10 (5): 1299–1319.
- 三国 Sudret, B. 2007. Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability and stochastic spectral methods. Habilitation Thesis. Université Blaise Pascal, Clermont-Ferrand, France.
	- Torre, E., S. Marelli, P. Embrechts, and B. Sudret. 2018. "A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas." Prob. Eng. Mech. 55:1–16.