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A B S T R A C T

Predicting the remaining useful life of machinery, infrastructure, or other equipment can facilitate preemptive
maintenance decisions, whereby a failure is prevented through timely repair or replacement. This allows for a
better decision support by considering the anticipated time-to-failure and thus promises to reduce costs. Here a
common baseline may be derived by fitting a probability density function to past lifetimes and then utilizing the
(conditional) expected remaining useful life as a prognostic. This approach finds widespread use in practice
because of its high explanatory power. A more accurate alternative is promised by machine learning, where
forecasts incorporate deterioration processes and environmental variables through sensor data. However, ma-
chine learning largely functions as a black-box method and its forecasts thus forfeit most of the desired inter-
pretability. As our primary contribution, we propose a structured-effect neural network for predicting the re-
maining useful life which combines the favorable properties of both approaches: its key innovation is that it
offers both a high accountability and the flexibility of deep learning. The parameters are estimated via varia-
tional Bayesian inferences. The different approaches are compared based on the actual time-to-failure for aircraft
engines. This demonstrates the performance and superior interpretability of our method, while we finally discuss
implications for decision support.

1. Introduction

Maintenance of physical equipment, machinery, systems and even
complete infrastructure represents an essential process for ensuring
successful operation. It helps in minimizing downtime of technical
equipment [1], eliminate the risk thereof [2], or prolong the life of
systems [3]. Maintenance is often enforced by external factors, such as
regulations or quality management [4]. Yet maintenance burdens in-
dividuals, businesses and organizations with immense costs. For in-
stance, the International Air Transport Association (IATA) reported that
maintenance costs of 49 major airlines increased by over 3% from 2012
to 2016, finally totaling $15.57 billion annually.1

Decision support in maintenance can be loosely categorized ac-
cording to two different objectives depending on whether they serve a
corrective or preemptive purpose.2 The former takes place after the
failure of machinery with the goal of restoring its operations back to
normal. Conversely, preemptive maintenance aims at monitoring these

operations, so that the time-to-failure can be predicted and acted upon
in order to mitigate potential causes and risk factors by, for instance,
replacing deteriorated components in advance. Preemptive actions help
in reducing downtime and, in practice, promise substantial financial
savings, thus constituting the focus of this paper.

Preemptive maintenance is based on estimations of the remaining
useful life (RUL) of the machinery. While preventive maintenance
makes these forecasts based on human knowledge, predictive main-
tenance utilizes data-driven models. Different models have been pro-
posed that can be categorized by which input data is utilized (see
Section 2 for an overview). In the case of raw event data, the conven-
tional approach involves the estimation of probability density func-
tions. If sensor data is available, the prominent approach draws upon
machine learning models [8, 9]. The latter fosters non-linear relation-
ships between sensor observations and RUL estimates, which aid in
obtaining more accurate forecasts.

Machine learning models are subject to an inherent drawback: they
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frequently operate in a black-box fashion [10-12], which, when pro-
viding decision support, directly impedes potential insights into the
underlying rules behind their decision-making. However, interpretability
is demanded for a variety of practical reasons. For instance, practi-
tioners desire to benchmark predictive models with their own expertise,
as well as to validate the decision-making rules from machine learning
models against common knowledge [13]. Further, managers can iden-
tify potential causes of a short machine lifetime and, thus, outline
means by which to reduce errors [14]. Moreover, accountability in RUL
forecasts is sometimes even required by regulatory agencies, such as,
e.g., in aircraft or railroad maintenance [e.g. 15, 16].

Interpretability refers to machine learning models where the deci-
sion logic of the model itself is transparent. Notably, the concept of
interpretability differs from post-hoc explainability that aims for a dif-
ferent objective. Here, a single (or multiple random) forecast is de-
composed, thus highlighting potential relationships but without any
structural guarantees [17]. That is, explainability takes an arbitrary
model as input and, based on it, attempts to unravel the decision logic
behind it, but does so only for a local neighborhood of the input rather
than deriving its actual structure. Hence, post-hoc explanations are
often not reliable, result in misleading outputs and, because of that, the
need for interpretable machine learning has been named an important
objective for safety-aware applications [18]. By constructing models
that are inherently interpretable, practitioners obtain insights into the
underlying mechanisms of the model [19]. In keeping with this, we
formulate our research objective as follows.

OBJECTIVE: Forecasting remaining useful life via machine learning
with the additional requirement that the model fulfills the definition
of “interpretability” .

We develop interpretable deep learning models for forecasting RUL
as follows: we propose a novel structured-effect neural network that
represents a viable trade-off between attaining accurate forecasts and
the interpretability from simple distributional estimations. In order to
estimate its parameters, we develop an innovative estimation technique
based on variational Bayesian inferences that minimize the Kullback-
Leibler divergence.3

We demonstrate the effectiveness of our approach in terms of in-
terpretability and prediction performance as follows. We utilize the
public “ Turbofan Engine Degradation Simulation” dataset [20] with
sensor measurements from aircraft engines. This dataset is widely re-
ferred to as a baseline for comparing predictive models in maintenance
and RUL predictions; see e.g., Butcher et al. [21] and Dong et al. [22].
Here the goal is to forecast the remaining useful life until irregular
operations, such as breakdowns or failures, take place. The proposed
structured-effect neural network outperforms the distribution-based
approaches, reducing the forecast error by 51.60 %. While our ap-
proach is surpassed slightly by deep learning, it fulfills the definition of
being interpretable, i.e., it maintains the same accountability as the
much simpler probabilistic approaches.

The remainder of this paper is structured as follows. Section 2
provides an overview on predicting remaining useful life for preemptive
maintenance. Section 3 then introduces our methodological framework
consisting of probabilistic approaches, machine learning and the novel
structured-effect neural network that combines the desirable properties
of both. The resulting performance is reported in Section 4, where we
specifically study the interpretability of the different approaches. Fi-
nally, Section 5 concludes with a discussion of our findings and

implications of our work with respect to decision support.

2. Background

Previous research has developed an extensive range of mathema-
tical approaches in order to improve maintenance and, due to space
constraints, we can only summarize core areas related to our work in
the following. For detailed overviews, we refer to Heng et al. [6], Liao
and Kottig [23], Navarro and Rychlik [24] and Si et al. [7], which
provide a schematic categorization of run-to-failure, condition mon-
itoring and predictive methods that estimate the remaining useful life of
the machinery. Depending on the underlying approach, the resulting
strategy can vary between corrective, responsive, or preemptive
maintenance operations. Predictive maintenance, in particular, gives
rise to a multitude of variants, e.g., probabilistic approaches and fully
data-driven methods that rely upon machine learning together with
granular sensor data. The intuition behind inserting sensor measure-
ments into predictive models is that the latter can quantify the en-
vironment numerically, the operations and the potential deteriora-
tion [25]. The observed quantities can be highly versatile and include
vibration, oil analysis, temperature, pressure, moisture, humidity,
loading, speed, and environmental effects [7]. As such, sensor mea-
surements are likely to supersede pure condition-based signals in their
contribution to overall prognostic capability.

In order to carry out preemptive measures, one estimates the re-
maining useful life (RUL) and then applies a suitable strategy for sche-
duling maintenance operations (such as a simple threshold rule that
triggers a maintenance once RUL undercuts a safety margin) in a cost-
efficient manner [16, 26, 27]. Mathematically, the RUL at time t can be
formalized as a random variable Yt that depends on the operative en-
vironment and its past use Xt,…,X2,X1, i.e.,

…Y X X X[ , , , ].t t 2 1 (1)

Here the variables X1,…,Xt can refer to event data tracking past fail-
ures [28], numerical quantities tracing the machines condition over
time as an early warning of malfunctioning [7], or measurements of its
use as a proxy for deterioration [24].

2.1. Probabilistic lifetime models

Probabilistic models utilize knowledge about the population of
machinery by learning from the sensor observations of multiple ma-
chines. This knowledge is obtained by utilizing predefined probability
density functions that specify the probability distributions over ma-
chinery lifetimes. Mathematically, when Xt is not available, the RUL
estimation turns into … = = +Y X X X Y[ , , , ] [ ]t t t

t Y
R t2 1
[ ]

( )
t , where R(t) is

the survival function at t. Common choices include exponential, log-
logistic, log-normal, gamma, and Weibull distributions [e.g. 6] . We
refer to [24] for a detailed survey. For instance, the Weibull distribution
has been found to be effective even given few observations of lifetimes,
which facilitates its practical use [29]. Both log-normal and Weibull
distributions can be extended by covariates for sensor-data, which we
describe below in Section 3.5 but are then constrained to the mathe-
matical structure, rather than flexibility when calibrating a data-driven
approach through machine learning.

Probabilistic approaches are common choices as they benefit from
straightforward use, direct interpretability and reliable estimates, that
are often required in practical applications and especially by the reg-
ulatory body. However, a focus is almost exclusively placed on raw
event data, thereby ignoring the prognostic capacity of sensor data.

Probabilistic approaches can theoretically be extended to accom-
modate sensor data, resulting in survival models. Since its initial pro-
posal by [30], the proportional hazards model has been popular for
lifetime analysis in general [31] and the estimation of RUL in parti-
cular. A key advantage of the proportional hazards model over many

3 Some researchers have raised concerns about the applicability of variational
Bayesian inference to neural networks, specifically as alternatives might po-
tentially be more straightforward to optimize. Yet variational Bayesian in-
ferences entail obvious strengths in our setting: in contrast to other approaches,
it allows to include prior domain knowledge (as is done in our work when
choosing regularization priors).
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other approaches is that the interaction between a number of influen-
cing factors can be easily combined with a baseline function that de-
scribes the general lifetime of the machinery. More precisely, the pro-
portional hazards model assumes that the probability estimates consist
of two components, namely, a structural effect and random effects de-
scribed by covariates [7]. As will be discussed later, our structured-
effect neural network is built on a similar idea; however, it exploits
deep learning to increase the predictive power of the RUL in contrast to
the proportional hazards model, which utilizes an exponential model to
describe the random effect.

2.2. Machine learning in lifetime predictions

Machine learning has recently received great traction for RUL as the
flexibility of these models facilitates a superior prognostic capacity. For
instance, linear regression models offer the advantage of high inter-
pretability when predicting RUL. Extensions by regularization yield the
lasso and ridge regression, which have been found to be effective for
high-dimensional sensor data [32]. To overcome the limitations of
linear relationships, a variety of non-linear models have been utilized,
including support vector regression [8], random forests [9], and neural
networks [33]. We refer to Heng et al. [6] and Si et al. [[7]] for a
detailed overview of the proposed models. However, non-linear models
generally fall short in terms of their explanatory power [10].

Even though machine learning demonstrates high predictive power,
these models struggle with the nature of sensor data as time series. It is
common practice to make RUL estimates based purely on the sensor
data at one specific point in time [7]. This simplifies …Y X X[ , ]t t 1 to

Y X[ ]t t , thereby ignoring the past trajectory of sensor measurements.
Yet the history of sensor measurements is likely to encode valuable
information regarding the past deterioration and usage of machinery.
As an intuitive example, a jet engine that experiences considerable vi-
bration might require more frequent check-ups. As a remedy, feature
engineering has been proposed in order to aggregate past usage profiles
onto feature vectors that are then fed into the machine learning
model [34]. Formally, this yields …Y X X[ ( , , )]t t 1 or

…Y X X X[ , ( , , )]t t t 1 1 , where the aggregation function ϕ could, for in-
stance, extract the maximum, minimum, or variability from a sensor
time series. As a result, the features could theoretically be linked to
interpretations but this is largely prohibited by the nature of the ma-
chine learning model.

Advances from deep neural networks have only recently been uti-
lized for the prediction of RUL. In Babu et al. [35] , the authors apply
convolutional neural networks along the temporal dimension in order
to incorporate automated feature learning from raw sensor signals and
predict RUL. In other works, long short-term memory networks
(LSTMs), as a prevalent form of recurrent neural networks, have been
shown to perform superior to traditional statistical probability regres-
sion methods in predicting RUL [22, 36, 37]. Thereby, the LSTM can
make use of the complete sequence of sensor measurements by pro-
cessing complete sequences with the objective of directly estimating the
formula …Y X X[ , , ]t t 1 with varying, machine-dependent t. In addition,
LSTMs entail a high degree of flexibility, which helps to accurately
model highly non-linear relationships. This commonly lowers the
forecast error, which further translates into improved maintenance
operations.

Deep neural networks are rarely utilized in practical applications for
a variety of reasons. Arguably, this is not only because deep neural
networks have only recently begun to be used for estimating RUL, but
also because they are widely known to be black-box functions with
limited to no interpretability. Hence, it is the contribution of this paper
to develop a combination of structural predictions and deep learning in
order to reach a favorable trade-off between interpretability and
prognostic capacity. As points of comparison, we draw upon previous
works for RUL predictions, including those concerned with machine
learning, feature engineering, and deep learning.

2.3. Verification in machine learning

Interpretability of machine learning is particularly important in
mission-critical systems, which requires the development of assessment
techniques that reliably identify unlikely types of error [56]. One ap-
proach to uncovering cases where the model may be incompatible with
the desired behavior is to systematically search for worst-case results
during evaluation [e.g. 57]. Formal verification proves that machine
learning models are specification consistent [e.g. 58]. While the field of
formal verification has been subject to research, these approaches are
impeded by limited scalability, especially in response to modern deep
learning systems.

2.4. Explainable vs. interpretable machine learning

Explainable machine learning refers to post-hoc explaining predic-
tions without elucidating the mechanisms with which models work.
Examples of such post-hoc interpretations are local linear approxima-
tion of the model's behavior [e.g. partial dependence plots; see 38] or
decompositions of the final prediction into the contribution of each
input feature [e.g. SHAP values; see 39]. Another widely applied ap-
proach to obtaining explanations is to render visualizations to de-
termine qualitatively what a model has learned [40]. However, ex-
plainable machine learning is limited in understanding the underlying
process of estimation. Notably, it is also limited to a local neighborhood
of the input space or the prediction.

In contrast, interpretable machine learning is to encode an inter-
pretable structure a priori, which allows looking into their mechanisms
in order to understand the complete functioning of predictions for all
possible input features [41]. Here global relationships are directly en-
coded in the structure of the model. As such, the relationship in in-
dividual features or outcomes for average cases is explicitly modeled.
Naturally, linear models have become a prevalent choice for applica-
tions in (safety-)critical use cases, where a complete traceability of the
model's estimation is inevitable. Hence, the estimation (rather than
predictions) can now be compared against prior knowledge or used for
obtaining insights.

3. Methods

This research aims at developing forecasting models for the re-
maining useful life that, on the one hand, obtain a favorable out-of-
sample performance while achieving a high degree of interpretability at
the same time. Hence, this work contributes to the previous literature
by specifically interpreting the relevance of different sensor types and
usage profiles in relation to the overall forecast. To date, probabilistic
models of failure rates have been widely utilized for predicting the
remaining useful life due to their exceptional explanatory power. We
thus take the interpretable feature of this approach and develop a
method that combines it with the predictive accuracy of deep learning.

We compare the forecasting performance of our structured-effect
neural network with the following approaches: (i) naïve empirical es-
timations, (ii) probabilistic approaches, (iii) traditional machine
learning, (iv) traditional machine learning with feature engineering for
time series applications, and (v) deep neural networks. All of the
aforementioned methods are outlined in the following.

3.1. Naïve empirical estimation of remaining useful life

Naïve empirical estimation of remaining useful life describes the
approximation of RUL utilizing past lifetimes of the machinery. Let Z
denote the random variable referring to the total lifetime of a ma-
chinery, and let Z1,…,Zn denote n realizations of this random variable.
Then we utilize the mean of these realizations to estimate the total
lifetime of a machinery, i.e.,
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=
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Z
n

Z[ ] 1 .
i

n

i
1 (2)

We can now translate this estimation of the total lifetime into an esti-
mation of the RUL by subtracting the time the machinery has been in
use since last being maintained. Let Yt denote the random variable that
describes the RUL of a machinery at time t. Then we estimate Yt by

=Y Z t[ ] [ ] .t (3)

3.2. Probabilistic lifetime models

In accordance with our literature review, we draw upon two pro-
minent probability density functions P that model the lifetime ex-
pectancy of machinery, namely, the Weibull distribution, and the log-
normal distribution [e.g. 42]. Let, again, Z denote the random variable
referring to the total lifetime of the population. Then the probability
density functions of the Weibull distribution and the log-normal dis-
tribution at time step t>0 are given by

=P Z a b a
b

Z
a

e Z
a

( ; , ) ( ) and
b

b
Weibull

1

(4)

= >P Z a b
bZ

e log Z a
b

Z Z( ; , ) 1
2

( ( ) )
2

, 0, 0, 0,log-normal
2

2

(5)

respectively, with distribution parameters a and b. All distribution
parameters are estimated based on past event data; more precisely, the
historical time-spans between failures of the machinery are inserted as
the lifetime Z. This allows us to estimate the expected lifetime of the
machinery after a maintenance event, as well as the corresponding
variance.

The mean value of the different probability density functions could
provide estimates of the remaining useful life for unseen data ob-
servations. However, this would ignore the knowledge that the machine
has already functioned over t time steps. Hence, we are interested in the
conditional expectation, given that the machine had the last main-
tenance event t time steps ago. This results in an estimated RUL at time t
of

= >Y Z Z t t[ ] ~ [ ] .t Z P (6)

To compute the previous expression, we draw upon the cumulative
distribution function F(Z;⋅) and the definition of the conditional prob-
ability. We then rewrite 6 into

= > =Y Z Z t t Z
F Z

t[ ] ~ [ ] ~ 1 ( ; )
.t Z P Z P

(7)

Unfortunately, there is no (known) closed-form solution to the expected
conditional probability of a Weibull distribution. Hence, we utilize
Markov chain Monte Carlo to approximate Eq.(7) for both, the Weibull
distribution and the log-normal distribution, in order to come up with
the expected remaining lifespan (conditional on the time of the last
maintenance event).

3.3. Traditional machine learning

In the following, let f refer to the different machine learning models
with additional parameters w. Then, in each time step t, the machine
learning model f is fed with the current sensor data Xt and computes the
predicted RUL, given by =Y f X w~ ( ; )t t , such that Y Y~t t . The deviation
between the true RUL, Yt, and the forecast Y~t defines the prediction
error that we try to minimize. Hence, the optimal parameters can be
determined by an optimization problem

=w Y f X w* argmin || ( ; )||.w t t (8)

A variety of models f are common in predicting remaining usefulTa
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life; see the surveys in Heng et al. [6] and Si et al. [7]. We adhere to
previous choices and thus incorporate a variety of baseline models that
consist of both linear and non-linear models. Linear models include
ridge regression, lasso, and elastic net, all of which are easily inter-
pretable and have been shown to perform well on many machine
learning tasks with high-dimensional and even collinear features [43].
The set of non-linear baseline models includes random forest and sup-
port vector regression (SVR).

All models are then fed with two different sets of features: (1) We
take the current sensor measurements Xt when predicting the RUL es-
timate Yt. However, this approach ignores the trajectory of historic
sensor data. (2) As a remedy, we rely upon feature engineering as a
means of condensing the past time series into a feature vector, as de-
scribed in the following.

Feature engineering provides a means by which to encode the past
usage of machinery into an input vector for the predictive model. Yet
previous research has only little guidance at hand regarding what type
of features are most useful. Hence, we adapt the choice of aggregation
functions from Mosallam et al. [34], as detailed in Table 2. For instance,
vibration is known to accelerate deterioration, but it is unclear whether
this is caused by sudden peaks (i.e., minima or maxima), frequent

changes (i.e., standard deviation), or a constantly high tremor (i.e.,
average). Mathematically, each aggregation function ϕ takes a se-
quence of past sensor measurements Xt,…,X1 as input and then com-
putes a new input feature ϕ(Xt,…,X1). These aggregation functions are
necessary to map the complete trajectory onto a fixed, predefined
number of features that can be readily processed by the machine
learning models.

To determine the best hyperparameter combination in traditional
machine learning, we implemented group 10-fold cross-validation in
order to minimize the bias associated with random sampling of training
and validation data. The group approach also ensures that we do not
split maintenance cycles during cross-validation and that the same
maintenance cycle is not present in both the training and validation set.

3.4. Recurrent neural network

Recurrent neural networks refer to a special class of deep neural
networks that can learn from sequences of varying lengths, rather than
a fixed size of feature vector [Goodfellow et al. 44]. This is beneficial to
our setting, as it allows us to directly inject time series with sensor data
into the RNN and predict the remaining useful life from it. The math-
ematical formalization is as follows: let fNN denote a traditional (or
deep) neural network that defines a mapping [Xt,ht−1]↦ht with hidden
states ht−1,ht ∈ℝn and a suitably chosen dimension n. Then a prediction
from a complete sequence can be made via

= …RNN f X f X f X([ , ([ , ([ , 0 ])])]).t t nNN NN 1 NN 1 (9)

In other words, the RNN iterates over the sequence, while updating its
hidden state ht, which summarizes the already-seen sequence, similar to
an internal state. This recurrent relationship between the states in-
troduces the possibility of passing information onwards from the cur-
rent state ht to the next ht+1. Therefore, RNNs can process sequences of
arbitrary length, making them capable of utilizing the complete tra-
jectory of sensor data. To illustrate this, Fig. 1 presents the processing of
sequential data by means of unrolling the recurrent structure.

Different variants of recurrent neural networks have been proposed
in earlier research; see [44]. In this work, we choose the long short-term
memory from [45] because it is capable to keep information over long
sequences, and it enjoys widespread use in research and practical ap-
plications [46-48]. For deep neural networks, we reduce the compu-
tational runtime for hyperparameter tuning and instead follow con-
ventional guidelines, whereby a random sample of the training data (
10%) serves for validation.

3.5. Proposed structured-effect neural network

3.5.1. Model specification
We now propose our structured-effect model. This approach en-

forces a specific structure that lends to intuitive interpretation. More
precisely, it combines non-parametric approaches for modeling the

Table 2
Our feature engineering draws upon the above aggregation which is later set to
50 in accordance with previous research. The expressions loc max and loc min
refer to the local maximum and minimum of the inputs.

Aggregation function Formula Interpretation

Max max(X1,…,Xt) Extrema
Min min(X1,…,Xt) Extrema
Mean = =µ Xt i

t
i

1
1

Average sensor
measurement

Range max − min Variability
Sum

= Xi
t

i1
Total signal

Energy
= Xi

t
i1
2 Total signal with

focus on peaks
Standard deviation = = X µ( )t i

t
i

1
1

2 Variability

Skewness
= ( )t i

t Xi µ1
1

3 Symmetry of
deviation

Kurtosis
= ( )t i

t Xi µ1
1

4 Infrequent extreme
deviations

Peak-to-peak += =loc max loc minn i
n

n i
n1

1 1
1 1

2 1
2 Bandwith

Root mean square
= Xt i

t
i

1
1

2 Total load focus on
peaks

Entropy
= P X P X( ) log ( )i

t
i i1

Information signal

Arithmetic mean of
power spectral
density

=20 log t i
t Xi

10

1
1 fft( )

10 5

Frequency of
oscillations

Line integral
= +X X| |i

t
i i1

1
1 Path length

Kalman filter
=Y b a Xt i
p

i t i1
Unexpected
deviation

fNN

X1

o1

fNN fNNfNN··· 

X2 Xt-1 Xt

o2 ot-1 ot

ht-1h1

Fig. 1. Recurrent neural network that recursively applies the same simple neural network fNN to the input sequence X1,…,Xt with outputs o1,…,ot. The states h1,
…,ht−1 encode the previous sequence into a fixed-size feature vector.
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expected RUL through a probabilistic density function with the flex-
ibility of machine learning in order to incorporate sensor measurements
and thus capture the heterogeneity from machine-specific deterioration
processes.

The idea of building structured models loosely resembles earlier
research efforts related to proportional hazards models [30] that pre-
sent a popular choice in lifetime analysis. This class of survival models
decomposes its estimations into components referring to the baseline
function and a function of covariates: the baseline specifies the general
lifetime across all machines via the same function λ(t). The latter fur-
ther assumes machine-specific effects through additional covariates
that describe the random effects. Our structured-effect neural network
follows a similar intuition, as it assumes a population-wide general
lifetime common across all machines and further sensor-based devia-
tions in order to model the within-machine heterogeneity due to the
different usage profiles.

Our structured-effect model splits the estimated remaining useful
life into three components, namely, a non-parametric baseline, a cov-
ariate-based prediction, and a recurrent component which specifically
incorporates the historic trajectory of sensor measurements. These
components help in explaining the variance among the different ma-
chine lifetimes and, for this purpose, we again draw upon the history of
sensor measurements Xt,…,X1. Let λ(t) denote the non-parametric part
with the explicit probabilistic lifetime model and let further RNNΘ refer
to a recurrent neural network (such as a long short-term memory) with
weights Θ. Then the prediction of the structured-effect neural network
SENNΘ(t;Xt,…,X1) follows the form

with coefficients β. Model variations are discussed later in Section 4.5.
While our model follows a similar intuition behind the proportional

hazards model in decomposing the prediction, it also reveals clear
differences, as it introduces a recurrent neural network that allows for
considerably higher flexibility in modeling the variance and even in-
corporates the complete sequence of sensor measurements and not just a
simple vector of covariates. Moreover, the specific way of our model
formulation entails a set of further advantages. On the one hand, it
circumvents again the explicit need for feature engineering. On the
other hand, it achieves a beneficial trade-off between interpretability of
non-parametric approaches and the flexibility of non-linear predictions
from sensor data. Here the deep neural network needs to explain a
considerably smaller variance compared to an approach based solely on
a neural network, thereby facilitating the estimation of the network
weights. To this end, practitioners can decompose the prediction into a
population-wide baseline and machine-specific heterogeneity, based on
which they can explicitly quantify the relative contribution of each
components through the corresponding coefficients. As such, one can
identify reasons why the remaining useful life attains a certain value
(e.g., a negative value from the recurrent component indicates a strong
deterioration over time) or one can attribute deterioration to un-
expected behavior. Moreover, the proposed approach is highly ex-
tensible and can easily be generalized to other parameterizations or
domains.

We later experiment with different variations of the structured-ef-
fect model. These differ in the choices with which we specify the dif-
ferent components. First, we adhere to conventional approaches in
predictive maintenance [24] by assuming that the lifetimes follow ei-
ther a conditional Weibull or a conditional log-normal distribution.
That is, we obtain

= > = >~ ~t Z Z t t t Z Z t t( ) [ ] and ( ) [ ]Z a b Z a bWeibull( , ) log-normal( , )

(11)

with distribution parameters a and b. Thus, the first component is
identical to the probabilistic lifetime models that we utilize as part of
our benchmarks. Second, the linear component can either be fed di-
rectly with Xt or, alternatively, one could also apply feature engineering
to it, i.e., giving ϕ(Xt,…,X1). The benefit of the latter is that we again
obtain a linear structure where one can assess the relevance of in-
dividual predictors by looking at the coefficients. Here we further as-
sume a linear combination as used in ordinary least squares and, as an
extension, introduce priors, so that we yield a regularization, where the
coefficients in the linear component are estimated via the least absolute
shrinkage operator (lasso). This performs implicitly variable selection
in the linear component as some coefficients are directly set to
zero [49]. Third, the recurrent neural network is implemented via a
long short-term memory as this represents the state-of-the-art in se-
quence learning [44].

3.5.2. Model estimation through variational Bayesian inferences
We now detail how we estimate the parameters inside the struc-

tured-effect neural network. We refer to θ as the combined set of un-
known parameters and X as the overall dataset including all sensor
measurements. Then the objective is to determine the optimal para-
meters

= P X* argmax ( | ). (12)

We solve the previous optimization problem through a variational
Bayesian method. The predominant reason for this choice over tradi-
tional optimization is that the latter would merely give point estimates

of the different parameters, whereas variational Bayesian inferences
yield quantifications of uncertainty. For instance, this allows us to ob-
tain confidence assessments concerning the relative importance of the
different components and thus facilitates the interpretability of our
approach.

In our model estimation, we treat all parameters as latent variables
with a pre-defined prior distribution and, subsequently, maximize the
overall likelihood of the parameters according to the following proce-
dure. That is, utilizing Bayes' theorem, Eq.(12) is rewritten to

= =P X P X P
P X

P X P
P X P

( | ) ( | ) ( )
( )

( | ) ( )
( | ) ( ) d

.
(13)

As a result, the denominator can be computed through sampling
methods, with the most prominent being Markov chain Monte Carlo
(MCMC). However, MCMC methods are computationally expensive as
the runtime scales exponentially with the dimensions of θ. Thus, this
algorithm becomes intractable for large-scale or high-dimensional da-
tasets. As a remedy, we propose the use of variational Bayes for ap-
proximating the posterior distributions. We derive a variational lower
bound, called ELBO, for our structured-effect neural network in
Section A.

3.5.3. Estimation parameters
In our experiments, we optimize the SENN-model by utilizing the

Adam optimizer with learning rate 0.005 and all other parameters set to
the default values. All implementations are performed in Python uti-
lizing the probabilistic programming library “pyro”(http://pyro.ai/).
Code for reproducibility is available online.4.

As part of our computational experiments, we later draw upon the
following architectures of the structured-effect neural network: (1) we

… = + + …SENN t X X t X RNN X X t( ; , , ) ( ) ( , , , )t T t t1
Non-parametric componentwith explicit lifetime model Linear componentwith current condition

1
Recurrent componentwith deep neural network (10)

4 See https://github.com/MathiasKraus/PredictiveMaintenance
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assume the non-parametric component to follow a Weibull or log-
normal prior distribution, where the underlying distribution parameters
are modeled as informative normal prior distributions. Mathematically,
this is given by a a~ ( , 1)empirical and b b~ ( , 1)empirical . (2) The linear
component is modeled such that the coefficients stem from normal prior
distributions (i.e., as used in ordinary least squares). This is formalized
by ~ (0, 10)i , where we allow for a wider standard deviation to
better handle variations in the relative influence of the predictors. As an
alternative, we also implement weakly informative prior distributions
(i.e., Laplace priors). The latter enforce a regularization similar to the
least absolute shrinkage operator in the sense that certain coefficients
are set exactly to zero in order to perform implicit variable selection
and come up with a parsimonious model structure. (3) The recurrent
component is implemented as a long short-term memory network with
two layers containing 100 and 50 neurons, respectively. To reduce
computational costs, we follow common approaches and utilize the
trajectory of the previous 50 sensor values at all time steps. All weights
in the network are implemented as variational parameters that follow a
Gaussian prior with standard deviation of 1. Utilizing Eq.(A10), we
optimize the three components simultaneously.

4. Computational experiments

4.1. Dataset

For reasons of comparability, all computational experiments are
based on the “ Turbofan Engine Degradation Simulation” dataset,
which is widely utilized as a baseline for comparing predictive models
in maintenance and RUL predictions; see e.g., Butcher et al. [21] and
Dong et al. [22] . The objective is to predict the RUL (measured in
cycles) based on sensor data from 200 aircraft engines.5 More specifi-
cally, it includes measurements from 21 sensors. Unfortunately, how-
ever, the exact name of each sensor is sanitized. In addition, the dataset
comes with a pre-determined split into a training set (100 engines) and
a test set (also 100 engines). The average RUL spans 82.30 cycles with a
standard deviation of 54.59. Moreover, half of the engines experience a
failure within 77 cycles, while only 25% exceed 118 cycles.

4.2. Prediction performance for remaining useful life

The prediction results for all models are listed in Table 3. Here we
report the mean absolute error, as it represents a widely utilized metric
for this dataset [50]. The benefit of this metric is that practitioners can
easily translate the forecast error into a number of cycles that would
serve as a security margin. The table also compares two different fea-
ture sets for traditional machine learning, i.e., on which we use only the
sensor measurements from the current time step or on which we ad-
ditionally apply aggregation functions to the sensors as part of feature
engineering.

The empirical RUL in the first row reflects the performance of our
naïve benchmark when using no predictor (i.e., predicting the average
RUL of the machines). The following conditional expectations are based
on the Weibull and log-normal distribution, that result in improvements
of 39.17% and 38.32%, respectively. Among the traditional machine
learning models, we find the lowest mean absolute error when using the
random forest, which yields an improvement of 35.08% compared to
the log-normal-based conditional expectation. Thereby, our results
identify a superior performance through the use of feature engineering
for the majority of traditional machine learning models. Recurrent
neural networks outperform traditional machine learning. In particular,
the LSTM yields the overall lowest mean absolute error, outperforming

the random forest with feature engineering by 37.12% and the em-
pirical RUL by 60.51%.

The structured-effect neural networks outperform traditional ma-
chine learning. Utilizing a log-normal distribution along with feature
engineering yields an improvement of 25.44% compared to the best
traditional machine learning model. Thereby, feature engineering ac-
counts for 11.91% of the improvement, strengthening the assumption
that feature engineering of sensor data facilitates the prediction of RUL.

4.3. Forecast decomposition for RUL predictions

We now demonstrate how the proposed structured-effect model
achieves accountability over its RUL forecasts. That is, we leverage the
linear model specification and compute the estimated values for each
summand in Eq.(10) when making a RUL prediction. Yet the model can
still adapt to non-linearity since the neural network can absorb the
variance that cannot be explained by the other components.

Fig. 2 illustrates the interpretability of the RUL forecasts for an
example engine. More specifically, we can understand how predictions
are formed by decomposing the forecasts from the structured-effect
model into three components – namely, the probabilistic RUL model,
the linear combination of sensor measurements, and an additional
neural network – as follows:

1. As we can see, the distribution-based lifetime component accounts
for a considerable portion of the forecast. The maximum values in
the example exceed 100, which is considerably higher than the
maximum value computed by the recurrent component. The com-
ponent reaches this value when making a prediction after around
50 cycles and, with each subsequent usage cycle, lowers the esti-
mated remaining useful life. Notably, it is identical across all en-
gines as it encodes the prior knowledge before considering the en-
gine-specific deterioration process.

2. The second component specifies a linear combination of sensor
measurements, which allows the predictions to adapt to the specific
usage profiles of individual engines and explains the within-engine
and within-time variability. It thus no longer yields a smooth curve
but rather an engine-specific pattern. Formally, this component re-
fers to βTXt and, in order to determine the relevance of sensor i, we
simply interpret the coefficients in the vector β.

3. While the previous linear component still achieves full account-
ability over its forecasts, we now introduce the final component for
modeling the remaining noise. Here we draw upon (deep) neural
networks, as they are known to effectively model non-linearities.
However, we thus lose the explanatory power for this component, as
neural networks largely operate in a black-box fashion. In our ex-
ample, we see that the recurrent part entails a non-linear curve but
takes higher values in later cycles. This indicates that a linear
combination is not always sufficient for making predictions and, as a
remedy, the structured-effect model can benefit from additional
non-linear relationships and from accumulating the usage profile
over time.
Notably, the magnitude of the recurrent component is much smaller
than the magnitude of the other components. This is beneficial, as
the SENN attributes most of the explained variance to other, inter-
pretable model components. Methodologically, it is likely to be
based on the following: at timestep t, the SENN makes prediction of
the RUL from the current sensor data Xt, and the trajectory of sensor
data Xt,Xt−1,Xt−2,…,X1. As shown in Table 3, Xt is highly in-
formative for estimating RUL and, by following stochastic gradient
descent, it optimizes in the direction where the loss function de-
creases the most (i.e. in the direction of both the distribution-based
and the linear component). Only after optimizing the interpretable
components, the model updates the recurrent component to further
push predictive performance via non-linear mappings.

5 The specific dataset of this study can be downloaded from https://ti.arc.
nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/, accessed April
18, 2019.
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We can further compute the fraction of variance explained by the
different components relative to the overall variance of the actual RUL
values. Thereby, we quantify the contribution of each component to the
overall forecast. Accordingly, this is defined by

( )
Y

Y Y
1

( ~ ~ )
~ ~ ,t t t

t t T t t

2

1 2
(14)

where T denotes the total number of observations and ~
t is the pre-

diction of the component under study. Accordingly, we obtain a score of

Table 3
Comparison of prediction performance over remaining useful life across different model specifications. Here we specifically report whether the models only utilize
sensor measurements from the current time step or whether aggregation functions have been applied to it as part of feature engineering. Consistent with earlier works
[50], the mean absolute error (MAE) is given. The best-performing model in each panel is highlighted in bold. Additionally, we perform t-tests between each model
and the best performing model from each of the four categories. The t-tests are based on the MAE of the forecasted RUL to show that improvements are at a
statistically significant level.

Method MAE Forecast comparison (t-statistic) Forecast comparison (P-value)

Best baseline Best machine
learning

Best LSTM Best structured-
effect LSTM

Best baseline Best machine
learning

Best LSTM Best structured-
effect LSTM

BASELINES WITHOUT SENSOR DATA

Empirical RUL 45.060 8.286 24.933 16.974 18.865 0.468 0.486 0.778 0.642
Conditional expectation (Weibull) 27.794 0.288 8.309 9.615 8.018 0.293 0.462 0.666 0.457
Conditional expectation (log-

normal)
27.409 — 4.420 15.269 10.285 — 0.464 0.669 0.451

TRADITIONAL MACHINE LEARNING

Ridge regression 19.193 −6.789 1.438 5.270 2.768 0.012* 0.139 0.450 0.322
Ridge regression (with feature

engineering)
18.382 −8.029 0.427 3.297 2.778 0.010* 0.132 0.343 0.399

Lasso 19.229 −7.015 0.766 6.577 4.145 0.015* 0.222 0.500 0.401
Lasso (with feature engineering) 18.853 −7.842 0.550 5.949 2.324 0.014* 0.293 0.432 0.390
Elastic net 19.229 −7.276 0.990 5.190 2.829 0.015* 0.222 0.500 0.401
Elastic net (with feature

engineering)
18.245 −9.055 0.458 4.244 2.572 0.009** 0.132 0.297 0.245

Random forest 17.884 −4.927 0.058 5.909 4.487 0.006** 0.102 0.240 0.198
Random forest (with feature

engineering)
17.793 −9.495 — 2.924 3.263 0.006** — 0.236 0.180

SVR 18.109 −7.321 0.240 5.756 3.976 0.011* 0.129 0.288 0.230
SVR (with feature engineering) 21.932 −4.706 3.081 9.440 3.740 0.092* 0.310 0.583 0.531
RECURRENT NEURAL NETWORKS

LSTM 11.188 −11.596 -4.981 — −1.441 0.000*** 0.000*** — 0.003**
STRUCTURED-EFFECT NEURAL NETWORKS

Distribution Linear component

Weibull None 15.862 −11.266 −1.015 4.424 1.825 0.000*** 0.066* 0.255 0.200
Weibull Regularized 17.433 −8.617 −0.213 3.536 2.746 0.000*** 0.094* 0.261 0.220
Weibull Feature engineering 13.392 −8.526 −2.595 1.352 0.068 0.000*** 0.004** 0.144 0.134
Weibull Regularized feature

engineering
14.989 −10.918 −1.579 1.710 1.381 0.000*** 0.049* 0.284 0.183

log-normal None 15.061 −6.294 −1.420 1.627 1.702 0.000*** 0.057* 0.261 0.198
log-normal Regularized 16.319 −48.200 −0.779 4.582 1.334 0.000*** 0.094* 0.310 0.211
log-normal Feature

engineering
13.267 −13.620 −2.912 1.764 — 0.000*** 0.000*** 0.142 —

log-normal Regularized feature
engineering

14.545 −11.331 −1.736 3.293 0.651 0.000*** 0.038* 0.252 0.162

Significance level: * 0.1, ** 0.01, *** 0.001.

Non-parametric component

Linear component

Recurrent component

Lifetime of machine in cycles

Predicted RUL

150

100

50

0

50

100

150
0 50 100 150 200

Fig. 2. This plot visualizes the RUL predictions made
by the structured-effect LSTMs based on a log-
normal and normal priors in the linear component
for an example engine. It decomposes the forecasts
using the structured-effect model into three compo-
nents that facilitate interpretations of how predic-
tions are formed. (1) The distribution-based lifetime
component contributes a considerable portion of the
overall forecasts, as it is well suited to model the
overall nature of the remaining useful life. This part
is identical across all engines. (2) The sensor mea-
surements introduce a variability that adapts to the
specific usage profile of an engine. This component
originates from a Bayesian linear model and we can
trace the forecast back to individual sensors. (3) The
recurrent neural network introduces a non-linear
component that operates in black-box fashion.
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0.175 for the non-parametric part, 0.408 for the linear component, and
0.064 for the recurrent component. This matches our expectations and,
once more, highlights the overall importance of the distribution-based
part of the overall forecast, as well as the role of the neural network in
modeling secondary variations.

4.4. Estimated parameters

It is common practice to compute parameters in predictive models
as point estimates [43], while our optimization technique based on
variational Bayesian inferences allows for uncertainty estimates. This
yields a key benefit, since we can validate our confidence in the
structural components of the model by studying the posterior dis-
tribution of the parameter estimates. Fig. 3 depicts these parameters

specifying the Weibull and log-normal distribution inside the struc-
tured-effect models.

Table 4 further reports the posterior distribution of the coefficients
βi from the linear component of the structured-effect neural network
(shown is the SENN model based on a log-normal and normal priors for
βi). These measure the effect size, i.e., how a change in a sensor mea-
surement affects the forecast. We see that the confidence regions for the
different coefficients vary considerably. For reasons of comparability,
we further report the standardized coefficients βi var(βi)/var(Y1,…,Yt),
which correct for the variance of the predictor, as well as the out-
come [51]. As a result, this value allows us to rank variables by their
importance.

4.5. Model variations

We experimented with alternative specifications of our structured-
effect neural network as follows.

First, we extended the neural network by an additional weighting
factor γ. This yields a component γ RNNΘ. However, it resulted in an
inferior performance in all of our experiments due to severe overfitting.

Second, we experimented with a two-stage estimation approach.
Here we first optimized the non-parametric component and the linear
component by traditional gradient descent. Afterwards, we optimized
the recurrent component against the residuals from the first stage. This
approach is generally easier to train as there are fewer parameters in
each stage. Yet we found an inferior performance as compared to the
proposed SENN: the mean absolute error increased to 16.209. This is
possibly owed to the fact that it prevents information sharing between
the different components. Details are reported in Appendix B.

5. Discussion

5.1. Implication for decision support

Estimates of the remaining useful life can facilitate decision support
with the objective of replacing deteriorated components and thus mi-
tigating potential risks and failures that generally result in increased
costs. Our approach to predicting remaining useful life is thus of direct
relevance to practitioners. According to a McKinsey report, the use of
accurate prediction models for RUL as a cornerstone for predictive
maintenance can typically reduce the downtime of machinery by 30%
to 50% and, at the same time, increase the overall life of machines by

Fig. 3. These histograms illustrate the posterior
distribution of the estimated parameters (i.e., shape,
mean and scale) inside the structured-effect neural
network (with log-normal structure and normal
priors in the linear component). Here the estima-
tions are compared for both distributions, namely,
the Weibull and log-normal distributions.
Altogether, the posteriors quantify the uncertainty of
the estimated parameters.

Table 4
Reported here are the posterior estimates of the effect size as measured by the
coefficients βi inside the linear component of the structured-effect neural net-
work. The coefficients entail direct interpretations (similar to ordinary least
squares) as to how a certain percentage of change in a sensor measurement
affects the RUL prediction. In addition, standardized coefficients are reported,
as they allow for the ranking of variables by importance.

Sensor Mean Standard Standardized
estimate deviation coefficient

X9 −33.169 0.498 −16.506
X12 49.721 0.250 12.440
X21 44.932 0.258 11.601
X7 48.154 0.230 11.073
X11 −24.622 0.357 −8.796
X20 42.850 0.184 7.880
X14 −22.540 0.317 −7.155
X4 −16.183 0.275 −4.447
X15 −13.934 0.297 −4.145
X2 −12.446 0.316 −3.931
X6 19.678 0.159 3.126
X3 −7.851 0.318 −2.494
X17 −9.951 0.208 −2.066
X8 −4.121 0.367 −1.511
X16 −0.273 2.105 −0.574
X13 −1.424 0.348 −0.495
X19 0.234 2.028 0.474
X10 0.126 1.900 0.239
X18 −0.095 1.936 −0.184
X1 −0.070 1.937 −0.135
X5 0.001 1.993 0.002
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20% to 40%.6 By knowing the exact time-to-failure, companies can plan
maintenance ahead of time and, therefore, make preparations for effi-
cient decision support. As a result, even small improvements in pre-
dictive power translate into substantial operational cost savings.

As a direct implication for management, this research shows that
forward-looking predictive analytics is capable of heavily influencing
the way decision support in maintenance operations is conducted.
However, predictive models are most powerful when fed by a large
number of predictors (i.e. sensors) that describe the condition of the
machinery and the environmental effects that influence the system.
Therefore, managers should encourage the implementation of addi-
tional sensors to further improve accuracy when forecasting the time-
to-failure. Moreover, investments in artificial intelligence are often-
times necessary for the majority of firms who have not yet taken their
first step into the age of deep learning.

5.2. Implications for the use of analytics

Trajectories of sensor data accumulate relevant information re-
garding the past usage profile of the machinery and, thereby, facilitate a
prognosis regarding the risk of failure. Mathematically, this results in
the objective of finding a mapping …f X X Y: [ , , ]t t1 that is not de-
pendent on the current time step t and thus utilizes a time series with
historic measurements of arbitrary length in order to infer a prediction
from it. The task can be accomplished by a special type of deep learning
– namely, recurrent neural networks – as these networks can sequen-
tially process past measurements and store the processed knowledge in
their hidden layers. Even though the benefits are obvious, the use of
such networks in decision support systems research remains scarce with
few exceptions [e.g. 52-54].

Deep learning is often believed to require extensive amounts of data
in order to be successful. However, our approach, based on variational
Bayesian estimation, represents a viable alternative that can overcome
this limitation. Instead of vast quantities of input data, it advocates
domain knowledge that is explicitly encoded in a structural model. In
our case, we already know the approximate shape of the predicted
variable and can incorporate this via a probability density function into
our structural part of the model. As a result, the predetermined struc-
ture can be fitted fairly easily with variational inference and thus pre-
sents a path towards encoding domain knowledge into deep neural
networks. The structured effect reduces the variance and thus makes it
easier to describe the remaining variance with a neural network.

5.3. Implications from interpretable forecasts

Our approach contributes to interpretability of deep learning. Here
we remind the reader of the difference between explainability and in-
terpretability in machine learning [17-19]. Explainability merely allows
a post-hoc analysis of how predictions were computed in a local
neighborhood. In contrast, interpretability presents a stronger notion: it
requires machine learning models to attain complete transparency of
their decision logic. Thus, we contribute to a novel approach for in-
terpretable machine learning to decision support, that can eventually
benefit (safety-)critical application fields where accountable models are
required.

The high degree of interpretability of our approach reveals further
implications. In practice, gaining insights into the estimated RUL aids
engineers in identifying potential risks and weak spots when designing
machinery. For instance, a high coefficient for a sensor measuring
moisture could encourage designers to improve the sealing of a given
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piece of machinery. By shedding light on the prediction process,
structured-effect neural networks enable novel conclusions regarding
the relevance of each sensor.

Decision support as a discipline takes the demands of all stake-
holders into account. With regard to the latter, managers, for instance,
need to understand the decision-making of automated systems.
However, this requirement is not fulfilled by recent trends in advanced
analytics and especially deep learning, as these mostly operate in a
black-box fashion [e.g. 44]. As a remedy, our structured-effect neural
network shows improvements in predictive performance as compared
to traditional machine learning, while also allowing for a high degree of
interpretability. Table 5 compares the stylized characteristics of our
structured-effect neural network to other approaches.

Sensors have always been an important part of predictive main-
tenance, as they allow to monitor and to adjust small changes so that
small problems do not turn into big problems [e.g. 55]. Many different
sensors monitoring different measurements can be the key to better
understanding processes and preventing early failures and consequent
downtime. However, complex relationships between potentially large
number of sensors and the effect on machinery demand for advanced,
non-linear modeling of the remaining useful life. Thus, to fully exploit
the information obtained from sensors, interpretability is of great use.
Our structured-effect neural network bridges the gap between these key
specifications.

5.4. Limitations and potential for future research

Recently, dropout as a Bayesian approximation has been proposed
as a simple, yet efficient means to obtain uncertainty estimates for
neural networks [59]. This approach leads to models with fewer para-
meters, which generally facilitates optimization. Further, computa-
tionally costs for optimization are lower, compared to the costs when
utilizing variational Bayesian inference. However, Bayesian approx-
imation via dropout does not provide uncertainty estimates for coeffi-
cients in our model. Additionally, Bayesian approximation via dropout
comes at the cost of not being capable of including prior information
about the coefficients into the model. As the latter is particularly

important for predictive maintenance where expert knowledge is in-
evitable, we decided to utilize variational Bayesian inference.

5.5. Concluding remarks

Decision support as a field has developed a variety of approaches to
improve the cost efficiency of maintenance, especially by predicting the
remaining useful life of machinery and linking operational decision-
making to it. Common approaches for predictive maintenance include
statistical models based on probability density functions or machine
learning, which further incorporates sensor data. While the former still
serves as widespread common practice due to its reliability and inter-
pretability, the latter has shown considerable improvements in pre-
diction accuracy.

This research develops a new model that combines both advantages.
Our suggested structured-effect neural network achieves accountability
similar to simple distribution-based RUL models as its primary com-
ponent, as well as a linear combination of sensor measurements. The
remaining variance is then described by a recurrent neural network
from the field of deep learning, which is known for its flexibility in
adapting to non-linear relationships. For this purpose, all parameters
are modeled as latent variables and we propose variational Bayesian
inferences for their estimation in order to optimize the Kullback-Leibler
divergence. Our findings reveal that our structured-effect neural net-
work outperforms traditional machine learning models and still allows
one to draw interpretable conclusions about the sources of the dete-
rioration process.
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Appendix A. Derivation of ELBO for structured-effect neural network

Our suggested approach draws upon variational Bayesian methods and approximates the true posterior via a variational distribution Qλ(θ) ≈ P(θ
| X). Here Qλ(θ) refers to a family of distributions that is indexed by λ and, hence, our optimization problem translates into finding the optimal λ*

along with the corresponding distribution Q *. The following theorems state the mathematical definition of λ* and introduce a tractable approx-
imation.
Theorem 1. The optimal λ* is given by

= +Q P X P X* argmin [log ( )] [log ( , )] log ( ).Q Q (A1)

Proof. The fit between the variational distribution Qλ(θ) and the posterior distribution P(θ | X) can be measured by the Kullback-Leibler divergence. Hence, we
yield

= KL Q P X* argmin ( ( ) || ( | )). (A2)

Inserting the definition of the Kullback-Leibler divergence results into

= = +Q P X Q P X P X* argmin [log ( )] [log ( | )] argmin [log ( )] [log ( , )] log ( ).Q Q Q Q (A4)

__

Unfortunately, Eq. (1) is intractable, as it depends on the marginal likelihood of the model, P Xlog ( ). Therefore, the following theorem derives an
approximation for the marginal likelihood of the model.
Theorem 2. The marginal likelihood of the model P Xlog ( ) can be approximated by the evidence lower bound, ELBO(λ), i.e.,

=P X P X Q ELBOlog ( ) [log ( , )] [log ( )] ( ).Q Q (A5)
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Proof. Utilizing Jensen's inequality, it holds that

= = = =P X P X P X Q
Q

P X
Q

P X
Q

P X qlog ( ) log ( , ) d log ( , ) ( )
( )

d log ( , )
( )

log ( , )
( )

[log ( , )] [log ( )].Q Q Q Q
(A7)

__

Theorem 3. The optimal λ* can be approximated by

= ELBO* argmax ( ). (A8)

Proof. From Eqs. (1) and (2), it immediately follows that

= P X ELBO* argmin log ( ) ( ). (A9)

As P Xlog ( ) is constant with respect to λ, the value λ* can be approximated by maximizing ELBO(λ). __

In order to optimize ELBO(λ), we utilize gradient descent with the gradients defined by

= =ELBO P X q q P X q( ) [log ( , )] [log ( )] [ log ( )(log ( , ) log ( ))].Q Q Q (A11)

We further utilize Monte Carlo integration to obtain the estimates of the ELBO(λ) and the gradient.

Appendix B. Two-stage estimation

Analogous to our SENN, we chose the non-parametric component λ to follow a log-normal prior. The underlying distribution parameters were
modeled as normal prior distributions, i.e., a a~ ( , 1)empirical and b b~ ( , 1)empirical . The linear component β was modeled such that the coefficients
stem from normal prior distributions,i.e., ~ (0, 10)i . The recurrent component RNNΘ was implemented as a long short-term memory network with
two layers containing 100 and 50 neurons, respectively. Formally, the estimation is specified by as follows:

• Stage 1: = P X*, * arg max ( , | )
,

,

• Stage 2: = P XRNN* arg max (RNN | , *, *)
RNN

.
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