
i 

Diss.- No. ETH 25949 

Ecohydrological sensitivity to climatic variables: 

dissecting the water tower of Europe 

A thesis submitted to attain the degree of 

DOCTOR OF SCIENCES of ETH ZURICH 

(Dr. sc. ETH Zurich) 

 

presented by 

THEODOROS MASTROTHEODOROS 

Diploma in Civil Engineering, National Technical University of Athens 

 

born on 14.06.1990 

citizen of Greece 

 

accepted on the recommendation of 

Prof. Dr. Peter Molnar, examiner 

Prof. Dr. Paolo Burlando, co-examiner 

Prof. Dr. Christina (Naomi) Tague, co-examiner 

Prof. Dr. Valeriy Ivanov, co-examiner 

Dr. Simone Fatichi, co-examiner 

 

2019 

  



ii 

 

  



iii 

 

 

Dedicated to my parents and grandparents 

 and especially to my grandmother Eleni,  

who left us the very first day of my PhD studies 
  



iv 

 



v 

Abstract 

The water balance in mountain regions describes the relations between precipitation, snow 
accumulation and melt, evapotranspiration and soil moisture and determines the availability of water 
for runoff in downstream areas. Climate change is affecting the water budget of mountains at a fast 
pace and it has thus become a priority for hydrologists to quantify the vulnerability of each 
hydrological component to climate change, in order to assess the availability of water in the near 
future. However, our incomplete understanding of mountain hydrology implies that our knowledge 
about the future water supply of billions of people worldwide is limited. In this thesis, I use the 
ecohydrological model Tethys-Chloris (T&C) to (1) explore the responses of forests to the increasing 
atmospheric CO2, (2) quantify the major drivers of ecohydrological processes and their vulnerability 
to climate change across the European Alpine environments, and (3) partition the water budget into 
blue (hydrological) and green (biological) water fluxes and quantify the sensitivity of each component 
to temperature and precipitation change at the pan-Alpine scale. 

The first part of the thesis focuses on vegetation parameterization in ecohydrological models. It is a 
common practice to apply static vegetation parameters, although recently several studies have 
questioned this approach, showing that vegetation may adjust to climate change at shorter timescales 
than previously thought. This implies that traditional model approaches using temporally constant 
parameters might be biased. Recent evidence suggests that one such example of vegetation plasticity 
may be related to the increasing atmospheric CO2 concentrations. Through numerical simulations 
with T&C, I show that plasticity in key vegetation parameters can explain the changes in water and 
carbon vegetation fluxes in 20 forest sites in the northern Hemisphere; changes that otherwise cannot 
be explained. 

In the second part of the thesis, I explore the key drivers of Alpine ecohydrology. Applying T&C on 
three case studies, I quantified the drivers of ecohydrological fluxes and explored the vulnerability of 
different Alpine ecosystems to climate change. By correlating the spatial distribution of 
ecohydrological responses with that of meteorological and topographic attributes, I computed 
spatially explicit sensitivities of net primary productivity, transpiration, and snow cover to air 
temperature, radiation, and water availability to evaluate their absolute and relative importance. The 
results demonstrate the sharp differences between different parts of the Alps, thus highlighting the 
need for a high-resolution assessment of the Alpine water budget. 

The third part of the thesis addresses the ecohydrological sensitivity to climatic variables across the 
Alps. I collected a dataset from meteorological and environmental agencies and universities from six 
countries and combined it with new distributed products of meteorological forcing, soil properties, 
vegetation and snow cover to perform and validate large-scale, high-resolution ecohydrological 
simulations of the entire Alpine region for a period of three years (2001-2003). The focus in these 
simulations is on the partitioning of the pan-Alpine water budget into runoff and evapotranspiration. 
These simulations allowed us to quantify the sensitivity of each component of the pan-Alpine water 
budget to climate change and show that even during major heatwaves, Alpine vegetation keeps high 
transpiration rates, thus amplifying the decrease in streamflow. These unique simulations permitted 
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for the first time a very detailed understanding of water sinks and sources at the scale of the Alps, and 
a correlation analysis revealed the potential “hot spots” of changes in the water cycle in space and 
time under climate change. This study also shows that recent advances in ecohydrological modeling, 
combined with large scale datasets and new computational capabilities, can bridge the gap between 
coarse-scale Earth system models and detailed catchment analyses, providing more reliable, high-
resolution climate change impact assessments in the world’s mountain regions. 
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Zusammenfassung 

Der Wasserhaushalt in Gebirgsregionen beschreibt die Zusammenhänge von Niederschlag, 
Schneefall und -schmelze, Evapotranspiration und Bodenfeuchte und bestimmt die 
Wasserverfügbarkeit in Gebieten im Unterlauf. Diese, für den Wasserhaushalt entscheidenden, 
Prozesse werden stark vom Klimawandel beeinflusst. Daher ist es für Hydrologen zur Priorität 
geworden, die Anfälligkeit von jeder hydrologischen Komponente in Bezug auf den Klimawandel zu 
quantifizieren, um die Verfügbarkeit von Wasser in naher Zukunft beurteilen zu können. Unser 
Verständnis der hydrologischen Prozesse im Gebirge ist jedoch begrenzt, gleichermassen sind 
dadurch auch unsere Möglichkeiten die zukünftige Wasserversorgung von Milliarden Menschen zu 
planen eingeschränkt. 

In dieser Arbeit verwende ich das öko-hydrologische Modell Tethys Chloris (T&C), um (1) die 
Reaktionen der Wälder auf das zunehmende atmosphärische CO2 zu untersuchen, (2) die wichtigsten 
Faktoren für ökohydrologische Prozesse und ihre Anfälligkeit in Bezug auf den Klimawandel in 
verschiedenen Regionen der europäischen Alpen zu quantifizieren und (3) den Wasserhaushalt in 
blaue (hydrologische) und grüne (biologische) Wasserflüsse aufzuteilen und die Empfindlichkeit 
jeder Komponente gegenüber Temperatur- und Niederschlagsänderungen in den gesamten Alpen zu 
quantifizieren. 

Der erste Teil der Arbeit beschäftigt sich mit der Parametrisierung von Vegetation in 
ökohydrologischen Modellen. Es ist allgemein üblich, statische Vegetationsparameter zu verwenden, 
obwohl kürzlich mehrere Studien diesen Ansatz in Frage gestellt haben. Diese Studien haben gezeigt, 
dass sich die Vegetation - in kürzeren Zeitabständen als bisher angenommen - an den Klimawandel 
anpassen kann. Dies bedeutet, dass mit traditionellen Modellansätzen, die zeitlich konstante 
Parameter verwenden, möglicherweise voreingenommene Schlüsse gezogen werden. Jüngste 
Ergebnisse legen nahe, dass diese rasche Veränderung der Vegetation mit steigenden 
atmosphärischen CO2-Konzentrationen in Zusammenhang stehen könnte. Durch numerische 
Simulationen mit T&C zeige ich, dass wie die Veränderung von wesentlichen Vegetationsparametern 
die Veränderungen der Wasser- und Kohlenstoffvegetationsflüsse an 20 Waldstandorten in der 
nördlichen Hemisphäre erklären kann. Dabei handelt es sich um Veränderungen, die bisher nicht zu 
erklären waren. 

Im zweiten Teil der Arbeit untersuche ich die wichtigsten Einflussfaktoren auf die alpine 
Ökohydrologie. Anhand von T&C quantifizierte ich in drei Fallstudien die massgebenden Einflüsse 
ökologischer Flüsse und untersuche die Anfälligkeit verschiedener alpiner Ökosysteme auf den 
Klimawandel. Durch Korrelation von räumlicher Verteilung ökohydrologischer Reaktionen sowie 
meteorologischen und topographischen Gebietseigenschaften berechnete ich - räumlich aufgelöst – 
die Sensitivität der primären Nettoproduktivität, Transpiration, die Schneedecke im Bezug zur 
Lufttemperatur, Strahlung und Wasserverfügbarkeit, um deren absolute und relative Bedeutung zu 
bewerten. Die Ergebnisse zeigen die starken Unterschiede zwischen verschiedenen Teilen der Alpen 
und unterstreichen die Notwendigkeit einer hochaufgelösten Bewertung des alpinen Wasserhaushalts. 
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Der dritte Teil der Arbeit befasst sich mit der ökohydrologischen Sensitivität auf klimatischen 
Variablen in den Alpen. Ich sammelte einen Datensatz von Meteorologie- und Umweltbehörden und 
Universitäten aus sechs Ländern und kombinierte ihn mit neuen flächendeckenden Produkten 
meteorologischer Variablen, Bodeneigenschaften, Vegetation und Schneebedeckung. Die Daten 
wurden verwendet um ökohydrologische Simulationen für gesamten Alpenraum mit hoher räumlicher 
Auflösung für einen Zeitraum von drei Jahren (2001-2003) durchzuführen und zu validieren. Der 
Fokus dieser Simulationen liegt auf der Aufteilung des alpinen Wasserhaushalts in Abfluss und 
Evapotranspiration. Diese Simulationen ermöglichten es, die Sensitivität jeder Komponente des 
alpinen Wasserbudgets für den Klimawandel zu quantifizieren, und zeigen, dass die alpine Vegetation 
auch bei großen Hitzewellen hohe Transpirationsraten beibehält, was eine verstärkte Abnahme des 
Abflusses während Trockenperioden bewirkt. Mit Hilfe dieser einzigartigen Simulationen, konnten 
zum ersten Mal – räumlich hochaufgelöst - Wassersenken und Quellen für den gesamten Alpenraum 
aufgezeigt werden. Eine Korrelationsanalyse ergab die potenziellen „Hot Spots“ der Veränderungen 
des Wasserkreislaufs in Raum und Zeit unter Einbeziehung des Klimawandels. Diese Studie zeigt 
auch, dass die jüngsten Fortschritte in der ökohydrologischen Modellierung in Verbindung mit 
umfangreichen Datensätzen und neuen Berechnungsfähigkeiten die Lücke zwischen groben 
Erdsystemmodellen und detaillierten Einzugsgebietsanalysen schließen können und zuverlässigere, 
hochauflösendere Abschätzungen der Klimafolgen für Bergregionen der Welt ermöglichen können.  
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1 
1. Introduction 

1.1 MOTIVATION 

ἀλλὰ Θαλῆς μὲν ὁ τῆς τοιαύτης ἀρχηγὸς φιλοσοφίας ὕδωρ φησὶν τὴν ἀρχήν εἶναι 

Thales, the founder of this school of philosophy, says the permanent entity is water 

Aristotle, Metaphysics, 983b, 20-21 

The profound necessity of water for every form of life and the natural hazards that are associated with 
it render the understanding of the water cycle crucial for the humanity. Climate being in an ever-
changing state, it is unavoidable that the water cycle is also under perpetual movement. Historically, 
sudden changes in the water cycle have often been devastating enough to trigger the demise of 
civilisations (e.g., Evans et al., 2018; Stager, Ryves, Chase, & Pausata, 2011). Although humanity 
has become more resilient to climatic variability in recent times, we now realize that predicting water 
resources dynamics in the era of climate change is more than ever important (Fan et al., 2019; 
Montanari et al., 2013).  

To better understand the water cycle and its interactions with environmental changes, hydrologists 
combine observations and models. Measurements of water (e.g., precipitation, streamflow, 
evaporation) and energy fluxes (e.g., latent and sensible heat) are necessary, but they do not suffice 
to provide a deep understanding of the underlying mechanisms, because the physical lows that shape 
the water cycle act at multiple spatiotemporal scales that are practically impossible to monitor in a 
comprehensive way. This renders numerical models necessary tools to explore the water cycle. The 
cornerstone of hydrological models is the conservation of mass, which implies that precipitation (in 
liquid or solid phase over the land surface) is partitioned to changes in water storage and water losses 
through evapotranspiration, surface and subsurface runoff and deep drainage.  

Each of the components of the water budget inserts a layer of uncertainty in hydrological modelling, 
but what is particularly interesting and challenging is evapotranspiration, because it links the water 
and the energy budgets, triggering a domino of effects and feedbacks between the land surface and 
the atmosphere. This link emerges because of the latent heat of vaporization, i.e. the heat flux from 
the Earth’s surface to the atmosphere that is associated with evaporation or transpiration at the surface 
and the subsequent condensation of water vapour in the atmosphere.  

The biggest component of land evapotranspiration is plant transpiration (Good, Noone, & Bowen, 
2015). Thousands of tiny pores on every leaf, the so-called stomata, open and close to serve the needs 
of the plants in carbon (Berry, Beerling, & Franks, 2010; Hetherington & Woodward, 2003). Through 
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the stomata, an astonishing amount of water leaves the surface of the earth, equivalent to roughly 40% 
of precipitation falling on the land surface (Fatichi, Pappas, & Ivanov, 2016). Modelling transpiration 
is an important challenge, because parameterizing the energy and water needs of plants is 
complicated. Model attempts include simplified equations based on meteorological variables and 
land-surface attributes (e.g., Penman, 1948; Priestley & Taylor, 1972), biochemical models (e.g., Ball, 
Wood, & Berry, 1987; Buckley, Mott, & Farquhar, 2003; Farquhar, von Caemmerer, & Berry, 1980) 
and optimization theories (e.g., Manzoni, Vico, Palmroth, Porporato, & Katul, 2013; A. Wolf, 
Anderegg, & Pacala, 2016).  

The links between vegetation and hydrology were recognized long ago (e.g., Bonell, 2002 and 
references therein), but the term “ecohydrology” first appeared only in the 90s (Wassen & Grootjans, 
1996). In the last twenty years, ecohydrology has become an independent research field with 
numerous applications and model developments (Fatichi, Pappas, et al., 2016 and references therein). 
These are physically-based models, which simulate processes related to vegetation, such as stomata 
functioning, root controls, plant hydraulics, phenology, stand dynamics. Such models have shed light 
on the interactions between vegetation and hydrology, and help us also to evaluate the importance of 
plants for climate itself, through complicated land surface-atmosphere feedbacks (e.g., Arneth et al., 
2010). Modelling studies have also investigated the sensitivity of ecosystems to climate change, by 
quantifying, for example, the different effects on transpiration and net primary productivity (e.g., 
Tague et al., 2009). In general, many studies have focused on semi-arid ecosystems (e.g., Ivanov, 
Bras, & Vivoni, 2008a; Tague, McDowell, & Allen, 2013; Vivoni, Rodríguez, & Watts, 2010), but 
there is also increasing evidence that other less water-limited ecosystems, such as the European Alps, 
are sensitive to climate change (e.g., Bertoldi et al., 2010; Della Chiesa et al., 2014; Zierl, Bugmann, 
& Tague, 2007). 

Ecohydrological models have proven to be particularly useful for understanding the water cycle where 
both its importance and complexity peak: in mountainous areas. Mountains are referred to as the water 
towers for humanity (Viviroli, Messerli, Meybeck, & Weingartner, 2007; Viviroli & Weingartner, 
2004), because they supply roughly half of the world’s rivers (Beniston, 2003) and more than four 
billion people worldwide with fresh water (Vörösmarty, Lévêque, & Revenga, 2005). The profound 
difficulties inherent in mountain hydrology were detected long ago; Klemeš (1987) stated that 
modelling of mountain hydrology is the ultimate challenge, because the observations of the state of 
nature in mountains are very difficult and the involved processes are far beyond our theoretical 
understanding (e.g., spatially variable soil texture, soil depth and vegetation). More than 30 years 
later, monitoring networks remain sparse, even in the best-monitored mountains, which creates 
uncertainty in the meteorological forcing (Elsner et al., 2014) and several processes are still not well 
understood. For instance, some snow-related processes, such as sublimation, remain poorly 
constrained (e.g., Strasser, Bernhardt, Weber, Liston, & Mauser, 2008), while lateral redistribution of 
water and topographic shading (both known to be of paramount importance for the water cycle) are 
still ignored by most Earth system models (Fan et al., 2019). 

Mountains are particularly vulnerable to climate change (Goulden & Bales, 2014; Immerzeel, van 
Beek, & Bierkens, 2010), because as temperature rises, glaciers melt, snow cover is reduced and 
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precipitation regimes shift (e.g., Barnett, Adam, & Lettenmaier, 2005; Beniston, Farinotti, Stoffel, 
Andreassen, Coppola, Eckert, et al., 2018). In addition, the increase in atmospheric CO2 
concentrations impacts the water cycle, by increasing the water use efficiency of vegetation, although 
the exact biochemical mechanisms remain unclear (Ma, Baldocchi, Mambelli, & Dawson, 2011) and 
the magnitude of this effect is spatially variable (Keenan et al., 2013). The hydrological impact of 
these climatic changes has already been profound and is projected to intensify (Samaniego et al., 
2018). It is thus crucial to better understand mountain hydrology in order to assess the effects of 
climate change worldwide (Viviroli et al., 2011). Indeed, mountains are the target of an increasing 
number of studies (e.g., Rössler, Diekkrüger, & Löffler, 2012; Tague, Heyn, & Christensen, 2009) 
that have to face several challenges, that arise from the aforementioned complexities. For instance, 
interpolating meteorological station data (Frei, 2014) or downscaling from the synoptic to the regional 
scale (Addor, Rohrer, Furrer, & Seibert, 2016) create biases that propagate through water balance 
simulations affecting the results. Thus, improving the meteorological forcing of models is an active 
research field (e.g., Ko, Mascaro, & Vivoni, 2018). Obtaining reliable data for soil and vegetation 
cover in complex terrain is challenging, although high-resolution datasets have been recently released 
(e.g., Hengl et al., 2014); this is particularly important, as the effects of changes in vegetation may be 
comparable to those of climate change (Duethmann & Blöschl, 2018; Köplin, Schädler, Viviroli, & 
Weingartner, 2013).  

Indeed, vegetation is the cornerstone of the coupling between the land surface and the atmosphere 
and between water and carbon cycles and represents a large source of uncertainty for understanding 
the water cycle vulnerability to climate change (Teuling et al., 2010). The biogeophysical functioning 
of vegetation is changing, which provides indirect feedbacks, through changes in stomatal 
conductance, leaf area index, and species composition. For instance, decreased stomatal conductance 
due to the increased atmospheric CO2 reduces evapotranspiration and reinforces warming (Bonan, 
2008). Recent research has found that physiological effects (e.g., changes in leaf area index) due to 
increased atmospheric CO2 can have a more important impact on the water cycle compared with the 
direct effects of changes in precipitation and radiative forcing (Lemordant, Gentine, Swann, Cook, & 
Scheff, 2018). Vegetation sensitivity to climate change is also linked to changes in the disturbance 
regimes, which can have major implications for the water cycle. For instance, fire frequency is 
increasing in many forested mountains worldwide (Dupire, Curt, & Bigot, 2017; Tague, Seaby, & 
Hope, 2009), but only recent modelling attempts take disturbances into account (e.g., Hanan et al., 
2018). Given these complexities, detailed analyses with high spatial resolution are warranted for a 
more reliable estimation of the ecosystem responses to climate change and the effects on the water 
cycle (Fan et al., 2019). 

1.2 RESEARCH QUESTIONS 

This thesis summarizes the research done under the project ALPHSENS (A pan-Alpine high-
resolution carbon and water budget and its sensitivity to climate changes). The research aim of this 
project is to obtain a comprehensive understanding of the water and carbon cycle over the entire 
Alpine region and quantify their sensitivity to climate change combining newly available datasets and 
state-of-the-art ecohydrological modelling. Given the large uncertainties in simulating forests’ 
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responses to environmental changes (and since this area is largely forested) the focus of the research 
was initially on forests in general, with the aim to improve model parameterization. Subsequently, 
my research focused on the Alps; at first, I investigated the role of vegetation and climate in shaping 
the sensitivity of several ecohydrological processes to environmental forcing in different Alpine 
locations with contrasting vegetation and climate. Finally, I set up high-resolution, massively parallel, 
pan-Alpine ecohydrological simulations to quantify the different water budget components and their 
sensitivity to climate change, with a focus on droughts. 

1.2.1 How are ecohydrological models able to capture the response of forests to 
increasing CO2? 

Here, as already mentioned, the focus is on ecohydrological modelling. Ecohydrological models 
remain far from complete. Mechanistic knowledge and parameterization to describe several 
biochemical and ecological processes related to the water and carbon cycles are still debated (e.g., 
phenological thresholds), while for other processes we either have limited data (e.g., biophysical 
responses to drought) or models that do not reflect the current knowledge (e.g., plant hydraulics, 
Venturas, Sperry, & Hacke, 2017). Upscaling stomata responses from the leaf to the plant and further 
to the stand or larger scales is also complicated (Jarvis & McNaughton, 1986) and remains a field of 
active research despite several achievements (e.g., Ding, Kang, Du, Hao, & Zhang, 2014). 
Additionally, environmental variables affect several plant physiological processes in various ways, 
which are often difficult to understand and simulate; for example, higher temperatures may increase 
respiration rates (Ryan, 1991) and photosynthesis, by relaxing the energy limitations (Boisvenue & 
Running, 2006). Changes in soil water and in atmospheric vapour pressure deficit are also an 
increasingly important control on the functioning of terrestrial ecosystems (Novick et al., 2016).  

In Chapter 2, I examine the effects of increasing atmospheric CO2 ([CO2]) on ecosystem functioning. 
Increasing [CO2] creates a very important source of uncertainties about simulating water and carbon 
cycles, which lies actually on the link between these two cycles. Recent studies have found that the 
water use efficiency (WUE, which expresses the ratio of the amount of carbon assimilated by a plant 
over the amount of water it transpires, Beer et al., 2009) is changing. In order to assimilate carbon, 
plants inevitably lose water (Berry et al., 2010). Plants regulate stomatal aperture and photosynthesis 
so that the ratio between intercellular and atmospheric [CO2] remains roughly constant in time 
(Ainsworth & Long, 2005; Drake, Gonzalez-Meler, & Long, 1997; Leonardi et al., 2012; Morison, 
1985; Peñuelas, Canadell, & Ogaya, 2011; Saurer, Siegwolf, & Schweingruber, 2004). Thus, the 
intrinsic water use efficiency (the ratio between carbon assimilation and stomatal conductance, Beer 
et al., 2009) should increase at ~0.5% yr-1 in the last decades on the assumption of a linear scaling 
with [CO2]. By analogy, ecosystem inherent water use efficiency should also scale with [CO2] if the 
canopy is well coupled with the atmosphere (Beer et al., 2009; De Kauwe et al., 2013; Medlyn & De 
Kauwe, 2013). However, data from many forests show that the increase in WUE exceeded the 
theoretical expectations in the last two decades and many studies attempted to explain this 
phenomenon (e.g., Keenan et al., 2013) with conflicting findings. Some researchers examined 
meteorological forcing such as changes in wind and vapour pressure deficit (Novick et al., 2016; 
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Schymanski & Or, 2015) or even interactions between climate covariates (Leonardi et al., 2012) as 
possible triggers of the increase in WUE.  

Other studies tried to link the observed WUE increase with a possible co-occurrence of synergistic 
effects of several factors beyond climatic variables (e.g., J.-G. Huang, Bergeron, Denneler, Berninger, 
& Tardif, 2007). Changes in climatic variables seem to be capable of triggering plasticity in key 
physiological traits (Aubin et al., 2016; S. J. Franks, Sim, & Weis, 2007; Galmés et al., 2014; Nicotra 
et al., 2010; Valladares, Gianoli, & Gómez, 2007), but until recently, plasticity had not been examined 
as a possible reason behind the increase in WUE (Knauer et al., 2017). The study presented in Chapter 
2 is based on the hypothesis that subtle trends in key physiological parameters could explain the 
unexpected increase in WUE in forest sites in Europe and North America. These temporal variations 
in model parameters do not necessarily express plasticity at the leaf or plant scale, but they may imply 
subtle changes in species composition, which has occurred in some of the examined sites (e.g., 
Hardiman et al., 2013; Urbanski et al., 2007). In this study, I used the mechanistic ecohydrological 
model Tethys-Chloris (T&C; extensively validated in various ecosystems worldwide, see Appendix 
C.1) to test this hypothesis through numerical experiments, aiming at providing novel ways of 
parameterizing ecohydrological models.  

1.2.2 What is the role of temperature, radiation and soil water for Alpine ecohydrology? 

The Alps extend across seven countries in central Europe and are a particularly interesting case study 
for mountain ecohydrology, not only because they constitute the water tower of Europe (Viviroli et 
al., 2007), but also because they are the best-monitored mountainous area in terms of 
hydrometeorological variables (Beniston, 2006). Understanding the pan-Alpine water cycle and its 
vulnerability to climate change is necessary in order to answer questions regarding the fresh water 
and energy supply for millions of people (European Environment Agency (EEA), 2009), tourism 
(Elsasser & Bürki, 2002; Rixen et al., 2011), forestry (Lexer et al., 2001), agriculture (Perroud & 
Bader, 2013) and river navigation (Middelkoop et al., 2001).  

Climate change impacts on the Alpine ecohydrology are already apparent: temperature increases 
faster than the global average (e.g., Brunetti et al., 2009), humidity decreases especially in spring 
(e.g., Fatichi, Molnar, Mastrotheodoros, & Burlando, 2015) and evapotranspiration generally 
increases (e.g., Duethmann & Blöschl, 2018). Snow cover duration is reduced and glaciers have 
retreated (Beniston et al., 2018), while droughts have intensified (Timofeeva et al., 2017). These 
changes have triggered a domino of effects that are spatially highly heterogeneous. For example, in 
the drier parts of the Alps, droughts are associated with higher tree mortality and more frequent 
wildfires (Dupire et al., 2017; Rebetez & Dobbertin, 2004), whereas in north pre-Alpine hills extreme 
droughts have enhanced vegetation activity (Seneviratne et al., 2012). The contrasting responses of 
the Alpine ecosystems to climate change reflect the very high spatial variability of this area. The 
complex terrain and the position of the Alps in the confluence of different atmospheric influences 
create steep climatic gradients (Beniston, 2006), which implies that despite the dense network of 
meteorological stations, our knowledge about the micro- and mesoscale spatial variability in the 
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Alpine climate and hydrology is incomplete. Soil and land cover are also highly heterogeneous, and 
although new products have become available (e.g., Hengl et al., 2014) the uncertainties remain large. 

Detailed ecohydrological studies have examined the Alpine ecohydrology in the recent years. 
However, most of these studies have typically focused on small-scale case studies with special local 
features (often well-monitored hillslopes or experimental catchments, e.g., Bertoldi et al., 2010; Della 
Chiesa et al., 2014; Rössler et al., 2012; Zierl et al., 2007). Given the high spatial heterogeneity of the 
ecosystem responses, conclusions from these studies are not generalizable to larger areas. Thus, 
quantifying the sensitivity of ecohydrological fluxes to environmental forcing (e.g., temperature, 
precipitation, and incoming shortwave radiation) and the role of different land cover (e.g., grasslands 
and forests respond in different ways, as pointed by the aforementioned studies), soil types and climate 
remain open scientific questions. 

Although overall the European Alps receive considerable precipitation throughout the entire year, in 
the dry inner-Alpine valleys long dry periods and low annual precipitation (~500 mm) imply that the 
ecosystems might be sporadically (in space and/or time) water-limited. Identifying these ecosystems 
is particularly interesting: for instance, water limitations cause species compositions to shift (e.g. 
Rigling et al., 2013), which might have important implications for ecosystem services and the water 
cycle in general. Moreover, the way ecosystems will respond to climate change depends on the extent 
to which initial vegetation is water-limited or temperature-limited (Tague, Heyn, et al., 2009). 
Variations in topography pose another impediment in our understanding of the water resources 
vulnerability to climate change. Previous research has shown that in areas where snowmelt is an 
important fraction of the water cycle, hillslope aspect can affect ecosystem functioning (Tague & 
Peng, 2013; Williams, McNamara, & Chandler, 2009). Since a large part of the Alps is covered by 
snow during a considerable fraction of the year, understanding the effect of slope orientation on 
ecohydrological processes is important. 

Chapter 3 addresses these open questions with the ecohydrological model T&C. This model is suitable 
for investigating the water cycle in complex terrain, because it simulates key processes, such as lateral 
soil water move and feedbacks between soil water and ET, which are often omitted by Earth System 
models. The first case study is a wet pre-Alpine catchment, which is typical of a large fraction of the 
European Alps. Multiple simulations were also performed with T&C on a synthetic domain with two 
different uniform vegetation covers (i.e., grassland and evergreen forest) and for two contrasting 
Alpine climatic regimes (i.e., wet pre-Alpine and dry inner-Alpine), to disentangle the roles of climate 
and vegetation. The design of the virtual topography of this synthetic domain also permitted the 
investigation of the role of catchment orientation (through the alteration of the amount of the incoming 
shortwave radiation) on ecohydrological processes. Through this analysis, I specifically addressed the 
following questions: (a) How will forests and grasslands respond to changes in meteorological 

variables in climatically contrasting Alpine areas? (b) Which areas are water‐limited and thus prone 

to droughts and which areas are energy‐limited? (c) What is the role of catchment orientation in 
controlling ecohydrological processes? (d) How does the spatial variability of ecohydrological 
variables change across spatial scales? 
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1.2.3 What is the sensitivity of the pan-Alpine water budget to changes in temperature 
and precipitation? 

Studying the pan-Alpine water budget is particularly important for the European water resources, 
because the Alps, considering their small size, contribute a disproportionally large amount of water, 
especially during summer, to four major European rivers (Weingartner & Viviroli, 2007), in the basins 
of which reside roughly 170 million people (European Environment Agency (EEA), 2009). The 
droughts of 2003, 2010, 2015 and 2018 showed that the European water budget is sensitive to climate 
change, and water resource management needs to adapt (European Environment Agency (EEA), 
2009; Teuling, 2018). These droughts indeed affected more than 17% of the European population 
(European Commission, 2007) with an annual economic impact exceeding USD 6.8 billion between 
2001 and 2006 and there is consensus that such climatic extreme events will become more frequent 
(Barnett et al., 2005; Beniston, 2012; Gobiet et al., 2014; Samaniego et al., 2018). The way vegetation 
responded during these droughts was investigated by previous studies, which showed that some 
forests and grasslands benefited by the increased radiation and the higher temperatures during these 
heatwaves (Leuzinger, Zotz, Asshoff, & Korner, 2005; Seneviratne et al., 2012; Jolly et al., 2005); 
this led to a quicker depletion of soil moisture (“drought paradox”, Teuling et al., 2013). This feedback 
might have implications for the water cycle, but the responses of ecosystems to heatwaves at the pan-
Alpine scale remain unclear. 

Given the unsuitability of small-scale studies for predicting changes in the water cycle over the entire 
Alpine domain (as explained in the previous section), larger-scale approaches are a useful tool to 
explore the European water budget under climate change (e.g., Orth & Destouni, 2018; Zhu et al., 
2016). However, datasets typically used in such studies are too coarse to encapsulate the effects of 
microclimate and spatial heterogeneity in land surface characteristics. Moreover, land-surface models 
often represent the links between soil moisture and transpiration in a simplistic way (Seneviratne, 
Lüthi, Litschi, & Schär, 2006; Sheffield, Wood, & Roderick, 2012; Teuling, 2018). They also rarely 
resolve the land-surface energy and water fluxes at sufficient resolutions to account for local 
topographic and microclimatic effects and they often ignore lateral water transfer (Bierkens et al., 
2015; Fan et al., 2019; Rouholahnejad Freund & Kirchner, 2017; Viviroli et al., 2011; Wood et al., 
2011). Such simplifications may impact model predictions at both water- and energy-limited 
conditions (Fan et al., 2019) but hyper-resolution approaches can provide more realistic alternatives 
(Bierkens et al., 2015; Potter, Arthur Woods, & Pincebourde, 2013; Wood et al., 2011). Thus, 
recently, many studies aim at high-resolution modelling of mountainous areas (e.g., Rössler et al., 
2012; Vicente-Serrano et al., 2015), but usually their domains are too small to infer about climate 
change impacts at scales relevant for water resource management (Fan et al., 2019).  

In this part of my research, I bridge this gap between detailed small-scale analyses and 
coarse/simplified large-scale simulations, by applying the mechanistic ecohydrological model T&C 
at the pan-Alpine scale and at a very high spatiotemporal resolution to shed light on the water towers 
of Europe and provide insights into the pan-Alpine water budget (Chapter 4). The very high spatial 
resolution of this study also provides the necessary background to capture the small-scale topographic, 
vegetation and microclimatic heterogeneities in much more detail than any other previous study of 
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this area at that scale, which is important for a realistic representation of the water cycle (Fan et al., 
2019). However, due to computational limitations long-term dynamics associated with changes in 
WUE or forest demography (e.g., Chapter 2) could not be fully addressed. To drive and test T&C at 
the pan-Alpine scale, I selected meteorological, discharge and snow depth measurements from 1212 
stations and combined them with distributed products of meteorological variables, soil texture and 
land cover (Dee et al., 2011; European Environment Agency, 2006; Hall & Riggs, 2016; Isotta et al., 
2014; Panagos, Van Liedekerke, Jones, & Montanarella, 2012). I performed massively parallel 
simulations (6.1*105 CPU hours) at an unprecedented high resolution (250 m grid) for the entire 
Alpine region (257,000 km2 – 4.12 million pixels) for three years, including a very wet and a very dry 
year (2001 and 2003, respectively). Analysing the data and the model output, I partitioned the pan-
Alpine water budget into blue and green water fluxes (runoff and evapotranspiration, respectively), I 
quantified the sensitivity of each component to precipitation and air temperature therefore assessing 
the elasticity of the Alpine water budget in space and time. This allows evaluating the impact of 
climate change on the Alpine hydrology. The final part of this analysis was the quantification of the 
relative contribution of increased ET on runoff deficits compared with precipitation during the 2003 
heatwave.   
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2 
2. Linking plant functional trait plasticity and the large increase 

in forest water use efficiency 

Abstract 

Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal 
conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux 
observations from Northern Hemisphere forests showed a large increase in inherent water use 
efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty 
quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed 
IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered 
by environmental change. We found that IWUE increased by ~1.3% yr-1, which is less than previously 
reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris 
ecosystem model using temporally static plant functional traits cannot explain this increase. 
Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as 
specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results 
show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. 
Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, 
and energy fluxes with profound implications for both the monitoring of temporal changes in plant 
functional traits and their representation in Earth system models.1  

                                                   
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Keenan, T. F., Gentine, P., Gough C. M., Fatichi, S. (2017). 
Linking plant functional trait plasticity and the large increase in forest water use efficiency. Journal of Geophysical 
Research: Biogeosciences, 122(9), 2393–2408. https://doi.org/10.1002/2017JG003890 
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2.1 INTRODUCTION 

During the last two decades, the atmospheric CO2 concentration ([CO2]) has been increasing at a rate 
of 2 ppm yr-1, corresponding to ~0.5% yr-1 (Francey et al., 2013). The effects of increasing [CO2] on 
plant physiology at the leaf scale are well documented: at elevated [CO2], stomatal conductance tends 
to be lower than in ambient [CO2] in most plant species, and photosynthesis rates increase for C3 
plants in the absence of other limiting factors (Ainsworth & Rogers, 2007; Long, Ainsworth, Rogers, 
& Ort, 2004; Wullschleger, Tschaplinski, & Norby, 2002). Plants tend to regulate stomatal aperture 
and photosynthesis so that the ratio between intercellular and atmospheric [CO2] (Ci:Ca) remains 
relatively constant (Ainsworth & Long, 2005; Drake et al., 1997; Katul, Manzoni, Palmroth, & Oren, 
2010; Leonardi et al., 2012; Morison & Gifford, 1984; Peñuelas et al., 2011; Saurer et al., 2004). This 
implies that intrinsic water use efficiency (iWUE, the ratio between carbon assimilation and stomatal 
conductance; see Appendix A.1, Beer et al., 2009) should scale linearly with [CO2], thus increasing 
at ~0.5% yr-1 in the last 20 years (Appendix A.1). By analogy, ecosystem inherent water use efficiency 
(IWUE, the ecosystem-scale version of iWUE; see Appendix A.1) should also scale with atmospheric 
[CO2] if ecosystem Ci:Ca is constant (Medlyn & De Kauwe, 2013) and the canopy is well coupled 
with the atmosphere (Beer et al., 2009; De Kauwe et al., 2013). The rate of increase in IWUE with 
constant Ci:Ca is called hereafter the “expected” rate of increase. 

Elevated [CO2] affects plant functioning through various physiological mechanisms that go beyond 
the leaf scale (Ainsworth & Long, 2005; Cao, Bala, Caldeira, Nemani, & Ban-Weiss, 2010; Gedney 
et al., 2006; Leakey et al., 2009; Wullschleger, Gunderson, Hanson, Wilson, & Norby, 2002). 
Upscaling leaf-level responses to increased [CO2] at the ecosystem-level remains challenging (Fatichi 
et al., 2016; Field, Jackson, & Mooney, 1995; Knauer et al., 2017; Koutavas, 2013; Leuzinger et al., 
2011; Nelson et al., 2004; Way, Oren, & Kroner, 2015), and accounting for interactions between 
environmental covariates and vegetation dynamics is even more complex (J.-G. Huang et al., 2007; 
Leonardi et al., 2012). Remote sensing observations provide spatial patterns of water use efficiency 
(WUE) trends; global trends vary on the order of -0.3 to +0.2% yr-1 over the last 15 years (M. Huang 
et al., 2015; Tang et al., 2014; Xue et al., 2015). Estimates based on the isotope content of tree rings 
suggest that iWUE increased by 0.1% yr-1 between 1850 and 2000 (Leonardi et al., 2012) 0.1–0.3% 
yr-1 over the last century (Frank et al., 2015; Peñuelas et al., 2011; Saurer et al., 2004; van der Sleen 
et al., 2015), and more rapidly (up to 0.7% yr-1) during the last 40 years (Maseyk, Hemming, Angert, 
Leavitt, & Yakir, 2011; Silva & Anand, 2013). A recent study combined tree ring, eddy covariance, 
and atmospheric observations and reported an overall increase of 0.4% yr-1 between 1900 and 2010 
(Dekker, Groenendijk, Booth, Huntingford, & Cox, 2016). Model analyses also report iWUE 
increases on the order of 0.2–0.3% yr-1 for the 21st century (M. Huang et al., 2015; Ito & Inatomi, 
2012). 

Trends in IWUE can also be estimated using eddy covariance observations of carbon, water, and 
energy fluxes between the land surface and the atmosphere (Keenan et al., 2013; S. Zhou, Yu, Huang, 
& Wang, 2015). However, these data sets are restricted to relatively short periods and are subjected 
to measurement and methodological uncertainties. Gross ecosystem production (GEP) is not a direct 
observation (Reichstein et al., 2005), and it might be overestimated due to the eddy covariance flux 
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partitioning algorithms (Wehr et al., 2016; Wohlfahrt & Gu, 2015). Transpiration is also not directly 
measured but is inferred from latent heat estimates which are uncertain because of the lack of energy 
budget closure (Leuning, van Gorsel, Massman, & Isaac, 2012) and relatively frequent data gaps. 
Latent heat includes not only transpiration but also other evaporation fluxes, and partitioning between 
canopy interception, soil evaporation, and transpiration is also uncertain (Fatichi & Pappas, 2017; 
Miralles et al., 2015; Van Dijk et al., 2015). Despite these limitations, eddy covariance observations 
have provided important insights into IWUE trends. Using eddy covariance observations, Keenan et 
al. (2013) detected an unexpectedly large increase (2.3% yr-1) in contemporary IWUE across forest 
sites in the Northern Hemisphere. This increase is more than five times larger than expected from 
assumptions of constant Ci:Ca, from Free-Air Carbon dioxide Enrichment experiments (FACE) and 
from laboratory experiments (Medlyn & De Kauwe, 2013). The authors found that this increase is 
consistent with a strong CO2 fertilization effect, suggesting that stomata partially close to maintain a 
near-constant Ci. An open question remains, however, as to what mechanisms explain this larger-
than-expected IWUE increase. 

Environmental changes, such as the increasing atmospheric [CO2], are potential drivers of plasticity 
in plant functional traits that link plant physiology and the carbon cycle (Aubin et al., 2016; S. J. 
Franks et al., 2007; Galmés et al., 2014; Nicotra et al., 2010; Valladares et al., 2007). A recent study 
by Knauer et al. (2017) tested with numerical simulations whether an increase in the stomatal 
conductance sensitivity to [CO2] would be a plausible explanation for the observed IWUE increase. 
To reproduce the IWUE trends showed by Keenan et al. (2013), the authors imposed a -2.1% yr-1 
trend on the model parameter linking stomatal conductance and net assimilation and found that the 
simulated trends in evapotranspiration and gross ecosystem productivity are incompatible with both 
local- and global-scale observed trends in evapotranspiration, discharge, and atmospheric [CO2] 
seasonal amplitude. Thus, they concluded that variables beyond [CO2] might have triggered the 
observed changes in IWUE and that IWUE trends of such magnitude are not a large-scale 
phenomenon. Other studies have investigated the interactions between WUE and meteorological 
forcing, such as wind (Schymanski & Or, 2015) or solar radiation (McAusland et al., 2016). Studies 
across Europe and the U.S. found that ecosystem IWUE is also sensitive to the vapour pressure deficit 
(VPD) (Frank et al., 2015; Novick et al., 2015), while low soil moisture availability may offset the 
positive effect of increasing [CO2] in the IWUE (De Kauwe et al., 2013).  

Instead of linking changes in meteorological variables to trends in WUE, some researchers attributed 
the observed WUE increase to complex interactions between different climate covariates (Leonardi 
et al., 2012) or to a possible occurrence of synergistic effects of several factors beyond changes in 
climate variables (J.-G. Huang et al., 2007). Possible explanations of the observed increase in WUE 
also include long-term metabolic shifts (Ehlers et al., 2015) or changes in stomatal density, mesophyll 
conductance or biochemical and molecular processes, all of which could be driven by plasticity in 
plant functional traits (de Boer et al., 2016; Flexas et al., 2016; P. J. Franks, W. Doheny-Adams, 
Britton-Harper, & Gray, 2015; Lawson & McElwain, 2016; Moore, Cheng, Sims, & Seemann, 1999; 
Sun et al., 2014). 
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Here we revised the trend estimates of IWUE for the same sites used by Keenan et al. (2013), using 
an updated data set and extending the period of analysis to the most recent years whenever possible. 
Subsequently, we tested by means of model simulations the hypothesis that plant trait plasticity driven 
by environmental changes could explain the observed increase in IWUE at the ecosystem scale. This 
hypothesis is based on recent evidence that plants can acclimate at shorter timescales than previously 
thought (e.g., Lammertsma et al., 2011; Ma et al., 2011). In this study, the plasticity hypothesis is 
tested by implementing trends in model parameters that directly affect the simulation of ecosystem 
processes related to IWUE (e.g., the sensitivity of stomatal conductance to [CO2], maximum 
photosynthetic capacity, maximum leaf-to-root ratio). These trends, affect how key physiological 
processes are modelled through the simulation period to mimic the observed patterns. 

2.2 MATERIALS AND METHODS 

2.2.1 Data Set 

We analysed eddy covariance data from 20 forest sites in the Northern Hemisphere (Figure A.1 and 
Table A.1, Aubinet, Heinesch, & Longdoz, 2002; Berbigier, Bonnefond, & Mellmann, 2001; Carrara 
et al., 2003; Cook et al., 2004; Curtis et al., 2005; Davidson, Savage, Trumbore, & Borken, 2006; 
Dolman, Moors, & Elbers, 2002; Dunn, Barford, Wofsy, Goulden, & Daube, 2007; Goldstein et al., 
2000; Gough et al., 2013; Granier et al., 2000; Grünwald & Bernhofer, 2007; Hadley & Schedlbauer, 
2002; Hollinger et al., 2004; Jenkins et al., 2007; Pilegaard, Ibrom, Courtney, Hummelshøj, & Jensen, 
2011; Schmid, Grimmond, Cropley, Offerle, & Su, 2000; Suni et al., 2003; Thum et al., 2007; 
Urbanski et al., 2007). Eddy covariance observations from the freely available gap-filled “Fluxnet 
2015” database (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/; release July 2016, Tier 1, more 
details in Appendix A.2) were used when available and Ameriflux or CarboEurope databases were 
used for the remaining sites (Table A.1). We excluded all negative values in evapotranspiration, gross 
ecosystem productivity, and vapour pressure deficit (ET, GEP, and VPD, respectively) before 
computing IWUE. Gaps in meteorological variables used as model input (e.g., air temperature, 
relative humidity, wind speed, VPD, and shortwave radiation) were filled linearly or with the mean 
for that specific hour and day of the year. Data from the European Centre for Medium-Range 

Weather Forecasts ERA-Interim data set (http://apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=sfc/) or information from local rain gauges were used to replace missing values in 
precipitation time series or for sites where long-term “Fluxnet” precipitation considerably deviates 
from climatological precipitation. Following the approach of Keenan et al. (2013), we computed the 
IWUE only for summer months (June–August) and daytime (shortwave radiation > 100Wm-2). Rainy 
days (defined as days with daily precipitation larger than 1 mm) and 1 day after every rainy day were 
excluded from the analysis to minimize the influence of ground evaporation and evaporation from 
canopy interception. Although our analysis focuses on summer months, we used only continuous 
years without any long gaps (roughly longer than a month), because model simulations are conducted 
continuously and not only during the summer months. The resulting data set includes 20 sites with a 
median duration of 13 years. 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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2.2.2 Inherent Water Use Efficiency 

WUE characterizes the ecosystem balance between assimilated carbon and transpired water and is 
commonly used to describe ecosystem functioning. Linking the water and carbon cycles, WUE 
provides insights into water resource availability and land surface-atmosphere feedback (Lemordant, 
Gentine, Stéfanon, Drobinski, & Fatichi, 2016; Medlyn et al., 2017). WUE can be expressed in 
various ways based on how the water and carbon fluxes are defined and according to the spatial (leaf, 
plant, or ecosystem) and temporal scales (instantaneous or averaged over a period). Either 
evapotranspiration or transpiration and net or gross ecosystem production can be used for computing 
WUE (M. Huang et al., 2015; Ito & Inatomi, 2012). Additional variations of these basic WUE 
definitions include the intrinsic water use efficiency (iWUE) (Battipaglia et al., 2013; Beer et al., 
2009; Frank et al., 2015), the underlying water use efficiency (S. Zhou et al., 2015), and the inherent 
water use efficiency (IWUE) (Beer et al., 2009; Keenan et al., 2013; Vickers, Thomas, Pettijohn, 
Martin, & Law, 2012). Here we used the ecosystem-scale IWUE, because it scales roughly 
proportionally to Ca under the assumption of a constant Ci:Ca (see A.1): 

IWUE =
GEP

ET
VPD 

(2.1) 

where IWUE is in mgC g-1 H2O hPa, ET is in gH2O m-2 h-1, GEP is in mgC m-2 h-1, and VPD is in hPa 
(for a detailed description of how water and carbon fluxes are simulated in T&C, refer to Fatichi, 
Ivanov, & Caporali, 2012a). 

For the calculation of IWUE, we used the average over the summer period of the daytime hourly ET, 
GEP, and VPD values. Thus, we obtain a single mean IWUE value per year and site, which is much 
less sensitive to very small or large ET and GEP values at the hourly scale. 

2.2.3 Trend Estimation and Uncertainty 

Linear regression and the nonparametric Theil-Sen (Sen, 1968) estimator were applied to quantify the 
slopes of observed and simulated IWUE, GEP, and ET. The dependent variables are annual IWUE, 
GEP, or ET, and the independent variable is the corresponding year of the time series. GEP and ET 
were included because IWUE is a derived quantity (computed from GEP and ET as shown in Eq. 
2.1). The two methods (linear regression and the non-parametric Theil-Sen estimator) gave slopes 
that are highly correlated (Figure A.2). Thus, in the following, we only report results for the linear 
regression slopes, unless otherwise specified. Based on the normality assumption that residuals follow 
the Gaussian distribution, we applied t-statistics to the estimator of the slope coefficient to obtain the 
95% confidence intervals of the linear slope. Uncertainties in the IWUE slope at individual sites are 
large (Table A.2); yet we expected that a combination of 20 sites would result in a robust estimation 
of the median and mean slope of the ensemble. 

To quantify the uncertainties of the slope computed for the ensemble and verify its statistical 
robustness, we assumed that for each location the slope could be described by a uniform distribution 
bounded by the 95% confidence interval of the linear regression slope estimate. While a normal 
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distribution would be a closer approximation of the slope uncertainty at each site, we adopted the 
most conservative assumption of a uniform distribution in order to indirectly account for other 
uncertainties such as the lack of surface energy budget closure in the eddy covariance measurements 
(Foken, 2008; Leuning et al., 2012; Wohlfahrt & Gu, 2015). For each site, a random value was 
selected from the corresponding uniform distribution for each of the three variables (i.e., slope of 
IWUE, GEP, and ET) using a Monte Carlo sampling. In total, 10,000 values were sampled for each 
location and the corresponding mean and median slopes of the ensemble were computed at each time. 
With this procedure, we were able to quantify the overall uncertainty of the ensemble mean and 
median slope. In the following, we mostly refer to median rather than mean values, since the median 
is a better indicator for small data sets, in being less sensitive to outliers (Kenney & Keeping, 1962). 
Time series duration varies across sites and further complicates the analysis. Ideally, a common period 
should be used for all sites, but given data availability, this would lead to a very small data set. 
Considering that longer records are more reliable in the slope estimation and given the relatively large 
variability in time series length between the sites (from six to 19 years), we repeated our analysis 
weighting the slopes by the time series length. 

2.2.4 Numerical Experiments 

We used the state-of-the-art mechanistic ecosystem model Tethys-Chloris (T&C), which simulates 
the main components of the hydrological and carbon cycle (Fatichi, Ivanov, & Caporali, 2012b). It 
resolves the mass and energy budgets at the land surface and describes physiological processes 
including photosynthesis, phenology, carbon allocation, and tissue turnover. A detailed model 
description is provided in Appendix A.3, with emphasis on the components of interest in this study 
(Bonan et al., 2011; Farquhar et al., 1980; Krinner et al., 2005; Rutter, Kershaw, Robins, & Morton, 
1971; Rutter, Morton, & Robins, 1975). The model has been extensively validated at various sites 
worldwide (Fatichi & Ivanov, 2014; Fatichi et al., 2012a; Fatichi, Pappas, et al., 2016; Pappas, Fatichi, 
& Burlando, 2016; Paschalis, Fatichi, Katul, & Ivanov, 2015). 

For each of the examined sites, T&C simulations were conducted with static, site-specific 
parameterizations, which were tested to satisfactorily reproduce the energy and carbon fluxes and 
vegetation phenology through a manual calibration procedure (“base simulations”; Table A.3). 
Considering that VPD is rising along with [CO2] (Brzostek et al., 2014; Rigden & Salvucci, 2017) 
and that this may have profound impact on ecosystem functioning (Novick et al., 2016), we computed 
the linear trend of temperature and relative humidity based on annual mean values (Table A.4). We 
removed these trends from the hourly time series and repeated the simulations with the same 
parameterizations in order to assess the effect of trends in VPD on ecosystem response. 

Subsequently, we ran the model using time-variable plant functional traits; i.e., we assumed that the 
parameters are not static and reflect temporal changes in plant functional traits and forest structure. 
For each time step, ET was calculated as the sum of transpiration and evaporation from the ground 
and intercepted water. GEP was calculated as gross assimilation, i.e., the sum of net assimilation and 
leaf maintenance respiration. Subsequently, we followed exactly the same approach we used for the 
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observed data. For each year, we computed an annual mean value over summer, daytime non-rainy 
days for GEP, ET, and VPD and we calculated the annual mean IWUE before computing the slopes. 

After an initial screening of nine T&C vegetation parameters (Table A.5), the following five most 
sensitive parameters for estimating IWUE were chosen (Table A.6): empirical parameter linking 
stomatal aperture and net assimilation in the Leuning model of stomatal conductance (a1 Leuning, 
1995), top-of-the-canopy maximum Rubisco capacity at 25°C (Vmax), canopy nitrogen decay 
coefficient (Knit), specific leaf area (SLA), and maximum leaf-to-root biomass ratio (LtR). The latter 
affects model performance only when its value is reached, acting as an upper threshold. The selected 
parameters represent biochemical (a1 and Vmax) and structural (SLA and LtR) properties of the 
vegetation or a combination of the two (Knit). Appendix A.3 provides a list of the equations in which 
these parameters are involved. 

Table 2.1 Parameters of T&C model that were modified in the numerical experiments. 

After evaluating single-parameter perturbations, we also conducted the analysis by concurrently 
perturbing two parameters in each run (10 combinations) in order to account for parameter 
interactions (Pappas, Fatichi, Leuzinger, Wolf, & Burlando, 2013; Saltelli & Annoni, 2010). For each 
parameter, the value adopted in the base simulation (which corresponds to site-specific model 
calibration over the entire period) was assigned to the centre of the time series and a linear trend was 
imposed according to a given slope expressed as percent change per year (% yr-1). The sign of the 
slope was chosen for each parameter so that IWUE was enhanced (see Figure A.3). It is worth 
emphasizing that the selected parameters are representative of the ecosystem scale. Thus, trends in 
vegetation parameters might be partly driven by changes in forest demography (e.g., species 

composition, forest structure, or both, as has happened, for example, in the US-Ha1 and US-UMB, 
Hardiman et al., 2013; Urbanski et al., 2007) rather than an actual trend in the plant-level functional 
trait itself. 

For two sites (US-UMB and NL-Loo, the latter not shown) we tested several rates of parameter change 
in the range of 0.5–3% yr-1 and examined the relationship between trends in IWUE and the 
hypothesized trends in plant functional traits by keeping the model setup and all other parameters 
identical to the base simulations. We found that this relationship is almost linear for all parameters, 
which is expected for relatively low parameter perturbations (Figure A.3). We chose a 1% yr-1 rate of 
change in the parameters for all the numerical experiments applied over periods of up to 20 years. 
This value is small enough to ensure that all parameters remain well within the ranges reported in 

Symbol Description Units Typical Range 
a1 Empirical parameter connecting stomatal 

aperture and net assimilation 
[-] 3-11 

Knit Canopy nitrogen decay coefficient [-] 0.1-0.5 
Vmax Top-of-the-canopy maximum Rubisco 

capacity at 25°C  
[μmol CO2 m-2 s-1] 20-120 

SLA Specific leaf area  [m2 g-1C] 0.006-0.050 
LtR Maximum leaf to root biomass ratio [-] 0.2-1.5 
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literature (see Table 2.1) but large enough to modify considerably the ecosystem response, given the 
expected influence of plant trait variability in ecosystem carbon and water dynamics (Pappas et al., 
2016; Wang et al., 2012). Clearly, our analysis does not suggest that this rate of change might last 
indefinitely. Rather our experiment is based on the simplifying hypothesis of linear trends to 
investigate the implications for the ecosystems at the decadal timescale. At longer timescales, such 
acclimation pace would potentially lead to unrealistic parameter values. 

 

Figure 2.1 Observed (green) and simulated (purple and red) annual time series of (a) inherent water use 
efficiency (IWUE, computed as in Eq. 2.1, using the annual means of GEP, ET and VPD), (b) 
gross ecosystem production (GEP) and (c) evapotranspiration (ET) at the US-UMB site (details in 
Table A.1). Purple represents the base simulations and red shows the numerical experiment which 
best approximates each variable’s slope for this site, i.e. [+Vmax-a1] for IWUE, [-a1+Knit] for GEP 
and [-a1] for ET. Linear least squares fitting is shown with dashed lines. The shaded green areas 
show the 95% uncertainty bounds for the observed slopes in the three variables. 

2.3 RESULTS 

Figure 2.1 shows example time series of IWUE, GEP, and ET from observations and numerical 
experiments for the US-UMB site. The deviation of the simulated annual means from the observations 
can be mostly attributed to an underestimation of latent heat in the flux tower measurements at this 



17 

site (Schmid et al., 2000; Su, Schmid, Grimmond, Vogel, & Oliphant, 2004). The energy budget is 
indeed not closed in the flux tower data. Observations suggest that IWUE of the 20 sites increased on 
average by 1.3% yr-1 (equivalent to 1% ppm-1), due to the combination of increasing GEP (0.6% yr-1) 
and decreasing ET (0.3% yr-1) (Figure 2.2 and Table A.2 and A.6). Median slopes weighted by the 
time series length were of smaller magnitude, but they preserved the general pattern; in this case 
IWUE increased by 1.0% yr-1 (Table A.7). Despite the large uncertainties of the single-site slopes, the 
ensemble median slope of IWUE exceeded the expectations (0.5% yr-1) with a probability of 95% 
(Figure 2.3). 

Using static vegetation parameters (base simulations), the modelled IWUE increased by 0.9% yr-1, 
GEP increased by 0.2% yr-1, and ET also increased by 0.2% yr-1 (Figure 2.2 and Table A.6). Weighted 
median slopes differ only slightly among sites, with a simulated trend in IWUE of 0.7% yr-1 (Table 
A.7). Simulations with detrended temperature and relative humidity show a 0.4% yr-1 increase in 
IWUE (which corresponds closely to the theoretical expectations), while median GEP and ET trends 
only slightly differ from the base simulations (Figure 2.3 and Table A.2). 

The observed IWUE trend is best reproduced by simulations with increased Vmax or decreased a1 alone 
or together with other parameters (Figure 2.2 and Table A.6 and Table A.7). In order to assess the 
performance of each numerical experiment regarding both IWUE and its components (GEP and ET), 
we computed the Euclidean distance between simulated and observed median slopes of IWUE, GEP, 
and ET. When all three parameters are considered together, a change in a1 describes best the observed 
trends. Decreasing a1 (alone or together with decreasing Knit or increasing SLA or LtR) by 1% yr-1 led 
to an increase in IWUE similar to the observed trend, mainly improving the simulated trend of ET 
(Figure 2.2 and Tables A.6 and A.7). Overall, differences in reproducing the observed trends among 
these combinations are rather small, suggesting that they can be considered practically equivalent. 

The comparison of observed IWUE slopes between sites reveals different patterns across different 
vegetation types. Evergreen forests (10 sites) show almost no increase in IWUE (0.1% yr-1), while in 
broadleaf deciduous forests (eight sites) IWUE increased by 3.0% yr-1 (Figure A.4). 
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Figure 2.2 Linear slopes of (a) inherent water use efficiency (IWUE), (b) gross ecosystem production (GEP), 
and (c) evapotranspiration (ET) for the 20 investigated sites. The box length provides the 
interquartile range (IQR), the bottom of the box the 25th percentile (first quartile, q1), the top of the 
box the 75th percentile (third quartile, q3), and the horizontal line within the box the median value. 
The lower whisker corresponds to q1 1.5IQR, or to the minimum estimate, and the upper whisker 
corresponds to q3 + 1.5IQR, or to the maximum estimate. The green represents the observations, the 
black stands for base simulations, the blue for the experiments in which only one parameter was 
perturbed, and the magenta for the experiments in which two parameters were perturbed. The red 
dashed line represents the expected rate of IWUE increase. 
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Figure 2.3 Relative frequency distributions of median slopes in (a) observed inherent water use efficiency 
(IWUE), (b) gross ecosystem production (GEP), and (c) evapotranspiration (ET). For each site, a 
slope was selected randomly from the uniform distribution that is bounded by the 95% confidence 
interval of the estimated linear slope. The histograms show the results of 10,000 Monte Carlo runs. 
The dotted lines show the median reported by Keenan et al. (2013), and the dashed green line 
shows the expected IWUE increase (0.5% yr-1). In each subplot we show the median slopes of base 
T&C simulations (circles), the median slopes of base simulations with detrended temperature and 
relative humidity (dots), and the numerical experiment which best approximates each variable’s 
slope (crosses), i.e., [+Vmax + LtR] for IWUE, [-a1-Knit] for GEP, and [a1] for ET. 

2.4 DISCUSSION 

2.4.1 Observed Trends in IWUE 

We found a median increase in IWUE of 1.3% yr-1 across 20 Northern Hemisphere forest sites in the 
last two decades. This increase more than doubles the expected increase under the assumption of a 
constant Ci:Ca but is considerably lower than what Keenan et al. (2013) reported for the same sites 
(2.3% yr-1). 

The difference in IWUE trends found in our study compared to Keenan et al. (2013) is mostly due to 
recent differences in ET trends arising from the inclusion of site years not available at the time of the 
previous analysis. Recent droughts (e.g., in 2010 and 2012 in Europe and the U.S., respectively) may 
have contributed to the strong decreasing ET trend found by Keenan et al. (2013) through soil 
moisture limitations. Indeed, the positive trend in ET seems to be interrupted in recent years (Jung et 
al., 2011), but it remains unclear if this was an effect of climate variability or rather a sign of a 
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geographical reorganization of ET. Thus, ET trends are uncertain and the inclusion of additional data 
as well as shifting the analysis to more recent years may change the results (Appendix A.4). 

The trends in IWUE were lower when we computed the median increase weighted by the time series 
length of each site. This is mainly because of reduced ET slopes, while GEP was less dependent on 
the time series length (Tables A.6 and A.7). The sensitivity of the slope of ET (and therefore IWUE) 
on the time series length further verifies that the inclusion of 30% more data in our study potentially 
improves the robustness of the slope estimation. It further depicts the uncertainties in latent heat 
observations, as indicated by the lack of energy balance closure (Foken, 2008; Leuning et al., 2012). 
It could also be the manifestation of feedback between the surface energy budget and the atmospheric 
boundary layer, where reduction in latent heat increases atmospheric evaporative demand (higher 
temperature and VPD) or maintains higher soil moisture, therefore preventing a persistent negative 
trend in latent heat (Lemordant et al., 2016). The preprocessing of eddy covariance data in the 
different Fluxnet products is also not identical (Figure A.5); while GEP slopes are similar in the two 
studies, ET slopes diverge considerably (Figure 2.3), which can partly explain the discrepancies with 
previous results. 

The confidence in the magnitude of the trend in IWUE for any single site is particularly low (Table 
A.2), testifying that strong conclusions cannot be drawn from a single site or only few sites. However, 
combining 20 sites increases the robustness of the analysis. We verified the statistical robustness of 
the median change in IWUE using a Monte Carlo analysis with a very conservative assumption on 
the uncertainty in the single site slopes. 

This analysis showed that the probability that IWUE increases more than the expected (0.5% yr-1) is 
larger than 95% (Figure 2.3). In other words, despite the large site-to-site variability in IWUE slopes, 
it is very unlikely that the overall trend in IWUE can be explained by theoretical expectations of a 
constant Ci:Ca at the ecosystem scale. In the deciduous forests the IWUE increase was larger (Figure 
A.4), in agreement with some previous studies (Keenan et al., 2013; Y. Liu et al., 2015; Saurer et al., 
2014). This may be due to the fact that the stomata of conifers are less responsive to environmental 
stimuli, such as [CO2] (Brodribb & McAdam, 2013; Medlyn et al., 2001; Tor-ngern et al., 2015). A 
comparison between the Duke and the ORNL sites in the U.S. shows the same pattern; IWUE 
increases more in the deciduous forest mostly because of the negative ET trend (De Kauwe et al., 
2013). However, a tree ring analysis at three FACE sites showed similar IWUE increase in evergreen 
and deciduous but for different physiological reasons (Battipaglia et al., 2013), while a recent study 
showed that iWUE of conifers responds to increasing [CO2] more than that of broadleaves (Frank et 
al., 2015). 

2.4.2 Plasticity in Plant Functional Traits 

Model results show that plasticity in ecosystem-scale physiological and structural traits could explain 
the observed increase in IWUE. A 1% yr-1 change in one or two key vegetation parameters combined 
with changes in relative humidity and temperature is sufficient to explain a 2.6 times larger change in 
IWUE when compared to theoretical expectations and other modelling results (Medlyn & De Kauwe, 
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2013). We emphasize that model parameters are representative of the ecosystem scale. This means 
that a trend in SLA, a1, or Vmax may not necessarily imply a trend in this parameter for a given species 
but might be the effect of a change in stand demography, as for example previously documented for 
the US-Ha1 site (Urbanski et al., 2007) and other ecosystems (Hardiman et al., 2013; Knapp, Briggs, 
& Smith, 2012). While this is unlikely to occur concurrently in all sites, it may partially drive the 
median trend in IWUE. This has also direct consequences for the interpretation of Ci:Ca and iWUE 
inferred from tree ring studies, which may not necessarily reflect the trend in IWUE if ecosystem 
traits are changing because of a shift in forest demographic distribution or composition. Indeed, 
several of the ecosystems studied here might still be in a growing state and have not yet reached an 
equilibrium (Table A.1). It is also possible that changes in ecosystem functioning arise as a result of 
very subtle changes in species composition (Knapp et al., 2012). 

Many models estimate generally lower WUE increase than the theoretically expected (0.5% yr-1) 
(Dekker et al., 2016; Ito & Inatomi, 2012; Keenan et al., 2013). However, the T&C model, even using 
static parameters, predicts an increase of 0.9% yr-1 in IWUE, which is larger than the expected, while 
simulating a constant Ci:Ca (Figure A.6). This result is independent of changes in the growing season 
length, because we restricted our analysis to summer months, but it is related to trends in climate 
variables, because simulations without trends in temperature and relative humidity show a median 
increase of 0.4% yr-1 roughly following the expectations. Indeed, T&C accounts not only for 
temperature, but also for the actual and saturated vapour pressure, thus changes in these variables can 
affect the model output. Hydrometeorological variability shapes ecosystem functioning (Pappas, 
Mahecha, Frank, Babst, & Koutsoyiannis, 2017) and changes in local meteorological drivers (such as 
VPD; Figure 2.3 and Table A.2) and the occurrence of favourable weather conditions are indeed 
capable of modifying long-term ecosystem response as shown by both observations and models 
(Fatichi & Ivanov, 2014; Forkel et al., 2016; Paschalis et al., 2015; Zscheischler et al., 2016). 

We found that the perturbations of Vmax and a1 (by +1% yr-1 and -1% yr-1, respectively) best simulate 
the observed IWUE trend. The physiological acclimation of decreasing a1 (the parameter which 
connects stomatal aperture and net assimilation rate) could concurrently explain the observed IWUE, 
GEP, and ET trends, although with lower GEP trends, compared to observations. When pairing a1 
with other parameters, the most effective in terms of performance was the combination with 
increasing maximum leaf-to-root ratio (LtR) or specific leaf area (SLA) and with decreasing canopy 
nitrogen decay coefficient (Knit).  

The parameter a1 is the most influential for the IWUE trend, which is not surprising because a1 
represents the sensitivity of stomatal conductance (gs) to assimilation rate and environmental drivers 
([CO2] and VPD) in the Leuning model of stomatal conductance which is implemented in T&C 
(Fatichi & Leuzinger, 2013; Leuning, 1995; Leuning, Kelliher, de Pury, & Schulze, 1995). Indeed, a1 
directly affects diffusivity in our experiments; imposing a negative slope in a1 leads to a slight 
reduction in Ci:Ca, while in all other experiments Ci:Ca was roughly constant (Figure A.6). While this 
result is partially expected, it reinforces the concept that the representation and parameterization of 
the “closure equation” in the photosynthesis-stomatal model is a cornerstone of model behaviour in a 
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changing climate (Damour, Simonneau, Cochard, & Urban, 2010; Medlyn et al., 2015; Paschalis, 
Katul, Fatichi, Palmroth, & Way, 2016). 

Given the importance of the a1 parameter, assessing the magnitude of its plasticity is pivotal. A recent 
study, in which the authors followed a similar modelling approach to reproduce the larger IWUE 
trends originally reported by Keenan et al. (2013), showed that a 2.1% yr-1 trend in g1 (similar to a1 
in our study) would imply (i) unrealistic site-level GEP negative trends, (ii) a decrease in Ci, and most 
importantly (iii) inconsistencies with large-scale trends in evapotranspiration, discharge, and seasonal 
amplitude of [CO2] (Knauer et al., 2017). However, in all our simulations, both Ci and GEP increase 
on average (Figure A.7 and Tables A.6 and A.7), in accordance with theoretical expectations and 
observations (Ainsworth & Long, 2005), and the most negative ET slopes (0.3% yr-1) are considerably 
smaller in magnitude compared to findings of Knauer et al. (2017) (i.e., 1% yr-1). Thus, our 
simulations support the hypothesis that a 1% yr-1 trend in one or more key physiological parameters 
could be a plausible explanation for the observed trend in IWUE in Northern Hemisphere forests not 
only at site level but potentially also at larger scales. 

The fact that a1 is variable among vegetation types and across temperature and moisture gradients was 
already explicit in the work of Leuning (1995). Recent work corroborated that the g1 parameter of an 
optimal stomatal conductance model (Katul et al., 2010; Medlyn et al., 2011), a parameter closely 
related to a1, spans a quite large range of values (Lin et al., 2015). Other studies have also shown that 
this parameter is not constant (Bunce, 2004; Valentini, Gamon, & Field, 1995). For instance, g1 can 
be parameterized as a function of soil moisture content (Medlyn et al., 2011); this parameterization 
can improve the results of models based on stomatal optimality theory (Manzoni et al., 2011). Other 
support comes from studies showing some plasticity in maximum stomatal conductance and leaf 
epidermal area with changes in [CO2], mostly occurring through a decrease in stomatal density, which 
can be directly translated in a decrease in a1 (de Boer, Eppinga, Wassen, & Dekker, 2012; de Boer et 
al., 2011, 2016; Lammertsma et al., 2011). While such plasticity is well acknowledged for geological 
time scales (P. J. Franks et al., 2013), it has been also demonstrated for decadal trends (Lammertsma 
et al., 2011), even though the latter finding is rather uncertain (Miglietta, Peressotti, Viola, Korner, & 
Amthor, 2011; Reid et al., 2003). Two studies from the Duke FACE site further support this 
hypothesis: a study in a loblolly pine plantation (Domec et al., 2009) showed that increased [CO2] 
decreased the sensitivity of stomatal conductance to VPD, while a similar result was also found for 
Liquidambar styraciflua (Ward et al., 2013). Overall, while at the ecosystem and decadal scale we 
cannot bring specific evidence beyond model simulations, we suggest that it is reasonable to 
hypothesize that a1 is adapting to environmental changes, such as increasing [CO2]. 

Previous research has also shown that Vmax is not constant but acclimates to [CO2], temperature, or 
soil moisture availability (Jens Kattge & Knorr, 2007; Sage, 1994; S. X. Zhou, Medlyn, & Prentice, 
2016). Across 12 FACE experiments, Vmax generally decreased in time (Ainsworth & Long, 2005), 
as happened, for instance, in the Oak Ridge FACE experiment, where photosynthesis was 
downregulated (Vmax was reduced) because of nutrient limitations (Warren, Jensen, Medlyn, Norby, 
& Tissue, 2015). However, other FACE experiments also showed that trees growing in elevated [CO2] 
have only a marginal decrease in Vmax (Ainsworth & Rogers, 2007). A modelling study showed that 
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the observed changes in the fluxes at Harvard forest can be explained by increases in Vmax (Keenan, 
Davidson, Moffat, Munger, & Richardson, 2012). Our results suggest that the increase in Vmax 
increases the ratio between net assimilation and stomatal conductance since Vmax has a direct effect 
on carbon assimilation but only an indirect influence on stomatal conductance. Thus, the net outcome 
is an enhanced IWUE.  

Decreasing Knit (canopy nitrogen decay coefficient) implies that leaf nitrogen content declines less 
steeply throughout the canopy profile (i.e., more evenly distributed). In other words, for a given top-
of-the-canopy Vmax, the total canopy nitrogen content is increasing. This can be a result of increasing 
nitrogen deposition or simply of an increased height or structural rearrangement of the examined 
forest canopies (Guerrieri et al., 2011; Leonardi et al., 2012). However, any conclusion about changes 
in Knit remains quite speculative. 

Elevated [CO2] influences allocation (Palmroth et al., 2006; Poorter & Nagel, 2000), but it is unclear 
in which direction, since confounding factors complicate the observed dynamics. Some studies 
reported both increasing and decreasing leaf-to-root ratio (H. H. Rogers, Stephen, Runion, & Mitchell, 
1996), and others detected limited [CO2] effect on root-to-shoot ratio (Morison & Gifford, 1984). 
Some researchers found that under increasing [CO2] usually more carbon is allocated to roots, 
although it is difficult to quantify the change relative to foliage biomass since many factors affect root 
production (Matamala & Schlesinger, 2000 and references therein). 

Previous studies have shown that SLA decreases rather than increases under elevated [CO2] (Ainsworth 
& Long, 2005; De Kauwe et al., 2014; Eamus & Jarvis, 1989; Ishizaki, Hikosaka, & Hirose, 2003; 
Maillard, Guehl, Muller, & Gross, 2001; Medlyn et al., 2015; Morison & Gifford, 1984; Peñuelas & 
Matamala, 1990; Yin, 2002). However, our hypothesis of increasing SLA is plausible since other 
environmental changes could be the potential drivers. Overall, the patterns of change in the 
physiological parameters we perturbed can be considered realistic. Rapid physiological and structural 
acclimation to environmental change has occurred in several temperate forests recently (Gough et al., 
2013; Granier, Bréda, Longdoz, Gross, & Ngao, 2008; Niinemets, 2007; Stuart-Haëntjens, Curtis, 
Fahey, Vogel, & Gough, 2015). Our results demonstrate that such acclimation -in combination with 
changes in VPD and temperature- could explain the observed trend in IWUE. 

The fact that even trends of 1% yr-1 can be so important demands for more observations not only of 
the current values of the different plant physiological properties but also of their potential change with 
time or due to environmental change. Trends in plant functional traits at the ecosystem scale within 
this magnitude are currently difficult to detect because measurements are usually available as 
snapshots on individual plants. For many vegetation parameters (such as Vmax, SLA, and a1) even 
considerable changes at the ecosystem scale would be difficult to detect experimentally due to the 
large heterogeneity within different canopy levels (Niinemets, Keenan, & Hallik, 2015) or at the 
interspecies (J. Kattge et al., 2011) and intraspecies levels (Albert, Grassein, Schurr, Vieilledent, & 
Violle, 2011; Siefert et al., 2015). Intraspecific trait variability is currently not sufficiently 
documented for any plant trait (Aubin et al., 2016) hampering the assessment of possible trends at the 
ecosystem level.  
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Regardless of the choice of the exact vegetation parameter or parameter combinations, we deem as 
critical the fact that trends in plant functional traits, which are assumed constant in time in most 
vegetation models, can potentially modify the ecosystem capacity to metabolize water and carbon 
under changing environmental conditions. The parameterization of vegetation models should be thus 
revised, considering that plant trait variability in both space and time can lead to more realistic 
predictions of the ecosystem response to changing environmental conditions (Fyllas et al., 2014; 
Pappas et al., 2016; Pavlick, Drewry, Bohn, Reu, & Kleidon, 2013; Sakschewski et al., 2015; Scheiter, 
Langan, & Higgins, 2013). We advocate that pioneering observation campaigns including forest 
demography monitoring and many replicates of plant physiological measurements over decadal 
periods could quantify the velocity of plant trait plasticity and acclimation to environmental change. 

2.4.3 Challenges for the future 

To improve our understanding of ecosystem responses to changes in climatic variables, we need to 
reduce the uncertainties in measurements of hydrometeorological variables. For instance, the lack of 
energy balance closure in several sites implies important biases in the derived fluxes (e.g., Foken, 
2008; Leuning et al., 2012; Schmid et al., 2000; Su et al., 2004).  

Our numerical experiment shows that trends in vegetation parameters, reflecting plant trait plasticity, 
and/or changes in forest demography and composition, could explain the higher-than-expected IWUE 
increase. Tracing plant trait plasticity is challenging. Beyond CO2 fertilization (Battipaglia et al., 
2013; J.-G. Huang et al., 2007; Keenan et al., 2013), droughts can alter forest structure and plant 
functional traits (Camarero, Gazol, Tardif, & Conciatori, 2015; Hereş, Voltas, López, & Martínez-
Vilalta, 2014; Koutavas, 2013; S. X. Zhou et al., 2016). Plant acclimation to rising air temperature 
(Reichstein et al., 2007; Smith & Dukes, 2013) and to changes in VPD (Novick et al., 2016) can also 
affect ecosystem functioning; thus, forecasting future changes in IWUE would require more accurate 
projections of changes in climatic variables, such as near surface humidity. The drivers of plant trait 
plasticity remain unclear, but it seems unlikely that the changes are merely driven by the increase in 
[CO2]. 

Variability among species and plant functional types introduces another source of uncertainty (Pappas 
et al., 2016), which cannot be sufficiently captured by current approaches. We found that evergreen 
and deciduous tree species exhibited markedly different rates of change in IWUE, while currently 
T&C can only partially reproduce this difference (Figures A.4, A.8 and A.9). To model such diverging 
responses, we need a better description of plant physiological behaviour over time. This might be 
achieved through more mechanistic models of stomatal functioning (Damour et al., 2010) together 
with trait-based approaches (Fyllas et al., 2009; Pappas et al., 2016; Pavlick et al., 2013; Sakschewski 
et al., 2015) and potentially stochastic parameterizations that account for biotic and abiotic 
spatiotemporal heterogeneities (Fatichi, Leuzinger, et al., 2016; Pappas et al., 2016; Pappas, Fatichi, 
Rimkus, Burlando, & Huber, 2015; Prentice, Liang, Medlyn, & Wang, 2015). Temperature- or [CO2]-
driven acclimation of photosynthesis and respiration (Buckley, 2008; Lombardozzi, Bonan, Smith, 
Dukes, & Fisher, 2015; Reich et al., 2016; Smith, Malyshev, Shevliakova, Kattge, & Dukes, 2016) is 
another source of uncertainty, which might also be tackled in future analyses since it is not modelled 
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here, but it is expected to reduce rather than increase IWUE. The lack of an explicit representation of 
mesophyll conductance by most ecosystem models (including T&C) poses another impediment in the 
simulation of WUE trends (Flexas et al., 2016; Sun et al., 2014) because a response of mesophyll 
conductance to increased [CO2] and other environmental variables modifies WUE. Finally, 
interactions between the nutrient cycles and changes in WUE remain challenging (M. Huang et al., 
2016; Ito & Inatomi, 2012; Jennings, Guerrieri, Vadeboncoeur, & Asbjornsen, 2016; X. Liu et al., 
2014; Peñuelas et al., 2011; Radoglou, Aphalo, & Jarvis, 1992; Saurer et al., 2014). Yet many 
ecosystem models, including the current version of T&C, do not explicitly simulate nutrient 
dynamics. Using models that explicitly describe nutrient cycles and their interaction with plant growth 
and performance could likely further improve our understanding of changes in WUE. 

Short-term plants’ acclimation can be crucial for the survival of forests under climate change (Aubin 
et al., 2016), but our current knowledge about plasticity and climate change interactions is limited 
(Valladares et al., 2007). Evidence of plasticity is still limited to a few species (S. J. Franks et al., 
2007; Galmés et al., 2014), but there is increasing interest in the significance of including trait 
plasticity in ecological studies (Albert et al., 2011; Nicotra et al., 2010). Our results suggest that even 
small changes in plant physiological traits could possibly affect forest functioning at the decadal time 
scale. Clearly, any attempt to better model the ecosystems’ responses to environmental changes 
requires detailed long-term monitoring of plant functional traits. 

Author contribution 

S.F., T.M., C.P. and P.M. designed the study. T.M. performed the simulations and the analyses and 
plotted the figures. T.M. wrote the manuscript with contributions from all authors. 

Acknowledgements 

This work used eddy covariance data acquired and shared by the FLUXNET community 
(http://fluxnet.fluxdata.org/, last access 30.08.2016), including these networks: AmeriFlux, AfriFlux, 
AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, 
GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The 
FLUXNET eddy covariance data processing and harmonization were carried out by the ICOS 
Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, 
with the support of CDIAC, and the OzFlux, ChinaFlux, and AsiaFlux offices. Funding for AmeriFlux 
data resources (http://ameriflux.lbl.gov/, last access 16 March 2017) was provided by the U.S. 
Department of Energy’s Office of Science. The data sources are listed in Table A.1. T.M. and S.F. 
thank the support of the Stavros Niarchos Foundation and the ETH Zurich Foundation (grant ETH-
29 14-2). C.P. acknowledges the support of the Stavros Niarchos Foundation and the ETH Zurich 
Foundation (grant P2EZP2_162293) through a Swiss National Science Foundation (SNSF) Early 
Postdoc. Mobility fellowship. T.F.K. acknowledges supported from the Laboratory Directed Research 
and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of 
Energy contract DEAC02- 05CH11231. P.G. acknowledges support from the National Science 
Foundation CAREER grant (1552304) and Department of Energy Early Career grants. 

http://fluxnet.fluxdata.org/
http://ameriflux.lbl.gov/


26 

  



27 

3 
3. Ecohydrological dynamics in the Alps: Insights from a 

modelling analysis of the spatial variability 

Abstract 

Mountain ecosystems are experiencing rapid warming resulting in ecological changes worldwide. 
Projecting the response of these ecosystems to climate change is thus crucial, but also uncertain due 
to complex interactions between topography, climate, and vegetation. Here, we performed numerical 
simulations in a real and a synthetic spatial domain covering a range of contrasting climatic conditions 
and vegetation characteristics representative of the European Alps. Simulations were run with the 
mechanistic ecohydrological model Tethys–Chloris to quantify the drivers of ecosystem functioning 
and to explore the vulnerability of Alpine ecosystems to climate change. We correlated the spatial 
distribution of ecohydrological responses with that of meteorological and topographic attributes and 
computed spatially explicit sensitivities of net primary productivity, transpiration, and snow cover to 
air temperature, radiation, and water availability. We also quantified how the variance in several 
ecohydrological processes, such as transpiration, quickly diminishes with increasing spatial 
aggregation, which highlights the importance of fine spatial resolution for resolving patterns in 
complex topographies. We conducted controlled numerical experiments in the synthetic domain to 
disentangle the effect of catchment orientation on ecohydrological variables, such as streamflow. Our 
results support previous studies reporting an altitude threshold below which Alpine ecosystems are 

water-limited in the drier inner‐Alpine valleys and confirm that the wetter areas are temperature‐

limited. High‐resolution simulations of mountainous areas can improve our understanding of 
ecosystem functioning across spatial scales. They can also locate the areas that are the most vulnerable 
to climate change and guide future measurement campaigns. 
  

                                                   
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Hadjidoukas, P., & Fatichi, S. (2019). Ecohydrological 
dynamics in the Alps: insights from a modelling analysis of the spatial variability. Ecohydrology, 12(1), e2054. 
https://doi.org/10.1002/eco.2054 
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3.1 INTRODUCTION 

Climate change poses challenges for mountain ecosystems, and the quantification of their responses 
is crucial for their management. The European Alps—situated in the transition between the 
Mediterranean Sea and the Atlantic Ocean—comprise a unique mosaic of microclimates and 
vegetation types, which renders this area particularly interesting, but also complicates modelling 
attempts (Beniston, 2006). In the European Alps, air temperature is rising faster than the global 
average (Brunetti et al., 2009), reducing snow cover duration (Beniston et al., 2018) and increasing 
drought occurrence (Timofeeva et al., 2017), tree mortality (Rebetez & Dobbertin, 2004), and 
wildfires (Dupire et al., 2017). Observations show that vegetation species composition is changing in 
certain areas (Rigling et al., 2013); these changes might accelerate in the future (Booth et al., 2012; 
Schumacher & Bugmann, 2006). At higher elevations, grassland species are either profiting from the 
reduced snow cover or diminishing due to higher temperatures (Carlson et al., 2017; Gottfried et al., 
2012; Pauli, Gottfried, Reiter, Klettner, & Grabherr, 2007). Models project negative impacts on 
forests (including more frequent wildfires) especially in the dry and warm regions (Elkin et al., 2013). 
Tree-ring studies in certain Alpine areas also suggest that water stress is becoming more frequent 
(Büntgen et al., 2006; Timofeeva et al., 2017).  

Process-based numerical models are widely used for simulating ecohydrological dynamics in 
different ecosystems. In mountainous areas such efforts are challenging because the complex terrain 
creates variability and gradients in vegetation patterns and in several meteorological variables, such 
as air temperature, precipitation, shortwave radiation and wind speed, thus confounding the 
relationship between climate and ecosystem functioning (Ivanov, Bras, & Vivoni, 2008a). Studies 
with spatially explicit numerical models have investigated mountain ecohydrology, principally in 
water-limited areas (e.g., Gutiérrez-Jurado & Vivoni, 2013; Ivanov, Bras, & Vivoni, 2008b; Klos et 
al., 2018; C. Tague, Heyn, & Christensen, 2009; Vivoni, Rodríguez, & Watts, 2010; Williams, 
McNamara, & Chandler, 2009; Zapata-Rios, Brooks, Troch, McIntosh, & Guo, 2016), but the 
quantification of the spatial variability of the related ecohydrological processes remains limited. 
Research in the semi-arid western US cascades has shown that the responses of ecosystems to climate 
change and management practices varies spatially (Tague, Heyn, et al., 2009), and the uncertainties 
related to the aspect peak in areas where precipitation might shift from snow-dominated to rain-
dominated (Tague & Peng, 2013; Williams et al., 2009).  

To date, very few distributed ecohydrological studies have focused on the European Alpine 
ecosystems (Zierl et al., 2007) and they typically investigated few sites with special local features 
(e.g., Bertoldi et al., 2010; Della Chiesa et al., 2014; Rössler, Diekkrüger, & Löffler, 2012). 
Conclusions from these studies are not generalizable to larger areas. For example, Della Chiesa et al., 
2014 found an altitudinal threshold below which grass is water-limited in a dry inner Alpine hillslope 
and call for more research to quantify this threshold. Since this threshold seems to characterize also 
evergreen forests in another inner Alpine catchment (Rössler et al., 2012), it becomes clear that a 
more comprehensive analysis of the spatial variability of ecohydrological drivers and responses in the 
Alpine region is warranted.  
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Contrary to the western US (e.g., Hinckley et al., 2014; Zapata-Rios et al., 2016), no modelling study 
has explored the role of aspect on ecohydrology in the European Alps, although previous research has 
shown that slope orientation influences the sensitivity of plants to climate in this region (Leonelli, 
Pelfini, Battipaglia, & Cherubini, 2009). These knowledge gaps in vegetation-climate-topography 
interactions in the Alpine region hinder our ability to assess the impacts of climate and land use 
changes on mountain ecosystems (Viviroli et al., 2011; Voepel et al., 2011). Additionally, recent 
research has shown that the cross-scale temporal variability of ecosystem processes is enveloped by 
the variability of hydrometeorological variables (Pappas et al., 2017). Distributed ecohydrological 
models offer the opportunity to explore the cross-scale variability of these processes not only in time 
but also in space. Indeed, modelling insights on the spatial scale dependence of ecohydrological 
processes may help understanding the controls of spatial distribution of vegetation (Thompson, 
Harman, Troch, Brooks, & Sivapalan, 2011), which is crucial for predicting the response of the 
ecosystems to climate change (Voepel et al., 2011). In summary, studying the spatial variability of 
ecohydrological variables might enhance our understanding of the climatic drivers of the various 
processes and thus help assessing climate change effects in mountainous ecosystems. 

In this study, we used the distributed ecohydrological model Tethys-Chloris (T&C) to simulate the 
ecohydrology of an Alpine catchment (Kleine Emme, central Switzerland) and a synthetic domain to 
address the following questions: (1) How will different vegetation types (forest and grassland) 
respond to changes in meteorological variables in Alpine areas with distinct climates? (2) Which areas 
are water-limited and thus prone to droughts and which areas are energy-limited? (3) Is there a role 
of catchment orientation in controlling ecohydrological processes? (4) How does the spatial 
variability of ecohydrological variables change across spatial scales?  

A way to evaluate the response of ecosystems to climate change is through multiple simulations based 
on climate projections, which are very uncertain, especially in mountainous areas, where the 
downscaling is necessary and constitutes an additional source of uncertainty (e.g., Rössler et al., 
2012). Instead, here we applied the “space-for-time” approach, in which ecological variables are 
correlated to naturally occurring topographic gradients (e.g., Dunne, Saleska, Fischer, & Harte, 2004; 
Goulden & Bales, 2014; Sundqvist, Sanders, & Wardle, 2013). This approach hypothesizes that 
vegetation will respond to climate change following the same principles that determine its spatial 
distribution under current climate. While this is not generally true across large climatic gradients (e.g., 
Fatichi & Ivanov, 2014; Goward & Prince, 1995; Huxman et al., 2004), it is a reasonable assumption 
at the spatial scales of few tens of square kilometres of this study. We correlated the spatial patterns 
of several simulated ecohydrological variables (including net primary production, leaf area index, 
transpiration, evapotranspiration and snow cover duration, hereafter referred as “ecohydrological 
variables”) to the spatial patterns of temperature, radiation and water availability. Through a 
correlation analysis, we quantified how each of the dependent variables will respond to a unit change 
in each of the three drivers in a spatially explicit way for different vegetation types and climatic 
conditions. To generalize these sensitivities for a broader climatic spectrum, we repeated the same 
sensitivity analysis on a synthetic domain with simple topography and uniform vegetation cover for 
two contrasting climates of the Alpine region (the wet Bernese highlands and the dry inner valley of 
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the upper Rhone basin). Using the same experimental setup, we quantified the role of catchment 
orientation on ecohydrological processes, such as streamflow.  

3.2 METHODS 

3.2.1 The T&C model 

We used the mechanistic ecohydrological model Tethys-Chloris (T&C, Fatichi, Ivanov, & Caporali, 
2012; Fatichi & Leuzinger, 2013; Fatichi & Pappas, 2017; Manoli, Ivanov, & Fatichi, 2018; Pappas, 
Fatichi, & Burlando, 2016). T&C simulates the principal processes of the hydrological cycle, such as 
precipitation interception, transpiration, ground evaporation, infiltration, and surface/subsurface 
water fluxes, including the lateral transfer of water. It further simulates plant-related processes, such 
as photosynthesis, phenology, carbon allocation and tissue turnover. It resolves the mass and energy 
budgets over complex topography, explicitly considering the spatial variability of meteorological 
fields, soil properties, vegetation and the topography effect on the distribution of incoming radiation. 
More details about the model are presented in the supplementary information (see Appendix B.1). 

3.2.2 Model simulations 

The first case study of this analysis investigates the wet pre-Alpine environment, which is 
representative of a large fraction of the European Alps. We selected the Kleine Emme catchment in 
central Switzerland (Figure 3.1) as a typical wet Alpine case study. The Kleine Emme catchment (478 
km2) is mostly covered by grassland, evergreen forest, and mixed (evergreen-deciduous) forest and 
the dominant soil type is silt/sandy loam (Figure B.1). The mean catchment elevation is 1050 m a.s.l. 
(range: 431-2329 m a.s.l.). The long-term catchment-average mean for precipitation and air 
temperature are 1650 mm yr-1 and 7.7 °C, respectively (Pappas et al., 2015). Vegetation cover was 
derived by the Corine 2006 product (https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster-
4, downloaded in December 2016) and soil texture data were derived from the Swiss soil map 
(GEOSTAT, 2000). We used a uniform soil depth of 0.6 m in the whole catchment in the absence of 
more precise information.  

Data from three meteorological stations in (or near) the catchment were used to derive the 
meteorological input for the model (Table 3.1). Based on the elevational lapse rates, which were 
estimated for every hour of the simulation period assuming linear regressions according to the 
elevation of the stations, T&C computed the maps of air temperature (Figure 3.2a), air pressure, wind 
speed and dew point temperature (to subsequently use vapour pressure). Shortwave radiation was 
computed based on local and remote topographic effects (Figure 3.2b). For precipitation, we used a 
distributed product with 2 km resolution and daily time step (Wüest et al., 2010, Figure 3.2c). Daily 
to hourly disaggregation of precipitation was based on the rainfall timing observed at the three stations 
(as described in Fatichi, Rimkus, Burlando, Bordoy, & Molnar (2015). The model was run on 100 m 
spatial resolution and hourly temporal resolution for a period of five years (2000-2005). The first year 
of the simulation period was discarded to eliminate issues related to model spin-up, thus only four 
years were finally analysed.  

https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster-4
https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster-4
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We used vegetation parameterizations derived from previous applications of T&C for sites of the 
Swiss FluxNet network (S. Wolf et al., 2013), which reproduce realistically carbon, water and energy 
responses (Fatichi & Pappas, 2017; Fatichi, Zeeman, Fuhrer, & Burlando, 2014). Only discharge data 
from two sites are available for validating the hydrological response in the Kleine Emme catchment 
(Table B.1). The good model performance at the hourly and daily time scales (Figures B.2, B.3 and 
B.4) and the comparison between the observed and modelled flow duration curves (Figure B.5) 
confirm the suitability of the employed vegetation parameterizations and soil properties for the scope 
of this study.  

 

Figure 3.1 Location and topographic map of the Kleine Emme catchment in central Switzerland. 

 

Table 3.1 Summary of the meteorological stations used in the study (source: Swiss meteorological service). 

Experiments Kleine Emme Wet synthetic domain Dry synthetic domain 

Station name Luzern Napf Pilatus Interlaken Adelboden Visp Zermatt 
Elevation [m a.s.l.] 454 1403 2106 577 1320 639 1638 
Latitude N 47.03 N 47.00 N 46.98 N 46.67 N 46.50 N 46.30 N 46.03 
Longitude E 8.30 E 7.93 E 8.25 E 7.87 E 7.56 E 7.85 E 7.75 
Time period used 1.10.2000-30.9.2005 1.10.1990-30.9.1995 1.1.1982-31.12.1986 
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Figure 3.2 Four‐year mean annual (a) temperature, (b) shortwave radiation, (c) precipitation that are used as 

input meteorological variables to the model and 4‐year mean annual simulated (d) transpiration, 
(e) leaf area index (LAI), (f) net primary production (NPP), (g) soil evaporation, (h) fraction of 
time with soil saturation, and (i) fraction of time with snow cover for the Kleine Emme catchment. 
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Figure 3.3 Three‐dimensional (3D) representation of the symmetric synthetic domain. The vertical axis has 
been stretched to improve clarity. 

We also performed multiple simulations with T&C on a synthetic domain with different vegetation 
covers and for contrasting climatic regimes, to disentangle the roles of climate and vegetation. The 
synthetic domain comprises one peak in the middle with eight catchments draining along the cardinal 
and intercardinal directions (Figure 3.3). The total area of the domain is 78 km2, the area of each 
catchment is 8.7 km2 (cardinal) and 9.1 km2 (intercardinal) and the elevation range is 1500-2500 m 
(typical elevation of Alpine headwater catchments). The soil was assumed uniform in the whole 
domain (clay loam with 30% clay and 20% sand, Hengl et al., 2014). Air temperature, wind speed 
and precipitation change with elevation and thus are similar in all catchments (all catchments have a 
similar elevation profile). The eight catchments differ only in terms of incoming radiation, which 
makes this experimental setup suitable for isolating the effects of radiation on ecohydrological 
processes. 

We performed four simulations on this domain to explore different climates and vegetation 
characteristics. We considered two areas with very contrasting climatic regimes in the Alps, although 
they are close to each other, the Bernese Highlands (wet climate) and the inner-Alpine upper Rhone 
valley (dry climate) with mean annual precipitation ca. 1450 and 620 mm, respectively. For each of 
the two climates (hereafter “wet” and “dry”), data from a low- and a high-elevation station were used 
(Table 3.1) to compute the elevational lapse rates for every hour for all meteorological variables (e.g., 
precipitation).  
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We investigated the differences between two common Alpine vegetation covers, i.e. evergreen forest 
and managed grassland. Each vegetation cover was assigned in the entire domain and model 
parameterization followed previous T&C studies, assigning different plant functional type 
parameterizations to evergreen forests and grasslands (Fatichi et al., 2014, 2015; Fatichi & Pappas, 
2017). We conducted four simulations to combine the different climates and vegetation types (i.e. wet 
evergreen forest, wet grassland, dry evergreen forest and dry grassland). We excluded the first 
simulated year in each case to eliminate problems related with the spin-up, and we thus used the four-
year average for the subsequent analyses. The spatial resolution of the simulations is 100 m and we 
used hourly time step. Figure 3.4 shows an overview of meteorological input and simulated 
ecohydrological variables for the dry grassland (for the other three experiments, see Figures B.6, B.7 
and B.8). 

3.2.3 Sensitivity analysis 

To quantify the sensitivity of ecohydrological processes, ideally, we would perform several virtual 
experiments perturbing one explanatory variable at a time to compute the corresponding change in 
the ecohydrological variables. However, this is infeasible, because the simulations with T&C are 
computationally very demanding due to the fine spatiotemporal resolution. Instead, we applied the 
so-called gradient method, which is common in ecological research (e.g., Dunne, Saleska, Fischer, & 
Harte, 2004); we related the spatial distribution of several simulated ecohydrological variables (such 
as transpiration and NPP) to the spatial distribution of topographic or meteorological variables. Three 
main environmental controls express the energy and water limitations: air temperature, solar radiation 
and water availability (e.g., Churkina & Running, 1998; Nemani et al., 2003; Seddon, Macias-Fauria, 
Long, Benz, & Willis, 2016). Since soil moisture is a model output (and thus it is influenced by many 
factors), we preferred to use a topographic proxy to express water availability. We compared two 
indexes: the upstream area and the topographic wetness index (hereafter “topographic index”) and 
retained the latter because it has a better explanatory power to describe moisture availability (more 
details in Appendix B.2, Tables B.2 and B.3).  

We performed one regression for each ecohydrological variable (separately for each vegetation type 
in the Kleine Emme catchment) using the three explanatory variables (i.e. air temperature, shortwave 
radiation and topographic index) and taking into account interaction effects between them (Table 
B.4). We first visually inspected the scatter plot of each dependent variable against each explanatory 
variable to decide if their relationship is linear or quadratic. A generalized equation in its full version 
is the following: 

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥1𝑥2 + 𝑎5𝑥1𝑥3 + 𝑎6𝑥2𝑥3 + 𝑎7𝑥1
2 + 𝑎8𝑥2

2 + 𝑎9𝑥3
2 (3.1) 

where y is the dependent variable (e.g., leaf area index, LAI) and x1, x2, and x3 are the three 
explanatory variables (i.e., air temperature, radiation, and topographic index). 
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Figure 3.4 Four‐year mean annual (a) temperature, (b) shortwave radiation, (c) precipitation that are used as 

input meteorological variables to the model and 4‐year mean annual simulated (d) transpiration, 
(e) leaf area index (LAI), (f) net primary production (NPP), (g) soil evaporation, (h) fraction of 
time with soil saturation, and (i) fraction of time with snow cover for the dry grassland experiment 
in the synthetic domain. 

Statistical metrics from these regressions were used to detect outliers: every pixel for which the 
leverage or the Cook distance was outside of the 99.9 percentile of the corresponding distribution was 
excluded as an outlier, and the regressions were recomputed. Based on the final regressions, we 
computed the sensitivity of the dependent variables to each explanatory variable as the respective 
partial derivative. For example, the sensitivity of the dependent variable y to the explanatory variable 
x1 in Equation (3.1) is 

 𝜕𝑦

𝜕𝑥1
= 𝑎1 + 𝑎4𝑥2 + 𝑎5𝑥3 + 2𝑎7𝑥1 

(3.2) 

Equation 3.2 shows that the sensitivity of every dependent variable to one explanatory variable is a 
function of all the three explanatory variables, since the sensitivity is affected by where the dependent 
variable is located in the three-dimensional domain (where the three dimensions correspond to air 
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temperature, shortwave radiation and topographic index). Note that in the following, when we refer 
to the sensitivity of a dependent variable y to an independent variable x, we mean how much y will 
change for a unit change in x, i.e., we use the mathematical partial derivative of a multivariate field 
to compute the sensitivity. This differs from how sensitivity is strictly defined in statistical terms (e.g., 
Pappas, Fatichi, Leuzinger, Wolf, & Burlando, 2013; Saltelli et al., 2008) and allows sensitivity values 
to be positive and negative according to the sign of the derivative. 

This analysis provided three maps for each ecohydrological variable showing their distributed 
sensitivity to the three explanatory variables (one value for each grid cell and each explanatory 
variable based on the long-term mean values for each variable). However, the comparison of the 
relative importance of each explanatory variable with this analysis alone is infeasible, because the 
sensitivity to each explanatory variable has different units; that is, the sensitivity of annual 
transpiration to temperature, radiation, and topographic index is expressed in mm yr−1/°C, mm yr−1/(W 
m−2), and mm yr−1/(−), respectively. 

To estimate the relative importance of each explanatory variable, we standardized all the variables 
using the Z-scores, so that the mean equals zero and the standard deviation equals one. We repeated 
the sensitivity analysis as described above and computed the partial derivatives of each dependent 
variable to the three explanatory variables. In this analysis, we used the absolute values of the partial 
derivatives, because the sign does not affect the relative importance of each explanatory variable 
(besides, including the sign would be redundant, because this information emerges from the 

previously described non‐normalized analysis). For each pixel of the domain, we computed the total 
sensitivity by summing the three partial derivatives and we divided each derivative by the total 

sensitivity. These normalized sensitivities were visualized using Red‐Green‐Blue (RGB) 
representation with one colour for each explanatory variable. The exact relationships for the 
normalized variables in the Kleine Emme catchment are given in Table B.4 for four ecohydrological 
variables.  

3.2.4 Variance across spatial scales 

To compare the spatial variability of the analysed meteorological and ecohydrological variables, we 
defined a range of variability (RV) of each variable, as an indicator of the scatter of the values around 
the mean. RV equals the double of its interquartile range (IQR), which— assuming a normal 

distribution—corresponds to 2.698*σ (σ is the standard deviation), expressed as percentage of the  

 
RV =

2 ∗ 𝐼𝑄𝑅

𝑚𝑒𝑎𝑛
∗ 100 

(3) 

We investigated how the variance of several ecohydrological variables decreases with increased 

spatial aggregation, in both the synthetic domain and the Kleine Emme catchment. We used the 4‐
year average of simulated net primary production (NPP), transpiration, and other ecohydrological and 
meteorological variables. First, we standardized all the variables using the Z-scores, so that the 

standard deviation of the original 100‐m resolution equals one, in order to combine different variables 



37 

in a single figure. Then, we aggregated the model output by assigning to each pixel the mean value 
of an area, which is increased stepwise (see Figure B.9 for an illustrative explanation). After 
computing the spatial variability of the original model output, the second step was to aggregate the 
surrounding cells of each pixel (e.g., three times larger resolution implies that nine pixels are 
aggregated). At each step, we extended the aggregation area to include the surrounding pixels of the 
pixels considered in the previous step; thus, the size of the aggregation area increases by 200 m in 
each direction at every step (Figure B.9). 

3.3 RESULTS 

3.3.1 Ecohydrological sensitivity to temperature, radiation, and topographic index 

3.3.1.1 The Kleine Emme catchment 

Low temperatures limit all ecosystem variables in most parts of the domain, which translates into a 
positive sensitivity to air temperature (Figure 3.5a–d). This sensitivity peaks in the higher (and colder) 

parts of the domain, where a one‐degree increase in temperature can lead to up to more than 60 mm 
increase in annual ET, 70 gC m−2 increase in annual NPP, and 0.2 increase in LAI. When moving to 
lower elevations, the sensitivity of ET and NPP to air temperature declines, whereas for the ET of the 
evergreen forest, the sensitivity to air temperature becomes even negative locally (Figure 3.5b). 

The sensitivity to shortwave radiation differs between variables. The radiation sensitivity of 

transpiration and ET is generally positive (Figure 3.5e–f), whereas NPP and LAI are radiation‐

saturated in the south‐facing slopes and radiation‐limited in the north‐facing slopes (Figure 3.5g–h). 
A radiation increase of 1 W m−2 could increase annual transpiration by up to 3 mm and decrease 
annual NPP by up to 4 gC m−2. 

Almost all ecosystem variables are negatively correlated to the topographic index (Figure 3.5i–l), 
which means that there are no major water limitations in this catchment. Only in the ridges of the 
lower parts of the catchment, NPP and LAI are slightly positively correlated to topographic index. 
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Figure 3.5 Sensitivity of transpiration (T), evapotranspiration (ET), net primary production (NPP), and leaf 
area index (LAI) to air temperature, shortwave radiation, and topographic index in the Kleine 
Emme catchment. Green represents areas where an increase in the explanatory variable leads to an 
increase in the dependent variable (positive sensitivity), and magenta is for the areas where an 
increase in the explanatory variable leads to a decrease in the dependent variable (negative 
sensitivity). Areas shown in dark colour are those where the dependent variable is insensitive to 
the respective explanatory variable. 
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Figure 3.6 Normalized sensitivity of net primary production (NPP) to air temperature, shortwave radiation, 

and topographic index in the Kleine Emme catchment. The red colour represents areas where 

temperature is the main control for NPP, green represents the radiation‐limited areas, and blue is 
for areas where the topographic index is the dominant control. Inset scatter plots show the 
comparison between the original model output (“original”) and the values that are calculated with 
the regression formula that was used for the sensitivity analysis (“regressed”) for (a) evergreen 
forest, (b) mixed forest, and (c) grassland (the R2 values of each regression are also shown). All 
variables are normalized. 

The analysis of the normalized variables shows that air temperature is the dominant control for NPP 
in most parts of the catchment (Figure 3.6 and Table B.5). The subplots in Figure 3.6 show the scatter 
of the originally modelled NPP against the regressed NPP (both normalized) for the different 
ecosystems. The three explanatory variables describe relatively well the spatial distribution of NPP 
for the evergreen forest (R2 > 0.7) but do less efficiently so for the mixed forest and the grassland (R2 
~0.4). It is important to notice that the maps of normalized sensitivity should be viewed through the 
lens of the magnitude of the absolute sensitivities: For example, one variable might appear to be the 
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dominant control for an ecohydrological variable in a specific area only because the sensitivity to the 
other two drivers is closer to zero.  

Air temperature is the primary control for most ecosystem variables in large parts of the domain. Not 
only for NPP, but also for LAI, air temperature is at least three times more important than radiation 
or topographic index in all elevation bands above 800 m (Table B.5 and Figure B.10). In the lower 
parts, all three explanatory variables are roughly equally important for transpiration whereas for ET, 
radiation is the dominant control (Table B.5 and Figures B.11 and B.12). Snow processes are mainly 
driven by air temperature (Figure B.13). The scatter subplots in the aforementioned figures show that 
the three explanatory variables provide a good regression for all variables in all three ecosystems (R2 
> 0.6); they only perform poorly for evergreen forest ET (R2 = 0.2). 

3.3.1.2 Synthetic domain 

Results from the experiments on the synthetic domain show very distinct patterns of NPP sensitivity 
(Figure 3.7). A comparison between different vegetation types shows that grassland NPP is much 
more sensitive to all three explanatory variables compared with evergreen forests (e.g., for sensitivity 
to air temperature, compare subplots 7a and 7b). Depending on the ecosystem and the location, an 
increase in air temperature by one degree would lead up to more than 150 gC m−2, or equivalently, 
more than 45% (40 gC m−2, or 10%) increase in annual NPP of the wet grassland (wet evergreen 
forest). 

The climatic signal on NPP sensitivity is even more striking for the dry ecosystems: although the wet 
ecosystems are limited by low temperatures in the whole elevation range (Figure 3.7a,b), the dry 
ecosystems show a transition from areas limited by low temperatures to areas negatively influenced 
by relatively high temperatures when moving below 1,700 m a.s.l. (Figure 3.7c,d and Table B.6). NPP 
sensitivity to radiation is very small in the wet ecosystems (Figure 3.7e–f) but larger and negative 
everywhere in the dry ecosystems (Figure 3.7g–h and Table B.6). Water limitations (e.g., the 
combination of negative sensitivity to temperature and positive sensitivity to topographic index in the 
low parts of the dry domain) are stronger in the grassland and less pronounced in the evergreen forest 
in absolute values (Figure 3.7c–d, k–l). Together with the sensitivity to topographic index of the wet 
experiments (Figure 3.7i–j), these results show that although the wet Alpine ecosystems are primarily 

energy‐limited, the lower parts of dry Alpine valleys are water‐limited. 

In general, air temperature is low and limiting for all ecosystem variables (T, ET, and LAI), at least 
at the highest elevations, in all simulations. The only exception is the ET in the wet evergreen forest, 
which shows a negative sensitivity to air temperature (Figure B.14a). Similarly with NPP, in the dry 
experiments, ET and LAI are negatively correlated to temperature in the low areas of the evergreen 

forest (Figures B.14c‐d and B.15c‐d). 
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Figure 3.7 Sensitivity of net primary production (NPP) to air temperature, shortwave radiation, and 
topographic index in the four experiments on the synthetic domain. Green represents areas where 
an increase in the explanatory variable leads to an increase in NPP (positive sensitivity), and 
magenta is for areas where an increase in the explanatory variable leads to a decrease in NPP 
(negative sensitivity). Areas shown in dark colour are those where NPP is insensitive to the 
respective explanatory variable. 

In the dry climate, all ecosystem variables are negatively related to radiation (Figure 3.7g–h, B.14g–

h, B.15g–h, and B.16g–h). A 1‐W m−2 increase in shortwave radiation could reduce dry grassland 
annual NPP by up to 40 gC m−2 (12%), LAI by up to 0.04, and annual ET by up to 22 mm (4%). In 
the wet climate, the sensitivity to shortwave radiation is much smaller. In both climates, grasslands 
are more sensitive to radiation than evergreen forests (in terms of transpiration, ET, and NPP).  

Ecosystem sensitivity to topographic index is uniform in space; the sensitivity of all ecosystem 
variables to topographic index is negative in the wet and positive in the dry experiments. Increasing 
the topographic index by one unit could increase ET by up to 30 mm yr−1 in the dry climate and 
decrease it by up to 25 mm yr−1 in wet climate (Figure B.14). 

Air temperature is the dominant control for NPP in large parts of the domain in all four numerical 
experiments (Figure 3.8; for the dry grassland, see also Table B.6). In areas where the sensitivity to 
air temperature is small (either in the low elevations in the wet experiments, e.g., Figure 3.8a–b, or in 
the transition zones between positive and negative sensitivity to temperature in the dry experiments, 
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e.g., Figure 3.8c–d), topographic index emerges as the dominant driver, but its effect is generally 
smaller compared with air temperature (Table B.6). 

Compared with the other ecosystem variables, NPP is the most sensitive to high temperature in the 
low elevations of the dry experiments (Table B.6). All variables are limited by low temperature at 
higher elevations (Figures B.17, B.18 and B.19), with the exception of the wet evergreen forest 

transpiration and ET. Radiation limitations are important for transpiration and ET in the north‐facing 
slopes of the wet evergreen forest and grassland (Figures B.17a–b and B.18a–b). In the dry climate, 

the transition from low‐temperature limitations at high elevations to detrimental high temperatures at 
low elevations is evident in all variables mostly in the evergreen forest (Figures B.17c– d, B.18c–d, 
and B.19c–d). The duration of snow cover is driven by air temperature in all four experiments (Figure 
B.20). The insets in the figures of relative sensitivity show (as for Kleine Emme) the scatter plots of 
the original against the regressed normalized dependent variables. For all ecohydrological variables, 
the best fit is achieved in the dry grassland (R2 > 0.9) and the poorest in the wet evergreen forest (R2 
~0.7).  
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Figure 3.8 Normalized sensitivity of net primary production (NPP) to air temperature, shortwave radiation, 
and topographic index in the four experiments on the synthetic domain. The red colour represents 

areas where temperature is the main control for NPP, green represents the radiation‐limited areas, 
and blue is for areas where the topographic index is the dominant control. Inset scatter plots show 
the comparison between the original model output (“original”) and the values that are calculated 
with the regression formula that was used for the sensitivity analysis (“regressed,” R2 values are 
also shown). All variables are normalized. 

3.3.1.3 The role of catchment orientation 

When aggregating the model output to the catchment level of the synthetic domain (eight catchments 
along the cardinal and intercardinal directions), the differences in mean annual radiation between the 

north‐ and south‐facing catchments are roughly 16% (Figure 3.9a) and only up to 12% for most 
ecosystem variables in all four synthetic experiments (Figure 3.9b–f). Transpiration of the wet 

evergreen forest peaks in the south‐facing catchment, whereas NPP of the dry grassland peaks in the 

north‐facing catchments (Figure 3.9b, d). 

 



44 

Figure 3.9 Departure of the mean of each catchment from the mean of the whole domain (expressed in % of 
the latter) for (a) shortwave radiation; (b) transpiration; (c) leaf area index (LAI); (d) net primary 
production (NPP); (e) runoff; and (f) fraction of time with snow cover (snoFra). S, E, N, and Won 

the y‐axis denote the orientation of the catchment (south, east, north, and west, respectively). The 
blue lines represent the wet climate, and the red lines represent the dry climate. Continuous lines 
are used for the grassland and dashed for the evergreen forest (w_g, w_e, d_g, and d_e stand for 
wet grassland, wet evergreen forest, dry grassland, and dry evergreen forest, respectively). Subplot 
(e) shows only the runoff of the wet experiments, because the runoff of the dry experiments is 
almost zero. 

The radiation signature in hydrological variables is consistent with expectations that north exposed 
catchments produce higher runoff because of the longer snow cover duration and lower 
evapotranspiration, but the differences are relatively small in magnitude, typically between ±4% of 
the total domain average (Figure 3.9e, f). 

3.3.2 Variability across spatial scales 

3.3.2.1 The Kleine Emme catchment 

Figure 3.2 shows the spatial distribution of several simulated vegetation and hydrological variables 
(Figure 3.2d–i). Spatial aggregation decreases the variability of topographic index faster than the 
variability of air temperature, which coincides with the spatial variability of elevation (as expected, 
since air temperature was computed based on elevational gradients, Figure 3.10). This is because the 
topographic index is more sensitive to the smoothing of the complex terrain (lower correlation length 
scale) that is induced by aggregation compared with elevation. The spatial variability of these two 

topography‐related variables envelops the spatial variability of transpiration, NPP, LAI, and snow 

cover duration (snoFra) across the whole spectrum of spatial scales, that is, from 100‐m to 20‐km 
spatial resolution (Figure 3.10). The decrease of spatial variability with aggregation is rapid; 

aggregating the results to 40 cells (~4‐km resolution, instead of the original 100‐m resolution) leads 
to at least 50% lower standard deviation in several ecosystem variables, which is a signal of the high 
spatial variability in the catchment and the low correlation length scale (Figure 3.10). The spatial 
variability of the time fraction with snow cover follows the spatial variability of air temperature, 
which implies that the two variables are closely related, as expected, because temperature is the most 
important driver of snow cover duration. However, the main driver of the spatial variability in the 
other ecohydrological variables (such as transpiration and NPP) cannot be estimated with this 
analysis, because the spatial variability of topographic index and shortwave radiation follow similar 
trajectories (Figure 3.10). 
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Figure 3.10 Meteorological, topographic, and ecosystem spatial variability in the Kleine Emme catchment. 
Normalized Standard deviation as a function of spatial scale for air temperature, shortwave 
radiation, and topographic index in green, magenta, and black, respectively. Blue lines represent 
the spatial variability of several ecohydrological variables: the continuous line is for transpiration, 
the dotted line for net primary production (NPP), the dashed line for leaf area index (LAI), and the 
line with the star markers corresponds to the time fraction with snow cover (snoFra). Temperature 
and topographic index create an envelope that contains all the ecohydrological variables (shaded). 
All variables are normalized so that the standard deviation equals one for the original resolution 

of the simulations (100‐m grid). For an explanation of the aggregation, see Fig. B.9 (Appendix B). 

3.3.2.2 Synthetic domain 

The four experiments on the synthetic domain reveal considerable differences among vegetation types 
and climates (Figure 3.11). The most variable meteorological input in both examined climates is air 
temperature, the RV of which exceeds 50%. The RV of shortwave radiation is approximately 26%, 
and precipitation is almost uniform throughout the synthetic domain in the dry climatic conditions 
(Figure 3.11a–c). Results from the T&C simulations show that the RV for transpiration, LAI, and 
NPP is lower in dry conditions (RV < 30%) compared with wet conditions (up to 40%) and lower in 
evergreen forests (<20%) compared with grasslands (up to 40%, Figure 3.11d–f). Hydrological 
variables follow the same pattern: The wet grassland shows the largest spatial variability, and the dry 
evergreen forest is the least variable (Figure 3.11g–i). The analysis of variance when aggregating to 
larger spatial scales shows that the ecosystem variables of the wet ecosystems decline with 
aggregation scale similarly to Kleine Emme (Figure 3.12b–c), but the variability of NPP in the dry 
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cases drops much faster (Figure 3.12d), and even falls out of the topographic index-temperature 
envelope. The decline of spatial variability of snow cover duration follows that of air temperature as 
in the case of the Kleine Emme catchment (Figure 3.12e). 

 

Figure 3.11 Range of spatial variability in the four experiments in the synthetic domain. Boxplots of (a) 
temperature, (b) shortwave radiation (ShRad), (c) precipitation, (d) transpiration, (e) leaf area 
index (LAI), (f) net primary production (NPP), (g) soil evaporation (sEvap), (h) fraction of time 
with soil saturation (satFra), and (i) fraction of time with snow cover (snoFra). For the 
meteorological forcing (a–c), we distinguish between the wet and dry experiments and for the 
ecohydrological variables we distinguish also between grassland and evergreen (using the symbols 
w_g, w_e, d_g, and d_e for wet grassland, wet evergreen forest, dry grassland, and dry evergreen 

forest, respectively). Each boxplot represents the 4‐year average annual values for each simulated 
cell of the domain. The box length provides the interquartile range (IQR), the bottom of the box the 
25th percentile (first quartile, q1), the top of the box the 75th percentile (third quartile, q3), and the 
horizontal line within the box the median value. The lower whisker corresponds to q1 − 1.5IQR, or 
to the minimum estimate, and the upper whisker corresponds to q3 + 1.5IQR, or to the maximum 

estimate. The number on the x‐axis is the range of variability (RV), as defined in Appendix A.4. 
Outliers outside the whiskers are not shown. 
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Figure 3.12 Meteorological, topographic, and ecosystem spatial variability in the four experiments on the 
synthetic domain. Normalized standard deviation as a function of spatial scale for (a) air 
temperature, shortwave radiation, and topographic index in green, magenta, and black, 
respectively; (b) transpiration; (c) leaf area index (LAI); (d) net primary production (NPP); and (e) 
fraction of time with snow cover (snoFra). In subplots (b–e), red lines represent the dry ecosystems 
and blue the wet ones; dashed lines are used for evergreen forest, and continuous lines are used for 
grassland (w_g, w_e, d_g, and d_e stand for wet grassland, wet evergreen forest, dry grassland, 
and dry evergreen forest, respectively). The three variables of subplot (a) create an envelope that 
contains most ecohydrological variables in all experiments (shaded). All variables are normalized 

so that the standard deviation equals one for the original resolution of the simulations (100‐m grid). 
X-axis in subplot (a) also shows the area that is aggregated for each spatial scale (in km2). 

3.4 DISCUSSION 

3.4.1 Ecosystem sensitivities 

The use of natural gradients is common when studying ecological responses to potential changes on 
climate (e.g., Dunne et al., 2004), but to our knowledge, no distributed ecohydrological modelling 
study has incorporated this approach to date. The advantage of this approach relies in using a single 
distributed simulation for each scenario where spatial gradients are exploited to infer ecohydrological 
sensitivities to a number of explanatory variables.  
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3.4.1.1 Ecosystem sensitivity to air temperature 

We found that the vegetation is limited by low air temperature in large parts of both the Kleine Emme 
catchment (Figure 3.5a–d) and the synthetic domain (Figure 3.7a–d, B.14b–d, B.15a–d, and B.16a–
d), as expected in an Alpine environment. Based on the model output, we are able to quantify these 
sensitivities, providing estimates of expected changes in NPP, ET, etc., for a unit change in air 
temperature. This temperature sensitivity is correlated with elevation; in higher (colder) parts, 
temperature is the strongest control of ecosystem response. In agreement with our results, a study on 
a coniferous forest in a slightly wetter environment compared with our dry evergreen forest also found 
that transpiration sensitivity to air temperature increases with elevation (Christensen, Tague, & Baron, 
2008). 

When moving to lower elevation, the sensitivity of several ecohydrological variables to temperature 
declines and can even reverse sign. Air temperature has a negative effect on NPP in the lower 
catchment parts in the two dry experiments (Figure 3.7c-d). This reveals a threshold below which the 
vegetation is water-limited and thus an increase in temperature enhances transpiration early in the 
growing season, and consequently reduces soil moisture and vegetation productivity at the annual 
scale. This threshold occurs at slightly higher elevation for the evergreen forest than for the grassland 
(around 1700 m a.s.l.), in agreement with a previous study (Rössler et al., 2012). The results of the 
dry grassland experiment confirm another modelling study in a dry Alpine hillslope (Della Chiesa et 
al., 2014); the presence of an elevation threshold reveals a shift from energy- to water-limited 
ecosystems in these inner-Alpine dry valleys. This threshold is a function of the amount and the 
elevational gradient of precipitation and of the fraction of precipitation falling as snowfall.  

The wet evergreen forest stands out from the other ecosystems in terms of transpiration and ET 
sensitivity to temperature (Figures B.14a and B.16a). Transpiration sensitivity to air temperature does 
not change with elevation (unlike the other experiments) and the sensitivity of ET to temperature is 
negative at high elevations, mainly because of the contribution of sublimation. Indeed, snow 
sublimation ranges from close to zero at lower elevations up to roughly 200 mm yr-1 in the top of the 
domain, in agreement with a previous study in the Alps (Strasser et al., 2008). Evaporation and 
sublimation from interception is higher in the evergreen forest due to the higher amount of snowfall 
interception and the larger exposure to wind (lower aerodynamic resistance). In this case, sublimation 
is negatively correlated with temperature and affects the sensitivity of the whole ET flux to 
temperature. These findings are also obtained for the evergreen forests in the Kleine Emme catchment, 
but the heterogeneous vegetation cover makes this pattern less evident (Figure 3.5a-b). 

3.4.1.2 Ecosystem sensitivity to shortwave radiation 

Transpiration and ET exhibit a positive sensitivity to radiation in most parts of the wet domains 
(Figure 3.5e–f, B.14e–f, and B.16e–f). The sensitivity of NPP and LAI to radiation depends on the 

slope orientation: south‐facing slopes are radiation-saturated, whereas north‐facing slopes are 

radiation‐limited in Kleine Emme and the two wet experiments in the synthetic mountain (Figure 
3.5g–h, Figure 3.7e–f, and B.15e–f). 
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In the dry climate, the negative effect of radiation is one order of magnitude larger than the positive 

effect in the wet climate in all ecohydrological variables. It is also stronger in south‐facing slopes for 
all ecohydrological variables (Figure 3.7g–h, B.14g–h, B.15g–h, and B.16g–h), which shows that the 

south‐facing slopes in the inner‐Alpine valleys might be drought‐prone. The negative effect of 
radiation is an indirect effect due to a temporary increase of transpiration and ET that leads to an 
emergence or a quicker onset of water stress and an overall reduction of NPP, LAI, transpiration, and 
ET at the annual scale. 

3.4.1.3 Ecosystem sensitivity to water availability  

The maps of topographic index sensitivity in Kleine Emme show that transpiration and ET are 
negatively correlated with topographic index (Figure 3.5i–j). The sensitivity of NPP and LAI to 
topographic index is mostly negative and only slightly positive along some ridges (Figure 3.5k–l), 
which may imply that an increase in soil moisture would be beneficial for vegetation in these steep 
hillslopes. 

In the wet experiments, all ecosystem variables show a negative sensitivity to topographic index 
(Figure 3.7i–j, B.14i–j, B.15i–j, and B.16i–j), but, contrary to the Kleine Emme catchment, the 
sensitivity is uniform across elevations. The negative sensitivity is the result of temporary saturation 
and sporadic water logging in topographically convergent areas, which suppresses vegetation 
productivity. 

In the dry scenarios, the sensitivity to topographic index is instead positive and relatively uniform 
throughout the domain (Figure 3.7k-l, B.14k-l, B.15k-l and B.16k-l). Topographic convergent areas, 
which are generally wetter (because they receive contributions of surface and subsurface water from 
upstream cells), are less water-limited. Studies of the spatiotemporal variability of transpiration and 
ET in a catchment covered by coniferous evergreen forest in the US (comparably dry to our dry 
scenarios) showed that the sensitivity to soil moisture depends on air temperature (or, equivalently, 
elevation) (Christensen et al., 2008; Lundquist & Loheide, 2011). However, we did not detect a 
significant interaction between the sensitivity of ET to topographic index and elevation in the dry 
experiments (Figure B.14i-l).  

3.4.1.4 Which is the dominant driver of Alpine ecohydrological processes? 

Air temperature emerges as the main control of NPP and LAI in most parts of the Kleine Emme 
catchment (Figure 3.6, and B.10). Temperature is also the dominant control of transpiration and ET 
at the highest elevation of the synthetic domain. The analysis in the synthetic domain verifies that in 
all cases (except for the wet evergreen forest transpiration and ET and the dry grassland ET) 
temperature is the dominant driver of ecohydrological processes, at least above 1800 m a.s.l. (Figure 
3.8, B.17, B.18 and B.19); sensitivity patterns in wet ecosystems agree with the results from the Kleine 
Emme catchment. Many researchers have concluded that mountain ecosystems are particularly 
sensitive to temperature; from dry grasslands in the Tibetan Plateau (Saito, Kato, & Tang, 2009) to 
the treeline in the Patagonian mountains (Mayor et al., 2017) air temperature is a key ecosystem 
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driver. Thus, the dominant role of temperature does not come as a surprise, but its absolute 
quantification and relative comparison with the other variables is an innovative contribution of this 
modelling study. 

In the dry scenarios, where the sensitivity to temperature changes from positive to negative when 
moving from higher to lower areas, we found an intermediate zone, in which topographic index is the 

dominant limiting factor, only because the other controls become much smaller. Note that in low‐
elevation areas, temperature exerts an important but indirect control because it reduces ET, 
transpiration, and vegetation productivity by enhancing water stress and altering the seasonal 
dynamics of these variables. 

3.4.2 How important is catchment orientation? 

The comparison between catchments with different orientation shows that the role of shortwave 

radiation is evident mostly in snow‐related processes and runoff, whereas vegetation is less affected 
by aspect. Grasslands and forests show distinct patterns; In grasslands, snow stays up to roughly 10% 

longer in the north‐facing compared with the south‐facing catchments, but in the evergreen forests, 

this difference between snow duration in north‐ and south‐facing catchments is only roughly 4% 
(Figure 3.9f). This implies that taller vegetation homogenizes the spatial variability of snow cover 
duration. Previous studies have found a similar homogenizing effect of tall vegetation on snow 
temporal distribution (e.g., Strasser, Warscher, & Liston, 2011) because tall canopies intercept snow, 
shade shortwave radiation and enhance longwave radiation in spring (Lundquist, Dickerson-Lange, 
Lutz, & Cristea, 2013).  

A study in a relatively dry mountain in northern New Mexico, US, showed that the catchment 
orientation strongly controls vegetation productivity (Zapata-Rios et al., 2016) in an ecosystem that 

is severely energy‐limited (thus, NPP is lower in the north‐facing slopes). However, we found that 
dry evergreen NPP is uniform across catchments with different orientation for most experiments. 

Only NPP of the dry grassland peaks in the northeast‐facing catchment, because water limitations are 

a dominant control and north‐exposed catchments with lower radiation are less water‐stressed (Figure 
3.9d). The differences between the two studies might be due to the different elevational range and 
latitude; the case study of the aforementioned paper is higher and at lower latitude than our synthetic 
domain, and thus, differences in energy loads across catchments may be more pronounced.  

We found that LAI in all cases is rather insensitive to the catchment orientation. Transpiration in the 

wet grassland peaks in the south-facing catchment, indicating an energy‐limitation, but it is relatively 

insensitive in the other scenarios (Figure 3.9b). Overall, our findings show that the catchment‐
integrated effect of radiation on Alpine ecosystems is smaller than expectations based on the complex 
topography of these environments, because low air temperature is the most limiting “energy” control. 
However, these results are obtained with a relatively simplified experiment (e.g., uniform soil 
properties and vegetation) that may not capture all the complex signatures of aspects in the hillslopes 
(see 3.4.4.2). 
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3.4.3 Cross‐scale spatial variability in Alpine ecohydrology 

We examined how the spatial variability in major ecohydrological processes changes when 
aggregating the model results. Based on the simulations of a Swiss Alpine catchment and a synthetic 
mountainous domain (which mimics the complex topographic features that occur in steep Alpine 
valleys), we quantified the rapid loss of variability (20–40%) for many ecohydrological processes 
when averaging the results over a 20 times larger spatial resolution (2 km instead of 100 m, Figures 
3.10 and 3.12). The integration in catchments of ~9 km2 with different orientations in the synthetic 
domain, where differences are usually less than 10% for all simulated variables (Figure 3.9), supports 
the results obtained for the Kleine Emme catchment.  

Interestingly, the decay in variability of ecosystem drivers (e.g., air temperature and topographic 
index) envelops the decay in variability of ecosystem responses (ecohydrological variables), thus 
highlighting that the ecosystems can buffer the topographic and meteorological variability not only 
in time (Pappas et al., 2017) but also in space (Figures 3.10 and 3.12). For the dry evergreen forest, 
LAI and NPP fall outside this envelope (Figure 3.12c–d), implying that probably the topographic 
index itself cannot fully explain the role of water availability. Using a coarser spatial resolution, 
beyond neglecting ecosystem spatial heterogeneity, can potentially also affect the overall mean in the 

domain and thus the large‐scale fluxes (Pappas et al., 2015). The presented results reinforce several 

recent studies that have demonstrated the potential of high‐resolution simulations in better capturing 
ecohydrological dynamics under current or future conditions (Etchanchu et al., 2017; Le & Kumar, 
2017; Passalacqua et al., 2015), especially when identification of patterns is sought.  

Another emerging aspect is the role of evergreen forests and dry climate in reducing the spatial 
heterogeneity in the ecohydrological response (Figure 3.11). When compared with grasslands, 
evergreen forests have deeper roots and larger LAI; thus, they tend to respond less than grasslands to 
local microclimatic conditions and elevation differences, which explains the reduced spatial 
variability in ecohydrological variables of the evergreen forests. A similar effect is generated by the 
dry climate in the synthetic mountain, which leads to more widespread water limitations, thus 
dampening spatial variability when compared with the wet scenario. 

The spatial variability of each ecohydrological variable follows a different trajectory across 
aggregation scales. The proximity of the spatial variability of topographic or meteorological variables 
provides a qualitative link to the main driver of the ecohydrological dynamics. This is apparent in the 

snow‐related variables (e.g., duration of snow cover), the variability of which follows air temperature 
in the Kleine Emme catchment (Figure 3.10) and in all the experiments on the synthetic domain 
(Figure 3.12e). Other variables are less easy to interpret, but in general, wet ecosystems and grasslands 
tend to be more temperature driven, whereas for dry ecosystems and for evergreen forests, soil 
moisture and radiation are also important. These findings confirm the results of the sensitivity 
analysis. 

The analysis of spatial variability presented here, besides revealing the connections between the 
spatial scaling of ecohydrological and topographic/meteorological variables, represents a preliminary 
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step towards an improved understanding of the role of spatial scaling in ecohydrology. Previous 
modelling attempts explored the relations between hydrological processes and the spatial patterns of 
vegetation by using different aggregation methods, based on synthetic networks of flow paths (e.g., 
Thompson et al., 2011) or linking the hillslope scale to the catchment scale (e.g., Hwang, Band, & 
Hales, 2009). Results presented here, show that T&C could offer an opportunity to further explore 
these interactions. 

3.4.4 Limits of interpretation 

3.4.4.1 Lateral water flows and soil moisture 

The T&C model simulates lateral surface and subsurface water flows, which are currently neglected 
in many land surface models. Recent studies showed that models incorporating these processes (e.g., 
Ivanov et al., 2008a) can simulate the heterogeneity of water and energy fluxes more realistically (Ji, 
Yuan, & Liang, 2017; Maxwell & Condon, 2016). This model advantage is reflected in the simulated 
patterns of soil effective saturation and subsequently on the spatial patterns of transpiration, LAI and 
NPP (Figures 3.2, 3.4, B.6, B.7 and B.8).  

In both experiments on the wet climate, the soil in the valleys is saturated for almost the entire 
simulation period; this might be an artefact of the design of the synthetic domain, because each 
catchment is designed to maximize convergence and thus the collection the water. Another possible 
source of long-periods with saturation might be the assumption on which the model simulates the 
subsurface water flow. T&C uses the kinematic wave approximation (i.e. assumes that the hydraulic 
head parallels the surface topography), which is invalid in shallow terrains (Brutsaert, 2005; Chow, 
Maidment, & Mays, 1988; Vieira, 1983). For this reason, the model might overestimate the soil 
moisture in the near-stream areas. The use of uniform soil depth in both the synthetic domain and the 
Kleine Emme catchment might also bias the simulated soil moisture. Indeed, previous research 
showed that soil depth varies with elevation (e.g., Bertoldi, Rigon, & Over, 2006) and variations in 
soil depth can affect transpiration patterns (Tromp-van Meerveld & McDonnell, 2006) and thus soil 
moisture and discharge.  

The calibration against discharge shows that T&C performs slightly poorer during periods of low 
flow (Figures B.3, B.4 and B.5), which may reflect effects of heterogeneity in the subsurface boundary 
conditions that the model either ignores or simulates in a simplistic way, such as variabilities in soil 
or root depth or the presence of groundwater. These can potentially contribute to streamflow and also 
to plant available water during periods of low soil moisture (Klos et al., 2018; Rodriguez-Iturbe, 
D’Odorico, Porporato, & Ridolfi, 1999). Especially, the assumption of a uniform soil depth and 
impermeable bedrock precludes the representation of deeper storage that could feed the stream during 
dry periods. 

Another possible source of uncertainties is the use of the topographic index as a proxy for soil 
moisture effects on ecosystem functioning. This was a simplification imposed by the lack of a better 
independent proxy for soil moisture, and because the use of the simulated soil moisture would bias 
the robustness of the statistical analysis. Topographic index, being a steady-state metric, cannot 
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capture soil moisture temporal dynamics that are triggered by the timing of precipitation. Thus, the 
transitions between energy- and water-limited ecosystems shown is this study can only be regarded 
as a general overview of the main drivers of Alpine ecohydrology; the real patterns might be much 
more complex in space and variable in time. 

Despite these possible sources of bias, our results for the Kleine Emme catchment (where grid cells 
close to the stream network, generally covered by grass, are saturated for about 80% of the time) are 
supported by a study in a pre-Alpine catchment (Hingerl et al., 2016). We note that (regardless of the 
validity of the simulated soil moisture) the grassland parameterization adopted for this environment 
might be unsuitable since near-stream and riparian areas are generally covered by vegetation adapted 
to wet environments (e.g., similar to wetlands). Therefore, the use of a single parameterization for 
grass probably leads to an overestimation of the ecosystem sensitivity to high soil moisture conditions 
in these areas.  

3.4.4.2 Synthetic mountain set‐up 

Additional uncertainties arise from the simplicity of the synthetic domain. The choice of clay loam 
soil might lead to lower drainage capabilities and to overestimate soil moisture, since in most parts of 
the Alpine region soil texture is typically coarser (e.g., more sandy soils). We chose this solution to 
counterbalance the cumulative drainage imposed by the length of the continuous hillslopes, which is 
much longer in the synthetic domain than in reality. Additionally, beyond radiation, other ecosystem 
properties that we held constant in space in our analysis may co-vary with aspect. For example, soil 
texture and organic matter may differ between north- and south-facing slopes (e.g., Egli et al., 2009; 
Egli, Mirabella, Sartori, Zanelli, & Bischof, 2006), soil depth and vegetation characteristics may also 
covary with aspect (e.g., Hörsch, 2003) potentially producing indirect effects of aspect that cannot be 
accounted for in the presented analysis. For instance, a tree-ring study in the Italian Alps showed that 
the sensitivity of tree growth (which is related to variables we simulated, e.g., NPP) to air temperature 
changes with aspect (Leonelli et al., 2009). Indeed, a study in a Californian pine forest showed that 
tree sensitivity to temperature may even change sign from north- to south-facing slopes (Salzer, 
Larson, Bunn, & Hughes, 2014). However, we detected practically no interaction between ecosystem 
sensitivity to air temperature and aspect. This might be also due to the meteorological input we used 
for the model simulations, which was based on elevational lapse rates, thus, neglecting any effect of 
topographic features –other than elevation– on meteorological variables (e.g., T&C air temperature 
fields ignores the effect of aspect).  

3.4.4.3 The use of the “space‐for‐time” approach 

The innovative application of the “space-for-time” approach on model outputs offers an attractive 
alternative at the local scale to the traditional approach in which uncertainties from climate change 
projections and downscaling techniques would propagate and affect the model output (e.g., Rössler 
et al., 2012). However, the regressions between the ecohydrological responses and the three 
explanatory variables (i.e. air temperature, shortwave radiation and topographic index) cannot fully 
describe the spatial variability in the variables simulated by T&C. These regressions are slightly 
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poorer in Kleine Emme (insets in Figure 3.6, B.10, B.11, B.12 and B.13) than in the synthetic domain 
(insets in Figure 3.8, B.17, B.18, B.19 and B.20). We found that the three explanatory variables can 
describe the ecohydrological responses of grasslands better than those of evergreen forests in the 
synthetic domain (e.g., Figure 3.8c and d) but not in the Kleine Emme catchment (e.g., Figure 3.6a 
and c). Experiments in the synthetic domain show that ecosystems in dry climate are better 
approximated than ecosystems in wet climate (e.g., Figure 8a and 8c). Lower R2 implies that the three 
explanatory variables do not explain completely the spatial variability in the dependent variable; 
indeed, evergreen forests are more difficult to describe with a simple regression than grasslands and, 
in wet conditions, the limitations by water ponding may also downgrade the explanatory power of the 
regressions. This is evident, for example, in the departure from the 1-1 line in the scatter inset of 
Figure 3.8c, B.17c and B.18c. The application of this approach for estimating climate change impacts 
on ecosystems also implies that the response of the ecosystems will follow the same principles that 
shaped its current spatial distribution, a hypothesis that might be invalid if the climate changes with 
unprecedented speed (e.g., Voepel et al., 2011). This hypothesis might also be inappropriate across 
large climatic and vegetation gradients where spatial sensitivities are typically larger than temporal 
ones (Fatichi & Ivanov, 2014; Hsu, Powell, & Adler, 2012; Huxman et al., 2004). 

The space-for-time approach assumes that ecosystems will track changing climate in the same way 
that ecosystems currently vary with climatic variability in space (Dunne et al., 2004). However, many 
processes may confound the applicability of this approach (e.g. fine-scale environmental 
heterogeneity, Villalba, Veblen, & Ogden, 1994). Most importantly, the rapid pace of climate change 
may exceed the current climatic range pushing ecosystem to unexperienced limits (Davis, 1989; 
Diffenbaugh & Field, 2013). 

3.4.4.4 Simulating vegetation fitness and mortality 

The evergreen forest in the upper part of the dry synthetic domain (which is also slightly colder than 
the wet domain) showed declining activity throughout the five years of the simulation. This implies 
that the model would predict a climate-driven forest line roughly between 2100 and 2200 m a.s.l. in 
agreement with GIS estimates for Valais (Szerencsits, 2012). However, the evergreen forest in the 
wet climate did not show any decline with time even at the highest elevation (2500 m a.s.l.), although 
the forest line in the corresponding area (from which the meteorological data were used) lies even 
lower than in Valais (Szerencsits, 2012). This points to model limitations in capturing vegetation 
productivity decline near the tree line. More generally, the failure of the model to predict the tree line 
may also convey a poor representation of tree mortality and temperature limitations on tree growth 
(Leuzinger, Manusch, Bugmann, & Wolf, 2013). For example, while the model considers low-
temperature stress in vegetation functioning, it ignores the effects of insects, which are an important 
disturbance for forests (Lindner et al., 2010; Rebetez & Dobbertin, 2004). It could also be a sign that 
reasons other than air temperature may also be important for the altitude of the forest line, such as 
changes in land use (Bolli, Rigling, & Bugmann, 2007), or windthrow (Elkin et al., 2013).  
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3.5 CONCLUSIONS 

We used a spatially explicit mechanistic model to simulate with fine spatiotemporal resolution major 
ecohydrological processes in an Alpine catchment. The analysis of the spatial variability of several 
simulated ecohydrological variables shows that the vegetation in the wet Alpine areas is strongly 
temperature-limited, as previously found (Bolli et al., 2007), but the dry inner-Alpine catchments are 
water-limited, especially below 1700 m a.s.l. (Della Chiesa et al., 2014; Leitinger et al., 2015; Rebetez 
& Dobbertin, 2004; Rössler et al., 2012). Results on a synthetic domain show that the signal of 
radiation (associated with different aspects) on runoff is less than 10% for different climatic 
conditions and vegetation cover in the Alps. By examining how the variance of ecohydrological 
variables changes across spatial scales, we identified that spatial variability of ecosystem drivers 
envelopes that of ecosystem responses. Despite the simplifications, our analysis shows that in the 
absence of high-resolution measurements of ecohydrological variables, models offer a unique 
opportunity to explore the dependence of ecohydrological processes on spatial scales. The fact that 
different vegetation types exhibit different sensitivity patterns confirms that the ongoing changes in 
vegetation composition can affect the Alpine ecohydrology (Köplin et al., 2013; van den Bergh, 
Körner, & Hiltbrunner, 2017) in very complex ways. Mitigating the climate change effects in these 
ecosystems requires more large-scale high-resolution simulations at the Alpine scale, which can 
provide the framework to guide future monitoring campaigns and further improve our understanding 
of ecohydrological processes at mountain ecosystems. 
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4 
4. More green and less blue water in the Alps during warmer 

summers 

Abstract 

Climate change can reduce surface-water supply by enhancing evapotranspiration in forested 
mountains, especially during heatwaves. We investigate this “drought paradox” for the European Alps 
combining a new database of 1212 stations and hyper-resolution ecohydrological simulations to 
quantify the blue (runoff) and green (evapotranspiration) water fluxes. Here, we found that during the 
historical 2003 heatwave, evapotranspiration was largely above average, despite the exceptionally 
low precipitation, amplifying the runoff deficit by 32% in the most runoff-productive areas (1300-
3000 m a.s.l.). At the annual timescale, a 3°C temperature increase enhance annual evapotranspiration 
by up to 100 mm, which would reduce runoff similarly to a 3% precipitation decrease. This suggests 
that green water feedbacks, which are often poorly represented in large-scale assessments, pose an 
additional threat for water resources. We conclude that integrating hyper-resolution ecohydrological 
modelling into climate change impact assessments can support more realistic predictions of fresh 
water availability in mountain regions. 3 
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4.1 INTRODUCTION 

Although relatively small in size, the European Alps (hereafter “Alps”) contribute a disproportionally 
large amount of water, especially during summer, to four major European rivers (Weingartner & 
Viviroli, 2007), in the basins of which reside more than 170 million people (European Environment 
Agency (EEA), 2009); hence the name “water towers of Europe” (Viviroli et al., 2007). However, 
droughts in central Europe are becoming more frequent (Briffa, van der Schrier, & Jones, 2009). The 
droughts of 2003, 2010, 2015 and 2018 have raised concerns about the vulnerability of the European 
water budget to climate change (European Environment Agency (EEA), 2009; Teuling, 2018) as these 
events have affected more than 17% of the European population (European Commission, 2007) with 
an annual economic impact exceeding USD 6.8 billion between 2001 and 2006. Temperature in the 
Alps is increasing at a fast pace (Brunetti et al., 2009), relative humidity is generally decreasing 
(Fatichi, Molnar, et al., 2015), evapotranspiration (ET) is increasing (Duethmann & Blöschl, 2018), 
while Alpine glaciers are shrinking and the distribution of snow is shifting to higher elevation 
(Beniston et al., 2018). Although there is consensus that climatic extremes will become more frequent 
(Samaniego et al., 2018), the complex topography, the interactions between water and vegetation, and 
the multiple processes shaping the water cycle in mountainous areas hinder the quantification of the 
different water budget components in traditional large-scale climate change assessment studies (Fan 
et al., 2019). For example, climatic change can shift the partitioning of water into blue (runoff) and 
green (ET) water fluxes (Falkenmark & Rockström, 2006; Orth & Destouni, 2018). Quantifying how 
these fluxes change seasonally and interannually is as much important as challenging. 

Large uncertainties are associated with the vegetation response to water stress (Teuling, 2018). 
Studies in different parts of the Alps have found contrasting impacts of drought on vegetation (Jolly, 
Dobbertin, Zimmermann, & Reichstein, 2005), spanning from increased mortality in the dry inner-
Alpine valleys (Timofeeva et al., 2017) to enhanced productivity in the wet pre-Alpine hills in the 
north (Seneviratne et al., 2012). These discrepancies emphasize that extrapolating results of specific 
case studies (e.g., Laghari, Vanham, & Rauch, 2012) to the entire Alpine domain or downscaling 
results of coarse resolution studies (e.g., Orth & Destouni, 2018) will lead to unreliable predictions 
(Mastrotheodoros et al., 2019). The largest component of land ET is plant transpiration (Good et al., 
2015), which is poorly quantified due to the large variability in plant water use strategies and stomata 
sensitivity to water stress (Teuling et al., 2010). Land-surface models often represent the links 
between soil moisture and transpiration in a simplistic way (Seneviratne et al., 2006; Sheffield et al., 
2012; Teuling, 2018). Most importantly, they do not resolve land-surface energy and water fluxes at 
sufficient resolutions to account for local topographic and microclimatic effects, and often ignore 
lateral flows of water in the subsurface (Bierkens et al., 2015; Fan et al., 2019; Rouholahnejad Freund 
& Kirchner, 2017; Wood et al., 2011).  

Here, to overcome these limitations, we combined a new pan-Alpine database with hyper-resolution 
ecohydrological simulations to test the “drought paradox” hypothesis, i.e., that during droughts, ET 
may increase in a large fraction of the Alps at high elevations, thus amplifying the runoff deficits 
(Teuling et al., 2013). We used meteorological, discharge, and snow depth measurements at more 
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than 1200 stations across the entire Alpine domain together with distributed products of 
meteorological variables, soil texture, and land cover characteristics to drive the ecohydrological 
model Tethys-Chloris (T&C, Mastrotheodoros et al., 2018). The model resolves the water, carbon 
and energy budgets at the hourly time scale in a physically based and spatially explicit manner, 
accounting for lateral water transfer and topographic effects on radiation (see Appendices C.1-C.3). 
The model has been extensively validated in many ecosystems worldwide (Fatichi & Pappas, 2017; 
Fatichi, Rimkus, et al., 2015; Mastrotheodoros et al., 2019). To account for the high spatial 
heterogeneity of the region, we performed massively parallel simulations (6.1*105 CPU hours) at an 
unprecedented high resolution (250 m grid) for the entire Alpine arch (257,000 km2 – 4.12 million 
pixels). The simulation period consisted of three years (2001-2003), including a very wet and a very 
dry year (2001 and 2003, respectively, Figures 4.1 and C.1, Tables C.1-C.5). We validated the model 
output against daily discharge and snow depth, with very satisfactory results, considering the lack of 
model calibration (Appendix C.5 and Figures C.2, C.3 and C.4). We partitioned the pan-Alpine water 
budget into blue and green water fluxes and quantified the sensitivity of each component to changes 
in precipitation and temperature. 

4.2 DISSECTING THE WATER TOWER OF EUROPE 

Simulation results indicate that latent heat, i.e. total ET expressed in units of equivalent energy, 
reaches its maximum values in wetter areas (e.g., in the north of Figure 4.1c, where annual 
precipitation exceeds 2000 mm), especially on south-facing slopes (Figure 4.1d) denoting that energy 
is the dominant driver of ET in this specific location. In drier regions, such as in the SE valley in 
Figure 4.1c (upper Rhone valley), latent heat is overall lower because precipitation (~500 mm yr-1) 
becomes the critical constrain for annual ET. High-elevation areas are clearly distinguishable because 
rocks, snow and ice emit low latent heat (Figure 4.1, b and c).  

Analysing the three-year average water fluxes across the entire elevation range, we found that ET 
peaks at 300 m a.s.l. and then steadily declines at higher elevations, despite the slightly increasing 
precipitation (Figure 4.2a). The elevational distribution of ET varies considerably between different 
catchments, due to vegetation heterogeneity and the interplay between water and energy limitations 
(Figure C.5, Della Chiesa et al., 2014). We used P-ET as a proxy for runoff at the annual time scale 
(Figure C.4, Goulden & Bales, 2014) since ice melt only marginally contributed to the water budget 
(less than 3%) at the annual scale, corresponding roughly to 4 km3, (Figure C.6). The runoff 
production, P-ET, peaks at 800 m a.s.l. (Figure 4.2a). More than 50% of this blue water originates 
from the areas between 1300 and 3000 m a.s.l., which correspond to only 35% of the total Alpine 
domain. This can be explained by the sharp decrease of ET with elevation due to temperature 
constraints (Figure 4.2a). The runoff production shows a great spatial variability as even neighbouring 
catchments, such as the upper Rhone and the Aare catchment in Switzerland, exhibit distinct P-ET 
patterns (Figure 4.2b). 
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Figure 4.1 Simulation results reflect the high spatial heterogeneity in latent heat (evapotranspiration in energy 

units). (a) The spatial extent of the European Alps. (b) Three-year average latent heat flux (W m-

2) for the entire 257,000 km2 domain simulated with Tethys-Chloris. (c) and (d) focus on the 
Bernese highlands, Switzerland, to reveal the small-scale spatial heterogeneity and the high-
resolution simulation (250 m x 250 m pixels). 

4.3 BLUE VS GREEN WATER DURING EXCEPTIONALLY DRY SUMMERS 

The Alpine water budget also displays high elasticity in time (Figure 4.2c); P-ET in 2001 was 53% 
higher than in 2003 (Figure C.6a), which can be explained by both higher precipitation and lower ET. 
More specifically, the Alps received 250 mm more P in 2001 compared to 2003 while ET was 30 mm 
lower on average (Figure 4.2c).  

Among the 381 monitored catchments, we selected 334 watersheds in which runoff and cathment-
averaged P in 2003 were lower compared with each station’s long-term average and the 2001-2003 
mean. For these catchments, we compute how much ET contributed to amplifying the effect of 
precipitation deficit on runoff during the 2003 growing season (Figures 4.2b and C.9). We found that 
in 75% of the catchments, ET intensified the drought. The remaining 25% of the catchments - mostly 
located in the SW and NE of the pan-Alpine domain - experienced dry conditions with water-stressed 
vegetation and reduced ET. Considering the entire domain, ET increased during the drought in an 
area covering more than 144,000 km2 (Figure C.10). Overall, the increase in green water amplified 
the precipitation-driven deficit by roughly 22% (Figures 4.2c and C.9). In the zone of 1300 to 3000 
m a.s.l. elevation, enhanced ET created an additional water loss of more than 4 km3 during the 2003 
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growing season compared with 2002, amplifying the precipitation impact on runoff by 32% (mean 
weighted by the area of each catchment). 
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Figure 4.2 Relationship between elevation and blue and green water fluxes. (a) Percent contribution of each 
elevation class (grouped in 100 m elevational bins) to precipitation (P), evapotranspiration (ET) 
and P-ET, including the fractional area of each class (the fluxes are averaged over the entire 
simulation period, i.e. 2001-2003). The highlighted magenta bars show the most runoff-productive 
zone (1300-3000 m a.s.l.). (b) P-ET in mm yr-1. The dashed line and the shaded area represent the 
median P-ET (averaged over the entire simulation period) over the entire domain and the 
interquartile range, respectively. Coloured lines show P-ET elevational distribution for selected 
catchments to illustrate the spatial variability. A locator map is included. (c) ET anomalies (solid 
lines-left y-axis) and ET contribution to the runoff deficits compared with the precipitation deficit 
during the 2003 growing season (scatter-right y-axis). The anomalies were computed based on the 
2001-2003 mean and the fluxes were averaged in space based on the 100 m elevational bins. Each 
point of the scatter represents one of the 334 catchments (out of the 381 in total) for which both 
precipitation and runoff were lower in 2003 compared with the long-term average and the 2001-
2003 mean, respectively. 

To quantify the sensitivity of ET to warming and remove the effect of reduced precipitation, we 
performed a space-for-time substitution (see Appendix C.4). This procedure was necessary because 
the warm years in the Alps are well correlated with dry years (e.g., the 2003, Figure C.7). This analysis 
was based on regressions between ET components and temperature, accounting for regional variations 
and differences between land cover characteristics. We found that with a 3°C increase in air 
temperature, annual ET will increase on average by 6% (evaporation will increase by 9% and 
transpiration will increase by 5%) while P-ET will decrease by roughly 5% under the assumption of 
constant precipitation (Figure 4.2c). A similar effect on runoff is expected if annual precipitation is 
reduced by only 3%, which is likely to happen by the end of the century (Gobiet et al., 2014). The 
sensitivity of annual ET to temperature shifts from positive to negative below 700 m a.s.l., which 
implies that in a warmer climate ET will decrease at low elevations (Figures 4.2c and C.6). 

During the growing season, precipitation is still the main source of blue water (81% on average), 
snowmelt comes second (16%), and ice melt accounts for the remaining 3% (Figure C.6b). Below 
500 m a.s.l., the contribution of soil water storage dynamics is substantial (99 mm, compared with 
464 mm ET, Figure C.6b). The simulated growing season ET for the +3°C scenario agrees well with 
ET simulated during 2003, when the growing season temperature anomaly was roughly +3°C. This 
reinforces our confidence on the space-for-time approach employed here (Figure C.6b). 

Blue and green water fluxes averaged over the entire domain show that ET sporadically exceeded 
precipitation during the growing season of 2001 and 2002. For 2003, however, ET was higher than 
precipitation (which was 32% lower than the long-term average) already before the beginning of the 
growing season (Figures C.8 and C.11). The earlier snowmelt, which peaked before the start of the 
growing season and plummeted afterwards, amplified this deficit. Early snowmelt is becoming more 
frequent with rising temperature (Beniston et al., 2018) and in 2003 it was only partly compensated 
by increased ice melt. The simulated ice melt during August 2003 was 38% of the total Alpine runoff, 
corresponding to about 2 km3 of water.  
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Figure 4.3 Analysis of anomalies in blue and green water fluxes during the 2003 drought. (a) Histogram of 

observed 2003 runoff anomalies in percentage for 381 locations (2003 compared with the long-
term mean of each station), coloured according to the magnitude of the anomaly (>-75%: cyan, -
50 to -75%: red, -25 to -50%: yellow and >-25%: black). (b) Spatial distribution of the simulated 
ET anomaly in mm during the 2003 growing season (May-September, here 2003 ET is compared 
with the 2001-2003 mean). The dots represent the locations of the 381 locations with hydrological 
measurements and are coloured as described in (a). The three insets in the lower right part show 
the boxplots of simulated ET anomaly for three different vegetation types (evergreen, deciduous, 
and grassland) in three elevational classes (<1000 m a.s.l., 1000-2000 m a.s.l. and >2000 m a.s.l.). 

Considering all 381 catchemnts with runoff data, the observed runoff was on average 50% lower 
compared with the long-term mean between May and September 2003 (Figures 4.3 and C.8). Higher-
than-average runoff occurred at a few locations, mostly in highly-glacierized catchments (Figure 4.3; 
Zappa & Kan, 2007). During this period, precipitation over the Alps was the lowest recorded between 
1992-2008 and mean temperature was record-breaking high (Figure C.7). The detailed vegetation 
scheme in T&C allows an analysis of different vegetation responses to the 2003 drought (Figure 4.3). 
Most evergreen forests strongly benefited from the increased radiation and temperature, and did more 
so as the drought intensified during the summer months, mostly at high elevations, where ET 
increased. Grasslands and deciduous forests were water-stressed below 1000 m a.s.l., but benefited 
from the drought above 2000 m a.s.l., especially at the beginning of the growing season, when 
monthly ET increased by up to 100 mm (Figure 4.3). In most areas of the Northern Alps the simulated 
ET anomaly was positive throughout the summer, in agreement with local measurements (Leuzinger 
et al., 2005; Seneviratne et al., 2012). In all dry inner Alpine valleys (such as Valle d’Aosta and Val 
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d’Adige in Italy, Valais in Switzerland and the Mur valley in Austria), the increased water stress of 
2003 reduced ET for all vegetation types (Dobbertin et al., 2005) but the area of these catchments is 
disporportionally smaller than the area with increased ET. 

4.4 DISCUSSION 

4.4.1 Limitations 

Some limitations in this study should be noted. We used uniform soil depth throughout the entire 
domain in the absence of reliable datasets. Previous research, though, showed that soil depth varies 
with elevation in a catchment in the Italian Alps (Bertoldi, Rigon, & Over, 2006), while variations in 
soil depth can affect transpiration patterns (Tromp-van Meerveld & McDonnell, 2006) and thus soil 
moisture and discharge. Indeed, soil depth might be an important driver for key ecosystem properties, 
esepecially in mountain catchments (e.g., Woolhiser, Fedors, Smith, & Stothoff, 2006).  

The use of a single vegetation parameterization for each plant functional type throughout the entire 
domain is another caveat. Intraspecific variations in vegetation traits can be considerable (Albert et 
al., 2011; Anderegg, 2015; Butler et al., 2017; J. Kattge et al., 2011; Siefert et al., 2015) and should 
be included in the representation of plant attributes in the vegetation component of the ecosystem 
models (Pappas et al., 2016), especially given the extent and the heterogeneities of the Alpine region.  

Despite the very detailed approach for generating distributed meteorological input, some uncertainties 
are also unavoidably inserted by our poor knowledge of microclimatic conditions, as the monitoring 
networks are not dense enough in several parts of the Alps. The computational cost of the simulations 
also does not permit a longer analysis, which precludes a more robust estimation of the interannual 
variability in the water towers of Europe. Moreover, T&C represents groundwater processes in a 
simplified manner, and the analysis of the water budget assumed that the changes in soil water storage 
over three hydrological years are negligible. Although during each hydrological year the changes in 
soil water storage might act as a buffer for climatic variability (Brooks et al., 2015), in the course of 
three years, this should have minimal implications for the validity of our analysis.  

Anthropogenic impact on the water cycle, such as flow regulation, was also ignored in this study, but 
the implications at the pan-Alpine scale should be minor, when compared to major local impact (de 
Jong, 2015). Although at the pan-Alpine scale the spatial resolution applied (250 m) can be regarded 
as hyper-resolution, several hydrological processes which depend on the fine-scale topographic 
variability might not be adequately captured (e.g., Son, Tague, & Hunsaker, 2016). Furthermore, the 
increase in fire occurrence in parts of the Alps (Dupire et al., 2017), also highlights that a more 
realistic representation of ecosystem dynamics should take large-scale disturbances into account 
(Hanan et al., 2018).  

4.4.2 Conclusions 

Our results indicate that at the annual timescale the “water towers of Europe” are largely vulnerable 
to precipitation decrease. Annual precipitation has shown no long-term trends so far (Casty, Wanner, 
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Luterbacher, Esper, & Böhm, 2005), but summer precipitation in central Europe has already 
decreased and could further do so in the future due to changes in atmospheric circulation patterns 
leading to more intense summer droughts (Pal, Giorgi, & Bi, 2004). Combined with the expected 
decrease in ice melt and earlier snowmelt (Beniston et al., 2018), our results demonstrate that blue 
water could be considerably reduced in the European Alps, but green water will continue to increase 
(Duethmann & Blöschl, 2018), leading to the oxymoron “lush vegetation-drier rivers”. The expected 
increase in water use efficiency with higher CO2 concentration levels than present (Mastrotheodoros 
et al., 2017) may partially offset this ET feedback during warmer summers in the long-term but it will 
unlikely have a major role in the near future. 

Understanding the partitioning of green and blue water fluxes and their spatial distribution from few 
square kilometers to the entire Alps is essential to manage the European water resources under current 
and future climatic conditions (European Environment Agency (EEA), 2009; Orth & Destouni, 2018). 
This partition has implications on ecosystem functioning, energy production, and water supply for 
agricultural and industrial uses. We showed that ecohydrological simulations driven by high-
resolution hydrometeorological forcings improve the quantification and understanding of the water 
budget in mountainous areas and its vulnerability to climate, providing insights into processes that 
coarser-scale approaches fail to reproduce (e.g., Fan et al., 2019; Maxwell & Condon, 2016; Wood et 
al., 2011). The need for more realistic, high-resolution quantifications of water resources is urgent 
(Barnett et al., 2005); our study demonstrates that recent advances in ecohydrological modeling, 
combined with large scale datasets and new computational capabilities, offer the possibility to address 
this urgent need, thus helping towards defining strategies to counteract or adapt to climate change 
impacts in water resources. 
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5 
5. Conclusions 

5.1 MAJOR CONCLUSIONS 

This work researched the ecohydrological sensitivity of the Alpine domain with physically-based 
modelling (ecohydrological model T&C) and dataset analysis. The main findings are centred on (a) 
the parameterization of hydrological models, (b) the topographic and climatic drivers of Alpine 
ecohydrology, and (c) the sensitivity of the pan-Alpine water budget to climate change. 

5.1.1 Plasticity in plant traits 

The larger-than-expected increase in water use efficiency (WUE) during the last decades observed in 
many forests in the Northern Hemisphere triggered a plethora of studies trying to explain the possible 
reasons for it (e.g., Cheng et al., 2017; Keenan et al., 2013; Knauer et al., 2017). As described in 
Chapter 2, at the stand scale plasticity in physiological parameters can explain the observed WUE 
increase. A 1% yr-1 change in one or two vegetation parameters such as specific leaf area, or the 
coefficient of canopy nitrogen decay, may imply changes in the composition of the stand rather than 
changes in the traits of individual plants. There are demonstrations of such demographic changes in 
several ecosystems (e.g., Hardiman et al., 2013; Knapp et al., 2012; Urbanski et al., 2007). 

A key parameter that can explain changes in WUE is the parameter that represents the sensitivity of 
stomatal conductance to assimilation rate and environmental drivers ([CO2] and VPD) in the Leuning 
model of stomatal conductance (Leuning, 1995; Leuning et al., 1995). Although larger trends in this 
parameter might be unrealistic (Knauer et al., 2017), the results presented in Chapter 2 show that a 
1% yr-1 change in this parameter is plausible also at scales larger than the stand-scale because it only 
marginally affects evapotranspiration. 

5.1.2 Drivers of Alpine ecohydrology 

Simulations with high spatiotemporal resolution on synthetic and real topographies allowed the 
quantification of the relative importance of temperature, radiation, and water availability for 
ecohydrological processes, including runoff generation and plant-related variables, such as net 
primary production (Chapter 3). In agreement with previous studies, the ecohydrological model 
(T&C) detected large differences between the wet north pre-Alps and the dry inner-Alpine valleys 
(e.g., Bolli et al., 2007; Rössler et al., 2012). T&C also shows that different vegetation types exhibit 
different sensitivities to environmental factors; for example, dry grasslands are likely to experience 
higher water stress due to increased radiation, whereas dry evergreen forests are insensitive and wet 
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grasslands even benefit from increased radiation. This implies, for instance, that during heatwaves, 
we should expect very different vegetation responses across different Alpine areas.  

These findings highlight the importance of preforming high-resolution simulations. Detailed 
measurements in different sites across the Alps are invaluable for understanding how the steep 
climatic gradients affect vegetation functioning, but synthesizing the results of different case studies 
is not easy, due to the variability in the experimental designs and the specificity of each site. 
Moreover, the results presented in Chapter 3 display a very high spatial heterogeneity in 
ecohydrological fluxes, which implies that generalizing based on a given site is highly uncertain. 
These conclusions motivated the pan-Alpine assessment of the water and carbon balances presented 
in Chapter 4. 

5.1.3 Pan-Alpine water budget 

I performed ecohydrological simulations at unprecedented high resolution for the entire Alpine region 
(257,000 km2 at 250 m grid, Chapter 4). The results of these simulations provide valuable insights 
into the so-called “water towers of Europe”. A key conclusion of my analyses is that although the 
annual runoff production in the Alps is largely precipitation-driven, increasing temperatures can 
increase ET and thus reduce runoff, especially during extreme heatwaves. This suggests that 
projections of runoff changes of large European rivers are uncertain mostly due to the uncertainty in 
future precipitation rather than because of the uncertainty in air temperature. T&C shows that the 
runoff reduction caused by a 3°C temperature increase is roughly equivalent to the runoff reduction 
caused by a 3% reduction in precipitation. This is particularly important, given that the uncertainties 
in the future annual precipitation in the Alps are large (different models estimate precipitation changes 
ranging between -1 to -11% for the next decades in the Alps, European Environment Agency (EEA), 
2009). 

The results of the pan-Alpine simulations concur with findings of previous studies regarding the 
drastic runoff reduction during summer in future (e.g., European Environment Agency (EEA), 2009). 
I found that during the 2003 drought, Alpine vegetation benefitted from the high temperatures and the 
increased radiation, across large parts of the Alps as shown by increased ET. This complements the 
results of previous studies (e.g., Seneviratne et al., 2012; Teuling et al., 2010, 2013), but provides a 
much more detailed picture of the heterogeneous responses of vegetation. On average, ET increased, 
amplifying the effects of precipitation deficit to runoff by up to 34% in the Alpine areas where most 
of the blue water (i.e. runoff) originates. However, T&C also identified hotspots where ET drastically 
decreased during the 2003 drought, due to water limitations. These include mountains near the French 
coast, large parts of the lower Rhone basin, the Austrian lowlands and notably many inner-Alpine 
valleys, such as Valais in Switzerland and Val d’Aosta in Italy. 

This analysis shows that “lush vegetation and drier rivers” is a drought paradox to come soon true in 
the European Alps, as extreme events like the 2003 drought will become more frequent (Samaniego 
et al., 2018). This will be due to the enhanced ET resulting from the excess in temperature and 
radiation that are beneficial for plant activity in the most runoff productive areas.  
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5.2 OUTLOOKS 

Research in this thesis was primarily based on ecohydrological modelling. Despite T&C is a state-of-
the-art ecohydrological model, with very detailed process-descriptions, I identify four main areas 
where improvements are possible, new data are necessary and further research should be directed. 

5.2.1 Adapting model parameterization 

The results presented in Chapter 2 suggest that small trends in the order of 1% yr-1 in key physiological 
parameters can affect how ecosystems respond to changing environmental conditions. However, we 
currently know little about how each physiological parameter responds to changing climatic factors. 
For some parameters there are even contrasting results between different studies (e.g., leaf-to-root 
ratio, H. H. Rogers et al., 1996). Ecosystem-scale trends are difficult to detect because many 
parameters are very heterogeneous not only between different species, but also between individual 
plants of the same species (which is currently poorly documented for most traits, Aubin et al., 2016) 
and even within the canopy (Albert et al., 2011; J. Kattge et al., 2011; Niinemets et al., 2015; Siefert 
et al., 2015). Most of the currently available measurements are usually available as snapshots on 
individual plants, thus conclusions about plasticity remain speculative. Clearly, we need new 
coordinated measurement campaigns to monitor both stand demography and multiple replicates of 
plant physiological measurements, especially in flux-tower sites, in order to identify which are the 
key processes behind the plant response to environmental changes (Dusenge, Duarte, & Way, 2019). 

Modellers should further investigate the effects of vegetation plasticity in water, energy and carbon 
exchange across spatial scales (e.g., Knauer et al., 2017). Such modelling studies could further help 
monitoring campaigns by highlighting what are the key traits and how accurate the measurements 
should be, if we aim at studying trait plasticity. Vegetation modellers should in general revise the 
parametrization principles: many parameters that are currently held constant should become variable, 
accounting for changes in space and time. Increasing evidence indicates that this should be the way 
forward (Fyllas et al., 2014; Pappas et al., 2016; Pavlick et al., 2013; Sakschewski et al., 2015; 
Scheiter et al., 2013).  

5.2.2 Ecohydrological models as tools for developing new theories 

The study presented in Chapter 2 further shows that ecohydrological models can provide answers 
where simple theories fail to explain the observed response of vegetation to environmental changes. 
This implies that testing hypotheses through models can be a valuable tool for the development of 
new theories (Brewer et al., 2018). Indeed, despite the many recent advances in ecohydrology, there 
are still many open questions. For example, we are not able to fully capture several plant-related 
processes, such as carbon allocation (Hartmann & Trumbore, 2016), nutrient limitations to plant 
growth (Ågren, Wetterstedt, & Billberger, 2012), and the mesophyll conductance (A. Rogers et al., 
2017). Models can play a key role in answering such open questions. 
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5.2.3 Towards hyper-resolution ecohydrology 

The analyses presented in Chapters 3 and 4 show that ecohydrological simulations driven by high-
resolution hydrometeorological forcing and solved at a high resolution grid improve the quantification 
and understanding of water resources vulnerability to climate and provide insights into processes that 
coarser-scale approaches fail to reproduce (e.g., Ko et al., 2018; Maxwell & Condon, 2016).  

Studies of mountain hydrology have primarily focused on natural catchments (e.g., de Jong, 2015) 
and those studies that do include modified catchments usually simplify human intervention (e.g., 
Fatichi, Rimkus, et al., 2015), or totally ignore it. Given that mountain areas are under increased 
anthropogenic pressure, modelling human impacts on the water cycle is crucial (e.g., Jaramillo & 
Destouni, 2015). Hydropower, land use changes, irrigation and production of artificial snow affect 
the water budget and their effect downstream may be evident (de Jong, 2015). Thus, in the future, 
detailed hyper-resolution studies need to include anthropogenic influences in realistic ways to 
describe the actual hydrological budget. 

For hydrology to take full advantage of the increasing availability in computational power, a close 
cooperation between hydrologists, mathematicians and computer scientists is needed; in other words, 
we need to develop a new interdisciplinary field to combine these disciplines. Based on my personal 
experience, I believe that enhancing the computational skills of students in hydrological sciences 
should be a priority, given the increasing reliance on computationally complex models. 

5.2.4 Linking Earth system models to ecohydrology 

Enhancing the computational efficiency of ecohydrological studies is a prerequisite for bridging the 
gap between detailed, mechanistic ecohydrological models and Earth system models. The latter aim 
at understanding and predicting global change, but they omit (or oversimplify) several key processes 
that occur at the hillslope scale (e.g., the lateral redistribution of subsurface water, Fan et al., 2019). 
They are thus often inaccurate (Rouholahnejad Freund & Kirchner, 2017). 

On the other hand, high‐resolution model simulations at regional or continental scales, that have 
profited from the increasing computational resources, have recently contributed to the scientific 

understanding of how hillslope-scale hydrologic processes can impact land‐atmosphere exchanges 
and climate at larger spatial scales (e.g., Maxwell & Condon, 2016). The study presented in Chapter 
4 demonstrates that the emergence of new distributed datasets combined with the rapidly increasing 
computational resources bring the scientific community closer to continental-scale simulations of 
hillslope processes. To better predict global change, we need to take advantage of the insights 
provided by such analyses, using them as a blueprint for identifying which are the key processes that 
Earth system models should account for (Fan et al., 2019). In this way, the scientific community will 
be able to make more realistic predictions of water resource availability in the near future. 
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A 
6. Appendix A: Linking plant functional trait plasticity and the 

large increase in forest water use efficiency  

A.1 WATER USE EFFICIENCY DEFINITION 

The leaf-scale intrinsic water use efficiency (iWUE) is defined as (Beer et al., 2009):  

 
iWUE =

𝐴𝑛

1.6𝑔𝑠
=

𝐴𝑛

𝑇
VPD 

(A.1) 

where An [μmol CO2 s-1 m-2] is the net carbon assimilation rate, T [kg m-2 s-1] is the transpiration and 
VPD [Pa] is the vapor pressure deficit across the leaf interface. iWUE can be re-written explicating 

the stomatal conductance, gs [μmol CO2 m-2 leaf s-1], as:  

 
iWUE =

𝑔𝑠(𝐶𝑎 − 𝐶𝑖)

1.6𝑔𝑠VPD 𝑃𝑎𝑡𝑚
VPD 

(A.2) 

where Ca and Ci [Pa] are the CO2 atmospheric concentration and leaf intercellular concentration 
respectively, Patm is the atmospheric pressure [Pa]. It follows that iWUE scales proportionally to Ca if 
the ratio Ci:Ca is constant: 

 
iWUE =

𝐶𝑎

1.6 𝑃𝑎𝑡𝑚
(1 −

𝐶𝑖

𝐶𝑎
) ∝ 𝐶𝑎 

(A.3) 

The ecosystem-scale intrinsic water use efficiency (IWUE) is defined as (Beer et al., 2009): 

 
IWUE =

GPP

 𝐺𝑠,𝑐𝑎𝑛
 

(A.4) 

where GPP [mgC m-2 s-1 ] is the gross primary production and Gs,can [μmol CO2 m-2 s-1] is the canopy 
conductance. 

Here, we use eddy covariance measurements to approximate the ecosystem-scale intrinsic water use 
efficiency by the inherent water use efficiency (defined as IWUE=GEP/ET*VPD). This 
approximation is based on the assumption of equal temperatures of leaves and atmosphere and 
negligible canopy-atmosphere decoupling (Beer et al., 2009). Thus, for decoupled canopies, the two 
definitions are not equivalent and the IWUE response to [CO2] is less than proportional to the [CO2] 
increase (De Kauwe et al., 2013). 
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A.2 FLUXNET DATA 

In the Fluxnet2015 dataset, Net Ecosystem Exchange (NEE) and resulting products (Ecosystem 
Respiration (RECO) and GPP) are computed with two different methods (NEE_50 and NEE_REF, 
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/fullset-data-product/). For these products, we 
arbitrarily chose between the two versions since the differences are minimal. Regarding GPP, we 
preferred the product produced with the daytime partitioning method because it has no negative 
values. We used the Variable Ustar Threshold method that is available in the SUBSET. For the latent 
and heat fluxes, we used the products corrected by the energy balance closure correction factor 
(LE_CORR and H_CORR). In FI-Hyy, the GPP_DT_VUT_REF product was missing a whole year 
(2007), so we used the corresponding night time product (GPP_NT_VUT_REF). For data 
downloaded from http://gaia.agraria.unitus.it/home, we computed GPP as the average of the 
following: GPP_st_MDS, GPP_or_MDS, GPP_st_ANN and GPP_or_ANN. In case that one of those 
had gaps, it was not taken into account throughout the gap-period. For latent heat, we used LE_f. 

A.3 THE T&C MODEL 

Simulations were carried out using the mechanistic ecohydrological/biosphere model Tethys-Chloris 
(T&C), which is designed to simulate coupled dynamics of energy, water and vegetation at the land 
surface and at the hourly time-scale in different environments. All the principal components of the 
hydrological cycle, such as precipitation interception, transpiration, ground evaporation, infiltration, 
surface and subsurface water fluxes are accounted for. The model solves the ecohydrological 
dynamics over complex topography (e.g., a hillslope or a watershed), explicitly considering spatial 
variability of meteorological fields and the role of topography in controlling incoming radiation and 
transferring water laterally through the surface and subsurface. Heterogeneity in soil properties and 
vegetation can be accounted for. The basic computational elements are represented using cells of a 
regular grid. However, in this study, each location was assumed flat without lateral effects of mass 
and energy exchange and without an explicit areal dimension, essentially a one-dimensional 
representation.  

Shortwave and longwave incoming radiation fluxes are explicitly transferred through vegetation. The 
energy, water and carbon exchanges between the surface (soil and vegetation) and the planetary 
boundary layer are computed with a resistance analogy scheme accounting for aerodynamic, under 
canopy and leaf boundary layer resistances, as well as for stomatal, soil-to-root and soil-to-air 
resistances (Sellers et al., 1997). The values of aerodynamic, and leaf boundary layer resistances 
defines the degree of coupling between the canopy and the atmosphere, with a much stronger coupling 
for taller forest with small leaves. The model can consider horizontal heterogeneity in vegetation since 
each element can account for multiple species or plant functional types. Rainfall interception follows 
an adaptation of the Rutter-model that accounts for throughfall, leaf and stem interception, and canopy 
dripping (Rutter et al., 1971, 1975). Vertical water content dynamics in the variably saturated soil 
profile are solved using the one-dimensional (1D) Richards equation. In case of snow occurrence, the 
energy balance of snowpack dynamics is computed. Snow can be intercepted by the vegetation or fall 
to the ground, where it can accumulate and melt. Runoff generation is made possible via saturation 
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excess and infiltration excess mechanisms. The soil heat flux is computed solving the heat diffusion 
equation. Water can pond at the surface modifying roughness, albedo and thermal properties and 
allowing direct evaporation from surface water.  

Photosynthesis is simulated using the Farquhar biochemical model and subsequent modifications 
(Bonan et al., 2011; Farquhar et al., 1980). A ``two big leaves'' scheme, where sunlit and shaded 
leaves are treated separately is used to compute net assimilation and stomatal resistance. Stomatal 
resistance is computed with a revised version of the Leuning stomatal model (Leuning, 1990, 1995): 

 
𝑔𝑠 = 𝑔0 + 𝑎1

𝐴𝑛

(𝐶𝑖 − 𝛤∗)
𝑓(VPD)𝑃𝑎𝑡𝑚 

(A.5) 

where a1 [-] is an empirical parameter, gs [μmol CO2 m-2 s-1] is the stomatal conductance to CO2, An 

[µmol CO2 s−1 m−2] is the net assimilation rate, Ci is the leaf interior partial CO2 pressure, Γ* [Pa] is 
the CO2 compensation point, VPD [Pa] is the vapour pressure deficit, Patm [Pa] is the atmospheric 

pressure and g0 [μmol CO2 m-2 s-1] is the cuticular conductance when 𝐴𝑛 ≤ 0. 𝑓(𝑉𝑃𝐷) is the function 
of sensitivity to vapor pressure deficit and is defined as: 

 
𝑓(VPD) =

1

1 + VPD VPD0⁄
 

(A.6) 

where VPD0 [Pa] is the value of VPD at which 𝑓(VPD = VPD0) = 0.5. The leaf interior partial CO2 
pressure (Ci) is also used in the equation: 

 
𝐴𝑛 =

𝐶𝑎 − 𝐶𝑖

𝑃𝑎𝑡𝑚(1.64𝑟𝑠 + 1.37𝑟𝑏 + 𝑟𝑎)
 

(A.7) 

where An [µmol CO2 s−1 m−2] is the net assimilation rate, Ca [Pa] is the atmospheric CO2 concentration, 
Patm [Pa] is the atmospheric pressure, and rs, rb and ra [s m−1] are the stomatal, leaf boundary layer and 
under canopy resistances, respectively. 

Photosynthesis is upscaled from leaf to plant scale assuming an exponential profile of leaf nitrogen 
content per unit of area and therefore photosynthetic capacity (Bonan et al., 2011). Transpiration is 
automatically upscaled to the canopy level considering the sunlit and shaded fraction of LAI and 
different stomatal conductance for sunlit and shaded leaves. The wet fraction of the leaves (a 
prognostic variable in the model related to rainfall interception) does not transpire, while the dry 
fraction does. CO2 assimilation is only inhibited by intercepted snow but not by intercepted water.  

The scaling factor for the photosynthetic capacity of the sunlit (FN,sun) and the shaded (FN,shd) fractions 
of the leaf area index LAI are: 

 
𝐹𝑁,𝑠𝑢𝑛 = ∫ 𝑒−𝐾𝑛𝑖𝑡𝑥𝑒−𝐾𝑜𝑝𝑡𝑥d𝑥 =

1 − 𝑒−(𝐾𝑛𝑖𝑡+𝐾𝑜𝑝𝑡)LAI

𝐾𝑛𝑖𝑡 + 𝐾𝑜𝑝𝑡

𝐿𝐴𝐼

0

 
(A.8) 
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𝐹𝑁,𝑠ℎ𝑑 = ∫ 𝑒−𝐾𝑛𝑖𝑡𝑥(1 − 𝑒−𝐾𝑜𝑝𝑡𝑥)d𝑥

𝐿𝐴𝐼

0

=
1 − 𝑒−𝐾𝑛𝑖𝑡LAI

𝐾𝑛𝑖𝑡
−

1 − 𝑒−(𝐾𝑛𝑖𝑡+𝐾𝑜𝑝𝑡)LAI

𝐾𝑛𝑖𝑡 + 𝐾𝑜𝑝𝑡
 

(A.9) 

where Knit [-] is the nitrogen decay coefficient and Kopt [-] is a light extinction parameter computed in 
the radiation transfer module. The factors are used to obtain the estimate of photosynthetic quantities 

scaled from leaf to canopy. It follows that the maximum Rubisco capacity at 25°C, Vmax,sun [μmol CO2 
m-2 leaf s-1] for unit of leaf area in the sunlit leaves (for the shaded respectively) is: 

 
𝑉𝑚𝑎𝑥,𝑠𝑢𝑛 = 𝑉𝑚𝑎𝑥

𝑇
𝐹𝑁,𝑠𝑢𝑛

𝐹𝑠𝑢𝑛LAI
 

(A.10) 

where Vmax
T [μmol CO2 m-2 s-1] is the maximum Rubisco capacity at 25°C at the top of the canopy, 

which is a model parameter, and Fsun is the fraction of sunlit canopy. 

Vmax is linked to the electron transport rate, Jmax: 

 𝐽𝑚𝑎𝑥 = 𝑟𝑗  𝑉𝑚𝑎𝑥 (A.11) 

where rj is a model parameter ranging typically between 1.9 and 2.5. 

Plant water stress in carbon uptake is introduced by multiplying An with a β correction factor, which 
has a sigmoidal shape that accounts for the root-zone integrated soil water potential and depends on 
two threshold parameters corresponding to the beginning of stomatal closure and to 50% stomatal 
closure (Brodribb & Holbrook, 2003).  

The dynamics of seven carbon pools are explicitly simulated in the model and include green 
aboveground biomass (leaves), living sapwood, fine roots, carbohydrate reserve (non-structural 
carbohydrates), reproductive tissues (fruit and flowers), standing dead leaves and heartwood/dead-
sapwood. The leaf area index (LAI, [-]) is derived from leaf carbon pool with the following structural 
equation: 

 LAI = 𝐶𝑙𝑒𝑎𝑓𝑆𝐿𝐴 (A.12) 

where Cleaf [gC m-2] is the green aboveground biomass and SLA is the specific leaf area [m2 g-1C]. 

The carbon assimilated through photosynthetic activity is used for maintenance and growth 
respiration otherwise is allocated to one of the first five pools. The different pools are undergoing 
tissue turnover in function of tissue longevity and environmental stresses, i.e., drought and low 
temperatures. Carbon allocation is a dynamic process that accounts for resource availability (light and 
water) and allometric constraints (Krinner et al., 2005), e.g., a minimum ratio of fine root to foliage 
carbon; and an upper limit for the storage of carbohydrate reserve. For instance, the allocation to Cleaf 
is constrained when  
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 𝐶𝑙𝑒𝑎𝑓 > LtR 𝐶𝑟𝑜𝑜𝑡 (A.13) 

where LtR is the maximum leaf-to-root biomass ratio and Croot is the fine-root biomass. 

Carbon allocated to reserves can be subsequently translocated to favour leaf expansion at the onset of 
the growing season or after severe disturbances. Phenology is simulated considering four states: 
dormant, maximum growth, normal growth, and senescence. Patterns of plant allocation are 
influenced by the phenological phase. Transition between phenological phases are prognostic in the 
model and controlled by soil temperature, soil moisture and photoperiod length. Nutrient dynamics 
and forest demography are neglected, which implies that vegetation is assumed to be in a mature 
phase and in equilibrium with its nutritional environment.  

A.4 DATA-RELATED UNCERTAINTIES 

Our aim was to detract as little as possible from the approach followed in Keenan et al. (2013), but 
data issues forced us to deviate. Due to data scarcity, we excluded one site (SE-Fla) and we prolonged 
time series length using the updated Fluxnet dataset; mean length is 13 years in our study and 10 years 
in Keenan et al. (2013). The time series analysed in our study were also taken in more recent years 
for several sites to avoid periods where large gaps in meteorological forcing would hinder the 
modelling analysis. These differences may partly explain the discrepancy between the two studies.  

 

Figure A.1 Location of the 20 flux tower sites used in the study. 
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Figure A.2 Correlation and corresponding coefficients (r) between linear regression and Sen slope of the 

inherent water use efficiency (IWUE) computed in the 20 sites. We show the corresponding 
values obtained from both observations and Tethys-Chloris base simulations. 

 
Figure A.3 Inherent water use efficiency (IWUE) response to perturbation of five parameters for the US-

UMB site. Linear fit is also shown for each parameter. 
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Figure A.4 Observed inherent water use efficiency (IWUE), gross ecosystem production (GEP) and 

evapotranspiration (ET) linear slopes in evergreen needleleaf forests (ENF) and deciduous 
broadleaf forests (DBF). 

 
Figure A.5 Discrepancies between CarboEurope (dashed lines) and Fluxnet 2015 (continuous lines) in the 

reported observations of latent heat flux (LE), in RU-Fyo (magenta) and DE-Tha (green). 
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Figure A.6 Linear slopes in simulated Ci/Ca, where Ci is the intercellular CO2 concentration estimated as the 
simple average of the annual Ci of sunlit and shaded leaves at the ecosystem scale and Ca is the 
annual atmospheric CO2 concentration. Black represents the base simulations; blue the simulations 
for which only one parameter was perturbed, and magenta the simulations in which two parameters 
were perturbed. 
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Figure A.7 Linear slopes in simulated Ci (intercellular CO2 concentration estimated as the simple average of 

the annual intercellular CO2 concentration of sunlit and shaded leaves at the ecosystem scale) for 
the 20 sites examined. Black represents the base simulations; blue the simulations for which only 
one parameter was perturbed, and magenta the simulations in which two parameters were 
perturbed. 
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Figure A.8 Inherent water use efficiency (IWUE), gross ecosystem production (GEP) and evapotranspiration 

(ET) linear slopes in evergreen needleleaf forests (ENF) and deciduous broadleaf forests (DBF) 
for the base simulations. 

 
Figure A.9 Inherent water use efficiency (IWUE), gross ecosystem production (GEP) and evapotranspiration 

(ET) linear slopes in evergreen needleleaf forests (ENF) and deciduous broadleaf forests (DBF) 
for the numerical experiment in which we perturbed a1 parameter (which connects stomatal 
aperture and net assimilation) by -1% yr-1. 
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Table A.1 Summary of the 20 flux tower sites and of the periods used in the analysis. All sites represent 
temperate or boreal forest ecosystems. DBF = Deciduous broadleaf forest; ENF = Evergreen 
needleleaf forest; MF = Mixed Forest. 

Site Code Lat. Lon. Elevation 
[m. asl] 

Years Vegetation 
Type 

Mean annual 
temperature 
[°C] 

Years since 
the last 
disturbance 

Annual 
precip. 
[mm] 

Data source and download date Reference 

BE-Bra 51.31 4.52 16 2004-2014 MF 10.9 68 777 http://fluxnet.fluxdata.org/, 
22/7/2016 

(Carrara et al., 2003) 

BE-Vie 50.31 6.00 450 1996-2014 MF 8.3 61 952 http://fluxnet.fluxdata.org/, 
8/2/2016 

(Aubinet et al., 2002) 

CA-Man 55.88 -98.48 259 1994-2008 ENF -1.3 ~150 456 http://ameriflux.lbl.gov/ (Dunn et al., 2007) 

DE-Tha 50.96 13.57 380 1996-2014 ENF 8.8 75 
 

842 http://fluxnet.fluxdata.org/, 
8/2/2016 

(Grünwald & 
Bernhofer, 2007) 

DK-Sor 55.49 11.65 40 1996-2014 DBF 8.3 111 849 http://fluxnet.fluxdata.org/, 
22/7/2016 

(Pilegaard et al., 
2011) 

FI-Hyy 61.85 24.30 181 1996-2014 ENF 4.4 34 604 http://fluxnet.fluxdata.org/,  
22/2/2016 

(Suni et al., 2003) 

FI-Sod 67.36 26.64 180 2000-2008 ENF 0.9 ~100 545 http://gaia.agraria.unitus.it/home, 
19/7/2015 

(Thum et al., 2007) 

FR-Hes 48.67 7.06 300 1997-2006 DBF 10.2 ~30 937 http://gaia.agraria.unitus.it/home, 
25/11/2015 

(Granier et al., 2000) 

FR-LBr 44.01 -0.77 61 2000-2008 ENF 13.3 30 828 http://gaia.agraria.unitus.it/home, 
25/11/2015 

(Berbigier et al., 
2001) 

NL-Loo 52.16 5.74 25 1997-2013 ENF 9.9 ~100 842 http://fluxnet.fluxdata.org/, 
8/2/2016 

(Dolman et al., 2002) 

RU-Fyo 56.46 32.92 265 1998-2013 ENF 5.1 ~200 582 http://fluxnet.fluxdata.org/, 
22/7/2016 

http://fluxnet.fluxdat
a.org/  

US-Bar 44.06 -71.28 272 2004-2010 DBF 7.5 73 1253 http://ameriflux.lbl.gov/, 
25/11/2015 

(Jenkins et al., 2007) 

US-Blo 38.90 -120.63 1315 1997-2007 ENF 11.1 6 1375 http://fluxnet.fluxdata.org/, 
8/2/2016 

(Goldstein et al., 
2000) 

US-Ha1 42.54 -72.17 303 1992-2009 DBF 7.9 >50-100 1130 http://fluxnet.fluxdata.org/, 
8/2/2016 

(Urbanski et al., 
2007) 

US-Ha2 42.54 -72.18 360 2005-2010 ENF 8.0 ~100-230 1323 http://ameriflux.lbl.gov/, 
25/11/2015 

(Hadley & 
Schedlbauer, 2002) 

US-Ho1 45.20 -68.74 60 1996-2008 ENF 6.6 ~90 846 http://ameriflux.lbl.gov/, 8/9/2015 (Hollinger et al., 
2004) 

US-LPH 42.54 -72.19 360 2003-2010 DBF 7.8 46 1303 http://ameriflux.lbl.gov/, 
25/11/2015 

(Davidson et al., 
2006) 

US-MMS 39.32 -86.41 275 1998-2014 DBF 12.4 ~60-80 1097 http://fluxnet.fluxdata.org/, 
17/11/2015 

(Schmid et al., 2000) 

US-UMB 45.56 -84.71 234 1999-2014 DBF 7.2 76 890 http://ameriflux.lbl.gov/ (Curtis et al., 2005) 

US-WCr 45.80 -90.08 520 1999-2006 DBF 5.6 ~60-80 671 http://fluxnet.fluxdata.org/, 
8/2/2016 

(Cook et al., 2004) 
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http://fluxnet.fluxdata.org/
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Table A.2 Linear slopes of inherent water use efficiency (IWUE), gross ecosystem production (GEP) and 
evapotranspiration (ET) for the 20 sites in [% yr-1]; observed and base simulation slopes are shown 
as well as the slopes computed from simulations with de-trended temperature and relative 
humidity. We also show the output of the numerical experiments in which we perturbed the a1 
parameter (which connects stomatal aperture and net assimilation) by -1% yr-1 ([–a1] simulations). 
For observations, the 5-95% uncertainty range is shown in parenthesis (the range is computed 
based on the normality assumption that residuals follow the Gaussian distribution). 

Site Code 

 IWUE GEP ET 

observations Base 

sim 

De-

trended 

[-a1] 

sim 

observations Base 

sim 

De-

trended 

[-a1] 

sim 

observations Base 

sim 

De-

trended 

[-a1] 

sim 

BE-Bra  1.5 (-1.3, 4.3)  1.4 1.4  1.7  3.9 (1.1, 6.7)  0.1 0.4  0.0  2.5 (-0.1, 5.2)  -0.9 -0.6 -1.4 

BE-Vie  1.0 (-0.9, 2.9) -0.1 -0.2  0.2  1.1 (0.2, 1.9)  0.3 0.2  0.3 -0.8 (-1.9, 0.3) -0.4 -0.5 -0.7 

CA-Man -0.3 (-2.2, 1.6)  1.0 0.4  1.4 -0.6 (-1.4, 0.3)  1.1 0.6  1.2  0.1 (-2.2, 2.3)  0.6 0.0  0.2 

DE-Tha  0.6 (-0.8, 2.1)  1.1 0.7  1.5  0.6 (-0.5, 1.8)  0.3 0.5  0.5  0.9 (-0.9, 2.7)  0.6 0.5  0.4 

DK-Sor 1.1 (-0.4, 2.7)  0.7 0.4  1.2  1.1 (0.6, 1.6)  0.8 1.2  1.2  0.6 (-0.7, 1.8)  0.8 0.8  0.6 

FI-Hyy 0.2 (-1.0, 1.4)  0.5 0.4  1.0  1.0 (0.2, 1.7)  0.1 -0.1  0.0 1.1 (0.1, 2.1)  0.0 -0.2 -0.5 

FI-Sod  3.9 (-5.5, 13.4)  0.7 0.4  1.2 -1.2 (-5.9, 3.6) -1.2 -1.6 -1.1 -5.4 (-10.0, -0.8) -3.4 -3.8 -3.8 

FR-Hes  5.9 (-0.4, 12.2)  1.8 0.9  2.2 -3.2 (-8.3, 1.8) -1.9 -1.5 -1.8 -4.9 (-11.1, 1.4)  0.5 0.2  0.2 

FR-LBr -1.1 (-8.0, 5.8) -2.2 -1.3 -1.9 -0.5 (-6.8, 5.9)  0.9 1.1  0.9  0.1 (-7.2, 7.5)  2.9 3.3  2.6 

NL-Loo -0.3 (-2.3, 1.8)  0.5 0.4  0.9  0.1 (-0.9, 1.0) -1.0 -0.9 -0.9 -0.1 (-1.0, 0.9) -1.7 -1.7 -2.1 

RU-Fyo -1.5 (-5.4, 2.4) -0.2 0.0  0.2 -0.3 (-1.8, 1.3)  1.3 1.2  1.3  1.0 (-0.9, 3.0)  0.8 0.8  0.4 

US-Bar  3.8 (-2.9, 10.5) -1.2 -0.7 -0.9  2.2 (-1.2, 5.5)  -0.6 -0.8 -0.7 -0.7 (-6.3, 4.9) -1.4 -1.5 -1.8 

US-Blo  6.4 (3.8, 9.1)  1.2 0.9  1.7  6.9 (2.7, 11.0)  0.1 0.4  0.4  1.9 (-0.1, 4.0)  0.5 0.5  0.3 

US-Ha1  3.8 (2.2, 5.4)  1.2 0.2  1.5  1.2 (0.2, 2.3)  0.6 1.4  0.6 -1.2 (-2.2, -0.3)  0.8 -0.2  0.4 

US-Ha2  2.1 (-6.5, 10.7)  2.1 2.2  2.5  2.6 (-5.5, 10.7) -0.3 -0.3 -0.4  2.5 (-3.6, 8.6) -0.6 -0.5 -1.0 

US-Ho1  0.0 (-2.7, 2.7)  0.5 0.4  1.0 -1.1 (-2.3, 0.1)  1.4 1.4  1.4 -1.8 (-3.7, 0) -0.2 -0.2 -0.5 

US-LPH 10.3 (-0.7, 21.2)  3.3 1.4  3.6  0.6 (-2.5, 3.6)  0.2 -0.2  0.1 -7.3 (-17.5, 2.9)  0.9 -0.3  0.5 

US-MMS  2.2 (0.3, 4.1)  1.8 1.3  2.1 -1.0 (-1.9, -0.1) -0.9 -0.7 -0.9 -1.1 (-2.0, -0.2) -0.6 -0.7 -0.9 

US-UMB  1.5 (0.6, 2.4)  0.7 0.7  1.0  0.4 (-0.3, 1.1)  0.2 0.2  0.1 -0.6 (-1.7, 0.6) -0.1 -0.1 -0.6 

US-WCr  0.7 (-8.2, 9.6)  2.2 2.3  2.5  1.6 (-1.9, 5.2)  0.7 1.0  0.6 -1.2 (-6.1, 3.7)  0.3 0.6 -0.1 
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Table A.3 Correlation coefficients between modelled and observed latent heat (LE) and gross primary 
production (GPP) at the hourly and daily scale for the entire period modelled for each site (in 
parenthesis the coefficients for the filtered data, i.e. summer, non-rainy days and daytime only). 
The amount of data missing is also given (gaps in % of the total data). ‘-‘ is used when no estimate 
of the gaps is available. 

Site Code Gaps in the hourly 
LE dataset [%] 

LE Correlation Coefficient Gaps in the hourly 
NEE dataset [%] 

GPP Correlation Coefficient 

  Hourly Daily  Hourly Daily 
BE-Bra 30.3 0.82 (0.61) 0.84  50.9 0.90 (0.31) 0.87  

BE-Vie 73.3 0.88 (0.74) 0.87  75.3 0.92 (0.35) 0.89  

CA-Man 34.4 0.80 (0.68) 0.80  60.2 0.88 (0.31) 0.92  

DE-Tha 15.5 0.84 (0.66) 0.87  55.5 0.92 (0.48) 0.88  

DK-Sor 42.7 0.83 (0.66) 0.86  40.5 0.94 (0.62) 0.95  

FI-Hyy 50.9 0.83 (0.62) 0.88  59.5 0.89 (0.27) 0.92  

FI-Sod 12.3 0.73 (0.41) 0.81  32.2 0.85 (0.31) 0.89  

FR-Hes 8.4 0.81 (0.70) 0.81  40.2 0.90 (0.56) 0.92  

FR-LBr 10.9 0.68 (0.54) 0.69  66.8 0.83 (0.32) 0.78  

NL-Loo 34.9 0.82 (0.51) 0.79  62.2 0.93 (0.28) 0.89  

RU-Fyo 25.2 0.84 (0.60) 0.85  61.2 0.90 (0.42) 0.89  

US-Bar - 0.84 (0.70) 0.87  - 0.92 (0.57) 0.95  

US-Blo 37.4 0.83 (0.81) 0.66  76.8 0.83 (0.34) 0.69  

US-Ha1 - 0.86 (0.74) 0.86  66.7 0.93 (0.59) 0.94  

US-Ha2 - 0.89 (0.71) 0.60  - 0.89 (0.37) 0.91  

US-Ho1 33.3 0.74 (0.69) 0.73  47.9 0.86 (0.26) 0.86 

US-LPH 64.3 0.79 (0.59) 0.73  84.3 0.91 (0.59) 0.95  

US-MMS 13.8 0.86 (0.76) 0.87  58.9 0.91 (0.53) 0.94  

US-UMB - 0.90 (0.77) 0.93  48.5 0.94 (0.58) 0.97  

US-WCr 58.3 0.74 (0.64) 0.70  72.9 0.88 (0.36) 0.87  
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Table A.4 Annual trends in temperature and relative humidity. 
Site Code Temperature trend [°C yr-1] Relative humidity trend [% yr-1] 

BE-Bra -0.08 -0.21 
BE-Vie 0.06 0.14 
CA-Man 0.16 0.14 
DE-Tha 0.08 -0.14 
DK-Sor 0.06 -0.10 
FI-Hyy 0.04 0.05 
FI-Sod 0.07 0.02 
FR-Hes 0.04 -0.63 
FR-LBr -0.14 0.20 
NL-Loo 0.00 -0.06 
RU-Fyo 0.02 0.23 
US-Bar 0.07 0.54 
US-Blo 0.05 -0.21 
US-Ha1 0.11 -0.37 
US-Ha2 0.01 0.09 
US-Ho1 -0.04 -0.15 
US-LPH 0.14 -0.85 
US-MMS -0.02 -0.39 
US-UMB -0.01 0.01 
US-WCr -0.09 -0.19 

Table A.5 Parameters of the Tethys-Chloris (T&C) model included in the initial screening. 

 

Symbol Description Units Typical Range 

a1 Empirical parameter connecting stomatal aperture 
and net assimilation rate 

[-] 3-11 

Knit Canopy nitrogen decay coefficient [-] 0.1-0.5 
Vmax Maximum Rubisco capacity at 25°C - leaf level [μmol CO2/ m2 s] 20-120 
SLA Specific leaf area  [m2 /gC] 0.006-0.050 
LtR Maximum leaf-to-root biomass ratio [-] 0.2-1.5 
ZR95 Root depth (95th percentile) [mm] 200-1200 
r Maintenance respiration rate at 10°C [gC gN-1 day-1] 0.02-0.08 
drn Fine root turnover rate [day-1] 0.0001-0.0030 
dsn Living sapwood turnover rate [day-1] 0.0001-0.0030 
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Table A.6 Median linear slopes (in [% yr-1]) of inherent water use efficiency (IWUE), gross ecosystem 
production (GEP) and evapotranspiration (ET) for observations and all T&C simulations and 
Euclidean distance between simulations and observations for all the experiments. Values for Sen 
slopes are given in parenthesis. Bold denotes the simulations in which the Euclidean distance is 
lower than that of the base simulations. 

 

  

 

 

 

 

 

 

 IWUE GEP ET Euclidean distance 

observations 1.3 (1.3) 0.6 (0.6) -0.3 (-0.3) [-] 
base simulations 0.9 (0.9) 0.2 (0.1) 0.2 (0.1) 0.8 (0.8) 
base +Vmax 1.3 (1.2) 1.1 (1.0) 0.7 (0.7) 1.1 (1.1) 
base +SLA 1.0 (0.9) 0.6 (0.6) 0.6 (0.5) 1.0 (0.9) 
base -a1 1.3 (1.4) 0.2 (0.1) -0.3 (-0.4) 0.4 (0.6) 
base -Knit 1.0 (1.1) 0.6 (0.6) 0.5 (0.4) 0.8 (0.8) 
base +LtR 1.0 (0.9) 0.6 (0.6) 0.6 (0.5) 1.0 (0.9) 
base +Vmax +SLA 1.3 (1.2) 1.5 (1.5) 0.9 (0.9) 1.5 (1.5) 
base +Vmax -a1 1.7 (1.6) 1.0 (1.1) 0.4 (0.3) 0.9 (0.8) 
base +Vmax -Knit 1.4 (1.4) 1.5 (1.5) 0.9 (0.9) 1.5 (1.4) 
base +Vmax +LtR 1.3 (1.2) 1.4 (1.5) 0.9(0.9) 1.4 (1.4) 
base +SLA -a1 1.4 (1.3) 0.6 (0.6) 0.2 (0.1) 0.5 (0.4) 
base +SLA-Knit 1.2 (1.0) 1.0 (1.0) 0.8 (0.7) 1.2 (1.1) 
base +SLA +LtR 1.0 (1.0) 1.0 (1.0) 0.8 (0.7) 1.2 (1.1) 
base -a1 -Knit 1.5 (1.5) 0.6 (0.5) -0.0 (-0.1) 0.3 (0.3) 
base -a1 +LtR 1.4 (1.3) 0.5 (0.6) 0.1 (0.0) 0.5 (0.4) 
base -Knit +LtR 1.1 (1.0) 0.9 (0.9) 0.8 (0.7) 1.1 (1.1) 
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Table A.7 Median linear slopes (in [% yr-1]) of inherent water use efficiency (IWUE), gross ecosystem 
production (GEP) and evapotranspiration (ET) for observations and all T&C simulations and 
Euclidean distance between simulations and observations for all the experiments weighing by the 
length of time series. Values for Sen slopes are given in parentheses. Bold denotes the simulations 
in which the Euclidean distance is lower than that of the base simulations. 

 

 

  

 IWUE GEP ET Euclidean distance 

observations 1.0 (1.1) 0.6 (0.6) -0.1 (0.0) [-] 
base simulations 0.7 (0.8) 0.3 (0.2) 0.0 (0.1) 0.5 (0.5) 
base +Vmax 1.1 (1.2) 1.1 (1.0) 0.8 (0.8) 0.9 (0.9) 
base +SLA 0.8 (0.9) 0.6 (0.6) 0.7 (0.6) 0.7 (0.7) 
base -a1 1.2 (1.4) 0.3 (0.1) -0.5 (-0.5) 0.6 (0.7) 
base -Knit 0.8 (1.0) 0.6 (0.7) 0.4 (0.4) 0.5 (0.4) 
base +LtR 0.8 (0.9) 0.6 (0.6) 0.6 (0.6) 0.8 (0.7) 
base +Vmax +SLA 1.2 (1.2) 1.5 (1.5) 0.8 (0.9) 1.3 (1.4) 
base +Vmax -a1 1.5 (1.6) 1.1 (1.1) 0.4 (0.4) 0.8 (0.8) 
base +Vmax -Knit 1.2 (1.2) 1.5 (1.4) 0.8 (1.0) 1.3 (1.3) 
base +Vmax +LtR 1.2 (1.1) 1.4 (1.4) 0.8 (0.9) 1.2 (1.3) 
base +SLA -a1 1.2 (1.3) 0.6 (0.6) 0.1 (0.1) 0.3 (0.3) 
base +SLA-Knit 1.0 (1.0) 1.0 (1.0) 0.7 (0.8) 0.9 (0.9) 
base +SLA +LtR 0.9 (1.0) 1.0 (1.0) 0.7 (0.9) 0.9 (1.0) 
base -a1 -Knit 1.2 (1.3) 0.7 (0.5) -0.2 (-0.1) 0.2 (0.3) 
base -a1 +LtR 1.2 (1.3) 0.6 (0.6) 0.1 (0.1) 0.2 (0.2) 
base -Knit +LtR 1.0 (1.0) 1.0 (0.9) 0.8 (0.8) 0.9 (0.9) 



87 

B 
7. Appendix B: Ecohydrological dynamics in the Alps: Insights 

from a modelling analysis of the spatial variability 

B.1 THE T&C MODEL 

The T&C model uses the resistance analogy scheme to compute the energy, water, and carbon 
exchanges between the surface and the atmospheric surface layer (accounting for aerodynamic, 
undercanopy, and leaf boundary layer resistances, as well as for stomatal and soil resistances (Sellers 
et al., 1997). Each element includes up to two layers of vegetation, to simulate the coexistence of trees 
and grass. Horizontal composition of vegetation is also possible since each element can include 
multiple plant functional types (Fatichi, Ivanov, & Caporali, 2012; Fatichi & Leuzinger, 2013). 
Incoming shortwave and longwave radiation is explicitly transferred through the vegetation (Ivanov 
et al., 2008a).  

Dynamics of water content in the soil profile are solved using the one-dimensional Richards equation 
for the vertical flow and the kinematic wave approximation for the lateral subsurface flow (quasi 3-
D approach). Saturated and unsaturated parts of the soil column are explicitly identified. Surface 
overland and channel flow are also solved through the kinematic equation. The model simulates 
snowpack dynamics by solving the energy balance; snow either stays on the vegetation (snow 
interception) or falls to the ground, where it accumulates and successively it melts. In this study, snow 
redistribution was not simulated. Runoff is generated either by saturation excess or by infiltration 
excess mechanisms and depends on lateral moisture fluxes in the unsaturated and saturated zones and 
on the overland flow (Loague, Heppner, Ebel, & VanderKwaak, 2010).  

Photosynthesis is simulated with a biochemical model (Collatz, Ball, Grivet, & Berry, 1991; Collatz, 
Ribas-Carbo, & Berry, 1992; Farquhar, von Caemmerer, & Berry, 1980) as it was modified by Bonan 
et al. (2011). Net assimilation and stomatal resistance are computed separately for sunlit and shaded 
leaves, following the two big-leaves approach (Dai, Dickinson, & Wang, 2004). Photosynthetic 
capacity decays exponentially through the canopy (Bonan et al., 2011; Ivanov et al., 2008). Stomatal 
resistance is parameterized as a function of assimilation rate and environmental conditions (Leuning, 
1990, 1995; Tuzet, Perrier, & Leuning, 2003). The dynamics of five carbon pools are explicitly 
simulated in the model, i.e., green aboveground biomass, living sapwood (woody plants only), fine 
roots, carbohydrate reserve (non-structural carbohydrates), and standing dead biomass.  

The carbon assimilated through photosynthesis is used for growth and reproduction and is lost in the 
process of maintenance and growth respiration and tissue turnover. Carbon allocation is a dynamic 
process that accounts for resource availability (light and water) and allometric constraints (Bonan, 
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Levis, & Sitch, 2003; Friedlingstein, Joel, Field, & Fung, 1999; Friend, Stevens, Knox, & Cannell, 
1997; Kozlowski & Pallardy, 1997; Krinner et al., 2005). Carbon from reserves can be translocated 
to favour leaf expansion at the beginning of the growing season or after a severe disturbance (Chapin, 
Schulze, & Mooney, 1990;Fatichi et al., 2012; Gough, Flower, Vogel, & Curtis, 2010; Gough, Flower, 
Vogel, Dragoni, & Curtis, 2009). Organic matter turnover of the different carbon pools is a function 
of tissue longevity and environmental stresses, i.e., drought and low temperatures (Arora & Boer, 
2005; Bonan et al., 2003; Fatichi et al., 2012; Ivanov et al., 2008; Sitch et al., 2003).  

Four different phenological states control plant allocation (Arora & Boer, 2005): dormancy, 
maximum growth, normal growth, and senescence (Fatichi et al., 2012). Temperature, soil moisture 
and photoperiod define the beginning of the growing season. Nutrient dynamics and forest stand 
growth are neglected. 

B.2 DETAILS ABOUT THE INDEPENDENT VARIABLES 

To express soil moisture controls on ecosystems, we compared two topographic variables, the 
upstream area and the topographic wetness index (hereafter “topographic index”), defined as the 
logarithm of the ratio of the upstream area and the topographic slope. We computed both indices for 
each pixel of each domain based on the DEM. We considered the explanatory power of each variable 
when used as a third explanatory variable (Table B.2) when regressing several ecohydrological 
variables. We adopted the topographic index as the third variable, because it describes better the water 
fluxes in the more sensible dry case (in which we expected soil moisture to play a more important 
role) and it is superior to upstream area for all variables in the Kleine Emme catchment. This is not 
surprising, because the topographic index is by definition more appropriate to express soil moisture 
limitations (compared with the upstream area) as it accounts for the effect of slope. Since topographic 
index and air temperature are correlated in the synthetic domain (Table B.3), we applied residual 
regression. Following the methodology as previously described (Graham, 2003), topographic index 
was regressed against air temperature. Using the residuals of this regression, we substituted 
topographic index.  
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Figure B.1 The Kleine Emme catchment; elevation (a), land cover (b) and soil texture (c). 
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Figure B.2 Simulated and observed hourly discharge in Littau (a) and Werthenstein (b). For details about the 
two hydrological stations, refer to Table B.1. 

 

Figure B.3 Simulated and observed discharge seasonality for the simulated period (1/10/2000-30/9/2005) in 
Littau (a) and Werthenstein (b). For details about the two hydrological stations, refer to Table B.1. 

 



91 

 

Figure B.4 Simulated and observed hourly (a and c) and daily (b and d) discharge in Littau (upper plots) and 
Werthenstein (lower plots) in logarithmic scale.  
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Figure B.5 Observed and simulated flow duration curves for Littau (a) and Werthenstein (b). 
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Figure B.6 Summary of the meteorological input and simulated ecohydrological variables for the dry 

evergreen forest experiment in the synthetic domain. The subplots show the four-year average of 
annual (a) temperature, (b) shortwave radiation, (c) precipitation, (d) transpiration, (e) leaf area 
index (LAI), (f) net primary production (NPP), (g) soil evaporation, (h) fraction of time with soil 
saturation, and (i) fraction of time with snow cover. 
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Figure B.7 Summary of the meteorological input and simulated ecohydrological variables for the wet 
grassland experiment in the synthetic domain. The subplots show the four-year average of annual 
(a) temperature, (b) shortwave radiation, (c) precipitation, (d) transpiration, (e) leaf area index 
(LAI), (f) net primary production (NPP), (g) soil evaporation, (h) fraction of time with soil 
saturation, and (i) fraction of time with snow cover. 
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Figure B.8 Summary of the meteorological input and simulated ecohydrological variables for the wet 
evergreen forest experiment in the synthetic domain. The subplots show the four-year average of 
annual (a) temperature, (b) shortwave radiation, (c) precipitation, (d) transpiration, (e) leaf area 
index (LAI), (f) net primary production (NPP), (g) soil evaporation, (h) fraction of time with soil 
saturation, and (i) fraction of time with snow cover. 

 

 

Figure B.9 Analysis of variance across spatial scales. The green colour shows the aggregation area, which is 
stepwise increased. 
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Figure B.10 Normalized sensitivity of leaf area index (LAI) to air temperature, shortwave radiation and 
topographic index in Kleine Emme. The red colour represents areas where temperature is the main 
control for LAI. Green represents the radiation-limited areas and blue is for areas where the 
topographic index is the dominant control. Inset scatter plots show the comparison between the 
original model output (“original”) and the values that are calculated with the regression formula 
that was used for the sensitivity analysis (“regressed”) for (a) evergreen forest, (b) mixed forest, 
and (c) grassland (the R2 value of each regression is also shown). All variables are normalized. 
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Figure B.11 Normalized sensitivity of transpiration (T) to air temperature, shortwave radiation and 
topographic index in Kleine Emme. The red colour represents areas where temperature is the main 
control for T. Green represents the radiation-limited areas and blue is for areas where the 
topographic index is the dominant control. Inset scatter plots show the comparison between the 
original model output (“original”) and the values that are calculated with the regression formula 
that was used for the sensitivity analysis (“regressed”) for (a) evergreen forest, (b) mixed forest, 
and (c) grassland (the R2 value of each regression is also shown). All variables are normalized. 
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Figure B.12 Normalized sensitivity of evapotranspiration (ET) to air temperature, shortwave radiation and 
topographic index in Kleine Emme. The red colour represents areas where temperature is the main 
control for ET. Green represents the radiation-limited areas and blue is for areas where the 
topographic index is the dominant control. Inset scatter plots show the comparison between the 
original model output (“original”) and the values that are calculated with the regression formula 
that was used for the sensitivity analysis (“regressed”) for (a) evergreen forest, (b) mixed forest, 
and (c) grassland (the R2 value of each regression is also shown). All variables are normalized. 
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Figure B.13 Normalized sensitivity of the fraction of time with snow cover (snoFra) to air temperature, 
shortwave radiation and topographic index in Kleine Emme. The red colour represents areas where 
temperature is the main control for snoFra. Green represents the radiation-limited areas and blue 
is for areas where the topographic index is the dominant control. Inset scatter plots show the 
comparison between the original model output (“original”) and the values that are calculated with 
the regression formula that was used for the sensitivity analysis (“regressed”) for (a) evergreen 
forest, (b) mixed forest, and (c) grassland (the R2 value of each regression is also shown). All 
variables are normalized. 
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Figure B.14 Sensitivity of evapotranspiration (ET) to air temperature, shortwave radiation and topographic 
index in the four experiments on the synthetic domain. Green represents areas where an increase 
in the explanatory variable leads to an increase in ET and magenta is for areas where an increase 
in the explanatory variable leads to a decrease in ET. Areas shown in dark colour are those where 
ET is insensitive to respective explanatory variable.  
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Figure B.15 Sensitivity of leaf area index (LAI) to air temperature, shortwave radiation and topographic index 
in the four experiments on the synthetic domain. Green represents areas where an increase in the 
explanatory variable leads to an increase in LAI and magenta is for areas where an increase in the 
explanatory variable leads to a decrease in LAI. Areas shown in dark colour are those where LAI 
is insensitive to respective explanatory variable. 
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Figure B.16 Sensitivity of transpiration (T) to air temperature, shortwave radiation and topographic index in 
the four experiments on the synthetic domain. Green represents areas where an increase in the 
explanatory variable leads to an increase in T and magenta is for areas where an increase in the 
explanatory variable leads to a decrease in T. Areas shown in dark colour are those where T is 
insensitive to respective explanatory variable.  
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Figure B.17 Normalized transpiration (T) to air temperature, shortwave radiation and topographic index in 
the four experiments on the synthetic domain. The red colour represents areas where temperature 
is the main control for T. Green represents the radiation-limited areas and blue is for areas where 
the topographic index is the dominant control. Inset scatter plots show the comparison between the 
original model output (“original”) and the values that are calculated with the regression formula 
that was used for the sensitivity analysis (“regressed”, R2 values are also shown). All variables are 
normalized. 
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Figure B.18 Normalized sensitivity of evapotranspiration (ET) to air temperature, shortwave radiation and 
topographic index in the four experiments on the synthetic domain. The red colour represents areas 
where temperature is the main control for ET. Green represents the radiation-limited areas and 
blue is for areas where the topographic index is the dominant control. Inset scatter plots show the 
comparison between the original model output (“original”) and the values that are calculated with 
the regression formula that was used for the sensitivity analysis (“regressed”, R2 values are also 
shown). All variables are normalized. 
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Figure B.19 Normalized sensitivity of leaf area index (LAI) to air temperature, shortwave radiation and 
topographic index in the four experiments on the synthetic domain. The red colour represents areas 
where temperature is the main control for LAI. Green represents the radiation-limited areas and 
blue is for areas where the topographic index is the dominant control. Inset scatter plots show the 
comparison between the original model output (“original”) and the values that are calculated with 
the regression formula that was used for the sensitivity analysis (“regressed”, R2 values are also 
shown). All variables are normalized. 
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Figure B.20 Normalized sensitivity of the fraction of time with snow cover (snoFra) to air temperature, 
shortwave radiation and topographic index in the four experiments on the synthetic domain. The 
red colour represents areas where temperature is the main control for snoFra. Green represents the 
radiation-limited areas and blue is for areas where the topographic index is the dominant control. 
Inset scatter plots show the comparison between the original model output (“original”) and the 
values that are calculated with the regression formula that was used for the sensitivity analysis 
(“regressed”, R2 values are also shown). All variables are normalized. 
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Table B.1. River discharge measurement stations in the Kleine Emme catchment. 
Station name Coordinates Elevation [m] Drainage area [km2] 

Emmen (Littau) 47°4′ 0.1′ ′ N, 8°17′ 2.6′ ′ E 430 478 
Werthenstein 47°2′ 5.6′ ′ N, 8°4′ 6.4′ ′ E 540 311 

Table B.2 Initial screening for the third explanatory variable to express water limitations. The table shows 
the explanatory power (R2) of the regressions for transpiration (T), evapotranspiration (ET), net 
primary production (NPP), leaf area index (LAI), snow water equivalent (SWE) and the fraction 
of time with snow cover (snoFra) using air temperature, shortwave radiation and topographic index 
(upstream area). 

 Wet 
evergreen 

Wet 
grassland 

Dry 
evergreen 

Dry 
grassland 

Kleine Emme 

Evergreen Mixed Grassland 

T 0.78 (0.86) 0.94 (0.94) 0.83 (0.77) 0.97 (0.92) 0.57 (0.52) 0.72 (0.61) 0.85 (0.78) 
ET 0.80 (0.87) 0.90 (0.94) 0.73 (0.55) 0.95 (0.72) 0.23 (0.20) 0.51 (0.49) 0.63 (0.61) 
NPP 0.65 (0.87) 0.74 (0.91) 0.80 (0.49) 0.95 (0.64) 0.72 (0.68) 0.42 (0.32) 0.42 (0.38) 
LAI 0.68 (0.87) 0.92 (0.97) 0.75 (0.58) 0.99 (0.95) 0.77 (0.74) 0.57 (0.46) 0.76 (0.73) 
SWE 0.98 (0.98) 0.98 (0.98) 0.38 (0.40) 0.89 (0.88) 0.75 (0.74) 0.67 (0.67) 0.90 (0.90) 
snoFra 0.98 (0.98) 0.98 (0.98) 0.88 (0.89) 0.99 (0.99) 0.97 (0.97) 0.96 (0.96) 0.98 (0.98) 

Table B.3 Correlation between the three explanatory variables in the wet and dry synthetic domains and in 
the Kleine Emme catchment.  

 Air temperature Shortwave radiation Topographic index 

 wet dry Kl_Em wet dry Kl_Em wet dry Kl_Em 

Air temperature 1 1 1 0 -0.02 0.24 0.67 0.67 0.33 
Shortwave radiation 0 -0.02 0.24 1 1 1 0.10 0.08 0.24 
Topographic index 0.67 0.67 0.33 0.10 0.08 0.24 1 1 1 
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Table B.4 Regression-derived relationships for transpiration (T), evapotranspiration (ET), net primary 
production (NPP) and leaf area index (LAI) in the Kleine Emme catchment (on normalized 
variables). y is the dependent variable and x1, x2 and x3 are the explanatory variables (air 
temperature, shortwave radiation and topographic index, respectively). The R2 values are given 

in parenthesis after each equation.  

 
Evergreen forest Mixed forest Grassland 

T 
y = 0.03 +0.65x1 +0.24x2 -0.40x3 

+0.14x1x2 -0.02x2x3 -0.001x1
2 -0.05x3

2 
(0.57) 

y = -0.002 +0.62x1 +0.40x2 -0.53x3 
+0.09x1x2 -0.05x2x3 +0.005x3

2 (0.72) 
y = 0.06 +0.77x1 +0.40x2 -0.45x3 
+0.09x1x2 -0.06x2x3 -0.10x1

2 +0.05x2
2 -

0.02x3
2 (0.85) 

ET 
y = 0.21 +0.07x1 +0.22x2 -0.33x3 
+0.22x1x2 -0.03x2x3 -0.18x1

2 -0.06x3
2 

(0.23) 

y = 0.06 +0.30x1 +0.62x2 -0.11x3 
+0.13x1x2 -0.01x2x3 -0.06x3

2 (0.51) 
y = 0.13 +0.54x1 +0.48x2 -0.12x3 
+0.12x1x2 -0.03x2x3 -0.17x1

2 +0.09x2
2 -

0.08x3
2 (0.63) 

NPP 
y = 0.40 +0.67x1 +0.03x2 +0.04x3 -
0.01x1x2 +0.08x2x3 +0.01x1

2 -0.14x2
2 -

0.30x3
2 (0.72) 

y = 0.44 +0.40x1 -0.08x2 + 
0.09x3 +0.03x1x2 +0.08x2x3  
-0.14x2

2 -0.33x3
2 (0.42) 

y = 0.37 +0.40x1 +0.003x2 -0.13x3 
+0.004x1x2 +0.07x2x3 -0.09x1

2 -0.07x2
2 -

0.22x3
2 (0.42) 

LAI 
y = 0.39 +0.70x1 +0.05x2 -0.05x3 
+0.003x1x2 +0.08x2x3 +0.005x1

2 -0.14x2
2 -

0.29x3
2 (0.77) 

y = 0.44 +0.53x1 -0.06x2 +0.02x3 
+0.03x1x2 +0.06x2x3 -0.13x2

2 -0.33x3
2 

(0.57) 

y = 0.22 +0.82x1 +0.01x2 -0.09x3 
+0.01x1x2 +0.04x2x3 -0.05x1

2 -0.03x2
2 -

0.14x3
2 (0.76) 

Table B.5 Normalized sensitivity of T, ET, NPP and LAI to air temperature, shortwave radiation and 
topographic index for transpiration (T), net primary production (NPP) and leaf area index (LAI) 
along the altitudinal gradient in the Kleine Emme catchment. The values in the table represent the 
respective partial derivative (equation 3.2). 

 Transpiration Evapotranspiration NPP LAI 

Altitude (m) Temp Rad topIn Temp Rad topIn Temp Rad topIn Temp Rad topIn 

<800 0.61 0.48 -0.49 0.20 0.65 -0.20 0.29 0 -0.27 0.69 0.01 -0.21 

800-1200 0.70 0.39 -0.45 0.28 0.49 -0.16 0.47 -0.03 0.01 0.72 -0.01 -0.02 
1200-1600 0.78 0.22 -0.42 0.56 0.21 -0.19 0.61 0.03 0.03 0.78 0.03 -0.01 

1600-2000 1.00 0.15 -0.38 1.05 0.07 -0.06 0.74 0.01 0.18 0.93 -0.01 0.12 
>2000 1.30 0.15 -0.37 1.49 0.02 0.07 0.97 0 0.29 1.11 -0.02 0.19 
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Table B.6 Normalized sensitivity of T, ET, NPP and LAI to air temperature, shortwave radiation and 
topographic index for transpiration (T), net primary production (NPP) and leaf area index (LAI) 
along the altitudinal gradient in the dry grassland numerical experiment. The values in the table 
represent the respective partial derivative (equation 3.2). 

 Transpiration Evapotranspiration NPP LAI 

Altitude (m) Temp Rad topIn Temp Rad topIn Temp Rad topIn Temp Rad topIn 

<1700 0.22 0.16 0.40 0.09 -0.02 0.86 -0.57 -0.67 0.84 0.24 -0.30 0.29 

1700-1900 0.62 0.19 0.19 0.34 0.08 0.86 1.07 -0.56 0.85 0.66 -0.24 0.29 
1900-2100 1.01 0.22 0.22 0.59 0.18 0.86 1.71 -0.45 0.85 1.09 -0.18 0.30 

2100-2300 1.44 0.25 0.25 0.86 0.28 0.85 1.41 -0.33 0.84 1.55 -0.12 0.29 
>2300 1.83 0.27 0.27 1.10 0.37 0.85 2.04 -0.23 0.84 1.96 -0.06 0.29 
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C 
8. Appendix C: More green and less blue water in the Alps 

during warmer summers 

C.1 THE TETHYS-CHLORIS MODEL (T&C) 

We performed simulations with the distributed ecohydrological model Tethys-Chloris (T&C). T&C 
simulates the coupled dynamics of energy, water, and vegetation and has been successfully applied 
to a very large spectrum of ecosystems and environmental conditions as summarized elsewhere (e.g., 
Fatichi et al., 2012a, 2012b; Fatichi & Leuzinger, 2013; Fatichi, Leuzinger, & Körner, 2014; Fatichi 
& Pappas, 2017; Fatichi, Zeeman, et al., 2014; Manoli et al., 2018; Mastrotheodoros et al., 2017, 
2018; Wu et al., 2018). 

The model simulates the energy, water, and carbon exchanges between the land surface and the 
atmospheric surface layer accounting for aerodynamic, undercanopy, and leaf boundary layer 
resistances, as well as for stomatal and soil resistances (Sellers et al., 1997). In each simulated grid 
cell, vegetation can occupy two vertical layers to mimic the coexistence of trees and bushes/grasses. 
Horizontal composition of vegetation is also possible since each element can account for multiple 
species or plant functional types (Fatichi et al., 2012a; Fatichi & Leuzinger, 2013). Dynamics of water 
content in the soil profile are solved using a quasi 3-D approach: the one-dimensional (1-D) Richards 
equation is used for the vertical flow and the kinematic wave equation is used for lateral subsurface 
flow. Saturated and unsaturated parts of the soil column are explicitly identified. Surface overland 
flow and channel flow are also solved by the kinematic equation. Snowpack dynamics are computed 
by the energy balance: snow can be intercepted by the vegetation or fall to the ground, where it 
accumulates and successively melts. Runoff generation occurs via saturation excess and infiltration 
excess mechanisms and depends on lateral moisture fluxes in the unsaturated and saturated zones as 
well as on overland flow (Loague et al., 2010). Soil water content, infiltration, and runoff production 
are estimated with an adaptive time step based on a maximum allowed water content difference 
(seconds to 5 min), and overland flow routing is computed with an adaptive time step that satisfies 
the Courant-Friedrichs-Lewy condition [seconds to 5 min, (Hunter, Horritt, Bates, Wilson, & Werner, 
2005)]. The version of T&C used in this study does not include soil freezing and thawing processes 
and the water present in soil pores is always considered to be in a liquid state. The leakage from rocks 
is computed as the minimum between the intercepted water in rocks and the hydraulic conductivity 
of rocks (which is zero for compacted rocks and positive for fractured rocks). A free drainage 
condition can be also given: in that case, the intercepted water in rocks is completely infiltrated in the 
fractured rock and no water remains on the rock surface. The rock leakage supplies the fractured rock 
water storage. The soil biogeochemistry module is not activated, thus there is no evaporation from 
litter but only from soil. 
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Photosynthesis is simulated using the Farquhar biochemical model (Collatz et al., 1991, 1992; 
Farquhar et al., 1980) adapted with subsequent modifications and temperature dependence of 
biochemical parameters. The model follows the two big leaves scheme, where sunlit and shaded 
leaves are treated separately for estimating net assimilation and stomatal resistance (Dai et al., 2004; 
de Pury & Farquhar, 1997; Wang & Leuning, 1998). Leaf maintenance respiration is assumed equal 
to the leaf dark respiration and acclimation effects are not accounted for. For upscaling photosynthesis 
from leaf to plant scale, photosynthetic capacity is assumed to decay exponentially with canopy depth 
(Bonan et al., 2011; Ivanov et al., 2008a). The stomatal conductance parameterization accounts for 
net assimilation rate, leaf internal CO2 concentration and vapour pressure deficit following the 
Leuning model (Leuning, 1990, 1995). The dynamics of seven carbon pools are explicitly simulated 
in the model and include leaves, living sapwood, fine roots, carbohydrate reserve (non-structural 
carbohydrates), reproductive tissues (fruit and flowers), standing dead leaves and heartwood/dead-
sapwood. The carbon assimilated through photosynthetic activity is used for maintenance and growth 
respiration otherwise it is allocated to one of the first five pools. The different pools are undergoing 
tissue turnover in function of tissue longevity and environmental stresses, i.e., drought and low 
temperatures. Carbon allocation is a dynamic process that accounts for resource availability (light and 
water) and allometric constraints (Krinner et al., 2005), e.g., a minimum ratio of fine root to foliage 
carbon; and an upper limit for the storage of carbohydrate reserve (Friend et al., 1997; Kozlowski & 
Pallardy, 1997). Carbon allocated to reserves can be subsequently translocated to favour leaf 
expansion at the onset of the growing season or after severe disturbances (Fatichi et al., 2012a; Gough 
et al., 2009). Phenology for extratropical species is simulated considering four states (Arora & Boer, 
2005): dormant, maximum growth, normal growth, and senescence. Patterns of plant allocation are 
influenced by the phenological phase (Farquhar et al., 1980). Transition between phenological phases 
are prognostic in the model and controlled by soil temperature, soil moisture and photoperiod length. 
The model assumes that vegetation is in a mature phase and in equilibrium with its nutritional 
environment. Further details of model computational set-up, structure, and description of process 
parameterizations are presented elsewhere (Fatichi et al., 2012a). Vegetation dynamics are solved at 
the daily time scale, energy fluxes at the hourly time scale.  

C.2 DOMAIN SETUP 

The land surface for the simulations was defined based on the 90 m resolution STRM digital elevation 
model (DEM) following the definition of the Alpine Region of the European Soil Data Center 
[ESDAC, project name: Eco-pedological Map for the Alpine Territory, 
https://esdac.jrc.ec.europa.eu/projects/Alpsis/Ecalp_data.html, (Panagos et al., 2012)]. This includes 
the entire alpine arch from the French coast in the southwest to the Austrian lowlands in the north 
east and from the Swiss plateau on the northwest to the Slovenian coast in the southeast. This DEM 
was resampled to the final resolution of our simulations (250 m) and the flow matrix used by T&C 
was calculated based on the D-infinity method (Tarboton, 1997). To compute the stream network, we 
set the threshold of upslope area above which a pixel is considered to belong to the channel network 
to 40 km2. Therefore, small streams are not explicitly resolved.  

https://esdac.jrc.ec.europa.eu/projects/Alpsis/Ecalp_data.html
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For the subsurface computations, we also used a 250 m spatial resolution. Soil texture data were 
derived from the SoilGrids product at 250 m resolution (Hengl et al., 2014). We obtained sand, silt, 
clay, and organic content for seven different depths (at the ground surface and at 0.05, 0.10, 0.30, 1 
and 2 m below the ground surface). Average soil properties were then computed considering the 
vertical discretization of the soil and assuming linearity. A uniform soil depth equal to 1 m was used 
for the entire area. This is clearly a simplification of the real system, since variability in soil depth 
can affect runoff generation mechanisms, but our choice is considered reasonable for large parts of 
the pan-Alpine domain, in the absence of consistent information about soil depth. We used land cover 
data from Corine (European Environment Agency, 2006), using seven different classes to summarize 
the information provided in the dataset. The classification we used is shown in Table C.1. Glaciers 
were initialized with 50 m depth. Lake depth was not explicitly simulated. In other words, we assured 
that there was always water available for evaporation for every lake-pixel (by automatically re-
initializing a “dummy” lake depth), but the rivers flowing into the lakes did not interact with this 
“dummy” water. 

For reasons of computational efficiency, the domain was divided into 8 subdomains, roughly equal in 
size, following the ridgelines; these subdomains were run independently of each other (no lateral 
exchange between the 8 domains, Fig C1). The total computational demand for the three-year 
simulation for each of these sub-regions is roughly 76,000 CPU hours. We initialized the model 
starting from a completely dry domain and we run the model twice with real meteorological forcing 
for the period September-October 2000. The final value of all state variables (e.g., soil moisture, 
surface temperature) was considered the initial condition for the numerical experiment presented in 
this study, which started on the 1st of November 2000. 

C.3 METEOROLOGICAL INPUT 

Obtaining hourly meteorological fields at the desired 250 m resolution for an area spanning 257,000 
km2 and seven countries (Austria, France, Germany, Italy, Lichtenstein, Slovenia and Switzerland) 
required the combination of distributed products and station data as described below.  

Precipitation 

We used the daily Alpine precipitation grid dataset (Isotta et al., 2014), which has a grid spacing of 5 
km and daily time resolution. To obtain the required model input at hourly temporal resolution and 
250 m spatial resolution we used ground measurements from 111 stations in Austria, France, Italy, 
Liechtenstein, and Switzerland (Table C.2). The computation of hourly precipitation was performed 
as the simulation was running, because of the impracticability of saving hourly precipitation fields for 
the entire period. Prior to the simulation, Thiessen polygons were defined based on the 111 stations, 
so that each pixel of the simulated domain was assigned to a single station. Each pixel was also 
assigned to the corresponding grid of the Alpine precipitation. Then, during the simulation, in hour 
1:00 of each day, the daily sum of the distributed product was disaggregated to hourly precipitation 
proportionally to the hourly measurements of the corresponding station but preserving the amount of 
precipitation based on the gridded daily product. In case that the corresponding station recorded no 
precipitation in a day in which the gridded product did record some, the daily gridded sum was 
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assigned uniformly to the hours 18:00-22:00. These cases were however rare and mostly occurring at 
low rainfall intensities.  

Air Temperature 

For air temperature we used the ECMWF ERA INTERIM product (Dee et al., 2011) using time 
00:00:00 and 12:00:00 and step 3/6/9/12. This corresponds to the forecasts that are issued twice a day 
for the next 12 hours with 3-hourly time step. Thus, we obtained 3-hourly data. We compared this to 
the product that includes analyses four times a day and only 3-hourly forecasts and the difference was 
minimal. We used the finest resolution available (0.125°, data downloaded from 
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ on 23/2/2018). We first assigned 
the ERA INTERIM temperature to all the T&C cells within the corresponding ERA INTERIM grid 
and then we readjusted the temperature for each T&C grid cell for elevation to account for the 
elevation variability within each grid cell of the ERA INTERIM. For this readjustment, we used a 
single, temporally dynamic lapse rate over each subdomain. It was computed every three hours by 
using all the ERA INTERIM grid cells within the subdomain. The two hours between the three-hourly 
ERA INTERIM data were computed using linear interpolation. 

Wind Speed 

For wind speed, we used the corresponding variable of ERA INTERIM, as described for temperature 
above. A constant lapse rate was used for downscaling from ERA INTERIM to T&C grid cells 
throughout the entire simulation based on observations in Switzerland (0.48 m s-1/ 100 m). A lower 
limit to wind speed was also imposed to avoid numerical instabilities in the computation of turbulent 
fluxes at the surface (0.01 m s-1). 

Atmospheric Pressure 

For surface pressure, we used the corresponding ERA INTERIM variable, as described for 
temperature and wind speed above. Between the three-hourly data, we performed linear regression 
and applied a specific exponential correction to account for the variations in elevation within each 
ERA INTERIM grid cell. 

Relative Humidity 

To compute the relative humidity, which is an additional necessary model input, we used dew 
temperature data from the ERA INTERIM product, and extrapolated it in space and time as described 
above for air temperature. Then, we combined hourly air temperature and dew point temperature to 
compute the hourly values of relative humidity for each cell in the T&C domain. 

Solar Radiation 

For computing distributed hourly radiation components for each pixel, we used measurements from 
90 stations across the entire domain (stations with an asterisk * in Table C.1). We used the inverse 
distance weight to compute radiation in each T&C grid cell from the meteorological stations, which 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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means that more than one station is taken into account for each T&C grid cell. Radiation was corrected 
based on constant lapse rates that varied according to the radiation length (lapse rate 0.0015 W m-2 m-

1 for shortwave radiation between 0.29 and 0.70μm, 0.0027 W m-2 m-1 for 0.70 - 4.0 μm and 0.0014 
W m-2 m-1 for photosynthetically active radiation). T&C consequently adjusted radiation to account 
for local and remote topographic effects (sky view factor and terrain configuration factor scaling 
between 0 and 1).  

Longwave Radiation 

To compute the incoming longwave radiation we followed an empirical formula for the clear sky 
emissivity (Dilley & O’Brien, 1998), based on air temperature, vapour pressure (computed from 
relative humidity) and cloud cover. The latter was estimated for each of the stations with solar 
radiation measurements by comparing observed radiation and clear-sky radiation, simulated by a 
weather generator (Fatichi, Ivanov, & Caporali, 2011).  

C.4 SPACE-FOR-TIME SUBSTITUTION 

To compute the response of ET to changes in temperature, we applied a space-for-time substitution 
(e.g., Dunne et al., 2004). For each vegetation type (i.e. grassland, evergreen, deciduous and mixed 
forest) we fit a quadratic polynomial to describe evaporation (E) and transpiration (T) as a function 
of temperature. We also considered the sensitivity of water evaporation to temperature. We computed 
ET for the warmer climate by using the polynomial fitting function and the new temperature. Once 
the new reference values of ET were computed for each cell at the higher temperature, we also added 
the residuals of the regressions to preserve the spatial variability and the non-temperature-driven 
effects. At the annual scale, we performed separate regressions for each subdomain (Figure C.1), 
using linear fitting for E and quadratic fitting for T. For the growing season, the regressions were 
performed between ET and temperature at the pan-Alpine scale with quadratic fittings for forests and 
grasslands and linear fitting for lakes. 

C.5 MODEL VALIDATION 

We validated the model against satellite snow cover observations (https://nsidc.org/data/mod10a2). 
Using these distributed 8-daily dataset, we computed the time fraction with snow cover over the entire 
domain and compared it with the simulations (Figure C.2). The model tends to underestimate snow 
cover at lower elevations, and especially on the north facing slopes of the inner Alpine valleys. It also 
overestimates snow cover in the very wet pre Alpine mountains, which might be partly an artefact of 
the model spin-up (precipitation in October 2000 was very high). Overall, results are satisfying, 
considering that the model was run uncalibrated and MODIS may tend to overestimate snow cover at 
low elevations, because it assigns to all eight days the largest snow cover recorded in that period. In 
fact, comparison of simulated snow cover with station observations (Figure C.3f) suggests that bias 
in snow cover rarely exceeded 30 days (~0.082 in Figure C.2) and much larger errors could be a 
remote sensing artefact.  

We validated the model against runoff measurements in 381 stations using daily time step (Table C.3) 
and against snow depth measurements in 720 stations in Switzerland, Austria, and Italy (Table C.4). 

https://nsidc.org/data/mod10a2
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The results of the validation against station measurements are summarized in Figure C.3. Since T&C 
simulates only natural flows, (i.e. it does not account for human regulation, which is widespread in 
the Alps), we eliminated heavily regulated catchments. In order to do so, in the absence of a pan-
Alpine database indicating which station is affected by regulation, dams, or water withdrawals, we 
visually inspected all the observed hydrographs to rank each station as regulated or natural. We found 
that the model shows a considerably higher performance when excluding the regulated catchments 
(Figure C.4). The correlation between simulated and observed runoff timeseries is higher for the 
natural catchments, compared with the regulated (R2 equals 0.69 and 0.47, respectively). Mean bias 
is less than 0.01 mm hr-1 for both groups of catchments, but the sign is opposite: as expected, T&C 
tends to overestimate runoff in heavily regulated streamflows (due to water abstraction, which was 
not simulated). Since in our analysis we used P-ET as a proxy for runoff, the inset of Figure C.4 
compares area-averaged P-ET with measured runoff and shows that our assumption is valid, 
especially for the natural and non-glacierised catchments. For glacierised catchments, indeed, icemelt 
should be added to P-ET.  
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Figure C.1 Decomposition of the pan-Alpine domain into eight independent subdomains. The aim was to 

subdivide the computational load without affecting lateral connectivity and topographic 
influences, thus we followed the ridgelines and assumed no exchange between the different 
subdomains. 
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Figure C.2 Difference in fraction of time with snow cover [-] between MODIS observations for the period 

November 2000 to October 2003 and T&C simulations. The inset shows the respective histogram, 
including all the simulated pixels. 
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Figure C.3 Model validation against measured daily runoff (a-c) and snow depth (d-f). The latter was 

conducted accounting for the period with observed snow cover only. The maps (a, d) include the 
locations of each station, coloured according to model performance, as explained in subplots c and 
f for runoff and snow depth, respectively. Subplots B and E show the histogram of the percent bias 
and bias in cm, respectively for all the stations. For runoff, we used the Spearman R and the percent 
bias (c) and for snow we used the bias in snow duration and average snow depth (d). Both runoff 
(b) and snow depth (e) biases are close to zero for the majority of the stations. 
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Figure C.4 Comparison between simulated (Qsim) and observed (Qobs) mean runoff for the entire simulation 

period in 381 locations (in mm hr-1). The colour of the markers shows the degree of glaciation of 
each catchment. Closed circles are used for the natural catchments and open circles are used for 
the heavily regulated ones, the R2 is reported separately for those two groups. The inset shows the 
comparison of catchment-averaged P-ET against measured runoff (Qobs), using the same symbols. 
In both plots, the one-one line is also plotted. 
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Figure C.5 ET elevational distribution. ET is averaged over 100 m elevation bins for the entire pan-Alpine 

domain (dashed line) and for selected catchments (solid lines, their locations are shown in the inset 
map). The shaded area represents the interquartile range of ET distribution across the entire pan-
Alpine domain. 
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Figure C.6 Relationship between water fluxes (km3) and elevation (a) annually and (b) for the growing season 

(May-September). Negative values on the y-axis denote supply of water from soil storage.  
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Figure C.7 Time series of mean annual (black) and growing season (blue bold) precipitation (a) and 

temperature (b) for the period 1992-2008 and 1992-2017, respectively. The growing season of 
2002 and 2003, were the wettest and driest in the record, respectively; 2003 growing season was 
also the warmest. Hydrological years for computing the annual means, are defined as the period 
between November 1st of the previous year to October 31st, to be consistent with model simulations.  
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Figure C.8 Blue and green water daily fluxes averaged over the entire domain for the three simulated years 

(November 2000 excluded). Liquid precipitation (i.e. excluding snow), runoff (Q), snowmelt, 
icemelt and ET are shown in mm. All variables have been smoothed using a 30-days moving 
average. The three growing seasons (May-September) are highlighted (shaded areas). 
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Figure C.9 Relative contribution of ET in comparison to P to the runoff deficit in 2003. Anomalies in ET and 

P are computed in comparison to the 2001-2003 mean in 334 catchments for which both 
precipitation and runoff were lower in 2003 compared with the 2001-2003 mean. The map shows 
the location of each runoff station coloured according to ETanomaly and the ratio ETanomaly/Panomaly, as 
displayed in the inset. Yellow colour denotes the catchments for which ET increased in 2003, but 
the precipitation deficit was larger than the ET excess. Black colour shows the catchments in which 
ET excess in 2003 was larger than precipitation deficit. Magenta is used for the catchments where 
ET decreased in 2003 less than precipitation, and cyan for the catchments in which ET decreased 
more than precipitation. The green and the red dot on the y-axis show the median ETanomaly/Panomaly 
across all catchments and in the catchments with mean elevation between 1300-3000 m a.s.l., 
respectively. 
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Figure C.10 Relative contribution of ET in comparison to precipitation to the runoff deficit in 2003. The maps 

show the ratio of the anomaly in ET over the anomaly in P (anomalies computed as the difference 
between 2003 and the mean over the entire simulation period, i.e. 2001-2003) over the entire Alps 
(a) and focusing in central Switzerland (b) to show the spatially complex patterns of changes in 
ET. Black represents the areas in which precipitation in 2003 was higher than the 2001-2003 mean. 
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Table C.1 Classification in the original Corine land cover product and correspondence with the classification 
used in this study. The contribution of each class to the total domain is shown. Original classes 
covering less than 0.005% of the pan-Alpine domain are omitted. 

Original Corine classification Classification for our study % of total area 
Continuous urban fabric Grassland 0.09 
Discontinuous urban fabric Grassland 3.87 
Industrial or commercial units Grassland 0.51 
Road and rail networks and associated land Grassland 0.05 
Port areas Grassland 0.01 
Airports Grassland 0.06 
Mineral extraction sites Grassland 0.11 
Construction sites Grassland 0.01 
Green urban areas Grassland 0.03 
Sport and leisure facilities Grassland 0.14 
Non-irrigated arable land Grassland 10.17 
Rice fields Grassland 0.53 
Vineyards Grassland 1.14 
Fruit trees and berry plantations Grassland 0.41 
Olive groves Grassland 0.08 
Pastures Grassland 7.36 
Annual crops associated with permanent crops Grassland 0.01 
Complex cultivation patterns Grassland 5.34 
Land principally occupied by agriculture with significant 
areas of natural vegetation 

Grassland 3.52 

Broad-leaved forest Broad-leaved forest 10.63 
Coniferous forest Coniferous forest 18.20 
Mixed forest Mixed forest 11.33 
Natural grasslands Grassland 8.53 
Moors and heathland Grassland 2.36 
Sclerophyllous vegetation Grassland 0.59 
Transitional woodland-shrub Grassland 2.65 
Beaches - dunes - sands Rock 0.16 
Bare rocks Rock 5.32 
Sparsely vegetated areas Rock 4.14 
Burnt areas Rock 0.06 
Glaciers and perpetual snow Glaciers 0.93 
Inland marshes Water 0.14 
Peat bogs Water 0.06 
Salt marshes Water 0.01 
Salines Water 0.01 
Water courses Water 0.15 
Water bodies Water 1.23 
Coastal lagoons Water 0.05 
Sea and ocean Water 0.01 

Table C.2 List of meteorological stations that were used for disaggregating daily precipitation provided by 
the Alpine precipitation to hourly values. The stations are presented in alphabetical order for each 
country, along with the ETRS coordinates and data sources. The asterisk denotes stations that were 
also used for the computation of radiation input. 

## Station name ETRS-LAEA coordinates Country/source/URL 
Longitude Latitude 

1* Acquarossa 4239236.79 2594736.78 Switzerland (Lichtenstein) 
MeteoSwiss 
 

2* Adelboden 4133612.54 2600862.77 
3* Bern 4128032.22 2656447.66 
4* Chur 4285276.35 2639889.52 
5* Cimetta 4227725.34 2566145.74 
6* Col du Grand St. Bernard 4101150.88 2532742.60 
7* Davos 4309150.46 2633413.82 
8* Evolene 4128277.23 2558807.82 
9* Geneve 4022224.39 2578393.35 
10* Grimsel 4193192.34 2608040.95 
11* Interlaken 4157967.72 2620110.98 
12* Locarno-Monti 4227361.81 2563045.14 
13* Lugano 4240467.01 2544164.60 
14* Luzern 4191856.30 2659702.62 
15* Montana 4125250.65 2579641.80 
16* Napf 4164308.52 2656871.60 
17* Payerne 4087547.97 2638058.03 
18* Pilatus 4188010.72 2653396.31 
19* Piotta 4220311.64 2601179.57 
20* Pully 4065121.05 2605749.65 
21* Robiei 4206740.15 2593466.93 
22* Säntis 4271380.78 2682105.75 
23* Scuol 4342741.26 2631255.40 
24* Sion 4114875.90 2571105.45 
25* St. Gallen 4275695.30 2701628.80 
26* Ulrichen 4191101.89 2600660.17 
27* Visp 4284471.39 2668454.53 
28* Wynau 4154734.79 2579172.26 
29* Zermatt 4153497.84 2685007.91 
30* Zürich Fluntern 4146924.71 2548994.75 
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31* Vaduz 4212710.01 2697210.44 
32 Embrun 4042709.91 2390356.77 France 

Météo FR 
 

33* Lyon St. Exupery 3937648.03 2525313.45 
34* Montelimar 3902287.26 2400328.69 
35* Nice 4095315.96 2286416.33 
36* Avigliana 4115709.82 2446231.71 Italy 

ARPA Piemonte 
 
 

37* Prerichard 4062177.37 2446244.48 
38* Borgone 4103911.33 2449155.52 
39* Candia 4156083.68 2470188.58 
40* Carmagnola 4138012.04 2422446.73 
41* Cumiana 4114916.18 2431803.23 
42* Bauducchi 4140003.45 2430581.58 
43* Pino Torinese 4144729.95 2439454.54 
44* Pietrastretta 4089060.95 2452555.73 
45* Vercelli 4194632.89 2469605.81 
46* Domodossola 4189671.43 2556140.65 
47* Pallanza 4208375.36 2535883.35 
48* Bra 4150511.34 2401534.43 
49* Fossano 4144897.48 2383683.24 
50 Colle San Bernardo 4164665.58 2343106.46 
51 Bergalli 4175996.34 2368195.10 
52* Alessandria Lobbi 4218612.31 2426137.88 
53* Arquata Scrivia 4232198.87 2397678.36 
54* Basaluzzo 4216464.98 2406750.60 
55* Capanne di Cosola 4257543.95 2396578.65 
56* Casale Monferrato 4203226.62 2448081.35 
57* Isola S. Antonio 4230591.93 2435222.18 
58* Novi Ligure 4222562.21 2409266.61 
59* Ponzone Bric Berton 4204714.57 2379947.10 
60* Sardigliano 4234356.36 2405809.02 
61* Spineto Scrivia 4231482.24 2414249.62 
62 Paneveggio 4455748.42 2578956.86 Italy 

University of Trento 63 Pieve Tesino (O.P. Enel) 4446458.90 2552172.80 
64 Valda 4418893.74 2567063.47 
65 Segonzano (Scancio) 4418376.07 2565100.46 
66 Lisignago 4413182.67 2561436.00 
67 Vallarsa (Diga di Speccheri) 4409400.96 2517981.93 
68 Val di Genova (O.P. Enel) 4377228.39 2562113.03 
69 La Rocca (Centrale) 4375901.09 2545761.32 
70 Nembia (Centrale) 4393608.76 2555259.80 
71 Lago di Cavedine 4394780.80 2542849.75 
72 Vallarsa (Malga Boffetal) 4411648.59 2516037.67 
73* Vivaro 4535391.36 2555494.68 Italy 

ARPA FVG-OSMER/GRN 
 

74* Trieste molo F.lli Bandiera 4613761.27 2511532.23 
75* Tarvisio 4593763.86 2606242.15 
76* Sgonico-Zgonik 4612497.73 2521250.77 
77* Monte Lussari 4591495.76 2602987.24 
78 Gemona del Friuli 4561901.23 2577077.06 
79* Enemonzo 4541272.72 2592818.70 
80 Cividale del Friuli 4585758.40 2558025.89 
81* Cervignano del Friuli 4580440.45 2532115.85 
82* Capriva del Friuli 4593514.28 2544788.43 
83* Brugnera 4518647.02 2537282.14 
84* Udine 4571010.96 2552339.67 
85* Aigen Ennstal 4632627.12 2721954.32 Austria 

Federal Ministry for sustainability and tourism 86* Alberschwende 4309576.64 2704888.35 
87* Amstetten 4685673.40 2789263.12 
88* Bad Mitterndorf 4617193.87 2723399.35 
89* Braunau Ranshofen 4546043.38 2794685.76 
90 Eisenstadt-Nordost 4809872.94 2770557.94 
91* Feldkirch 4291445.16 2684247.31 
92* Graz-Universität 4734815.40 2677974.37 
93* Jenbach 4453819.01 2698830.41 
94* Kalwang 4680121.66 2712411.74 
95* Katschberg 4595716.93 2667447.14 
96* Kleinzicken 4800694.89 2697627.10 
97* Koetschach-Mauthen 4550562.83 2622870.84 
98 Langenlebarn 4774302.73 2819955.03 
99* Lienz 4535275.40 2638730.19 
100* Lofer Ort 4523960.13 2722494.05 
101 Lunz am See 4700104.49 2761980.67 
102* Mariapfarr 4605111.01 2678110.83 
103 Neumarkt 4657139.97 2671832.37 
104* Puchberg Schneeberg 4763315.29 2759530.07 
105* Ramsau am Dachstein 4595268.02 2708028.53 
106* Sillian 4506294.78 2628971.72 
107* St. Michael B. Leoben 4699260.66 2704147.25 
108* Weissensee-Gatschach 4572425.32 2628429.09 
109* Wien-Hohe Warte 4792614.63 2813105.94 
110* Wiener Neustadt Flugplatz 4787163.99 2766172.32 
111* Zeltweg 4680687.29 2687764.16 
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Table C.3 List of the discharge measurement stations that were used for validation. 
 River Station Upslope Area Country ETRS coordinates Regulated 
## Data Model Latitude Longitude 
1 Taurach Mauterndorf 102.1 99.85 AT 2675770.96 4600536.46 0 
2 Weisspriachbach Weisspriach 77.10 76.41 AT 2680679.42 4601906.20 0 
3 Mur Sankt Georgen ob Judenbur 2367.5 2347.59 AT 2687574.67 4661914.33 0 
4 Ybbs Opponitz (Mirenau) 506.9 502.42 AT 2764647.12 4681997.73 0 
5 Ybbs Greimpersdorf 1116.6 1103.35 AT 2789415.96 4685081.89 0 
6 Liesingbach Kammern im Liesingtal 265.6 270.58 AT 2709485.57 4691355.13 0 
7 Vordernberger Bach Donawitz 167.3 184.34 AT 2710702.48 4700995.53 0 
8 Gamingbach Gaming 51.50 50.2 AT 2771762.68 4702206.14 0 
9 Kleine Erlauf Wieselburg (Messegelaende) 167.5 171.3 AT 2792528.74 4703051.44 0 
10 Melk Lachau 95.20 86.75 AT 2790762.75 4712944.74 0 
11 Melk Matzleinsdorf 284.6 282.73 AT 2801696.52 4713240.14 0 
12 Grosse Erlauf Mitterbach (Bruecke) 29.70 42.34 AT 2758672.40 4717493.57 0 
13 Mank Hoersdorf 37.60 42.29 AT 2792500.32 4717856.85 0 
14 Schwarze Sulm Schwanberg 75.20 78.57 AT 2640825.92 4718637.58 0 
15 Muerz Kapfenberg-Diemlach 1364.5 1346.37 AT 2716068.56 4718687.96 0 
16 Mur Bruck an der Mur unter Muerz 6214 6229.44 AT 2713809.52 4719517.81 0 
17 Pielach Schwarzenbach/Pielach (Guttenhof) 42.20 43.98 AT 2775046.47 4722409.96 0 
18 Weisse Sulm Wies 69.90 66.55 AT 2637231.91 4724116.39 0 
19 Pielach Hofstetten (Bad) 289.5 289.11 AT 2791091.83 4731413.80 0 
20 Muerz Kindthal 727.7 727.16 AT 2727678.97 4732913.79 0 
21 Traisen Lilienfeld 345.2 337.86 AT 2782366.29 4737718.69 0 
22 Muerz Neuberg an der Muerz 231.5 223.83 AT 2744300.62 4739325.82 0 
23 Traisen Windpassing 733.3 734.87 AT 2797306.64 4740334.64 0 
24 Sulm Leibnitz 1102.5 1106.5 AT 2645308.73 4743233.98 0 
25 Schwarza Schwarzau im Gebirge 

(Bundesstrasse) 
128.4 127.42 AT 2760592.84 4748164.94 0 

26 Schwarza Singerin (Hoellental) 252.3 241.36 AT 2756404.27 4750690.73 0 
27 Perschling Atzenbrugg 

(Bundesstrassenbruecke) 
268.3 264.19 AT 2814954.61 4759109.27 0 

28 Grosse Tulln Siegersdorf 202.3 203.18 AT 2811252.94 4761634.59 0 
29 Schwarza Gloggnitz (Adlerbruecke) 472.2 462.16 AT 2746934.56 4766686.05 0 
30 Raab Feldbach 689.4 700.83 AT 2667038.02 4769026.60 0 
31 Triesting Fahrafeld 186 186.8 AT 2781339.38 4773464.32 0 
32 Grosser Pestingbach Aspang-Hoell 96.50 97.02 AT 2737625.87 4779706.71 0 
33 Pitten Warth 277 273.98 AT 2745578 4781265.55 0 
34 Schwechat Cholerakapelle 181 181.81 AT 2785873.92 4781055.90 0 
35 Lafnitz Woerth an der Lafnitz 439.4 432.43 AT 2696218.03 4782174.23 0 
36 Triesting Hirtenberg 287.3 288.18 AT 2776577.23 4782200.56 0 
37 Piesting Woellersdorf (Hydro) 284.1 292.67 AT 2769535.31 4782952.22 0 
38 Pinka Oberwart 171.7 159.3 AT 2704663.94 4791362.37 0 
39 Galaure Saint-Uze 232 230.27 FR 2465994.91 3915892.07 0 
40 Herbasse Clérieux [Pont de lHerbasse] 187 186.71 FR 2451512.85 3922908.98 0 
41 Roubion Soyans 186 190.38 FR 2403659.73 3924987.65 0 
42 Ouvèze Vaison-la-Romaine 585 595.63 FR 2360721.60 3926560.11 0 
43 Véore Chabeuil [Pont des Faucons] 66 59.84 FR 2434890.74 3930088.68 0 
44 Auzon Mormoiron 75 79.57 FR 2340038.80 3934719.96 1 
45 Gervanne Beaufort-sur-Gervanne 108 102.18 FR 2419653.49 3936373.43 0 
46 Toulourenc Malaucène [Veaux] 150 161.77 FR 2357221.19 3937982.20 0 
47 Rival Beaufort 461 460.04 FR 2481815.64 3938234.09 0 
48 Drôme Saillans 1150 1130.98 FR 2409843.48 3940768.02 0 
49 Bourne Saint-Just-de-Claix [Pont de Manne] 787 626.99 FR 2450790.27 3948966.24 0 
50 Vernaison Pont-en-Royans 281 292.09 FR 2450028.54 3953791.75 0 
51 Rival Brézins 180 146.96 FR 2482213.24 3953567.27 0 
52 Coulon Saint-Martin-de-Castillon [Coste 

Raste] 
333 362.17 FR 2315508.24 3957411.82 1 

53 Drôme Luc-en-Diois 194 224.81 FR 2400772.41 3958961.71 0 
54 Adouin Saint-Martin-en-Vercors [Tourtre] 47.60 41.64 FR 2443432.67 3961295.60 0 
55 Bez [Bès] Châtillon-en-Diois 227 226.5 FR 2408753.28 3963140.77 0 
56 Isère Saint-Gervais [Le Port] 9910 10160.4900 FR 2465954.37 3964544.51 1 
57 Meaudret Méaudre 74 73.07 FR 2455036.34 3968979.93 0 
58 Drac Fontaine 3550 9314.91 FR 2464095.11 3982196.01 1 
59 Isère Grenoble [Bastille] 5720 9310.44 FR 2463126.49 3984653.28 1 
60 Guiers Mort Saint-Laurent-du-Pont 89 93.82 FR 2484413.69 3986795.42 0 
61 Jonche Mure 46 51.35 FR 2431912.15 3987594.68 0 
62 Roizonne Valette [La Rochette] 71.599 71.1 FR 2435466.29 3994485.43 0 
63 Ribière Agnières-en-Dévoluy [La Combe] 24.50 41.48 FR 2407243.09 3994074.77 0 
64 Souloise Saint-Étienne-en-Dévoluy [2] 39.80 47.91 FR 2406776.78 3998581.45 0 
65 Bonne Entraigues [Pont Battant] 143 130.23 FR 2429665.65 4000285.23 0 
66 Fier Vallières 1350 42.35 FR 2540768.44 4004201.75 0 
67 Usses Musièges [Pont des Douattes] 182 171.99 FR 2552223.76 4008242.36 0 
68 Eparis Alby-sur-Chéran 23.10 324.84 FR 2531695.41 4012290.82 0 
69 Séveraisse Villar-Loubière 133 129.98 FR 2420436.04 4015998.09 0 
70 Chéran Allèves [La Charniaz] 249 235.85 FR 2519944.31 4017379.39 0 
71 Romanche Mizoën [Chambon amont] 220 223.26 FR 2443978.83 4019952 0 
72 Filière Argonay 140 164.02 FR 2545769.42 4023561.80 0 
73 Drac Saint-Jean-Saint-Nicolas [Les 

Ricous] 
207 205.4 FR 2403953.47 4023821.71 0 

74 Drac Noir Orcières [Les Tourengs] 94 93.33 FR 2403991.78 4026153.52 0 
75 Fier Dingy-Saint-Clair 222 288.31 FR 2539975.39 4026419.53 0 
76 Ire Doussard 27.10 94.46 FR 2526373.08 4027153.42 0 
77 Arve Arthaz-Pont-Notre-Dame 1664 1707.7 FR 2566956.47 4032721.96 0 
78 Borne Saint-Jean-de-Sixt 65 65.56 FR 2542431.29 4042779.56 0 
79 Bronze Bonneville [Thuet] 28 1305.75 FR 2556747.86 4046585.63 0 
80 Risse Saint-Jeoire [Pont du Risse] 57.50 57.61 FR 2564624.83 4048454.65 0 
81 Giffre Taninges [Pressy] 325 331.24 FR 2561858.31 4054221.19 0 
82 Arve Sallanches 514 569.41 FR 2542280.06 4060360.91 0 
83 Arve Chamonix-Mont-Blanc [Pont des 

Favrands] 
205 196.33 FR 2538814.26 4077111.12 0 

84 Collières Saint-Rambert-dAlbon 650 647.46 FR 2479354.35 3913880.42 1 
85 Cauron Bras [Pont de lAvocade] 154 130.76 FR 2273924.87 3992982.96 1 
86 Gapeau Solliès-Pont 169 187.99 FR 2240178.04 3998219.90 0 
87 Argens Châteauvert 485 500.41 FR 2274228.05 3998949.38 0 
88 Réal Martin Crau [Decapris] 277 283.75 FR 2239183.94 4004177.23 0 
89 Gapeau Hyères [Sainte-Eulalie] 517 543.25 FR 2234657.98 4007067.17 0 
90 Caramy Vins-sur-Caramy [Les Marcounious] 215 203.61 FR 2267089.68 4010560.23 0 
91 Argens Carcès [aval] 1181 1140.04 FR 2271075.25 4012592.49 0 
92 Issole Cabasse [Pont des Fées] 223 175.99 FR 2267141.38 4014543.01 0 
93 Môle Lavandou [Destel] 44.40 49.26 FR 2240017.16 4031080.17 1 
94 Nartuby Châteaudouble [Rebouillon] 111 137.87 FR 2281063.69 4031498.47 0 
95 Aille Vidauban [Le Baou] 229 232.1 FR 2260936.78 4033053.53 1 
96 Nartuby Trans-en-Provence 190 184.56 FR 2272955.65 4035940.84 0 
97 Giscle Cogolin 65.80 84.41 FR 2245263.29 4038774.27 1 
98 Jabron Comps-sur-Artuby [Pont de 

lEvescat] 
66.30 68.27 FR 2300635.49 4039644.65 0 

99 Giscle Cogolin [Les Ajusts] 195 219.79 FR 2244950.63 4040387.18 1 
100 Durance Embrun [La Clapière] 2170 2189.25 FR 2388897.88 4041386.86 1 
101 Guisane Monêtier-les-Bains [Pisciculture] 83 81.22 FR 2436761.03 4043528.57 0 
102 Argens Roquebrune-sur-Argens 2530 2505.58 FR 2266271.31 4047856.16 0 
103 Artuby Bastide [Taulane] 104 101.28 FR 2301088.35 4048452.23 0 
104 Durance Argentière-la-Bessée 984 961.23 FR 2413528.12 4048268.90 1 
105 Durance Briançon [aval] 548 529.97 FR 2426152.47 4054400.93 1 
106 Siagnole Mons [Le Moulin] 52 52.45 FR 2291161 4055706.05 0 
107 Reyran Fréjus [Sainte-Brigitte] 71 80.17 FR 2268454.60 4056820.46 1 
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108 Siagne Callian [Ajustadoux] 182 166.76 FR 2289609.82 4059291.62 0 
109 Var Villeneuve-dEntraunes [Pont 

dEnaux] 
160 143.24 FR 2340173.23 4063650.21 0 

110 Siagne Montauroux [Veyans] 241 220.23 FR 2284381.15 4065009 1 
111 Loup Tourrettes-sur-Loup [Les Vallettes] 206 200.14 FR 2292450.73 4079148.74 0 
112 Brague Biot [Plan Saint-Jean] 41 40.89 FR 2283910.03 4086313.03 0 
113 Estéron Broc [La Clave] 451 446.28 FR 2308439.07 4091883.19 0 
114 Tinée Tour [Pont de La Lune] 705 705.89 FR 2318586.31 4092921.02 1 
115 Var Nice [Pont Napoléon III] 2820 2826.94 FR 2288215.39 4094664.97 1 
116 Var Malaussène [La Mescla] 1830 1835.24 FR 2315211.78 4095278.24 1 
117 Var Carros [Pont de Manda] 2770 2774.43 FR 2299204.49 4095352.97 1 
118 Bévéra Sospel [Pont D 2204] 81.50 84.64 FR 2311065.39 4115712.17 0 
119 Arc Pourrières [D23] 50.50 45.03 FR 2274078.88 3974006.79 0 
120 Roya Breil-sur-Roya 461 444.45 FR 2317458.84 4121083.70 1 
121 Roya Tende [Saint-Dalmas-de-Tende] 168 167.52 FR 2329986.94 4127431.95 0 
122 Stura di demonte    Fossano 1279 1253.79 IT 2382173.53 4139846.22 1 
123 Tanaro        Farigliano 1519 1517.05 IT 2381010.83 4153944.10 0 
124 Reppe Ollioules [Le Grand Plan] 94 78.19 FR 2233605.85 3981474.09 1 
125 Aurach Aurachkirchen 81 84.14 AT 2769411.42 4600313.87 0 
126 Traun Obertraun 317.4 323.34 AT 2723740.59 4601115.70 0 
127 Unterthaler Bach Tetter 65.20 63.54 AT 2700435.88 4601600.72 0 
128 Altausseer Traun Altaussee (Traun) 54.50 63.5 AT 2731799.05 4604292.10 0 
129 Grundlseetraun Archkogl 114.4 114.19 AT 2730389.75 4608807.76 0 
130 Idensee-Traun Kainisch 57.40 62.69 AT 2724429.78 4609809.81 0 
131 Alm Friedlmuehle 326.1 325.35 AT 2767349.52 4618805.51 0 
132 Krems Kirchdorf an der Krems 40.50 45.08 AT 2763554.54 4627770.30 0 
133 Krems Kremsmuenster (Ort) 147.2 147.59 AT 2779619.07 4628987.20 0 
134 Steyrling Steyrling 72.40 74.18 AT 2752059.07 4630912.01 0 
135 Steyr Kniewas 184.9 182.39 AT 2748107.31 4633589.32 0 
136 Teichl St. Pankraz 232.8 243.77 AT 2748126.98 4636515.25 0 
137 Krumme Steyrling Molln 129.4 128.68 AT 2762741.82 4641009.49 0 
138 Teichl Teichlbruecke 148.6 162.65 AT 2744305.51 4643260.59 0 
139 Paltenbach Selzthal 368.7 360.92 AT 2723926.19 4645276.06 0 
140 Steyr Pergern 898.1 906.43 AT 2780390.80 4645655.69 0 
141 Dambach Windischgarsten 67 68.06 AT 2743767.53 4645961.70 0 
142 Teichl Spital am Pyhrn 40.20 42.29 AT 2737883 4646498.60 0 
143 Reichramingbach Reichraming 168.6 169.39 AT 2762683.11 4654002.45 0 
144 Salza Wildalpen 592.3 595.79 AT 2740499.64 4695266.28 0 
145 Radmerbach Weichselboden 54.10 52.88 AT 2742756.20 4709301.30 0 
146 Salza Gusswerk 280 281.15 AT 2750634.60 4718726.79 0 
147 Inn Tarasp 1581 1578.93 CH 2630784.06 4342388.44 1 
148 Inn St. Moritzbad 155 116.18 CH 2596960.98 4308346.91 0 
149 Sill Puig 341.8 347.63 AT 2667648.12 4431668.09 0 
150 Tuxbach Persal 129.2 128.27 AT 2672393.17 4458640.79 0 
151 Brandenberger Ache Mariathal 272.6 273.74 AT 2706351.59 4462019.60 0 
152 Rosegbach Pontresina 66.50 64.64 CH 2597529.58 4313272.61 0 
153 Berninabach Pontresina 107 115.59 CH 2597139.63 4313890.72 0 
154 Brixentaler Ache Bruckhaeusl 322.3 317.25 AT 2710824.14 4479671.90 0 
155 Obersulzbach Sulzau 80.70 79.47 AT 2682323.99 4491272.31 0 
156 Untersulzbach Neukirchen 40.50 41.94 AT 2682896.56 4492653.24 0 
157 Chamuerabach La Punt-Chamues-ch 73.40 73.85 CH 2606339.23 4316185.12 0 
158 Kitzbueheler Ache Kitzbuehel (Bahnhofsbruecke) 153 153.84 AT 2707555.48 4501399.43 0 
159 Aschauer Ache Sperten 147.4 142.67 AT 2714582.15 4502092.40 0 
160 Kitzbueheler Ache St. Johann in Tirol 332.4 328.81 AT 2714693.78 4503229.70 0 
161 Salzach Mittersill 582.6 594.01 AT 2688675.29 4508736.38 0 
162 Saalach Viehhofen 150.8 149.42 AT 2698477.53 4527736.45 0 
163 Fuscher Ache Bruck (Fuscher Ache) 161 162.62 AT 2688368.76 4535169.33 0 
164 Urslau Ache Saalfelden 119.5 122.22 AT 2705738.92 4535261.92 0 
165 Salzach Oberndorf 6120 6166.55 AT 2762875.09 4539710.18 0 
166 Inn S-Chanf 616 619.48 CH 2611498.04 4320730.22 1 
167 Rauriser Ache Rauris (Unterland) 242.2 234.36 AT 2685499.75 4547699.21 0 
168 Torrener Bach Torren 65.50 62.77 AT 2724223.49 4558396.94 0 
169 Lammer Obergaeu 394.5 388.39 AT 2724380.63 4560420.75 0 
170 Grossarlbach Grossarl 144.6 142.58 AT 2685651.12 4563284.54 0 
171 Inn Cinuos-chel, nur Hauptstation 733 737.35 CH 2613702.46 4322705.03 1 
172 Griesler Ache St. Lorenz 109 114.97 AT 2752073.67 4570857.44 0 
173 Voeckla Stauf 99.70 92.51 AT 2769689.88 4577985.25 0 
174 Enns Altenmarkt im Pongau 134.5 135.56 AT 2702467.88 4579686.75 0 
175 Seeache See am Mondsee (Au) 247.4 275.24 AT 2749263.35 4579722.90 0 
176 Ischler Ache Strobl (Buerglstein) 125.4 123.64 AT 2740426.10 4582812.64 1 
177 Seez Mels 106 103.08 CH 2659519.29 4276854.64 1 
178 Aubonne Allaman, Le Coulet 105 92.89 CH 2602362.92 4044875.17 0 
179 Landquart Felsenbach 614 616.09 CH 2651436.40 4291564.72 1 
180 Rhein Diepoldsau, Rietbrücke 6299 6442.6 CH 2696797.76 4293974.47 1 
181 Rhein Lustenau (Eisenbahnbruecke) 6301.1 6528.67 AT 2703779.22 4295348.47 1 
182 Dornbirnerach Hoher Steg 112.9 135.85 AT 2703935.65 4298425.78 0 
183 Rheintalbinnenkanal Lustenau (Hofsteig) 77.50 71.83 AT 2702369.07 4298127.36 0 
184 Dornbirnerach Enz 51.10 53.97 AT 2698077.05 4302910.77 0 
185 Landwasser Davos, Frauenkirch 184 181.97 CH 2627292.26 4305066.13 0 
186 Lutz Garsella 95.50 112.05 AT 2679191.62 4311595.50 0 
187 Bregenzerach Mellau 228.6 227.01 AT 2693503.04 4312135.38 0 
188 Bregenzerach Au 149.3 145.84 AT 2690589.06 4318872.95 0 
189 Subersach Schoenenbach (Hengstig) 31.10 41.31 AT 2696778.40 4324214.80 0 
190 Bregenzerach Hopfreben 41.70 50.96 AT 2685774.24 4324625.31 0 
191 Lech Lech (Tannbergbruecke) 84.30 88.34 AT 2677332.27 4331685.25 0 
192 Lech Steeg 247.9 250.27 AT 2681045.89 4343234.16 0 
193 Hornbach Vorderhornbach (Bruecke) 64 65 AT 2695082.42 4361665.47 0 
194 Vils Vils (Laende) 198.1 196.12 AT 2715625.14 4369820.58 0 
195 Lech Lechaschau 1012.2 1010.4 AT 2709518.93 4374631.27 0 
196 Venoge Ecublens, Les Bois 228 338.8 CH 2608704.22 4056425.68 0 
197 Dranse Reyvroz [Bioge] 495 498.98 FR 2585257.75 4057928.04 0 
198 Dranse dAbondance Vacheresse 175 175.69 FR 2586046.45 4062381.95 0 
199 Mentue Yvonand, La Mauguettaz 105 99.09 CH 2634911.21 4070723.69 0 
200 Parimbot Ecublens, Eschiens 6.920 157.37 CH 2615480.95 4076705.93 0 
201 Veveyse Vevey, Copet 64.50 41.43 CH 2600326.81 4078820.51 0 
202 Rhône Porte du Scex 5238 5301.94 CH 2586958.20 4081366.15 1 
203 Grande Eau Aigle 132 131.17 CH 2583323.98 4087556.80 1 
204 Broye Payerne, Caserne d aviation 416 63.29 CH 2640779.87 4087167.14 0 
205 Drance Martigny, Pont de Rossettan 676 676.68 CH 2558462.98 4093715.35 1 
206 Sionge Vuippens, Château 43.40 47.48 CH 2620652.01 4097273.86 0 
207 Sarine Broc, Château d en bas 636 636.86 CH 2614427.71 4098168.43 1 
208 Rhône Branson 3728 3764.06 CH 2561480.45 4096039.41 1 
209 Canal de la Broye Sugiez 713 730.54 CH 2654414.55 4101326.13 1 
210 Aare Hagneck 5112 208.02 CH 2664416.05 4107009.66 1 
211 Rhône Sion 3372 3309.01 CH 2571078.55 4117016.05 1 
212 Simme Oberwil 344 342.48 CH 2619244.60 4124916.28 0 
213 Aare Bern, Schönau 2941 2985.27 CH 2650089.24 4126594.93 1 
214 Worble Ittigen 67.10 85.92 CH 2654459.16 4129039.69 0 
215 Allenbach Adelboden 28.80 59.55 CH 2600184.89 4132948.86 0 
216 Simme Latterbach, nur Hauptstation 563 213.94 CH 2619637.39 4135568.51 1 
217 Kander Hondrich 491 519.62 CH 2619942.11 4142701.51 0 
218 Emme Emmenmatt, nur Hauptstation 443 440.89 CH 2651727.46 4149589.19 0 
219 Lonza Blatten 77.40 79.69 CH 2592105.96 4153139.06 0 
220 Ilfis Langnau 187 185.74 CH 2649772.64 4153240.54 0 
221 Emme Eggiwil, Heidbüel 124 126.63 CH 2642342.47 4153584.31 0 
222 Langeten Huttwil, Häberenbad 59.90 60.44 CH 2670204.39 4156165.09 0 
223 Vispa Visp 786 783.48 CH 2576953.48 4157546.88 1 
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224 Lütschine Gsteig 381 367.95 CH 2619216.65 4158045.23 0 
225 Weisse Lütschine Zweilütschinen 165 164.96 CH 2615497.61 4160105.80 0 
226 Rhone Brig 906 903.2 CH 2580497.64 4164987.91 1 
227 Saltina Brig 76.50 73.51 CH 2580397.77 4165866.27 1 
228 Luthern Nebikon 105 282.76 CH 2677423.57 4167424.11 0 
229 Aare Brienzwiler 555 585.81 CH 2627809.94 4175160.61 1 
230 Promenthouse Gland, Route Suisse 120 110.99 CH 2595419.71 4033986.03 0 
231 Rhone Reckingen 214 217.17 CH 2596850.20 4186137.04 0 
232 Goneri Oberwald 38.50 49.47 CH 2603597.37 4194985.90 0 
233 Rhone Gletsch 39.40 40.71 CH 2606952.22 4195387.36 0 
234 Engelberger Aa Buochs, Flugplatz 228 261.08 CH 2652462.50 4199644.53 1 
235 Grosstalbach Isenthal 43.90 55.56 CH 2645248.62 4211370.62 0 
236 Reuss Andermatt 190 189.32 CH 2615474.09 4213010.02 0 
237 Reuss Seedorf 833 683.96 CH 2642258.22 4215864.35 1 
238 Biber Biberbrugg 31.90 203.42 CH 2672047.28 4224017.79 0 
239 Alp Einsiedeln 46.70 201.95 CH 2671740.58 4225409.84 0 
240 Minster Euthal, Rüti 59.10 60.53 CH 2663846.46 4230942.55 0 
241 Rein da Sumvitg Sumvitg, Encardens 21.80 40.49 CH 2615813.89 4243764.12 0 
242 Linth Mollis, Linthbrücke 600 638.28 CH 2665844.20 4250599.13 1 
243 Foron Sciez 66 52.28 FR 2586479.80 4042170.05 0 
244 Glenner Castrisch 381 381.6 CH 2629342.69 4260757.17 1 
245 Glatt Herisau, Zellersmühle 16.70 43.3 CH 2698685.94 4264988.89 0 
246 Sitter St. Gallen, Bruggen / Au 261 274.52 CH 2700448.80 4270324.28 0 
247 Dora riparia Susa (Via Mazzini) 685 687.38 IT 2452008.31 4088551.72 1 
248 Cenischia         Susa 145 140.99 IT 2452537.35 4089215.97 1 
249 Pellice        Villafranca 988 922.66 IT 2414695.64 4122957.72 1 
250 Stura di lanzo           Lanzo 580 577.67 IT 2465338.94 4123266.91 0 
251 Varaita             Polonghera 604 555.79 IT 2413366.82 4130784.17 1 
252 Soana                     Pont 215 612.91 IT 2482030.47 4133120.14 1 
253 Po                  Moncalieri 5306 5043.1 IT 2435160.33 4137807.49 1 
254 Dora baltea         Tavagnasco 3312 3306.23 IT 2495519.27 4151155.43 1 
255 Krummbach Klusmatten 19.40 43.47 CH 2570127.72 4167811.23 0 
256 Po                 Crescentino 13191 13090.63 IT 2454004.50 4171508.51 1 
257 Sesia               Borgosesia 690 689.55 IT 2515564.95 4185528.54 1 
258 Vercellese cervo        Quinto 1024 799.67 IT 2475929.14 4193569.93 1 
259 Toce                 Candoglia 1531 1532.11 IT 2541703.49 4198632.52 1 
260 Riale di Calneggia Cavergno Pontit 23.90 93.49 CH 2585366.99 4208856.58 0 
261 Maggia Bignasco Ponte Nuovo 316 317.18 CH 2581792.19 4213818.18 1 
262 Ticino Piotta 159 160.59 CH 2601407.90 4219046.92 1 
263 Maggia Locarno-Solduno 927 923.34 CH 2562696.79 4226273.64 1 
264 Riale di Pincascia Lavertezzo 44.50 179.23 CH 2572603.03 4231568.99 0 
265 Verzasca Lavertezzo, Campioi 185 181 CH 2571562.80 4231895.41 0 
266 Magliasina Magliaso, Ponte 34.40 147.14 CH 2541880.29 4234125.13 0 
267 Vedeggio Agno 99.90 96.42 CH 2544192.66 4236695.81 0 
268 Ticino Pollegio, Campagna 444 449.07 CH 2583694.35 4240008.92 1 
269 Cassarate Pregassona 75.80 74.24 CH 2545749.47 4240654.28 0 
270 Brenno Loderio 400 400.91 CH 2585478.39 4241722.69 1 
271 Ticino Riazzino 1613 1575.14 CH 2561887.39 4236839 1 
272 Ticino Bellinzona 1517 1527.09 CH 2565250.48 4244536.30 1 
273 Moesa Lumino, Sassello 472 472.12 CH 2568365.30 4248166.86 1 
274 Calancasca Buseno 121 119.89 CH 2575114.99 4253070.50 0 
275 Mera Soglio 177 184.59 CH 2580240.53 4284622.82 0 
276 Teischnitzbach Spoettling-Taurer 13.90 47.91 AT 2660464.82 4521464.14 0 
277 Gail Maria Luggau (Moos) 146.1 144.93 AT 2624862.74 4530727.52 0 
278 Isel Lienz 1198.7 1192.25 AT 2639538.98 4532123.71 1 
279 Drau Lienz-Peggetz 1876.2 1868.92 AT 2638301.27 4534204.54 1 
280 Drau Oberdrauburg 2112 2107.07 AT 2630548.01 4548327.86 1 
281 Gail Mauthen 348.6 347.04 AT 2621816.84 4550702.36 0 
282 Mallnitzbach Mallnitz 85.30 87.07 AT 2657320.04 4562607.51 0 
283 Gail Rattendorf 594.9 633.61 AT 2617790.56 4570360.47 0 
284 Drau Sachsenburg (Bruecke) 2561.4 2557.47 AT 2640637.02 4576802.25 0 
285 Goessering Neudorf 75.20 86.37 AT 2617660.35 4579545.63 0 
286 Seebach Seebruecke 286.3 281.04 AT 2639680.73 4588840.39 1 
287 Učja Žaga 50.19 50.54 SI 2583730.85 4589435.04 0 
288 Soča Log Čezsoški 324.76 332.28 SI 2584350.70 4590709.26 0 
289 Lieser Gmuend 360.1 357.29 AT 2649874.97 4590632.59 1 
290 Nadiža Potoki 95.03 96.45 SI 2577021.48 4591552.79 0 
291 Idrija Golo Brdo 57.44 57.98 SI 2555351.50 4592234.95 0 
292 Koritnica Kal-Koritnica 86.04 87.41 SI 2587607.97 4596814.29 0 
293 Koritnica Log pod Mangartom 40.81 56.22 SI 2592011.93 4597242.89 1 
294 Soča Kobarid I 437.06 443.25 SI 2577203.55 4598124.79 0 
295 Vipava Miren 589.96 572.31 SI 2538091.08 4601679.16 0 
296 Soča Solkan I 1580.35 1496.45 SI 2547979.61 4604827.90 1 
297 Tolminka Tolmin 73.37 61.37 SI 2571095.27 4609944.84 0 
298 Vipava Dornberk 466.83 423.68 SI 2537963.90 4612182.92 0 
299 Sava Dolinka Kranjska Gora 43.37 77.85 SI 2604766.78 4612610.44 1 
300 Bača Bača pri Modreju 143.06 145.16 SI 2567748.89 4613206.75 0 
301 Gail Federaun 1304.9 1319.48 AT 2613506.84 4613642.52 0 
302 Idrijca Hotešk 443.51 435.52 SI 2564796.85 4614757.90 0 
303 Branica Branik 68.10 80.46 SI 2534103.76 4617075.64 1 
304 Trebuša Dolenja Trebuša 55.31 64.95 SI 2561207.59 4617949.13 0 
305 Savica Ukanc I 66.71 78.99 SI 2581900.12 4616452.34 0 
306 Sava Bohinjka Sveti Janez 94.35 85.85 SI 2581798.01 4621098.60 0 
307 Mostnica Stara Fužina II 74.26 81.27 SI 2582314.34 4621274 0 
308 Cerknica Cerkno II 40.55 42.45 SI 2564495.41 4628793.48 0 
309 Sava Dolinka Jesenice 259.42 267.12 SI 2599745.47 4633114.27 0 
310 Idrijca Podroteja I 111.25 100.06 SI 2550059.76 4633887 0 
311 Poljanska Sora Žiri II 63 54.27 SI 2556474.10 4639552.65 0 
312 Sava Dolinka Blejski most 508.79 472.21 SI 2592732.67 4639674.25 1 
313 Sava Bohinjka Bodešče 363.9 396.09 SI 2589921.02 4640387.42 0 
314 Gurk Weitensfeld (Ost) 431.8 428.49 AT 2646291.23 4641435.05 1 
315 Selška Sora Železniki 104.1 103.35 SI 2576701.89 4642639.52 0 
316 Sava Radovljica I 907.96 914 SI 2589811.87 4642205.18 1 
317 Glanfurt Weinlaender 201.3 209.88 AT 2619188.94 4651323.62 1 
318 Tržiška Bistrica Preska 121.5 120.67 SI 2592376.58 4652422.27 1 
319 Selška Sora Vešter 213.76 213.29 SI 2571725.54 4652457.75 0 
320 Poljanska Sora Zminec 306.52 302.87 SI 2569619.78 4652956.64 0 
321 Sava Okroglo 1198.73 1205.58 SI 2581164.83 4654596.76 1 
322 Sora Suha I 568.86 568.62 SI 2570780.39 4655671.82 0 
323 Wimitz Breitenstein 106.5 93.33 AT 2642281.06 4656407.17 1 
324 Gradaščica Dvor 78.88 77.32 SI 2559804.61 4657753.42 0 
325 Kokra Kranj II 221.35 221.39 SI 2579917.58 4657754.06 0 
326 Metnitz Hirt 469.4 462.28 AT 2653209.53 4659362.29 1 
327 Borovniščica Borovnica 35.84 40.15 SI 2543732.26 4660583.45 0 
328 Sora Medvode I 645.6 642.33 SI 2568922.20 4662021.69 0 
329 Gurk Launsdorf 1243.1 1231.12 AT 2637606.16 4663045.56 1 
330 Sava Medno 2201.44 2167.83 SI 2566921.99 4664759.06 1 
331 Goertschitz Brueckl 315.6 306.57 AT 2637706.10 4667419.37 1 
332 Goertschitz Huettenberg 130.3 120.3 AT 2657779.77 4667476.06 1 
333 Kokra Kokra I 113.1 114.05 SI 2587521.02 4668084.40 0 
334 Sava Črnuče 2268.82 2246.59 SI 2564769.16 4671052.77 0 
335 Ljubljanica Moste 1778.16 1652.11 SI 2559822.43 4673603.88 0 
336 Pšata Topole 93.92 135.47 SI 2573171.04 4673856.55 0 
337 Kamniška Bistrica Vir 208.58 175.43 SI 2570482.46 4677242.38 0 
338 Rača Podrečje 163.84 168.54 SI 2569880.99 4677667.44 1 
339 Nevljica Nevlje I 82.21 82.73 SI 2580025.64 4678267.43 1 
340 Savinja Solčava I 63.41 64.43 SI 2601066.42 4682269.31 0 
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341 Lučnica Luče 57.39 57.26 SI 2594073.49 4686765.65 0 
342 Višnjica Trebnja Gorica 75.84 78 SI 2542487.45 4692584.21 0 
343 Lavant St.Gertraud 380.2 374.87 AT 2654644.72 4691971.27 1 
344 Meža Črna 95.17 91.63 SI 2607456.63 4693837.21 0 
345 Sava Litija I 4849.33 4702.66 SI 2561345.74 4694754.53 0 
346 Dreta Kraše 100.82 102.85 SI 2587129.18 4699114.34 0 
347 Lavant Krottendorf 954.5 947.61 AT 2629413.56 4699633.91 1 
348 Savinja Nazarje 457.11 460.58 SI 2591454.47 4702879.93 0 
349 Drava HE Dravograd 12071.7 12061.74 SI 2621209.75 4706055.37 1 
350 Meža Otiški Vrh I 552.6 551.74 SI 2620264.82 4706675.44 0 
351 Savinja Letuš I 529.53 535.24 SI 2592272.20 4706839.43 0 
352 Medija Zagorje I 96.97 101 SI 2569761.52 4707674.14 1 
353 Mislinja Otiški Vrh I 231.56 229.3 SI 2619188.26 4707616 0 
354 Paka Rečica 206.07 207.37 SI 2591879.61 4709484.99 0 
355 Suhodolnica Stari Trg I 59.45 59.82 SI 2612376.14 4710777.63 0 
356 Sava Hrastnik 5205.3 5067.43 SI 2570062.85 4714968.87 0 
357 Paka Velenje 63.36 63.38 SI 2596812.24 4715337.32 1 
358 Mislinja Dovže I 72.59 72.32 SI 2607284.12 4717170.58 0 
359 Savinja Veliko Širje I 1847.14 1817.98 SI 2567308.85 4723034.93 0 
360 Savinja Laško I 1668.16 1678.2 SI 2574396.70 4725752.32 0 
361 Savinja Celje II - brv 1191.84 1169.67 SI 2582692.50 4726864.95 0 
362 Sevnična Orešje 39.78 40.37 SI 2561779.46 4731388.81 0 
363 Dravinja Zreče 42.75 42.67 SI 2600254.54 4735559.19 1 
364 Gschloessbach Innergschloess 39.30 40.46 AT 2670994.32 4507576.90 0 
365 Oplotnica Draža vas 85.81 83.66 SI 2594872.67 4744406.22 0 
366 Mestinjščica Sodna vas II 132.82 157.59 SI 2578560.76 4753950.39 0 
367 Pesnica Ranca 84.27 94.11 SI 2626291.33 4756654.49 0 
368 Dravinja Makole 303.21 302.61 SI 2595187.15 4758093.77 0 
369 Bistrica Zagaj I 94.01 91.6 SI 2564978.05 4758823.05 1 
370 Tauernbach Matreier Tauernhaus 59.90 62.9 AT 2670231.97 4510750.34 0 
371 Pesnica Gočova 281.77 296.46 SI 2622682.25 4771318.77 0 
372 Rogatnica Podlehnik I 57.26 51.96 SI 2597894.88 4773967.85 0 
373 Drava Jez Markovci 13700.8 13938.63 SI 2604254.24 4777164.46 1 
374 Isel Waier 285.3 277.31 AT 2656823.63 4513281.27 0 
375 Drava Borl I 14642.08 14605.51 SI 2602885.30 4782678.09 1 
376 Pesnica Zamušani I 479.76 546.5 SI 2607899.02 4785205.66 0 
377 Isel Bruehl 518.4 480.84 AT 2654552.19 4515342.82 0 
378 Adige Spondigna 701.45 830.51 IT 2613869.80 4367254.10 1 
379 Adige Tel 1508.93 1664.52 IT 2618239.91 4403698.32 1 
380 Isarco Ponte Campiglio 3600.69 3766.03 IT 2598694.21 4426194.33 1 
381 Aurino S.Giorgio 614.56 608.32 IT 2635658.25 4468765.89 1 
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Table C.4 List of stations with daily snow depth measurements used for validation.  
## Station Name Elevation 

(m. a.s.l.) 

ETRS coordinates Country 

Latitude Longitude 
1 Illmitz (Biologische Station) 115 2762774.39 4826719.02 AT 

2 Rust 118 2766377.36 4820654.09 AT 

3 Andau 118 2765233.89 4847045.27 AT 
4 Podersdorf am See 120 2772841.91 4831624.01 AT 

5 Apetlon 120 2760293.20 4833778.76 AT 

6 Frauenkirchen 122 2770234.69 4838916.83 AT 
7 Winden am See 124 2783205.99 4824940.71 AT 

8 Nickelsdorf 130 2783885.06 4848692.44 AT 

9 Oggau 130 2769351.21 4819933.07 AT 
10 Halbturn 130 2775481.39 4842569.06 AT 

11 Kleylehof 133 2778661.57 4848908.86 AT 

12 Deutsch Jahrndorf 133 2791981.14 4850267.10 AT 
13 Kittsee 135 2800723.89 4846952.64 AT 

14 Donnerskirchen 136 2775570.53 4818405.82 AT 

15 Pama 137 2795513.96 4845047.96 AT 
16 Zurndorf 140 2788310.14 4843698.12 AT 

17 Eckartsau 146 2804853.96 4826245.25 AT 

18 Gattendorf 150 2791676.14 4841243.10 AT 
19 Edmundshof 150 2779901.32 4843371.35 AT 

20 St.Margarethen im Burgenland 151 2765350.74 4816148.90 AT 

21 Franzensdorf 153 2808867.64 4814149.69 AT 
22 Wien-Neueling 155 2812527.99 4806888.99 AT 

23 Wien-Kagran 158 2813068.40 4798248.87 AT 

24 Wien (Spargelfeld) 160 2812583.79 4801209.80 AT 
25 Wulkaprodersdorf 170 2764602.70 4808798.88 AT 

26 Matzen 171 2831760.57 4816553.68 AT 

27 Mörbisch am See 175 276.47 4819751.50 AT 
28 Eisenstadt 177 2769354.32 4808536.75 AT 

29 Wien (Botanischer Garten) 180 2807283.51 4795197.51 AT 

30 Pillichsdorf 180 2829251.21 4803476.50 AT 
31 Parndorf 180 2788755.74 4831958.18 AT 

32 Absdorf 182 2827718.49 4763170.50 AT 

33 Ulrichskirchen 183 2830650.47 4801415.07 AT 
34 Wien (Rathausplatz) 185 2808883.04 4793259.99 AT 

35 Grafenwörth 189 2826696.04 4747242.19 AT 

36 Vösendorf 190 2798725.49 4793035.44 AT 
37 Deutschkreutz 195 2742976.64 4817678.33 AT 

38 St.Margarethen-Berg 195 2765079.45 4818303.24 AT 

39 Moosbrunn 198 2788587.19 4801599.74 AT 

40 Lutzmannsburg 200 2728272.34 4821730.81 AT 

41 Donnerskirchen (Waldgasse) 200 2777026.74 4816672.75 AT 
42 Hagensdorf-Luising 200 2677033.67 4813361.85 AT 

43 Zelting 200 2640098.52 4781356.57 AT 

44 Magadino / Cadenazzo 203 2561488.69 4238638.15 CH 
45 Magadino / Cadenazzo 203 2561488.69 4238638.15 CH 

46 Frankenau 208 2726463.27 4818502.88 AT 

47 Steinbrunn 210 2767135.56 4801275.27 AT 
48 Pöttsching 215 2763831.74 4798213.47 AT 

49 Eberau 215 2687525.69 4811436.11 AT 

50 Wien-Mauerbach 215 2808957.88 4782524.30 AT 
51 Unterpurkla 220 2640947.05 4773063.37 AT 

52 Heiligenkreuz 228 2672882.70 4796466.52 AT 

53 Draburg 230 2758089.96 4807371.72 AT 
54 Glasing 230 2680784.87 4801582.32 AT 

55 Oberpullendorf 240 2730748.23 4810903.48 AT 

56 Neumarkt an der Raab 240 2666355.07 4787318.69 AT 
57 Eltendorf 240 2674770.55 4792029.78 AT 

58 Nikitsch 245 2735290.14 4821160.02 AT 

59 St.Leonhard am Forst 247 2794573.24 4713715.97 AT 
60 Steinabrunn 247 2841521.11 4779367.38 AT 

61 Nebersdorf 248 2733247.64 4815667.18 AT 

62 Ennsbach 250 2794683.83 4697192.65 AT 
63 Wien (Rosenhügel) 250 2802891.51 4788476.28 AT 

64 Mannersdorf an der Rabnitz 250 2723025.58 4812615.15 AT 

65 St.Michael im Burgenland 250 2688652.07 4796827.49 AT 
66 Eisenberg an der Pinka 255 2695233.51 4807782.77 AT 

67 Strass 256 2640977.91 4750818.92 AT 

68 Schattendorf 260 2754617.55 4808777.36 AT 
69 Kukmirn 260 2682509.20 4792694.56 AT 

70 Fehring 260 2665245.44 4779085.68 AT 

71 Wieselburg 263 2792604.47 4702492.70 AT 
72 Kirchfidisch 265 2692611.44 4802548.40 AT 

73 St.Peter am Ottersbach 270 2649002.01 4760569.62 AT 
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74 Lugano 273 2544164.60 4240467.01 CH 

75 Lugano 273 2544164.60 4240467.01 CH 

76 Growilfersdorf 275 2680820.56 4776760.74 AT 

77 Tullnerbach 281 2804552.50 4776192.70 AT 

78 Stephanshart 284 2794542 4679366.62 AT 
79 Bad Waltersdorf 285 2691094.63 4776651.55 AT 

80 Zehensdorf 288 2651377.11 4757265.29 AT 

81 Dürnbach im Burgenland 291 2704125.62 4804185.76 AT 
82 Kilb 295 2792221.41 4723979.23 AT 

83 Pyhra 295 2799340.97 4744064.43 AT 

84 Loretto 300 2775583.06 4808147.11 AT 
85 Ollersbach 300 2806092.98 4753161.92 AT 

86 Wetzelsdorf 303 2671136.38 4767618.87 AT 

87 Ritzing 310 2743237.45 4809101.69 AT 
88 Oberwart 315 2705155.40 4791569.91 AT 

89 Hofstetten 318 2791136.54 4731483.85 AT 

90 Laab im Walde 319 2801504.74 4780151.21 AT 
91 Gross Sankt Florian 320 2649481.07 4726424.58 AT 

92 Kobersdorf 320 2740625.88 4801565.77 AT 

93 Grono 323 2571814.48 4256545.68 CH 
94 Grono 323 2571814.48 4256545.68 CH 

95 Pottenstein 327 2779944.02 4775812.29 AT 

96 Scheibbs 330 2780349.08 4705649.10 AT 

97 Sinabelkirchen 330 2683045.89 4763552.76 AT 

98 Frauental 330 2648482.10 4721965.51 AT 

99 Steyr 336 2780657.65 4650860.19 AT 
100 Hochgleinz 340 2647118.36 4727991.69 AT 

101 Sajach 340 2663506.39 4726534.34 AT 

102 St.Nikolai im Sausal 340 2649423.18 4736696.89 AT 
103 Stainz 340 2656725.81 4721719.34 AT 

104 Stadt Haag 349 2787811.78 4661136.60 AT 

105 Lavamünd 350 2626941.80 4699334.93 AT 
106 Graz-Gries 350 2675362.61 4732969.29 AT 

107 Forchtenstein 350 2753338.45 4796228.58 AT 

108 Hartberg 350 2703812.30 4772677.43 AT 
109 Riegersburg 350 2672511.63 4772430.81 AT 

110 Seitenstetten 351 2779974.89 4667919.62 AT 

111 Deutsch Kaltenbrunn 355 2683391.98 4785828.22 AT 
112 Maria Laah 360 2787535.33 4645319 AT 

113 Reichraming 360 2763360.99 4654887.47 AT 
114 Oed 360 2789260.18 4674271.85 AT 

115 Brand-Laaben 360 2794698.08 4757545.10 AT 

116 Graz-Andritz 360 2680322.88 4731814.14 AT 

117 Eibiswald 360 2634062.93 4723250.30 AT 

118 Locarno / Monti 366 2563045.14 4227361.81 CH 

119 Locarno / Monti 366 2563045.14 4227361.81 CH 
120 Karl 370 2730992.47 4798762.88 AT 

121 Pilgersdorf 370 2723780.85 4799595.16 AT 

122 Ligist 370 2666678.84 4717200.84 AT 
123 Leutschach 370 2630921.53 4739267.48 AT 

124 Bonisdorf 370 2656401.01 4783415.37 AT 

125 Oberdorf im Burgenland 374 2698787.86 4791012.19 AT 
126 Aigle 381 2584299.56 4084026.76 CH 

127 Alland-Groisbach 387 2788628.43 4772142.04 AT 

128 Weissenbach bei Mödling 388 2795020.33 4783026.64 AT 
129 Wies 390 2637498.52 4723270.80 AT 

130 Gedersberg 390 2670123.66 4730734.55 AT 

131 Gresten 398 2777033.46 4695732.05 AT 
132 Gaissau 400 2706100.52 4290739.48 AT 

133 Fussach 400 2707957.54 4295902.83 AT 

134 St.Anton an der Jenitz 400 2774632.44 4709760.67 AT 
135 Pinkafeld 400 2714214.23 4783187.92 AT 

136 St.Ruprecht an der Raab 400 2686979.26 4750021.08 AT 

137 Opponitz 402 2764929.84 4682248.96 AT 

138 Montreux-Clarens 405 2597230.64 4082609.35 CH 

139 Meiningen 410 2687808.23 4289234.90 AT 

140 Lustenau 410 2702619.92 4295565.03 AT 
141 Pottschach 411 2748725.23 4770703.45 AT 

142 Altach 412 2694012.75 4294897.06 AT 

143 Vorchdorf 415 2773989.70 4613329.41 AT 
144 Markt Allhau 415 2704289.58 4783056.47 AT 

145 Hinterlug 416 2769317.25 4676914.47 AT 

146 Stadtschlaining 418 2710309.10 4794984.76 AT 
147 Bromberg 419 2747292.37 4786724.24 AT 

148 Mäder 420 2692793.60 4291803.86 AT 

149 Hörbranz 420 2713831.09 4301181.38 AT 
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150 Vöcklabruck 420 2772464.70 4594473.21 AT 

151 Hochstra 420 2722666.58 4803915.65 AT 

152 Pöllau 420 2705569.05 4762107.53 AT 

153 Frohnleiten 420 2698429.40 4723722.92 AT 

154 Bärnbach 420 2675399.58 4710937.45 AT 
155 Glashütten bei Langeck 421 2716490.95 4802750.17 AT 

156 Hohenlehen 424 2760782.36 4678429.48 AT 

157 Ebensee (Wasserwerk) 425 2750655.66 4603987.08 AT 
158 Kleinreifling 428 2755958.68 4668287.73 AT 

159 Hainfeld 429 2785716.01 4752090.46 AT 

160 Bregenz-Rieden 430 2708368.60 4301120.65 AT 
161 Oberndorf 430 2765306.41 4541630.30 AT 

162 Pechgraben 430 2765579.17 4659813.07 AT 

163 Biel/Bienne 433 2671403.46 4112832.77 CH 
164 Hohenems 433 2694836.30 4297063.49 AT 

165 Dornbirn 435 2698521.78 4301674.20 AT 

166 Molln 435 2761552.62 4639463.84 AT 
167 Altdorf 438 2642608.52 4215971.11 CH 

168 Babniak 440 2611838.35 4648804.72 AT 

169 Wolfsberg 440 2646218.04 4690571.65 AT 
170 Glanegg 440 2741844.58 4547464.31 AT 

171 Laakirchen 440 2770686.54 4605752.68 AT 

172 Laussa 440 2769932.97 4653585.93 AT 

173 Waldneukirchen 440 2773601.54 4638704.49 AT 

174 Unterhflein 441 2760841.74 4772628.51 AT 

175 Klagenfurt 442 2621650.82 4651736.23 AT 
176 Bregenz (Altreuteweg) 443 2710492.85 4302656.62 AT 

177 Hallein 443 2735335.62 4552942.78 AT 

178 Pöggstall 445 2814121.97 4707352.66 AT 
179 Stixenstein 448 2753443.33 4769286.06 AT 

180 Sillehof 450 2627099.72 4660784.30 AT 

181 Sieggraben 450 2747177.27 4799904.79 AT 
182 St.Johann bei Herberstein 450 2695110.25 4761429.07 AT 

183 Limberg 450 2639800.22 4719068.25 AT 

184 Gmunden-Traundorf 451 2763635.56 4605712.05 AT 
185 Luzern 454 2659703.51 4191859.33 CH 

186 Klopein am Klopeiner See 455 2621309.60 4673811 AT 

187 Kirchdorf an der Krems 456 2763899.78 4629054.92 AT 
188 Vaduz 457 2668454.53 4284471.39 CH 

189 Klaus an der Pyhrnbahn 458 2755181.59 4632403.29 AT 
190 St. Margarethen ob Töllerberg 460 2628526.63 4671035.22 AT 

191 Nudorf 460 2765153.09 4546247.28 AT 

192 Pernegg 460 2709151.35 4723901.08 AT 

193 Vigaun 460 2733983.14 4556047.15 AT 

194 Frankenfels 468 2777550.67 4718540.85 AT 

195 Weyregg 469 2761255.87 4587776.63 AT 
196 Texing 469 2783273.60 4718470.76 AT 

197 Bad Schönau 471 2728913.06 4790365.59 AT 

198 Hörzendorf 475 2634223.18 4652137.16 AT 
199 Weienbach am Attersee 475 2748686.97 4586074.25 AT 

200 Attersee 475 2762084.23 4585076.06 AT 

201 Gloggnitz 475 2746857.69 4765995.59 AT 
202 Glanz 476 2630976.52 4742100.44 AT 

203 Gutenstein 478 2769123.09 4761630.63 AT 

204 Golling-Torren 480 2725614.33 4559047.64 AT 
205 Scharfling 480 2748857.29 4575208.45 AT 

206 Trassnitz 480 2772563.14 4729921.54 AT 

207 Miesenbach 480 2765246.15 4768502.45 AT 
208 Södingberg 480 2676799.95 4716364.37 AT 

209 Sion 482 2571105.45 4114875.90 CH 

210 Koppigen 485 2670314.65 4139242.37 CH 
211 Scharnstein 485 2763136.27 4617945.99 AT 

212 Kitzeck im Sausal 485 2646350.84 4737000.04 AT 

213 Furth-Harras 488 2780761.18 4762264.98 AT 

214 Payerne 490 2638058.03 4087547.97 CH 

215 St.Georgen am Reith 494 2759627.59 4686316.87 AT 

216 Behamberg 495 2779310.68 4656210.77 AT 
217 Bad Ragaz 496 2656148.90 4283252.91 CH 

218 Weiler 500 2688148.96 4294975.68 AT 

219 St.Michael ob Bleiburg 505 2618870.83 4685142.11 AT 
220 Bad Goisern 505 2733079.99 4592485.02 AT 

221 Weienstein 510 2625965.95 4605931.25 AT 

222 Bleistätter Moor 510 2628988.73 4630604.93 AT 
223 St.Michael-Wolfsberg 510 2647390.53 4687204.34 AT 

224 Lahn-Hallstatt 510 2722688.45 4595490.75 AT 

225 Kirchenlandl 510 2738295.35 4676601.24 AT 
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226 Breitenau 510 2757940.65 4646998.34 AT 

227 St.Pankraz 513 2748074.45 4636860.40 AT 

228 Obertraun 515 2722575.20 4599433.15 AT 

229 Frankenburg 515 2778846.49 4581372.23 AT 

230 Ossiach 520 2627451.83 4626192.44 AT 
231 Frastanz 520 2675364.50 4296982.87 AT 

232 Kaiserbrunn 523 2752816.94 4755226.20 AT 

233 Grünau-Almegg 525 2757028.81 4617640.82 AT 
234 Altmünster 525 2758391.29 4602312.02 AT 

235 Pöllau (Zentralstation) 525 2707562.16 4759890.74 AT 

236 Keutschach 530 2617785.23 4640345.87 AT 
237 Gütle 530 2697773.24 4304106.10 AT 

238 Maria Lankowitz 530 2674549.69 4705789.49 AT 

239 Velden-Weinzierl 535 2619780.65 4627762.75 AT 
240 Eugendorf 540 2755416.56 4554353.60 AT 

241 Strobl 540 2740431.19 4582743.03 AT 

242 Unterlaussa 540 2744582.24 4662945.76 AT 
243 Unken 540 2730371.91 4526522.59 AT 

244 Ludesch 541 2674628.30 4304291.28 AT 

245 Göstling an der Ybbs 544 2757406.80 4690150.08 AT 
246 Schwaz 548 2693749.53 4450406.08 AT 

247 Sachsenburg 550 2640989.42 4577025.72 AT 

248 Thringen 550 2675896.09 4303431.23 AT 

249 Strawalchen 550 2768345.83 4563954.79 AT 

250 Friedberg-Ortgraben 550 2721236.72 4777052.04 AT 

251 Bern / Zollikofen 552 2656447.66 4128032.22 CH 
252 Chur 556 2639889.52 4285276.35 CH 

253 Breitenau bei Mixnitz 560 2712590.68 4731588.96 AT 

254 Grogmain 560 2739260.80 4540055.56 AT 
255 Kirchberg am Wechsel 563 2740042.48 4771366.97 AT 

256 Wernberg 565 2619948.28 4622231.83 AT 

257 Ried im Zillertal 570 2689467.04 4462256.14 AT 
258 Neustift an der Rosalia 570 2753086.50 4795099.01 AT 

259 Boves                          575 2361655.44 4126277.72 IT 

260 Arnoldstein 576 2611500.69 4605157.90 AT 
261 Faak am See 585 2613411.04 4621306.31 AT 

262 Wolfsegg am Hausruck 585 2784523.22 4595133.04 AT 

263 Meiringen 588 2626160.95 4181030.48 CH 
264 Kössen 588 2731041.62 4501329.40 AT 

265 Feistritz an der Gail 590 2613444.96 4597596.60 AT 
266 Almsee-Fischerau 590 2747252.58 4617525.06 AT 

267 Hinterstoder 590 2740653.69 4633052.02 AT 

268 Zöbern 590 2730326.88 4782460.07 AT 

269 Kreuzberg 590 2636863.78 4738440.19 AT 

270 Millstatt 591 2638681.94 4593758.09 AT 

271 Hopfgarten im Brixental 595 2706494.40 4483332.33 AT 
272 Oberwang 595 2756648.94 4577295.38 AT 

273 Brunnbach 595 2755013.36 4659026.36 AT 

274 Hocheck 595 2776853.43 4571054.10 AT 
275 Hall in Tirol 596 2686980.65 4434319.31 AT 

276 Silberegg 598 2647802.95 4663707.94 AT 

277 Andelsbuch 600 2698928.10 4311746.95 AT 
278 St.Aegyd am Neuwalde 607 2764981 4737430.64 AT 

279 Greifenburg 610 2631123.75 4564102.62 AT 

280 Wildalpen 610 2739423.79 4695165.46 AT 
281 Eichberg 610 2692753.46 4724413.79 AT 

282 Priero                         610 2365055.17 4170015.07 IT 

283 Lunz am See 611 2762047.99 4700183.35 AT 
284 Schwarzau im Gebirge 612 2759778.42 4747974.61 AT 

285 Hochwolkersdorf 614 2747999.60 4792151.38 AT 

286 Windischgarsten (Schule) 615 2743432.78 4646952.85 AT 
287 Oberdrauburg 620 2630400.19 4548908.68 AT 

288 Kleinvolderberg 620 2686439.13 4438011.07 AT 

289 Eisenkappel 623 2606472.75 4673842.37 AT 

290 Ebnat-Kappel 623 2684952.12 4253596.38 CH 

291 Maria Neustift 625 2769113.30 4665424.89 AT 

292 Wietersdorf 630 2648025.84 4666858.98 AT 
293 Grubhof-St.Martin 630 2721915.58 4524189.83 AT 

294 Spital am Pyhrn 630 2737903.49 4646537.02 AT 

295 Telfs 633 2688587.42 4402434.73 AT 
296 Waidegg 635 2619173.20 4568410.19 AT 

297 Bodinggraben 640 2751691.71 4650109.43 AT 

298 Nawald 648 2755174.49 4747714.66 AT 
299 Stanz 648 2721538.17 4735360.66 AT 

300 Fribourg / Posieux 650 2633074.28 4100455.96 CH 

301 Grolobming 650 2685985.09 4685230 AT 
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302 Tröpolach 655 2616430.66 4572767.21 AT 

303 Nikolsdorf 660 2634740.05 4543110.79 AT 

304 Egg 660 2702380.57 4314583.36 AT 

305 Walchsee 660 2728990.88 4495126.67 AT 

306 Inzing 660 2685127.50 4410329.99 AT 
307 Schwendt 660 2728648.06 4501801.81 AT 

308 Trofaiach 660 2714479.52 4698771.90 AT 

309 Veitsch 665 2733481.95 4734435.53 AT 
310 Radweg-Gradisch 666 2627775.61 4637185.42 AT 

311 Sankt Johann in Tirol-Almdorf 667 2714920.90 4505104.31 AT 

312 Fuschl 670 2748253.81 4568712.47 AT 
313 Semriach 670 2693694.67 4729285.11 AT 

314 Stams 671 2685726.76 4396501.45 AT 

315 Bizau 673 2695189.23 4315289.21 AT 
316 Rohr im Gebirge 673 2770070.30 4749284.38 AT 

317 Weichselboden 680 2742412.65 4709816.24 AT 

318 Birkfeld (Schule) 680 2709677.61 4750865.73 AT 
319 Tschagguns 681 2661554.85 4314601.36 AT 

320 Thiersee-Landl 685 2721948.21 4474050.24 AT 

321 Hollenthon 685 2739628.89 4791752.23 AT 
322 Vorau 690 2716347.65 4765237.46 AT 

323 Redlschlag 693 2722974.52 4795246.18 AT 

324 Admont 700 2727231.89 4656381.01 AT 

325 Hohenau an der Raab 702 2702991.15 4737814.31 AT 

326 Mauthen-Würmlach 705 2621351.98 4551942.20 AT 

327 Alberschwende 705 2704980.89 4309597.78 AT 
328 Guttaring 710 2652999.73 4666289.29 AT 

329 Doren 710 2708497.30 4310547.37 AT 

330 Gössl 710 2733005.42 4613540.26 AT 
331 Brunngraben 710 2748937.45 4717582.35 AT 

332 Mautern 710 2710382.26 4685082.39 AT 

333 Afritz 715 2631210.75 4611272.75 AT 
334 Hirschenstein 719 2712746.18 4803885.36 AT 

335 Breitenstein  722 2744313.95 4757778.90 AT 

336 Grades-Klachl 725 2660682.86 4646810.10 AT 
337 Bildstein 730 2706136.05 4304319.20 AT 

338 Judenburg 730 2684368.04 4674459.67 AT 

339 Thalgau 730 2755835.33 4561244.73 AT 
340 Kleindorf 735 2651571.96 4558361.98 AT 

341 Hochneukirchen 736 2724272.94 4789357.97 AT 
342 Kleinlobming 740 2683009.64 4688457.99 AT 

343 Langnau i.E. 743 2649941.97 4153930.36 CH 

344 Unzmarkt 745 2685900.84 4657655.59 AT 

345 Kernhof 751 2760907.64 4733912.16 AT 

346 St.Johann im Walde 752 2646510.10 4521785.35 AT 

347 Amerlügen 760 2677272.43 4291599.14 AT 
348 Kelchsau 760 2698958.22 4482179.84 AT 

349 Gosau 765 2725945.18 4587466.28 AT 

350 Dürrnberg 770 2732932.44 4553102.97 AT 
351 Trag 770 2726056.31 4703358.33 AT 

352 Neuhof 770 2693457.20 4711201.69 AT 

353 Feisoglio                      770 2383745.70 4170779.86 IT 
354 St. Gallen 775 2701628.80 4275695.30 CH 

355 Oetz 775 2677085.28 4389241.56 AT 

356 Schwarz-Radsberg 780 2616583.07 4657548.56 AT 
357 Riefensberg 780 2710031.34 4318193.83 AT 

358 Gasselsdorf 780 2687722.50 4671238.51 AT 

359 Stuhlfelden 780 2689493.19 4512986.44 AT 
360 St.Lorenzen 780 2631387.26 4716440.82 AT 

361 Fieberbrunn 788 2711058.37 4513276.23 AT 

362 Preblau 790 2657915.75 4686885.28 AT 
363 Hittisau 790 2704815.56 4318379.93 AT 

364 Grubegg 790 2722717.53 4616579.70 AT 

365 Mitterbach 790 2758178.46 4716939.07 AT 

366 Weissbriach 800 2623826.42 4571003.90 AT 

367 Reichenfels 800 2666419.64 4682074.57 AT 

368 Au 800 2689940.40 4319276.80 AT 
369 Lackenhof 807 2764152.75 4706438.26 AT 

370 Ellmau 810 2714142.96 4494321.32 AT 

371 Mürzsteg 810 2744090.71 4731786.22 AT 
372 Stall 820 2646475.93 4552398.41 AT 

373 Birnberg 820 2706968.96 4602541.95 AT 

374 Kirchberg in Tirol 823 2706778.11 4495801.62 AT 
375 Imst-Oberstadt 826 2680247.69 4376573.12 AT 

376 Malta 830 2655339.37 4588068.85 AT 

377 Vils 835 2716321.22 4365766.75 AT 
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378 Wagrain 840 2696425.90 4570540.20 AT 

379 Bramberg 844 2686027.87 4496767.57 AT 

380 Sirnitz 850 2642938.08 4630826.30 AT 

381 Meschach 850 2691410.33 4297175.35 AT 

382 Nassereith 850 2689887.67 4383521.35 AT 
383 Saalfelden 850 2707449.92 4536260.21 AT 

384 Ingering II 850 2695479.31 4677026.57 AT 

385 Neukirchen  857 2684768.46 4494995.37 AT 
386 Rettenegg 860 2729442.65 4756145.99 AT 

387 Höfen 870 2706846.09 4372902.26 AT 

388 Sankt Ulrich-Pillersee 870 2714258.05 4516479.12 AT 
389 St.Corona am Wechsel 870 2736981.75 4773348.20 AT 

390 Sankt Martin am Grimming 875 2690483.68 4439526.89 AT 

391 Obdach 875 2672998.98 4677584.54 AT 
392 Ried im Oberinntal 880 2660601.12 4371079.21 AT 

393 Breitenbach 880 2682673.44 4705146.10 AT 

394 Axams 890 2680496.09 4417665.04 AT 
395 Groarl 890 2685700.51 4563377.49 AT 

396 Radstadt 890 2703167.69 4582179.76 AT 

397 Wald am Schoberpass 890 2715782.06 4673801.54 AT 
398 Preiner Gscheid 890 2744030.53 4748989.23 AT 

399 Telfes im Stubai 895 2672836.38 4424286.11 AT 

400 Silbertal 897 2664667.79 4319691.41 AT 

401 Zell-Pfarre 900 2605367.22 4657610.05 AT 

402 Blons 900 2679090.80 4308936.03 AT 

403 Haidbach 900 2685445.46 4509268.16 AT 
404 Hütten 900 2707475.43 4527113.22 AT 

405 Flachau 900 2698506.19 4577597.57 AT 

406 Forchach 905 2700513.54 4365050.79 AT 
407 Einsiedeln 910 2669746.02 4226687.88 CH 

408 Pleschkogel 910 2684671.19 4718279.34 AT 

409 Magdalensberg 920 2633624.56 4659790.39 AT 
410 Dalaas 920 2668277.84 4320472.67 AT 

411 Festenburg-Hinterberg 920 2726071.94 4767153.24 AT 

412 St.Jakob im Walde 922 2723160.67 4757000.90 AT 
413 Annaberg 924 2765939.64 4722377.51 AT 

414 Jauken 925 2622647.54 4553424.26 AT 

415 Karbachalm (Talstation) 925 2701199.18 4555922.22 AT 
416 Gaisberg 930 2661075.99 4657189.12 AT 

417 Sibratsgfäll 930 2701235.69 4323726.56 AT 
418 Hinterri 930 2706990.94 4431642.59 AT 

419 Brandenberg 940 2710460.03 4464676.34 AT 

420 Wildschnau-Mühltal 940 2705876.28 4475695.13 AT 

421 Kendlbruck 940 2669581.32 4615906.77 AT 

422 Greith 945 2725509.45 4623659.61 AT 

423 Obsteig 950 2687907.09 4390901.36 AT 
424 Paal-Stadl 950 2670351.84 4623435.10 AT 

425 Hochfilzen 952 2709382.97 4518364.16 AT 

426 Elm 957 2646055.27 4258238.45 CH 
427 Scharnitz 963 2697455.19 4416710.34 AT 

428 Thringerberg 967 2678268.26 4304722.89 AT 

429 Wastl am Wald 967 2770107.69 4716649.04 AT 
430 Niederndorferberg 970 2733786.57 4489407.80 AT 

431 Trahtten 970 2648128.28 4712955.31 AT 

432 Jochberg 980 2697764.93 4503636.91 AT 
433 Seewiesen 980 2737241.61 4717223.25 AT 

434 Donnersbachwald 985 2703951.96 4632468.70 AT 

435 Piotta 990 2601179.57 4220311.64 CH 
436 Am Nachtsöllberg 990 2704130.07 4489000.40 AT 

437 Piotta 990 2601179.57 4220311.64 CH 

438 Bodental 995 2605501.28 4646077.09 AT 
439 Brental 1000 2604002.89 4640342.62 AT 

440 Maitratten-Sonnleiten 1000 2638319.84 4621399 AT 

441 Sulzberg 1000 2711824.78 4314217.05 AT 

442 Schlitterberg 1000 2696947.30 4458923.34 AT 

443 Steinberg am Rofan 1000 2713660.43 4455592.26 AT 

444 St.Koloman 1000 2731634.58 4563938.24 AT 
445 Pötschen 1000 2730271.97 4598829.39 AT 

446 Osterwitz-Winkel 1000 2653944.58 4707576.16 AT 

447 Matrei in Osttirol 1003 2659204.37 4513947.63 AT 
448 Brand 1005 2665566.76 4301099.73 AT 

449 Aschau 1005 2698859.80 4495369.86 AT 

450 Möggers 1010 2716467.56 4307047.59 AT 
451 Schönberg im Stubaital 1010 2675421.27 4427190.49 AT 

452 Hüttschlag 1010 2678931.27 4566128.08 AT 

453 Kleinarl 1010 2690634.89 4572305.82 AT 
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454 Klein Pyhrgas 1010 2739602.94 4649135.99 AT 

455 Salbertrand                    1010 2445224.42 4076153.37 IT 

456 Sll-Stockach 1020 2711044.63 4482659.25 AT 

457 Alpl 1020 2725355.30 4747763.75 AT 

458 Haringgraben 1020 2728347.39 4705616.24 AT 
459 Klaushof 1022 2673512.13 4468444.18 AT 

460 Château-d Oex 1028 2600634.92 4101235.77 CH 

461 Hochegg 1030 2630988.79 4593732.67 AT 
462 Bosruckhütte 1036 2734810.76 4649160.25 AT 

463 Kreuzwirt 1038 2713382.47 4758290.21 AT 

464 Seeberg 1040 2600516.39 4669979.70 AT 
465 Innerlaterns 1040 2682630.16 4301326.43 AT 

466 Schnenbach 1040 2695526.19 4323141.42 AT 

467 Untertal-Tetter 1040 2700645.19 4601547.50 AT 
468 Piedicavallo                   1040 2510912.86 4161687.75 IT 

469 Neuhaus am Zellerain 1048 2755023.56 4709562.08 AT 

470 Knappenberg 1050 2656060 4668292.91 AT 
471 St.Johann am Tauern 1050 2703845.72 4658841.61 AT 

472 Pfänder 1056 2710579.87 4304436.77 AT 

473 Noreia 1060 2666179.18 4665404.72 AT 
474 Filzmoos 1060 2708798.90 4586919.58 AT 

475 Oppenberg 1060 2717709.36 4642798.91 AT 

476 Klösterle 1070 2668652.19 4327791.59 AT 

477 See im Paznaun 1070 2663606.73 4356465.51 AT 

478 Fladnitzberg 1070 2703560.21 4735476.89 AT 

479 St.Lambrecht 1070 2670516.85 4647402.68 AT 
480 Poschiavo / Robbia 1078 2581684.56 4325954.05 CH 

481 Poschiavo / Robbia 1078 2581684.56 4325954.05 CH 

482 Jerzens-Ritzenried 1080 2669165.09 4379210.30 AT 
483 Inneralpbach 1080 2698172.18 4469392.48 AT 

484 Hohenau am Wechsel 1080 2723492.31 4772039.56 AT 

485 Ebnit 1085 2693090.67 4301572 AT 
486 Thomatal 1090 2669812.44 4604777.17 AT 

487 Sillian 1097 2629295 4505795.75 AT 

488 Trattenbach (Schlaggraben) 1100 2739953.84 4762951.43 AT 
489 Hopfgarten in Defereggen 1110 2648646.22 4513067.87 AT 

490 Muhr 1110 2672267.85 4584759.87 AT 

491 Pack 1115 2664498.78 4700372.03 AT 
492 Jungholz 1120 2717792.77 4355716.45 AT 

493 Böckstein 1120 2669024.34 4557673.98 AT 
494 Sankt Nikolai im Sölktal 1120 2697991.81 4626983.02 AT 

495 Gschnaidt 1128 2690163.15 4712331.27 AT 

496 Leutasch-Kirchplatzl 1130 2695440.51 4406663.99 AT 

497 Maria Luggau 1140 2624989.57 4531117.53 AT 

498 Fontanella 1140 2681673.77 4314434.07 AT 

499 Bucheben 1140 2676346.43 4546448.74 AT 
500 Soboth 1145 2633071.29 4710382.25 AT 

501 Diex 1150 2636620.03 4673915.87 AT 

502 Bödele 1150 2700852.50 4306548.23 AT 
503 Flirsch 1150 2670647.73 4352205.57 AT 

504 Hirschegg 1158 2668374.08 4695418.80 AT 

505 Gaberl 1160 2678921.28 4696790.73 AT 
506 Klosterwinkel 1162 2658050.70 4709256.69 AT 

507 Mönichkirchen 1179 2730064.70 4773244.27 AT 

508 Dreifaltigkeit 1180 2642036.48 4648296.58 AT 
509 Längenfeld 1180 2663051.17 4394685.24 AT 

510 Bromberg 1180 2710640.81 4488852.46 AT 

511 Lessach 1190 2682550.02 4609744.36 AT 
512 Disentis 1197 2622262.22 4233338.97 CH 

513 Pass Thurn 1200 2690329.59 4504776.46 AT 

514 Postalm 1200 2732567.02 4579132.51 AT 
515 Iselsberg-Penzelberg 1205 2641810.77 4539130.29 AT 

516 Zederhaus 1205 2676978.70 4587690.47 AT 

517 Trins 1210 2664400.25 4428658.76 AT 

518 Seetal 1210 2679396.27 4620917.53 AT 

519 Forno alpi graie               1215 2476282.07 4103319.36 IT 

520 St.Peter im Katschtal 1220 2663840.49 4594617.87 AT 
521 Osterwitz 1220 2652062.46 4708550.14 AT 

522 Formazza bruggi                1226 2583085.23 4200013.43 IT 

523 Tweng 1235 2681493.12 4594821.81 AT 
524 Colleretto                     1240 2484184.88 4137732.84 IT 

525 Baad 1255 2688682.15 4330017.24 AT 

526 Anras 1260 2632271.78 4516324.41 AT 
527 Hohentauern 1265 2712515.67 4659530.57 AT 

528 Paesana                        1265 2398661.95 4103648.12 IT 

529 St.Wolfgang 1275 2675866.47 4673032.90 AT 
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530 Gschnitz-Obertal 1280 2658111.40 4422370.62 AT 

531 Kaunertal-Vergtschen 1285 2658044.54 4378053.60 AT 

532 Jägerwirt 1300 2638593.35 4710165.54 AT 

533 Scuol 1303 2631255.40 4342741.26 CH 

534 Hebalpe 1310 2659051.15 4702614.16 AT 
535 St.Oswald (Talstation) 1319 2644363.50 4608670.06 AT 

536 Gramais 1320 2684069.17 4361557.93 AT 

537 Adelboden 1322 2600862.77 4133612.54 CH 
538 Prägraten 1340 2658954.04 4501732.71 AT 

539 Berwang 1340 2699703.17 4377855.17 AT 

540 Ulrichen 1345 2600666.92 4191109.12 CH 
541 Schönbergalpe 1350 2720638.16 4600867.91 AT 

542 Prerichard                     1353 2446244.48 4062177.37 IT 

543 Obernberg am Brenner 1360 2657423.54 4430161.73 AT 
544 Macugnaga pecetto              1360 2542293.98 4162623.84 IT 

545 Hutterer Böden 1370 2738439.29 4634907.45 AT 

546 Sölden-Kaisers 1380 2650875.90 4398013.07 AT 
547 Praly                          1385 2426254.89 4088348.19 IT 

548 Ladis-Neuegg 1390 2663526.52 4370399.61 AT 

549 Valdieri                       1390 2348021.66 4102308.76 IT 
550 Navis 1400 2670211.21 4438359.86 AT 

551 Kartitsch 1415 2626629.68 4512918.02 AT 

552 Obertilliach 1430 2624580.64 4521515.52 AT 

553 Flattnitz 1430 2655912.83 4628465.87 AT 

554 Linzer Haus 1435 2735265.38 4643194.93 AT 

555 Andermatt 1438 2614222.82 4212291.48 CH 
556 Lech 1450 2677514.72 4331930.02 AT 

557 Alpe cheggio                   1460 2554499.99 4175181.66 IT 

558 Bielmonte                      1480 2507542.94 4170929.63 IT 
559 Zug 1500 2676337.62 4329299.23 AT 

560 Kappl-Oberbichl 1500 2661871.44 4349760.85 AT 

561 Camparient                     1515 2515386.99 4171833.18 IT 
562 Pragelato - trampolino a valle 1525 2438150.82 4079609.80 IT 

563 Barcenisio                     1525 2458300.45 4083839.50 IT 

564 Nafeld 1530 2610760.76 4572347.53 AT 
565 Blatten, Lötschental 1538 2592264.83 4153579.13 CH 

566 Piamprato                      1555 2497103.27 4131346.15 IT 

567 Davos/Stilli 1560 3251334.99 3735410.51 CH 
568 Gries 1570 2662457.42 4398726.23 AT 

569 Pontechianale                  1575 2393805.90 4086734.22 IT 
570 Ceresole villa                 1581 2485157.14 4102596.07 IT 

571 Davos 1594 2633413.82 4309150.46 CH 

572 Grächen 1605 2567244.97 4153927.69 CH 

573 Planneralm 1605 2708050.70 4638276.37 AT 

574 Acceglio                       1610 2379975.16 4080547.98 IT 

575 Amden/Bärenfall 1610 3195426.32 3771436.67 CH 
576 Plangero 1620 2652895.07 4386881.69 AT 

577 Palanfre                      1625 2346135.94 4119927.66 IT 

578 Spiss 1630 2649676.69 4354116.71 AT 
579 Innerschmirn-Obern 1630 2667591.82 4442907.89 AT 

580 Glärnisch/Guppen 1630 3188298.77 3751717.17 CH 

581 Alpe devero                    1634 2579860.54 4186936.20 IT 
582 S. Bernardino 1638 2594941.73 4258407.25 CH 

583 Zermatt 1638 2549010.51 4146873.12 CH 

584 S. Bernardino 1638 2594941.73 4258407.25 CH 
585 Piaggia                        1645 2332041.95 4138964.31 IT 

586 Argentera                      1680 2370159.47 4076819.28 IT 

587 Samedan 1708 2601568.90 4311841.82 CH 
588 Zürs 1720 2672920.12 4333456.18 AT 

589 Castelmagno                    1755 2369957.70 4095084.72 IT 

590 Rifugio mondovi               1760 2345331.24 4139408.87 IT 
591 Turracher Höhe 1767 2652778.40 4616651.49 AT 

592 Elva                           1770 2386389.17 4089378.96 IT 

593 Lungern/Schönbüel 1770 3118360.81 3723948.25 CH 

594 Gschwand 1775 2675244.08 4460094.70 AT 

595 Ochsengarten-Obergut 1780 2680322.43 4393898.19 AT 

596 Stockhorn/Vorderstocken 1780 3074151 3711270.03 CH 
597 Malciaussia                    1800 2459568.33 4096752.26 IT 

598 Segl-Maria 1804 2591161.81 4302812.83 CH 

599 Zettersfeld 1820 2642970.60 4533911.44 AT 
600 Evolène / Villa 1825 2558815.91 4128274.50 CH 

601 Linthal/Ortstock Matt 1830 3182781.61 3742697.65 CH 

602 Sauze cesana                   1840 2425556.88 4077345 IT 
603 Sieben Hengste 1850 3096262.91 3719566.37 CH 

604 Larecchio                      1860 2567222.74 4199901.81 IT 

605 Brienz/Rotschalp 1870 3110004.85 3723003.01 CH 



141 

606 Arosa 1878 2631194.25 4296572.14 CH 

607 Vernago 1938 2625654.65 4383913.09 IT 

608 Ladurns 1959 2647767.66 4425128.93 IT 

609 Färmel/Färmelberg 1970 3073029.01 3693332.94 CH 

610 Lauenen/Trüttlisbergpass 1970 3064562.62 3682578.52 CH 
611 Grimsel Hospiz 1980 2608040.95 4193192.34 CH 

612 Le selle                       1980 2443283.33 4077920.14 IT 

613 Casa del Giovo 1986 2637530.82 4422296.16 IT 
614 Piz la Ila (SOMMER) 2012 2607583.09 4467096.65 IT 

615 Malga Merbe 2015 2660381.79 4482402.50 IT 

616 Prati di Plan 2016 2631575.05 4405183.79 IT 
617 Sestriere                      2020 2431984.60 4074114.12 IT 

618 Diga del chiotas               2020 2343006.26 4107425.79 IT 

619 Frutigen/Ottere 2020 3078051.15 3695646.31 CH 
620 Val dIlliez/Les Collines 2020 3022895.93 3655189.76 CH 

621 Schächental/Seewli 2030 3165030.41 3730116.61 CH 

622 Krippenstein 2050 2719197.76 4599261.78 AT 
623 Elm/Chüebodensee 2050 3196191.32 3745460.73 CH 

624 Gadmen/Gschletteregg 2060 3141035.60 3721187.29 CH 

625 Vals/Alp Calasa 2070 3203322.90 3716985.66 CH 
626 Bedretto/Cassinello 2100 3152064.51 3693758.03 CH 

627 Grindelwald/First 2110 3115975.67 3711572.14 CH 

628 Gstaad/Ober Meiel 2110 3051764.95 3681627.25 CH 

629 Guttannen/Homad 2110 3133146.57 3713553.20 CH 

630 Pian delle baracche            2135 2386556.80 4092910.39 IT 

631 Frutigen/Elsige 2140 3084222.48 3694790.39 CH 
632 Klosters/Madrisa 2140 3252605.30 3746194.75 CH 

633 Titlis 2140 3141658.73 3725802.86 CH 

634 Clot della soma                2150 2435257.21 4079518.63 IT 
635 Pian giasset                   2150 2402160.97 4093093.84 IT 

636 Hinterrhein/Alp Piänetsch 2150 3204123.09 3702626.11 CH 

637 Kandersteg/Fisi 2160 3087050.02 3688517.75 CH 
638 Männlichen 2165 3106935.49 3705644.72 CH 

639 Taminatal/Schaftäli 2170 3221072.57 3742063.71 CH 

640 Urseren/Giltnasen 2170 3150868.74 3704300.23 CH 
641 Breil Tumpiv/Val Miez 2195 3188505.69 3727869.26 CH 

642 Puzzetta, Medel/Ils Plauns 2195 3177368.30 3710090.13 CH 

643 Colle bercia                   2200 2428943.47 4066735.37 IT 
644 Hinterrhein/Unter Surettasee 2200 3215245.51 3702472.76 CH 

645 Oberwald/Mällige 2200 3139088.24 3694918.57 CH 
646 Meiental/Laucheren 2210 3152779.27 3721710.07 CH 

647 Mund/Chiematte 2210 3107020.86 3674054.11 CH 

648 Campolungo/Fontane 2220 3167253.71 3691722.86 CH 

649 Chaussy/Pierres Fendues 2220 3048127.25 3676531.95 CH 

650 Tujetsch/Nual 2220 3167857.27 3711855.40 CH 

651 Conthey/Etang de Trente Pas 2230 3057076.18 3667127.96 CH 
652 Finhaut/LEcreuleuse 2240 3033770.21 3645538.14 CH 

653 Passo del Bernina 2260 2588560.89 4322604.27 CH 

654 Tujetsch/Culmatsch 2270 3166352.05 3715896.16 CH 
655 Lago pilone                    2280 2437641.61 4074440.08 IT 

656 Gütsch, Andermatt 2283 2616562.38 4214979.38 CH 

657 Dresdner Hütte 2290 2654352.13 4407906.64 AT 
658 Davos/Parsenn 2290 3247788.17 3739523.03 CH 

659 Colle barant                   2294 2411792.26 4088047.33 IT 

660 Piz Lagrev/Materdell 2300 3242906.24 3691923.66 CH 
661 Lago agnel                     2304 2488442.61 4097088.30 IT 

662 Colle lombarda                 2305 2348729.49 4092682.49 IT 

663 Bosco Gurin/Hendar Furggu 2310 3149069.32 3676214.67 CH 
664 Klosters/Gatschiefer 2310 3257508.87 3739035.18 CH 

665 Pian dei Cavalli 2314 2595668.44 4383313.26 IT 

666 Crap Masegn 2330 3200407.63 3735855.14 CH 
667 Schächental/Alpler Tor 2330 3169339.71 3738989.19 CH 

668 Naluns/Schlivera 2350 3282431.92 3737994.05 CH 

669 Schilthorn/Türliboden 2360 3098841.81 3700629.81 CH 

670 Lago di valsoera               2365 2489629.39 4116993.56 IT 

671 Distentis/Lumpegna 2388 3176650.47 3721720.22 CH 

672 Arbaz, Val. Sionne/Donin du Jour 2390 3063995.35 3670907.19 CH 
673 Flüela/Hospiz 2390 3259405.56 3729348.18 CH 

674 Bocchetta delle pisse          2410 2531691.17 4157934.34 IT 

675 Goms/Treichbode 2430 3129530.98 3692376.29 CH 
676 Julier/Vairana 2430 3242093.46 3697815.70 CH 

677 Oberwald/Jostsee 2430 3135938.64 3698921.96 CH 

678 Piz Martegnas 2430 3229431.75 3708180.50 CH 
679 Acquarossa/Piano del Simano 2450 3187482.14 3693120.61 CH 

680 Bedretto/Cavanna 2450 3150953.64 3698436.95 CH 

681 Davos/Hanengretji 2450 3245939.14 3732393.24 CH 
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682 Goms/Bodmerchumma 2450 3130232.38 3684896.55 CH 

683 Bernina/Motta Bianca 2450 3268398.34 3693286.76 CH 

684 Formazza                       2453 2592721.75 4194781.78 IT 

685 Taminatal/Wildsee 2460 3215424.65 3750333.27 CH 

686 Leukerbad/Trubelboden 2480 3080720.76 3677121.16 CH 
687 Saas/Seetal 2480 3104258.95 3656041.36 CH 

688 Eggishorn 2495 3119390.34 3683875.02 CH 

689 Säntis 2502 2682104.31 4271363.71 CH 
690 Bever/Valetta 2510 3252685.48 3705312.70 CH 

691 Simplon/Bortelsee 2520 3121454.80 3669937.63 CH 

692 Samnaun/Ravaischer Salaas 2520 3287651.74 3754029.83 CH 
693 Davos/Weissfluhjoch 2540 3248305.73 3737138.44 CH 

694 Les Attelas 2545 3057485.84 3646855.90 CH 

695 Lukmanier/Lai Verd 2550 3171411.84 3707295.32 CH 
696 Davos/Bärentälli 2560 3250139.43 3722802.98 CH 

697 Les Diablerets 2575 3054461.97 3669812.15 CH 

698 Anniviers/Tracuit 2590 3087256.67 3649807.82 CH 
699 Arolla/Bréona 2610 3080195.62 3645803.64 CH 

700 Fully/Grand Cor 2610 3043170.21 3656245.34 CH 

701 Bernina/Puoz Bass 2620 3259555.25 3694815.35 CH 
702 Anniviers/Orzival 2630 3077596.31 3656836.63 CH 

703 Rifugio gastaldi               2659 2469597.80 4096716.76 IT 

704 Zernez/Pülschezza 2680 3265352.20 3723729.78 CH 

705 Liddes/Pointe de Toules 2700 3055399.95 3633467.61 CH 

706 Laucherenalp/Gandegg 2717 3093856.04 3684115.82 CH 

707 Kesch/Porta dEs-cha 2725 3256740.37 3714662.94 CH 
708 Piz Lagrev/Tscheppa 2730 3246296.95 3695124.67 CH 

709 Vinadi/Alpetta 2730 3295762.25 3751939.62 CH 

710 Rifugio vaccarone              2745 2454354 4078288.14 IT 
711 Zermatt/Triftchumme 2750 3093166.35 3641293.39 CH 

712 Saas/Schwarzmies 2810 3111878.13 3651173.05 CH 

713 Madriccio 2818 2598036.40 4368229.13 IT 
714 Passo del moro                 2820 2545010.92 4164150.11 IT 

715 Arolla/Les Fontanesses 2850 3071393.55 3638948.35 CH 

716 St. Niklaus/Oberer Stelligletscher 2910 3094358.07 3655304.90 CH 
717 La Fouly/Glacier de Saleina 2942 3040016.36 3631973.74 CH 

718 Gornergrat 2950 3097767.04 3635413.01 CH 

719 Giovo del Diavolo 3040 2630441.38 4379443.77 IT 
720 Monviso                        3325 2399039.93 4089801.52 IT 

 

 

Table C.5 List of online data sources. 

Product Online source 

Digital Elevation Model https://esdac.jrc.ec.europa.eu/projects/Alpsis/Ecalp_data.html 
Corine Land Cover https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster-4 
MODIS snowcover https://doi.org/10.5067/MODIS/MOD10A2.006  

Discharge Data 

AT https://ehyd.gv.at/ 
CH https://www.hydrodaten.admin.ch/  
FR http://www.hydro.eaufrance.fr/  
I http://abouthydrology.blogspot.com/2016/09/the-adige-database-or-database-newage.html  

http://www.arpa.piemonte.it/ 
SI http://www.arso.gov.si/vode/podatki/  

Meteorological Data 

AT https://ehyd.gv.at/ 
CH https://gate.meteoswiss.ch/idaweb/more.do  
FR https://donneespubliques.meteofrance.fr/  
I http://www.meteo.fvg.it/archivio.php?ln=&p=dati  

http://www.arpa.piemonte.it/ 

Snow depth Data 

AT https://ehyd.gv.at/ 

CH https://gate.meteoswiss.ch/idaweb/more.do 

I http://abouthydrology.blogspot.com/2016/09/the-adige-database-or-database-newage.html  
http://www.arpa.piemonte.it/ 
http://www.meteo.fvg.it/archivio.php?ln=&p=dati  

https://esdac.jrc.ec.europa.eu/projects/Alpsis/Ecalp_data.html
https://mail.ethz.ch/owa/redir.aspx?C=hziUEVs3emoKqvrDycsJSQoiUFN4sfN2Uc1Jf4KXt8kvgj5gyKfWCA..&URL=https%3a%2f%2fehyd.gv.at%2f
https://www.hydrodaten.admin.ch/
http://www.hydro.eaufrance.fr/
http://abouthydrology.blogspot.com/2016/09/the-adige-database-or-database-newage.html
http://www.arpa.piemonte.it/
http://www.arso.gov.si/vode/podatki/
https://mail.ethz.ch/owa/redir.aspx?C=hziUEVs3emoKqvrDycsJSQoiUFN4sfN2Uc1Jf4KXt8kvgj5gyKfWCA..&URL=https%3a%2f%2fehyd.gv.at%2f
https://gate.meteoswiss.ch/idaweb/more.do
https://donneespubliques.meteofrance.fr/
http://www.meteo.fvg.it/archivio.php?ln=&p=dati
http://www.arpa.piemonte.it/
https://mail.ethz.ch/owa/redir.aspx?C=hziUEVs3emoKqvrDycsJSQoiUFN4sfN2Uc1Jf4KXt8kvgj5gyKfWCA..&URL=https%3a%2f%2fehyd.gv.at%2f
https://gate.meteoswiss.ch/idaweb/more.do
http://abouthydrology.blogspot.com/2016/09/the-adige-database-or-database-newage.html
http://www.arpa.piemonte.it/
http://www.meteo.fvg.it/archivio.php?ln=&p=dati
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