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Atomistic phenomena in dense fluid shock

waves

Stefan Schlamp∗ Bryan C. Hathorn†

January 10, 2008

Abstract

The shock structure problem is one of the classical problems of
fluid mechanics and at least for non–reacting dilute gases it has been
considered essentially solved. Here we present a few recent findings,
to show that this is not the case. There are still new physical effects to
be discovered provided that the numerical technique is general enough
to not rule them out a priori. While the results have been obtained for
dense fluids, some of the effects might also be observable for shocks in
dilute gases.

Key words: shock structure, anisotropy, molecular chaos, shock
thickness, asymmetry factor

1 Introduction

The shock structure problem belongs to the classical problems in fluid me-
chanics. Attempts to derive the shock thickness trace back well over 100
years [1–3]. The glory days were probably the 1950’s and 60’s when ex-
perimental facilities and measurement techniques became available, which
allowed the experimental validation of the various theories and results that
had been proposed and obtained by then. A second wave of interest started
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in the 1960’s when computational simulations on an atomistic level became
feasible. The breakthrough development was that of the Direct Simulation
Monte Carlo (DSMC) technique. Bird, who first introduced DSMC [4], was
also the first to apply this technique to the shock wave problem [5]. It was
not clear initially whether the procedure was actually solving the Boltzmann
equation until Bird himself [6] proved this. DSMC was applied numerous
times to the shock structure problem in the following years and today is the
work horse in rarefied gas dynamics.

Molecular dynamics (MD) is conceptually much simpler than DSMC, and
was consequently proposed before DSMC [7]. But because it is computation-
ally much more expensive, especially at low densities, the first shock wave
simulations lagged those for DSMC. Hoover [8] and Holian [9] can be seen as
pioneers in applying MD to the shock structure problem.

Because of the incredible wealth of theoretical, experimental, and nu-
merical work in existence on the subject, it is impossible to give a fair and
balanced overview here. Suffice it to say that a huge body of knowledge
exists, but that the focus in the meantime has shifted away from the ”classi-
cal” shock structure problem. Instead, shocks in chemically reacting fluids,
shocks in solids with grain boundaries, etc. have taken center–stage. This is
due to the fact that for all practical purposes the ”classical” shock structure
problem is considered solved – not in the sense of having a closed–form ana-
lytical solution (should one exist), but at least numerically. This is true in as
far as the Boltzmann equation now can be solved to arbitrary accuracy. One
is content to know that the existing macroscopic governing equations are not
applicable for this problem, but since one can use DSMC in those cases or in
those regions, a further advancement of the theory seems less important. In
any case, agreement between simulations and experiments is very good, and
any remaining discrepancies are not significant for engineering purposes.

Then there are a few impediments to someone interested in this problem:
the high entry barrier to the field (like in turbulence modeling, but in contrast
to those in an emerging specialty), negligible funding for such fundamental
research, and the prospect of only being able to make minute quantitative
improvements to existing formulations. In fact, the original purpose of the
work presented here was to provide validation data for other, more efficient
numerical techniques. It was assumed that all physical effects relevant to
the shock wave problem had been found and reported on. The data analysis
showing some unanticipated effects (in particular, Secs. 4–6) were primarily
meant to verify the proper behavior of the code and convergence of the
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simulations. The objective of this paper is then less to document in detail
each one of the findings (yet they are described with some background for
their understanding), but to show that even classical problems might not be
as fully explored as they appear.

Some of the results have been published in more detail elsewhere and
the reader is kindly asked to consult the references for a more complete
description, theoretical background, discussion of results etc. Sec. 2 intro-
duces the numerical technique and the particular setup used. Sec. 3 gives
a brief review of the macroscopic shock structure. Each of Secs. 4 through
7 will then discuss one phenomenon which has only recently come to light
(see Refs. [10–12], respectively, for more details). These are all aspect of
a broader research project carried out over the last several years at ETH
Zurich [13]. Here we only report on some of the results for the shock wave in
dense nitrogen, but the same results (where applicable) have been observed
in argon.

2 Numerical setup

Like DSMC, MD is particle–based and does not directly solve a macroscopic
governing equation (e.g. Navier–Stokes). But unlike DSMC, MD simulates
the movement of each real particle, i.e., there is no distinction between real
and computational particles.

While DSMC can be shown to solve the Boltzmann equation, MD solves
no macro- or microscopic governing equation for a fluid; only the Newtonian
equations of motion are solved. It hence does not require any a priori as-
sumptions or knowledge about the fluid, e.g. an equation of state and the
transport coefficients (as required by macroscopic governing equations) or a
collision model (as required by DSMC).

The forces between pairs of particles are calculated based on some poten-
tial function, the choice of which is the only form of modeling required. These
range from hard–sphere models over generic potentials to many–parameter
functions, which reproduce the thermodynamic and physical properties of
fluids and solids quantitatively over a wide range of densities and temper-
atures. The computational cost of calculating forces between all possible
particle pairs in the domain scales as N2, but this growth can be made linear
by a finite cut–off radius beyond which molecules are not considered for the
force calculation.
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MD was first proposed by Alder and Wainwright in the 1950s [7]. It does
not make the assumptions underlying the Boltzmann equation and is thus
well–suited even for high densities and can even be used for simulations of
solids. In fact, MD is prohibitively expensive for low densities. Hoover [8]
and Holian et al. [9], for example, use MD to simulate shock waves in dense
monatomic gases. They find that the discrepancies between the Navier–
Stokes and the MD results is smaller than for dilute gases. Tsai and Trevino
[14] perform MD simulations of shock waves in liquids.

MD has been applied repeatedly for this fluid mechanical problem (e.g.
[9,15,16]). These works focus on the steady–state profile. A setup similar to
the one used here, namely the creation of the shock by an impulsively accel-
erated piston, has also been studied in Refs. [17–19]. These authors obtain
temporally resolved data for the formation of the steady state profile from
an initially quiescent fluid. All of the above only consider monatomic gases,
i.e., do not consider rotational degrees of freedom. Steady–state profiles for
a shock in dilute nitrogen has been obtained using a hybrid method (MD +
Direct Simulation Monte Carlo) by Tokumaso and Matsumoto [20]. In the
present work, for the first time, the shock structure of a diatomic dense fluid
is considered.

All results reported in the subsequent section are based on the same set of
molecular dynamics simulations. The numerical setup is the same discussed
in detail in Ref. [11]. Only the most essential parameters are reproduced
here. The molecular dynamics code used is a modified version of Moldy [21].
The computational domain is a cuboid with dimensions Lx × Ly × Lz =
252× 237.9× 237.9 Å3, where a layer of 15.86 Å thickness on either side (in
x–direction) is occupied by a piston and by a stationary wall.

100, 000 nitrogen molecules are randomly distributed within the fluid por-
tion of the domain and given random initial velocities and rotation rates
drawn from a Maxwell–Boltzmann distribution. The rigid nitrogen molecule
is modeled by a two–center Lennard–Jones (6,12) potential with the param-
eters as given in Ref. [22], but without the five point–charges. The mean
distance between molecules is δ = n−1/3 = 5 Å initially, where n denotes the
number density. The mean free path (based on its dilute gas definition and
using 2σLJ as diameter) is O(1 Å).

The system is equilibrated for 2 ps, where the molecular velocities and
rotation rates are rescaled periodically to correspond to the desired initial
temperature of 300 K. The shock wave is created by impulsively accelerating
the left wall (piston) to a velocity of up = 1, 000 m/s. The system state
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is saved every 0.05 ps. 10 ensembles with perturbed initial conditions are
simulated. The averaged shock structure is obtained by averaging over all
ensembles and over all time steps where the shock wave is at least 50 Å from
either wall.

3 Macroscopic shock structure

The shock thickness Λ based on the maximum density gradient is defined as

Λ =
∆ρ

dρ
dx

∣

∣

∣

max

, (1)

where ∆ρ denotes the density jump across the shock. The denominator is
the largest spatial density gradient within the shock waves. Λ thus represents
the distance over which the maximum gradient would have to be maintained
in order to achieve the same density jump.

For dilute gases Λ tends to infinity for weak shocks, but is usually in the
range between 2 to 4 mean–free paths for M > 1.5 with a slightly increasing
tendency for large Mach numbers [23]. For a given Mach number, the shock
thickness increases slightly (relative to the mean–free path) with the density
[24].

Over this short distance, the fluid state changes significantly so that it is
immediately obvious that the continuum hypothesis is not applicable within
the shock. Fig. 1 shows a particular example for a shock in dense nitrogen.
Yet the dilute shock structure is very similar when properly scaling the hor-
izontal axis. All quantities have been nondimensionalized by the pre– and
post–shock properties,

q̃ =
q − q1

q2 − q1

, (2)

where the subscripts 1 and 2 denote the pre– and post–shock state, re-
spectively. q could refer to the density, velocity, temperature, etc. Hence,
zero corresponds to the pre–shock state and unity is the post–shock value.
The origin of the spatial coordinate system has been chosen such that x = 0
corresponds to the location where ρ̃ = 0.5.

The breakdown of the local thermodynamic equilibrium (LTE) hypothesis
is evident from the fact that the equi–partition of energy theorem is violated.
It states that the energy is divided equally between all available degrees of
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Figure 1: Shock structure (M = 3.56) in dense nitrogen (T1 = 300 K, ρ1 =
370.9 kg/m3, T2 = 978 K, ρ2 = 741 kg/m3, ∆u = 985 m/s). The velocity
profile (not shown for clarity) is similar to that of T̃y.

freedom (our simulations neglect quantum mechanical effects). This would
require that the rotational temperature is equal to the translational tem-
perature, which is not the case in a shock wave. Furthermore, Fig. 1 also
shows that not even the three translational degrees of freedom are equally
excited: The translational temperature based solely on the shock–normal
velocity component (T̃x) deviates from that based on the shock–parallel mo-
tion (T̃y). Note in particular the well–known temperature overshoot of the
shock–normal temperature component, whose magnitude depends on the
Mach number and the ratio of specific heats. This overshoot was first pre-
dicted theoretically [25, 26], but later confirmed experimentally (Ref. [27] is
a more recent example).

Our results for dense fluids indicate that the asymmetry parameter [28]

6



(Ref. [29] uses a slightly different definition)

Q =

∞
∫

0

(ρ − ρ1)dx

0
∫

−∞
(ρ2 − ρ)dx

. (3)

is less than unity whereas it is found to be greater than unity in dilute gases
for comparable Mach numbers [28,29].

Not surprisingly, the Navier–Stokes equations do not even reproduce the
shock thickness well for Ms > 2 [30]. But there certainly exist more refined
governing equations, which yield satisfactory agreement, at least for dilute
gases. But instead of dwelling on subtle quantitative discrepancies between
various techniques, Secs. 4 through 7 will address features, which none of the
existing techniques is able to capture at all.

4 Anisotropic molecular orientations

Intuitively, due to the frequent collisions, one would assume that the angular
orientation of the molecules is random. In fact, in the context of dilute
fluids, this follows almost directly: In dilute fluids, the distance between
molecules is much larger than the size of a molecule. The molecules hence
only interact during collision events, which are very short compared to the
time spent between collisions. The orientations of colliding molecules are
randomized by the collision. But since there are no interactions between the
collision events, there is no mechanism which could produce an anisotropic
orientation of the molecules. For dense fluids, the situation is different. The
trajectory of a molecule is not governed by isolated binary collision events,
but rather by a continuous interaction with multiple neighboring molecules.
If their distribution is inhomogeneous (e.g. by means of a strong density
gradient), then this could produce an anisotropy.

Molecules near a phase boundary have an alignment tendency, e.g. wa-
ter molecules very close to the surface [31], polar [32] and non–polar [33]
molecules at the water/air interface in a Langmuir monolayer, or surfactant
molecules in a liquid colloid (micelle) [34]. The alignment of liquid crystals
in the nematic phase can be controlled by applying an electric field [35].

Subsequently, only homo–nuclear diatomic molecules are considered, but
the terminology is easily extended to a more general case. Let the orientation
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angle θ be the angle between the x–axis and the inter–nuclear axis. Because
the nitrogen molecule is symmetric, θ is mapped to the range 0 . . . π/2 with-
out loss of generality. θ = 0 then means that the molecule is aligned along
the shock normal vector, while θ = π/2 for a molecule, whose axis is parallel
to the plane of the shock wave. Similarly, φ (0 . . . π/2) denotes the angle be-
tween the x–axis and the angular momentum vector (i.e., the instantaneous
”rotation axis”). For a linear molecule, the angular momentum has to be
perpendicular to the molecule’s axis. This represents the constraint

0 ≤ π/2 − φ ≤ θ. (4)

Purely random orientations of the molecules and the axes of rotation
would yield distributions fθ = sin θ and fφ = sin φ, merely reflecting the
different solid angles. Deviations are then evident by non–zero values of
f̃θ = (fθ − sin θ)/ sin θ and f̃φ = (fφ − sin φ)/ sin φ. These are the relative
over– or underpopulations of a certain value for θ or φ.

Fig. 2(a) & (b) shows these deviations across the shock wave. The hori-
zontal axis is the shock–normal coordinate, the vertical axes represent θ and
φ. The color coding refers to the over– (red) or under–population (blue) as
given by f̃θ and f̃φ.

It can be seen that θ and φ are distributed randomly upstream and down-
stream of the shock. Within the shock wave (|x/Λ| ≤ 1), large θ are over-
populated, while small θ are underpopulated. The trend is weak (at least for
these fluid conditions), but clearly visible above the background noise. The
opposite behavior is observed for the angular momenta. Within the shock,
small values of φ are overpopulated, large φ are underpopulated. But the
effect for the angular momentum orientation is weaker.

The anisotropy of φ requires an opposite (in sign but not in magnitude)
anisotropy of φ, and vice versa: The overpopulation of small θ does not mean
that molecules ”freeze” in a particular orientation. On the contrary, the rota-
tional temperature (and thus the mean rotation rate) increases continuously
across the shock wave. Consider the limiting case where each molecule has
θ = 0. Then, because of Eq. 4, each molecule would also necessarily have
φ = π/2. But even for a smaller anisotropy of θ, Eq. 4 leads to an opposite
effect for φ. This argument implies a cause and effect relationship, i.e., that
the anisotropy of θ causes the anisotropy of φ. This is not the case. In reality
both effects are simply coupled through Eq. 4.

But one might wonder why f̃θ deviates further from zero than f̃φ. This
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Figure 2: Orientation angle distributions across shock wave; (a, left) popula-
tion enhancement of orientation angles relative to a purely random distribu-
tion; (b, right) the same, but for the orientation of the angular momentum
vector. Flow is from left to right. The horizontal scale has been nondimen-
sionalized by the shock wave thickness Λ = 7.5 Å. The shock conditions are
the same as in 1.

can be understood by considering that the effect is due to the interaction with
inhomogeneously distributed molecules in the vicinity. It is thus a function
of the location of the two nitrogen atoms (i.e., the orientation), but not
on their velocity vector (i.e., the angular momentum vector). The angular
momentum only becomes significant because it determines the location of
the atoms subsequently.

We have proposed [10] a nondimensional parameter governing the mag-
nitude of the anisotropy, which includes the elongation of the molecule, the
magnitude of the density gradient, the density, and the curvature of the
potential function between molecules. Additional simulations with different
flow conditions are required to confirm this scaling.

A posteriori (see Ref. [10] for a proposed mechanism), it seems obvious
that such an alignment effect could (and should) exist and one wonders why
it has not been observed before. One must note that all of the following
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conditions must be met to observe the phenomenon: a) the molecular model
must be non–spherical; b) it is a dense gas effect. Simulations in dilute gases
will not produce an alignment; c) realistic (i.e., smooth) interaction poten-
tials are required. Simulations of hard–sphere molecules will not produce an
alignment; d) the effect is weak. Large sample sizes are required to observe
it above the statistical fluctuations; e) one has to look for it.

5 Higher moments of the velocity distribu-

tion function

While the previous section addressed a feature which cannot be captured by
present theories, this and the next section show that (and by how much)
the underlying assumptions of various governing equations are violated. All
common macroscopic governing equations of fluid mechanics are derived from
the Boltzmann equation. The Euler and the Navier–Stokes equations, for
example, are the zeroth and first order series expansions with respect to the
Knudsen number (Chapman–Enskog expansion) [36].

In general, the closure problem consists of expressing the heat flux and
the stress tensor as a function of the other quantities and their derivatives.
The fluctuation theorem [37] provides expressions, which are valid in general,
but which can not be calculated. It can be seen as a microscopic version
of the second law of thermodynamics. The Green–Kubo relations [38–41]
are a simplification of the fluctuation theorem, but are only valid for fluids
close to equilibrium [42]. Also, they are not applicable for flow simulations.
This is, because they do not provide instantaneous values for the transport
coefficients.

One instead (explicitly or implicitly) makes certain assumptions about
the moments of the velocity distribution function above some order. The
Euler equations, for example, follow from the Boltzmann equation in the
high collision rate limit. In this limit, the molecular velocities follow an equi-
librium, i.e., Maxwell–Boltzmann distribution, for which all odd moments
are zero. The heat flux is proportional to the skewness (the third central
moment) of the velocity distribution function. This is responsible for the
non–heatconducting nature of the Euler equations.

The Navier–Stokes equations account for non–zero skewness, but simi-
lar assumption for the moments of order four and up are required in their
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derivation from the Boltzmann equation. It has to be said, however, that the
Fourier law (of heat conduction) and Newtonian behavior are a consequence
of the derivation and not an a priori assumption. Higher–order terms of the
Chapman–Enskog series are the Burnett and super–Burnett equations, for
which the closure problem is shifted to moments of order 5 and 6, respec-
tively [36].

Let ~ξi = (ξi, ηi, ζ i) and ~ci = (ci
x, c

i
y, c

i
z) be the location and the velocity

vector of molecule i in the shock–fixed reference frame, respectively. We
define the central moments as follows:

µ0 = N =
N
∑

i=1

1 µ1,α = ~uα =
1

N

N
∑

i=1

~ci
α µk>2,α =

1

N

N
∑

i=1

(

~ci
α − ~uα(ξi)

)k

(5)
Greek subscripts denote components of vectors or tensors. Roman sub-

scripts indicate the order of the moment. The moments for k > 2 are ten-
sors, but only the diagonal elements are considered here. The sum is over
all molecules within a slice |x− ξi| ≤ δx/2 parallel to the plane of the shock
wave. It can be seen that µ0 (when divided by the volume) is just the density,
and that µ1 is the velocity vector of the fluid. µ2 and µ3 are proportional to
the temperature and heat flux, respectively. Note that µ2 is a vector, whose
elements correspond to the directional temperatures mentioned in Sec. 3.
Likewise, µ3 is a tensor, whereas the heat flux is conventionally assumed
to be a vector. This simplification requires that the local thermodynamic
equilibrium assumption holds, which has already been shown to be violated
within a shock.

The third and higher moments are normalized by the respective power
of the standard deviation

√
µ2,α. The fourth and higher even moments are

expressed as excess moments, i.e., the value of the moment which a Maxwell–
Boltzmann distribution would have is subtracted (µ4,MB = 3, µ6,MB = 15,
µ8,MB = 105, µ10,MB = 945). An equilibrium distribution would thus corre-
spond to all excess moments being zero.

Fig. 3 shows the higher central moments of the velocity distribution func-
tion across the shock wave. The even moments are plotted in Fig. 3(a), the
odd moments in Fig. 3(b). The solid lines are for the direction along the
direction of the main flow (α = x in Eq. 5). The dotted lines are for one of
the in–plane velocity components (α = y or z in Eq. 5). Upstream and down-
stream, all excess moments are zero, consistent with a Maxwell–Boltzmann
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distribution of a fluid in equilibrium.
The sensitivity to finite sample size effects increases with the order of the

moment. The higher noise levels for the higher orders are thus expected. It
is still curious that the largest noise–like fluctuations are limited to a section
on the cold side of the shock and are not observed for the in–plane directions.

The most counter–intuitive feature in Fig. 3(a) is that the even moments
of order four and higher of the velocity distribution function across the shock
wave exhibit a sign reversal. They are positive on the cold side of the shock,
but slightly negative on the hot side of the shock. This means that the
velocity distribution function changes from having fat tails to having slim
tails, at least with respect to the molecular velocities along the shock–normal
direction. The distribution function for the in–plane velocity components
does not have a sign reversal. We do not expect that this is a dense gas
effect.

Experimental and numerical data for dilute gases, from which the higher
moments can be extracted, is available in the literature, but to the authors’
knowledge, the effect has not been reported previously. The location where
the higher out–of plane moments first deviate from zero does not depend
on the order of the moment, i.e., the trend for the lower moments that the
temperature (second moment) changes upstream of the flow velocity (first
moment) and the density (zeroth moment) is not continued or it approaches
a limit asymptotically (also see Fig. 1). Consider a collection of molecules in
a volume. When a single very fast molecule enters the volume, its (relative)
influence on the number of molecules or their mean velocity is small. Its
effect is strongest felt for the higher moments, since it is those who capture
the tail behavior of the velocity distribution function.

The peak magnitude of the moments increases with the order of the mo-
ment (note the different scaling of the lines in Fig. 3). This is significant
when considering appropriate closure relations for the atomistic governing
equations when deriving macroscopic governing equations from them. The
influence on the macroscopic quantities will, for most practical purposes, be
negligible because the higher moments are predominantly affected by the
(few) particles in the tails of the distribution function. The effect could,
however, be large for flows in which high kinetic energy collisions play a
significant role, such as for chemically reacting flows.
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Figure 3: Even (a, left) and odd (b, right) moments of the velocity dis-
tribution function for a shock wave in dense nitrogen. The labels indicate
the order of the moment. The solid lines are for the molecular velocities
in shock–normal direction, the dotted lines for velocities within the shock
plane. The odd moments for the shock–parallel velocities are zero (within
the measurement uncertainty) and are not shown. The curves are scaled to
fit in the same axes. The scaling factors, which have been applied for each
order, are shown in each panel.

6 Long–range two–point velocity correlations

The previous section addresses errors in the step between Boltzmann equa-
tion and a macroscopic governing equation. Here, we can show that even
the assumptions underlying the Boltzmann equation, are not fully satisfied
within a shock wave. Grad [43] summarizes these assumptions:

1. point molecules; This is intrinsically implied by writing the distribution
function as f = f(~r, . . .).

2. complete collisions; There exists a time interval which is large compared
to the duration of a collision, yet small compared to the mean time
between collisions.

3. slowly varying distribution function; This means that f does not change
significantly over the intermediate time scale just mentioned, i.e., f ≈ const.
over a distance comparable to the size of a molecule (but not necessarily
over the mean–free path).
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4. molecular chaos; The velocities of two molecules with a distance larger
than the range of short–range forces are uncorrelated.

The first three assumptions are satisfied for a dilute gas, but not for a
dense fluid (or shock therein). The nice property of the first three assump-
tions is that their validity can easily be assessed a priori. They only require
the knowledge of some length and time scales, which are usually roughly
known. This is not so with the last assumption. It has to be evaluated a
posteriori, which is what is done here. Note that this evaluation cannot be
made after the assumption has been used in the derivation of the governing
equation being solved (which could yield a circular argument).

Strictly speaking, it will be shown subsequently that the molecular chaos
assumption is violated in a dense fluid shocks. But in dense fluid shocks, the
other assumptions do not hold anyway. Yet, our results might not be a dense
fluid effect, but might instead be also observable in dilute fluids. Other ex-
amples, where the molecular chaos assumption does not hold, include fluids
near the liquid–vapor critical–point, where the behavior of the fluid is dom-
inated by long–range correlations, shear flows [44–46], dissipative gases [47],
and high–energy heavy–ion collisions [48].

Let ~Ψ be the the kinetic state vector of molecule i,

~Ψi =
(

Ψi
⊥, Ψi

||, Ψ
i
ω

)

≡
(

ci
x,

√

(

ci
y

)2

+ (ci
z)

2, |~ωi|
)

. (6)

The first component is simple the shock–normal velocity. The second compo-
nent is the in–plane velocity magnitude. This makes use of the fact that the
in–plane directions are interchangeable and that there cannot be a preferred
direction. |~ω| is the magnitude of the rotation rate vector, i.e., essentially

the square root of the rotational kinetic energy. ~Ψ does not have a physical
meaning and it does not define the state of a molecule uniquely. It is merely
used to simplify the notation.

Let us now define the difference between the state vector of a single
molecules and the local average state vector as

~̃Ψ
i

≡ ~Ψi− < ~Ψj >, ∀j s.t. |ξj − ξi| ≤ ∆x/2. (7)
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where ∆x = 1 Å is the spatial resolution. With this notation, the two–point
correlation function is

Rα,β(x, r) ≡ < Ψ̃i
αΨ̃j

β >
√

<
(

Ψ̃i
α

)2

><
(

Ψ̃i
β

)2

>

(8)

∀i s.t. |ξi − x| ≤ 1

2
∆x

∀j s.t. |ξj − x| ≤ 1

2
∆x

and
∣

∣

∣

∣

√

(ηj − ηi)2 + (ζj − ζ i)2 − r

∣

∣

∣

∣

≤ 1

2
∆r

The definition is that of a correlation coefficient, except that the averages
in the numerator and the denominator go over different groups of molecules.
The numerator is the covariance of the state vector of molecules separated
by distance r at the shock–normal coordinate x. The average hence goes
over all molecules which are within ∆x and ∆r (∆r = 0.2 Å) of each other.
The average in the denominator only requires that molecules are within ∆x
of each other. In practice, the difference between Eq. 8 and the correlation
coefficient will be negligible.

The different panels of Fig. 4 show the different components of Rα,β(x, r)
for the M = 3.56 shock in dense nitrogen. Note that Rα,β = Rβ,α. The hori-
zontal scale is the shock–normal coordinate normalized by the shock thickness
(7.5 Å). Flow is from left to right, such that the left hand side of each panel
corresponds to the cold side of the shock wave. The vertical scale is the radial
distance normalized by the Lennard–Jones radius (σLJ,N2

= 3.318 Å) of the
nitrogen atom. The strong deviations from zero for the smallest observed
spacings (lower edge of the panels) are due to the small number of particle
pairs with very small separations and have thus to be interpreted as noise.
While R can also be negative, no statistically significant negative values have
been observed. The color coding thus only covers positive values.

Upstream and downstream of the shock wave, no correlation (discernible
from noise) can be observed for any component of Rα,β. The lower noise levels
downstream of the shock wave can be attributed to the higher density there
such that more particle pairs fall into each δx–δr bin of the histogram. The
density ratio is roughly 2 such that the number of molecule pairs quadruples.
The noise is thus cut in half.
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Figure 4: Two–point velocity correlation functions (Eq. 8) within a shock
in dense nitrogen. The shock–normal coordinate (horizontal scale) is nondi-
mensionalized by the shock thickness Λ. The vertical scale is the in–plane
distance between two molecules within the same slice of thickness ∆x = 1 Å.
It is normalized by the Lennard–Jones radius σ; a): R⊥,⊥ b): R⊥,|| c): R⊥,ω

d) R||,|| e) R||,ω f) Rω,ω.
.

16



The most significant features of Fig. 4 are the long–range positive corre-
lations visible in each panel. They are centered slightly on the cold side of
the shock wave. The vertical dashed lines are plotted at x/Λ = −0.75 and
x/Λ = 0.25 as visual aids. The two–point correlation between the shock–
normal velocity is strongest (Fig. 4a), but still weak in absolute terms, reach-
ing only ∼ 0.05 for small r. R⊥,⊥ > 0 is clearly distinguishable from noise
for r/σ = 10 (∼ 6× pre–shock mean distance between molecules). The other
components of R deviate less from zero. But since the correlations exist for
all components of R, it is probably more appropriate to speak of long–range
correlations of the molecular kinetic energy. Simulations for a shock wave in
dense argon give similar results.

7 Three–dimensional structure of a plane shock

wave

Lastly, we want to use the wealth of information, which a molecular dynamics
simulation provides to partially re–interpret the shock thickness. The term
”shock structure” usually refers to the variation of the various thermody-
namic state variables along the shock–normal direction. When measuring,
simulating, or theoretically considering the shock structure, data is either
averaged along the direction parallel to the shock wave, or it is implicitly
assumed that the shock structure is one–dimensional, i.e., that a plane shock
wave is truly plane.

Suppose that the shock wave is not plane on microscopic scales. Then, in
a Gedankenexperiment, the averaged shock structure can be decomposed into
two parts: First, the shock structure one would obtain if the shock wave was
indeed truly plane (Fig. 5a). In this case, the local shock structure would be
identical to the averaged shock structure everywhere. Second, a broadening
effect due to deflections up– or downstream of the shock location from its
mean. Consider, for example, the (purely theoretical) case where the shock
is a discontinuity locally, but that the plane connecting these discontinuities
is wavy (Fig. 5b). Spatial averaging along the in–plane directions would then
produce a smooth shock profile with a thickness governed by the amplitude
of the plane’s deflections. These two limiting cases are shown in Fig. 5(a) &
(b), respectively. The averaged profile (shown at the bottom of Fig. 5) could
be identical, even though the local profiles (e.g. a step function in Fig. 5b)
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are qualitatively different. In our Gedankenexperiment, the averaged shock
structure is a superposition of these two cases. Fig. 5(c) & (d) shows two
limiting cases with respect to the co–movement of different iso–lines. While
the local shock structure is the same everywhere in Fig. 5(c) (yet different
from the macroscopic structure), even the local structure varies spatially in
Fig. 5(d).

We determine the local density and velocity shock locations xs,ρ and xs,u

by finding the location x for given y and z, where the density and the mean
velocity within a spherical neighborhood of radius R = 20 Å is the mean
between the pre– and the post–shock state. Root [49] uses a somewhat more
refined spatial averaging procedure to find the turbulent (on a microscopic
level) velocity field behind a chemically reacting shock wave.

We find local shock deflections comparable to the mean–free path. The
velocity shock is smoother than the density shock and there is no signifi-
cant correlation between these deflections. In order to quantify the effect
of the three–dimensional structure on the overall shock structure, consider
the limiting case shown in Fig. 5(b). Assume that the local shock structure
is discontinuous at the local shock location xs. Then, the cumulative dis-
tribution function (CDF) for xs would be the corresponding averaged shock
structure. This is shown in Fig. 6. The solid line and the dotted line are
the actual averaged profiles for the density and the velocity across the shock,
respectively (as shown in Fig. 1). The velocity shock leads the density shock.
The dashed curves are the CDFs for xs,ρ and xs,u (the latter leading the for-
mer). Based on these curves, a shock thickness ΛCDF can be calculated for
this hypothetical case: ΛCDF represents 71% (density) and 46% (velocity) of
Λ. One could say that half or more of the macroscopic shock thickness can
be explained by the three–dimensional structure of the shock wave.

The three–dimensional structure is a necessary consequence of the break-
down of the continuum hypothesis on the length scale of the shock thick-
ness. On this microscopic level, the shock is no longer propagating into a
homogeneous medium, but into one with local fluctuations of the density, ve-
locity, and temperature. The local speed of propagation for the shock wave
will hence vary spatially. The shock remains mostly planar for two reasons:
through information exchange in the in–plane directions (molecules have ve-
locity components not just in the shock–normal direction) and because the
density, velocity, and temperature average out to their macroscopic values
along each shock–normal trajectory.

The re–interpretation of the shock thickness to be partially due to a
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Figure 5: Schematic of some limiting cases for the three–dimensional shock
wave structure; (a) truly plane shock wave; (b) wavy discontinuity; (c) strong
correlations between iso–density planes; The local shock structure is the same
everywhere, but shifted up– or downstream. (d) no correlation between iso–
density planes.
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Figure 6: Density and velocity profiles across shock wave in nitrogen; solid
line: actual structure of density shock; dashed line: cumulative distribution
function for xs,ρ; dotted line: actual structure of velocity shock; dash–dotted
line: cumulative distribution function for xs,u.
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“surface roughness” of the shock wave might be considered merely semantics,
but we believe that this point of view provides an interesting and intuitive
alternate interpretation.

As one approaches molecular length scales, the local density, velocity etc.
will inevitably fluctuate because of the finite number of molecules within the
sample volume. The local shock location will thus show purely statistical
fluctuations and we want to determine if the actual fluctuations exceed this
level.

To this effect we first want to find characteristic length scales for the
purely statistical deflections from scaling arguments. First, consider the de-
viation of the local density shock location from its mean. Let n0 be the
particle density at x = 0 and R be the radius of the neighborhood. Ne-
glecting the particular structure of the radial distribution function (basically
the likelihood of finding a molecule at a certain distance) and the non–unity
asymmetry factor (Eq. 3) there will be in average N = 4

3
πR3n0 particles

within the neighborhood of volume V = 4

3
πR3.

Let the standard deviation of N be σN ∼ 1/
√

N . This uncertainty can
be converted into a length scale using the local (number) density gradient,

σx,ρ ∼ σN

(

∂N

∂x

∣

∣

∣

∣

∣

x=0

)−1

= σN

(

V
∂n

∂x

∣

∣

∣

∣

∣

x=0

)−1

. (9)

The shock thickness is defined based on the maximum density gradient,

Λρ ≡ ρ2 − ρ1

∂ρ/∂x|max

=
n2 − n1

∂n/∂x|max

=
∆n

∂n/∂x|max

≈ ∆n

∂n/∂x|x=0

. (10)

The last step utilizes the empirical fact that the location of the maximum
density gradient is close to the origin and that the gradient at the origin will
be comparable to the maximum gradient. Now substitute Eq. 10 into Eq. 9
to find

σx,ρ

Λρ

∼ σN

V ∆n
, (11)

and thus
σx,ρ

Λρ

∼
(

R3n0

)−3/2
(

∆n

n0

)−1

. (12)

This is the scaling of the statistical shock deflections relative to the shock
thickness with changes of the neighborhood radius, the number density at
the origin and the density change across the shock.
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Consider a few limiting cases. For R → ∞, the deflections vanish as one
recaptures macroscopic behavior. For an infinitely weak shock, i.e., ∆n → 0,
the deflections tend to infinity even compared to the shock thickness, which
itself tends to infinity in this limit. This is because the microscopic fluctu-
ations exceed the very weak density change across the shock. Now assume
that the relative density jump across the shock ∆n/n remains constant, then
an increasing absolute density decreases the relative fluctuations.

For the velocity shock, a similar approach can be taken. The uncertainty
of the molecular velocity of each particle within the neighborhood scales with
the speed of sound c. Since there are N particles, the uncertainty for the
average velocity is σu ∼ c/

√
N . This can be converted into a length scale

using the local velocity gradient,

σx,u ∼ σu

∂u/∂x|x=0

. (13)

Following the same arguments as above, this can be rewritten as

σx,u

Λu

∼ σu

u0

∼ a

(n0R3)1/2 ∆u
u0

u0

=
1

M0

(

R3n0

)−1/2
(

∆u

u0

)−1

, (14)

where u0 and M0 are the local velocity and the local Mach number at x = 0,
respectively. This result is different from Eq. 12 in that it predicts a weaker
dependence on R and in that the Mach number enters directly. Consider two
shock waves with identical velocity jumps ∆u/u0 but with different Mach
numbers. The same velocity jump achieved at a smaller Mach number leads
to larger uncertainty. This is reasonable because a lower Mach number for
a given velocity means that the speed of sound is also higher and thus the
uncertainty of the local velocity data is elevated.

Eqs. 12 & 14 predict a faster–than–linear decay of the perturbations with
exponents −4.5 for the density shock and −1.5 for the velocity shock. These
results can be compared to the actual dependence of the shock deflections
vs. the neighborhood radius R. If they show a different scaling, then an
additional physical process is likely to be at work. In fact, when a physical
phenomenon other than just noise underlies the shock deflections, then one
would expect that a) it affects the density and the velocity shock equally, and
b) the decay with increasing R would be slower than for purely statistical
fluctuations.

Fig. 7 shows the standard deviations σx,ρ and σx,u vs. R in a log–log–
plot. The dotted lines represent least–squares power–law fits with exponents
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Figure 7: Standard deviation of shock deflections for the density (solid lines)
and velocity (dashed lines) shock in argon (black lines) and nitrogen (blue
lines) vs. neighborhood radius. The dotted lines are power–law fits with
exponents as labeled.

as shown in the labels. A few things are worth pointing out: First, the slopes
of the lines are much lower than predicted by Eqs. 12 & 14 suggesting that
these fluctuations are not just noise. Secondly, the slopes for the density
and the velocity shock – while not equal – are comparable and within the
uncertainty. Third, and contrary to the predictions in Eqs. 12 & 14, the
slopes for the velocity shocks are steeper than for the density shocks. All
three features are consistent with and suggest that the fluctuations are not
purely noise.

23



8 Conclusions

The shock structure in dilute and rarefied gases is of engineering interest,
because the shock thickness can become comparable (or larger) then some
external length scale. In contrast, it is hard to imagine an application where
the exact shock structure in a dense fluid can have practical ramifications.
The shock thickness there is in the order of a few molecular diameters, and
compressible flows are hardly encountered in micro & nano fluid mechanics.
Probably the only exception to this rule is the simulation of shock waves in
solids, which has military applications.

Shocks in dense liquids thus have to be seen as a benchmark test case
either for numerical techniques or for theoretical approaches, because the
strong gradients and thermodynamic non–equilibrium effects within them
challenge their very foundations. To this end, we have presented a number of
phenomena, whose compatibility with other solution techniques can be easily
verified? They may also hint at new direction in the theory development.

The effects described owe their discovery to the ever increasing computa-
tional resources. The computations require large sample sizes to reveal subtle
effects and provide good statistics and had to employ the most expensive (yet
most general) computational technique to allow their existence in the first
place. But if such measures are taken, then there is still ”new physics” left
to be discovered even in such a classical problem.
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