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Abstract
We show, given a binary integer function � that is piecewise polynomial, that (+, �) vector products are
equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples
include the dominance and `2p+1 distances for constant p. Our results imply equivalence (up to
polylog factors) between the complexity of computing All Pairs Hamming Distance, All Pairs `2p+1

Distance and Dominance Matrix Product, and equivalence between Hamming Distance Pattern
Matching, `2p+1 Pattern Matching and Less-Than Pattern Matching. The resulting algorithms for
`2p+1 Pattern Matching and All Pairs `2p+1, for 2p+ 1 = 3, 5, 7, . . . are likely to be optimal, given
lack of progress in improving upper bounds for Hamming distance in the past 30 years. While
reductions between selected pairs of products were presented in the past, our work is the first to
generalize them to a general class of functions, showing that a wide class of ”intermediate” complexity
problems are in fact equivalent.
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1 Introduction

In the last few decades, many classical algorithmic problems received new attention when
formulated as algebraic problems. In pattern matching, instead of looking for occurrences of
a pattern as a substring of a text, we can define a similarity score between two strings and ask
for this score between the pattern P of lengthm and every m-substring of the text T of length
n ≥ m. For example, scores of Hamming distance or L1 distance between numerical strings
generalize the classical pattern matching: the total score for a given alignment is zero iff the
pattern occurs exactly there in the text. One can go in this framework even further, and
consider a function that is not a metric, e.g. LessThanPatternMatching which outputs
the number of coordinates for which the pattern element is no larger than the corresponding
text element. However, all those problems share a common additive structure, where for an
input pattern P and text T, the score vector O is such that O[i] =

∑
j P[j] �T[i+ j] for

some binary function �.
Just as those pattern matching generalizations are based on convolution, there is a

family of problems based on matrix multiplication, varying in flavour according to the vector
product used. There, we are given two matrices A and B representing n vectors of dimension

1 Most of the work was done while the authors were affiliated with ETH Zürich.
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14:2 Hamming Distance Completeness

Table 1 Summary of different score functions and the corresponding problems. 1[ϕ] is 1 iff ϕ
and 0 otherwise.

Name Score function Pattern Matching problem Matrix Product problem

Hamming 1[x 6= y] O[i] = |{j : P[j] 6= T[i+ j]}| O[i][j] = |{k : Ai[k] 6= Bj [k]}|
Dominance 1[x ≤ y] O[i] = |{j : P[j] ≤ T[i+ j]}| O[i][j] = |{k : Ai[k] ≤ Bj [k]}|
Threshold 1[|x− y| ≥ δ] O[i] = |{j : |P[j]−T[i+ j]| > δ}| O[i][j] = |{k : |Ai[k]−Bj [k]| > δ}|
`1 distance |x− y| O[i] =

∑
j
|P[j]−T[i+ j]| O[i][j] =

∑n

k=1 |Ai[k]−Bj [k]|
`2 distance (x− y)2 O[i] =

∑
j
(P[j]−T[i+ j])2 O[i][j] =

∑n

k=1(Ai[k]−Bj [k])2

d, and the output is the matrix O[i][j] =
∑
k A[i][k] � B[k][j]. This is equivalent to the

computation of all pairwise (+, �)-vector products for two vector families, the so called
MatrixProduct problems.

In both of those worlds, the complexity is spanned between easy and hard cases. An
easy case is observed for e.g. (+,×) products, which have an upper bound of O(n logn)
for convolution (the classical Discrete Fast Fourier Transform algorithm) or O(nω) (where
ω < 2.373 c.f. Le Gall [20]) for matrix multiplication. A hard case is considered to be
respectively either near quadratic time or near cubic time problems. In the world of (+, �)
vector products, we have not observed problems of the hard type, and instead they are either
easy, or admit some intermediate complexity.† For many pattern matching generalizations
there are independently achieved algorithms of identical complexity O(n

√
m logm). Similarly,

for many MatrixProduct problems, the best algorithms are of complexity O(n(ω+3)/2) or
similar. Why are so many different problems of essentially the same complexity?

Our contribution

We show that there is a shared source of hardness to those problems. That is, we show that
for a wide class of (+, �) products, the corresponding problems are of (almost) equivalent
hardness. This class includes not only products like Hamming distance or Dominance, but in
fact any piecewise polynomial function of two variables (for appropriate definition of piecewise
polynomiality, c.f. Definition 3) excluding certain degenerate forms (e.g. polynomials). Thus,
we show that we should not expect the problems based on (+, �) products to be significantly
harder to compute than e.g. ones based on Hamming distance (given reasonable restrictions
on �). The reduction applies both to the Pattern Matching setting and to the Matrix Product
setting alike. We refer to Table 1 for a summary of considered problems, to Table 2 for
a summary of existing upper bounds, and to Figure 1 for a summary of the old and new
reductions.

Yuster [32] improved the exponent of DominanceMatrixProduct (when d = n) from
(3 + ω)/2 ≤ 2.6865 to ρ ≤ 2.6834, where ρ satisfies ρ = ω(1, 4 − ρ, 1), and ω(a, b, c) is
the exponent of fast multiplication of rectangular matrices na × nb with nb × nc. By our
reduction, this improvement applies to all other MatrixProduct- problems considered here.
Similarly, the tradeoff achieved for one problem (e.g. HammingDistanceMatrixProduct)
between vectors of dimension d and the exponent (c.f. [25] and [14]) applies by our results to
all the other MatrixProduct problems considered here. Looking at the sparsity of the
input, the tradeoff between the number of relevant entries in the input and the runtime
(c.f. Vassilevska [26], Vassilevska et. al. [28] and Duan and Pettie [10]) applies to all of the
mentioned problems. (See Section 2 for precise upper bounds.)

† To observe good candidates for hard problems, we have to go beyond (+, �) products, and consider
either (min,+) convolution (c.f. [9, 19]) or (min,+) matrix product (c.f. [30]).
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Table 2 Overview of the known results and of how we abbreviate the corresponding problem
names.

Name Pattern Matching problem Matrix Product problem

Hamming HamPM O(n
√
m logm) [1] HamProd O(n(ω+3)/2) [25]

Dominance LessThanPM O(n
√
m logm) [2] DomProd O(nρ) [32]

Threshold ThrPM O(n
√
m logm) [5] ThrProd O(n(ω+3)/2) [17]

`1 distance L1PM O(n
√
m logm) [8, 3] L1Prod O(n(ω+3)/2) [17]

`2 distance L2PM O(n logm) [23] L2Prod O(nω) [17]

We thus observe that there is a shared barrier in a broad class of problems and one is
unlikely to improve upon existing upper bounds without some significant breakthrough. For
both pattern matching problems and geometric problems we consider here, existing runtimes
come from a tradeoff between the number of buckets and the size of these buckets. Without
a novel technique, this runtime is unlikely to be improved. Similarly, any lower bound proof
for one of the listed problems would immediately apply to every other problem.

Further applications

We provide the following further applications of our reductions.
Since our reductions preserve structural properties of inputs like size of Run Length
Encoding, in [13] they were used to establish equivalence between running time of
HammingDistancePatternMatching and L1PatternMatching on instances with
bounded Run Length Encoding.
In Censor-Hillel et al. [6] authors analyze the complexity of sparse matrix multiplication
under the restricted bandwidth all-to-all communication model (the so called Congested
Clique model). We note that their analysis immediately implies bounds to computation
of Hamming Distance Matrix Product (and thus other matrix products as well) by
presented, in the full version of this paper [15], bi-directional reductions to and from
sparse matrix multiplication.
Consider the problem of Image Template Matching, where one is given as an input a
two-dimensional text T and a pattern P of dimensions n × n and m ×m respectively.
The goal is to compute the dissimilarity score between P and all m×m-subsquares of
T . Atallah in [4] gives an Õ(n2m) running time algorithm for the L1 version of this
problem (so called Sum of the Absolute Value difference measure). We note, that by our
reductions, an equivalence between the L1, Hamming, Dominance and Threshold versions
of this problem is established.

2 Related work

We now list different pattern matching problems that differ in their underlying score functions.
The HammingDistancePatternMatching‡ was studied by Abrahamson [1], LessThan-
PatternMatching was introduced by Amir and Farach [2], L1PatternMatching was
studied first by Lipsky [21] and later in conference publications by Clifford, Clifford and
Iliopoulous [8] and Amir, Lipsky, Porat and Umanski [3] (although the 2-dimensional version

‡ Also known as Pattern Matching with Mismatches.

CPM 2019
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Piecewise Polynomials
Non-axis orthogonal

Dominance (Less than)

`1 Distance

δ Threshold
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(+,min)
[22]
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Figure 1 Existing (dashed line) and new (solid line) reductions between problems, together with
problem classes.

of this problem was studied earlier by Atallah [4]) and ThresholdPatternMatching was
studied by Atallah and Duket [5]. For all those problems, the currently best known al-
gorithms run in time O(n

√
m logm) using similar techniques: high/low frequency, bucketing

and convolution.

For L2PatternMatching, since O[i] =
∑
j P[j]2 +

∑
j T[i+ j]2− 2

∑
j P[j]T[i+ j], the

dominating term in the computation arises from computing a single convolution in time
O(n logm) via Fast Fourier Transform (FFT) as observed by Lipsky and Porat [23]. This
approach extends to L2pPM, with running time O(p2n logm).

On the side of reductions, only little was known. Lipsky and Porat [22] showed that both
HamPM and LessThanPM reduce to L1PM showing that the latter problem is no easier
than the former problems. The question of whether e.g. HamPM could be substantially
easier than L1PM remained open. The first non-trivial reduction (although not stated as a
lower-bound type result) was provided by Zhang and Atallah [33], where they showed that
ThrPM with threshold δ reduces to O(log δ) instances of HamPM (see Figure 1).

In computational geometry, a classical problem is to process a set of n points given in
d-dimensional space. One can consider e.g. the metric space and ask for a pair of closest
or farthest points. Some of those problems in low-dimensions (i.e. d = poly logn) exhibit a
structure that allows for solutions almost linear in n for some metrics (see Williams [29]).
However, in high-dimensional data, the situation is usually dire, as the so called curse of
dimensionality kicks in (c.f. [18] and [16]) and for processing such spaces usually the fastest
known approach is to compute all pairwise distances [17].

Those problems come in two flavours, AllPairs- where the input is a single matrix A
and the goal is to compute all corresponding pairwise vector products between the rows of
A, and MatrixProduct, where the input are two matrices A and B, and the goal is to
compute products between rows of A and columns of B. Those two formulations are in fact
equivalent by the folklore reduction.

DominanceMatrixProduct was introduced by Matoušek [24], where he provided a
solution working in time O(n(ω+3)/2) ⊆ O(n2.687). Vassilevska [26] and Vassilevska et al. [28]
considered the dominance product on sparse inputs where we denote by m1 and m2 the
number of entries in A and B, respectively that contribute to the score. They obtain a bound
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of O(min(nω +√m1m2 ·n
ω−1

2 , n2 + (m1m2)
ω−2

ω−α−1n
2−αω
ω−α−1 )).§ Duan and Pettie [10] simplified

this analysis. For d� n, Vassilevska and Williams [27] and [26] gave an algorithm with a
time bound of O(n

2ω−ωα−2
ω−α−1 d

2ω−4
ω−α−1 + n2+o(1)). Yuster [32] improved the bound of the case

d = n to O(nρ), where ρ is a solution to ρ = ω(1, 4−ρ, 1). The bound ρ ≤ 2.6834 is provided.
Recently, Gold and Sharir [14] presented an updated analysis of the time vs. dimension
tradeoff using newer bounds on rectangular matrix multiplication. For d = n, this gives a
running time of O(n2.6598).

AllPairsL1Distance was considered by Indyk et al. [17], with an O(n(ω+3)/2) algorithm
for the case when d = n. Although not stated as such, one algorithm presented in [17] can be
adapted to computing ThresholdMatrixProducts in time O(n(3+ω)/2). [26] introduced
(+, max)-MatrixProduct where the score matrix is O[i][j] =

∑n
k=1 max(Ai[k],Bj [k]) and

presented a bucketing solution with running time O(n(ω+3)/2). The algorithm follows in spirit
the L1Prod algorithm from [17] with a tweaked score contribution. ClosestHammingPair
was considered by Min et al. [25], where as an intermediate step the AllPairsHamming-
Distance is computed (without actually naming the problem). Inspired by the reduction
from Hamming distance to L1 in [22], they utilized the L1Prod algorithm from [17]. This
resulted in a O(n(ω+3)/2) time algorithm when d = n. They also utilized rectangular matrix
multiplication bounds to provide a tradeoff in the complexity when d � n. Writing their
upper bound in a general form, the complexity is O(n1+ω(1,s,1)/2

√
d) where d = ns. Given

the improved bounds for rectangular matrix multiplication by Le Gall [11] and subsequently
by Le Gall and Urrutia [12], the bounds from [25] are stronger. AllPairsL2Distance as
observed by Indyk et al. [17] reduces to a single matrix multiplication and thus admits a
running time of O(nω). Similarly, L2pProd admits a running time of O(p2nω).

We observe that L2 is an ”easy” score function. For every other score function mentioned,
all solutions presented use a bucketing or a high/low frequency technique to decompose
the problem into ones solvable by convolution (for Pattern Matching problems) or matrix
multiplication (for All Pairs problems). We refer to Tables 1 and 2 for a summary. There are
several related problems that use the aforementioned problems as subroutines. Weighted
Pattern Matching in the most general setting asks for O[i] =

∑
j w(P [j], T [i+ j]) for some

weight function w. In [23] Lipsky and Porat presented a simple O(|Σ|n logm) algorithm.
Pattern Matching with Wildcards admits a simple determinsitic O(n logm) solution
via weighted L2PM, as shown by Clifford and Clifford [7]. Closest L∞ Pair was considered
by Indyk et al. [17] where the presented algorithm uses binary search on top of ThrProd
(implicitly, the intermediate problem they solve is not named). The total running time is
O(n(ω+3)/2 logD), where D is the diameter of the input point set.

3 Preliminaries

The problems discussed previously have at their core the computation of a (+, �) vector
product, that is

∑
i xi � yi for some binary function �. Formally, for vectors A,B and

matrices A,B, we denote the (+, �) vector product as vprod(�,A,B) def=
∑
i A[i] � B[i],

the (+, �) convolution as conv(�,A,B) = C such that C[k] =
∑
i+j=k A[i] �B[j] and the

(+, �) matrix product as mprod(�,A,B) = C such that C[i, j] =
∑
kA[i, k] � B[k, j].

We define 1[ϕ] to be 1 iff ϕ and 0 otherwise. Since Ham(x, y) def= 1[x 6= y], then
vprod(Ham,X,Y) is the Hamming Distance between X and Y, HamPM is essentially
conv(Ham,X,YR), and HamProd between vectors {X1, . . . , Xn} and {Y1, . . . , Yn} is
mprod

(
Ham,

[
X1 · · · Xn

]T
,
[
Y1 · · · Yn

] )
.

§ α = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2 + o(1)} ≥ 0.31389.

CPM 2019



14:6 Hamming Distance Completeness

We now shift our attention to the relations between the binary functions.

I Definition 1. We say that � reduces preserving linearity to instances of �1, . . . ,�K (for
some positive integer K), if there are functions f1, . . . , fK and g1, . . . , gK and coefficients
α1, . . . , αK , such that for any x, y:¶

x � y =
∑
i

αi ·
(
fi(x) �i gi(y)

)
.

A one-to-many reduction from � to � is also a one-to-many reduction from (+, �) vector
product/convolution/matrix multiplication to (+,�) vector product/convolution/matrix
multiplication. Indeed, given Definition 1, we have for any vectors A,B and matrices A,B:
vprod(�,A,B) =

∑
i αi ·vprod(�i, fi(A), gi(B)), conv(�,A,B) =

∑
i αi ·conv(�i, fi(A),

gi(B)) and mprod(�,A,B) =
∑
i αi ·mprod(�i, fi(A), gi(B)), where f(A) and f(A) denotes

a coordinate-wise application of f to vector A and matrix A, respectively.

4 Main results

I Remark 2. We assume that all input values and coefficients are integers bounded in absolute
value by M . All reductions presented use standard arithmetic operations and require thus
poly logM computation time.

I Definition 3. For integers A,B,C and polynomial P (x, y) we say that the function
P (x, y) ·1[Ax+By + C > 0] is halfplane polynomial. We call a sum of halfplane polynomial
functions a piecewise polynomial. We say that a function is axis-orthogonal piecewise
polynomial, if it is piecewise polynomial and for every i, Ai = 0 or Bi = 0.

Observe that Ham(x, y) = 1[x > y] + 1[x < y], max(x, y) = x · 1[x ≥ y] + y · 1[x < y],
|x− y|2p+1 = (x− y)2p+1 ·1[x > y] + (y−x)2p+1 ·1[x < y], and Thrδ(x, y) def= 1[|x− y| ≥ δ] =
1[x ≤ y − δ] + 1[x ≥ y + δ].

I Theorem 4. Let � be a piecewise polynomial of constant degree and poly logn number of
summands.

If � is axis orthogonal, then � is “easy”: (+, �) convolution takes Õ(n) time, (+, �) matrix
multiplication takes Õ(nω) time.
Otherwise, � is Hamming distance complete: under one-to-polylog reductions, on inputs
bounded in absolute value by poly(n), (+, �) product is equivalent to Hamming distance,
(+, �) convolution is equivalent to HamPM and (+, �) matrix multiplication is equivalent
to HamProd.

Theorem 4 “hard” case follows from two technical results presented in Section 6, Theorem 10
and Theorem 11. The “easy” case is resolved by Lemma 13.

I Corollary 5. The following problems are equivalent under one-to-polylog reductions:
HamPM, LessThanPM, L2p+1PM for a constant integer p ≥ 0, ThrPM and (+,max)-
Convolution.

I Corollary 6. The following problems are equivalent under one-to-polylog reductions:
HamProd, DomProd, L2p+1Prod for a constant integer p ≥ 0, ThrProd and (+,max)-
MatrixProduct.

¶ For the sake of simplicity, we are omitting in the definition the post-processing function necessary
e.g. ( · )1/p for Lp norms.
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5 Warm-up

We start by showing a reduction from `1 distance to O(log2M) instances of Hamming
distance, with an intermediate step of O(logM) instances of dominance. Note that the
reduction from dominance to O(logM) Hamming distances follows from adapting reductions
from [31] to our setting, and reduction from `1 to O(logM) dominance relations follows as a
natural adaptation of the same technique. However, since they serve as a nice overview of
techniques used in our main result, and already have a nontrivial consequence (e.g. collapsing
hardness of L1PM and HamPM), we present them separately.

Scaling

Observe that for many “natural” functions � and integers x, y, x � y is approximated by
bx/2c � by/2c (up to some fixed multiplicative factor). This allows us to unwind x � y into a
weighted sum of O(log(max(|x|, |y|)) corrective terms. For example, if for some constant C,
integers x, y ≥ 0 and some corrective function ξ: x � y = C · (bx/2c � by/2c) + ξ(x, y) then
naturally x � y = 0 � 0 +

∑
i≥0 C

i · ξ(bx/2ic, by/2ic).

Sparsity

We consider a generalized version of the input with special “ignore” marks ? as possible
elements. Those elements of the input never contribute to the final score of the (+, �) product.
Formally, we operate on Z + {?}, with special arithmetic rules (unless stated otherwise):

for any single argument function: f(?) = ?,
for any double argument function: g(?, ?) = g(?, y) = g(x, ?) = 0.‖

The goal of this formalism is twofold. The first one is to handle sparse inputs formally
(i.e. vectors with O(n1−ε) relevant entries). The second one is that such “ignore” marks
coupled with filtering (defined below) allow us to split the input based on properties of its
values. We note that these “ignore” marks do not increase the computational complexity of
Hamming distance (see Lemma 9 in the Appendix).

Filtering

We define the following functions:

even(x) def=
{
x if x is even
? otherwise

odd(x) def=
{
x if x is odd
? otherwise

Those functions, when applied to a vector or a matrix, allows us to filter values according
to parity, e.g. for A = [1, 2, 3, 4] one gets even(A) = [?, 2, ?, 4].

We now give two reductions that illustrate the usefulness of these techniques. Both
reductions are illustrated in Appendix C (Figures 2 and 3). In the following theorems, recall
that M is the largest possible integer input.

I Theorem 7. The L1 distance reduces to O(logM) instances of dominance.

‖ We have to keep in mind that whether a function is a single or double argument is context dependent:
e.g. writing: 1[x 6= y] = 1− 1[x = y], we have to treat 1 as a function of x and y as well.

CPM 2019



14:8 Hamming Distance Completeness

Proof. Since L1 distance is shift-invariant, i.e. |(x + ∆) − (y + ∆)| = |x − y| for any ∆,
we can assume that 0 ≤ x, y < M for some M = poly(n). Observe that for x, y ≥ 0,
|x− y| = 2 ·

∣∣∣bx/2c − by/2c∣∣∣+ η(x, y), where, denoting Dom(x, y) def= 1[x ≤ y],

η(x, y) = 1[(x is odd) ∧ (y is even) ∧ (x ≥ y)]− 1[(x is even) ∧ (y is odd) ∧ (x ≥ y)]
+ 1[(y is odd) ∧ (x is even) ∧ (y ≥ x)]− 1[(y is even) ∧ (x is odd) ∧ (y ≥ x)]
= Dom(odd(−x), even(−y))− Dom(even(−x), odd(−y))
+ Dom(even(x), odd(y))− Dom(odd(x), even(y)).

By unwinding, we get |x−y| =
∑logM
i=0 2i·η(bx/2ic, by/2ic) which completes the reduction. J

I Theorem 8. Dominance reduces to O(logM) instances of Hamming distance and multi-
plication.

Proof. Since dominance is shift-invariant, w.l.o.g. we assume that 0 ≤ x, y < M for some
M = poly(n). Observe the following recurrence relation, for x, y ≥ 0:

Dom(x, y) = Dom(bx/2c, by/2c)− 1[(x is odd) ∧ (x = y + 1)]
= Dom(bx/2c, by/2c)− 1[x is odd] + 1[x is odd] · Ham(x, y + 1)

By unwinding, we get:

Dom(x, y) = 1−
logM∑
i=0

1
[
bx/2ic is odd

]
+

logM∑
i=0

1
[
bx/2ic is odd

]
·Ham(bx/2ic, by/2ic+ 1).

Using filtering notation, this becomes

Dom(x, y) = 1−
logM∑
i=0

1
[
bx/2ic is odd

]
︸ ︷︷ ︸

(∗)

+
logM∑
i=0

Ham(odd(bx/2ic), by/2ic+ 1)︸ ︷︷ ︸
(∗∗)

Now observe, that (∗) is purely a function of x. If x is guaranteed to be an integer, then
evaluating it as part of an operator (i.e. inside convolution or matrix-multiplication) is trivial.
As y is never mapped to ? in (∗∗), treating (∗) as a single argument function suffices.

The second term (∗∗) uses our filtering function and the convention that Ham evaluates
to 0 if at least one of its inputs is ?. Thus (∗∗) is a sum of O(logn) Hamming distances
on inputs from Z ∪ {?}. By Lemma 9, each of those reduces to two instances of Hamming
distance on inputs from Z. J

I Lemma 9. Hamming distance in N + {?} reduces preserving linearity to two instances of
Hamming distance in N.

I Remark. In general, we have to take into account that both x, y ∈ Z ∪ {?}. Thus, we have
to treat term (∗) as a function of both x and y, that is evaluating to 0 if x = ? or y = ?. In
general, (∗) reduces to evaluating, after the reduction step, some polynomial Q(x′, y′) = f(x′)
(where y′ might be ?) with f(x′) = 1 −

∑logM
i=0 1

[
bx′/2ic is odd

]
. By Lemma 13, f(x′)

can be resolved in the time of a regular convolution or matrix multiplication and thus the
computation time for (∗) is dominated by (∗∗), that is HamPM and HamProd, respectively.
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6 Hamming distance completeness

The goal of this section is proving Theorem 4. We achieve this by showing two separate
reductions, one from all piecewise polynomial functions to Hamming distance and one from
Hamming distance to all non axis-orthogonal piecewise polynomials.

I Theorem 10. If � is a piecewise polynomial of degree d with c summands then it reduces
to O(c · d2 · logd+1M) instances of Hamming distance. The reduction works even if we allow
“ignore” symbols.

I Theorem 11. If � is a piecewise polynomial of degree d but is not axis-orthogonal piecewise
polynomial, then Hamming distance reduces to O(d2) instances of � and multiplication.

We devote the rest of this section to the proofs of both Theorem 10 and Theorem 11.
To prove Theorem 10, we consider every summand separately. We show that summands

with “simple” conditions (that depend on only one argument) are no harder than simple
multiplication. Every other summand with conditional term 1[Aix+Biy + Ci > 0] reduces
under linear transformations of its arguments to 1[x < y]. It is thus enough to consider
terms of the form xayb1[x < y]. We decompose such terms recursively into a sum of: terms
with smaller values (x/2, y/2 instead of x, y), terms of smaller degree, and terms with a
conditional term of a simpler form of 1[x = y]. Exhaustively applying this decomposition
leaves us with a polylog number of terms of the form w(x) · 1[x = y], with which we deal
separately (those decompose into a logarithmic number of regular Hamming distances).

I Lemma 12. For an integer weight function w, the character weighted matches, that is
w(x) · 1[x = y], reduce to O(logM) instances of Hamming distance and multiplication.

I Lemma 13. An axis-orthogonal piecewise polynomial � of c summands of degree d reduces
to O(d2c) multiplications.

I Lemma 14. Given integers a, b ≥ 0, the binary function xayb · 1[x < y] reduces to
O(loga+b+1M) instances of Hamming distance and multiplication.

Proof. Denote MDoma,b(x, y) = xayb · 1[x < y], MEqa(x, y) = xa · 1[x = y]. First, we argue
that w.l.o.g. x, y ≥ 0. Indeed, observe that MDoma,b(x+∆, y+∆) = (x+∆)a(y+∆)b·1[x < y],
thus for large enough ∆, the computation of MDoma,b on inputs of arbitrary sign reduces
to at most (a+ 1)(b+ 1) instances of MDom on non-negative inputs. Thus we assume that
0 ≤ x, y ≤M for some M = poly(n).

We proceed with the following decomposition, where u = bx2 c and v = by2 c.

MDoma,b(x, y) = (2u)a(2v)b · 1[u < v] (*)

+ (2u)a(2v)b ·
(

1[x < y]− 1[u < v]
)

(**)

+
(
xayb − (2u)a(2v)b

)
· 1[x < y] (***)

Intuitively, we are representing the term MDoma,b(x, y) with simpler terms: (*) represents
rounding down x, y to even numbers 2u, 2v, (**) is the corrective term for the indicator part
and (***) is the corrective term for the monomial part. Simplifying those terms separately,
we have

(*) = 2a+b ·MDoma,b(u, v),
(**) = xa(y − 1)b · 1[even(x) = odd(y)− 1] = MEqa+b(even(x), odd(y)− 1),
(***) = Pa,b(x, y) · 1[odd(x) < even(y)] +Qa,b(x, y)

· 1[even(x) < odd(y)] +Ra,b(x, y) · 1[odd(x) < odd(y)] ,
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where Pa,b(x, y) = (xayb − (x − 1)ayb), Qa,b(x, y) = (xayb − xa(y − 1)b) and Ra,b(x, y) =
(xayb − (x− 1)a(y − 1)b).

All in all, our recursion decomposes MDoma,b(x, y) into several terms – either with the
inputs reduced by a factor of 2, the test for dominance replaced with a test for equality, or
to monomials of smaller degree (observe that each of Pa,b(x, y), Qa,b(x, y) and Ra,b(x, y) is
of degree at most a + b − 1). Let T (a, b,m) denote the number of instances of Hamming
distance that a single instance of MDoma,b, with inputs bounded in value by 2m, is reduced
to. Since by Lemma 12, MEqa+b reduces to O(m · (a+ b)) instances of Hamming distance,
there is

T (a, b,m) ≤ O(m · (a+ b)) + T (a, b,m− 1) +
∑

0≤i≤a
0≤j≤b

(i,j) 6=(a,b)

3T (i, j,m),

which is satisfied (for some constant C) by T (a, b,m) ≤ C ·m · (a+ b) ·
(
a+b+m
a,b,m

)
· 4a · 4b. For

fixed values a, b this is O(loga+b+1M). J

Proof of Theorem 10. Consider an arbitrary piecewise-polynomial binary function �. Con-
sider its summand P (x, y) · 1[Ax+By + C > 0]. If A = 0 or B = 0 then it reduces to a
binary function of degenerated form P (x, y) · 1[Ax+ C > 0] which in turn reduces to O(d2)
multiplications by Lemma 13.

Otherwise, if A 6= 0 and B 6= 0, then there is a one-to-one linear input reduction,
u = −Ax and v = By + C, that reduces from (−Ax)i(By + C)j · 1[Ax+By + C > 0]
to uivj · 1[u < v]. Note that any polynomial of degree a and b over x and y is a linear
combination of (−Ax)i(By + C)j for 0 ≤ i ≤ a and 0 ≤ j ≤ b.

By applying those reductions to each summand and applying Lemma 14 to each monomial
of the summand, we reach the claimed bound. J

To prove Theorem 11, we need the following technical Lemma:

I Lemma 15. Consider a family of distinct lines Λ = {λi}|Λ|i=1, λi = {x, y : Aix+Biy+Ci =
0} for integers Ai, Bi, Ci such that |Ai|, |Bi|, |Ci| ≤M . If there is at least one λ ∈ Λ that is
not axis-orthogonal, then there exists λi ∈ Λ and α, β, γ, δ such that:

for any line λj that is not parallel to λi, the set {(αx+ γ, βy + δ) : x, y ∈ [0 . . . N ]} lies
on the same side of λj,
for any line λj that is parallel to λi, the sets {(αx+γ, βy+δ) : x > y} and {(αx+γ, βy+δ) :
x < y} are separated by λj.

Moreover, |α|, |β|, |γ|, |δ| ≤ poly(M,N).

Proof. Pick λi that is not axis-orthogonal, that is Ai, Bi 6= 0.
Let us denote the grid G = {(αx+ γ, βy + δ) : x, y ∈ [0 . . . N ]}. To guarantee that main

diagonal of G lies on λi, we need to have α = Bi · k and β = −Ai · k for some nonzero integer
k, and select values of γ, δ accordingly so that (γ, δ) ∈ λi.

For non-parallel λi, λj , the coordinates of intersection point are:

xi,j = −
∣∣∣∣Ci Bi
Cj Bj

∣∣∣∣ / ∣∣∣∣Ai Bi
Aj Bj

∣∣∣∣ yi,j = −
∣∣∣∣Ai Ci
Aj Cj

∣∣∣∣ / ∣∣∣∣Ai Bi
Aj Bj

∣∣∣∣ .
To guarantee that whole G lies on the same side of λj , it is enough to make sure that all 4

corners are on the same side. However, we observe that iff e.g. corners (γ, δ) and (αN + γ, δ)
are separated by λj , it means that for some r ∈ [0, 1] lines λj and Ai(x−rαN)+Biy+Ci = 0



K. Labib, P. Uznański, and D. Wolleb-Graf 14:11

(that is λi shifted in x by +rαN) intersect on point with x = δ. To satisfy the first condition
of the lemma, it is enough if every point of the convex closure of G has x coordinate with
absolute value at least 2M2 + |α|MN , since that is larger than any possible intersection
point as described above (condition (a)). Similarly for y coordinate it should be at least
2M2 + |β|MN (condition (b)).

Take λj parallel to λi, that is they differ only on value of C. We first make sure
that all such λj fall between lines {(αt + γ, β(t + 1) + δ) : t ∈ R} and λi or λi and
{(α(t+ 1) + γ, βt+ δ) : t ∈ R} (those lines are λi “shifted” one step up or down in the grid),
by making sure α and β are large enough in absolute value. Indeed, it is enough to have
|αAi| = |βBi| > 2M being largest possible difference between two values of C. It is enough
to select k = 3M , and α = 3MBi, β = −3MAi.

We then select γ and δ as smallest in absolute value points of λi such that conditions (a)
and (b) are satisfied. J

Proof of Theorem 11. Let us take the binary function x � y =
∑
i Pi(x, y)

· 1[Aix+Biy + Ci > 0] as in the theorem statement, assuming it is of the simplest form (no
redundant terms and minimal number of summands possible). We construct a reduction
from Hamming distance to � by a series of intermediate operators.

Let d be the highest degree of any P1, P2, . . .. Consider all the lines being borders of
regions, that is λi = {(u, v) : Aiu+Biv + C = 0} (as elements of the continuous Euclidean
plane).

We now apply Lemma 15, with N = 3dM + 2d. Consider F (x, y) def= (αx+ γ) � (βy + δ).
Limited to x, y ∈ [0 . . . N ], F (x, y) is piecewise linear of a much simpler form:

F (x, y) = Q>(x, y) · 1[x > y] +Q=(x, y) · 1[x = y] +Q<(x, y) · 1[x < y]

for Q>, Q=, Q< being polynomials of degree at most d, and Q< 6≡ Q>. Let Dx, Dy be the
operators of discrete differentiation, that is DxF (x, y) def= F (x+ 1, y)− F (x, y), DyF (x, y) def=
F (x, y+1)−F (x, y). There are integers 0 ≤ a, b ≤ d such thatDa

xD
b
y(Q<(x, y)−Q>(x, y)) ≡ c

for some constant c 6= 0. Thus if we consider the function:

G(x, y) def= 1
c
·Da

xD
b
y(F (x, y)−Q>(x, y)),

it has the following properties on x, y ∈ [0 . . . N − d]: for y − x > d: G(x, y) = 1, and
for y − x < −d: G(x, y) = 0. We observe that for x, y ∈ [0 . . .M ], there is Dom(x, y) =
G(3d · x, 3d · y + d). All in all, Ham reduces to O(d2) instances of � and a single evaluation
of a fixed polynomial Q>(x, y), which reduces to O(d2) multiplications. J

7 Conclusion

There are several immediate applications of Theorem 10 and Theorem 11. The first one is
that the improvement to DomProd from [32] translates to other MatrixProduct problems:

I Corollary 16. DomProd, L1Prod, L2p+1Prod, ThrProd, HamProd and (+,min)-
MatrixProduct are solvable in time Õ(nρ), where ρ ≤ 2.6834 is a solution to ρ =
ω(1, 4− ρ, 1).

Observe that the reductions we presented map ? to ?. Thus, e.g. by [26],[28] and [10], we
immediately get that all considered MatrixProduct problems are of the same complexity
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even on sparse inputs, up to a poly logn multiplicative term and additive term of time it takes
to compute (classical) sparse matrix product of relevant matrices (which is a simpler problem).

I Corollary 17. Consider sparse inputs where we denote by m1 and m2 the number of
entries in A and B that contribute to the score, where A and B are matrices of n vec-
tors of dimension n.DomProd,L1Prod,L2p+1Prod,ThrProd,HamProd and (+,min)-
MatrixProduct are solvable in time Õ(min(nω+√m1m2·n

ω−1
2 ,n2+(m1m2)

ω−2
ω−α−1n

2−αω
ω−α−1 )).

Since our reductions preserve the dimension of the problems, any tradeoff between d� n

and the running time translates to all other problems as well, with a poly logn multiplicative
term and a Õ(nω) additive term. One can improve the running time of the algorithm
presented in [25] using the trick of batch-processing via rectangular matrix multiplication in
[32], as done for Dominance Product in [14], to obtain the following time complexity:

I Corollary 18. For n vectors of dimension d = ns for 0 ≤ s ≤ 1, DomProd, L1Prod,
L2p+1Prod, ThrProd, HamProd and (+,min)-MatrixProduct are solvable in time
Õ(nρ(s)) where ρ(s) = inf{x : 2 ≤ x ≤ 3 and ω(1, 2 + 2s − x, 1) ≥ x}. In particular, for
d = O(nα/2) ⊇ O(n0.156945) all those problems are solvable in time Õ(n2).

Similarly, one can look into the relation between sparsity and running time for pattern
matching problems. Here, we obtain the following result:

I Theorem 19. For a text of length n and a pattern of length m, n ≥ m, with st and sp
relevant entries, respectively, the running time of HamPM, LessThanPM, ThrPM and
L2p+1PM is Õ(√nstsp + n).

We present the following application of the scaling/filtering framework: weighted mis-
matches. We distinguish between position weighted mismatches and character weighted
mismatches. In the pattern matching setting, the former asks for O[i] =

∑
j:P[j] 6=T[i+j] w(j),

whereas the latter asks for O[i] =
∑
j:P[j] 6=T[i+j] w(P[j]), for some given weight function

w : Z → Z . We see that character weighted mismatches are expressible by a function
w(x) · 1[x 6= y] and get by Lemma 12 that Hamming Distance Pattern Matching with Char-
acter Weights is no harder than HamPM (up to a logn factor). For position weights, we
present the following:

I Theorem 20. Hamming Distance Pattern Matching with Position Weights reduces to
O(logn) instances of HamPM.

While it is no surprise that for example the technique of [32] can be applied to other
MatrixProduct problems, it is a nice side effect of our reduction that it can be applied
“automatically” without looking deeper into the structure of any of the different Matrix-
Product problems involved. The reductions presented signify that regardless of whether we
are looking for improved upper bounds, or new lower bounds, it is enough to concentrate on
a single score function from the whole class of equivalent functions. In our opinion, Hamming
distance is the “cleanest” score function, since it is the simplest – it assumes no arithmetic
underlying structure of the alphabet (unlike e.g. L1 distance) and not even an ordering of
the alphabet.
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A Omitted proofs from Section 6

I Lemma 12. For an integer weight function w, the character weighted matches, that is
w(x) · 1[x = y], reduce to O(logM) instances of Hamming distance and multiplication.

Proof. Let M be the upper bound on all values of w in the considered domain of inputs.
Given two integers x, y, we observe the following equality:

w(x) · [x = y] =
logM∑
i=0

2i · 1[wi(x) = wi(y)]

where the filtering function wi is defined based on w:

wi(x) =
{
x i-th bit of w(x) is 1
? otherwise.

Observing that 1[x = y] = 1− Ham(x, y) finishes the proof. J

I Lemma 13. An axis-orthogonal piecewise polynomial � of c summands of degree d reduces
to O(d2c) multiplications.

Proof. Given an axis orthogonal piecewise polynomial F (x, y) =
∑c
i=1 Pi(x, y) ·

1[Aix+Biy + Ci > 0] of degree d. Consider summand Pi(x, y)1[Aix+ Ci > 0] (w.l.o.g. we
assume that Bi = 0 and Ai 6= 0). Consider a monomial of Pi(x, y), e.g. xayb. Define x′ = xa

iff Aix+ Ci > 0 and x′ = ? otherwise, and y′ = yb. Then xayb · 1[Aix+ Ci > 0] = x′y′. J
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Axis orthogonal piecewise polynomial � are no harder than multiplication in e.g. vector
convolution or matrix multiplication. By Theorem 13 it reduces to multiplication in Z ∪ {?},
which in turn reduces to multiplication in Z. Indeed, it is enough to consider a map
Z ∪ {?} → Z that is identity on Z and maps ?→ 0.

I Theorem 19. For a text of length n and a pattern of length m, n ≥ m, with st and sp
relevant entries, respectively, the running time of HamPM, LessThanPM, ThrPM and
L2p+1PM is Õ(√nstsp + n).

Proof. Consider LessThanPM. The proof follows the non-sparse case. W.l.o.g. all the 2sp
actual entries are distinct integers (if it is not so, they can be made so using small ε > 0
shifts and then re-arranged back into integers preserving order). The sp relevant entries
of the pattern are sorted and partitioned into k buckets B1, . . . , Bk so that B1 gets sp/k
smallest elements, B2 following sp/k smallest elements, etc. We get inter-bucket contribution
for bucket Bi from convolution of PRi with Ti, where Pi, Ti are binary strings such that
Pi[j] = 1 iff P [j] ∈ B1 ∪ . . .∪Bi and Ti[j] = 1 iff T [j] ∈ Bi. This in a total takes O(kn logm)
time for all k buckets. Intra-bucket contributions are captured in a brute force manner in
O(stsp/k) where each relevant text element is compared with at most sp/k elements in its
corresponding bucket. Choosing k to be max(1,

√
(stsp)/(n logm)) gives the time bound of

Õ(n+√nstsp). J

I Theorem 20. Hamming Distance Pattern Matching with Position Weights reduces to
O(logn) instances of HamPM.

Proof. We solve O(logn) instances of HamPM with filtering involved. This is done by
constructing different pattern strings where Pi is defined as follows:

Pi[j] =
{
P [j] i-th bit of w(j) is 1
? otherwise.

Let Oi be the result vector of HamPM between text T and pattern Pi. The final result
vector, O, for the Hamming distance pattern matching with position weights can be computed
such that O[k] =

∑d logWe
i=0 2i ·Oi[k] where W is the maximum position weight. Given our

assumption that W = poly(n), the result follows. J

What remains is to show that one can get rid of ? when e.g. computing Hamming distance.
We show this in the pattern matching setting for simplicity. However this can be easily
extended for matrix multiplication problems as well.

I Lemma 9. Hamming distance in N + {?} reduces preserving linearity to two instances of
Hamming distance in N.

Proof. Let x, y ∈ N + {?}. To compute Ham(x, y), we first use mapping that puts ? into
separate integer, and then apply correction that fixes distances between ?.

For the first instance:

f(t) =
{

0 if t = ?

t+ 1 otherwise

As for the second instance:

g(t) =
{

0 if t = ?

1 otherwise

Observe that Ham(x, y) = Ham(f(x), f(y))− Ham(g(x), g(y)). J
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B Supplementary reductions

I Theorem 21. L1 distance reduces to min and multiplications. min reduces to L1 and
multiplications.

Proof. min(x, y) = x/2 + y/2− |x− y|/2 and |x− y| = x+ y −min(x, y). J

I Lemma 22. Dominance and δ-threshold are equivalent.

Proof. Since both dominance and threshold are shift-invariant, we assume 0 ≤ x, y ≤ M

for some M bounded by poly(n). Dominance reduces to one instance of threshold as
Dom(x, y) = Thrδ(x+ δ, y) for any δ > M . Threshold reduces to two instances of dominance
as Thrδ(x, y) = Dom(y + δ, x) + Dom(x+ δ, y) for δ > 0. J

Remark: Thus, the result from [33] is implied by combining Theorem 8 with Lemma 22.

I Lemma 23 ([26]). Hamming distance reduces to 2 instances of dominance.

Proof. Ham(x, y) = Dom(x+ 1, y) + Dom(−x+ 1,−y). J

I Lemma 24 ([22]). Dominance reduces to 2 instances of L1, Hamming distance reduces to
3 instances of L1.

Proof. Dom(x, y) = |x− (y+ 1)|/2− |x− y|/2 + 1/2 and Ham(x, y) = 1 + |x− y| − |x− (y+
1)|/2− |(x+ 1)− y|/2 J

C Example reductions

Figures 2 and 3 illustrate our reductions from Theorems 7 and 8, respectively.
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Figure 2 Our reduction from L1PatternMatching to LessThanPatternMatching in The-
orem 7 instantiated for a pattern P of length m = 3 and a text T of length n = 6 over an alphabet
of integers {0, 1, 2, 3}, so M = 22 = 4.
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Figure 3 Our reduction from LessThanPatternMatching to HammingDistancePattern-
Matching in Theorem 8 instantiated for a pattern P of length m = 4 and a text T of length n = 6
over an alphabet of integers {0, 1, 2, 3, 4, 5, 6, 7}, so M = 23 = 8.
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