
ETH Library

Learning Travel Time Distributions
with Deep Generative Model

Conference Paper

Author(s):
Li, Xiucheng; Cong, Gao; Sun, Aixin; Cheng, Yun

Publication date:
2019

Permanent link:
https://doi.org/10.3929/ethz-b-000347639

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3308558.3313418

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000347639
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3308558.3313418
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Learning Travel Time Distributions with Deep Generative Model
Xiucheng Li

Nanyang Technological University
xli055@e.ntu.edu.sg

Gao Cong
Nanyang Technological University

gaocong@ntu.edu.sg

Aixin Sun
Nanyang Technological University

axsun@ntu.edu.sg

Yun Cheng
ETH Zürich

chengyu@ethz.ch

ABSTRACT
Travel time estimation of a given route with respect to real-time
traffic condition is extremely useful for many applications like
route planning. We argue that it is even more useful to estimate
the travel time distribution, from which we can derive the expected
travel time as well as the uncertainty. In this paper, we develop
a deep generative model – DeepGTT – to learn the travel time
distribution for any route by conditioning on the real-time traffic.
DeepGTT interprets the generation of travel time using a three-
layer hierarchical probabilistic model. In the first layer, we present
two techniques, amortization and spatial smoothness embeddings,
to share statistical strength among different road segments; a con-
volutional neural net based representation learning component is
also proposed to capture the dynamically changing real-time traffic
condition. In the middle layer, a nonlinear factorization model is
developed to generate auxiliary random variable i.e., speed. The
introduction of this middle layer separates the statical spatial fea-
tures from the dynamically changing real-time traffic conditions,
allowing us to incorporate the heterogeneous influencing factors
into a single model. In the last layer, an attention mechanism based
function is proposed to collectively generate the observed travel
time. DeepGTT describes the generation process in a reasonable
manner, and thus it not only produces more accurate results but
also is more efficient. On a real-world large-scale data set, we show
that DeepGTT produces substantially better results than state-of-
the-art alternatives in two tasks: travel time estimation and route
recovery from sparse trajectory data.

CCS CONCEPTS
•Applied computing→ Forecasting;Mathematics and statistics.

KEYWORDS
Travel time distribution learning, Deep generative models, VAEs
ACM Reference Format:
Xiucheng Li, Gao Cong, Aixin Sun, and Yun Cheng. 2019. Learning Travel
Time Distributions with Deep Generative Model. In Proceedings of the 2019
World Wide Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3308558.
3313418

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313418

(a)

(b)

a1 a2

a3
a4 a5

rA
<latexit sha1_base64="qnNvr3D2n/FISfqvn16bzQA5SxE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BunbRbaemDgcM693DMnTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbSS78cUR2GU62n/pl+tuXV3DrJKvILUoECzX/3yBwnLYq6QSWpMz3NTDHKqUTDJpxU/MzylbEyHvGepojE3QT7PPCVnVhmQKNH2KSRz9fdGTmNjJnFoJ2cZzbI3E//zehlG10EuVJohV2xxKMokwYTMCiADoTlDObGEMi1sVsJGVFOGtqaKLcFb/vIqaV/UPbfuPVzWGrdFHWU4gVM4Bw+uoAH30IQWMEjhGV7hzcmcF+fd+ViMlpxi5xj+wPn8ATl2kco=</latexit><latexit sha1_base64="qnNvr3D2n/FISfqvn16bzQA5SxE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BunbRbaemDgcM693DMnTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbSS78cUR2GU62n/pl+tuXV3DrJKvILUoECzX/3yBwnLYq6QSWpMz3NTDHKqUTDJpxU/MzylbEyHvGepojE3QT7PPCVnVhmQKNH2KSRz9fdGTmNjJnFoJ2cZzbI3E//zehlG10EuVJohV2xxKMokwYTMCiADoTlDObGEMi1sVsJGVFOGtqaKLcFb/vIqaV/UPbfuPVzWGrdFHWU4gVM4Bw+uoAH30IQWMEjhGV7hzcmcF+fd+ViMlpxi5xj+wPn8ATl2kco=</latexit><latexit sha1_base64="qnNvr3D2n/FISfqvn16bzQA5SxE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BunbRbaemDgcM693DMnTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbSS78cUR2GU62n/pl+tuXV3DrJKvILUoECzX/3yBwnLYq6QSWpMz3NTDHKqUTDJpxU/MzylbEyHvGepojE3QT7PPCVnVhmQKNH2KSRz9fdGTmNjJnFoJ2cZzbI3E//zehlG10EuVJohV2xxKMokwYTMCiADoTlDObGEMi1sVsJGVFOGtqaKLcFb/vIqaV/UPbfuPVzWGrdFHWU4gVM4Bw+uoAH30IQWMEjhGV7hzcmcF+fd+ViMlpxi5xj+wPn8ATl2kco=</latexit><latexit sha1_base64="qnNvr3D2n/FISfqvn16bzQA5SxE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BunbRbaemDgcM693DMnTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbSS78cUR2GU62n/pl+tuXV3DrJKvILUoECzX/3yBwnLYq6QSWpMz3NTDHKqUTDJpxU/MzylbEyHvGepojE3QT7PPCVnVhmQKNH2KSRz9fdGTmNjJnFoJ2cZzbI3E//zehlG10EuVJohV2xxKMokwYTMCiADoTlDObGEMi1sVsJGVFOGtqaKLcFb/vIqaV/UPbfuPVzWGrdFHWU4gVM4Bw+uoAH30IQWMEjhGV7hzcmcF+fd+ViMlpxi5xj+wPn8ATl2kco=</latexit>

rB
<latexit sha1_base64="JA+62BsCQpkLtyvYrKFwAKuz3RI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLUjcsK9gFNKJPpTTt0MgkzE6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiOlI8ogzaqzk+zE14zDK1WzQHFRrbt1dgKwTryA1KNAaVL/8YcKyGKVhgmrd99zUBDlVhjOBs4qfaUwpm9AR9i2VNEYd5IvMM3JhlSGJEmWfNGSh/t7Iaaz1NA7t5DyjXvXm4n9ePzPRbZBzmWYGJVseijJBTELmBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/fI66VzVPbfuPVzXGs2ijjKcwTlcggc30IB7aEEbGKTwDK/w5mTOi/PufCxHS06xcwp/4Hz+ADr6kcs=</latexit><latexit sha1_base64="JA+62BsCQpkLtyvYrKFwAKuz3RI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLUjcsK9gFNKJPpTTt0MgkzE6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiOlI8ogzaqzk+zE14zDK1WzQHFRrbt1dgKwTryA1KNAaVL/8YcKyGKVhgmrd99zUBDlVhjOBs4qfaUwpm9AR9i2VNEYd5IvMM3JhlSGJEmWfNGSh/t7Iaaz1NA7t5DyjXvXm4n9ePzPRbZBzmWYGJVseijJBTELmBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/fI66VzVPbfuPVzXGs2ijjKcwTlcggc30IB7aEEbGKTwDK/w5mTOi/PufCxHS06xcwp/4Hz+ADr6kcs=</latexit><latexit sha1_base64="JA+62BsCQpkLtyvYrKFwAKuz3RI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLUjcsK9gFNKJPpTTt0MgkzE6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiOlI8ogzaqzk+zE14zDK1WzQHFRrbt1dgKwTryA1KNAaVL/8YcKyGKVhgmrd99zUBDlVhjOBs4qfaUwpm9AR9i2VNEYd5IvMM3JhlSGJEmWfNGSh/t7Iaaz1NA7t5DyjXvXm4n9ePzPRbZBzmWYGJVseijJBTELmBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/fI66VzVPbfuPVzXGs2ijjKcwTlcggc30IB7aEEbGKTwDK/w5mTOi/PufCxHS06xcwp/4Hz+ADr6kcs=</latexit><latexit sha1_base64="JA+62BsCQpkLtyvYrKFwAKuz3RI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLUjcsK9gFNKJPpTTt0MgkzE6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiOlI8ogzaqzk+zE14zDK1WzQHFRrbt1dgKwTryA1KNAaVL/8YcKyGKVhgmrd99zUBDlVhjOBs4qfaUwpm9AR9i2VNEYd5IvMM3JhlSGJEmWfNGSh/t7Iaaz1NA7t5DyjXvXm4n9ePzPRbZBzmWYGJVseijJBTELmBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/fI66VzVPbfuPVzXGs2ijjKcwTlcggc30IB7aEEbGKTwDK/w5mTOi/PufCxHS06xcwp/4Hz+ADr6kcs=</latexit>

Figure 1: (a) The travel time distributions of two routes–rA
and rB , E[tA] = 26, E[tB] = 30. (b) Example of route recovery
from sparse trajectory.

1 INTRODUCTION
Estimating travel time of a given route on a road network is an
essential task for many applications, including route planning, taxi
dispatching, and ride-sharing. Many online web apps (e.g., Google
Map and Uber) provide such service. Due to its great importance,
significant research efforts have been made towards the accurate
estimation of travel times [20, 38, 39, 41]. However, existing studies
only focus on the estimation of expected travel time. We argue that
it is much more helpful or even essential to estimate travel time
distribution (the probability density function) of a given route, based
on real-time traffic conditions. We illustrate this point through an
example.

Motivating example. Mary has a time budget of 35 minutes to
reach airport from home. She queries for the best route, and there
are two candidates — route A and route B, denoted by rA and rB ,
respectively. The travel time distributions of rA and rB are depicted
in Figure 1a, with the expectationE[tA] = 26 (minutes), andE[tB] =
30 (minutes). If the system recommends route solely based on the
expected travel time, then rA is the best choice. However, as shown
in the figure, rA has a much larger variance. Therefore, Mary would
have a high risk of missing her flight if taking rA. In contrast, the
probability density function of tB is much more concentrated, and
it is much safer to take rB .

This example shows that it is more sensible to make decision
based on the probability distribution of the travel time, instead of
mere its expectation. In fact, estimating travel time distribution also
addresses the issue of route recovery from the sparse trajectory [42].
Figure 1b shows two possible routes rA, rB from a3 to a4 (due to
the low sampling rate) in an observed trajectory Ta = [a1, . . . ,a5].

1017

https://doi.org/10.1145/3308558.3313418
https://doi.org/10.1145/3308558.3313418
https://doi.org/10.1145/3308558.3313418

As the sampling points usually carry timestamps, we could get
the travel time cost from a3 to a4, denoted by t . The problem of
inferring the most likely route can be expressed as

argmax
r

P (r|t), r ∈ {rA, rB }.

Using the Bayes Rule, we have P (r|t) ∝ P (t |r)P (r). That is, we need
to access the value of travel time distribution P (t |r) at any t > 0.

In this paper, we aim to learn the travel time distribution
P (t |r) for a given route r, with the consideration of real-time traffic
conditions. This problem is challenging due to a few reasons. First,
data sparsity remains a key challenge. Even though we have access
to a large number of trajectories, the trajectories demonstrate a
skewed distribution in the space. Roads in central business district
are frequently visited, while roads in rural or remote areas are
rarely covered. It is reported that about 10% of paths cannot be
estimated due to lack of neighbor trajectories [39]. Second, travel
time heavily depends on real-time traffic conditions which are
dynamic. Almost all existing methods [20, 25, 38, 39, 42] assume
that traffic conditions in the same time slot (e.g., 8:00am-9:00am on
every Saturday) are temporally-invariant, when estimating travel
times. The assumption does not hold because traffic conditions
can be influenced by many random variables such as the daily
activities of people, road works, and accidents. Considering real-
time traffic conditionsmakes data sparsity issue evenworse. Further,
travel time is also influenced by spatial characteristics of a road e.g.,
number of traffic lights, number of lanes, and speed limit. To the
best of our knowledge, no existing study has incorporated these
heterogeneous influencing factors (both spatial and temporal) into
a single model for travel time estimation.

To address the aforementioned challenges simultaneously, we
approach travel time distribution learning from deep generative per-
spective [23, 35]. Specifically, we propose a model named DeepGTT
(Deep Generative Travel Time), a three-layer hierarchical proba-
bilistic model [14]. Each layer in DeepGTT captures underlying
dependencies among the relevant random variables in a principled
way. In the first layer, we present two techniques, spatial smooth-
ness embeddings and amortization [11], to share statistical strength
among different road segments to address the data sparsity chal-
lenge. A representation ρi is learned for each road segment ri . We
further propose a convolutional neural network based represen-
tation learning component to address the second challenge. This
learning component enables the encoding of dynamically changing
real-time traffic conditions into a vector c. In the middle layer, a
nonlinear factorization model is developed to combine the road
segment representation ρi and traffic condition c to generate the
travel speed vi for road segment ri . This auxiliary random vari-
able vi allows us to separate the statical spatial road features from
the dynamically changing traffic conditions, so as to address the
third challenge. In the end layer, an attention mechanism [4] based
function is proposed to generate the entire route travel time t by
adaptively aggregating the road segment speed vi . We derive a
variational low bound [7] to train the entire model in an end-to-end
fashion.

To the best of our knowledge, this is the first deep generative
model developed for travel time distribution learning. A great ad-
vantage DeepGTT inherits from probabilistic methods [14], is that

it is quite data-efficient [6, 12]; even only trained with a small
fraction of data it could produce substantially better results than
existing methods trained on much larger datasets. In summary, our
contributions are as follows:

• For the first time, we develop a deep generativemodel, named
DeepGTT, to learn travel time distributions. DeepGTT is de-
signed to be data-efficient.The model utilizes spatial smooth-
ness embeddings and amortization to model road segments,
and a convolutional neural network based representation
learning component to capture real-time traffic conditions.
• The carefully designed hierarchical architecture allows us to
separate the dynamically changing traffic conditions from
the static spatial features, and thus enables incorporating
the heterogeneous influencing factors (both spatial and tem-
poral) into a single model for travel time learning.
• We develop an attention mechanism based function to col-
lectively aggregate road segment speeds to generate the
observations. Then, a variational low bound is derived to
enable the model to be trained in an end-to-end fashion. As
DeepGTT optimizes the complete distribution rather than a
single mean value, it could incorporate more variability for
more accurate prediction.
• We conduct thorough experiments on a real world large
traffic dataset. Experiments show that our model produces
substantially better results than state-of-the-art methods in
both travel time estimation and route recovery tasks.

The rest of the paper is organized as follows. The related work
is discussed in Section 2. The definitions, problem statement and
the overview of DeepGTT are presented in Section 3. Section 4
describes the details of our method. The experimental results are
presented in Section 5.We conclude the paper and discuss the future
work in Section 6.

2 RELATEDWORK
We briefly review the related studies on travel time estimation and
deep generative models in this section.

2.1 Travel time estimation
The road segment-based methods first estimate travel time on each
individual road segment independently by using the speeds infor-
mation collected by loop detectors. Then travel time on a given
route is estimated by summing up the estimated times of the road
segments traversed in the given route. Such methods fail to con-
sider delays caused by traffic lights, and left/right turns, resulting
in large estimation errors.

To address the weaknesses of road segment-based methods,
route-based methods attempt to estimate the travel time of a route
as a whole. There are two main threads for route-based methods,
namely, nearest neighbors search [36, 39] and trajectory regres-
sion [20, 41, 48]. Nearest neighbors search estimates travel time
of a route by averaging travel times of the historical trajectories
that have the closed origin and destination with the query route.
Trajectory regression methods, on the other hand, treat travel times
of the road segments as unknown variables and solve a regression
problem using the historical trajectories.

1018

Several works also attempt to estimate the travel time distribu-
tion for a given route on road network. Hunter et al. [19] investigate
travel time distribution of a path in arterial networks using Gauss-
ian Markov Random Field. Wu et al. [42] propose a model named
STRS, that seeks to recover the route from sparse trajectories. STRS
comprises of a travel time distribution estimation component and a
spatial transition inference component. Its travel time distribution
estimation component first learns the mean value of travel time by
trajectory regression, and then empirically study the relationship
between the variance and mean value to derive the distribution.
STRS has been shown to be the state-of-the-art route recovery al-
gorithm. Raghu et al. [13] explore the prediction limits of different
methods by estimating the entropy of the travel time distributions.

Almost all existing studies make the assumption that traffic
conditions in the same time slot are temporally-invariant. In this
paper, we relax this assumption by learning travel time distribution
conditioned on the real-time traffic. Wang et al. [40] also attempt to
estimate the travel time of a path based on the real-time traffic. They
split the query path into multiple sub-paths and search them from
the real-time trajectories. However this method seriously suffers
from data sparsity issue, even tensor decomposition was used to
mitigate it.

Very recently, two deep learning based travel time estimation
models–DeepTTE [38] andWDR [41] are proposed. Our method dif-
fers from them in three aspects. First, both DeepTTE andWDR only
learn to predict the expectation of travel time, whereas our model
outputs a distribution. Second, DeepTTE and WDR both adopt the
assumption that traffic conditions in a time slot are temporally-
invariant (except that DeepTTE takes weather into consideration),
while we learn the travel time distribution conditioned on the real-
time traffic. Third, both of them employ an RNN to learn the travel
time by brute force, which unavoidably leads to a data-hungry
model. In contrast, our method is built on deep generative models
which allow us to interpret the generation of travel time in a rea-
sonable manner. As a result, our model not only produces more
accurate results but also is data-efficient.

Li et al. [27] study the problem of estimating travel time of a
trip defined by its origin and destination. We highlight that this
problem actually is different from ours as we learn the travel time
distribution for an entire route. Note that, a trip can be achieved
through multiple routes. In many applications such as trip planning,
ride-sharing, travel time estimation between two locations does
not help much without knowing the routes to travel.

2.2 Deep Generative Models
Deep generative models or deep probabilistic methods are the hy-
brids of deep learning and Bayesian inference, which share the great
advantages of two worlds. On the one hand, generative models [14]
allow us to specify the relationships among random variables to in-
corporate our prior knowledge in a flexible way. On the other hand,
the automatic-differentiation [5] permits us to perform inference
on large-scale datasets.

Generative models have been widely adopted in text data min-
ing [8], online recommendation [15, 16, 46], spatial data analyt-
ics [18, 45, 47] as well as air quality inference [9, 10]. They are
usually trained with sampling-based methods [3, 32] which have

Table 1: Notation.

Symbol Definition

T Trajectory
T Trip
r Route
ri The i-th road segment in route r
ρi ∈ R

|ρi | The learned representation of ri
vi ∈ R Travel speed of ri
C Real-time traffic indicator
c ∈ R |c | The learned real-time traffic representation

the drawback of slow convergence, thus limits their usage to rela-
tive small datasets [17]. The emergence of VAE (Variational Auto-
Encoders) [23, 35] makes training large-scale generativemodels pos-
sible bymarrying Bayesian inference and the automatic-differentiation
technique—the core ingredient in deep learning. Since then, deep
generative models have been growing rapidly and achieved a range
of state-of-the-art results in semi-supervised learning [22], multi-
ple instances scene understanding [12], high quality images and
audio synthesis [37, 43], large-scale online recommendation [28].
In contrast, deep generative models have been less explored in
spatial-temporal data analysis field. To our knowledge, this is the
first deep generative model developed for travel time distribution
learning.

3 PROBLEM DEFINITION AND DEEPGTT
OVERVIEW

We start with definitions of Road Network, Route, GPS Trajectory,
and Trip. We then formally define our research problem. For ease of
reference, the notation used through the paper is given in Table 1.

Definition 3.1. Road Network. A road network is represented
as a directed graph G (V ,E), in which V , E represents the vertices
(crossroads) and edges (road segments) respectively.

Definition 3.2. Route. A route r = [ri]ni=1 is a sequence of adja-
cent road segments, where ri ∈ E represents the i-th road segment
in the route.

Definition 3.3. GPSTrajectory.AGPS trajectoryT is a sequence
of sample points ⟨pi ,τi ⟩ |T |i=1 from the underlying route of a moving
object, where pi , τi represents the i-th GPS location and timestamp
respectively.

Definition 3.4. Trip. A trip T is a travel along a route r in the
road network starting at time s . We use T.r and T.s respectively, to
denote the traveled route and starting time of trip T.

In our study, all GPS trajectories are first mapped into the road
network to get their underlying routes with a map matching algo-
rithm [30].

The travel time distribution of a route T.r highly depends on
the real-time traffic condition and it is difficult to precisely define
traffic condition. Intuitively, average speed of (sub-)trajectories
could be considered as a measurement or sensing of the real-time
traffic condition. Therefore, we propose to use all (sub-)trajectories

1019

ρi

vi

t

ri

c C

Figure 2: The graphical model of the generative process in
which ρi ∈ R

|ρi | , vi ∈ R, c ∈ R |c | are latent variables and ri , t
are observed scalars.

collected during the time window [T.s − ∆,T.s) as the indicator of
real-time traffic condition, denoted by C (or T.C for the route T.r).
Here, ∆ is a specified parameter e.g., 30 minutes. We are now ready
to formally define the research problem in this paper

Problem Statement. Given a road network G (V ,E) and a histori-
cal trajectory dataset D =

{
T (m)

}M
m=1, we aim to learn the travel

time distribution P (t |r,C), for a given route r in the road network,
conditioned on the real-time traffic condition indicator C .

DeepGTTOverview. The high-level idea of our proposed solution
DeepGTT is that we treat the travel time of a route r as a random
variable t and explain the generation of t using a three-layer hier-
archical probabilistic model. The graphical model of the generative
process is depicted in Figure 2.

Intuitively, the travel speed of a road segment ri depends on two
important factors: 1) the statical spatial features such as the road
types (highway, secondary way), the number of lanes, etc., and 2)
the dynamic temporal feature, i.e., the real-time traffic condition. In
our model, we learn a road representation ρi for road segment ri to
capture its statical spatial features and use c to model the real-time
traffic condition. The generative process of travel time t for route
r = [ri]ni=1 is as follows:

• Draw the traffic condition representation c ∼ P (c|C).
• For the i-th road segment ri in the route r,
– Draw the road segment representation ρi ∼ P (ρi |ri).
– Draw the road segment speed vi ∼ P (vi |ρi , c).
• Draw the travel time t ∼ P (t |r, v).

In this model, v = [vi]ni=1 and c ∈ R |c | , ρi ∈ R |ρi | are fixed-length
vectors.

Specifically, in the generative process, we first draw the real-time
traffic representation c ∼ P (c|C). For every road segment ri in route
r we draw its representation ρi ∼ P (ρi |ri) which only depends on
the statical spatial features of ri . The introduction of the auxiliary
random variable vi in the middle layer allows us to model both ri ’s
statical spatial features and the dynamically changing traffic condi-
tions. In other words, probability distribution P (vi |ρi , c) depends
on both road representation ρi and traffic condition c. In the end,
we collectively aggregate the road segment speeds vi to generate
the travel time for the entire route r by drawing t from P (t |r, v).

Hidden Layer

si

µ σ2

Hidden Layer

si

µ σ2

ui

(a) (b)

Figure 3: The parameterization of P (ρi |ri).

4 DEEPGTT MODELING
We next detail the modeling of road segment representation ρi (Sec-
tion 4.1), traffic condition c (Section 4.2), speed (Section 4.3), and the
aggregation (Section 4.4). Section 4.5 details the loss function and
the learning algorithm. The prediction is discussed in Section 4.6.

4.1 Road Segment Representation ρi
As aforementioned, travel speed vi is dominated by two main fac-
tors: the statical spatial features of road segment ri and the dynamic
temporal feature – real-time traffic condition. We model the impact
of statical spatial features of ri with distribution P (ρi |ri), where
ρi ∈ R

|ρi | is the static road segment representation.
The high-level idea is to encode into ρi all spatial features that

are indicative to travel speed via modeling P (ρi |ri) conditioned on
such spatial features. In our model, we consider the following 5
types of statical spatial features:

(1) Road types: e.g., primary, secondary, tertiary, residential, etc.;
(2) Number of lanes: how many marked traffic lanes;
(3) Whether it is a one way or not;
(4) The road shape, e.g., straight, curve;
(5) Spatial smoothness, e.g., congestion propagationmakes neigh-

boring roads likely to have similar congestion level.
To overcome data sparsity issue, we present two techniques–

amortization and spatial smoothness embeddings. These two tech-
niques enable the sharing of statistical strength among different
road segments and impose spatial smoothness onmodeling P (ρi |ri).

Amortization. The main idea of amortization [11] is to use a func-
tion f (·) to map a given observation to a set of parameters that
are shared across all data-points. This allows us to share statis-
tical strength among different road segments, in the sense that
the knowledge learned from frequently traveled road segments
is shared to those rarely traveled. In our setting, the observation
corresponds to the (1)-(3) types of categorical features.

For easy exposition, let us use n(t) , n(l) , n(o) to represent the
number of possible values in the first 3 types of categorical features,
respectively. Then we use ϕ (t) , ϕ (l) , ϕ (o) to map a road segment to
its corresponding feature value. For example, assuming there are 5
road types in total and r1 belongs to the third road type, then we
have n(t) = 5 and ϕ (t) (r1) = 3.

We introduce three spatial feature embedding matrices, S (t) , S (l) ,
and S (o) , with size n(t) ×d (t) , n(l) ×d (l) , and n(o) ×d (o) respectively,
for the three types of spatial categorical features. Here, d (t) , d (l) ,
and d (o) are their embedding dimensions. Each row in S (·) corre-
sponds to an attribute embedding, e.g., S (t)[1] (the first row of S (t))
is the embedding of the first type of road and S (t)[ϕ (t) (ri)] is the

1020

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1

2
3

4
5

6
7

8
9

10
11

12
13

0 8 8 7 10 8 8 15 19 17 0 16 14 18 22

0 23 13 17 6 8 12 13 14 9 16 19 21 0 0

20 18 0 15 12 11 12 11 10 10 9 16 7 3 0

25 18 19 11 12 12 12 13 10 11 11 17 10 20 10

9 12 13 20 17 10 15 12 14 13 6 6 9 11 11

15 15 12 12 15 12 15 16 12 11 11 12 14 12 15

24 14 13 10 12 12 11 12 13 9 10 7 12 12 26

27 23 21 13 9 10 8 9 10 11 11 12 14 16 25

28 0 0 25 12 8 10 9 11 10 11 10 14 11 0

28 0 28 27 0 10 9 9 12 10 10 12 15 15 28

17 0 27 0 0 0 13 8 9 9 8 10 15 15 11

11 14 19 0 0 0 0 26 20 11 15 13 0 0 0

20 13 14 20 27 0 0 19 0 0 15 17 16 0 0

0 17 15 7 27 18 0 11 9 8 0 5 11 0 0
0

5

10

15

20

25

30

(a) Real-time traffic condition C at 7am

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1
2

3
4

5
6

7
8

9
10

11
12

13

0 10 11 22 22 10 13 20 19 6 0 23 0 0 0

18 20 15 23 8 13 15 16 16 13 19 21 0 0 0

22 20 7 15 14 13 12 12 12 10 11 18 7 0 0

30 19 17 13 11 13 12 13 12 13 14 10 8 22 15

9 15 15 22 16 11 15 13 15 15 9 8 14 18 14

17 19 12 13 16 12 16 18 13 11 10 13 15 14 17

17 15 13 13 12 12 12 12 13 9 11 7 11 10 14

31 27 22 14 10 10 12 11 11 11 11 12 11 15 0

29 0 15 28 14 9 10 10 11 11 11 13 15 14 0

27 0 29 23 9 9 10 10 12 12 11 11 20 16 27

25 0 29 0 4 0 16 9 11 10 10 10 15 18 10

13 18 22 7 0 0 0 27 23 10 14 13 0 0 0

17 15 19 20 21 0 0 19 0 0 15 19 23 0 0

12 13 17 14 27 21 31 13 12 7 0 0 17 16 0
0

5

10

15

20

25

30

(b) Real-time traffic condition C at
11pm

Figure 4: The real-time traffic conditionC at 7am and 11pm,
where the cell value indicates the average speed in that local
area.

embedding of ri ’s road type. For road segment ri we define si as
the concatenation of its spatial feature embeddings, i.e.,

si =
[
S (t)[ϕ (t) (ri)], S (l)[ϕ (l) (ri)], S (o)[ϕ (o) (ri)]

]
∈ Rd

(t)+d (l)+d (o)

In the spirit of amortization, we model the distribution P (ρi |ri)
with a high dimensional Gaussian distribution whose parameters
are the outputs of a determined function taking si as input

P (ρi |ri) = N
(
µ (si) , diag

(
σ 2 (si)

))
(1)

Here, µ (si) and σ 2 (si) are parameterized by two MLPs (Multi-
Layer Perceptron) with shared input and hidden layers as shown
in Figure 3a.

Spatial Smoothness Embeddings. Amortization allows us to
share the statistical strength of the categorical features among
different road segments. However, it does not consider the impact
of road shape and spatial smoothness i.e., the last 2 types of road fea-
tures. To remedy this, for every ri we add an additional embedding
ui ∈ R |ui | . This embedding aims to capture the complex factors
(e.g., road shape) that are specific to the road segment. Moreover, to
impose spatial smoothness, we run DeepWalk [31] on the road net-
workG (V ,E) to initialize the embeddings ui . Then we concatenate
si and ui as the input of the MLPs to parameterize the probability
distribution P (ρi |ri) as following (also shown in Figure 3b).

P (ρi |ri) = N
(
µ (si , ui) , diag

(
σ 2 (si , ui)

))
(2)

The embeddings S (t) , S (l) , S (o) , ui and parameters of the two
MLPs will be learned from data.

4.2 Real-time Traffic Representation c
In the generative process, we assume there exists a distribution
P (c|C) fromwhich we could draw a random variable c that captures
the real time traffic condition. To realize this, we need to first find a
way to construct C which could roughly reveal the real time traffic
condition. To this end, we partition the space into cells and estimate
the average vehicle speed in a cell by using real time trajectories.
Each cell is considered as a sensing of the local traffic congestion
level in that area. Figure 4(a) and 4(b) show the constructed C at
7am and 11pm respectively on the same example day, and the cell
size is 2km × 2km.

To model P (c|C), a straightforward approach is to reshapeC into
a vector to get c and then build the condition probability table with
each entry corresponding to a possible c value. However, such a
table representation has several drawbacks. First, the space cost
is prohibitively expensive. Even if we restrict the average speed
into an integer with k possible values, there will be k |c | states
for c in total. Second, the table representation is sensitive to the
spatial distribution of vehicles at that time. If there is no sensing
vehicle passing the cell at that time, the cell value becomes zero,
e.g., C[0, 13], C[0, 14] are 18, 22 at 7am and they become zero at
11pm as shown in Figure 4. This is unreasonable because 7am is
typically a peak hour in a day. Third, the table representation could
not reveal similarity between two similar states. Even it only one
cell value changes in C , the resulting state c will be considered to
be different from the original one.

To overcome the above shortcomings, we propose to use a CNN
(Convolutional Neural Net) to extract the abstract features from
the rough estimation speed matrix C . The intuition is that similar
traffic conditions generate similar travel times for a given path,
which in turn results in close loss. We can then propagate such
signals through gradients back to the CNN whose parameters will
be tuned to being robust to missing values and being capable of
producing similar representations for analogous traffic conditions.

f = CNN(C)

P (c|C) = N
(
µ (f) , diag

(
σ 2 (f)

)) (3)

Equation 3 presents the modeling of P (c|C), where µ (f), σ 2 (f) are
parameterized by two MLPs with shared hidden layer. The convolu-
tional neural net comprises of three connected convolution blocks
and an average pooling layer. Each convolution block consists of
three layers: Conv2d→ BatchNorm2d→ LeakyReLU.

Note that, the choice of making c being a random variable in-
stead of being a deterministic one allows us to incorporate more
variability in modeling complex traffic conditions and to produce a
more reliable model.

4.3 Road Segment Speed vi
Once we get the static road speed representation ρi and the dy-
namic traffic representation c we could use them to generate road
travel speed vi for ri . One straightforward method is the linear
factorization models [29], i.e., travel speed vi is interpreted as the
linear interaction between ρi and c as

vi = ⟨ρi , c⟩ (4)

where ⟨·, ·⟩ denotes the inner product operation. However, this
simple solution is limited by the linear assumption. We consider
that travel speed on a road segment is very likely to be the result
of nonlinear interaction between the static spatial features and the
dynamic temporal traffic condition. Hence, we propose to model
the generation of speed vi in a nonlinear manner:

hi = SELU(W1ρi +W2c)

µi = ⟨θµ , hi ⟩, σ 2
i = ⟨θσ , hi ⟩

P (vi |ρi , c) = N
(
µi ,σ

2
i

) (5)

In the above equation, SELU(·) is the self-normalizing nonlinear
activation function [24] andW1,W2, θµ , θσ are parameters to be

1021

learned and shared across all road segments. The Gaussian distri-
bution is chosen due to the fact that travel speeds can be perfectly
modeled by it [25]. The above generative process generalizes the
classical linear factorization models. We actually can recover them
by substituting the non-linear activation function SELU with the
identity function.

4.4 Aggregating Road Segment Speeds
The Gaussian distribution of speed on road segment ri naturally
leads to Inverse-Gaussian distribution for travel time. The proba-
bility density function of Inverse-Gaussian distribution is given as
follows:

p (t ; λ, µ) =
√

λ

2πt3
exp
{
−λ(t − µ)2

2µ2t

}
(6)

where λ, µ > 0 are parameters i.e., mean µ and variance µ3/λ. The
Inverse-Gaussian distribution describes the first passage time of
a Brownian random walk [1], and thus it is suitable for modeling
travel time in our problem setting.

However, we cannot simply sum up the travel time distributions
of ri ’s to form the travel time distribution of the entire route r,
because Inverse-Gaussian distribution is not closed under addition.
In other words, modeling t =

∑
i ℓi/vi leads to an intractable model

(here ℓi denotes the length of road segment ri). Similar to [25], in
our proposed solution, we consider the average speed of route r,
denoted by vr, as the weighted sum of vi , i.e.,

vr =
n∑
i=1

wivi , wi =
ℓi∑n
j=1 ℓj

.

Then we have

E [vr] = E

n∑
i=1

wivi

=

n∑
i=1

wi µi (7)

Var [vr] = Var *
,

n∑
i=1

wivi+
-
=

n∑
i=1

w2
i σ

2
i (8)

Consequently, P (t |r, v) will be a IG(µ, λ) with

µ =

∑n
i ℓi

E [vr]
, λ =

µ3

(
∑n
i ℓi)

2 Var [vr]
. (9)

We scale route variance with the square of route length–
∑n
i ℓi in

Equation 9. This is to take into consideration travel time uncertainty
is likely higher for longer route.

Note that Equation 8 holds only when vi ’s are mutually inde-
pendent. This may not be true in reality as speeds of spatially
contiguous road segments are highly correlated. On the other hand,
this equation offers us the insight thatVar [vr] can be represented as
a weighted sum of Var [vi]. Next, we present a better way to assign
weights, i.e., an attention mechanism-based method to adaptively
assign weights for road segments.

The general idea of attention mechanism [4] is to learn the
weights for a collection of inputs under a query vector q. It assigns
a relatively larger weight for the input which is more important
under query q. In our case, the inputs are the hidden states hi
in Equation 5, and the query vector is the traffic representation c
because the uncertainty of a road segment is largely determined by

the traffic condition. More formally, we have
ai = ⟨W c, hi ⟩

Var [vr] =
n∑
i=1

softmax(ai)σ 2
i

(10)

whereW is the parameter matrix to be learned.
Notably, as we collectively aggregate vi ’s to generate t , we actu-

ally amortize the delays caused at the crossroads into their adjacent
road segments. Also note that we directly use the parameters of
P (vi |ρi , c) to form P (t |r, v). As a result,vi becomes the virtual node
in the graphical model (see Figure 2).

4.5 Variational Loss and Learning Algorithm
The generative process implies the following log-likelihood func-
tion

L (Θ) = log
∫
c

∫
ρ
dc dρ

M∏
m=1

P (cm |Cm)

nm∏
i=1

P (ρmi |rmi)P (vmi |ρmi , cm)P (tm |rm , vm)

in which Θ denotes all the parameters involved. Unfortunately, the
log-likelihood is intractable due to the appearance of the latent
variable integrals. Further, the MCMC based methods [3, 32] are
not suitable for our case due to their slow convergence speed.

To circumvent this, we make an important observation that
travel time t is actually a kind of reflection of the real-time traffic
condition indicatorC . Therefore, we can view P (c|C) as the encoder
and P (t |r, c) as the decoder of the real-time traffic condition. In the
light of variational auto-encoder [23], the log-likelihood for one
route could then be approximated as (lower bound)
L (Θ) ≥ Ec,ρ [log P (t |r, c)]

= Ec,ρ

n∑
i=1

log P (ρi |ri) + log P (vi |ρi , c) + log P (t |r, v)

where c ∼ P (c|C) and ρi ∼ P (ρi |ri).
This loss can be interpreted as the expected negative reconstruc-

tion error. Indeed, if we put a weak prior distribution for c and ρi
respectively, we recover the well-known variational loss [7] as
Lv (Θ) = Ec,ρ [log P (t |r, c)] − KL (P (c|C) | |P (c))

−

n∑
i=1

KL (P (ρi |ri) | |P (ρi))
(11)

where KL(·| |·) indicates KL divergence. We now can approximate
the variational loss using the Monte Carlo method and propagate
the gradients backward using the reparameterization trick [23]. In
our case, we reparameterize the Gaussian random variable z (c and
ρi) as:

z ∼ N
(
z|µ,σ 2) ⇔ z = µ + σϵ, ϵ ∼ N (0, 1)

and calculate the gradient w.r.t the parameters θ as

∇θEz [f (z)] = ∇θEϵ [f (µ + σϵ)] = Eϵ [∇θ f (µ + σϵ)]

where f (z) represents the log-likelihood function of the parame-
ters. In this sense, our model becomes the Variational Auto-Encoder

1022

Algorithm 1: Learning Algorithm

Input: Training dataset: (rm ,Cm , tm)Mm=1
Output: Parameter set: Θ

1 while training is true do
2 B ← A random minibatch of data;
3 ck ∼ P (ck |Ck) ∀Ck ∈ B,k = 1, . . . , |B|;
4 ρki ∼ P (ρki |rki) ∀rk ∈ B,∀rki ∈ rk ,k = 1, . . . , |B|;
5 L ← Calculating the variational loss using Equation 11;
6 for θ ∈ Θ do
7 gθ ← ∇θLv (Θ);
8 θ ← θ + Γ(gθ);

9 return Θ;

(VAE) which is fully differentiable. The learning algorithm is pre-
sented in Algorithm 1.

We highlight that it is unnecessary to compute the traffic condi-
tion indicator C for every trajectory in training dataset (Line 3 in
Algorithm 1). Instead, we discretize the temporal dimension into
slots and let the trajectories whose start time fall into the same slot
share the same C (see Section 5.1).

4.6 Prediction
Given the learned parameters Θ, a query route r along with its real-
time traffic condition indicator C , we run the forward computation
(Lines 2–5 in Algorithm 1) to predict the travel time distribution
P (t |r,C).

Specifically, we compute the mean value µ (si , ui) (in Equation 2)
for each road segment ri and µ (f) (in Equation 3) for traffic condi-
tion indicatorC . Different from the training stage where we perform
sampling operation to draw instances of ρi and c, we simply feed
these mean values into the subsequent computation to generate
vi (Equation 5) in prediction. Once we obtain vi for each ri , we
aggregate them to output the parameters µ, λ (Equation 9) of the
travel time distribution P (t |r,C).

5 EXPERIMENTS
We evaluate the effectiveness and scalability of DeepGTT on a
real-world taxi dataset, against the state-of-the-art baselines.

5.1 Experimental setup

Dataset. The dataset was collected by 13,000 taxis during 28 days
in a provincial capital city in China. It contains over 2.9 million
trajectories. The sampling time interval between two consecutive
points is around 30 seconds, and the map matching accuracy at
this sampling rate can be as high as 99% [30]. We acquire the road
network data from the Open Street Map [2]. There are 14, 497 road
segments in total and every road segment has the spatial features:
the road type, the number of lanes, one way or not, and road length.

Figure 5 shows the spatial distribution of GPS points. As expected,
routes at the central area of the city are frequently traveled whereas
routes outside of the city are relatively less traveled by the vehicles.
The average travel time is 19.4 minutes and average travel distance

Figure 5: The spatial distribution of the GPS points.

Table 2: Dataset statistics.

Measures min max mean

Duration (mins) 7 46 19.4
Distance (km) 1.2 60 11.4

7 10 20 30 40 50
0

2

4

6

8

·10−2

Duration (mins)

Fr
eq

ue
nc

y

(a) Dist. of duration (minutes)

0 10 20 30 40 50 60
0

2

4

6

8

·10−2

Distance (km)

(b) Dist. of travel distance (km)

Figure 6: The distributions of duration (minutes) and travel
distance (km)

is 11.4 kilometers. Table 2 reports main statistics of the trips and
Figure 6 plots distributions of trip duration and travel distance.

We use the first 18 days’ trajectories as training dataset, the
middle 3 days’ trajectories as validation set. The remaining 7 days’
trajectories are used for testing. The dataset size of training, valida-
tion, and testing is 1.7, 0.3, and 0.9 million respectively.

Baseline Methods. We evaluate DeepGTT on two tasks: (i) travel
time estimation, and (ii) route recovery from sparse trajectories.

For travel time estimation, we compare DeepGTT with three
baseline methods, namely, DeepTTE [38], WDR [41], and MU-
RAT [27]. For route recovery from sparse trajectories, we demon-
strate how we enhance the state-of-art route recovery method
STRS [42] by simply changing its travel time distribution compo-
nent to DeepGTT.
• DeepTTE andWDR are two leading travel time estimation
models based on Deep Neural Nets. Both models treat road
segments as tokens and compress a sequence of tokens (a
route) to predict travel time by using RNN.

1023

Table 3: Performance comparison of different methods.

Method MURAT WDR DeepTTE DeepGTT

RMSE (sec) 510.23 374.24 337.51 193.04
MAE (sec) 409.24 275.48 241.37 141.75

• MURAT is a multi-task representation learning based travel
time estimation model. It only uses the origin-destination
information.
• STRS is the state-of-the-art route recovery algorithm, which
contains a travel time distribution learning component. The
learning component first learns the mean value of travel
time by trajectory regression, and then empirically study the
relationship between the variance and mean value to derive
the distribution.

Parameter settings.Ourmethod1 is implementedwith PyTorch 0.42
and Julia 1.03, and trained with a Tesla K40 GPU. The platform runs
on Ubuntu 14.04 OS with a Genuine Intel CPU.

The embedding sizes of d (t) , d (l) , d (o) , ui are set to 64, 32, 16,
200 respectively. The dimensions of the random variables are set
as follows: |ρi | = 256, |c| = 400, |f | = 600, |hi | = 500. The space is
partitioned into a 138 × 148 matrix C with cell size 200m × 200m,
and ∆ = 30 minutes. We discretize the temporal dimension with
a slot size 20 (minutes); two trips share the same traffic condition
indicator C if their start time fall into the same slot. The batch size
|D| in the training algorithm 1 is 150. The model is optimized by
Amsgrad [21, 33] with an initial learning rate 0.001 for 10 epochs,
and early stopping is used on validation dataset. We select the best
hyperparameters for the baseline methods on valuation dataset.

5.2 Evaluation on travel time estimation

Overall performance. We evaluate all methods on this task by
RMSE (Root Mean Square Error) and MAE (Mean Average Error),

RMSE(t, t̂) =
√

1
|t|
∥t − t̂∥22 , MAE(t, t̂) =

1
|t|
∥t − t̂∥1

where t, t̂ denote ground truth, estimated value respectively.
Reported in Table 3, simple model MURAT leads to relatively

large errors, and WDR surpasses it by a fair margin. Among all the
baselines DeepTTE achieves the best results. Our model DeepGTT
outperforms all the baselines by a large margin, for three reasons:
1) DeepGTT interprets the generation of travel time in a logical
way instead of learning by brute force; and 2) DeepGTT makes
prediction based on the learned real-time traffic representation,
rather than assuming that traffic conditions in the same time slot are
temporally-invariant; 3) DeepGTT optimizes the full distribution
rather than a single mean value, and thus it could incorporate more
variability for more accurate prediction.

Remarkably, DeepGTT reduces MAE to 141.75 seconds for the
trips with 19.4 minutes average duration which may potentially
facilitate many existing web services.

1The code is available at https://github.com/boathit/deepgtt
2https://pytorch.org
3https://julialang.org

2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5
Distance (km)

0

2

4

6

8

10

12

M
AE

 (m
in

s)

DeepGTT
DeepTTE

(a) Travel distance

0.3 0.6 0.9 1.2 1.6
Data set size (million)

2

3

4

5

6

7

M
AE

 (m
in

s)

DeepGTT
DeepTTE
WDR

(b) Training dataset size

Figure 7: (a) MAE changes against travel distance, and over
the training dataset size, respectively.

Impact of travel distance. We now study the impact of travel
distance on the performance of different models. To this end, we
group the trips in test dataset into subgroups by their lengths (in
5KM step), [0, 5), [5, 10), . . . , [50, 55), and study the performance
of different models on these subgroups. Figure 7(a) plots MAEs
of DeepTTE and DeepGTT against travel distance (we omit other
baselines due to their large errors). Not surprisingly, MAEs increase
with the travel distance. Longer trips typically involve more road
segments and have larger uncertainty. It is worth noting that the
performance difference between DeepTTE and DeepGTT grows
with the travel distance. This result suggests that DeepGTT is more
trustful for long trip estimation.

Impact of training data size. One of appealing properties of
DeepGTT inherited from probabilistic models is that it is quite
data efficient [6, 12]. To demonstrate this property, we study the
change of MAE with different number of training data points from
0.3 to 1.7million, reported in Figure 7(b). Observe that even trained
with only 0.3 million data points, DeepGTT surpasses baseline
methods that are trained with the full training data by a notable
margin. This can be explained by the fact that DeepGTT interprets
the generation of travel time in a more plausible manner, and thus
it could reveal the hidden dependencies among relevant variables
and explore training data in a more efficient way. The data efficient
property enables DeepGTT to be trained in a much faster speed as
well, making it attractive to the online web services that require
frequent updates.

5.3 Performance on route recovery
In this subsection, we demonstrate how DeepGTT could enhance
the existing leading route recovery algorithm, in which we need to
access P (t |r) for any t > 0. As described in Section 1, route recovery
from sparse trajectories is formulated as

argmax
r

P (t |r)P (r), r ∈ {candiate routes}.

The first term P (t |r) describes the probability of a route r for an
observed travel time t , namely, the temporal component. The sec-
ond term P (r) describes the probability from the spatial transition
perspective, namely, the spatial component. Actually, these are the

1024

30s 60s 120s 180s 240s 300s
Sampling Time Interval

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

STRS
STRS+

Figure 8: Accuracy comparison.

two main components in the state-of-the-art sparse route recovery
algorithm STRS [42].

In this experiment, we replace STRS’s temporal component with
DeepGTT and refer to the new model as STRS+. The performance
of route recovery is evaluated by route recovery accuracy [42]: the
ratio of the length of correctly inferred road segments against the
maximum value of the length of ground truth rG and the length of
inferred route rI .

accuracy =
length(rG ∩ rI)

max (length(rG), length(rI))
We randomly select 10k trajectories from the test dataset and

match these trajectories into the map. The matched results are
used as ground truth. Then we down-sample these trajectories and
recover the routes using STRS, and STRS+, respectively. Figure 8
reports the accuracy of STRS and STRS+, over different sampling
time intervals (second). As sampling time interval increases, accu-
racy of both methods drop as expected. The reason is that larger
sampling time interval leads to more possible candidate routes to
be inferred between two sample points. Observe that accuracy of
STRS+ is always higher than that of STRS. In particular, the dif-
ference between their accuracies becomes more evident when the
sample time interval is larger. This result shows the superiority of
STRS+.

5.4 The impact of real time traffic
In this paper, we relax the assumption that traffic conditions are
temporally invariant for the same time slot. Instead, we propose
to learn a real-time traffic representation c, and by conditioning
on which we generate the travel time. It is natural to ask the effec-
tiveness of this real time traffic representation c. We design two
experiments to answer this question.

Experiment 1. We fill the traffic condition indicator C with a con-
stant that is specific to the time slot. In this case, our model is
forced to “assume” that traffic conditions are temporally invariant.
The RMSE, MAE in travel time estimation increases from 193.04
to 272.45, and from 141.75 to 200.02, respectively. In other words,
adopting the assumption that traffic conditions are temporally in-
variant in DeepGTT leads to a 41% performance drop in terms of
MAE. This result implies that an appropriate modeling of P (c|C) is
crucial for accurate travel time estimation.

Experiment 2. As a case study, we randomly select a route r102
with length 21.37km and evaluate the change of its travel time

Figure 9: The travel time distributions of route r102 on Jan
03 (a) and Jan 17 (b), both of them are Saturday.

0.3 0.6 0.9 1.2 1.7
Data set size (million)

0
2

5

10

15

20

Ti
m

e
(h

ou
rs

)

DeepGTT
DeepTTE
WDR

Figure 10: Time cost of all methods grows linearly with the
training data size. However, DeepGTT has a much smaller
constant term than its competitors.

distributions by taking different real-time traffic condition indi-
cators C’s. More specifically, we calculate C by using the (sub-)
trajectories in different time slots and feed theseC’s into the model
while keeping the route unchanged. Figure 9a and 9b plot the travel
time distributions at different time slots on Jan 03, 2015 and Jan 17,
2015 respectively (both are Saturday). Two points are worth not-
ing: I) The travel time distributions at 1:00am and 10:00pm exhibit
smaller expectations and variances. This is reasonable because the
traffic conditions at these time slots are less congested, compared
with peak hours, e.g., 8:00am and 5:00pm. II) Even both 8:00am and
5:00pm are peak hours, the traffic is more congested at 5:00pm on
Jan 03, 2015 whereas it is more congested at 8:00am on Jan 17, 2015.
Our observations suggest that traffic conditions in the same time
slot are not invariant across the temporal dimension. The assump-
tion made in previous studies does not hold [27, 38, 39, 41, 42].

5.5 Time Cost Study
The training time complexity of DeepGTT grows linearly with the
number of trajectories. Figure 10 demonstrates that the training
time of different methods vary with the data size. Even though the
time cost of both DeepTTE andWDR grows linearly with the size
of training data, they have larger constant terms compared with

1025

DeepGTT. This is due to their employment of RNN which is more
computationally expensive.

For prediction,DeepGTT can process over 0.9 million trajectories
within 81 secondswith amini-batch size 256. The fast running speed
makes it ideal for online deployment.

6 CONCLUSION
For the first time, we develop a deep generative model DeepGTT
for travel time distribution learning. We tackle the data sparsity
challenge by presenting two techniques, amortization and spatial
smoothness embedding, in the lower layer. We relax the assumption
that traffic conditions are temporally-invariant by proposing a con-
volution neural net based real time traffic representation learning
and a hierarchical structure. The introduction of an auxiliary ran-
dom variable vi in the middle layer enables separating the statical
spatial features from the dynamically changing real-time traffic.
As a result, we could incorporate these heterogeneous influencing
factors into a single model. The further derived variational loss en-
ables the model to be trained in an end-to-end fashion, and makes
DeepGTT applicable to large-scale data sets. DeepGTT interprets
the generation of travel time in a plausible manner rather than
learning by brute force, thus it produces more accurate results and
is data-efficient.

Evaluated on a real-world large-scale data set, we first demon-
strate the superiority of DeepGTT over existing methods, including
two recently proposed deep-neural-net-based approaches, in two
tasks: travel time estimation and route recovery. Notably, even
trained with a small fraction of data DeepGTT is able to produce
substantially better results than the state-of-the-art baselines. We
further design experiments to verify that an appropriate modeling
of real-time traffic is crucial for accurate travel time distribution
prediction, and the assumption made in previous studies that traf-
fic conditions are temporally-invariant does not hold. Finally, we
empirically compare the time cost of DeepGTT with the other
two deep-neural-net-based approaches, which demonstrates that
DeepGTT owns much faster training speed.

In the future work, we would like to enhance the performance
of DeepGTT by investigating more rich posterior distribution for
the real time traffic representation with the normalizing flows [34].
In the present solution, DeepGTT assumes that the travel times of
longer routes tend to show higher variance which may not hold
for highways, and we will attempt to address this in the future
work. Due to space limitation, we also omit the analysis of the
impact of different explanatory factors’ dimensionality and cell
size, and we would like to give a thorough study in the future
version. It is also desirable to explore the usage of DeepGTT in
the problems such as ride-sharing, taxi-dispatching, travel time-
related trajectory anomaly detection and time-aware trajectory
representation learning [26, 44].

ACKNOWLEDGEMENTS
This researchwas conducted in collaborationwith Singapore Telecom-
munications Limited and partially supported by the Singapore Gov-
ernment through the Industry Alignment Fund - Industry Collab-
oration Projects Grant. This work was also supported in part by
Singapore MOE Tier-2 grant MOE2016-T2-1-137, MOE Tier-1 grant

RG31/17, and NSFC under the grant 61772537. The authors would
like to thank the anonymous reviewers who give the thoughtful
comments and helpful suggestions.

REFERENCES
[1] [n. d.]. https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
[2] [n. d.]. https://www.openstreetmap.org
[3] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan.

2003. An introduction to MCMC for machine learning. Machine learning 50, 1-2
(2003), 5–43.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473
(2014).

[5] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2017. Automatic Differentiation in Machine Learning: a
Survey. JMLR 18 (2017), 153:1–153:43.

[6] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[7] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2016. Variational Inference:

A Review for Statisticians. CoRR abs/1601.00670 (2016).
[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

Allocation. JMLR 3 (2003), 993–1022.
[9] Yun Cheng, Xiucheng Li, Zhijun Li, Shouxu Jiang, and Xiaofan Jiang. 2014. Fine-

Grained Air QualityMonitoring Based on Gaussian Process Regression. In ICONIP
2014. 126–134.

[10] Yun Cheng, Xiucheng Li, Zhijun Li, Shouxu Jiang, Yilong Li, Ji Jia, and Xiaofan
Jiang. 2014. AirCloud: a cloud-based air-quality monitoring system for everyone.
In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems,
SenSys ’14, Memphis, Tennessee, USA, November 3-6, 2014. 251–265.

[11] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. 1995.
The helmholtz machine. Neural computation (1995), 889–904.

[12] S. M. Ali Eslami, Nicolas Heess, TheophaneWeber, Yuval Tassa, David Szepesvari,
Koray Kavukcuoglu, and Geoffrey E. Hinton. 2016. Attend, Infer, Repeat: Fast
Scene Understanding with Generative Models. In NIPS 2016, December 5-10, 2016,
Barcelona, Spain. 3225–3233.

[13] Raghu K. Ganti, Mudhakar Srivatsa, and Tarek F. Abdelzaher. 2014. On Limits of
Travel Time Predictions: Insights from a New York City Case Study. In ICDCS
2014, Madrid, Spain, June 30 - July 3, 2014. 166–175.

[14] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. 1995. Bayesian
data analysis. Chapman and Hall/CRC.

[15] PremGopalan, JakeMHofman, and DavidM Blei. 2013. Scalable recommendation
with poisson factorization. CORR (2013).

[16] Prem K Gopalan, Laurent Charlin, and David Blei. 2014. Content-based recom-
mendations with poisson factorization. In NIPS 2014. 3176–3184.

[17] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Sto-
chastic variational inference. JMLR 14, 1 (2013), 1303–1347.

[18] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J. Smola, and Kostas
Tsioutsiouliklis. 2012. Discovering geographical topics in the twitter stream. In
WWW 2012, Lyon, France, April 16-20, 2012. 769–778.

[19] Timothy Hunter, Aude Hofleitner, Jack Reilly, Walid Krichene, Jerome Thai,
Anastasios Kouvelas, Pieter Abbeel, and Alexandre M. Bayen. 2013. Arriving on
time: estimating travel time distributions on large-scale road networks. CoRR
abs/1302.6617 (2013).

[20] Tsuyoshi Idé and Masashi Sugiyama. 2011. Trajectory Regression on Road
Networks. In AAAI 2011, San Francisco, California, USA, August 7-11, 2011.

[21] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. ICLR 2015 abs/1412.6980 (2014).

[22] Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and MaxWelling.
2014. Semi-supervised Learning with Deep Generative Models. In NIPS 2014,
December 8-13 2014, Montreal, Quebec, Canada. 3581–3589.

[23] Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.
ICLR 2013 abs/1312.6114 (2013).

[24] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-Normalizing Neural Networks. In NIPS 2017, 4-9 December 2017, Long
Beach, CA, USA. 972–981.

[25] Mu Li, Amr Ahmed, and Alexander J. Smola. 2015. Inferring Movement Trajec-
tories from GPS Snippets. In WSDM 2015, Shanghai, China, February 2-6, 2015.
325–334.

[26] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, and Wei Wei. 2018. Deep
Representation Learning for Trajectory Similarity Computation. In ICDE 2018,
Paris, France, April 16-19, 2018. 617–628.

[27] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
Multi-task Representation Learning for Travel Time Estimation. In SIGKDD 2018,
London, UK, August, 2018.

[28] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. InWWW 2018, Lyon, France,
April 23-27, 2018. 689–698.

1026

https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://www.openstreetmap.org

[29] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. Cambridge,
MA.

[30] Paul Newson and John Krumm. 2009. Hidden Markov map matching through
noise and sparseness. In SIGSPATIAL 2009, November 4-6, 2009, Seattle, Washington,
USA, Proceedings. 336–343.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In SIGKDD 2014, New York, NY, USA - August 24 - 27,
2014. 701–710.

[32] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,
and Max Welling. 2008. Fast collapsed gibbs sampling for latent dirichlet alloca-
tion. In SIGKDD 2008. ACM, 569–577.

[33] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2018. On the convergence of
adam and beyond. ICLR 2018.

[34] Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with
Normalizing Flows. In ICML 2015, Lille, France, 6-11 July 2015. 1530–1538.

[35] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
ICML 2014, Beijing, China, 21-26 June 2014. 1278–1286.

[36] Dalia Tiesyte and Christian S. Jensen. 2008. Similarity-based prediction of travel
times for vehicles traveling on known routes. In SIGSPATIAL 2008, November 5-7,
2008, Irvine, California, USA, Proceedings. 14.

[37] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural
Discrete Representation Learning. In NIPS 2017, 4-9 December 2017, Long Beach,
CA, USA. 6309–6318.

[38] Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When Will You
Arrive? Estimating Travel Time Based on Deep Neural Networks. In AAAI 2018,
New Orleans, Louisiana, USA, February 2-7, 2018.

[39] Hongjian Wang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2016. A simple
baseline for travel time estimation using large-scale trip data. In SIGSPATIAL

2016, Burlingame, California, USA, October 31 - November 3, 2016. 61:1–61:4.
[40] Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel time estimation of a path

using sparse trajectories. In SIGKDD 2014, New York, NY, USA - August 24 - 27,
2014. 25–34.

[41] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to Estimate the Travel Time.
In KDD 2018, London, UK, August 19-23, 2018. 858–866.

[42] Hao Wu, Jiangyun Mao, Weiwei Sun, Baihua Zheng, Hanyuan Zhang, Ziyang
Chen, and Wei Wang. 2016. Probabilistic Robust Route Recovery with Spatio-
Temporal Dynamics. In SIGKDD 2016, San Francisco, CA, USA, August 13-17, 2016.
1915–1924.

[43] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. 2016. Attribute2image:
Conditional image generation from visual attributes. In ECCV 2016. 776–791.

[44] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-
ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.
In ICDE 2019, Macau, China, April 8-12, 2019.

[45] Zhijun Yin, Liangliang Cao, Jiawei Han, Chengxiang Zhai, and Thomas S. Huang.
2011. Geographical topic discovery and comparison. In WWW 2011, Hyderabad,
India, March 28 - April 1, 2011. 247–256.

[46] Quan Yuan, Gao Cong, and Chin-Yew Lin. 2014. COM: a generative model for
group recommendation. In KDD ’14, New York, NY, USA - August 24 - 27, 2014.
163–172.

[47] Quan Yuan, Gao Cong, ZongyangMa, Aixin Sun, and Nadia Magnenat-Thalmann.
2013. Who, where, when and what: discover spatio-temporal topics for twitter
users. In KDD 2013, Chicago, IL, USA, August 11-14, 2013. 605–613.

[48] Jiangchuan Zheng and LionelM. Ni. 2013. Time-Dependent Trajectory Regression
on Road Networks via Multi-Task Learning. In AAAI 2013, July 14-18, 2013,
Bellevue, Washington, USA.

1027

