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Mass extinction events (MEEs), defined as significant losses of species diversity in significantly short time periods, have attracted the

attention of biologists because of their link to major environmental change. MEEs have traditionally been studied through the fossil

record, but the development of birth-death models has made it possible to detect their signature based on extant-taxa phylogenies.

Most birth-death models consider MEEs as instantaneous events where a high proportion of species are simultaneously removed

from the tree (“single pulse” approach), in contrast to the paleontological record, where MEEs have a time duration. Here, we

explore the power of a Bayesian Birth-Death Skyline (BDSKY) model to detect the signature of MEEs through changes in extinction

rates under a “time-slice” approach. In this approach, MEEs are time intervals where the extinction rate is greater than the

speciation rate. Results showed BDSKY can detect and locate MEEs but that precision and accuracy depend on the phylogeny’s

size and MEE intensity. Comparisons of BDSKY with the single-pulse Bayesian model, CoMET, showed a similar frequency of Type II

error and neither model exhibited Type I error. However, while CoMET performed better in detecting and locating MEEs for smaller

phylogenies, BDSKY showed higher accuracy in estimating extinction and speciation rates.

KEY WORDS: Bayesian skyline birth-death model, diversification rates, episodic models, extinction, mass extinction events,

speciation.

Introduction
Mass extinction events (MEE) are distinguished in the pale-

ontological records as widespread, higher taxonomic group

extinctions (e.g., up to 96% of marine invertebrate species

became extinct during the largest, late Permian MEE; Raup

1979). An MEE is defined as a period where (i) the ratio

of the extinction rate μ over the speciation rate λ, aka the

turnover rate or background extinction, ε = μ

λ
, is larger than

1; and (ii) this period is less than one million up to about 15

∗Equal contributions

The authors declare no conflict of interest.

million years duration, dependent on the magnitude or intensity

of the MEE (Sepkoski 1982). This often results in an ecosys-

tem’s speedy decline and reordering (Gould 1994). MEEs are

monocyclic (irregularly cycling) and are generally recognized as

a resultant of abiotic changes (Sepkoski 1982; Jablonski 2008),

which are often compared to current-day greenhouse-induced

climate change (IPCC 2001). MEEs have been usually studied

from paleontological evidence (Raup 1979; Sepkoski 1982;

Jablonski 2008). High extinction rates, as those associated with

MEEs, can also leave an imprint on the timing and structuring

of cladogenetic events in phylogenetic trees containing only

extant taxa (Harvey et al. 1994). This has permitted a burgeoning
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Figure 1. Two examples of full (extant and extinct taxa) phylogenetic trees that contain 20 taxa at time t = 0 and have similar root ages.

The first tree has been affected by a MEE that is defined under the “single-pulse” scenario, and the second tree has been affected by a

MEE, defined under the “time-slice” scenario. Within these scenarios speciation rate, λ is assumed to be unchanged. In the “single-pulse”

scenario, the MEE is caused by a significant percentage of species being simultaneously and instantaneously removed from the tree, at

a specified time. In the “time-slice” scenario, the MEE is defined as a significant increase in the extinction rate, μ for a specific period of

time, where the turnover or background extinction rate, ε = μ
λ

> 1, followed with a decrease in μ that results in a return to ε < 1. In the

two trees, the “pre-MEE" μ is equal to “post-MEE" μ but this is not necessary.

of method development in the context of macroevolutionary

birth–death models for detecting the phylogenetic signature

of MEEs. Methodologically—within the birth–death model

framework—an MEE detecting model can be defined as either:

(i) a “single-pulse” model, in which a significant number or

percentage of species are instantaneously and simultaneously

removed from the phylogenetic tree at a specific point in time

t (Stadler 2011a; Fig. 1A); or (ii) a “time-slice” model, in

which there is a significant increase in the extinction rate μ

for a short time interval, with turnover rate ε > 1, followed

by a decrease in μ that returns ε < 1 in the next time interval

(Fig. 1B). The first definition, the single-pulse model, is the

one used more often in mathematical birth–death modeling

(Harvey et al. 1994; Stadler 2011b; Laurent et al. 2015;

May et al. 2016).

If a clade is associated with a sufficient fossil record, then

this record can be used to quantify the most probable number of

MEEs within the specific time period that spans the fossil data

(Raup 1979). However, most clades either possess an incomplete

fossil record or lack a fossil record entirely. Phylogenetic trees of

extant species can also be incomplete as a result of incomplete

extant species sampling, roughly defined as either: (i) a random

fraction of missing species in the phylogeny; or (ii) clades in the

phylogeny are collapsed to single tips due to higher taxonomic

sampling level. Constant-rate birth–death models can accommo-

date for such incomplete extant taxon sampling through the intro-

duction of a sampling parameter (Höhna et al. 2011; Stadler and

Bokma 2012). These constant-rate birth-death models have been

expanded to estimate speciation and extinction rate shifts through

time and search for the presence of possible MEEs in the past

(Stadler 2011c; Höhna 2014).

Stadler (2011b) introduced a birth–death model that is able

to detect the presence of rate shifts based on phylogenetic trees

containing extant taxa only. This model assumes discrete time in-

tervals during which the speciation and extinction rate is constant,

and the rates may change arbitrary between intervals (Stadler

2011b). Such changes may be due to time-slice MEEs or other

non-mass-extinction rate changes. The model can also be used

to detect instantaneous MEEs following the single-pulse model

defined above—points in time in which the standing diversity

is reduced by a significant fraction that is controlled by the

magnitude of the MEE, with the magnitude being defined as
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1 minus the survival probability of each species at the MEE (ρ).

Stadler’s birth–death model was implemented within a maximum

likelihood (ML) framework in the R package TreePar (Stadler

2011b), and used successfully to detect the timing of MEEs

in phylogenies that have a large to moderate number of ter-

minals (e.g., N > 200–500 taxa; Beaulieu and O’Meara 2015;

Laurent et al. 2015). Sanmartı́n and Meseguer (2016) found

that this model underperforms with relatively small phylogenies

(N < 50 taxa).

For phylogenetic trees that span millions of years, it is likely

they have been affected by rate shifts and single-pulse MEEs,

perhaps caused by global (climatic or geological) events (Lau-

rent et al. 2015). However, although Stadler (2011b)’s model

can be used in principle to estimate the timing and magnitude

of single-pulse MEEs from extant-only taxa, it remains diffi-

cult to simultaneously estimate the frequency of tree-wide rate

shifts in diversification and single-pulse MEEs due to issues of

parameter non-identifiability, i.e., when different combinations

of parameter values yield flat likelihood surfaces for part of the

parameter space (Rannala 2002). In fact, under a ML frame-

work, it remains impossible to distinguish between a constant

birth–death process with single-pulse MEEs and a process in

which diversification rates vary discretely over time because both

types of processes generate identical phylogenetic signatures and

have comparable likelihood functions (Stadler 2011b; Sanmartı́n

and Meseguer 2016). Hence, in TreePar, one of these parame-

ters must be fixed, for example, by assuming that μ and λ have

remained constant before and after the single-pulse MEE event,

or by fixing the intensity of the MEE before inferring the timing

and number of rate shifts (Stadler 2011b). Also, the algorithm

cannot estimate multiple rate shifts simultaneously; instead, it

uses a greedy approach where the time of one rate shift is esti-

mated and fixed before estimating the time of the next rate shift

(Stadler 2011b).

To overcome this overparameterization issue, May et al. 2016

introduced a Bayesian statistical inference approach to the single-

pulse MEE model, the Compound Poisson Process (CPP) on

Mass Extinction Times (CoMET), implemented in the R pack-

age TESS (Höhna et al. 2015). Bayesian inference is less prob-

lematic under overparameterization than equivalent likelihood-

based approaches due to the integration of parameter uncertainty

through estimation of marginal likelihoods. CoMET implements

a stochastic branching process model in which rates of specia-

tion and extinction are constant between rate shifts, and single-

pulse MEEs are modeled as tree-wide instantaneous extinction

events. Specifically, the method considers three types of events:

instantaneous tree-wide shifts in speciation rate, instantaneous

tree-wide shifts in extinction rates, and instantaneous tree-wide

single-pulse MEEs. Each of them is modeled through a separate

CPP, with waiting times distributed exponentially according to

event-specific rate parameters (May et al. 2016). To address the

problem of parameter non-identifiability in single-pulse models,

CoMET implements a hierarchical Bayesian approach in which

rate shifts in speciation and extinction are considered as “nui-

sance” parameters that are integrated over in the estimation of the

marginal posterior probabilities of the focal parameters: the time,

number, and the intensity (magnitude) of single-pulse MEEs. CPP

models themselves are sensitive to the choice of priors, which

means that in practice some parameters of the model, such as

the magnitude of the single-pulse MEE, are assigned informative

empirical priors (May et al. 2016).

Here, we examine a different type of approach, the “Bayesian

birth-death skyline” (BDSKY) model, first introduced by Stadler

and collaborators to trace temporal changes of epidemic spread

in an infectious disease (Stadler et al. 2013; Boskova et al.

2014). Stadler and collaborators (2013) used simulations to ex-

plore the power of the BDSKY model to detect changes in the

rate of becoming non-infectious, akin to time-slice MEEs in an

epidemiological context. In this study, we explore the power

of the BDSKY model to detect MEEs from species phyloge-

nies under a “time-slice” (paleontological) approach, that is,

through sequential changes in extinction rates, where a shift to

negative diversification rates and background extinction ɛ > 1

is followed—after a (geologically) short time interval—by a

return to positive diversification rates (Fig. 1B; Condamine

et al. 2013, cf. Fig. 4; May et al. 2016). Unlike in Stadler et

al. 2013’s phylogenies, which included serial sampling (tips of

different age) and were simulated under the BDSKY model, our

reconstructed species phylogenies included only contemporane-

ous tips and mass extinction events were simulated under the

single-pulse model. The aim was to assess the ability of BDSKY

as a statistical phylogenetic method for detecting and estimat-

ing the timing of MEEs through changes in the extinction rate

(“time-slice” approach), even when mass extinction is modeled

as an instantaneous event in the same manner as in TreePar and

CoMET.

We set up an extensive simulation study in which phylogenies

were generated under a constant-rate birth–death process with one

single-pulse MEE with intensity or magnitude 1– ρ. In these sim-

ulations, we sequentially varied different parameters to explore

their influence on the power of BDSKY to detect and estimate

the timing of MEEs: the survival probability of a species at the

time of the MEE (ρ); the number of tips or extant taxa in the phy-

logeny (N); and the magnitude of μ relative to λ or background

extinction (ε). We then compared the simulated values with the

marginal posterior probability distributions of the model param-

eters estimated under the BDSKY model by Bayesian MCMC.

Specifically, we aimed to answer the following questions: (i) Can

we detect the phylogenetic signal of a MEE in the extant phy-

logenetic tree through changes in the diversification rate? (ii) If
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we are able to identify the presence of a MEE, can we accurately

estimate the timing of that MEE? (iii) If we can identify and locate

the MEE, can we provide reasonable estimates for λ and μ pre-

and post-MEE?

In addition, we compared the performance of BDSKY against

CoMET (May et al. 2016), implemented in TESS (Höhna et al.

2015). We analyzed a subset of the simulated phylogenies above

and then compared the behavior of the two models in terms of

their frequency of Type I and Type II errors and their accuracy in

estimating the magnitude of speciation and extinction rates and

the timing of MEEs. Finally, we applied BDSKY to the conifer

phylogeny of Leslie et al. 2012, which was also analyzed under

CoMET by May et al. 2016, and therefore, provides a test study

to investigate the robustness of the two models with an empirical

dataset.

Material and Methods
SIMULATION DESIGN

The phylogenetic trees were simulated using the backward al-

gorithm implemented by the function sim.rateshift.taxa from the

TreeSim R package (Stadler 2011a). This algorithm simulates

birth–death trees with speciation rate λ, extinction rate μ, an

MEE at time t before the present, and survival probability of a

species at the MEE, ρ. Simulated trees were conditioned on a

fixed number of extant taxa (Stadler, 2011a).

All trees were simulated to include a single-pulse MEE

at time t, and assuming equal and constant rates of μ and λ

before and after the MEEs and across all clades in the phy-

logeny. Although the assumption of constant rates and rate

homogeneity across clades is empirically unsound (Rabosky

2014), using this constant birth–death process provides insights

into the ability to infer MEEs in the simplest scenarios, and

facilitates the comparison with other studies that examined

the power of episodic birth–death models for MEE estimation

(Laurent et al. 2015; May et al. 2016). Since we are interested

here in the power to detect MEEs through changes in extinc-

tion rates, λ was fixed to 0.2, whereas the rate of extinction was

allowed to vary across simulation scenarios. One hundred trees

were simulated for each of the following scenarios and (10) pa-

rameter combinations: varying background extinction rate ε (μ

= 0, 0.1, 0.18) with fixed number of extant taxa (N = 500) but

under different survival probability scenarios (ρ = 0.9, 0.5, 0.1),

and varying number of extant taxa (N = 100, 200, 500) and back-

ground extinction rate ε (μ = 0, 0.1, 0.18) but with fixed (low)

survival probability (ρ = 0.1).

We considered that all present-day species were included in

the phylogeny (i.e., taxon sampling was complete at present). The

MEE was simulated under a “field of bullets” scenario, where

all taxa have the same probability of becoming extinct (1– ρ),

which is often considered as the null model for mass extinction

scenarios (Raup 1979; Harvey et al. 1994; Laurent et al. 2015).

For each parameter combination, we set up a control or null

model corresponding to a scenario where there is no MEE (ρ =
1 at time t); again we simulated 100 trees for each parameter

combination with ρ = 1. In all, our simulation study included

2400 trees.

We selected varying values of t (the time of the single-pulse

MEE) for the varying values of μ, such that we could get a

comparable number of lineages at the time of the MEE in all

simulations (�4000 lineages; Fig. S1 and S2); in particular, we

chose t = 0.4
(λ−μ) . The final simulations were done with μ = 0.18,

t = 20; μ = 0.1, t = 4; and μ = 0, t = 2.

PARAMETER ESTIMATION UNDER THE BDSKY

MODEL

We used the BDSKY model implemented in BEAST v2.2.1

(Bouckaert et al. 2014) (http://beast2.org) to estimate the marginal

posterior probability distribution of the model parameters using

Bayesian MCMC for all simulated trees under the scenarios de-

scribed above and their corresponding controls. Some parameters

in the BDSKY model were set to fixed values: the simulated trees

were fixed (i.e., not estimated from sequence data); sampling be-

fore present was fixed to 0, as we have no serial sampling through

time (i.e., only the extant reconstructed tree is considered); and

extant species sampling was set to 1 as in the simulations. We

set the number of rate shifts to two, defining three time inter-

vals (pre-MEE, MEE, and post-MEE), and estimated the speci-

ation and extinction rates in each time interval, as well as the

two rate-shift times bounding the MEE time interval (i.e., the

time interval assumed to contain the MEE). We compared this

full BDSKY model, in which all free parameters are estimated,

against constrained BDSKY models, where some parameters are

fixed:

(1) Full model: All eight parameters were estimated: the two rate-

shift times bounding the MEE time interval and the values of

λ and μ in the pre-MEE, MEE, and post-MEE time intervals.

(2) Constrained-time model: The rate shift times were fixed to

±5% around the MEE (i.e., t ± 0.05 t), but μ and λ were

allowed to vary and estimated for each of the three time inter-

vals: [0, t − 0.05t), [t − 0.05t, t + 0.05t], (t + 0.05t, root age].

For example, for t = 20, these time intervals would be [0, 19),

[19, 21], (21, root age]; for t = 4, they are [0, 3.8], [3.8,4.2],

[4.2, root age)].

(3) Constrained-speciation model: The time interval around the

MEE was estimated (i.e., the rate-shift times bounding the

MEE interval) and μ was allowed to vary across time intervals,

but the speciation rate λ was estimated and assumed constant

(i.e., no speciation rate shifts allowed).
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Priors
We explored through initial analyses different prior distribution

choices available in BEAST2. These were set eventually to the

following: the extinction and speciation rates, μ and λ, were each

modeled with an “exponential” distribution (Exponential (0.25)).

The rate shift times for μ and λ in Models A and C were modeled

with a “uniform” prior distribution, with the lower boundary being

(root age of the tree) × 0.05 and the upper boundary equal to

(root age of the tree) × 0.95. In Model B, the parameters birth

Rate Change Times and death Rate Change Times were assigned

fixed values (see above). We used the forward-in-time approach

(reverseTimeArrays set to FALSE) for defining the time intervals

between the two rate shifts (Stadler et al. 2013). Thus, the first

time interval is the oldest interval in the phylogeny (pre-MEE); the

second interval is the time interval assumed to contain the MEE;

and the third interval is the youngest time interval (post-MEE).

The complete xml files used in the three analysis settings (models

A–C) are provided in Supporting Information SCRIPTS a. To

aid in the implementation of these analyses in BEAST2, we also

provide a new R function (that uses R packages TreeSim, picante,

and their dependents) to write the xml code necessary to run a full

or constrained BDSKY model for species trees, and example code

for running this function; see Supporting Information SCRIPTS

b–e.

Analysis
Each model was run to convergence, when the effective sample

size (ESS) for each estimated parameter reached a value equal

or larger than 200. MCMC runs that were unable to converge

after 1000 million generations were discarded but not replaced,

so the final number of analyzed simulated trees differed between

prior settings, although this was never lower than 86% (Support-

ing Information Table S1). We compared the performance of the

three BDSKY model settings (Models A–C) in terms of Type I

error or the percentage of false positives—detecting the presence

of a MEE when none was simulated—and Type II error or false

negatives—failing to detect the simulated MEE; the latter is equiv-

alent to 1 minus “power,” i.e., the proportion of trees analyzed

for which the method correctly detected the MEE. We defined

the detection of a MEE as the 95% High Posterior Density (HPD)

credibility interval for the diversification rate estimate (r = λ – μ)

being negative in the MEE time interval (and not containing 0),

followed by a return to positive diversification rates (and poten-

tially containing 0) in the third time interval. Hence, we defined

a new statistic to measure performance: HPDn is the percent-

age of simulated trees for which all values within the 95% HPD

for the diversification rate are lower than 0 (and the 95% HPD

for ε is fully above 1) in the MEE interval, and the 95% HPD for

diversification rate is fully above or containing 0 in the post-MEE

time interval. We also estimated the robustness of BDSKY under

each model setting in the estimation of the nonfixed parameters.

For each simulation scenario (with and without a MEE), we mea-

sured: the accuracy, the true (simulated) parameter value minus

the mean of the estimated parameter means for each tree; the

precision, the mean of the width of the 95% HPD interval across

all analyzed trees; and the coverage, the percentage of simulated

trees where the 95% HPD contained the true parameter value. In

particular, we focused on the ability of the BDSKY model to esti-

mate the posterior distributions of the parameters: diversification

rate (r), speciation rate (λ), and extinction rate (μ) in each time

interval, as well as the two rate-shift times bounding the MEE

time interval. For this interval, the true diversification rate can be

calculated with respect to the true mass extinction intensity and

the rates of λ and μ as:

True Diversification Rate in MEE interval =

λ − μ − 1 − ρ

length of time interval

The mass extinction rate s = (1−ρ)
length of time interval summarizes

the instantaneous mass extinction intensity. The rate s is obtained

by recalling that the probability for mass extinction is s × (length

of time interval) = (1−ρ) given that the time interval is short.

For those analyses in which rate shift times were not fixed

but estimated (Models A and C), we do not have a corresponding

true value. Instead, the MEE occurred at time t while we estimate

a time interval (t1, t2) during which the extinction rate exceeded

the speciation rate, signaling the presence of the MEE. In these

two models, precision was measured as the mean of the 95% HPD

interval of the time length (t1 – t2) across trees. Similarly, coverage

was measured as the percentage of simulations in which the 95%

HPD of the estimated time interval length (t1 – t2) contained the

true (simulated) time of the single-pulse MEE, t.

COMPARISON WITH THE SINGLE-PULSE COMET

MODEL

Simulation study
Because each analysis was time consuming, we made a ran-

dom selection of ten extant trees for each of the 10 parameter-

combinations, totaling 240 simulated trees. We conditioned

the CoMET model on taxa survival, and used the function

tess.analysis from TESS (Höhna et al. 2015) to estimate the num-

ber and magnitude of rate shifts in μ and λ and the number

of MEEs from the phylogeny (estimate Number Mass Extinc-

tions, estimate Mass Extinction Times = TRUE). We used default

parameter settings for the priors of the three independent CPP

processes: num Expected Mass Extinctions and num Expected

Rate changes for λ and μ were set to equal to two; this assigns

a 50% probability to zero MEEs and zero rate changes (Höhna

et al. 2015). A Beta (α = 5, β = 95) distribution was used as the

EVOLUTION JUNE 2019 1 1 3 7
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prior for the mass extinction survival probability, which assigns an

expected value of ρ = 0.1 (an MEE with 0.9 intensity). The prior

distributions for the speciation and extinction rates were estimated

using an empirical Bayesian approach with the function empir-

icalHyperPriors = TRUE. In this approach, a short preliminary

analysis is performed in CoMET under a constrained, constant

birth–death model to estimate reasonable values for the hyper-

prior distributions of λ and μ, which are then used in a longer

unconstrained CoMET analysis to estimate the marginal posterior

distributions of all parameters (May et al. 2016). As with BDSKY

above, we assumed complete taxon sampling at present (ρ = 1).

For each tree, the model was run until the ESS for every parameter

reached a value of 500. Bayes Factor comparisons were employed

to evaluate the marginal likelihoods of competing models for the

timing of the MEEs, with significance values following Kass and

Raftery (1995): BF > 2 (positive support), and BF > 6 (strong

support).

Empirical study
To compare the robustness of BDSKY and CoMET against a real

empirical dataset, we analyzed the conifer time tree of Leslie et al.

(2012: 342 taxa, 78% taxon sampling), which was also used in

May et al.’s 2016 study. For BDSKY, we ran models B and C,

setting the number of rate shifts to vary between two and five

to emulate CoMET in allowing for multiple sequential MEEs.

We also cut off (“masked”) part of the tree length by instructing

the model to start searching for a MEE after �6%, �11%, and

�18% of the tree root age (340 million years ago): 320, 300, and

280 million years ago; this was done in order to remove parts of the

tree with very little information regarding MEEs. The initial rate

shift values were set to be equally spaced across the tree length.

Prior distributions for μ and λ rates followed May et al. (2016,

cf. Supporting Information S14): a lognormal distribution with

an SD of 0.02 and mean = 0.09 for μ and 0.16 for λ. Analyses

were run until the ESS value reached 200 for each parameter;

analyses that did not converge after 1000 million iterations were

discarded. All data results from this study are deposited in the

public repository dryad, https://doi.org/10.5061/dryad.qv10c62.

Results
IMPACT OF PARAMETER SETTINGS IN SIMULATED

PHYLOGENIES

Figures S1 and S2 show the simulated trees—full (including ex-

tinct and extant taxa) and reconstructed (extant taxa only)—under

the different parameter-combination settings. Comparison of the

lineage-through-time (LTT) plots among scenarios reveals several

aspects that we expect from analytical considerations (e.g., Gern-

hard 2008). The background extinction (ratio of a varying μ over

constant λ) has a large influence over: the root age: as μ increases,

the root age in the full and reconstructed trees increases; the root

age variation: as μ increases, the variation increases; and on the

variation of the root age between the full and reconstructed trees:

as μ increases, this difference also increases.

PARAMETER ESTIMATION UNDER THE BDSKY

MODEL

We compare below the performance of the three BDSKY analyses

(Models A–C) in terms of how well they answer the questions

posited in the Introduction:

(1) Can we detect the phylogenetic signal of a MEE in the extant

phylogenetic tree through changes in the diversification rate?

Results from the control scenario (with no mass extinction,

ρ = 1) showed that the percentage of false positives or Type I

error was very low in the three models: HPDn values were 0

for all models (Model C: Fig. 2, Model A: Fig. S3, Model B:

Fig. S4). Precision and accuracy for estimates of the diversifica-

tion rate were best for Model C, followed by Model A (Table S2;

Fig. 2, Fig. S3); both models were also able to capture the true

simulated value within the 95% HPD interval in 100% trees (full

coverage, Table S2). The time-constrained Model B showed the

lowest values for accuracy, precision, and coverage, especially

in the first (pre-MEE) and second (MEE) intervals (Fig. S4 and

Table S2). The MEE interval is most likely too short, containing

a very low number of nodes, and thus the method cannot detect

any significant result for that time interval.

The percentage of false negatives or Type II error in trees sim-

ulated under varying levels of MEE survival probability (ρ) was

highest for Model B, which showed no significant decrease in di-

versification rate in the MEE time interval (i.e., HPDn was always

0, Table S2), irrespective of the value of extinction μ (Fig. S4).

Accuracy, precision, and coverage for Model B were also the low-

est among the three models when ρ < 1 (Table S2). Because of

this failure to detect the MEE under varying settings, Model B

was discarded and will not be further commented upon. Between

the other two models and for the high-intensity mass extinction

scenario (ρ = 0.1) and N = 500, Model C (constrained-speciation)

showed the highest power in detecting the MEE irrespective of

the value of μ: it returned negative values for the diversification

rate in the MEE time interval, with a rebound to positive values

in the third interval (Fig. 2), an indication of the ability of this

model to detect the MEE. Even when the coverage was 0 (the

true value was not contained within the 95% HPD interval), as

in the case of μ = 0, the model returned a negative value for

the diversification rate in the MEE time interval in 84% of the

trees that did converge (HPDn = 0.84, Table S2), and this per-

centage became higher with increasing values of μ (93%, 97%).
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Figure 2. Detection of MEEs under the BDSKY Model C through sequential changes in the magnitude of the diversification rate

(diversification = λ – μ) under varying levels of μ and mass extinction survival probability, ρ. The red line represents the true (simulated)

value; this has been adjusted for ρ = 0.1 in the MEE time interval to reflect the effect of the MEE (see text). The boxplots show the

variance in the estimated value across simulated trees, depicting the mean of the means of all trees (thicker dark line), the 75–24%

interquartile ranges (shaded box) and the post extreme data points (whiskers). Notice that in the high-extinction scenario (ρ = 0.1), the

diversification rate becomes negative in the second time interval, followed by recovery to positive values in the next interval, signaling

the presence of the MEE (μ > λ), but that this change is not observed in the control scenario (with no mass extinction, ρ = 1). Figures S3

and S4 show the same results for Models A and B, respectively.

Accuracy, precision, and coverage also increased with higher val-

ues of μ, and were the highest for μ = 0.18 (Fig. 2, Table 1).

As expected, the percentage of false negatives (i.e., failing to

detect the MEE) increased as the mass extinction intensity (1 – ρ)

decreases (Fig. 2), with HPDn values generally close to zero for

ρ = 0.5 and ρ = 0.9 (Table 1). Accuracy, precision, and coverage

were lower for ρ = 0.5 than for ρ = 0.1 (except for the MEE

interval with μ = 0), whereas ρ = 0.9 showed values very similar

to the null model (Table 1). Similarly, a lower number of extant

taxa in the reconstructed phylogeny (N) translates into a decrease

in the power to detect the MEE, especially for μ = 0 (Fig. 3).

The full parameterized Model A (Fig. S3) performed worse

than Model C, showing HPDn values close to zero (Table S2).

A trend toward negative values can be observed for the scenario

with the lowest MEE survival probability (ρ = 0.1) and N = 500,

signaling the presence of a MEE (Fig. S3). But precision and

coverage were considerably worse than in Model C (broader 95%

HPD intervals, Table S2), and accuracy was also lower (Table S2).

The ability of the model to detect the MEE was similarly low for

higher values of ρ (0.9, 0.5, Fig. S3) and smaller values of N (100,

200; Fig. S5).

(2) Can we accurately estimate the time interval of the MEE from

an extant phylogenetic tree? Figure 4 shows that Model C

performed well in estimating the time of the rate shifts bound-

ing the MEE interval within which the MEE was expected to

occur, for the high-intensity scenario (ρ = 0.1) and varying

values of μ. Coverage was always equal to 1, and 95% HPD

1 1 4 0 EVOLUTION JUNE 2019
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Figure 3. Detection of MEEs through interoperating changes in the magnitude of the diversification rate in Model C under varying

levels of N (number of taxa). All other conventions follow Figure 2.

intervals (precision) were narrow, especially for μ = 0 and 0.1

(Table 1). However, this power notably decreases with higher

values of MEE survival probability: the variance in the two

rate shift estimates pre- and post-MEE overlaps across age

values for ρ = 0.9 and ρ = 0.5 (Fig. 4), indicating the failure

of the model to capture the rate shift times under low-intensity

MEE scenarios. Likewise, for N < 500, the model is unable

to estimate the MEE time interval with any accuracy or pre-

cision (Fig. S6). For the null model (ρ = 1), the time length

covered by the variance in these estimates (boxplots in Fig. 4)

spans the entire range of root ages across simulated trees, as

can be expected in the absence of a MEE. The full Model A

(Figs. S7 and S8) again performed worse than Model C in

terms of precision and coverage (Table S2): it failed to esti-

mate the rate shift times bounding the MEE for any parameter

combination of μ and ρ (Fig. S7), as well as for the low values

of N (100, 200; Fig. S8).

(3) Can we provide reasonable estimations for λ and μ pre- and

post-MEE? Since Model C was the only model that could

successfully detect and estimate the time interval of the MEE

(for N = 500 and ρ = 0.1), we focus here on this model to

evaluate the performance in parameter estimation of μ and λ.

Figure 5 shows the variance in the estimates of λ and changes

in the magnitude of μ across the three time intervals, for different

simulation scenarios. Estimates of λ were good across varying

settings of μ and ρ, especially regarding accuracy and preci-

sion (Table 1); coverage was lower for low values of extinction

(Table 1). Estimates of λ were also good for the control scenario

in terms of accuracy, precision, and coverage (Table 1).

For estimates of μ, in general, the best results were obtained

with the low mass extinction survival probability scenario (ρ =
0.1), especially for the pre- and post-MEE time intervals, and

for scenarios with moderate (μ = 0.1) or high (μ = 0.18) back-

ground extinction. For μ = 0, the coverage (95% HPD containing

the true value) was very low (Table 1; true value is red line in

Fig. 5, ρ = 0.1), and precision and accuracy were generally worse.

However, the model was able to recover the signal of an increase

EVOLUTION JUNE 2019 1 1 4 1
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Figure 4. Estimates of the pre-MEE and post-MEE rate shift times bounding the second time interval, for Model C and under varying

levels of μ and mass extinction survival probability, ρ. The red line indicates the value of the true (simulated) time of the MEE, t. The

time is shown from present to past: left boxplot (post-MEE) corresponds to the rate shift between time intervals “MEE” and “post-MEE,”

after which diversity is expected to recover; right boxplot (pre-MEE) corresponds to the rate shift between time intervals “pre-MEE”

and “MEE,” after which the MEE is expected to have occurred. The grey bar indicates the variance in root ages across tree simulations,

while the blue line shows the mean of this range. Notice the low variance and the small difference between the two boxplots (pre-

and post-MEE rate shifts), indicating that the time-slice model is able to locate the MEE even when modeled as a nearly single-pulse

(instantaneous) event. See Figure S6 for the results with varying values of N (100, 200, and 500). Figures S7 and S8 show the equivalent

results of this analysis for Model A.

in background extinction in the MEE time interval for the majority

of trees (see Fig. 5, ρ = 0.1).

As the mass extinction survival probability, ρ, increases, the

power to accurately measure changes in μ also decreases; no

significant differences in variance were observed with respect to

the null model (ρ = 1), with the rate of μ over- or underestimated

across time intervals (Fig. 5, ρ � 0.1). Lowering the number of

extant taxa also resulted in a lower ability to detect changes in

magnitude in μ (Fig. S9). Yet, for N = 200 and moderate/high

background extinction, Model C was still able to capture the

increase in the extinction rate for the MEE time interval, and

estimates of λ and of μ for the post- and pre-MEE time intervals

were relatively accurate (Fig. S9).

COMPARISON AGAINST SINGLE-PULSE COMET

Simulation study
Table 2 summarizes the differences and similarities between the

BDSKY and CoMET models in terms of performance with the

set of simulated trees (see Figs. S10–S15 for CoMET). The two

models have a similar frequency of Type II error as defined here,

failing to detect the MEE through changes in the diversification

rate (HPDn), and they exhibit no Type I error, i.e., false detection

of a MEE where none was simulated, ρ = 1 (Table 2). The BD-

SKY model performed slightly better in detecting the MEE under

the high-intensity mass extinction scenario (ρ = 0.1) and N = 500,

whereas CoMET did the same for the moderate-intensity scenario

(ρ = 0.5); CoMET also performed better for smaller phylogenies
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Table 2. Table summarizing the performance of the time-slice BDSKY Model C, and the single-pulse CoMET model (May et al. 2016)

for the simulated set of phylogenies that converged in BEAST2 (see Table S1). Color code: “White” indicates the success of the model in

estimating the parameter value or detecting the MEE event; “green” indicates the failure of the model; “yellow” indicates mixed results.

See footnotes for an explanation (the corresponding Figure numbers illustrating these results are given under each header; posterior

probability estimates and accuracy values for each parameter are given in Table S3).

λ estimation μ estimation MEE detection MEE time estimation

Model Settings
(N, ρ, μ, t)

BDSKY
(5, S9)

CoMET
(S14, S15)

BDSKY
(5, S9)

CoMET
(S14, S15)

BDSKY
(2, 3)

CoMET
(S10, S11)

BDSKY
(4, S6)

CoMET
(S11, S13)

(500, 0.1, 0, 2) a a1 a2 a1 b∗ b1 c c – λ
(500, 0.1, 0.1, 4) a a1∗ a a1∗ b b c c – λ
(500, 0.1, 0.18, 20) a a a a b b c c – λ

c2 – μ
c2 – MEE

(500, 0.5, 0, 2) a a a1 a1 b2 b2 c2 c1 – λ

(500, 0.5, 0.1, 4) a a∗ a a∗ b2 b1 c2 c – λ

(500, 0.5, 0.18, 20) a a a a b2 b2 c2 c2

(500, 0.9, 0, 2) a a a1 a1 b2 b2 c2 c2

(500, 0.9, 0.1, 4) a a a a∗ b2 b2 c2 c2

(500, 0.9, 0.18, 20) a a a a∗ b2 b2 c2 c2

(500, 1, 0, 2) a a a2 a1 d d d d
(500, 1, 0.1, 4) a a a a∗ d d d d
(500, 1, 0.18, 20) a a a a d d d d
(100, 0.1, 0, 2) a1∗ a2 a1 a1 b2 b1 c2 c – λ

(100, 0.1, 0.1, 4) a∗ a∗ a2 a∗ b2 b2 c2 c1-λ
c2– MEE

(100, 0.1, 0.18, 20) a a a∗∗ a∗ b2 b2 c2 c2– MEE
(200, 0.1, 0, 2) a1 a1∗ a1 a1 b2 b1∗ c2 c – λ

(200, 0.1, 0.1, 4) a a1 a∗∗ a1∗ b2 b c2 c – λ

(200, 0.1, 0.18, 20) a a a∗∗ a b1∗ b2 c2 c– MEE
(100, 1, 0, 2) a a1 a1 a1 d d d d
(100, 1, 0.1, 4) a a∗ a∗ a∗ d d d d
(100, 1, 0.18, 20) a a∗ a∗ a∗ d d d d
(200, 1, 0, 2) a a1 a2 a2 d d d d
(200, 1, 0.1, 4) a a a∗ a∗ d d d d
(200, 1, 0.18, 20) a a∗ a a∗ d d d d

a: Simulated (true) value falls within 95% HPD (BDSKY) or Credible Interval (CoMET). (∗) Large 95% HPD interval width (�0.05 between lower and upper

boundary). (∗∗) Large only for post−MEE interval.

a1: Under/Overestimation of true value (falls outside the 95% HPD or Credible Interval). (∗) Mean overestimated but the true value falls within 95% HPD

(BDSKY); under/overestimation only observed in part of the tree length (CoMET).

a2: True value falls within 95% HPD (BDSKY) or Credible Interval (CoMET), but only in either the pre- or post-MEE interval.

b: Success in detecting MEE: Mean and 95% HPD (BDSKY)/Credible Interval (CoMET) of the diversification rate estimate fall below 0 (r < 0) at MEEE (“MEE

interval” in BDSKY) and goes back to simulated values after MEE (“post-MEE interval”). (∗) Only 84% of HPDn <0 for the percentage of simulated phylogenies

that converged.

b1: Weak detection of MEE: Diversification rate decreases in pre-MEE interval (BDSKY) or at MEE (CoMET), but mean and/or 95% HPD/Credible Interval of

the diversification rate is not negative. (∗) Only part of the HPD falls below 0.

b2: Type II error: Failure to detect the MEE through the diversification rate.

c: Good estimation. MEE time correctly bounded by rate shift times in μ (BDSKY). MEE time correctly identified by significant Bayes Factor comparisons (BF

> 6) of λ shift times (c – λ) or single-pulse MEE times (c-MEE) (CoMET).

c1: Weak estimation (CoMET): MEE time correctly identified by non-significant BF tests (2< BF < 6) of rate shift times in λ (c1-λ), or in (c1-μ), or single-pulse

MEE times (c1-MEE).

c2: Failed estimation. MEE time incorrectly identified by rate shift times in μ (BDSKY) or by non-significant BF tests of μ shift times (c2-μ) or single-pulse MEE

times (c2-MEE) (CoMET).

d: No Type I error. No MEE is detected in the control scenario (ρ = 1).

Abbreviations: λ estimation, power to estimate speciation rate; μ estimation, power to estimate extinction rate; MEE detection, power to detect the MEE

through interoperating changes in the diversification rate; MEE time estimation, timing of MEE detected through successive shifts in extinction rate estimates

(BDSKY) or through shifts in speciation rate (CoMET).
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with N = 100 and N = 200. The same pattern can be observed in

the location of the MEE, that is, estimating the timing of the MEE:

both models succeeded with large phylogenies (N = 500) under

the high-intensity scenario (ρ = 0.1), but CoMET performed bet-

ter under moderate/low-intensity mass extinction scenarios (ρ =
0.5, 0.9) and with smaller phylogenies (N = 100, 200). There is

one interesting difference, however. Whereas in BDSKY, the tim-

ing of the MEE was identified through the rate shift times of μ—in

accordance with the time-slice model—in CoMET, MEEs were

often located through the timing of rate shifts for λ (i.e., as a signif-

icant decrease in speciation rates) rather than through the specific

parameter used in CoMET to detect MEEs, mass extinction times.

If the mass extinction times parameter succeeded to locate the

MEE, the Bayes Factor comparisons were often not significant

(2 < BF < 6, Table 2). In general, BDSKY showed better accuracy

than the CoMET model in the estimation of μ and λ, irrespective

of the MEE intensity (1 – ρ) and the size of the phylogeny (N).

CoMET performed worse in scenarios with no extinction (μ = 0),

systematically overestimating μ or over/underestimating λ. Both

BDSKY and CoMET showed the best behavior under scenarios

with moderate extinction (μ = 0.1, Table 2).

Empirical study
Figure 6 shows the results of the BDSKY and CoMET models

with the empirical conifer dataset of Leslie et al. 2012. CoMET

detected a significant MEE (BF > 10) at about 23 million years

ago, as in May et al. 2016. BDSKY located a drop in net diversifi-

cation to r < 0 at 43 (78–23) million years ago and an increase in

net diversification to r > 0 at 3 (10–0) million years ago, given we

allow for three rate shifts. If we allow for five rate shifts, the drop

happens within roughly the same HPD interval (70–20 million

years ago) with the median being at 30 million years ago (instead

of 43 million years ago). Thus, the estimated period of negative

diversification spans several decades of millions of years. The in-

stantaneous MEE of May et al. 2016 is estimated to be at 23 Ma,

and thus falls within the period of negative net diversification that

we estimate. In contrast, the other, “potential” mass extinction

events reported by May et al. 2016 at 173 and 77 million years

ago (2 < BF < 6) are not recovered by BDSKY as true MEEs

according to our definition (r < 0, ε > 1), but as low-magnitude

rate-shifts in μ.

Discussion
TIME-SLICE VERSUS SINGLE-PULSE APPROACH TO

DETECT MASS EXTINCTION EVENTS

Evolutionary episodes of hyperdiversification—that is defined as

speciation rates within a lineage that are significantly higher than

those expected under the background diversification rate of their

encompassing clade—have long attracted the attention of biolo-

gists (Hughes and Eastwood 2006; Valente et al. 2010) and ana-

lytical systematists (Rabosky 2006; Alfaro et al. 2009; Rabosky

2014) because of their potential links to “key innovations” (mor-

phological novelties) or the colonization of novel environments

leading to increased species fitness, “key opportunities” (Wiens

et al. 2010; Donoghue and Sanderson 2015).

By contrast, episodes of high extinction rates such as mass

extinction events (MEE), have traditionally received less attention

in the phylogenetic literature because of the difficulty of measur-

ing a process that removes rather than generates diversity (Pyron

and Burbrink 2012; Sanmartı́n and Meseguer 2016). However,

these MEEs form a key element of the paleontological record

as responsible for major ecosystem reordering and change (Raup

1979; Sepkosky 1982; Purvis 2008; Benton 2009), and recently

have regained importance in the context of human-induced biodi-

versity loss (Barnosky et al. 2011a, b).

Unlike speciation or background extinction rates, which are

assumed to depend on species biotic traits or a clade’s ecology

(Purvis 2008; Ezard et al. 2011), MEEs are often linked to abiotic

factors, i.e., long-term environmental changes or catastrophic, ge-

ological events whose effects are felt across multiple lineages (Py-

ron and Burbrink 2012; Sanmartı́n and Meseguer 2016). Because

of this, MEEs are often modeled in the phylogenetic literature

as tree-wide events that act simultaneously across clades in con-

trast to events that are clade-specific (Stadler 2011c, b). Indeed,

most macroevolutionary approaches model MEEs as random in-

stantaneous extinction events, in which the standing diversity is

reduced by a fraction equal to the magnitude or intensity of the

mass extinction, 1– ρ (Harvey et al. 1994; Stadler 2011b; May et

al. 2016).

Modeling MEEs under this single-pulse approach (i.e.,

through the parameter ρ)—as in the birth–death models imple-

mented in TreePar and TESS—has the advantage that one can es-

timate the magnitude or intensity of MEEs, and that it allows for

the statistical testing of time-specific MEE hypotheses (Stadler

2011c; May et al. 2016; Sanmartı́n and Meseguer 2016). Yet,

the single-pulse approach stands in contrast with the paleonto-

logical literature, where MEEs are defined in terms of intensity

and duration, where unusually high background extinction rates

take place over a (geologically) short time period, followed by

a recovery or a return to positive net diversification rates (Raup

1979). We showed here that the BDSKY model (Stadler et al.

2013)—developed initially to trace the spread of viral or bacte-

rial infections over time—can be used to detect MEEs under the

“time-slice” approach: MEEs are identified and located through a

combination of negative diversification rates and two sequential

rate shifts in the extinction rate occurring in a significantly short

period of time (Fig. 2; Table 1).

A second advantage of the time-slice approach relates to

the issue of parameter non-identifiability. Joint estimation of
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n = 500
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Figure 5. Estimation of changes in magnitude of μ across time intervals for Model C under different values of background extinction

and MEE survival probability, ρ. In this model, λ is estimated but assumed constant over time; that is, MEEs are only detected through

changes in the magnitude of μ. The red line represents the true simulated value; this has been adjusted for ρ = 0.1 in the MEE time

interval to reflect the effect of the MEE (see text). Notice the large increase of μ (>1) in the MEE time interval for ρ = 0.1, indicating the

presence of the MEE, while this effect is not seen in the control scenario (ρ = 1). See Figure S9 for the results with varying values of N

(100, 200, and 500).

instantaneous tree-wide changes in dispersal and extinction rates

(i.e., rate shifts in λ and μ) and MEE single-pulse events (ρ)

is not possible because the three parameters are modeled with

the same likelihood function, and in fact the model becomes

non-unidentifiable. This applies to TreePar when allowing for

both single-pulse and time-slice MEEs, that is, through diversi-

fication rate changes (this option is not recommended in the R

package documentation due to parameter correlations). To escape

from this paradox, CoMET, which can also be used to model

both types of MEEs, uses a hierarchical Bayesian approach in

which MEEs are estimated by marginalizing over other nuisance

parameters such as all possible instantaneous shifts in speciation

and extinction rates (May et al. 2016). Therefore, CoMET may

be seen as a more general and powerful tool than BDSKY. While

CoMET solely returns single-pulse MEEs, it additionally also

outputs changes in speciation and extinction rates, which may be

regarded as equivalent to returning time-slice MEEs. However,

the risk of diluting the signal of the MEE by explaining it partially

as single-pulse and partially as a time-slice exists. This can be

observed in our results for the simulation data in CoMET, where

we setup the MEE model to be a single-pulse (i.e., recover the

MEE through the parameter mass extinction times); however, we

mainly recovered MEEs under the time-slice approach, that is, as

speciation rate changes (Figs. S12 and S13; Table 2).

In BDSKY, we investigate the posterior distribution of the

extinction rate through time and thus detect the presence of

MEEs in the phylogeny as time periods with elevated extinction

rates. There is no need to mathematically disentangle MEEs from

background extinction and speciation rate shifts (Stadler 2011a;

May et al. 2016) because we estimate rate shifts in background

extinction and MEEs within the same continuous-time framework

(Fig. 1B). This can be directly seen with the example of the
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Figure 6. Comparison of the BDSKY and CoMET model performance with the empirical conifer dataset (Leslie et al. 2012): BDSKY was

run under Model C. We explored models with one and multiple rate shifts (shown here are the best models with three and five rate

shifts). CoMET was run under the same settings used by May et al. 2016. CoMET detected a major event of mass extinction at about 23

million years ago. BDSKY indicated a drop in the net diversification to r < 0 at about 43 or 34 million years ago, dependent on the number

of rate shifts, and an increase in net diversification to r > 0 at 3 million years ago. BDSKY, suggests that the two nonsignificant MEEs

(2 < BF < 6) detected by CoMET at 173 and 77 million years ago (May et al. 2016), are not true MEEs (ε > 1), but rather low-magnitude

rate-shifts in μ.

conifer dataset (Fig. 6): BDSKY identifies the increase in

extinction rates detected by CoMET at about 23 million years

ago as a genuine MEE (ε > 1), whereas the other low-magnitude

events (173 and 77 million years ago in CoMET) are identified

as periods of high background extinction rates with ε < 1. These

changes in extinction rate were picked up only when the BDSKY

model was allowed to explore multiple rate shifts, indicating

that as the number of rate shifts increases, BDSKY becomes

more sensitive to the influence of low-magnitude changes in μ.

Yet, parameter identifiability issues can also affect the BDSKY

model. Our simulations were generated under the single-pulse

approach to MEEs, as instantaneous events, and then estimated

under the MEE time-slice approach in BDSKY; notice the low

variance and the small difference between the pre-MEE and

post-MEE values of rate shifts in Figure 4. Since pulses can be

seen as the limit of time-slice models, then, at least for extremely

short time slices with very high extinction (which would be well

approximated by a pulse model), BDSKY could get into the same

problems of parameter non-identifiability as CoMET or TreePar.

In future studies, it would be interesting to test the performance

of the BDSKY model for longer-duration MEEs scenarios.

It is important to emphasize that all three methods, CoMET,

TreePar, and BDSKY, rely on the same likelihood function for

estimating speciation, extinction, and MEEs, and therefore con-

ceptually allow for both types of MEEs, namely single-pulse

and time-slice scenarios. However, they differ in their statistical

framework and the type of prior distributions used for detecting

MEEs, which conditions their performance. CoMET (Bayesian)

and TreePar (ML) were specifically designed to identify single-

pulse MEEs (also termed explicit MEEs in May et al. 2016); the

time-slice MEEs would not be reported as MEEs but as “regu-

lar” changes in extinction and speciation rates. Instead, BDSKY

was developed to detect rate changes (Stadler et al. 2013) and is

thus better tuned to detect MEEs under the time-slice approach.

In particular, CoMET focuses on the detection of instantaneous

events, while BDSKY focuses on the time interval during which

MEEs occur.

COMPARING THE PERFORMANCE OF BDSKY AND

COMET

Our simulation study reveals that BDSKY and CoMET performed

well and suffered from similar low rates of Type I (false discovery

rate) and Type II error (failing to detect the MEE) for the control

(ρ = 1) and high-intensity MEE (ρ = 0.1) scenarios. For the small

(N = 100) and medium-sized (N = 200) phylogenies, CoMET

was more robust to Type I and Type II errors in the detection
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and location (timing) of the MEE than BDSKY. On the other

hand, BDSKY performed better than CoMET in the estimation

of the rate of speciation (λ) and of changes in the magnitude of

extinction (μ) across time intervals, in particular for N = 500 and

ρ = 0.1.

Overall, CoMET has a larger number of parameters than

BDSKY because it models the frequency of MEEs and speci-

ation and extinction rate shifts through three independent CPP

processes, and also includes the survival probability parameter

ρ (May et al. 2016). CPP models are known to be sensitive to

the choice of priors and suffer from parameter identifiability is-

sues (Rannala 2002). Because of this, May et al. 2016 advocated

the use of strongly informative (biologically grounded) priors on

some parameters such as the frequency or the intensity of MEEs

to increase the power of CoMET in detecting these events. For

example, one can use the paleontological record (Benton 2009)

to inform the MEE intensity (1 – ρ), which should be about 90%,

or the expected number of MEEs (λM) in the CPP prior, as in

the conifer example (Höhna et al. 2015; May et al. 2016). A

prior expectation on the number of rate shifts in speciation and

extinction (λB and λD) is more difficult to justify on biological

grounds, and are often given the same value as the one given to

the expected number of MEEs (number Expected rate changes

= number Expected Mass Extinctions = 2; Höhna et al. 2015).

For the speciation and extinction rates, an empirical Bayesian ap-

proach is used to parameterize the hyperpriors. May et al. 2016

argued that the use of Bayes factor comparisons cancels out these

prior assumptions, which are only used to speed up the conver-

gence of the MCMC search but should not have an effect on the

eventual conclusions (Höhna et al. 2015). Yet, due to the issues

of parameter non-identifiability (above), the results from CoMET

may still be dependent on the choice of hyperprior being used in

the analysis. Moreover, because MEEs in CoMET are estimated

by integrating over speciation and extinction rate shifts, which are

considered as nuisance parameters in the model, May et al. 2015

originally warned that researchers should be cautious not to over-

rely on the values of these parameters (tree-wide diversification

rate shifts), for which we have also less biological information

compared to MEEs. This could explain the poor performance of

CoMET in estimating the magnitude of rate changes in λ and μ

(Table 1). In contrast, BDSKY is unaffected by this issue because

MEEs are estimated through changes in the background extinc-

tion rate, and therefore MEEs and temporal changes in extinction

rates are treated in the same way (Condamine et al. 2013; cf.

Fig. 4).

It is important to notice, however, that we are referring here to

the BDSKY Model C, in which we constrained the speciation rate

(λ) to be constant across time intervals; Model A, allowing spe-

ciation and extinction rates to vary, as CoMET does, performed

significantly worse. The assumption of constant speciation rates

might seem unrealistic and hard to justify on biological grounds.

Yet, in an often-cited study, Ezard et al. 2011 found that speciation

rates in the fossil record were mostly shaped by biotic factors such

as diversity dependence, whereas fossil-based extinction rates re-

sponded mainly to abrupt abiotic perturbations, such as major

geological or climatic changes. Therefore, it might be appropriate

to detect time-slice MEEs through the extinction rate parame-

ter, which is (potentially) more sensitive to these environmental

changes than the speciation rate.

In all, both BDSKY and CoMET have their strengths and

drawbacks and could be used side-by-side. CoMET performs best

as a method for testing time-specific hypotheses on MEEs, when

we have some prior information on their presence, while BDSKY

can be seen as an exploratory model to search for the signal of po-

tential MEEs in a phylogeny in the absence of such data. This can

be exemplified again in the conifer phylogeny. CoMET detected

a major episode of mass extinction at about 23 million years ago,

as well as the weak signal of other increases in extinction rate in

the distant past. Although May et al. 2016 regarded this MEE as a

possible artifact of biased divergence time estimates, it is tempo-

rally congruent with the Late Oligocene Warming Event (LOWE,

26.7–23.5 million years ago, Zachos et al. 2001), a widespread

major warming pulse that accompanied the closing of the eastern

arm of the ancient Mesozoic Tethyan Seaway (Liu et al. 2018).

In the southern Palearctic, this event was followed by high ex-

tinction rates and the gradual replacement of a former subtrop-

ical flora by continental xerophytic and Mediterranean lineages

(Manafzadeh et al. 2017). The result from BDSKY is more am-

biguous, pointing to a longer period of negative diversification

rates, which spans several tens of millions of years, starting at 43

or 34 million years ago. The start of this period corresponds to the

global cooling event at the Late Eocene–Early Oligocene bound-

ary, the Terminal Eocene event (TEE) or Late Eocene–Oligocene

Cooling event (Zachos et al. 2001), which in the Northern Hemi-

sphere led to widespread extinction and the replacement of a

boreotropical flora by temperate elements (Meseguer et al. 2018).

The fact that BDSKY cannot narrow down the time interval of

negative diversification rates can be considered a weakness of the

method. However, as Leslie et al. 2012 noted, the major families in

the conifer tree exhibit different diversification trajectories, which

seem to be related to their geographic distribution. Thus, Southern

Hemisphere families Podocarpaceae and Araucariaceae comprise

on average older (Miocene) clades, and their LTT plots show

plateaus (interpreted as signaling an MEE, Harvey et al. 1994),

extending between 50 and about 30–25 million years ago (cf.

Fig. 2A in Leslie et al. 2012). This signal could correspond

with the TEE, which restricted evergreen plant lineages to the

equatorial latitudes of the Northern and Southern Hemispheres

(Meseguer et al. 2018). In contrast, major clades within the

Northern Hemisphere Pinaceae and Cupressoideae are mainly
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of Late Neogene age (<20 million years ago), with the species-

rich conifer genera Pinus, Juniperus, and Cupressus diversifying

within the last 5–3 million years ago (cf. Fig. 1D, Leslie et al.

2012). The recovery phase detected by BDSKY, with a return to

positive diversification rates at about 3 million years ago, could

well correspond to this period of rapid diversification reported by

Leslie et al. 2012. Overall, the ambiguity in the BDSKY results

could actually reflect the different diversification trajectories, and

their reaction to these sequential MEEs, taken by the conifer

families depending on their geographic distribution. Northern

Hemisphere conifers in Pinaceae and Cupressoideae were prob-

ably as affected by the TEE as the Southern Araucariaceae or

Podocarpaceae, but later major climatic events such as the Late

Oligocene Warming Event could have obscured the signal of these

more ancient events.

Finally, both CoMET and BDSKY (and TreePar) assume that

changes in speciation and extinction rates occur simultaneously

across all branches in the phylogeny (“tree-wide rate shifts”).

There is, however, increasing evidence that speciation and extinc-

tion rates vary across clades, dependent on biotic factors such as

the appearance of key innovations or the colonization of a new

ecological niche (Donoghue and Sanderson 2015). Laurent et al.

2015 found that TreePar suffers from a higher frequency of Type

I error under scenarios with substantial clade-rate heterogeneity,

whereas CoMET is relatively insensitive to this bias (May et al.

2016). It would be interesting to test the behavior of BDSKY un-

der such scenarios. Another limitation of CoMET or BDSKY is

that they model mass extinction events as a non-selective (statis-

tically random) “field of bullets” scenario, in which all lineages

in the tree have the same probability of being affected by the

mass extinction event (Raup 1982; Harvey et al. 1994). Some

authors conceive mass extinction as a “fair game” (Darwin-like)

scenario, in which the best-adapted species would have the high-

est survival probability (Raup 1982; Pyron and Burbrink 2012).

The geographic distribution of a clade might also condition the

impact of the MEE. This could be the case of the conifers, that is,

the older southern lineages exhibit lower turnover rates than the

northern lineages, and might have survived the climatic shifts of

the Late Cenozoic in the relatively warm or wet oceanic climates

of the austral landmasses (Leslie et al. 2012). Future method de-

velopment should consider allowing the magnitude or survival

probability to the mass extinction event to vary across clades

within the phylogeny.

Conclusions
Here, we demonstrate that estimating changes in extinction rates

through time as in the BDSKY model allows detecting the signa-

ture of mass extinction events from phylogenies with only extant

taxa. The advantages of a time-slice approach are its closer resem-

blance to the paleontological record and the possibility to cover

a broader range of MEEs, from nearly instantaneous events to a

longer time period of elevated extinction rates. However, further

simulations are needed to understand the limits of this approach.
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ETH Zürich, Basel, with T.S., which was the inspiration for this project.

DATA ARCHIVING
All data results from this study are deposited in the public repository
Dryad, under number https://doi.org/10.5061/dryad.qv10c62.

LITERATURE CITED
Alfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky,

G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus
high turnover explain species diversity in jawed vertebrates. Proc. Natl.
Acad. Sci. USA 106:13410–13414.

Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B.
Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, et al.
2011a. Has the Earth’s sixth mass extinction already arrived? Nature
471:51–57.

Barnosky, A. D., M. A. Carrasco, and R. W. Graham. 2011b. Collateral mam-
mal diversity loss associated with late Quaternary megafaunal extinc-
tions and implications for the future. Pp. 179–189 in A. J. McGowan and
A. B. Smith, eds. Comparing the geological and fossil records: implica-
tions for biodiversity studies. Vol. 358. The Geological Society, London,
U.K.

Beaulieu, J. M., and B. C. O’Meara. 2015. Extinction can be estimated from
moderately sized molecular phylogenies. Evolution 69:1036–1043.

Benton, M. J. 2009. The Red Queen and the court jester: species diversity and
the role of biotic and abiotic factors through time. Science 323:728–732.

Boskova, V., S. Bonhoeffer, and T. Stadler. 2014. Inference of epidemiolog-
ical dynamics based on simulated phylogenies using birth-death and
coalescent models. PLOS Comput. Biol. 10:e1003913.
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Höhna, S. 2014. Likelihood inference of non-constant diversification rates
with incomplete taxon sampling. PLoS One 9:e84184.
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Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Percentage of simulated phylogenies that converged in BEAST2 for each of the three model settings (A, B, and C) of the birth-death skyline
model parameter (BDSKY).
Table S2. Summary statistics for the Birth-Death Skyline model parameters. Models A to C refer to different BEAST2 settings with varying constraints
(see text for a detailed description). Abbreviations: “N” = Number of taxa; “m” = value of extinction rate in simulations; “r” = survival probability in
simulations; mass extinction intensity = (1 - r). Posterior probability estimates and accuracy for the Diversification Rate: “Acc”: the mean of the means
of the estimated parameters across trees; “Prec”: the mean of the width of the 95% High Posterior Density (HPD) credibility interval across trees; “Cov”:
Coverage, percentage of simulated trees where the 95% HPD credibility interval contained the true parameter value; “HPDn” is defined as the percentage
of simulated trees where the 95% HPD for the diversification rate falls entirely below 0. r). Posterior probability estimates and accuracy for the Rate Shift
Times: “Prec”; the width of the 95% HPD of the estimated MEE time interval; “Cover”: the percentage of simulations where at least 95% of the estimated
MEE time interval contains the true time t.
Figure S1. LTT plots of simulated phylogenies under different scenarios with varying values of µ and ρ. Black lines represent the LTT plot of the full
(extinct and extant taxa) tree; the red lines show the reconstructed, extant-only tree LTT plot. Horizontal boxplots represent the variation in the age of the
root for the full (grey) and reconstructed (red) trees. Vertical boxplots represent the variation in the number of pre-MEE lineages in the models with low
mass extinction survival probability, ρ.
Figure S2. LTT plots of simulated phylogenies under different values of µ and number of extant taxa in reconstructed phylogeny (N). Black lines represent
the LTT plot of the full (extinct and extant taxa) tree; the red lines show the reconstructed, extant-only tree LTT plot. All other conventions as in Figure S1.
Figure S3. Detection of MEEs through interoperating changes in the magnitude of the diversification rate in Model A under varying levels of µ and mass
extinction survival probability, ρ. All other conventions follow Figure 2.
Figure S4. Detection of MEEs through interoperating changes in the magnitude of the diversification rate in Model B under varying levels of µ and mass
extinction survival probability, ρ. All other conventions follow Figure 2.
Figure S5. Detection of MEEs through interoperating changes in the magnitude of the diversification rate in Model A under varying levels of N (number
of taxa). All other conventions follow Figure 2.
Figure S6. Location of MEEs (as accurate estimation of time intervals for rate changes in µ that contain the MEE) for Model C under varying levels of
background extinction and N (number of extant taxa). All other conventions follow Figure 4.
Figure S7. Location of MEEs (as accurate estimation of time intervals for rate changes in µ that contain the MEE) for Model A under varying levels of
background extinction and mass extinction survival probability, ρ. All other conventions follow Figure 4.
Figure S8. Location of MEEs (as accurate estimation of time intervals for rate changes in µ that contain the MEE) for Model A under varying levels of
background extinction and number of extant taxa (N). All other conventions follow Figure 4.
Figure S9. Estimation of changes in magnitude of µ across time intervals for Model C under different values of background extinction and number of
extant taxa (N). All other conventions follow Figure 5.
Figure S10. Detection of MEEs through interoperating changes in the magnitude of the diversification rate (diversification = λ - µ) in CoMET under
varying levels of µ and mass extinction survival probability, ρ.
Figure S11. Detection of MEEs through interoperating changes in the magnitude of the diversification rate (diversification = λ - µ) in CoMET under
different values of background extinction and number of extant taxa (N).
Figure S12. Location of MEEs indicated in the rate changes times in λ (purple) and/or µ (red) and/or mass extinction time (green) if returned by CoMET
under varying levels of background extinction and mass extinction survival probability, ρ.
Figure S13. Location of MEEs indicated in the rate changes times in λ (purple) and/or µ (red) and/or mass extinction time (green) if returned by CoMET
under different values of background extinction and number of extant taxa (N).
Figure S14. Estimation of changes in magnitude of µ and λ across time intervals for CoMET under different values of background extinction and MEE
survival probability, ρ.
Figure S15. Estimation of changes in magnitude of µ and λ across time intervals for CoMET under different values of background extinction and number
of extant taxa (N).
SI16. The scripts used to run the simulation and empirical studies for the BDSKY model. “a” shows example .xml file that can be run in BEAST2; “b”
gives the RScript used to create all of the simulation data; “c” gives the R function «createBDSKYbeast2Code» used to write all of the BEAST2 xml files;
“d” gives the RScript that uses the R function «createBDSKYbeast2Code» to create all of the xml files for the simulation data; and “e” gives the RScript
to create the xml files for the empirical tree data.
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