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Abstract—This work presents a wearable EMG gesture recog-
nition system based on the hyperdimensional (HD) computing
paradigm, running on a programmable Parallel Ultra-Low-
Power (PULP) platform. The processing chain includes efficient
on-chip training, which leads to a fully embedded implementation
with no need to perform any offline training on a personal
computer. The proposed solution has been tested on 10 subjects
in a typical gesture recognition scenario achieving 85% average
accuracy on 11 gestures recognition, which is aligned with the
State-Of-the-Art (SoA), with the unique capability of performing
online learning. Furthermore, by virtue of the Hardware (HW)
friendly algorithm and of the efficient PULP System-on-Chip
(SoC) (Mr. Wolf) used for prototyping and evaluation, the energy
budget required to run the learning part with 11 gestures is
10.04mJ, and 83.2µJ per classification. The system works with a
average power consumption of 10.4mW in classification, ensuring
around 29h of autonomy with a 100mAh battery. Finally, the
scalability of the system is explored by increasing the number of
channels (up-to 256 electrodes), demonstrating the suitability of
our approach as universal, energy-efficient biopotential wearable
recognition framework.

Index Terms—Hyperdimensional computing, embedded sys-
tems, PULP platform, HMI, gesture recognition.

I. INTRODUCTION

Since interacting with hands represents one of the most in-
tuitive ways to enable human-to-human or human-to-machine
interactions, hand gesture recognition is the key element in
designing solutions that can enable natural and advanced
ways of communication between objects and users in many
domains, in the wake of the IoT growing trend. The two major
approaches used for hand gesture recognition are based on
processing of information coming from video cameras [1] and
from muscular activity [2].

Video-based hand gesture recognition relies on computer
vision techniques which recognize users’ hand gestures in a
scene and decode the hand gestures using pattern recognition
algorithms. Although this approach can decode a wide number
of gestures, it suffers from ambient illumination variability and
from possible obstacles in the line of sight. Furthermore, it
requires a bulky setup, based on pre-installed environmental
cameras.

Another viable approach is inspired by hand prosthetic sys-
tems, where the muscular activity detected by the electromyo-
graphic (EMG) signals is used to decode the user’s intention.
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Commercial prosthetic systems [3], [4] decode predefined
bursts of muscular contractions into a set of gestures (i.e. 2
consecutive contractions mean hand closures, 3 consecutive
contractions stands for hand opening, etc.). Such method is
highly reliable and amenable to implement on a wearable
system. However, it requires a long learning curve and high
levels of concentration of the user, since it is a non-intuitive
interface [5].

An approach that is gaining traction is based on machine
learning (ML) techniques to analyze EMG signal patterns
during muscular contractions. It has been demonstrated that
algorithms such as Linear Discriminant Analysis (LDA) [6],
Artificial Neural Networks (ANN) [7], Support Vector Ma-
chines (SVM) [8], Recursive Least Square [9], Hidden Markov
Models (HMM) [10], Naive Bayes [11], Independent Compo-
nent Analysis (ICA) [12], as well as Convolutional Neural
Networks (CNN) [13] reach high level of accuracy, restoring
a natural gesture recognition both in prosthetics and consumer
Human Machine Interaction (HMI) scenarios.

Using such machine learning algorithms allows to tailor
the recognition strategies to the physiological characteristic
of the users. However, EMG-based gesture recognition is
strongly dependent on the subject (i.e. it depends on subject-
specific characteristics such as muscular mass, skin thickness,
strength of the mean voluntary contractions), and classification
algorithms need a training set for each user. Furthermore,
EMG setup is intrinsically variable [14]–[16] because of fiber
crosstalk, skin perspiration, small movements of the skin-to-
electrode interface, power line interference and donning/doff-
ing. As such, small changes of the EMG traces can hinder
pattern recognition, degrading the system performance down
to unacceptable levels [17].

An orthogonal approach consists of extending the training
dataset, integrating it with samples coming from multiple
sessions to gain up to 20% recognition accuracy [16]. A major
drawback of increasing the size of the training dataset or
repeating the algorithm training lies into its high computational
requirements. For instance, SVM training performs minimiza-
tion of a given cost function by solving a convex optimization
problem, while in ANN [18] back-propagation requires many
iterations to converge. Furthermore, training sessions require
a PC or a graphical interface as well as human intervention to
perform thresholding and labeling operations [19].

Developing a system capable of “one-shot” learning based
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on a computationally efficient and non iterative algorithm for
online training has the potential of significantly improving
HMIs based on EMG signals. In our previous work [20],
we have presented an EMG gesture recognition inference
algorithm based on a computing paradigm called hyperdi-
mensional (HD) computing, and its hardware-optimized im-
plementation on an energy-efficient Parallel Ultra-Low-Power
(PULP) system on a chip (SoC). This work extends the paper
presented in [20], describing the design and optimization of a
full ultra-low-power EMG pattern recognition wearable system
featuring both inference and online “one-shot” learning. More-
over, we validated the proposed embedded system, composed
of the Mr. Wolf PULP SoC [21] coupled with a dedicated
bio-potential ADC, acquiring data from 10 subjects and 11
gestures.

The main contributions of this paper are:
• The development of an algorithm suitable for real-time

“one-shot” learning. To the best of our knowledge this
is the first time that a full EMG-based wearable system
with online learning is being proposed.

• Implementation and optimization of the algorithm on a
parallel-ultra-low power architecture (i.e. Mr Wolf).

• Design of an integrated wearable interface for gesture
recognition embedding the Mr. Wolf SoC, extensively
tested on a dataset acquired online on 10 subjects, and
11 gestures.

• The evaluation of the proposed system with respect to
other methods for embedded gesture recognition, in-
cluding a comparison with a well-known state-of-the-art
(SoA) method such as SVM [8].

• The exploration of the system scalability with respect to
the number of electrodes available, following the general
trend of bio-potential pattern recognition systems [22].

We present a complete system, which performs online and
on-chip learning, paving the way to the design of devices with
a fast training step for a wide range of different hand gestures.
Our device is completely free of supplementary bench-top
devices, hence it is fully embedded and portable. The proposed
system is highly flexible and versatile, being capable of adapt-
ing to the changes in the initial setup and other interferences
that can deteriorate the performance. Moreover, it can be easily
adapted to other kinds of applications, where a higher number
of acquisition channels is required, both for EEG [23] and
EMG [22] based applications. The system reaches 90.40%
accuracy on 11 gestures recognition, comparable to the SoA
systems, within an energy budget of just 10.04mJ for the on-
chip training and 83.20µJ for the recognition (inference), lead-
ing to an average power consumption of 10.04mW reaching 29
hours battery life with a 100mAh battery. Finally, we explore
the capability of the proposed system scaling up the number of
channels (up to 256 electrodes) and exploring the performance
in term of energy consumption, demonstrating the scalability
of the approach and the suitability of the system as an efficient
bio-potential wearable recognition device.

II. RELATED WORK

In recent years, several systems have become available to
acquire and process EMG signals for hand gesture recognition.

This task requires a multi-modal approach which involves
sensor interfaces, computational platforms and algorithms. The
sensor interfaces are mostly based on commercial SoA Analog
Front Ends, specifically designed for bio-potential acquisition.
Regarding computational platforms and algorithms, top per-
formance classification methods rely on supervised machine
learning algorithms to reliably classify acquired data, such as
SVM, LDA [24] or ANN [7]. The recognition accuracy of
these algorithms is above 85%, and they are implementable
on wearable platforms [19]. Despite some other methods, like
RLS [9], can solve multiclass problems with negligible compu-
tational overhead, deterministic training time, and performance
comparable to the aforementioned algorithms, in this work
we performed a quantitative comparison with SVM, which
represents the SoA algorithm and widely accepted baseline
framework for EMG-based pattern recognition, already tested
in several embedded implementations [24]–[29].

However, the major drawback common to all these ap-
proaches is related to the robustness of the setup, since the
EMG signal is intrinsically affected by high variability due
to both physiological and environmental factors. Once the
training phase is performed on a given dataset, the algorithm
does not generalize if signals somehow drift. Therefore, the
reliability of such systems would greatly benefit of a fast real-
time training, which can be repeated when needed. Unfortu-
nately, in these approaches, the training phase is based on
minimization of convex costs functions [30], backpropagation
[31] or eigen decomposition [32]. Some of these techniques
are iterative, with a convergence time that depends on the num-
ber of iterations required to minimize the error cost function.
Furthermore, their computational and memory requirements
severely hamper their implementation on resource-constrained
platforms. For instance, LDA, which has a training faster than
SVM and ANN [16], has time complexity of O(mnt + t3)
with a memory footprint of O(mn+mt+nt) memory, where
m is the number of samples, n is the number of features
and t is defined as min(m,n) [24]. As a result, whereas
the number of samples/features grows, the system becomes
too resource-hungry to be adapted to a low-power platform.
This is a common drawback shared among all these classical
approaches, since they need to store all training examples for
model computation, and this eventually limits the number of
examples that can be considered for learning in a resource-
limited embedded system.

Recently, a few works have investigated the use of deep
neural networks, such as CNN [13] or combinations of CNN
and Recurrent Neural Networks (RNN) [38]. Using complex
topology of deep networks, these approaches can recognize
up to 50 gestures with accuracy values (> 80%), which is
suitable for the design of a real time controller. Unfortunately,
the training of deep neural networks requires a huge amount of
data to converge and it requires dedicated GPU servers, result-
ing even more computationally demanding w.r.t. conventional
approaches.

Other techniques rely on linear and non-linear modeling of
the arm movements, such as the work presented in [39] or
the study proposed in [40], where EMG signals are decom-
posed to extract the neural information and classified with
an HMM algorithm. In this vein, solutions based on blind
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TABLE I: Comparison between SoA EMG embedded pattern recognition systems and our platform. Systems in [34] and [35] run in
computationally hungry platforms and are not suitable for long-term operation, and, although the systems presented in [33] and [10] have a
comparable energy/classification as this work, our system is capable of providing more than 2.7x improvement in battery life.

Platform
Architecture

ISA Technology
[nm]

Max
Frequency

[MHz]

Algorithm Online
learning

#Channles #Gestures Energy[mJ]/
classification

Battery
[h]

Benatti [33] : 1-core Cortex M4 90 168 SVM no 8 7 0.0891 9.97

Liu [34] : 1-core Cortex A8 65 720 Muscoskeletal
Model

no 8 - 1100.0000 0.27

Zhang [35] : 1-core Cortex A8 65 720 LDA yes 4 3 1100.0000 0.27

Gentile [36] : 1-core Cortex M4 90 168 Threshold no 1 1 1.0660 11.38

Liu X [37] : 1-core Cortex M4 90 80 ANN no 4 10 25.1500 2.94

Rossi [10] : 1-core Cortex M4 90 168 HMM/SVM no 4 6 0.0891 9.97

Falih [11] : 4-core Cortex A53 65 1200 Naive Bayes no 8 4 - -

Benatti17 [19] : 4-cores OR32Xpulp 130 40 SVM no 3 3 2.8320 10.00

This work : 8-cores RV32IMFC Xpulp 40 500 HDC Yes 8 11 0.0832 28.46

separation of the motoneuron activation [12], [41], which aim
for detecting which muscular fibers are actuated during the
execution of a given movement, are rapidly gaining ground.
Such approaches rely on backpropagation techniques for the
training and, moreover, they are based on high performance
setup (i.e. >64 channels with bandwidth of several kHz).

The lesson learned from this overview shows that the im-
plementation of learning algorithms for pattern recognition is
still an open challenge for EMG-based controllers. Luckily, in
literature there are some attempts to move pattern recognition
design gesture recognition systems toward a wearable form
factor, complying with strict energy constraints.

Embedded implementation of computationally demanding
algorithms requires a careful design of the system architecture
and of the digital computational platform. The most widely
used computing platform is the ARM Cortex-M4 [42], a
single core RISC-based processor designed for embedded
applications. Thanks to the DSP extension of the ISA and
Floating Point (FP) support, it represents a good trade off
between computational capabilities and energy efficiency. It
is widely used in EMG processing, for instance in [33] where
a complete gesture recognition system on a ARM cortex-M4
microcontroller is implemented with a SVM used to recognize
up to 7 hand gestures with a 8 channel EMG setup. Other
works based on this architecture are presented in [36] and in
[37] where an ANN with one hidden layer is implemented on
a 4 EMG channel setup and it is capable to recognize up to 10
gestures with accuracy higher than 80%. Other works rely on
more powerful platforms, to implement more complex models,
like the one presented in [34], which leverages an ARM
Cortex-A8 processor to execute the EMG gesture recognition
using non linear modeling approach. However such high-end
systems based on OMAP [43] feature a power consumption
significantly higher than ones traditionally exploited for em-
bedded platforms, which is not suitable for a wearable solution
with reasonable battery lifetime. Finally, the work presented in
[11] leverages a power-hungry Raspberry Pi board (up to 2.3
W of power consumption) with a 4-cores Cortex A53 where
a Naive Bayes classifier is implemented to recognize up to 5
EMG gestures for the control of a wheelchair.

All the aforesaid works present the implementation of the

classification stage of the algorithm, while the learning is done
off-line on a bench-top PC. A first attempt to implement the
learning on the embedded platform was tested in [35] where
authors implemented the LDA learning on a ARM Cortex-A8
processor. Such a solution allows minimal learning capability
but the setup is based on 4 sensors and can recognize only
3 gestures. Our approaches for learning and classification
combine the low-power and high-performance capabilities of
a PULP programmable platform with a novel brain-inspired
algorithm [44] that is extremely robust against low signal-to-
noise ratio (SNR) and large variability in both data and com-
puting platform. Computational complexity of the proposed
HD computing approach scales linearly with the number of
electrodes [45] and maintains its accuracy with various types
of biosignal acquisitions, while the PULP platform is highly
optimized for parallel applications that require extreme energy
efficiency.

Table I provides a quantitative summary of the state of
the art of EMG-based pattern recognition embedded systems,
including a comparison of energy per classification and battery
duration (assuming a 100mAh battery). Systems in [34] and
[35] are based on a high-performance ARM Cortex-A8 proces-
sor, and although they provide high computational power, they
are not suitable for long-term operation due to their high power
consumption. The systems presented in [33] and [10] have the
lowest energy/classification ratio, which is comparable to our
work, but they lack battery life due to the high duty cycle
needed. Our system leverages an output classification latency
of 8ms, largely compliant with real-time requirements, and as
a consequence, it provides more than 2.7x improvement in
battery life compared to the SoA systems.

III. SYSTEM ARCHITECTURE

This section describes the hardware and software architec-
ture of the proposed EMG-based gesture recognition system.
An image of the proposed system and the diagram of the chip
architecture are shown in Fig. 1.

A. Hardware Platform
The proposed system is based with an 8 channel commercial

Analog Front End (AFE) connected to the Mr.Wolf SoC [21]
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Fig. 1: TOP : Architecture of the Mr Wolf chip Test setup of the
systems compared in this work. (BOTTOM) Picture of the tested
system. EMG data are acquired with an external ADC (ADS1298),
connected to the wolf chip. Output and communication are managed
via a BT node.

breakout board. The AFE, widely used in bio-potential acqui-
sition platforms, is connected in fully differential configuration
to an array of passive EMG surface gel-based electrodes,
placed in a ring configuration around the upper forearm of
the subject. The IC back-end streams the data via SPI to the
digital platform. The setup is developed for measurement and
characterization purpose, using development boards, but the
whole system can be integrated in a single PCB with 40x20mm
form factor, suitable for wearable applications.

In this work we developed a multicore low power platform,
based on the Mr.Wolf SoC [46] implemented in CMOS 40nm
technology. The SoC is a multi-core programmable processor
that includes a tiny RISC-V processor (zero-risky) [47], for
control functions, and a powerful cluster of 8 RISC-V (ri5cy)
processors with extensions for energy efficient digital signal
processing [47]. Two memory levels (L1 and L2) are available
on the SoC: a 64kB of L1 memory - single cycle latency, multi-
bank, which enables shared-memory parallel programming
models (e.g. OpenMP), and a 512kB L2 with 15 cycles latency.
The parallel cluster accesses this memory with a dedicated
direct memory access (DMA) controller. Moreover, the SoC
features a full set of peripherals and, to minimize the quantity
of interactions with the controlling core, the data transfers
are managed by a multi-channel I/O DMA. Since many
applications (like in EEG or EMG processing algorithms)
require highly dynamic data and need fast computation, the
cores in the cluster share two floating-point units (FPU).
A dedicated hardware block (HW Sync) supports fast event
management, parallel thread dispatching, and synchronization,
enabling a fine-grained parallelism, which leads to a high

energy efficiency in parallel workloads. An internal DC/DC
converter connected to an external battery delivers voltages
between 0.8V and 1.1V, maximizing power efficiency. In sleep
mode, the voltage regulator is turned off and the real-time
clock is powered by a low dropout regulator (LDO) and is fed
by a 32kHz crystal oscillator. The LDO controls programmed
wake-up and part of the L2 memory for application state reten-
tions for fast wake-up. In deep sleep, the power consumption
is reduced to 72 µW (from VBAT) assuming the RTC is active
and no data retention, and 108 µW assuming full L2 retention.
Hence, duty cycling is extremely effective on Mr. Wolf to
decrease average power at low workloads.

B. Hyperdimensional Computing

Brain-inspired HD computing explores the emulation of
cognition by computing with points in a HD space, that
is, with hypervectors, as an alternative to computing with
numbers [44]. Hypervectors are d-dimensional holographic
(pseudo)random vectors with independent and identically dis-
tributed (i.i.d.) components. When the dimensionality is in
the thousands, e.g. d ≥1000, there exist a huge number of
nearly orthogonal hypervectors [48]. In HD computing we
combine such hypervectors into new hypervectors using well-
defined vector space operations, defined such that the resulting
hypervector is unique with fixed-width.

To ease hardware implementation, we consider dense binary
hypervectors that are initially taken from {0, 1}d resulting in
equal number of randomly placed 0s and 1s. HD Computing
supports a full algebra to manipulate these seed hypervectors
by using multiplication, addition, and permutation (MAP)
operations. When using dense binary codes, MAP operations
can be simply implemented by the componentwise XOR (⊕)
as multiplication, the componentwise majority function ([+])
as addition, and one-bit circular rotation (ρ) as permutation.
The addition produces a hypervector similar to the input
hypervectors and it can represent sets, while multiplication
generates a dissimilar hypervector and is used to bind hyper-
vectors. The permutation also produces a dissimilar pseudo-
orthogonal hypervector, which is used to create hypervectors
representing sequences of hypervectors.

Based on the use of these MAP operations, an encoder
can be designed for various tasks, e.g., EMG [20], [22], [49],
EEG [23], [50], ECoG [51], ExG [45], or in general pattern
processing [52]. The encoder emits a hypervector representing
the event of interest that is then fed into an associative
memory (AM) for training and inference. During training, the
output hypervector of the encoder is added in the AM as a
learned pattern. This allows continue updates into AM without
requiring to store the raw data or features from the previous
examples.

During inference, the output of the encoder is compared
with the learned patterns. Comparison is based on a distance
metric over the vector space. The AM uses Hamming distance,
defined as the number of different components of two binary
hypervectors. In the following, we describe the encoding
approach we developed for EMG signals.

First, to map the features into the HD space we utilize
item memory (IM) and continuous item memory (CIM) [49]



5

Fig. 2: Implementation on PULP platform of the processing chain. The first three kernels are in common for both training and classification
phase. The open/closed switches are there just for a visual idea and the meaning is that once the model is created during the training phase,
we will not use that kernel anymore and we pass to the classification kernel.

matrices. The IM is composed of random orthogonal (⊥)
hypervectors (i.e., E1 ⊥ E2... ⊥ Ei), each one associated to
the i-th input channel. The CIM contains a set of orthogonal
endpoint hypervectors, mapped on the discretized values of the
input channels. For instance, if input values are discretized in
K levels, we will have K hypervectors (V1..VK) where V1 and
VK are associated respectively to the minimum and maximum
input values. The hypervectors in CIM are generated by a
linear interpolation between the two orthogonal endpoints [49].

The IM and CIM are initialized one time and kept constant
during the training and the classification. Once the seed hyper-
vectors are generated from IM and CIM, they are combined
by the MAP encoders to represent the event of interest, e.g.,
a gesture.

The first encoding is obtained with a componentwise XOR
between E and V resulting, at instant t:

St = [(E1 ⊕ V t
l(1)) + ...+ (Ei ⊕ V t

l(i))]. (1)

where Ei is the IM vector corresponding to the i-th input
channel and Vl(i) is the CIM vector corresponding to the l(i)-
th discretized level of the input sample of channel i. Assuming
that, at time 0, channel 1 acquires a new sample and, after
the envelope extraction, a signal of amplitude equal to 21 is
produced, we can bind this information by E1 ⊕ V 0

21. Then,
the envelope extraction of channel 2 produces a signal with a
smaller amplitude, for instance around 7, thus E2 ⊕ V 0

7 . This
is done for all the channels and the related amplitude values,
resulting in S0 = [(E1⊕V 0

21)+ (E2⊕V 0
7 )+ ...+(E8⊕V 0

15)]
at instant 0. In this way, the encoder captures the spatial
information of a gesture, and can achieve slightly higher
accuracy. However, if input data need a temporal component,

the temporal encoder extracts information by considering N
consecutive hypervectors, from instant t to t + N − 1. The
temporal encoder employs permutation and multiplication to
capture order of hypervectors generated by the spatial encoder.

Thus, N spatial hypervectors form an N -gram hypervector
(T ), defined as:

T = St ⊕ ρSt+1 ⊕ ρ2St+2 ⊕ ...⊕ ρN−1St+N−1 (2)

where ρk means applying permutation k times (i.e., k-bit
rotation of hypervector). The spatial and temporal encoders are
common to both training and classification. The N parameter
used in the algorithm is kept constant (i.e. equal to 1) during
both training and testing.

During the training, an N -gram hypervector is generated for
each trial and added as a prototype hypervector related to the
class of the trial. The associative memory (AM) contains the
same number of prototypes as the number of classes. During
the classification, an N -gram is produced from unseen gesture
that we call it query hypervector. In the AM, the Hamming
distances are computed between the query hypervectors and
prototypes hypervectors (as learned patterns) to find the label
associated to the minimum distance.

IV. IMPLEMENTATION ON THE PULP PLATFORM

HD Computing benefits of a computationally efficient learn-
ing algorithm, suitable for resource-constrained platforms.
In this paragraph, we describe our implementation of the
online and on-chip training giving details on the optimization
and demonstrating the feasibility of this approach in fully-
embedded energy efficient devices.
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Fig. 3: Illustration of how built-ins (p.extract, p.insert, p.cnt) used in the spatial encoder (left). A code snippet to show the usage of builtins
and parallelism (OpenMP directives) in the processing chain (right).

Before starting the online on-chip training, the algorithm
creates the matrices (IM/CIM) required for mapping the sam-
ples in the high dimensional space. They should be calculated
once with parameters chosen for set-up (number of electrodes
and quantization levels), at the beginning of the training
phase, and they remain constant for the entire duration of
the session. The random orthogonal binary hypervectors are
created through a random generation of 32-bit unsigned integer
values. For instance, in an eight channel setup IM requires
eight orthogonal hypervectors, which are generated through
the rand() function (included in the GCC library) as 313
random 32-bit unsigned integer values, corresponding to a
10’000-D binary hypervectors (313 × 32 ≈ 10′000). The
10’000 dimension has been chosen to define a very high
dimensional space able to demonstrate important properties
of hyperdimensional representation [53]. Thus, the binary
hypervectors are compacted into 313 32-bit unsigned integer
variables (i.e. each bit represent one element of the hyper-
vector) to drastically reduce the memory requirements of the
application and, hence, the memory accesses.

Similarly, the CIM is computed considering the quantization
levels required to represent the input data (i.e. 22 levels), and
mapping these levels in an orthogonal hyperspace. The number
of discrete levels for quantization has to be carefully selected,
depending on the signal we are working with. After an
exploration of the data acquired from the 10 subjects involved
in the experiment and referring to [20], [49], we set a linear
quantization on 22 levels, enough to approximate appropriately
the input signals. A finer grain (i.e. more discrete levels)
requires a higher number of hypervectors stored in memory
(CIM matrix) with no relevant gain in performance, while a
lower number of quantization levels affects the classification
accuracy.

A. Implementation and Optimization on Mr.Wolf

Aggressive code optimizations can be achieved by com-
pacting the hypervectors in 32-bit integers, leveraging simple
operations such as componentwise majority, XOR and shift.
The representation of the elements of the hypervectors using

unsigned integer variables requires several bitwise operations
(i.e. read/insert from/into a 32-bit word) and an operation to
count the number of bits set to 1 in a 32-bit word (the so-called
popcount). The Ri5cy augmented RISC-V ISA [20] includes
several bit manipulation instructions (builtins) to perform this
operation in 1 clock cycle, leading to an aggressive perfor-
mance optimization. The builtins used in this application are
p.extractu, p.insert and p.cnt. The formers two, p.extractu
and p.insert, are used respectively to read and set the value
assumed by a given bit in an unsigned 32-bit register, while
the latter p.cnt returns the number of 1s set in a word.

These builtins are used in the spatial encoder to calculate
the componentwise majority after binding each channel to its
signal level in the HD space and in the learning part to bound
all the hypervectors associated to the training samples to create
the prototype hypervector. Finally, the popcount is used to
compute the Hamming distances.

In Fig. 3 an example of the use of the builtins is shown. The
i components of the hypervectors need to be extracted (i.e.,
bit-by-bit) to perform the componentwise majority operation
and to count the number of bits set to 1 for the majority voting.

To perform the majority voting, the number of channels
must be odd. Hence, if the number of channels (i) is even,
to avoid randomness in the case of the same number of
0’s and 1’s, one reproducible but random hypervector is
generated through a componentwise XOR between two bound
hypervectors (i.e. the first and the second). For instance, in
our case study, with 8 input channels, we use nine bound
hypervectors to perform the majority voting. After that, the
popcount (p.cnt) is used to evaluate if the number of 0’s is
higher with respect to the number of bits set to 1. If there
are more 1’s than 0’s, the related bit is set to 1 in the spatial
hypervector.

B. Parallelization and Memory Requirements

As shown in Fig. 2, the training and the testing phases
have several functions in common. In particular, the feature
extraction and the kernels used to map the features into the
HD space are the same for both phases. When a new sample
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Fig. 4: Gestures used for the testing. open hand, power grip, index
pointed, 2-fingers pinch, thumb up, wrist supination, wrist pronation,
number two, number three, number four, rest position.

acquired by the ADC is available, we extract the envelope
of the signals using the RMS upon a circular buffer of
dimension N equal to 60. After several simulations, changing
the dimension of the buffer (from 30 to 150), we evaluated the
differences in classification accuracy. Between 60 and 150 the
loss in accuracy is negligible (∼1%), while using a smaller
length leads to a more significant loss (∼4% with a buffer
size of 30 samples). The feature vector is composed of the
envelopes extracted from the signals of each acquisition chan-
nel. After the feature extraction, the HD computing algorithm
begins. The first kernel maps the features to the HD space,
and performs the spatial encoding among all the acquisition
channels. In this work, we are considering eight acquisition
channels. To map the acquired samples in the HD space, we
use the CIM matrix, discretizing the samples in 22 linearly
distributed levels. Then, we combine the resulting hypervectors
with the one contained in IM related to each channel using the
MAP operations.

In the MAP and SPATIAL ENCODER kernel, the paral-
lelization is performed at data level, where the workload is
equally distributed among the cores of the cluster. Hence,
each core performs the encoding operations on a portion
of the hypervector. The cores execute the componentwise
XOR operation between CIM and IM and the componentwise
majority to create the spatial hypervector. Fig. 3 (right) shows
a code snippet of this kernel with the usage of the OpenMP
directives for the parallelization.

The spatial hypervector (1x313 32-bit integer array) is
stored in the low latency access L1 memory and requires 2kB
of memory. Due to the size of the CIM and IM matrices,
respectively 22x313 (27 kB) and 8x313 (5 kB), they are
stored in the L2 memory. The latency of the accesses to this
memory is masked implementing a double buffering policy in
which data are transferred from L2 memory to L1 memory
through the DMA, while the cores are processing data already
available.

If the temporal information contained in the signals is re-
quired (N-grams greater than one), the hypervectors in output
to the SPATIAL ENCODER goes in the TEMPORAL EN-
CODER. In this kernel, a sequence of N spatial hypervectors
are combined through a componentwise XOR operation after
shifting them by one position as permutation. The vector in
output to this kernel is the N-gram hypervector (it requires 2

kB, stored the in L1 memory), and serves as input for the AM
kernel.

During the training phase, we compute the prototype hy-
pervector and we store it in the L2 memory. The amount
of memory required to store the AM matrix depends on
the number of gestures we are considering. Storing a single
prototype hypervector requires around 2kB, scaling linearly
with the number of gestures.

The IM, CIM and AM matrices are computed at runtime and
stored in L2 memory for Mr. Wolf, while for the STM32F4-
Discovery board they are stored in the FLASH memory.

V. EXPERIMENTAL RESULTS

Evaluating the tradeoff between computational complexity
and accuracy is one of the key elements in the selection of
a ML algorithm for resource-constrained systems, especially
when dealing with online learning capabilities. This section
compares both training and classification performance of the
proposed HD computing algorithm against the most widely
used algorithm for gesture recognition (i.e. SVM), and their
optimized implementation on Mr. Wolf and on a commercial
ultra-low-power MCU (STM32F407), use as a reference for
comparison.

Ten able-bodied subjects (aged 26-42) without previous
history of neurological or muscular disorders were involved
in the experiment. All participants provided written consent
to participate in the experiments. Initially, the system requires
the subject to perform a given gesture and collect the data
needed for the HD training. The data were acquired using the
ADS1298 in the 8 channels fully-differential configuration.
EMG passive wet Ag-AgCl electrodes (25mm diameter) were
placed around the forearm at the same distance from each other
with the arm facing downwards. Inter-electrode distance (i.e.
distance between positive and negative channels) was set to
10mm. The gesture set was: open hand, power grip, index
pointed, 2-fingers pinch, thumb up, wrist supination, wrist
pronation, number two, number three, number four and rest
position, in the order shown in Fig. 4. During the acquisition,
the subjects repeated each movement 6 times, holding the
position with medium intensity of muscular contraction for 5
seconds and separating gestures with 5 second of rest position
to avoid muscular fatigue. 25% of the samples for each
acquired gesture were used for the training, while the whole
dataset is used for testing. This approach has results very
similar to the traditional procedure used in gesture recognition
applications, where the data used for training and testing are
separated by trials (i.e. some trials used for training and the
others for testing). We tested offline the 2 approaches and
we obtained accuracy difference below 1%. This is due to
the fact that gestures are basically ”static”, i.e. the contraction
level is maintained almost constant all over the duration of the
trial (excluding the transients), resulting in similar contraction
patterns for all the trials of a given gesture.

A. Comparison between SVM and HD computing of Training
Times and Classification Accuracy

One of the most important advantages of HD computing is
the possibility to perform the training of the algorithm ’one-
shot’, paving the way to the real-time implementation and
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Fig. 5: Estimation of the execution time for the training of SVM
and HD Computing increasing the number of gestures (from 1 to
11). Results are presented in logarithmic scale.

execution of the training phase. This section compares the
computational load for the training of the SVM against HD
and the accuracy in classification, starting with two gestures
and scaling up to determine the computational cost of the
two algorithms in different application scenarios (i.e. where
a different number of recognized gestures are required). In
this experiments, the SVM uses a linear kernel (c=1), with
data normalized between 0 and 1. Such configuration has been
selected after experimental evaluation, and represents the best
trade-off between performance and computational complexity
for this setup. While it has been observed that, for some signals
such as EEG, the temporal information is extremely important
to achieve good classification accuracy, this is not the case for
EMG signals [33], [49], whereas experiments are based on
”static” gestures. Thus, the results in this section are presented
considering N=1 for all subjects (the same for training and
classification).

Results are shown in Fig. 5. The graph is plotted in
logarithmic scale for the sake of clarity. It is noteworthy that
the training time of HD computing algorithm is deterministic
and grows linearly when the number of classes increases.
On the contrary, SVM training time is not deterministic
(i.e. it depends on the convergence time of the algorithm)
and, more importantly, it increases super-linearly with the
number of gestures, resulting not affordable for embedded
implementation if the number of gestures is higher than 5.
Overall, the training time of the SVM is between 2 and 3
orders of magnitude higher than the HD Computing.

After the characterization of the training time of the SVM
against the HD computing we have measured the accuracy of
the classification obtained with the 2 classifiers. The average
accuracy values are shown in Fig. 6. Results are comparable in
terms of accuracy, showing that HD computing has a maximun
4% accuracy loss wrt SVM, resulting suitable for a hand
gesture controller [54].

B. Evaluation of Execution Performance
In this section, we discuss results of the HD computing

implementation (both training and testing) on the proposed
embedded system. Table II shows the execution times of the
algorithm on Mr. Wolf incrementally exploiting the features
of the architecture, namely the DSP extensions available on

Fig. 6: Average accuracy obtaining by SVM and HD computing,
using the same data collected by 10 subjects, increasing the number
of gestures (from 1 to 11).

the core (Mr. Wolf 1-core built-ins), and the parallelism of the
8 cores available on the cluster (Mr. Wolf 8-cores built-ins).
The implementation on an STM32F4-DISCOVERY board
(ARM Cortex M4) is also shown in the table as reference.
Results refer to hypervectors of 10’000-D, N equal to 1 (i.e.
no temporal information), 11 classes (10 gestures and the
rest position). We set the N parameter to 1 to show the
fastest case for training and classification, and also because
the MAP+ENCODERS kernel increases linearly, increasing
the temporal window length. This results also in a better
generalization of the application, since the same level of
temporal encoding is used for all the subjects. In more subject-
specific applications (beyond the scope of this work), it is
possible to adapt the temporal encoders scaling the value of
N, adding more temporal information, besides the RMS [49].

Considering the upper part of the table (TRAINING), the
first column shows the cycles required for the execution of the
RMS and MAP+ENCODERS for one sample (each 100ms).
To better understand the part of the processing we are taking
into account, we can refer to Fig. 7 that shows where the
computational kernels are executed.

Theoretically, to collect the training set, we need to con-
tinuously extract the envelope from the signals. As already
discussed, to reduce the number of samples used for the
training and to cover the entire shape of the gesture, we use a
downsampling factor of 100 (this factor can vary depending on
the number of samples used for the training and the duration
of the gesture). In this way, it is possible to compute the RMS
only 1 time after the acquisition of the 100th sample (Fig. 8).

In the RMS kernel we can see that just changing the
architecture (passing from ARM Cortex M4 to 1-core Mr.
Wolf) leads to an improvement of 2.0×. This improvement
is mainly due to the hardware loops and the floating-point
Fused Multiply and Accumulate (FMA) available in Mr. Wolf.
In fact, in this part of the processing chain, we are considering
floating point variables that are successively binarized into
hypervector. This kernel is parallelized splitting the acquisition
channels (i.e. 8, 16, 32, etc.) to calculate envelope values
among the cores inside the cluster reaching a nearly ideal
speed-up.

The MAP+ENCODERS kernel results slightly slower when
executing on a single-core of Mr. Wolf, when no bitwise
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TABLE II: HD Computing Execution times on the target architectures, with 10,000-D, N=1. (Cyc, su) stand for (cycles, speed-up). The
total energy/class reported, is the result of the addition of the contribution of these functions without considering the energy during idle
periods.

ARM CORTEX M4 Mr. Wolf 1 core Mr. Wolf 1 core built-ins Mr. Wolf 8 cores built-ins

T
R

A
IN

Kernel cyc(k)a cyc(k)b E(µJ)d cyc(k)a cyc(k)b suc E(µJ)e cyc(k)a cyc(k)b suc E(µJ)e cyc(k)a cyc(k)b suc E(µJ)e
RMS 13.78 399.62 202.42 6.82 197.78 2.02 24.99 6.82 197.78 2.02 24.99 0.89 25.81 7.66 5.13
MAP+ENCODERS 537.71 15’593.59 7’898.90 569.10 16’503.90 0.94 2’085.49 215.35 6’245.15 2.50 789.16 27.94 810.26 19.25 161.22
TRAINING 41’305.84 20’923.37 25’620.47 1.61 3’237.50 16’696.69 2.47 2’109.85 2’136.18 19.34 425.05
TOT TRAIN 57’299.05 29’024.70 42’322.15 1.59 5’347.99 23’139.60 2.47 2’924.01 2’972.25 19.33 591.41

T
E

ST

RMS 13.78 6.98 6.82 2.02 0.86 6.82 2.02 0.86 0.89 7.66 0.17
MAP+ENCODERS 537.71 272.37 569.10 0.95 71.91 215.35 2.50 27.21 27.94 19.24 5.55
AM 70.65 35.78 68.59 1.03 8.66 24.19 2.92 3.05 7.23 10.06 1.43
TOT TEST 622.15 315.14 644.48 0.97 81.44 246.37 2.53 31.13 36.06 17.25 7.17

a cycles per sample, b cycles per class, c speed-up wrt ARM Cortex M4, d 168MHz@1.85V e 100MHz@0.8V

Fig. 7: Sequence of the computational kernels of the HDC training.
The first kernel is the RMS, computed on 60-samples windows,
every 100ms. Output of the RMS is used by the encoding kernel
to calculate the AM vectors. Once the 29 vectors of the associative
memory are calculated, they are used to calculate the prototype
hypervectors (1 for each class of the problem)

Fig. 8: Power envelope of the training algorithm. EMG samples are
acquired during Acquisition steps,whereas PULP cluster is turned off
and uDMA manages data transfer from SPI to uDMA. Once the
buffer for RMS computation is ready, the cluster is switched on and
calculates RMS value and hypervectors for the encoder (RMS MAP
and ENCODING).

manipulation extensions are being used. This is due to some of
the instructions available on the ARM Cortex M4 architecture
(i.e. load and shift and load 32-bit immediate), useful to
compute the majority function (based on population count
operation), heavily relying on load-and-shift and 32-bit load
immediate operations not available in the baseline RISC-V
Instruction Set Architecture (ISA). However, this kernel can
be highly optimized in Mr. Wolf taking advantage of the DSP

extensions. Since the built-ins to extract/insert bits into a 32-
bit word require as input a 5-bit immediate to indicate the
position of the bit we are considering, we unrolled the inner
loop including this function to remove the dependency with the
loop index, fully exploiting the capabilities of these extensions,
leading to an improvement of 2.5× over Cortex M4 (when
considering a single core).

Furthermore, this kernel demonstrates almost ideal paral-
lelism due to the lack of dependences between the different
iterations of the inner loops. In fact parallelizing the execution
of the code on 8 cores improves this gain up to 19.2× with
respect to the ARM Cortex M4 execution time, showing a
nearly ideal speed-up when comparing its execution time with
respect to the execution on a single core (i.e. 7.7×). The last
kernel takes all the N-grams related to the training samples and
creates the prototype hypervectors for all classes. Built-ins can
be effectively used also in this case to optimize the execution,
since the majority operation is required also in this kernels,
leading to 2.4× better performance (unrolling the loop as in
the previous case) compared to ARM Cortex M4 and 19.3×
when exploiting the parallel processing cluster.

In the second part of Table II (TEST), results for the testing
of the HD Computing algorithm are shown.

The first two kernels (RMS and MAP+ENCODERS) have
been already discussed in the description of the training
results. The last kernel is the AM, where the query is classified
in one of the possible classes (11 in this particular case).
Exploiting the parallel execution leads to a saturation on
the speed-up because of the small quantity of workload to
distribute to the cores. In fact, the speed-up obtained using 8-
cores Mr. Wolf is equal to 3.3× (10.0× wrt ARM Cortex
M4). This small gain does not impact significantly on the
overall speed-up (6.8× wrt 1-core Mr. Wolf with builtins and
17.3× wrt ARM Cortex M4) as the dominant part is the
MAP+ENCODER kernel.

C. Evaluation of Energy Consumption
In this section, we make a comparison in term of energy

consumption between the target architectures. The commercial
ARM Cortex M4 MCU works at an operating frequency of
168MHz and 1.85V, while we set the operating frequency of
Mr. Wolf architecture to 100MHz (the maximum is 450MHz)
at 0.8V, the most efficient operating point. Fig. 8 gives insights
about the training of the algorithm. Each gesture is held for
three seconds.

EMG signals are acquired at 1kHz, hence a new sample is
available each 1ms. To reduce the number of samples required
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(a)

(b)

Fig. 9: Energy breakdown during training (a) and testing (b) using
the HDC on the target platforms. The bars are plotted in log scale
to better show the energy contribution of each function. The total
energy consumption at the bottom of the figure is reported in linear
scale. Working with 8-cores, Mr. Wolf achieves the lowest energy
consumption, saving up to 34x energy with respect to the commercial
STM32F4 MCU.

to train the algorithm, while maintaining a clear idea of the
shape of the gesture, we calculate the RMS value on 60
samples each 100ms (see Fig. 7). Hence, we can store in
memory the acquired samples using the µDMA keeping the
PULP cluster switched off, and then, after the acquisition of
the 100th sample, we can wake up the cluster and perform
the RMS and the MAP+ENCODERS kernel creating a new
hypervector.

As soon as all the hypervectors required by the training
are generated, we can generate the prototype hypervector that
will be used for the classification. When no elaboration and no
acquisition are required, we can put the cluster and part of the
SoC in deep sleep to further save energy. Table II also shows
the energy consumption for each kernel of the training and
the testing of the algorithm. The total energy consumption
for the training of the algorithm on the ARM Cortex M4,
including all eleven gestures, is equal to 29.02mJ, while the
energy consumption on the single core Mr. Wolf is 5.35mJ
(5.4 energy boost). This improvement mainly derives from
the difference in technology (40nm for Mr. Wolf and 90nm
for ARM Cortex M4) and the differences in the operating
state. The ARM Cortex M4 operates at its maximum operating

frequency (168MHz) at 1.85V, while for Mr. Wolf, which can
work at a maximum frequency of 500MHz, finds its most
efficient operating point at 100MHz. We can also lower the
voltage operating in near-threshold (0.8V). The use of built-
ins can improve this gap in energy and exploiting the parallel
computing on eight cores, reaching an energy boost of 49.1×.

During the classification, the energy boosts are more signifi-
cant because they represent the energy consumed by the MCU
for most of the lifetime of the application. The boost achieved
by changing the architecture (from the commercial MCU
to the single core Mr. Wolf) leads to a 3.9× improvement
in energy. Optimizing through the built-ins gives a further
10.1× improvement while splitting the workload among eight
cores allows us to obtain up to 44.0× gain, with an energy
consumption of 7.2µJ. Considering also the energy required by
Mr. Wolf (8-cores) at deep sleep, the system can provide nearly
300h of autonomy. In this evaluation, we do not include the
ADC power to better showcase the benefits of the architecture.

Fig. 9(a) and 9(b) show the energy breakdown during the
training an testing. Both plots are represented in a logarithmic
scale to better exhibit the energy contribution of each function
at different orders of magnitude. In fact, this is already denot-
ing the benefits of using Mr. Wolf as a processing architecture.
During both phases, the energy consumption is the result of the
contribution of the power modes. When processing is required,
the MCUs will run at the maximum allowed core frequencies
(Run mode), and when in idle, they will be put in deep-sleep.

During training, the contributions in energy for the exe-
cution of the kernel functions in nearly all architectures are
similar, i.e., dominated by the ENC and TRAINING kernels.
The case is different for Mr. Wolf (8-cores), where the energy
required during the active time becomes comparable with the
energy employed in deep sleep mode, thus, approaching the
lower bounds of the energy consumption. This is possible
by taking advantage of the parallelization of the code and
the technology improvements previously presented. The same
trend is noticeable during the testing (i.e., real-time classifi-
cation), where the energy of most computationally expensive
function, MAP+ENCODERS (M+ENC) kernel, becomes more
comparable with the deep-sleep energy when moving towards
the architectures with higher core count. As a result, Mr.
Wolf (8-cores) works with an average power consumption of
0.82mW, demonstrating that complex signal processing and
ML can be executed at an extremely low power budget.

VI. SCALABILITY

The results presented in Section V focus on the use case
addressed in this work for EMG hand gesture recognition with
8 channels and an N-gram size of one.

This HD computing framework can handle more complex
tasks (i.e. EEG processing) where a higher number of channels
for a larger coverage and larger N-gram size for a wider tempo-
ral window are required [20]. To demonstrate the capabilities
of this framework to handle other type of applications, we
assess the scalability by increasing the number of channels
from 4 to 256 channels. Increasing the number of channels
affects both execution time and memory requirements. As
shown in Fig. 2, the processing chain can be divided in two
part. The first part includes the kernels ”channel dependent”
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Fig. 10: Performance and memory footprint of HD computing,
increasing the number of channels. The results refer to 8 cores Mr.
Wolf execution with built-ins.

Fig. 11: Battery duration of the target applications including the
static power of the ADC with an increasing number of channels.
With a fixed latency of 40ms per classification, Mr. Wolf 8-cores,
even with a single core, can provide the same performance than the
commercial STM32 (up to 64 channels).

(RMS and MAP+ENCODERS), for which the performance
changes increasing the number of channels, while the second
part includes the kernels ”channel independent” that have no
impact on the performance scaling up the number of channels.
Fig. 10 shows that the RMS and the MAP+ENCODERS
kernels linearly increase the execution time scaling up the
number of channels (from 4 to 256), so as the memory
requirements for the correct execution of the processing chain.
This can be extended for the testing part, as the number of
cycles for the AM kernel (channel independent) decreases the
impact on the overall performance as the number of channels
increases. Similarly, we can extend this discussion for the
training part taking into account that the number of cycles
reported on the graph has to be multiplied by the number of
samples required for the training of each class and the cycles
required to create the prototype hypervector has to be added.

Furthermore, we have also explored the impact on the bat-
tery life when scaling the number of channels for the training
part. Fig. 11 shows the autonomy of the target architectures
including the static power of the ADC and considering a
battery of 100mAh. With a classification latency of 50ms,
the STM32 and Mr. Wolf (1-core without built-ins) can only
be scaled up to 64 channels because they are not able to
meet this latency constraint. Nevertheless, Mr. Wolf denotes
a more efficient operation by providing up to 3.9x more
autonomy than the STM32. If we include the built-ins, the
same core can now be scaled up 128 channels, providing
more than 48h of continuous operation and demonstrating

Fig. 12: Battery duration of the target applications with an increasing
number of channels. This figure excludes the static power of the
ADC to better showcase the power characteristics of the target
architectures. The single core version of Mr. Wolf (without built-ins)
can provide the same autonomy than the commercial ARM Cortex-
M4 MCU (up to 64 channels). With built-ins, the same core offers
more than one day of battery life (up to 128 channels), and the 8-core
version, up to 18h (256 channels).

the benefits of the built-in instructions. Nonetheless, for the
current application, Mr. Wolf (8-cores with built-ins) exceeds
all other architectures (for every number of channels) mainly
thanks to the distribution of the task into the different cores.

Another interesting fact comes from the line shapes, where
all Mr. Wolf architectures will show a pseudo-constant average
autonomy when increasing the number of channel up to 64
(with respect to four channels), with only 32% of autonomy
degradation, while the commercial MCU will show peak
degradation of 74%, i.e., a linear and steep decrease. This
difference is due to the negligible power contribution of Mr.
Wolf with respect to the ADC power. When scaling up the
system with more channel, Mr. Wolf will still provide 19h to
12h of operation for 128 and 256 respectively, adequate for
daily use.

We also present in Fig. 12 the autonomy of the architectures
without including the ADC contributions, which can be subject
of further optimizations depending on the application, and it
is currently out of the scope of this work. This representation
also highlights the benefits of using the PULP architecture,
where again, Mr. Wolf exceeds the commercial MCU, being
able to provide from 1’400h to 19h of continuous operation
with an increasing number of channels.

VII. CONCLUSION

In this paper we presented a complete framework for EMG
gesture recognition. Our solution includes a novel algorithm
for fast online training, implemented on a programmable
multicore platform. Leveraging the HW-SW co-design which
ranges from algorithm to embedded optimization, we aim to
enable a simple and scalable solution for supervised pattern
recognition. In fact, the supervised learning approach is widely
used in pattern recognition applications, but it lacks versatility,
due to heavy computational requirements of the training stage.

Our solution has been tested on 10 subjects in a typical ges-
ture recognition scenario. HD computing with online learning
reaches 85% accuracy on 11 gestures recognition, which is
aligned with the SoA. Furthermore, by virtue of the efficient
Mr. Wolf multicore processor, the energy budget required to
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run the learning part with 11 gestures is 10.04mJ, and 83.2µJ
for one classification. The system works to a average power of
10.4mW in classification, ensuring around 29h of autonomy
with a battery of 100mAh.

As future work, we plan to integrate the system in a minia-
turized form factor and to optimize the power consumption.
Furthermore, we plan to integrate and test this solution for a
higher number of channels and to extend the HD computing
based solutions for other biopotentials, such as EEG signals.
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