
ETH Library

Learning-based Model Predictive
Control for Autonomous Racing

Journal Article

Author(s):
Kabzan, Juraj; Hewing, Lukas ; Liniger, Alexander; Zeilinger, Melanie N.

Publication date:
2019-10

Permanent link:
https://doi.org/10.3929/ethz-b-000351561

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Robotics and Automation Letters 4(4), https://doi.org/10.1109/LRA.2019.2926677

Funding acknowledgement:
157601 - Safety and Performance for Human in the Loop Control (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2770-4687
https://doi.org/10.3929/ethz-b-000351561
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/LRA.2019.2926677
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUN, 2019 1

Learning-based Model Predictive Control for
Autonomous Racing

Juraj Kabzan1, Lukas Hewing1, Alexander Liniger2, and Melanie N. Zeilinger1

Abstract—In this paper, we present a learning-based control
approach for autonomous racing with an application to the AMZ
Driverless race car gotthard. One major issue in autonomous
racing is that accurate vehicle models that cover the entire
performance envelope of a race car are highly nonlinear, complex
and complicated to identify, rendering them impractical for
control. To address this issue, we employ a relatively simple
nominal vehicle model, which is improved based on measurement
data and tools from machine learning. The resulting formulation
is an online learning data-driven Model Predictive Controller,
which uses Gaussian Processes regression to take residual model
uncertainty into account and achieve safe driving behavior. To
improve the vehicle model online, we select from a constant
in-flow of data points according to a criterion reflecting the
information gain, and maintain a small dictionary of 300 data
points. The framework is tested on the full-size AMZ Driverless
race car, where it is able to improve the vehicle model and reduce
lap times by 10% while maintaining safety of the vehicle.

Index Terms—Model Learning for Control, Learning and
Adaptive Systems, Model Predictive Control, Autonomous Racing

I. INTRODUCTION

IN the past decade, autonomous driving has generated
increasing interest in both academic and industrial research.

In this paper, we focus on autonomous racing, a subfield of
autonomous driving, where the goal is to drive a car around
a track as quickly as possible. The field has received signif-
icant attention due to prominent races such as the DARPA
Grand Challenge [1] or the recently initiated Formula Student
Driverless (FSD)3 competition [2].

Building on the increasing computational power, the use of
machine learning and optimization-based techniques is now
commonly investigated for these tasks [3]. In particular, many
companies and researchers make use of Model Predictive
Control (MPC) for path following and racing of autonomous
vehicles [4], [5], [6]. MPC is an advanced control technique,
which uses a model to optimize the predicted motion of a
vehicle for a limited time horizon. This allows for enforcing

Manuscript received: February 24, 2019; Revised May 24, 2019; Accepted
Jun 21, 2019.

This paper was recommended for publication by Editor Paolo Rocco upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the Swiss National Science Foundation under grant no. PP00P2
157601 / 1.

1Juraj Kabzan and Lukas Hewing and Melanie Zeilinger are with
Institute for Dynamic Systems and Control, ETH Zurich, Switzerland
kabzanj@gmail.com, lhewing|mzeilinger@ethz.ch

2Alexander Liniger is with Automatic Control Laboratory, ETH Zurich,
Zurich, Switzerland liniger@control.ee.ethz.ch

Digital Object Identifier (DOI): see top of this page.
3http://www.formulastudent.de/

Fig. 1: gotthard is a driverless electric 4WD race car.

constraints, such as collision or track constraints, and provides
an intuitive way for trading off competing goals by shaping
the cost function. MPC requires a system model that is able to
adequately capture the vehicle dynamics while being simple
enough to be used in an online optimization framework. Espe-
cially in autonomous racing, where the vehicle is operated at
its performance limits, this is a challenging trade-off. Using a
complex model may render MPC computationally intractable,
whereas an overly simple model can result in reduced per-
formance or even collisions. In addition, the dynamics can
change between different racing instances or during a race, for
instance, due to changing temperatures or tire wear, imposing
the need to adapt the system model during operation.

This paper aims at meeting these challenges by considering
a relatively simple nominal vehicle model, which is then
improved online by learning the model error using Gaussian
process regression. The proposed approach is based on a
contouring MPC formulation for autonomous racing [4] and
a learning-based MPC technique [7], [8]. Similar approaches
for path tracking of mobile robots were previously presented
e.g. in [9], [10] or [11], where the latter demonstrates rapid
adaptation to changing model dynamics. A learning-based
MPC approach for miniature race cars was presented in [12],
which makes use of repetitive laps to learn an improved cost
function of the MPC.

In contrast to these results, we develop and demonstrate our
approach on a full-size autonomous race car gotthard, shown
in Figure 1. Our main contribution lies in the implementation,
and experimental validation of the learning-based control ap-
proach on this challenging race-car platform, which is operated
at the performance limit achieving velocities of 15 m

s and high
lateral accelerations of up to 2 g, requiring fast sampling times
and high-fidelity control. We extend the learning-based MPC
approach in [8] with a data management system [13] in form
of a dictionary of data points used by the GP model. This
allows for continuously updating the learned vehicle model



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUN, 2019

with recent state measurements during operation. The results
include the first presentation of the nominal control framework
of gotthard, which was used to successfully compete in a
number of autonomous racing competitions. The experiments
show that the learning-based approach is able to improve the
system model, enabling lap time reductions of 10%.

II. PRELIMINARIES

A. Notation

We use bold lowercase letters for vectors x ∈ Rn and
bold uppercase letters for matrices X ∈ Rn×m, while scalars
are non-bold. For vertical matrix concatenation [X; U] =
[XT , UT ]T is used. We refer to the i-th element of vector
x as [x]i and similarly [X]·,i for the i-th column of matrix X.
A matrix without the i-th row is X\i. We represent a diagonal
matrix with elements x as diag(x). A normal distribution
with mean µ and variance Σ is N (µ,Σ). The gradient of
f : Rnz → Rnf w.r.t. x ∈ Rnx is ∇xf : Rnz → Rnf×nx . We
use K ← K̃ to express that matrix K is updated to K̃. The
squared weighted 2-norm xTKx is ‖x‖2K.

B. Gaussian Process Regression

In the following, we briefly introduce Gaussian Process
(GP) regression. A detailed exposition can be found, e.g.,
in [14]. We identify an unknown function dtrue : Rnz → Rnd

from a collection of inputs zk ∈ Rnz and outputs yk ∈ Rnd

yk = dtrue(zk) + wk , (1)

where wk ∼ N (0,Σw) is i.i.d. Gaussian noise with diagonal
variance Σw = diag([σ2

1 , ..., σ
2
nd

]). We consider a set of m
input and output data pairs (zi,yi) forming the dictionary

D = {Y =
[
yT0 ; . . . ; yTm

]
∈ Rm×nd ,

Z =
[
zT0 ; . . . ; zTm

]
∈ Rm×nz} . (2)

Treating each output dimension a ∈ {1, ..., nd} indepen-
dently, the posterior distribution in dimension a at a test point
z is Gaussian with mean and variance

µa(z) = kazZ(Ka
ZZ + Iσ2

a)−1[Y]·,a , (3a)

Σa(z) = kazz − kazZ(Ka
ZZ + Iσ2

a)−1kaZz. (3b)

Here, Ka
ZZ is the Gram matrix, i.e. [Ka

ZZ]ij = ka(zi, zj),
[kaZz]j = ka(zj , z) ∈ R, kaZz = (kazZ)T ∈ Rm, and kazz =
ka(z, z) ∈ R. We make use of the squared exponential kernel

ka(z, z̄) = σ2
f,a exp (−(z− z̄)TLa(z− z̄)) , (4)

where La ∈ Rnz×nz is the positive diagonal length scale
matrix and σ2

f,a the squared signal variance.
The resulting multivariate GP approximation is given by

d(z) ∼ N (µd(z),Σd(z)) (5)

with µd(z) = [µ1(z); ...;µnd(z)] ∈ Rnd and Σd(z) =
diag([Σ1(z); ...; Σnd(z)]) ∈ Rnd×nd . The computational com-
plexity of GP regression strongly depends on the number of
data points m, which motivates the use of sparse approxima-
tions using inducing points, outlined in the following.

C. Sparse Gaussian Process Regression

In order to reduce the computational cost, inducing inputs
Zind =

[
zT0 ; . . . ; zTm̃

]
, with m̃ � m, can be used to approxi-

mate (3), see e.g. [15]. We use FITC [16] given by

µ̃a(z) = Qa
zZ(Qa

ZZ + Λ)−1[Y]·,a , (6a)

Σ̃a(z) = kazz −Qa
zZ(Qa

ZZ + Λ)−1Qa
Zz , (6b)

with Qa
ζζ̃

= Ka
ζZind

(Ka
ZindZind

)−1Ka
Zindζ̃

, Λ = diag(Ka
ZZ −

Qa
ZZ + Iσ2

a). Many quantities in (6) do not depend on z and
can be precomputed, such that they only need to be updated
when updating Zind or D itself. The resulting distribution is
d̃(z) ∼ N (µ̃d(z), Σ̃d(z)) . By reducing the effective size of
the kernel matrix via the reduced number of inducing points,
the computational complexity can be controlled. In this work,
we take advantage of the MPC formulation and select the
inducing points along the prediction horizon, updating them
in every time step. This enables the use of a small number
of inducing points compared with the problem dimension and
thereby very efficient evaluation of (6) during optimization,
see Section IV-D and [7] for more details.

III. RACE CAR MODEL

In this section, we describe the employed vehicle model,
which is commonly used for control and provides a good
trade-off between simplicity for real-time implementation and
accuracy for high-performance control of the autonomous race
car. The model is based on a dynamic bicycle model illustrated
in Figure 2, with states

x = [X;Y ;ϕ; vx; vy; r; δ;T ] ,

namely the position p = [X;Y ] and heading angle ϕ in
the global coordinate frame, the velocities v = [vx; vy] in
the vehicle’s body frame and yaw rate r, as well as the
steering angle δ and driver command T corresponding to a
desired acceleration. The inputs to the system are the change
in steering angle and applied driver command: u = [∆δ; ∆T ] .

The considered model used for control is of the form

xk+1 = f(xk,uk) + Bd(d(zk) + wk) , (7)

where f describes the nominal vehicle dynamics (Sec-
tion III-A) and d the additional learned part of the dynamics,
estimating the model error dtrue of the nominal model (Sec-
tion III-B). Together with the process noise wk, the learned
part of the dynamics is assumed to only affect the subspace
spanned by Bd, corresponding to the velocity states of the
vehicle, and to depend on a set of features zk relevant for the
regression, which are extracted from xk, uk.

A. Nominal Vehicle Model

As a nominal system model, we consider a dynamic bi-
cycle model with nonlinear tire forces, an underlying torque
vectoring controller and simple input dynamics.

The car is assumed to be one rigid body with mass m and
a yaw moment of inertia Iz , while lR/F defines the distance
between the center of gravity and the rear and front axle,
respectively. The front/rear lateral tire forces are denoted by



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

KABZAN et al.: LEARNING-BASED MODEL PREDICTIVE CONTROL FOR AUTONOMOUS RACING 3

X

Y

lF
lR

βdyn

v
vy

vx

ϕ

δ
FF,y

FR,y

αF

αR
r

Fx

Fig. 2: Bicycle Model: The position vector is depicted in green,
velocities in blue and forces in red.

FF/R,y and Fx is the longitudinal drive-train force. Altogether,
the nominal model can be expressed as

ẋ =



vx cosϕ− vy sinϕ
vx sinϕ+ vy cosϕ

r
1
m (Fx − FF,y sin δ +mvyr)
1
m (FR,y + FF,y cos δ −mvxr)
1
Iz

(FF,ylF cos δ − FR,ylR + τTV)

∆δ
∆T


. (8)

Here, τTV is an additional yaw torque generated by an
underlying torque vectoring controller

rtarget = δ
vx

lF + lR
,

τTV = (rtarget − r)PTV ,

where PTV ∈ R+ is the proportional controller gain. The front
and rear slip angles αF/R are used to compute the lateral force
based on a simplified Pacejka tire model [17]

αR = arctan
(vy − lRr

vx

)
,

αF = arctan
(vy + lF r

vx

)
− δ ,

FR,y = DR sin
(
CR arctan

(
BRαR

))
,

FF,y = DF sin
(
CF arctan

(
BFαF

))
,

where DF/R, CF/R, BF/R are tire specific constants.
The applied longitudinal force depends on the desired

driver command T in the range ±1, where 1 corresponds
to maximum acceleration and −1 to maximum braking. It is
modeled as a single force applied at the center of gravity of
the vehicle and is computed through the following equation

Fx = Cm1T − Cr0 − Cr2v2x ,

which consists of a simple drivetrain model Cm1T , rolling
resistance Cr0, and drag Cr2v2x. The last two equations in (8)
reflect a delay in the input commands.

For integration in a discrete-time MPC formulation, the
system is discretized with a Runge-Kutta 4th-order integration
using a sampling time of Ts = 50 ms, resulting in f(xk,uk)
in (7).

B. Model Learning

While the previously presented nominal system model is
sufficient for operation of the race car, we aim at enhancing
performance and enabling automatic model adaptation by
inferring the model error d(zk) in (7) from the deviation of
the nominal model from measurement data during operation.
Based on physical considerations, we assume that the model
error only affects the dynamic part of the system equations,
i.e. the velocity states, by selecting Bd = [03×3; I3×3; 02×3].
To reduce dimensionality of the learning problem, we further-
more assume model errors to be independent of the vehicle’s
position by selecting as regression features

z =

[
vx; vy; r; δ+

1

2
∆δ;T+

1

2
∆T

]
, (9)

where we heuristically correct the steering angle and driver
command to account for the input dynamics, i.e. δ+ 1

2∆δ
approximates the physical steering angle between time step
k and k+1. The training data yk is generated from the dif-
ference between measurements xk+1 and the nominal model
predictions

yk = B†d(xk+1 − f(xk,uk)) = dtrue(zk) + wk ,

where B†d is the Moore-Penrose pseudo-inverse, and dtrue(zk)
the true model error function we want to approximate. Note
that this is the standard form for a regression task as in (1),
and applying GP regression results in a stochastic estimate
d(zk) ∼ N (µd(zk),Σd(zk)) given the collected data D.

An important step of GP regression is the choice of hy-
perparameters in the kernel function (4). Since we assume
the general character of the model error to remain constant
during operation of the vehicle, we determine the hyperpa-
rameters and noise level wk before operation using maximum
likelihood optimization based on historical data and fix them
during the race.

IV. LEARNING-BASED CONTROLLER FORMULATION

In this section, we recount the used contouring-based
MPC formulation for autonomous racing [4] and learning-
based extension [7], [8], including some modifications for the
considered platform. The MPC formulation without learned
GP model corresponds to the nominal control formulation
previously used in autonomous racing competitions.

A. State & Uncertainty Prediction

Model Predictive Control requires the prediction of the
system states over a finite horizon to optimize the control
sequence. The use of an uncertain stochastic system resulting
from the learned dynamics renders the predicted state sequence
a random variable. We derive a tractable approximation of
the uncertainty at each state in the prediction horizon, which
is then used to formulate chance constraints, resulting in
dynamic safety margins to the track boundaries (see Sec-
tion IV-C). Considering uncertainty explicitly in the control
formulation can improve safety and performance in a race, as
e.g. also demonstrated in [18].



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUN, 2019

Evaluation of the GP model d at a given input results
in a mean µd and variance Σd, which directly represents
the residual uncertainty of the prediction model. In order to
evaluate the uncertainty in the states over the MPC prediction
horizon, we propagate the mean and variance using successive
linearizations, similar to extended Kalman filtering [8]. This
results in mean µx and variance Σx propagation given by

µx
k+1 =f(µx

k ,uk) + Bdµ
d(µz

k) , (10a)

Σx
k+1 =

[
∇xf(µx

k ,uk) Bd

][
Σx
k ?

∇xµd(µz
k)Σx

k Σd(µz
k) + Σw

]
[
∇xf(µx

k ,uk) Bd

]T
,

(10b)

where the star denotes the corresponding elements of the
symmetric matrix. Here µz

k are the regression features (9)
evaluated at the mean state prediction.

B. Contouring Control & Resulting Cost Function

We consider the task of racing along a race track of
varying width, where the centerline is given by a piecewise
cubic spline polynomial. The track is parameterized by θ ∈
[0, θmax], i.e. given a θ, the corresponding centerline position
[Xc(θ);Yc(θ)], orientation φc(θ), as well as the track radius
Rc(θ) can be evaluated.

The control formulation aims at maximizing the progress
along the given track by adding a state θk representing the
approximate position of the vehicle along this center line.
Progress along the track is encouraged by introducing the
incremental progress θk+1 = θk + vk, where vk is a decision
variable that is maximized by introducing a linear negative
cost −κvk in the optimization.

The progress variable θk is linked to the physical location of
the car by penalizing the so-called lag error el and contouring
error ec, defined as

el(µ
x
k , θk) = − cos (Φ(θk))(µXk −Xc(θk))

− sin (Φ(θk))(µYk − Yc(θk)) ,

ec(µ
x
k , θk) = sin (Φ(θk))(µXk −Xc(θk))

− cos (Φ(θk))(µYk − Yc(θk)) ,

where [µXk ;µYk ] is the current mean position of the vehicle. For
sufficiently small errors, [Xc(θk);Yc(θk)] therefore approxi-
mates the vehicle position projected onto the centerline. The
resulting contouring cost is given by

J(µx
k , θk, vk) = qcec(µ

x
k , θk)2 + qlel(µ

x
k , θk)2 − κvk ,

where qc, ql, κ ∈ R+ are weights.
In addition to the contouring cost, two regularization terms

are used. The first is a quadratic cost on the steering angle
and applied driver command, as well as their corresponding
changes, i.e.

U(µx
k ,uk) =

∥∥[µδk; µTk ]
∥∥2
Rx

+ ‖[∆δk; ∆Tk]‖2Ru
.

The second regularizer is given as

L(µx
k) = qβ(βkin

k − β
dyn
k )2 ,

and influences the driving aggressiveness by keeping the
dynamic slip angle βdyn

k = arctan
(
µ
vy
k /µ

vx
k

)
close to the

kinematic slip angle βkin
k = arctan

(
tan (µδk)lR/(lR + lF )

)
.

C. Track, Tire & Input Constraints

While maximizing progress along the track, it is critical to
keep the vehicle within the track boundaries, i.e. within the
track radius. We express this as a constraint on the vehicle
position, taking the model uncertainty into account, which is
given by its variance ΣXY

k , i.e. the relevant submatrix of Σx
k .

We use the uncertainty to effectively tighten the track radius
imposed as a constraint on the mean prediction by

RGP(ΣXY
k ) =

√
χ2
2(p)λmax(ΣXY

k ) ,

in which λmax(ΣXY
k ) is the maximum eigenvalue of the

variance matrix, and χ2
2(p) the quantile function of the chi-

squared distribution, corresponding to a maximum violation
probability of p. For details on the formulation, see [7]. The
resulting constraint can then be expressed as∥∥∥∥[µXkµYk

]
−
[
Xc(θk)
Yc(θk)

]∥∥∥∥2 ≤ ∥∥R(θk)−RGP
(
ΣXY
k

)∥∥2 , (11)

with R(θk) being the track radius at centerline position θk.
Since the MPC prediction is open loop, the variance given by
(10b) can grow rapidly. This is typically conservative since
MPC provides feedback at every time step, which reduces
the error. One could address this by implementing feedback
over the planning horizon [8], but it is typically challenging to
design a simple ancillary controller for highly nonlinear prob-
lems. For computational and simplicity reasons we therefore
heuristically address this issue by limiting the tightening to
a shorter horizon Nshrink < N , which was shown to perform
well in practice [18].

In addition to the track constraints, tire forces are limited
to a tire-specific frictional ellipse

(plongFx)2 + F 2
F/R,y ≤ (pellipseDF/R)2 , (12)

with plong/ellipse ∈ R influencing the shape of the ellipse. Fi-
nally, we restrict the steering angle δ, and the driver command
T as well as their corresponding rates to

δmin
Tmin

∆δmin
∆Tmin

 ≤

µδk
µTk
∆δk
∆Tk

 ≤

δmax
Tmax

∆δmax
∆Tmax

 . (13)

D. Computational Simplifications and Resulting Formulation

The MPC problem for autonomous racing, derived in the
previous sections, has to be solved in real-time at fast sampling
rates below 50 ms. Aside from the basic MPC problem itself,
this is in particular challenged by the increased dimensionality
of the problem including the variance dynamics and the
required GP evaluations. To derive a real-time capable formu-
lation, we approximate the problem by leveraging the receding
horizon character and the available solution trajectory from the
previous time step, based on the idea that the trajectories show
small changes between the fast sampling times.



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

KABZAN et al.: LEARNING-BASED MODEL PREDICTIVE CONTROL FOR AUTONOMOUS RACING 5

The variance dynamics (10b) and subsequently the track
constraints are therefore evaluated for the previous trajec-
tory and precomputed, such that they remain fixed during
optimization. We furthermore make use of this trajectory
for a dynamic sparse approximation of the GP, by placing
inducing points equally spaced along this trajectory for a
local approximation of the GP. This allows for precomputing
the relevant quantities in (6a) for each instance of the MPC
optimization, significantly reducing the evaluation complexity
of the GP during optimization, see Section II-C and [7], [8].
The resulting MPC problem is

min
{uk, vk}

N∑
k=1

J(µx
k , θk, vk) + U(µx

k ,uk) + L(µx
k)

s.t. µx
0 = x(t),

µx
k+1 = f(µx

k ,uk) + Bdµ̃
d(µz

k),

θk+1 = θk + vk,

(11) with Σ
XY

k , θk,

(12), (13) ,

(14)

where θk, Σ
XY

k indicate that the quantities have been precom-
puted based on the previous solution trajectory, and x(t) is the
currently measured state of the system for which the problem
is solved. To ensure feasibility of the optimization problem,
all state constraints are implemented as soft constraints.

Problem (14) can be solved using a pre-determined data
set for the GP, e.g. from a previous experimental run, as
presented in [8]. In order to successively improve controller
performance and account for online variation, the following
section introduces a procedure for continuously updating the
GP model, i.e. the data set D, during operation.

V. ONLINE LEARNING

Gaussian Process regression is a nonparametric technique,
where the function estimate is directly based on the selected
set of data points. In a naive implementation of an online
learning scenario, one would keep track of all data from a
continuous data stream, inevitably leading to computational
infeasibility over time. In order to keep the computation time
for our application limited, we restrict the number of actively
used data points to M , which are stored in a dictionary D. To
update the dictionary online, we employ a selection technique
similar to [13], outlined in the following.

A. Dictionary Selection

The goal of the data selection is to cover the feature-space
as well as possible using a limited amount of data points
from the constant data in-flow. The following describes the
implemented procedure for deciding when a new data sample
dm+1 = (zm+1,ym+1) is added to the dictionary and, once
the dictionary reaches maximum size M , which data point is
replaced.

The data selection is based on a distance measure γi for
each dictionary point di, expressing its similarity to the other
data points dj ∈ D. It is defined as the posterior variance at

the data point location zi, given all other data points currently
in the dictionary Z\i, i.e.

γi = kazizi
− kaziZ\i

(Ka
Z\iZ\i

+ Iλ)−1kaZ\izi
, (15)

where we introduce a noise level λ as a tuning parameter for
regularization of the Gram matrix. A high value of γi means
that the input location zi is not well covered by other data
points, which is related to the information gain of adding data
point i to the dictionary [13].

1) Adding a data point to the dictionary: We include a new
data point dm+1, if its distance value γm+1 is greater than a
threshold η, which is chosen to control the update frequency.
In addition, the data point is also added if γm+1 is greater than
the median of all other distance measures in the dictionary.

Since the distance measure for each data point γi re-
quires {kazi,zi

,kaZ\i,zi
,Ka

Z\i,Z\i
, γi}, which are dependent on

all other dictionary points, all distance measures must be
updated when including the new sample dm+1 in the dic-
tionary. Inserting a new point extends the input data set
Z← [Z; zTm+1] ∈ R(m+1)×nz and results in updates for each
point i

Ka
Z\i,Z\i

←
[
Ka

Z\i,Z\i
kaZ\i,zm+1

? kazm+1,zm+1

]
∈ Rm×m,

kaZ\i,zi
←
[

kaZ\i,zi

kazm+1,zi

]
∈ Rm .

Since the matrices (Ka
Z\i,Z\i

+ λI) are positive definite, a
robust Cholesky decomposition with pivoting is used in order
to compute (15) and update γi.

2) Replacing a data point in the dictionary: If the number
of data points exceeds the maximum size of the dictionary M ,
we drop the point with the lowest distance measure. In order
to encourage older data points to be removed first, we modify
the distance measure via an exponential forgetting factor

γ̃i = exp
(
− (t− ti)2

2h

)
γi ,

where t is the current time, while ti is the time-stamp of
each data point and h is a tuning parameter. This modification
ensures that over time the model can adjust to changes in the
vehicle dynamics by fading out older data points. Replacing
a data point dj with a new point dm+1 again requires that the
corresponding matrices and vectors Ka

Z\i,Z\i
, kaZ\i,zi

of each
remaining dictionary point are updated to compute the new
distance measures γi. This is done by replacing each instance
of zj with zm+1 in the computation of (15), which is then
similarly solved using a full Cholesky decomposition.

B. Outlier Rejection

GP regression is generally susceptible to outliers, which
can dramatically deteriorate the performance of the learned
error correction. In addition, large and sudden changes in the
GP can lead to erratic and undesirable driving behavior. To
alleviate these problems and enforce a gradual change in the
GP predictions over time, we make use of two types of filters
for outlier rejection.



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUN, 2019

Pose
Estimate

Estimated
Map

Irregular Online
Data Selection 

MPC Sparse GP 
Dictionary 

Selection
Criteria 

Sensors 

Learning-based
control loop 
20Hz 

ECU

TV & TC

Control input 

New 
data 

Update 

Main i7-based computer 

Low-level 
control loop 
200Hz 

Real-time embedded computer  

Fig. 3: Architecture of the control framework of gotthard.
Low-level and high-level (MPC) controllers run in real-time
at 200 Hz and 20 Hz, respectively, while data point selection
and GP-update is irregular and non real-time.

First, we only consider state measurements that lie within
predefined bounds ±ylim, e.g. from physical considerations or
previous experiment runs. This filter will reject large errors,
which could for instance result from issues in the state
estimation and localization. The second filter makes use of
the current prediction of the GP by requiring a new data point
dm+1 = (zm+1,ym+1) to satisfy the condition

µ(zm+1)− sσ(zm+1) ≤ym+1 ≤ µ(zm+1) + sσ(zm+1),

where s specifies a confidence level. This means that only
data points are considered which do not deviate too strongly
from the currently employed system model. The purpose of
this second filter is to prevent sudden changes in the GP and
enforce a gradual adaptation. In order to ensure rapid initial
learning, we enable this second filter only after the dictionary
is filled to 4/5 of its maximal size.

VI. IMPLEMENTATION & EXPERIMENTAL RESULTS

We test the proposed learning-based control scheme on an
autonomous race car, the details of which are outlined in the
following sections before we present the experimental results.

A. Experimental Platform

The algorithm is implemented on the AMZ Driverless1

vehicle gotthard, used in the 2018 Formula Student Driverless
competition. gotthard is an electric 4WD race car with a full
aerodynamic package, lightweight design and high efficiency,
built by AMZ in 2016. The car enables superior lateral
(aerodynamic grip), longitudinal (4WD traction, no gear shifts)
and yaw (torque vectoring) acceleration and has successfully
competed in autonomous racing competitions.

The vehicle is equipped with sensors for localization and
state estimation, such as LiDAR, cameras, optical absolute
speed sensor and INS, among others. Sensor data is processed
on an onboard Intel i7-3612QE 2.1GHz main computer, which
in addition runs the proposed control framework, as well as
the autonomous system consisting of mapping, localization and

1www.amzracing.ch

state estimation, the details of which can be found in [19], [20]
and [21], where the latter also provides additional information
on the nominal control system. An Electronic Control Unit
(ECU) is used as a real-time capable computer, which handles
the low-level vehicle controllers. The low-level control loops
consist of traction control (TC), torque vectoring (TV) and
the four-wheel torque distribution based on the normal load of
the wheels. The low-level controllers play a significant role in
shaping the overall vehicle dynamics and ensure that a simple
model as in (8) is adequate. The overall architecture is depicted
in Figure 3. Note that since the data-point selection (Section
V) is not time-critical, it runs in parallel with irregular timing.

B. Controller Implementation

The GP-MPC problem in (14) is implemented with a pre-
diction horizon of N = 40 at a sampling time of Ts = 50 ms,
resulting in a 2 s look-ahead. We use dynamic constraint
tightening for the first Nshrink = 30 time steps and consider 10
inducing inputs to reduce the complexity of GP evaluations.
The FORCES Pro solver [22], [23] was used to solve the
underlying optimization problem, in which the maximum
number of iterations was limited to 60 to ensure consistent
maximum solve times. A delay compensation of one time
step is used to compensate for the solver computation time.
In addition to the numeric solution of the MPC, a number
of precomputations are executed, such as sparsification of the
GP (6a) using dynamic inducing inputs, carried out at each
time step. Thanks to a custom C++ sparse GP implementation,
the precomputation of (6a) with the 10 inducing inputs placed
equally along the previous solution trajectory is consistently
carried out in under 3 ms, such that most of the time can be
allocated to the numerical solution of the MPC optimization
problem (14).

C. Experimental Setup

The experimental validation of the proposed control scheme
is carried out by racing the car around a track of approximately
200 m length, consisting of sharp hairpins, straights, long
corners as well as chicanes, which is generated by placing
traffic cones on an airfield and using the mapping procedure
described in [20]. The resulting track is shown in Figure 4a.
For safety reasons, we limit the top speed to 15 m

s and the
driver command T to ±0.3 during the experiment.

The car starts racing with the nominal controller, meaning
that all GP-dependent variables are set to zero in (14). All
parameters of the nominal system model (8) were selected
during extensive testing and fitted to experimental data. The
nominal model and the corresponding cost function parameters
are tuned conservatively to ensure safe driving behavior, since
we cannot allow crashes or track constraint violations without
aborting the race. Throughout the experiment, we set ylim in
the first filter to reject outliers greater than 3-σ of historic error
data and s = 1 in the second filter. The dynamic constraint
tightening in (11) is done with χ2

2(p) = 1. The data collected
under the nominal controller is used to fill the dictionary with
an initial set of 250 data points, corresponding to slightly
less than two laps, after which the GP-based controller (14)



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

KABZAN et al.: LEARNING-BASED MODEL PREDICTIVE CONTROL FOR AUTONOMOUS RACING 7

0 20 40 60 80

�10

0

10

X [m]

Y
[m

]

5

10

15

V
el

oc
ity

[m
/s

]

(a) Race track and corresponding location of dictionary points after 9 laps.
The dictionary has high density around the sharp and challenging corners.
The color gradient represents the velocity magnitude at which the point was
recorded.

0 5 10 15

�0.5

0

0.5

Time [s]

µ
v
y
[m

/s
]

(b) Recorded model error in vy (black dots) and GP
error prediction. The blue line is the mean predicted
error with 2-σ confidence intervals in shaded blue.

Fig. 4: Experimental results of learning-based control framework.

TABLE I: Experimental Results

Lap Time ‖enom‖ ‖eGP‖ ‖a‖max Dict. 1-σ
[s] [g] updates [%]

1 20.19 0.16 - 1.52 178 -
2 20.29 0.18 - 1.49 65 -
3 19.16 0.19 0.15 2.05 31 65.42
4 18.80 0.23 0.15 2.01 16 68.66
5 18.47 0.23 0.16 2.02 15 68.31
6 18.44 0.24 0.15 2.00 11 69.07
7 17.98 0.23 0.15 1.82 8 68.15
8 18.47 0.24 0.17 2.15 9 68.55
9 18.25 0.24 0.16 2.10 11 68.81

TABLE II: Comparison of Data Selection Mechanisms

Scheme ‖e‖ ‖e‖max ‖
√

diag(Σd)‖ ‖
√

diag(Σd)‖max

Proposed 0.15 0.64 0.11 0.25
Random 0.16 0.70 0.23 0.36

Static 0.18 0.67 0.15 0.22

is activated. We found this initial data collection necessary
to enable reliable behavior, which we could not ensure when
using the GP correction based on very few data points. After
the maximal dictionary size of 300 data points is reached,
data-points are replaced as explained in Section V-A2 in order
to offer the best model fit given new measurement data. The
experiment was carried out for a total of 9 laps.

D. Results

To quantify the performance of the proposed control scheme
and the improvement due to the learning, we compare the lap
times of the successive laps, summarized in Table I, where
the dashed line highlights the activation of the learning-based
model correction. It can be clearly observed that starting from
lap times around 20.2 s with the nominal controller, there is
an immediate improvement when using the model correction
in lap 3, which is further improved until settling around lap
5 at an average lap time of approximately 18.3 s, constituting
an improvement of almost 10%.

The improvement is also shown by Figure 5a, where the
first and last lap of the race are compared. The results
show that the last lap is faster in almost every section of
the track, indicating that the learning-based controller allows
more aggressive driving. The increased aggressiveness is also
visible in the observed accelerations, as shown in Table I

for each lap and the GG diagrams in Figures 5b and 5c,
showing the lateral and longitudinal acceleration during the
race. The maximum lateral acceleration increases from 1.3 g
to 2.0 g when using learning, which turns out to be higher than
the lateral acceleration rating of the tires at 1.6 g, indicating
that the learning-based controller is able to make use of the
increased grip due to the aerodynamics package. In Figures 5b
and 5c, the tight limits on the driver command are also clearly
visible by the relatively low longitudinal accelerations.

In addition, we investigate the model learning performance,
which is illustrated in Figure 4b showing the predicted model
error in vy and the actual encountered errors during the
race. The results show that both the mean and uncertainty
estimate of the GP provide a good fit of the true model
error, enabling a safe performance increase. We quantify the
learning performance by comparing the average 2-norm of
the model error in each lap w.r.t. the nominal model, i.e.
‖enom‖ = ‖xk+1 − f(xk,uk)‖ and w.r.t. the corrected system
dynamics, i.e. ‖eGP‖ = ‖xk+1 − (f(xk,uk) + Bdµ̃

d(zk))‖,
shown in Table I. It is evident, that the model learning is
able to keep the average resulting model error ‖eGP‖ virtually
constant under increasingly aggressive driving, whereas the
nominal model error ‖enom‖ increases by almost 40%. The
uncertainty estimate of the GP fits the measurement data well,
with about 65 to 69% of the measured deviation within the
1 − σ confidence interval. Table I also provides information
about the dictionary updates, showing that after a quick initial
learning phase, the update rate converges to about 10 updates
per lap.

Finally, we investigate the online learning mechanism by
comparing the prediction error on the driven trajectory to
the predictions with a static GP from a previous experiment,
as well as to a random selection of data points in each
lap from the thus far collected data, similar to [10]. The
results are provided in Table II, showing the average prediction
error over all laps ‖e‖ and the average predicted standard
deviation of the GP ‖

√
diag(Σd)‖ along (6b), where the

square root is taken element-wise. Additionally, we provide
the maximum values over all laps. The results show that a
static GP from a previous experiment results in increased
errors of about 20%, demonstrating the need for a learning
procedure during operation. We evaluate the random selection
by averaging the results from 100 random seeds, resulting in



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2926677, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUN, 2019

0 50 100 150 200
0

5

10

15

Progress along the center line [m]

V
el

oc
ity

[m
/s

]

Nominal MPC
Learning-based MPC

(a) Velocity profiles

�2 �1 0 1 2
�1

0

1

ay [g]

a
x

[g
]

(b) GG-diagram: Nominal controller

�2 �1 0 1 2
�1

0

1

ay [g]

a
x

[g
]

5

10

15

V
el

oc
ity

[m
/s

]

(c) GG-diagram: Learning-based controller

Fig. 5: Comparison of nominal (first lap) and learning-based controller (final lap).

a mean prediction error similar to our proposed approach. It
is noticeable, however, that the random selection results in
significantly higher uncertainty estimates, which are expected
to result in performance deterioration due to the cautious
nature of the controller. The employed data selection scheme
results in an even distribution of data points along the race
line, which are shown in Figure 4a for the last lap, providing
an accurate and low-uncertainty estimate of the dynamics.

Overall, the results demonstrate that the proposed learning-
based control scheme is able to improve from an initial
nominal controller to achieve high-performance control while
maintaining safe operation at all times.

VII. CONCLUSION

This paper has presented an MPC control approach for
autonomous racing, which uses Gaussian Process regression
to enhance a simple nominal model and improve racing
performance. Based on the residual uncertainty of the Gaussian
Process, constraints are dynamically tightened in order to
achieve safe driving behavior. The data points used for GP
predictions are selected online from the continuous stream of
measurements based on an information gain criterion, enabling
continuous learning during operation. The framework was
tested on a full-size AMZ Driverless car, demonstrating signifi-
cant performance improvements under the proposed learning-
based controller with reductions in lap-time of 10%, while
maintaining safety at all times.

ACKNOWLEDGMENT

We would like to thank the entire AMZ Driverless team
for their outstanding work, and in particular Manuel Dangel
who supported the first deployment of the nominal control
framework on an older AMZ Driverless car.

REFERENCES

[1] S. Thrun et al., “Stanley: The robot that won the DARPA Grand
Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[2] A. Hofacker, “Let’s go driverless: Challenges of the first season,”
ATZextra worldwide, vol. 22, no. 2, pp. 22–27, 2017.

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
Trans. Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[4] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[5] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” Int.
Conf. Robotics and Automation, pp. 1433–1440, 2016.

[6] U. Rosolia, X. Zhang, and F. Borrelli, “Data-driven predictive control for
autonomous systems,” Annu. Review Control, Robotics, and Autonomous
Systems, vol. 1, pp. 259–286, 2018.

[7] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with
Gaussian process dynamics for autonomous miniature race cars,” Euro-
pean Control Conf., pp. 1341–1348, 2018.

[8] L. Hewing and M. N. Zeilinger, “Cautious model predictive control using
Gaussian process regression,” arXiv:1705.10702, 2017.

[9] C. J. Ostafew, A. P. Schoellig, T. D. Barfoot, and J. Collier, “Learning-
based nonlinear model predictive control to improve vision-based mobile
robot path tracking,” J. Field Robotics, vol. 33, no. 1, pp. 133–152, 2016.

[10] C. D. McKinnon and A. P. Schoellig, “Experience-based model selection
to enable long-term, safe control for repetitive tasks under changing
conditions,” Int. Conf. Intelligent Robots and Systems, pp. 2977–2984,
2018.

[11] C. McKinnon and A. P. Schoellig, “Learn fast, forget slow: Safe
predictive learning control for systems with unknown and changing
dynamics performing repetitive tasks,” Robotics and Automation Letters,
vol. 4, no. 2, pp. 2180–2187, 2019.

[12] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, “Repetitive
learning model predictive control: An autonomous racing example,”
Conf. Decision and Control, pp. 2545–2550, 2017.

[13] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for
model learning in real-time robot control,” Neurocomputing, vol. 74,
no. 11, pp. 1859–1867, 2011.

[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[15] J. Quiñonero-Candela, C. E. Rasmussen, and C. K. I. Williams, “Ap-
proximation methods for Gaussian process regression,” in Large-Scale
Kernel Machines. MIT Press, 2007, pp. 203–223.

[16] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” Adv. Neural Information Processing Systems, pp. 1257–
1264, 2006.

[17] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle
system dynamics, vol. 21, no. S1, pp. 1–18, 1992.

[18] J. V. Carrau, A. Liniger, X. Zhang, and J. Lygeros, “Efficient implemen-
tation of randomized MPC for miniature race cars,” European Control
Conf., pp. 957–962, 2016.

[19] M. I. Valls et al., “Design of an autonomous racecar: Perception, state
estimation and system integration,” Int. Conf. Robotics and Automation,
pp. 2048–2055, 2018.

[20] N. B. Gosala et al., “Redundant perception and state estimation for
reliable autonomous racing,” arXiv:1809.10099, 2018.

[21] J. Kabzan et al., “Amz driverless: The full autonomous racing system,”
arXiv:1905.05150, 2019.

[22] A. Domahidi and J. Jerez, “FORCES Professional,” embotech GmbH
(http://embotech.com/FORCES-Pro), 2014.

[23] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP:
an efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs,” Int. J. Control, 2017.


