
ETH Library

Simple concurrency for robotics
with the roboscoop framework

Conference Paper

Author(s):
Rusakov, Andrey; Shin, Jiwon; Meyer, Bertrand

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010347514

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010347514
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Simple Concurrency for Robotics with the Roboscoop Framework

Andrey Rusakov Jiwon Shin Bertrand Meyer
Chair of Software Engineering

Department of Computer Science
ETH Zürich, Switzerland

{andrey.rusakov, jiwon.shin, bertrand.meyer}@inf.ethz.ch

Abstract— Concurrency is inherent to robots, and using
concurrency in robotics can greatly enhance performance of the
robotics applications. So far, however, the use of concurrency in
robotics has been limited and cumbersome. This paper presents
Roboscoop, a new robotics framework based on Simple Concur-
rent Object Oriented Programming (SCOOP). SCOOP excludes
data races by construction, thereby eliminating a major class of
concurrent programming errors. Roboscoop utilizes SCOOP’s
concurrency and synchronization mechanisms for coordination
in robotics applications. We demonstrate Roboscoop’s simplicity
by comparing Roboscoop to existing middlewares and evaluate
Roboscoop’s usability by employing it in education.

I. INTRODUCTION

Advanced robotic systems are composed of many com-
ponents that can operate concurrently. Running these com-
ponents concurrently would enable robots to meet their full
potential. Researchers have noticed the value of concurrency
in robotics three decades ago. Kanayama [1] proposed a
simple message passing mechanism to synchronize a robot’s
multiprocessing units, and Ingemar and Gehani [2] showed
how Concurrent C, a general purposed language, can be
applied in robotics. Despite the early effort, little progress
has been made in using concurrency in robotics.

Introducing concurrency to robotics poses a great chal-
lenge. Enabling concurrency in a robotic system requires its
software to support concurrent execution. Traditional concur-
rent programming techniques such as standard ”threading li-
braries” do not, however, offer any safety guarantees. Hence,
the programmer must write concurrent programs carefully to
avoid common pitfalls of concurrency such as data races and
deadlocks. Consequently, most robotic software make only
elementary use of concurrency or avoid it all together.

This paper introduces Roboscoop, a new robotics frame-
work based on Simple Concurrent Object Oriented Program-
ming (SCOOP). Unlike standard approaches that are complex
and error-prone and require additional qualifications, SCOOP
makes concurrency simple and safe. SCOOP is free of data
races by construction. Built on top of SCOOP, Roboscoop en-
ables programmers to express robot’s behaviors in a natural
way without worrying about the program’s safety. In addition
to SCOOP’s concurrency and synchronization mechanisms,
Roboscoop provides a library support for robotics, Behavior-
Signaler-Controller design for coordination of tasks, and
infrastructure for integration with external frameworks. We
demonstrate Roboscoop’s simplicity by comparing it to ex-
isting middlewares and present Roboscoop in education that

enables even novice programmers to program concurrent
robotic software. Current Roboscoop contains behaviors and
tools necessary for the operation of differential drive robots
and has been tested on two different robots.

This paper is organized as follows: After presenting related
work in Section II, the paper presents the core of Roboscoop
framework in Section III. Section IV presents an example of
using Roboscoop for the task of exploring an unknown area.
Section V compares Roboscoop against other middlewares
and also presents an evaluation of Roboscoop in education.
The paper concludes with final remarks in Section VI.

II. RELATED WORK

In the last decade, many middlewares have been pro-
posed to ease the development of robotic coordination and
control. Some of the more popular middlewares include
Urbi [3], MOOS [4], Microsoft Robotics Developer Stu-
dio [5], ROS [6], and LCM [7]. Two recent surveys [8], [9]
provide a comprehensive overview and comparison of mid-
dlewares. In addition, the related work section of MIRA [10]
provides a compact survey of middlewares with the largest
impact. Here, we highlight how they compare to Roboscoop.
Section V-A presents a more-detailed comparison.

Mission Orientated Operating Suite (MOOS) uses
store/fetch mechanism for message-passing. Robot Operat-
ing System (ROS) uses a combination of publish/subscribe
and service-based message-passing models. The Lightweight
Communications and Marshalling (LCM) utilizes only a pub-
lish/subscribe message-passing model and additional mar-
shalling tools to support low-latency applications. MIRA,
a recently introduced robotics middleware with a focus on
performance, also uses publish/subscribe message-passing
model and supports multi-threaded accesses through slots.
While all these middlewares concentrate on the inter-process
communication, Roboscoop does coordination and concur-
rency on the level of a single application. MOOS, ROS,
and LCM applications can be written in general-purpose
languages such as C++ and Java, and their application
support for concurrency is limited to the standard ”threading
library” approach. On the contrary, Roboscoop provides the
language support for concurrency.

ROS SMACH [11] is a ROS-independent Python library
for building hierarchical state machines for specifying mod-
els of complex robotic behavior. SMACH supports parallel
execution of state behaviors, but its applicability is limited to

scenarios where all possible states and state transitions can
be described explicitly. Concurrency in SMACH is bound
to the language support, more precisely, to Python threads.
Roboscoop’s concurrency is based on SCOOP that offers
simpler and safer concurrency than Python threads.

Microsoft Robotics Developer Studio (MRDS) is a .NET-
based robotics programming environment that uses the Con-
currency and Coordination Runtime library for parallelism.
Based on .NET, the library manages asynchronous parallel
tasks through message-passing. Unlike MRDS that intro-
duces work items, Roboscoop does not have to introduce
any additional intermediate abstractions for concurrency. In
Roboscoop, concurrency can be reached on the object level.

Urbi is a software platform for robotics, which along with
the C++ support brings urbiscript [12] - a parallel event-
based object-oriented script language. Urbiscript and SCOOP
go in the same direction by providing tools for coordination
and concurrency on the language level. Their difference lies
in their complexity. For concurrency, urbiscript introduces
a set of unmatched additional mechanisms and syntactic
extensions to the language while SCOOP introduces only
one additional keyword.

In addition to middlewares, some languages have also been
proposed for robotics. Concurrent C [2] provides concur-
rency on top of a general-purpose language and has been
proposed for usage in robotics. SCOOP’s advantage over
non-object-oriented concurrency languages such as Con-
current C is its ability of reasoning about different robot
components as programming objects. This results in more
modular design and reusable applications. As a general-
purpose language, SCOOP provides more flexibility than
domain-specific languages. For instance, Task Description
Language [13], based on the task tree data structure, has
nodes that can contain only commands, goals, monitors,
or exceptions. SCOOP used in Roboscoop retains its full
flexibility of a general-purpose language.

The Roboscoop framework builds on top of the work by
Ramanathan et al. [14]. The authors presented a controller
for hexapod using SCOOP. Roboscoop is an extension of
SCOOP’s concurrent coordination into a full-fledged robotics
framework. In addition to SCOOP, it provides a library
support for building up robotic behaviors, Behavior-Signaler-
Controller design for task coordination, and communication
infrastructure for integration with the external frameworks.

III. ROBOSCOOP FRAMEWORK

The Roboscoop framework is a set of classes and program-
ming tools that aims to ease the development of robotics
applications. The framework is composed of three parts –
Roboscoop, SCOOP, and C/C++ externals – as shown in
Figure 1. Roboscoop contains a library that provides a set
of primitives and tools for coordination of different robotic
behaviors. SCOOP is the base language of Roboscoop and
gives Roboscoop the power of concurrency and synchroniza-
tion. C/C++ externals enables Roboscoop users to integrate
existing libraries in robotics. This section describes the three
components of Roboscoop in detail.

• Library (set of primitives and tools
for their coordination)

• Integration with other robotics frameworks
Roboscoop

• Object-Oriented Structure

• Synchronization

• Concurrency
SCOOP

• Calls to external libraries providing
communication, navigation, image processing,
coordinate transforms, visualization, …

C/C++
Externals

Fig. 1: The Roboscoop framework structure

A. SCOOP – Simple Concurrent Object Oriented Program-
ming

SCOOP model [15], [16] is an extension of a standard
sequential object-oriented model, Eiffel, and the Design
by Contract paradigm [17] to support concurrency. The
model provides a higher level of abstraction through object-
orientation and minimizes common concurrency-specific
mistakes. Programmers using SCOOP can represent, for
instance, various parts of a robot as objects and manipulate
them concurrently without the burden of threads. SCOOP
eliminates data races by construction.

Every object in SCOOP is associated with a certain
processor called its handler, for the object’s entire lifetime.
Contrary to CPU, SCOOP processor is just an abstract
independent unit of control and is typically implemented as
a thread. Only the object’s handler is allowed to execute
features, i.e, a set of possible actions, on the object. Each
object has exactly one handler, but a single processor can
handle multiple objects. When two objects are handled by
different processors, they are called separate to each other.
separate objects can operate concurrently.

Because features of a separate object can only be executed
by its own handler, it may seem that the handler is not
allowed to execute features on other separate objects. But if
in the scope of the current object (client), there is a need to
call some feature on a separate object (supplier), the client
can ask the supplier to execute it on its behalf. Such a call is
named a separate call and it can be executed asynchronously.

An object can be separate or non-separate. To distinguish
between the two semantics in SCOOP, the separate keyword
is used in object’s type declaration. If the declared object has
a separate type, it indicates that it may reside on a different
processor relative to the current object. separate type is also
used for arguments in a feature’s signature to denote the
intention of a separate call.

The following example illustrates how SCOOP can co-
ordinate robotic eyes of a humanoid to look at a moving
ball. We assume that the robot is equipped with a camera
that provides the ball’s location. In the example, left eye ,
right eye , ball and the current object are separate objects
and hence have different handlers:

look (left eye , right eye : separate EYE; ball : separate BALL)
require

ball . is visible
left eye . is ready and right eye . is ready

local
position : POINT 3D

do
position := ball . position
left eye .move (position)
right eye .move (position)

end

The above code contains several Eiffel keywords –
require, local , do, and end – and a SCOOP keyword,
separate. The require clause contains the precondition,
conditions that must be satisfied before the body of look
(in do clause) can be executed. In the above example, the
call will not be executed until ball is visible and both
left eye and right eye are ready to be actuated. To ensure

this, SCOOP runtime waits until this condition is True; this
synchronization mechanism is known as wait conditions.

Another synchronization mechanism, named wait by ne-
cessity, helps the synchronization of execution inside the
body of a routine. When the current object requires the
result of a separate call for further computation, its han-
dler automatically waits at the point where the separate
call returns the result; need for the results necessitates the
waiting. A similar idea was also recently introduced in other
modern programming languages including C++ and Java
with the notion of futures . Unlike C++ and Java, SCOOP
does not require programmers to introduce any additional
constructions or auxiliary objects to support this type of
synchronization. In the example, wait by necessity forces the
execution to wait for the result of ball . position to be stored
in the local variable position before proceeding. Once the
value is stored in position , calls of the move feature can be
executed asynchronously on both left eye and right eye ,
causing the eyes move simultaneously.

SCOOP’s concurrency mechanism, separate calls, and
synchronization mechanisms, wait conditions and wait by
necessity, allows programmers use concurrency to express
complex robotic behaviors in a natural way, without the pain.

B. Roboscoop

The core of Roboscoop is the Roboscoop library. Built
on top of SCOOP, the library uses SCOOP synchroniza-
tion mechanisms to enable concurrency and coordination in
robotic applications. Using the Roboscoop library, program-
mers can create various robot behaviors easily and coordinate
these behaviors in a natural way. The Robscoop library
achieves concurrency and coordination as follows:

Concurrency

Concurrency in Roboscoop is simple and fine-grained.
Writing concurrent programs in Roboscoop does not require
programmers to create or manage threads and synchroniza-
tion primitives such as mutexes or semaphores. Declar-
ing separate types and applying aforesaid synchronization
mechanisms are sufficient to make code concurrent, enabling
programmers to concentrate on the robotics issues instead.
In addition, SCOOP model enables Roboscoop to achieve
concurrency on the object level. In turn, programmers can
create fine-grained concurrent applications. The model also

shields programmers from data races providing an exclusive
access to the shared resources.

Coordination

Roboscoop coordinates robotic behaviors through the in-
teraction among behaviors, signalers, and controllers. Be-
havior defines tasks a robot performs. Signaler contains
information about the state of particular subsystems, e.g.,
robots, sensors, actuators, behaviors, etc. Controller controls
actuators based on the behavior and the state of sensors.
The Behavior-Signaler-Controller interaction is crucial to the
coordination of robotic behaviors in Roboscoop.

0..*0..*

1..*

0..*1..*

1..1

Fig. 2: The relationship among behavior, signaler, and con-
troller. A behavior is associated with one or more controllers
and zero or more signalers. A controller, in turn, is associated
with one or more signalers.

Figure 2 shows the interaction among the three com-
ponents graphically. Behavior handles high-level sophisti-
cated robotic tasks. As a single programming unit, behavior
coordinates multiple simultaneously-operating controllers to
perform a particular task. Signaler contains information
about the current state of other components such as sensor
data or behavior’s state. When a signaler is used in the
precondition of a feature, it enables the feature to synchro-
nize the execution when the desired conditions are satisfied.
Controller implements low-level coordination tasks and is
in charge of controlling actuators based on sensor data and
state of the algorithm. Coordination in Roboscoop works by
behavior objects creating, launching, and orchestrating their
controller objects when the signalers are in desired states.
Section IV presents a concrete example that illustrates the
Behavior-Signaler-Controller interaction.

Structure

The Roboscoop library is organized into subclusters – sets
of classes. Each subcluster is responsible for one type of
functionality. The most important subsclusters are as follows:

• SIGNALER: Signaler subcluster contains commonly used
Signaler classes. Exemplary classes in the subcluster
include STOP SIGNALER that indicates whether or
not some particular task was requested for a stop,
and ODOMETRY SIGNALER that contains odometry-
related information, i.e., position and orientation in
space and current speed and speed-related features.

• BEHAVIOR: Behavior subcluster contains several sim-
ple Behaviors for differential drive robots. Exemplary
classes in the subcluster include WANDER BEHAVIOR
and TANGENT BUG BEHAVIOR, an implementation of
the tangent bug algorithm [18].

(a) SmartWalker – the robot for
ambient assisted living (AAL)

(b) Educational robot Thymio-II
with PrimeSense RGBD sensor

Fig. 3: Roboscoop demonstrators

• CONTROLLER: Controller subcluster contains con-
trollers for the behavior subcluster. Basic controllers
such as PID CONTROLLER are collected here.

• COMMUNICATION: Communication subcluster provides
resources for communication with robots. Classes in this
subcluster send commands to robots and receive neces-
sary data back. This subcluster also contains functional-
ity for Roboscoop to integrate with external frameworks.

• UTILS: Utils subcluster contains useful tools for creating
non-standard behaviors such as non-linear behavior or
event-based behavior. For instance, the timing tools in
the subcluster enable delayed and repeated invocation.

C. Interoperability

The underlying Eiffel’s support for C/C++ external calls
eases the integration of external libraries and other frame-
works into Roboscoop. Programmers using Roboscoop can
use functionality of existing external C/C++ solutions such
as image processing libraries without losing the benefits of
Roboscoop’s easy concurrency and coordination; applying
external calls on a separate object can easily make it parallel.

Current version of Roboscoop is integrated with ROS and
can communicate both ways (publishing and subscribing)
with ROS-based applications. Any robot with ROS interface
can therefore be programmed using Roboscoop.

The Roboscoop framework has already been used in a real-
life setup for two different robots (see Figure 3): in ambient
assisted living (AAL) and in education.

IV. EXAMPLE

This section demonstrates how to develop robotic appli-
cations with Roboscoop. We assume that our robot is a
differential drive robot equipped with forward and ground
sensors to detect obstacles in the front and distance to the
ground, respectively. The task is to explore an unknown
area. To accomplish this task, our robot must go straight
when there is no obstacle in front, turn when there is an
obstacle, and stop when there is a hole in the ground. We
implement the task of exploring an unknown area in class
EXPLORATION BEHAVIOR.

The EXPLORATION BEHAVIOR class contains three sep-
arate SIMPLE CONTROLLER objects, each object respon-
sible for one type of control – going straight, turning to

avoid obstacles, or stopping. It launches the controllers
asynchronously to achieve the desired behavior.
class EXPLORATION BEHAVIOR feature

ctrl a , ctrl b , ctrl c : separate SIMPLE CONTROLLER

start
do

launch (ctrl a , ctrl b , ctrl c)
end

launch (a , b , c : separate SIMPLE CONTROLLER)
do

a . go straight
b . turn to avoid obstacles
c .stop on emergency

end

The SIMPLE CONTROLLER class has references to the
objects of the separate types ODOMETRY SIGNALER ,
RANGE SIGNALER and ROBOT and use them as ar-
guments for the separate calls. SIMPLE CONTROLLER
also implements go straight , turn to avoid obstacles , and
stop on emergency features. These features continuously call
go, turn and stop with aforementioned separate arguments.

Figure 4 shows the object diagram of our example. All ob-
jects are separate and thus can execute calls asynchronously.
All three SIMPLE CONTROLLER objects can access the ob-
jects of ODOMETRY SIGNALER, RANGE SIGNALER, and
ROBOT through separate calls.

bvr:EXPLORATION_BEHAVIOR

ctrl_a: SIMPLE_CONTROLLER

ctrl_b: SIMPLE_CONTROLLER

ctrl_c: SIMPLE_CONTROLLER

ctrl_a: SIMPLE_CONTROLLER

odom_signaler: ODOMETRY_SIGNALER

range_signaler: RANGE_SIGNALER

robot: ROBOT

ctrl_c: SIMPLE_CONTROLLER

odom_signaler: ODOMETRY_SIGNALER

range_signaler: RANGE_SIGNALER

robot: ROBOT

ctrl_b: SIMPLE_CONTROLLER

odom_signaler: ODOMETRY_SIGNALER

range_signaler: RANGE_SIGNALER

robot: ROBOT

odom_signaler:

ODOMETRY_SIGNALER

robot: ROBOT

range_signaler:

RANGE_SIGNALER

Fig. 4: Each object in the diagram is separate. Thick curvy
lines show the borders between SCOOP processors. The be-
havior object (on the left) coordinates three controller objects
(in the middle). Each of the controllers uses information from
the signalers for actuating the robot (on the right).

The go straight feature makes the robot move forward at
a constant speed if 1) the robot is not moving, 2) the ground
has no hole, and 3) there is no obstacle in front of the robot.
The three requirements are easily translated into precondition
in the feature go as shown below:
go (odom sig: separate ODOMETRY SIGNALER;

range sig : separate RANGE SIGNALER; robot: separate ROBOT)
require

not odom sig.is moving −− 1)
not range sig . has ground hole −− 2)
not range sig . has obstacle −− 3)

do
robot . apply default speed

end

The turn to avoid obstacles feature makes the robot turn
if 1) the robot is moving, 2) the ground has no hole, and
3) the robot detects an obstacle in front. As before, the
requirements are translated into preconditions naturally:

turn (odom sig: separate ODOMETRY SIGNALER;
range sig : separate RANGE SIGNALER; robot: separate ROBOT)

require
odom sig.is moving −− 1)
not range sig . has ground hole −− 2)
range sig . has obstacle −− 3)

do
if range sig . is obstacle left then

robot . turn right
elseif range sig . is obstacle right then

robot . turn left
end

end

The implementation of the stop feature is also simple and
natural. The robot must stop if 1) it is moving, and 2) the
ground has a hole.

stop (odom sig: separate ODOMETRY SIGNALER;
range sig : separate RANGE SIGNALER; robot: separate ROBOT)

require
odom sig.is moving −− 1)
range sig . has ground hole −− 2)

do
robot . stop

end
end

The code snippets demonstrate how roboscoop ensures a
close correspondence between the behavioral requirements
and the SCOOP preconditions. It eases the translation of
desired behavior into code and simplifies the coordination.

Canceling approach

The EXPLORATION BEHAVIOR can coordinate different
possible control algorithms for autonomy, but it is sometimes
necessary to interact with the robot directly. One such a situ-
ation is interruption/cancellation of an ongoing process. The
STOP SIGNALER class fulfills just the role. Programmers
can easily apply the cooperative cancellation mechanism
using a separate object of type STOP SIGNALER.

To be interruptible, the controller must be aware of the
state of stop signaler . This can be achieved by using the
precondition as shown below:

stop signaler : separate STOP SIGNALER

start cancellable control
do

from until stop requested (stop signaler) loop
control (example signaler , stop signaler)

end
end

control (b: separate SOME SIGNALER; s: separate STOP SIGNALER)
require

b . is ready or s . is stop requested
do

if (not s . is stop requested) then
robot . execute reactive control

else
robot . stop smoothly

end
end

stop (s : separate STOP SIGNALER)
do

s . set stop requested (True)
end

The control feature waits until the robot is ready to be
controlled or stop is requested. If no stop is requested and the
robot is ready, it performs its usual control. Otherwise, if stop
is requested, it stops the robot smoothly. After starting the
cancellable control, all we need to do to cancel the execution
is to call stop feature with stop signaler as an argument.
This approach of stopping an execution can also be used to
handle other types of interruption such as user-interaction or
a timer.

V. EVALUATION

The main features of Roboscoop are its simplicity and
usability. We demonstrate the framework’s simplicity and
usability by comparing it with other approaches and reporting
students’ experience with Roboscoop in educational context.

A. Comparison to other approaches

We compare SCOOP, Roboscoop’s base language, with
C++ with boost library [19] and urbiscript [12]. Boost is
a popular C++ library with concurrency support and is
extensively used in many robotics middlewares including
ROS. urbiscript is the base language for Urbi, a robotics
framework with concurrency support. The comparison of
these languages is on mechanisms or syntactic support for
parallelization and coordination using events.

First comparison is on parallelization. Let us consider a
task of commanding a robot to lift its arm and bending its
leg simultaneously. A program that accomplish such a task
can be written in C++ with boost as follows:
boost :: thread a thread , l thread ;
a thread = boost :: thread(&Arm:: lift , &arm);
l thread = boost :: thread(&Leg::bend, &leg);

In this example, lift method of the class Arm and bend
method of the class Leg will be executed simultaneously,
each by a separate thread. The problem is that the thread
objects have to be managed manually. To facilitate this issue,
recently async syntax was announced in C++11. async con-
structions automatically create and spawn threads allowing
tasks be executed asynchronously:
auto a = std :: async(launch :: async , &Arm:: lift , &arm);
auto b = std :: async(launch :: async , &Leg::bend, &leg);

Unfortunately, neither C++ cases guarantee that the exe-
cution will not be interrupted by the other threads accessing
the same arm or leg objects. The only way to prevent the
data race is by using, for example, mutexes.

urbiscript uses special connectors, ”,” and ”&”, for con-
currency in addition to the standard sequential ”;” connector.
The ”,” connector launches the first statement in background,
and immediately proceeds to executing the next statements.
The ”&” connector is similar to ”,”, but it ”waits” for all the
statements to be known to start their concurrent execution.
The same program of lifting a robotic arm and bending a
robotic leg can be written in urbiscript as follows:

{
{arm. lift },
{leg .bend},

};

urbiscript’s code is much simpler than C++ one, but the
above syntax is only valid for behaviors composed only of
special connectors. For instance, dynamically-created jobs
cannot be composed only of special connectors, and for
such behaviors, urbiscript requires the detach function, which
serves a similar role to C++ threads. The detach function
takes a block of code that will be run in its own thread of
execution and returns a handle to the job. In addition, just as
in C++, the above code gives no guarantee against data races.
To provide mutual exclusion in urbiscript, Mutex objects
must be used. Mutex in urbiscript is a particular use case
of the Tags mechanism, where statements and code blocks
can be tagged and then manipulated by the corresponding
Tag objects. Tags feature urbiscript with ability to interrupt
execution of the tagged code safely. Tags also introduce
additional useful events which arise every time when entering
and leaving tagged sections. Mutex objects exploit these
events to turn tagged code blocks into the critical sections.
The following urbiscript snippet ensures mutual exclusion
for the shared resources by tagging particular pieces of code
to Mutex objects.
var control arm = Mutex.new;
var control leg = Mutex.new;
{

control arm : {arm. lift },
control leg : {leg .bend},

};

In SCOOP, separate objects and separate calls enable
concurrent execution. In addition, SCOOP is free of data
races by construction. As a result, SCOOP’s code for the
same task of lifting a robotic arm and bending a robotic leg
is simple as urbiscript’s but with a guarantee of no data race:
move limbs (arm: separate ARM; leg: separate LEG)

do
arm. lift
leg .bend

end

The ”wrapper” routine, move limbs, reflects a program-
mer’s intention to run arm and leg concurrently. SCOOP
guarantees the ”wrapper” an exclusive control over its
separate arguments. This guarantee prevents the execution
from data races, which means there is no need to use mutexes
in SCOOP unlike in C++ or Urbi. If separate calls require
synchronization, wait by necessity mechanism described in
Section III-A can be used.

More complex and interactive robotic behaviors require
the robot to react to various events. In this second compari-
son, we discuss how the three languages support coordination
using events as an example. In event-driven programming
style or paradigm, external actions, i.e., events, determine
the execution flow, where an event can be a sensor value
or a message from other threads among others. When an
event occurs, associated callback functions or event handler
functions are triggered. This process repeats for every event.

In C++, a handler can be subscribed for a particular
signal (event) using the function connect. After the signal is
emitted, the handler is automatically called. For example, a
program that commands a robot to go to the charging station
when its battery is low can be written in C++ as follows:
int main () {
signal<void ()> lowChargeSignal;
lowChargeSignal.connect(bind(&Robot::goToChargingStation, &robot)) ;
while (chargeLevel >= 0.2) { sleep (1) ; }
lowChargeSignal() ;
}

As the example code illustrates, the C++’s interface for
handling events is cumbersome. Moreover, it requires addi-
tional constructions if events are represented as conditions.

urbiscript supports events in two ways: event objects and
”conditional” events. urbiscript’s mechanism for creating an
event object for explicit event-handling is similar to the
C++. The process requires three steps: defining an event,
specifying its handlers, and emitting the event. In urbiscript,
Event class serves this role; in SCOOP, EVENT class does
the same.

To handle ”conditional” events, urbiscript introduces at
construct. SCOOP, on the other hand, utilizes its built-in
structure. SCOOP’s wait condition expresses the necessity
for the feature application to wait to execute until the
precondition clause (conditional expression) holds. The task
of a robot going to its charging station when its battery is
low can be written in urbiscript as follows:
at (chargingLevel < 0.2) {

robot .goToChargingStation;
}

In SCOOP, the same task can be implemented elegantly
inside the require clause. As a SCOOP’s synchronization
mechanism, wait condition ensures that the robot goes to
the charging station only when its battery is low:
go charging (b: separate BATTERY SIGNALER)

require
b . charging level < 0.2

do
robot . go to charging station

end

As we have illustrated, C++ mechanisms for concurrency
and coordination leave a lot of low-level flexibility for
programmers, therefore require to do many things by hands.
As the complexity of robotic systems grows, following every
detail of threads’ interaction will become insurmountable.
urbiscript and SCOOP overcome this challenge with their
built-in support for concurrency.

The key difference between urbiscript and SCOOP is their
complexity. To introduce concurrency, urbiscript requires a
set of unmatched additional mechanisms and syntactic exten-
sions to the language. SCOOP handles concurrency with only
one additional keyword: separate. It retains natural modes
of reasoning about programs where correctness conditions
for sequential applications become wait conditions in case
of concurrency. SCOOP provides a more solid and coher-
ent solution because the programming model answers both
concurrency and coordination issues. This, in turn, makes

Roboscoop a better environment for design, development,
and maintenance of robotic applications.

B. Roboscoop in education

Roboscoop’s simplicity and ease-of-use make it a great
framework to teach software engineering and robotics. To
evaluate its potential in education, we used the framework
in our multidisciplinary, master’s-level robotics programming
course. Our students used the Roboscoop framework to co-
ordinate different behaviors of Thymio II [20], an education
robot with a differential drive (shown in Figure 3b). The
course had 11 students – six ME students, four CS students,
and one EE student. Mechanical engineering students had
limited programming experience, knowing only one language
(C, Java or Matlab) and having programmed no more than
class assignments. Out of 11, only three students had prior
exposure to Eiffel, the base language of SCOOP. Despite the
limited experience of the students, most students managed to
learn and program in Roboscoop after a single assignment,
equivalent to roughly 40 hours of work. With the standard
”thread libraries”, only the most experienced students of
computer science could achieve similar level of concurrent
programming in the same time frame.

At the end of the semester, we asked the students to com-
ment on their experience with Roboscoop. A majority of the
students reported the framework is intuitive to understand.
Only four students found the framework unintuitive, but three
of the four stated that the difficulty stemmed from their
inexperience with object-oriented programming. Once they
understood the concepts of object-oriented programming,
they did not face much difficulty understanding Roboscoop.
The fourth student reported that he found Roboscoop difficult
to use but did not elaborate further. While the evaluation is
based on a small group of motivated students, we believe
that it is indicative of the Roboscoop framework’s simplicity
and ease-of-use. To enhance our understanding of the frame-
work’s strengths and weaknesses, we plan on conducting a
broader study with more users.

VI. CONCLUSION

This paper presented the Roboscoop framework and
demonstrated how its underlying SCOOP programming
model allows for easy and natural use of concurrency in
robotics. The paper proved that Roboscoop is a suitable
solution for solving coordination issues in robotics and that
SCOOP, as a concurrency model, can scale up to the size
of a framework. A direct comparison to other middleware
shows that developing concurrent applications for robotics
with Roboscoop is easier and more natural. This claim is
supported by our evaluation of the framework in education,
where even novice programmers could use concurrency
without much effort.

Current Roboscoop supports differential drive robots and
contains behaviors and tools necessary for the operation
of these robots. Although performance, an important goal
of concurrency models, was not the main focus of this
work, Roboscoop showed itself suitable for two different

differential-drive robots, an education robot and a robotic
rollator. Future development of Roboscoop includes support
for more types of robots and the library extension to sup-
port more commonly-used behaviors and tools. We plan to
continue evaluating future versions of Roboscoop both in
education and in research.

Acknowledgments

We thank Sebastian Nanz, Benjamin Morandi and Alexey
Kolesnichenko for discussions on the Roboscoop archi-
tecture. This work was partially supported by the Hasler
Foundation through the Roboscoop project and by the Euro-
pean Research Council under the European Union’s Seventh
Framework Programme (ERC Grant agreement no. 291389).

REFERENCES

[1] Y. Kanayama, “Concurrent programming of intelligent robots,” in
Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, vol. 2, 1983, pp. 835–838.

[2] I. J. Cox and N. Gehani, “Concurrent C and robotics,” in 1987 IEEE
International Conference on Robotics and Automation (ICRA), vol. 4,
Mar 1987, pp. 1463–1468.

[3] J.-C. Baillie, “URBI: towards a universal robotic low-level pro-
gramming language,” in 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2005, pp. 820–825.

[4] P. Newman, “Moos - mission orientated operating suite,” Department
of Ocean Engineering, MIT, Tech. Rep., 2006.

[5] J. Jackson, “Microsoft robotics studio: A technical introduction,” IEEE
Robotics Automation Magazine, vol. 14, no. 4, pp. 82–87, Dec 2007.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in IROS, 2009.

[7] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight communi-
cations and marshalling,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct 2010, pp. 4057–4062.

[8] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
no. 2, pp. 101–132, Feb 2007.

[9] A. Elkady and T. Sobh, “Robotics middleware: A comprehensive lit-
erature survey and attribute-based bibliography,” Journal of Robotics,
Jan 2012.

[10] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H.-M. Gross, “Mira
- middleware for robotic applications,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012.

[11] J. Bohren and S. Cousins, “The SMACH high-level executive [ros
news],” Robotics Automation Magazine, IEEE, vol. 17, no. 4, pp. 18–
20, Dec 2010.

[12] J.-C. Baillie, A. Demaille, M. Nottale, and Q. Hocquet, “Tag: Job con-
trol in urbiscript,” in 5th National Conference on Control Architecture
of Robots, 2010.

[13] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in in Proceedings of the Conference on Intelligent Robots and
Systems (IROS, 1998.

[14] G. Ramanathan, B. Morandi, S. West, S. Nanz, and B. Meyer,
“Deriving concurrent control software from behavioral specifications,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2010.

[15] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-
Hall, 1997.

[16] P. Nienaltowski, “Practical framework for contract-based concurrent
object-oriented programming,” Ph.D. dissertation, ETH Zurich, 2007.

[17] B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, Oct. 1992.

[18] I. Kamon, E. Rimon, and E. Rivlin, “Tangentbug: A range-sensor-
based navigation algorithm,” The International Journal of Robotics
Research, vol. 17, no. 9, pp. 934–953, 1998.

[19] [Online]. Available: http://www.boost.org/
[20] [Online]. Available: http://www.thymio.org/

