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Error Surface Topology in the Data Analysis of
Laser-Induced Thermal Acoustics Signals
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Abstract. Laser-induced thermal acoustics (LITA) promises remote, instanta-
neous and non-intrusive point-measurements of the speed of sound (temperature),
thermal diffusivity (density), flow velocity (Mach number), and a species concen-
tration simultaneously in harsh environments. The data analysis relies on a non-
linear fit of an analytical model to the acquired data. The measured quantities are
parameters in the model. Computational cost and convergence behavior depend
on the dimensionality of the parameter space, the initial guesses for the param-
eters and on whether the data analysis is performed in the time or frequency
domain. The topology of the four-dimensional error surface is discussed and a
characteristic allowable distance of the initial guesses from the global minimum is
defined and quantified for typical configurations. Noise has no significant influence
on the convergence neighborhood or the computational cost. If improved initial
guesses (10% maximum error) for the speed of sound and the flow velocity are
obtained by data preprocessing, convergence of the fitting algorithm is ensured.

PACS numbers: 42.65.-k (Nonlinear optics), 43.58Dj (sound velocity), 06.30.Gv
(Velocity, acceleration, and rotation), 07.05Kf (Data analysis: algorithms and
implementation; data management)
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1. Introduction

Laser-induced thermal acoustics (LITA) is a four-wave mixing laser diagnostic point
measurement technique that was originally conceived and developed by Cummings
at the California Institute of Technology in 1995 for remote, instantaneous, and
high-accuracy measurements of the speed of sound and the thermal diffusivity of
non-opaque fluids [1-4]. Recent developments additionally permit the measurement
of one velocity component in sub- [5-8] and supersonic [9] flows using thermal
[8,10] or electrostrictive [5,7] gratings as well as, under certain conditions, species
concentrations [11]. LITA does not require tracers and is insensitive to flow luminosity.
In previous experiments only one or two out of the four parameters (speed of sound, c;,
flow velocity, u,, thermal diffusivity, D, and concentration, ¢) have been measured
simultaneously. In principal, all four quantities can be measured simultaneously. Some
a priori considerations for the data analysis of such measurements are discussed in
this paper. An introduction to laser-induced thermal acoustics is given in section 2.
Section 3 addresses the special implications for the data analysis when measuring four
parameters simultaneously. These implications are quantified in Section 4, where the
results of a numerical study are presented and discussed.

2. Laser-Induced Thermal Acoustics

Two focused, pulsed laser beams (excitation beams) intersect path-length matched at a
shallow angle in the sample volume. A three-dimensional Gaussian-shaped interference
grating (half-width in the order of 100 pum) is created with fringe spacings in the
order of a few pum. Unlike in Laser Doppler Anemometry (LDA), however, the power
of the excitation laser is sufficient to inscribe a density perturbation grating into
the fluid. One of two (or both) molecular mechanisms are responsible for density
changes. Thermalization is the process of energy absorption by fluid molecules
and its subsequent conversion into thermal energy by means of inelastic collisions.
Electrostriction is the tendency of polarizable molecules to move under the action of
a potential field caused by interactions of an optically induced dipole moment and the
optical field. Mathematically, while thermalization is treated as a driving term in the
energy equation, electrostriction is a driving term in the momentum equation.

In both excitation mechanisms, a pair of acoustic waves is created which travel
in opposite directions at the local speed of sound relative to the surrounding fluid. In
the case of thermalization, a stationary thermal density grating is also created which
decays due to thermal diffusion. At ¢ = 0 (the time of the excitation laser pulse which
is assumed to be a Delta-function in time) the various density gratings cancel but
for ¢ > 0 they interfere constructively and destructively with each other so that a
net density grating exists in the sample volume. The evolution of the density grating
can be observed by a cw laser (interrogation laser) directed at the Bragg angle at the
grating. Depending on the instantaneous modulation depth of the density grating,
a fraction (~ 0.01%) of the interrogation beam is scattered into a coherent signal
beam which is detected by a photomultiplier tube and recorded for data analysis.
Figure 1la-f show examples of such signals. The trace in figure la is a typical LITA
signal originating purely from thermalization. The speed of sound is encoded in the
frequency of the oscillations (Brillouin frequency, i.e., the local speed of sound divided
by the grating’s fringe spacing) in the signal. If the gas composition is known, the
temperature can be deduced. The signal decay is governed by the beam geometry and
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Figure 1. (a) Typical LITA signal from thermalization; (b) Comparable
thermalization and electrostriction; (c) same as (a), but lower thermal diffusivity;
(d) same as (a), but heterodyne detection and nonzero flow velocity; (e) same as
(a), but higher speed of sound; (f) same as (d), but different phase shift between
Brillouin and Doppler beating.

the thermal diffusivity. The thermal diffusivity is mostly a function of the fluid density
which can be measured if the Dp-p-dependence is known. Compared to figure 1a, the
signal in figure 1c corresponds to a fluid with lower thermal diffusivity but otherwise
identical properties. The only difference between figure 1a and figure 1e is the higher
speed of sound in figure le. Electrostriction causes oscillations at twice the Brillouin
frequency. While the presence of either contribution depends on the composition of the
fluid, the relative importance of these two effects, the ratio ~y, if both are observed,
is proportional to the concentration of a resonantly excited (thermalization) trace
species within the non-resonantly excited (electrostriction) fluid [11]. Figure 1b shows
a signal with comparable contributions from electrostriction and thermalization.

The density grating is convected with the surrounding fluid which results in a
Doppler shift of the signal beam relative to the interrogation beam. This Doppler shift
can be made visible by superimposing the signal beam with a reference beam at the
original frequency. The Doppler shift then appears as additional frequency component
in the signal (figure 1d, f). This detection approach is called heterodyne detection (vs.
homodyne detection without reference beam). The introduction of a fixed frequency
shift into the reference beam, e.g. by using a Bragg cell, has been suggested to remove
the sign ambiguity of the velocity measurements and improve accuracy for low flow
velocities [8]. The Doppler frequency is then modified by an amount equal to the
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frequency shift. In the absence of such a frequency shift, the ratio of the Doppler
shift to the Brillouin frequency is the flow Mach number. LITA velocimetry with
a homodyne detection setup requires an offset between the excitation laser beams’
focus and the interrogation beam. The time-of-flight of the inscribed grating is then
measured, similar to the laser-two-focus (L2F) approach [12]. But instead of a “hot-
spot”, a grating structure is convected with the fluid, thereby allowing simultaneous
measurements of the other quantities.

Single-shot LITA measurements consume only in the order of 1 us. The density
perturbations are less than 1% of the mean density. The errors are less than 1%
(typically 0.1%) for the speed of sound, 1% (typically 0.25%) for the flow velocity,
5% for the concentration, and 10% for the thermal diffusivity. Data rates are only
limited by the laser repetition rate where pulse energies typically have to be greater
than 10 mJ. The signal beam can be filtered by wavelength as well as spatially, making
LITA insensitive to flow luminosity. Possible applications include combustion [13] and
hypersonic flow diagnostics.

3. Data Analysis Considerations

Several data analysis methods have been employed ranging from least-square fits of
a physical [1] or generic [14] model to the data, over simple frequency decomposition
techniques, to neural network implementations [15]. If only the speed of sound and
the flow velocity are of interest, then a data analysis technique based on a frequency
decomposition is the method of choice for its simplicity, efficiency, and numerical
robustness. To extract information from the LITA signals which is not encoded as
a frequency component, a more general technique has to be used. While the neural
network approach satisfies the condition of generality, it will be cumbersome due
to the training requirement of the neural network. A re-training is required with
each change of the experimental parameters, which happens frequently in a research-
type application. This leaves the fitting technique as only viable option if speed
of sound, flow velocity, thermal diffusivity, and concentrations are to be measured
simultaneously. The fitting technique can also be shown to be the most accurate data
analysis method, provided that the mathematical model is an accurate representation
of the physics [1]. The number of degrees of freedom of the problem increases with the
number of simultaneous measurements. The dimensionality influences the convergence
behavior and computational cost of the data analysis. The speed and robustness of
the data analysis are of great importance for real-time applications.

Cummings et al [2] and Schlamp et al [15] derived a closed form analytical model
for signals from LITA. Its parameters are the speed of sound, flow velocity, thermal
diffusivity, electrostriction and thermalization magnitude. In addition, a number of
experimental parameters are required that include the laser wavelengths, the laser
beam crossing angle, the frequency shift (if any) of the reference beam with respect
to the interrogation beam, and the Gaussian beam half-widths. The values of the
experimental parameters are either known a priori or can be found in a calibration
step where a measurement is performed in a fluid with known properties.

A random phase shift, ¢, between the Doppler and the Brillouin frequency beating
(the only difference between the signals in figure 1d and f) complicates the fitting in
the physical space because, due to its randomness, no good initial guess can be used
for this parameter. This problem is avoided by performing the fitting using the spectra
of the model and the data (also see section 4.8), i.e., the magnitude of the discrete



Error Surface Topology in Laser-Induced Thermal Acoustics 5

Fourier transform. This random phase shift also means that, if averaging is desired to
improve the signal-to-noise ratio, the averaging has to be performed in the frequency
domain (only for heterodyne detection). Otherwise, the LITA signals in a sample
will cancel each other out. A second complication is that the signal depends on the
ratios of thermalization and electrostriction magnitudes to the (known) intensity of
the reference beam. In the limit where the reference beam is much stronger than
the signals from either electrostriction or thermalization, only the ratio vy of the
thermalization to the electrostriction magnitudes comes to bear [15]. This is easily
achieved experimentally by adjusting the intensity of the reference beam accordingly
to operate in this limit, while not saturating the detector. Only in this limit and
only for low concentrations of the resonantly excited species is vy proportional to the
concentrations.

These simplifications leave one with a four-dimensional domain A spanned by
the four fitting parameters (c;, uy, Dr,yy) with coordinates (i, j, k,1), and a LITA
signal L(t,%,j,k,1) on the point (4,7, k,1) being a vector with N points, where N is
the number of time-discretized data points within the signal. Then the least-squares
error with respect to the measured LITA signal L*(¢) on the signal point x(,j, k, 1)
in Ais

N
E(i,j,k,1) =Y (L*(t) = L(t,i,j, k, 1)) (1)
=0
The fitting algorithm has to find the (i, j, k,1) such as to minimize E globally.

The problem of global optimization is encountered in many areas of the
applied sciences and no single algorithm exists which combines the requirements for
convergence to the global minimum within finite time. Commonly, the Levenberg-
Marquardt scheme [16-18] is used, which belongs to the class of deterministic
techniques, i.e., it converges in finite time but not necessarily to the global minimum.
It is a combination of the inverse Hessian technique (multi-dimensional Newton
method) and the method of steepest descent and requires initial guesses for all
parameters. Unfortunately, with increasing dimensionality the scheme becomes not
only slower but also the convergence behavior deteriorates if the initial guesses are not
“sufficiently close” to the global minimum. The algorithm does not converge at all in
some instances or converges to obvious erroneous (local) minima of E. It is required
that the error surface is smooth such that

VE =0, (2)
where the gradient denotes differenciation with respect to the fitting parameters, is
satisfied at a minimum. The success rate for the fitting routine depends on the
”closeness” of the initial guesses from the global minimum and on the topology of
the error surface (figure 2), i.e., on the particular application. The structure of the
error surface for the fitting procedure is investigated in the following section in order
to quantify the requirements for the initial guesses to ensure convergence to the global
minimum.

4. Numerical study

4.1. 4-dimensional error surface

The complexity of the theoretical model does not allow for an analytic analysis.
One has to resort hence to a numerical study of the problem. Each combination
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of parameters has its own four-dimensional error surface and it is impossible to
study every possible combination. But it is expected that the topology of the error
surface does not change qualitatively for a wide range of parameters. Therefore, some
“typical” values are chosen for the speed of sound (350 m/s, approximately the value
for atmospheric air), the flow velocity (50 m/s), the thermal diffusivity (2x 1075 m?/s,
corresponding to atmospheric air), and the thermalization-to-electrostriction ratio vy
(1, corresponding to equal contributions from thermalization and electrostriction).
This condition corresponds to point labeled “A” in table 1. The experimental
parameters were also chosen to reflect typical setups. 532 nm was used as excitation
laser wavelength (frequency-doubled Nd:YAG laser), 488 nm for the interrogation
laser wavelength (Argon-ion lasers), and 1.5° for the excitation laser beam crossing
angle. Furthermore, a frequency shift of 10 MHz between the interrogation beam and
the reference beam was assumed. A sampling time of 2 us and a sampling rate of
256 MHz were assumed, resulting in 512 data point in each signal, allowing the use of
the Fast-Fourier Transform algorithms.

Using these values in the theoretical model of Schlamp et al [15], a reference LITA
signal spectrum (magnitude of Fourier transform) was calculated. Then, additional
signal spectra were computed while changing the input parameters. The sum-of-
squares difference between each spectrum and the reference spectrum was evaluated.
Before calculating the spectra, each signal was normalized to a positive peak value
of unity. This ensures that only the shape of the signal but not the absolute signal
amplitude, which can exhibit a sizeable amount of variation within experiments, is
used to determine the parameters. It is expected that noise also has an influence on
the topology of the error surface. For this purpose, varying amplitudes of Gaussian
noise were added to the reference signal (i.e., before calculating the spectrum) and
the procedure was repeated.

Figure 2 shows all six cross-sections of the four-dimensional error surface around
the reference point A, i.e., a point corresponding to air at atmospheric conditions
and a flow velocity of 50 m/s. Red colors correspond to large deviations between the
spectra, 1.e., high values of the sum-of-squares difference E, while blue colors represent
good agreement. The global minimum is located in the center of the dark blue region
in each of the planes, as indicated by the white cross-hair. Note that for this figure,
the theoretical model was used to calculate a signal for these conditions, i.e., no noise
is considered. The error at the global minimum is therefore zero. Many local minima
are visible, particularly in the c¢; —uy-plane. The error surfaces for the other parameter
combinations listed in table 1 are qualitatively the same as the one for point A shown
in figure 2 [20].

The ridge lines in the error surface in the ¢; — uy-plane correspond to situation
where the Brillouin frequency is n (n being an integer) times or 1/n times the Doppler
frequency. If the reference beam is not frequency shifted from the interrogation beam,
then these line are lines of constant Mach number and the lines pass through the
origin. In the present case (with a frequency shift), the Mach number changes along
the lines, but all lines pass the axis ¢; = 0 at a common point, where the Brillouin
frequency equals the frequency shift. In particular, the most prominent line represents
the case where the Brillouin and Doppler frequency are identical. A similar periodicity
is visible as well in the other cross-sections involving the speed of sound (top right
and center left on figure 2). The other views are less structured.

The thick white lines in figure 2 mark the boundary between regions within which
a Levenberg-Marquardt algorithm, using the respective values as initial guesses for the
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Figure 2. Six cross-sections of the error surface going through the point
(cs,uy, Dr,yy) = (350m/s,50m/s,2 - 10~3em?/s,1). The global minimum is
at the crossing of the white cross-hair. If initial guesses are taken from within the
region inside the thick white lines, the Levenberg-Marquardt algorithm converges
to the global minimum (compare with lower right plot in figure 8).

parameters, convergence to the global minimum. This feature is explained in more
detail in section 4.5 and section 4.6.
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Figure 3. Change of error surface in the presence of noise. Left: no noise; right:
SNR=3. SNR is based on standard deviation of Gaussian noise to peak signal
amplitude.

4.2. Error surface with noise

The left half of figure 3 shows the the (u, — ¢;)-plane of the error surface without noise
in the reference signal (same as top left of figure 2). The right plot is the error surface
if noise is added to the reference signal. The signal-to-noise ratio (SNR) based on the
standard deviation of the Gaussian noise and the peak signal amplitude is 3, which
can be considered to be very noisy. Typical SNRs in experiments are one order of
magnitude higher [19]. Due to the noise, the total error level is shifted toward higher
values for E. Despite the high noise levels, the topology of the error surface appears
to change only quantitatively. The noise adds more fine structure to the error surface.

4.3. Convergence neighborhood

In a second study, a total of eleven points in the parameter space are chosen as a
representative sample. Their respective parameter values are shown in the left half of
table 1. The four-dimensional error surface is then searched for local minima around
each of these points. To limit the computational cost, the search is performed at
a certain resolution for each of the parameters. This means that it is possible that
additional local minima exist, which are not detected. But if this were the case, then
these undetected minima have only a small neighborhood of convergence so that they
can be neglected for practical applications. The local minimum closest (as measured
by (3)) can be seen as a characteristic length scale for how critical the choice of the
initial guesses of the fitting parameters is.

The initial guesses for the Levenberg-Marquardt scheme have to be within a
neighborhood of the global minimum. A characteristic allowable deviation can be
defined using the distance between the global minimum and the closest local minimum:

2 w\ 2 2
—ct Uy — U D
Tchar = (CS " cs) + ( Y . _y) + (log ’f)
c} uy D%
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Table 1. Points out of 4-dimensional parameter space whose neighborhoods were
examined for local minima. The correct values for the parameters are shown in the
left half. The location of the closest (as measured by (3)) detected local minimum
of the error surface are shown on the right. The characteristic distance r¢pq, is
given in the very right column.

global minimum closest local minimum

Label C: u; D;v ’)’l*] Cs Uy Dt YU Tchar

m/s] [m/s] [m?/s] []  [m/s] [m/s] [m?/s] [] (%]
A 350 50  2e-5 1.00 490 50 2.83e-5 1.58 47
B 200 50 2e-5 1.00 189 60 1.74e-5 1.23 23
C 500 50  2e-5 1.00 360 50 2.52e-5 1.58 36
D 350 150  2e-5 1.00 349 149  2.14e-5 1.15 7
E 350 350  2e-5 1.00 392 331  2.14e-5 0.87 15
F 350 450  2e-5 1.00 250 340 6.32e-5 0.63 66
G 350 50 le-4 1.00 350 50 1.07e-4 1.07 4
H 350 50  4e-6 1.00 520 50 6.32e-6  1.58 56
J 350 50  2e-5 0.02 380 80 5.02e-5 0.06 88
K 350 50  2e-5 0.10 230 30 5.02e-5 0.10 66
L 350 50 2e-5 5.00 180 50 2.24e-5 6.31 50

9 q; (;5* 2-1/2
T —

where the stared quantities denote the values of the global minimum and the unstared
values the location of the closest local minimum. The distance for the thermal
diffusivity and for ¢ are taken in a logarithmic sense, which reflects their physical
behavior (spanning several orders of magnitude). The error of the initial guess for the
phase shift ¢ is irrelevant if the entire analysis is performed on the power spectra of the
signals, but important in the time domain (section 4.8 and section 4.9). This length
scale does not provide information as to how large the convergence neighborhood
around this local minimum is or as to how many local minima there are within a
certain distance, both of which has a significant influence on the convergence behavior.
If the local minimum has a small neighborhood of convergence and if there are only few
local minima at a distance comparable to r¢pqr, then the fitting scheme will usually
converge if the distance of the initial guesses from the global minimum is greater than
the repqr and only if they are within an isolated region within the four-dimensional
space around the closest local minimum will it converge to this local minimum.

The values for the speed of sound, flow velocity, thermal diffusivity, and
thermalization-to-electrostriction ratio for the closest local minimum are given in the
right half of table 1. The column on the very right shows their distance r.pq, from
the global minimum. Typical values for .., are around and above 50%, but are very
small for some combinations of parameters. For points E and G, a poor behavior was
expected. For point E, the Mach number is unity and hence the Brillouin frequency
and the Doppler frequency are almost identical (but not the same due to the frequency
shift). A large value for the thermal diffusivity was chosen for point G, which results in
a very quick decay of the signal, reducing the amount of usable information it contains.
The proximity of the local minimum for point D, however, is not easily explained and
indicates that there exist combinations of parameters for which the choice of the initial
values has to be very good. A closer examination around point A reveals that a total
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Table 2. Local minima with r < 1 around parameter combination A. The
searched region is ¢, = 100...600m/s, uy = 0...500 m/s, Dy = 2-107%...2.
10~% m?/s, and vy = 0.01---10. The region is searched with a resolution of 51
equally spaced steps for cs and uy, 41 logarithmically spaced steps for D7, and
31 logarithmically spaced steps for 7.

Cs Uy Dt Yu T
m/s m/s 1075 m?/s - %
490 50 2.83 1.58 47
210 50 3.17 1.58 49
490 50 5.02 1.00 57
480 40 5.02 1.00 58
210 50 3.99 2.00 58
500 60 3.99 2.00 64
210 60 5.64 1.26 64
190 70 2.83 1.58 66
480 40 6.32 1.26 66
230 30 5.02 0.79 67
200 50 7.10 1.58 73
210 60 7.10 1.58 74
200 70 3.99 251 77
470 30 7.96 1.26 80
200 50 8.93 2.00 83
570 60 4.48 251 85
130 20 2.24 1.26 88
180 80 5.02 0.63 89
450 20 8.93 1.00 93

of 12 local minima exist within a range of 7 < 75% (see table 2). A refined search in
a smaller region did not find additional local minima.

4.4. Error and uncertainty

Noise will also influence the accuracy and uncertainty of the data analysis by shifting
the global minimum away from its nominal position. To quantify this effect, the
parameter values in the first row of table 1 (point A) were used to calculate a LITA
signal, which was normalized to a positive peak value of unity. Before taking the
power spectrum, 100 different Gaussian random samples of noise were then added to
this signal. A least-squares fit using a subspace trust region algorithm based on the
interior reflective Newton method [21,22] is used as implemented in Matlab ((©The
MathWorks) to fit the theoretical model to the spectrum of the noisy signal. The initial
guesses (¢s +10 m/s, uy + 10 m/s, 1.5 % D, vy /1.5, corresponding to r = 60%) were
chosen close to the expected minimum because only the shift of the global minimum
was of interest. Cases in which the fitting did not converge were not considered in the
subsequent analysis.

The error (as measured by the average shift of the global minimum) and
uncertainty (as measured by the standard deviation of the shift) for the four
parameters are shown in figure 4a and b, respectively. The uncertainty decreases
with increasing signal-to-noise ratio with a power-law dependence. The absolute
uncertainties for the velocity and the speed of sound are equal. For subsonic flows,
the relative error for the velocity is therefore higher than for the sound speed
measurements. Noise can also lead to a shift of the mean of the location of the
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global minimum. But the error is approximately two orders of magnitude below the
uncertainty at equal signal-to-noise ratio for each of the parameters. For a signal-
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Figure 4. Absolute values of relative errors (a, left) and uncertainties (b, right)
in % as a function of the signal-to-noise ratio.
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Figure 5. Same as figure 4, but for point 08.

to-noise ratio of 50, which is typical for experiments [19], the uncertainty is 0.025%
for the speed of sound, 0.15% for the flow velocity, and slightly above 1% for the
thermal diffusivity and for . The absolute uncertainties for the speed of sound and
the flow velocities are identical 0.2 m/s. This value is probably only a function of the
sampling rate, i.e., the number of data points for each signal. These uncertainties
are only due to the data analysis and are in addition to any uncertainty within the
experiment. Figure 5 gives the same data for the parameter combination J. Only
the value for vy is different for this case, but the uncertainties for all four parameters
are approximately three to four times higher than for point A, they decrease with the
same slope, however. The uncertainty for vy itself is larger than 100% for SNRs up
to 100, which is only possible if the fitting algorithm converges to a value more than
twice as large as the correct value. This is plausible, since the correct value for this
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parameter of vy = 0.02 is such that thermalization has only a negligible effect on the
total signal, which reduces the accuracy and certainty of the technique. The same
effect has been observed experimentally for the case of negligible electrostriction [11].
Mathematically, the error surface is flatter than for the case before, so that comparable
noise levels can more easily shift and add minima.

4.5. Convergence behavior vs. r

Figure 6a shows how the probability of convergence to the global minimum depends on
the quality of the initial guesses and on the SNR. The Levenberg-Marquardt algorithm
was applied to signals with parameter combinations A and J with different noise levels
added and with random initial guesses for a total of 108,000 fits for each parameter
combination. The initial guesses, number of function calculations (section 4.7), and
fitted parameters were recorded. Convergence to global minimum was defined such
that the error is less than 0.5% for the speed of sound, less than 5% for the flow
velocity, and less than 25% for the thermal diffusivity and the ratio of thermalization to
electrostriction. These thresholds correspond to approximately twice the uncertainties
at a SNR of 5 (figure 4b). This is independent of the fitting routine’s convergence
criterion, i.e., where it stops, although convergence to some minimum within a given
number of iterations is an additional condition for successful convergence to the global
minimum. These thresholds will also result in some false negative results for very low
signal-to-noise ratios, but experimentally only SNRs greater than 20 are of interest
and increasing the thresholds to accommodate all SNR would result in false positives
for intermediate and high SNRs.

The convergence success rate does not depend on the SNR.. The lower success rates
for SNR< 5 are due to false negatives because of the set thresholds. For SNR > 20
and r < 0.2, all of the fits are successful. This ratio drops to 80% for r < 0.3. The first
value for r correspond to approximately 7cpqr/2. This threshold depends in general
on the fitting algorithm and its settings, such as the initial step size, etc., but in this
case is comparable in size with the value for r.p4;.

Figure Ta shows the same information as figure 6a but for the reference point
J (table 1). Since this point exhibits higher uncertainties at comparable SNRs, the
thresholds for the successful convergence condition are adjusted to 2% for the sound
speed, 20% for the flow velocity, and 100% for the thermal diffusivity. No threshold
is set for . The region of guaranteed convergence is slightly stretched to r = 0.3
and drops to 80% for » = 0.4. For this reference point, the closest local minimum is
at 7.-i = 88%, almost twice the critical radius of point J.

Table 3 shows the cross-correlation coefficients between the probability of
successful convergence to the global optimum (for all SNRs) and the individual
deviations of the initial guesses from the correct values, i.e.,

*

_ Cs — C: _ uy - U’y
,rcé' - * Tuy - *
c uk
Dt YU
rpy = |log D Tyy = |log — (4)
T U

A zero correlation coefficient would indicate no influence of the initial guess on the
probability of convergence success. Negative values mean, that the better the initial
guesses are the more likely a convergence to the global optimum is. The initial guess
for the speed of sound is more strongly correlated than the other parameters, showing
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Figure 6. (a) Fraction of signals that converge to the global minimum
with the Levenberg-Marquardt algorithm vs. “closeness” of initial guesses for
different signal-to-noise ratios. (b) Number of necessary function calculations for
convergence to global minimum. 7,34, = 0.47 for reference point A.
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Figure 7. Same as Fig. 6, but for reference point J with 7,44, = 0.88.

Table 3. Correlation coefficients between global convergence success and distance
of individual distances of parameters from global optimum as well as the total

distance 7.

cross-correlation coefficients w.r.t.
reference
point Tes Tuy TDr Tyy r
00 —0.7403 —0.4436 —0.3807 —0.3869 —0.5485
08 —0.8011 —0.5365 —0.4372 —0.4354 —0.6136

that the initial guess for this parameter is more critical than the others. The cross-
correlation coeflicients for u,, D7, and yy are approximately equal.
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Figure 8. Dependence of convergence behavior on the dimensionality of the
parameter space. (top left): Convergence neighborhood if the flow velocity (top
half) or the speed of sound (bottom half) is the only fitting parameter and all
other parameters are set to (and held at) the correct values. If the initial guess
falls within the green region, then the fitting algorithm converges to the global
optimum at u} = 50 m/s or at ¢} = 350 m/s, respectively; Plotted is also the
number of required function calculations using the theoretical model. (top right):
Convergence neighborhood if flow velocity and speed of sound are both fitted for.
Colors correspond to the number of required function calculations (for clarity,
only plotted inside of convergence neighborhood). (bottom left): Convergence
neighborhood and computational cost if speed of sound, flow velocity, and thermal
diffusivity are fitting parameters. (bottom right): All four parameters are fitted.

4.6. Convergence behavior vs. number of parameters

Figure 8a-d shows the convergence neighborhood in the ¢y — uy-plane for different
numbers of fitting parameters around point A and for SNR= co. In the top plot of
figure 8, only the speed of sound is assumed unknown while all other parameters are
held at the correct values. The green bar shows the region of initial guesses that lead
to convergence to the correct speed of sound, while initial guesses in the region marked
red converge to other (local) minima. A maximum number of 250 iterations and 1, 000
function calculations were allowed in the Levenberg-Marquardt scheme. Furthermore,
the same convergence criteria are used as in section 4.4. Also plotted is the number of
required function calculations. The bottom half shows the corresponding plot when
only the flow velocity is assumed as unknown. For both cases, the computational
cost is least when the initial guesses are close to the global minimum and increase
continuously with the distance of the initial guesses from there. Note the difference
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in computational cost (as measured by the number of function calculations) between
the two parameters. Figure 8b shows the case where the speed of sound and the flow
velocity are both assumed unknown. The colors correspond to the number of function
calculations. Regions in which the algorithm converged to local minima are left white
for clarity. In figure 8c a third parameter, the thermal diffusivity, is also allowed to float
in the fitting. The initial guess, however, is set to the correct value. In figure 8d then,
all four parameters are fitted, but the initial guesses for D1 and <y are the respective
correct values. The same color scale is chosen for figure 8b-d. Note the increase in
computational cost from figure 8a to figure 8¢ with increasing dimensionality (number
of unknowns) of the fitting, which has two reasons: Firstly, the local derivatives of
the error surface with respect to each fitted parameter are calculated numerically
at each iteration. Hence, the number of required function calculations only for the
derivative computation is proportional to the dimensionality of the problem. Secondly,
the total number of function calculations is the number of function calculations per
iteration times the number of iterations and, while not shown in figure 8, the number
of iterations also increases with increasing number of fitting parameters, resulting in
a faster-than-linear growth of the computational cost. In all cases it is observed that
the computational cost tends to increase with increasing distance of the initial guesses
from the global minimum, indicated by the white cross-hairs.

The colored regions in figure 8b-d and the regions marked green in figure 8a
are the convergence neighborhoods of the error surface in this particular plane and
using this particular algorithm. The convergence neighborhoods for the other cross-
sections corresponding to the case shown in figure 8d are plotted as thick white lines
in figure 2. The exact boundaries depend on the optimization algorithm employed
but are expected to be similar to those shown in figure 8. In figure 8c &d, isolated
regions exist that do converge to the global minimum surrounded by regions that do
not (only in this plane). Thus, the fitting must have taken a path circumventing any
white regions by using the extended dimensionality of the parameter space. This is
not possible for the case in figure 8b, where no such additional dimensions. There
is, however, a small isolated patch visible above the top edge of the boundary. The
white gap must have been crossed by a sufficiently large step size in the Levenberg-
Marquardt algorithm.

The additional dimensions can also host additional local minima and so the
convergence neighborhood does not necessarily increase in area with an increasing
number of degrees of freedom, e.g., the area of the “peninsula” on the right side of
the convergence neighborhood’s boundary in figure 8c, but which was not present
in figure 8b, has shrunk in size in figure 8d. The boundaries are oriented along
the ridge lines of the error surface visible in figure 2. Figure 8 demonstrates that
the characteristic length 7.4, can only be taken as such, because the convergence
neighborhoods are nowhere near circular (using r as metric).

While it seems from figure 8b-d that the region of convergence increases with
the number of fitting parameters and that the conditions for the initial guesses are
hence less stringent, this is not true. Note that the out-of-plane initial guesses are
the correct values in figure 8c and d. In practice, this is not the case. From the
results in section 4.5 it can be seen that the initial guesses for each parameter can
only approximately 15%, if one assumes that all initial guesses have the same error.
But if, like in the case of figure 8d, two initial guesses are exact, the two remaining
initial guesses can have an error of 21% each. And if three of the four initial guesses
are correct, then the fourth one can have an error of 30%. Latter value agrees well
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with the results in figure 8 for the initial guess for the speed of sound. The vertical
extent of the convergence region at u, = 50 m/s is approximately 200 m/s, i.e., +28%.
The span in the horizontal direction at ¢, = 350 m/s does not agree with this value,
but is close to £100% for the initial guess of the flow velocity. In fact, as can be seen
from the convergence boundaries in figure 2, if two of the initial guesses are exact (the
speed of sound not being one of them), then the speed of sound limits the convergence
neighborhood the most. In comparison, the initial guesses for the thermal diffusivity
and for vy can be off by an order of magnitude. This agrees with the finding of
the increased correlation between the error of the sound speed initial guess and the
convergence rate compared with the other parameters (table 3).

4.7. Computational cost

Using the same procedure and data as in section 4.4, figure 6b depicts the number of
required function calculations (of the theoretical LITA model) for the cases where the
fitting converged to the global minimum for point A as a function of the initial guesses
and the SNR. The absolute numbers depend on the details of the fitting scheme, but
the dependence will behave similarly. The number of function calculations increases
initially with increasing r, which is the intuitively expected dependence. The number
drops, however, again for r > 0.35, which could indicate a different weighing of the
Newton to the inverse Hessian scheme within the Levenberg-Marquardt algorithm for
these cases. This behavior and the absolute numbers are independent of the SNR,
with the exception of the lowest SNR.

Figure 7b shows the computational cost for point J as reference. For this
combination of parameters, almost twice as many function calculations are required,
but the the behavior is qualitatively identical to figure 6b. The slower convergence is
another indication for smaller gradients, i.e., a flatter error surface. This matches the
observation of higher uncertainties than for point A at comparable noise levels (see
figure 4b and figure 5b).

4.8. Time vs. frequency domain analysis

Figure 9 shows results comparable to those in figure 8d. Here, however, the data
analysis was performed using the signals in time domain rather than working with
their spectra. As mentioned in section 3, a random phase shift, ¢ influences the
signal shapes (figure 1d and f) and has to be taken as an additional parameter. The
randomness of ¢ = 0...27 makes it impossible to give good initial guesses in the
fitting. Figure 9a shows the theoretical case where ¢ is assumed known and held
constant in the fitting. The fitting is thus performed on a four-dimensional parameter
space, which corresponds to the case shown in figure 8d. The color scaling is chosen
identical to the one in figure 8b-d. Compared to these earlier results, the convergence
neighborhood is smaller, but the number of function calculations is significantly lower.
This case of known ¢ is a pure theoretical case and cannot be achieved experimentally.
Slightly more realistically are the results shown in figure 9b. ¢ is added to the list
of fitting parameters, but the initial guess is assumed to be the correct value. The
convergence neighborhood for this case is larger than in figure 9a, but still smaller than
in figure 8d. The number of required function calculations has increased dramatically
within most of the convergence neighborhood compared with both, figure 8 and
figure 9a. The parameter space in now 5-dimensional.
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Figure 9. Convergence neighborhood if data analysis is performed in time instead
of frequency domain; compare with figure 8d. (a): The random phase shift @
between Doppler and Brillouin oscillations is assumed known and held constant;
(b): The random phase shift is a fifth fitting parameter, but with correct value as
initial guess; (c): initial guess for ¢ is off by n/2; (d): initial guess for ¢ is off by
.

The results shown in figure 9c and d show the effect of an initial guess for ¢
that is off by n/2 (figure 9¢) and = (figure 9d), respectively. For these cases, even
initial guesses for the speed of sound and the flow velocity that are very close to the
correct solution might not lead to convergence to the global minimum. Since ¢ is
purely random from a range 0...2mw, the initial guess is off by n/2 in average and
figure 9c¢ can be seen as representative for an experimental application. Figure 9d is
a worst-case scenario with respect to the initial guess for the phase shift. Comparing
the number of function calculations in figure 8 and 9b-d, the benefit of the frequency
domain for the data analysis is evident. The additional computational cost for the
fast Fourier transform at each function calculation is negligible compared to function
calculation itself.

4.9. Two-step methods

Hart et al. [23] employ Prony’s method to extract initial guesses for the speed of
sound, the flow velocity and the phase shift from the signal in the time domain. These
are subsequently used as initial guesses for a more accurate Levenberg-Marquardt
algorithm. Figure 10 shows the convergence behavior of the Levenberg-Marquardt
algorithm in the time and frequency domain for varying maximum errors of the initial
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Figure 10. Convergence behavior (a, left) and computational cost (b, right) if
better initial guesses are obtained for cs, uy, and qB by data preprocessing. For
comparison, the bold solid line represents the result from figure 6 without noise.
It is assumed that the maximum error of the intial guesses for each of the three
parameters is 20, 10, and 5%. The other two parameters can deviate further.
Results are shown for employing the fitting routine to signals in the time domain
and to the power spectra of the signals (data denoted by “FFT”).

guesses for the speed of sound, the flow velocity, and the phase shift (for time domain
only). The isgnals are considered noiseless (infinite signal-to-noise ratio). The same
global convergence criterion is chosen as in figure 6.

The improved initial guesses do not improve the convergence behavior sufficiently
if the fitting is performed in the time domain. Even if the initial guesses are within 5%
of the correct value, only half of the fits converge to the global minimum. When fitting
the power spectra, the same data preprocessing ensures convergence if the maximum
estimation error is 10%. Still 90% of the fits are successfull for a maximum estimation
error of 20%. The success rate does not depend on the choice for the remaining initial
guesses, which shows that the initial guesses for the speed of sound and the flow
velocity are more critical than initial values for the thermal diffusivity and vy .

Compared with figure 6, the computational cost is higher for larger values of r.
This is due to the fact that r is now largely determined by the thermal diffusivity and
~vu- As can be seen from figure 2, the error surface is flatter in the direction of these
parameters. Hence, if the fit does converge for a given r, it converges faster if the
error terms for Dr and vy are small than if the total error is due to errors in those
two parameters.

5. Summary and Conclusions

When laser-induced thermal acoustics is to be applied for the simultaneous
measurements of the speed of sound, flow velocity, thermal diffusivity, and a species
concentration simultaneously, special consideration has to be given to the data
analysis. It has been shown that the data analysis is more stable and more efficient
in the frequency than in the time domain. This is due to a random phase shift
between the Brillouin and the Doppler frequency components in the signal. For the
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same reason, averaging over multiple laser shots, if desired, has to be performed by
averaging the spectra and not the signals themselves.

The topology of the error surface, the convergence neighborhood, and the
computational cost of the data analysis do not depend significantly on the noise levels
in the signals. Signal noise does, however, increase the uncertainty contributed to the
data analysis. The exact amount depends on the local steepness of the error surface.

Convergence of the Levenberg-Marquardt algorithm is also a function of the
closeness of the initial guesses to the global minimum. The distance of the closest
local minimum (as measured by (3)) has been defined as characteristic length scale.
The convergence success rate correlates with this length scale. To ensure convergence
to the global minimum, the initial guesses have to be within a certain fraction (one
third to one half) of this characteristic length scale around the global minimum. Of
the four parameters, the initial guess for the speed of sound is most critical. The
maximum deviation of the initial guesses as measured by (3) is in the order of 30% for
all four parameters combined, i.e., each initial guess has to be within approximately
15% of the correct value. This requires an accordingly precise prior knowledge of the
result or a visual inspection of the result of the fitting. The shape of the convergence
neighborhoods, however, is not symmetrical around the global minimum. If the fitting
technique converges to a local minimum instead of the global minimum, the signals
for the respective parameters will look quite distinct and hence a visual inspection of
the fitting result reveals it.

Proper convergence can be ensured by obtaining improved initial guesses for some
parameters by means of data preprocessing, e.g. by using Prony’s method to extract
initial guesses for the speed of sound and the flow velocity. Even if an initial guess for
the random phage shift is available, performing the fitting an the signals’ spectra, on
which the random phase shift has no influence, yields more reliable convergence. In
particular, if the speed of sound and the tehrmal diffusivity are known to within 10%,
then the Levenberg-Marquardt scheme converges regardless of the initial guesses for
the thermal diffusivity and the thermalization-to-electrostriction ratio.

Only a small number of points were examined in the previous section. An
examination of the entire parameter space is not possible. But it is expected that
the qualitative behavior and the topology of the error surface do not change except
for special cases, e.g., when the Brillouin and Doppler frequencies are identical. The
results will also depend slightly on the fitting algorithm, its implementation, and the
parameter settings of the algorithm.
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