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Abstract

Reproducing kernel Hilbert spaces (RKHS) are interpretable as normed spaces of

functions furnished with a probability distribution and as such are especially suit-

able for modelling and inference of spatial, temporal, or spatiotemporal phenomena

exhibiting a large degree of randomness. Phenomena of this type occur frequently

in geodesy in the form of for example noise, instrument drifts, or meteorologically

induced systematic deviations whose superimposition on the desired information

yields the measurements. To facilitate RKHS-based signal separation and thereby

solutions to the above mentioned geodetic problems of splitting data into compo-

nents of different origin, the correspondence between elements of an RKHS and the

random variables comprising stochastic processes is investigated. RKHS can be op-

erated on by abstract algebraic operations like linear transformations, direct sums,

and tensor products. Due to the dualistic nature of RKHS as isomorphic to spaces

of random variables, these operations have probabilistic analogues that amount to

different assumptions and constructive guarantees concerning the decomposability

of the involved stochastic processes that are both interesting from a theoretical per-

spective and have practically relevant implications in terms of numerical stability

and decreased computational loads.

The set of RKHS is in one-to-one correspondence with the set of positive definite

kernels that in turn completely determine a unique RKHS and can be interpreted as a

comprehensive description of the associated stochastic processes correlation struc-

ture. The choice of an appropriate kernel is therefore essential to ensure the perfor-

mance of estimators derived within the RKHS framework. Spectrally decomposing

positive definite kernels and their associated compact kernel operators leads not only

to insights linking functional calculus and signal separation but also suggests a new

stochastic model for reproducing kernels that enables their inference from observa-

tional data. Solving the inference problem requires the development of numerical

methods that parallel the ones employed in semidefinite programming. The result-

ing algorithm proves to be extendable to allow for the inclusion of affine constraints

making it applicable for problems like variance components estimation. Further

geodetically motivated examples of RKHS-based processing are given throughout.

The separation of signal and noise in data originating from terrestrial radar interfer-

ometry is a particularly challenging problem due to the spatiotemporal nature of the

measurements and highly intricate meteorological effects that exhibit an instation-

ary and topographically affected correlation structure. Following a detailed analysis

of the kernels most suitable to model the stochastics of the atmospheric artifacts to

be removed, several optimization problems in RKHS are formulated whose solu-

tions are best estimators of the deformations whose quantification is the original

purpose of terrestrial radar interferometry. Based on data gathered during a moni-

toring campaign carried out in the Swiss Alps, the performance of the RKHS-based

estimators is evaluated and compared to filtering schemes presented elsewhere in

the literature; the latter estimators are shown to be special cases of the RKHS ap-

proach.



Zusammenfassung

Hilberträume mit reproduzierendem Kern (RKHS) sind interpretierbar als mit einer

Wahrscheinlichkeitsverteilung ausgestattete normierte Räume von Funktionen und

als solche insbesondere geeignet für die Modellierung und statistische Inferenz von

räumlichen, zeitlichen, oder raumzeitlichen Phänomenen, die einen hohen Grad an

Zufälligkeit aufweisen. Phänomene diesen Types treten häufig in der Geodäsie auf;

etwa in Form von Rauschen, Instrumentengängen, oder meteorologisch induzierten

systematischen Abweichungen, die den zu erhebenden Informationen überlagert

sind. Um RKHS-basierte Signaltrennung und dadurch auch eine Lösung der oben-

genannten geodätischen Probleme betreffend Dekomposition von Daten in Kompo-

nenten unterschiedlicher Herkunft zu ermöglichen, wird der Zusammenhang zwis-

chen Elementen eines RKHS und den einen stochastischen Prozess formierenden

Zufallsvariablen untersucht. Abstrakte algebraische Operationen wie lineare Trans-

formationen, direkte Summen und Tensorprodukte können auf RKHS angewendet

werden und haben aufgrund der dualistischen Natur von RKHS als isomorph zu

Räumen von Zufallsvariablen probabilistische Entsprechungen, die sich umwan-

deln lassen in verschiedene Annahmen und Konstruktionsgarantien betreffend Zer-

legbarkeit der involvierten stochastischen Prozesse.

Die Menge der RKHS befindet sich in bijektiver Korrespondenz mit der Menge aller

positiv definiter Kerne. Diese wiederum determinieren einen RKHS vollständig und

können interpretiert werden als umfassende Beschreibung der Korrelationsstruktur

des mit dem RKHS assoziierten stochastischen Prozesses. Die korrekte Wahl des

Kernes ist daher essentiell, um die Leistungsfähigkeit der Schätzer zu garantieren,

die im Rahmen der RKHS Methode abgeleitet werden. Die Spektralzerlegung pos-

itiv definiter Kerne und der mit ihnen assoziierten kompakten Integraloperatoren

legt auch ein neues nichtparametrisches stochastisches Modell für reproduzierende

Kerne nahe, welches deren Inferenz aus Messdaten erlaubt. Dieses Inferenzproblem

zu lösen, erfordert die Entwicklung numerischer Methoden ähnlich derer eingesetzt

in der semidefiniten Programmierung. Der sich aus ihnen ergebende Algorithmus

erlaubt die Berücksichtigung affiner Beschränkungen, was ihn anwendbar macht für

etwa die Varianzkomponentenschätzung. Weitere geodätisch motivierte Beispiele

RKHS-basierter Prozessierungsschemata werden ebenfalls präsentiert.

Die Trennung von Signal und Rauschen in Daten stammend aus terrestrischer Radar-

interferometrie ist ein herausforderndes Problem insbesondere aufgrund der kom-

plexen meteorologischen Effekte, welche Instationaritäten und topographisch bee-

influsste Korrelationsstrukturen aufweisen. Folgend einer Analyse der am besten

zur Modellierung der aus den Daten zu filternden atmospärischen Artefakte geeigne-

ten Kerne, werden verschiedene Optimierungsprobleme in RKHS vorgestellt. Deren

Lösungen sind beste Schätzer für die Deformationen, deren Quantifizierung der ori-

ginäre Zweck der Messungen mit terrestrischem Radar ist. Basierend auf Daten,

die während einer Monitoringkampagne in den Schweizer Alpen gesammelt wur-

den, wird die Leistungsfähigkeit der RKHS-basierten Schätzer evaluiert und mit

anderen aus der Literatur bekannten Filteransätzen verglichen.
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Preface

As is the case with all carefully chosen titles, the author hopes that ”An RKHS

approach to modelling and inference for spatiotemporal geodetic data with applica-

tions to terrestrial radar interferometry” gives the reader already an almost complete

account of what he or she can expect to encounter during the reading of this mono-

graph. While the expression ”geodetic data” obviously names the object in need

of processing strategies and hints at dynamical phenomena possessing a spatial di-

mension, ”modelling and inference” constitutes the goal of our efforts enabling us

to describe stochastically such phenomena and derive information regarding their

current states and further progression despite possibly incomplete and only indirect

observations. The reproducing kernel Hilbert spaces (RKHS), interpretable as the

closure of certain vector spaces of functions with respect to the topology induced

by a norm quantifying in some sense the likelihood of its inhabitants, then finally

provides us with a framework in which to analyse problems of the aforementioned

kind and subsequently also with a means for their systematic treatment.

These functional spaces turn out to be populated by the solutions to differential

equations and norm minimization problems that also arise in geodesy when model

parameters are to be optimally estimated in the least-squares sense. Consequently

the mathematical procedures we employ will initially parallel those found in the set

of methods known as adjustment theory. However, as the monograph progresses

and due to the different flavour of tasks we face — the objects to be estimated are

random themselves and not fixed parameters in a model — the reader can expect a

significant departure in mathematics as well as in spirit from what one could con-

sider canonical knowledge in geodesy. As the spotlight is shifted away from para-

metric models and towards nonparametric representations of functions, questions

of a more topological nature related to closure, convergence, continuity, differentia-

bility and spectral decomposability of compact linear operators emerge. They are

only sensibly posable in infinite dimensional settings and do not enter the fray in

the finite dimensional analysis even though they offer nontrivial conclusions also in

that case.

Ultimately, this monograph is an outgrowth of the author’s attempt to deal with the

very practical problem of separating pure noise and atmospheric influences from de-

formations in terrestrial radar interferometry. As such, the underlying motivations

for several seemingly abstract constructions have often been concretely founded

in the desire to make concise the structure found in real spatiotemporal data and to

generalize the methods available in the literature to be applicable to estimation tasks

imbued with the complexity and uncertainty inherent in real-world problems. It is

the author’s intended goal to not only systematically motivate the theory of optimal

estimation in the framework of RKHS but also to demonstrate its usefulness to prac-

tically relevant problems. Several examples are given throughout the monograph to

help the reader potentially interested in the topic (but lacking the time for a rigorous

v



study) to furnish an intuitive understanding of what some of the theorems actually

mean and how the whole theory is to be applied in practice. It is in this spirit, that

the monograph at times diverges from the classical Definition-Theorem-Proof for-

mat and sacrifices self-containedness for compactness, accessibility and hopefully

joy on parts of the reader, who is only assumed to be acquainted with basic linear

algebra and a willingness to dive into the worked examples taken from a geodesist’s

repertoire of routine tasks.

When one’s writing is concerned primarily with the application of mathematics, one

can hardly claim sole ownership or originality of what is presented. Much is owed to

the classical expositions of Helmberg [93] and Riesz and Nagy [164] where func-

tional analysis results are concerned, whereas the texts authored by Bezhaev and

Vasilenko [21] and Berlinet and Thomas-Agnan [20] are invaluable RKHS-related

resources, whose study is heartily recommended. I want to express my gratitude

to my coworkers for interesting discussions and new perspectives. Specifically I

want to mention Ephraim Friedli, Zan Gojcic, David Salido, Eugenio Serantoni,

Lorenz Schmid, Valens Frangez, and Caifa Zhou who proofread this manuscript and

helpfully suggested many improvements that increased correctness and readability.

Special thanks go to my direct supervisor Andreas Wieser for his trust, his seem-

ingly bottomless enthusiasm and his guidance during difficult times and to Ramon

Hanssen and Josef Teichmann taking time out of their busy schedule to co-supervise

this thesis. It is needless to say that some people have greatly influenced the gen-

esis of this text even though they themselves are not scientifically inclined. To my

friends and family, and to my parents for their unconditional support, I dedicate this

monograph.

Zürich, Spring 2019 Jemil Avers Butt
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Chapter 1
Introduction

This chapter surveys scope and structure of the monograph and provides an introduction to
the mathematics used within the thesis. Special emphasis is placed on motivating the vector
space approach to signal analysis by successively introducing, interpreting, and generalizing
the classical Euclidean spaces in this context starting with accessible low-dimensional
examples. The two dimensional Cartesian plane is one such model example of a vector
space in which geometric intuition and the results obtained by linear algebra coincide. As
such it presents a suitable starting point for an understanding of the interaction between
purely algebraic and geometric quantities whose explanatory and intuitive power will carry
over to Euclidean spaces of arbitrary but finite dimension. By reinterpreting those spaces
as spaces of functions, some of the abstractness naturally occluding a clear picture in high
dimensional settings will be alleviated. This shift in perspective furthermore establishes
functions as the objects of prime interest in this thesis. A first approximation of the definition
of a Hilbert space is presented and, although omissive of some topological intricacies,
motivates the application of geometric operations to functional analytic problems. Before
formally introducing Hilbert spaces in chapter 2, a brief enumeration lists what the author
would classify as empirical arguments supporting the claim that Hilbert spaces are a natural
and useful concept to guide creation and manipulation of deterministic or stochastic models
of natural processes in a computationally tractable way. Apart from the many explanatory
and motivational remarks linking vector spaces and signal processing, the material covered
in this section is completely standard from a mathematical perspective and can be found in
almost any text covering linear algebra. The author suggests the books by Strang [190] and
Shilov [180] for their depth of treatment and clarity. References are given where proofs are
omitted.

§Motivation, overview, and guide to the reader

Reproducing kernel Hilbert spaces (RKHS) are vector spaces of functions whose

special inner product structure makes them suitable settings for a multitude of data-

analytic tasks. In their role both as spaces of functions augmented with a probability

distribution and as the natural framework for infinite-dimensional feature represen-

tations, RKHS have received increased attention in the past decade from statistical

and machine learning-oriented communities. They have been used to represent and

manipulate stochastic processes and are one of the main tools for analyzing non-

linear relations by embedding them into higher-dimensional auxiliary spaces. This

dual role, however, in conjunction with the fact that the theory of RKHS is an in-

trinsically functional analytic one that replaces simple models with finite degrees of

freedom by non-parametric, infinite superpositions of basis functions, has lead to

RKHS being employed only sparsely in the geodetic literature with its typical focus
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on explicitly parametric representations and adjustment theory.

Motivated by ill-posed real-world problems for which parametric models are nei-

ther justifiable nor practically sufficient, the primary goal of this monograph is to

explain, advance, and apply the theory of RKHS in the context of practically rele-

vant geodetic problems and relate it to more traditional processing strategies. One

such problem, and in fact the main driving force behind much of the thesis’ new

developments, is a challenging spatiotemporal signal separation problem encoun-

tered in terrestrial radar interferometry (TRI). As TRI seeks to employ electromag-

netic waves as a means for all-weather monitoring of deformations over distances

of several km, intricate autocorrelated atmospheric artifacts arise, whose correla-

tion structure is dependent on topographical features and is neither stationary nor

directly describable by one of the usual available parametric covariance functions.

As such the problem can not be successfully tackled by geodetic or geostatistical

standard procedures and the need for computationally efficient processing strategies

and instationary, potentially non-parametric covariance functions will guide the se-

lection of topics.

This monograph consists of six chapters. Chapters 1 and 2 introduce Hilbert spaces

and the spectral theory of linear operators on them before delving into the spe-

cific properties of so called reproducing kernel Hilbert spaces (RKHS). Building

on those concepts, abstract splines and their relationship to stochastic processes are

explored in chapter 3. The computational tools needed for implementation are also

presented there together with a collection of applications as diverse as estimation of

trajectories and vector fields as well as signal detection and separation. Closed form

solutions exist for these problems but include the apriori unknown kernel determin-

ing the correlation structure of the process in question. While we will initially

sidestep this drawback by ad-hoc arguments and inclusion of prior knowledge, a

systematic study of kernel inference making use of theorems developed in abstract

harmonic analysis and convex optimization will follow in chapter 4. Chapter 5 is

the last chapter with scientific content and deals primarily with the full spatiotem-

poral signal separation problem for terrestrial radar interferometry. The monograph

closes with a brief outlook onto open research questions in chapter 6.

The reader most interested in applications may directly jump to the sections 2.3, 3.1,

and 3.3 for an introduction to RKHS and their relation to statistical nomenclature

with a compilation of accessible examples and finally section 5.2 for an in-depth

description and analysis in the context of TRI. The shortest route to kernel inference

includes the sections 2.2 and 3.2 dealing with the spectral properties of kernels and

their associated kernel operators as well as most of the fourth chapter in form of

the sections 4.2 and 4.3 that present formulation and numerical solutions for the

problem of deriving kernels from observations.

While traversing the sequence of topics listed above, tools are developed that are

practically useful also in other disciplines of science in which either by nature or

necessitated by complexity, a high-dimensional, and therefore often functional, per-

spective is the prevalent mode of presentation. This includes especially those parts
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of scientific theories that are concerned with the formation and adaptation of mathe-

matical models and with the collection and extraction of information from data. For

them, the theory of RKHS offers a monolithic block of methods for data processing

with a clear stochastic interpretation that handles its dependence on prior knowl-

edge in a transparent and economic manner by encoding it into a positive definite

kernel. Since, by means of a newly developed procedure presented in the later parts

of the monograph, these kernels can be inferred from observations if necessary, this

results in algorithms that are almost free of arbitrary, user-specified choices and

thereby particularly suited to act in a black-box-fashion if input and output are of a

numerically well defined format.

The potential use of RKHS-based signal processing as an intermediate step inte-

grated into a larger algorithmic pipeline is further augmented by the fact that the

theory of RKHS and procedures derived from it are relatively self-contained. There-

fore, the methods described in the monograph do not only directly improve the qual-

ity of displacement maps gathered by TRI and the associated risk assessments; they

can also be used in thematically completely unrelated signal separation problems.

To emphasize this generality and the accessibility of the approach even to non-

experts, many examples of geodetically motivated statistical problems are posed

and solved throughout the monograph. To further increase the convenience with

which the content can be absorbed, very short preliminary summaries proceed the

core material in each subsection. These do neither feature extensive explanations

nor references to other sources but should help the reader to re-familiarize him- or

herself with material already known or skip technical sections without missing the

most important concepts, take-home messages, and the big picture.

Several alternative collections of state-of-the-art machinery like neural network-

based deep learning (DL) and independent component analysis (ICA) could have

been used to tackle the tasks presented in this monograph. The author has decided

against them as, in contrast to the theory of Hilbert spaces, they emulate flexible

behavior via nonlinearity. Although the results of DL and ICA are often satisfying,

the exact reasoning behind the respective algorithms’ decisions can therefore

be quite arcane and inaccessible; in conjunction with the lack of stochastic

interpretations and the induced absence of measures of the results’ reliability, this

is problematic in safety-relevant applications. Comparing this to Hilbert spaces,

one finds the latter ones to be rather transparent and well surveyed with clear-cut

relationships to stochastic processes and random fields. Since, however, these

relationships are of an abstract nature, the rest of this introduction will aim to link

archetypal low-dimensional Euclidean spaces to signal processing and thereby

motivate a perspective centered around Hilbert spaces.

§ Euclidean 2-space

Recall the definition of the real numbers R and the Cartesian product R = R×R =:
R2 as the set of all pairs of real numbers; R2 := {(α, β) : α ∈ R, β ∈ R}. Real

numbers α, β ∈ R can be added, subtracted and multiplied to provide a new real
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number denoted by α+ β, α− β and αβ respectively. Addition and subtraction for

elements of R2 are defined pointwise:

f =

[
f1
f2

]
∈ R2, g =

[
g1
g2

]
∈ R2 ⇒

f +R2 g :=

[
f1 + g1
f2 + g2

]
f −R2 g :=

[
f1 − g1
f2 − g2

]
(1.1)

They are obviously inverse operations in the sense that f +R2 g −R2 g = f and

commutative as well as associative. The neutral element of addition in R2 is denoted

by 0R2 = (0, 0). Multiplication of f ∈ R2 by a scalar α ∈ R may be defined again

pointwise:

f =

[
f1
f2

]
∈ R2, α ∈ R⇒ αf := α

[
f1
f2

]
=

[
αf1
αf2

]
(1.2)

and distributivity holds in α as well as in f due to bilinearity, i.e. (α+β)f = αf+R2

βf and α(f +R2 g) = αf +R2 αg. The usual interpretation of this purely algebraic

construction is that if (R,+) may be represented as a line, then R2 corresponds to

a geometrical 2-dimensional Cartesian plane with fixed origin at 0R2 , f ∈ R2 is a

point in the plane and the previously defined operations on R2 translate to operations

in the Cartesian plane as indicated by figure 1.1.

Figure 1.1: Representations of addition +
R2 , subtraction −

R2 and scaling by scalars α, β ∈ R in the Cartesian plane given

a fixed choice of origin and direction e1 and e2.

Here e1 = (1, 0) and e1 = (0, 1) are chosen to allow any f ∈ R2 to be written as

f1e1+ f2e2 =
∑2

k=1 fkek. From figure 1.1 it is already clear that f −R2 g is nothing

else but

f −R2 g =

[
f1 − g1
f2 − g2

]
=

[
f1 + (−1)g1
f2 + (−1)g2

]
= f +R2 (−1g) (1.3)

Therefore −R2 as an operation −R2 : R2 × R2 → R2 can be replaced by

+R2 ◦ (1,−1) : R2 × R2 � (f, g) �→ 1f +R2 (−1)g ∈ R2 where ◦ denotes

composition of operations.
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Remark Note however, that the representation of R2 as a plane P is a structure

preserving map π : R2 → P rather than an identification. There are objects in R2

together with a set of operations on R2 and there are objects in P together with a set

of operations on P such that objects and operators in R2 get mapped to objects and

operators in P by π but R2 and P are not necessarily identical. Indeed, the choice of

reference directions e1, e2 in P as well as the designation of a special point 0P ∈ P
are arbitrary — P is a R2 -torsor not a vector space — and every choice induces

a structure preserving map π. More on this topic can be found in [125]. Without

delving further into category-theoretical details, the cautionary note is issued that

even though P is a useful model for R2 it is not its definition; analogue statements

hold for Rn.

Apart from addition and scalar multiplication, it is standard to introduce the (obvi-

ously symmetric) inner product 〈·, ·〉R2 : R2 × R2 → R by

f, g ∈ R2 ⇒ 〈f, g〉R2 :=
2∑

k=1

fkgk (1.4)

where f =
∑2

k=1 fkek, g =
∑2

k=1 gkek and {ek}2k=1 is the standard basis introduced

above. It is then clear that 〈f, f〉R2 = f 2
1 + f 2

2 is the squared Euclidean distance

between f and the origin 0R2 (see figure 1.2). Its square root corresponds to the

length of the arrow pointing from 0R2 to f ∈ R2 and is called the norm of f , in

symbols ‖f‖R2 .

‖ · ‖R2 : R2 � f �→
√
〈f, f〉R2 ∈ R (1.5)

For purposes of intuition, it is helpful to identify f with the arrow connecting the

origin with f . For f, g ∈ R2 with ‖g‖R2 = 1, 〈f, g〉R2 is the length of f in the

direction of g (see figure 1.2). In the future, the subscript R2 is dropped if no

ambiguity exists as to which inner product or norm is meant.

Figure 1.2: The norm of f ∈ R2 is its length ‖f‖ =
√

f2
1 + f2

2 with f considered as an arrow in the plane and one may

talk of the sphere S1 := {f ∈ R2 : ‖f‖ = 1} for example. The right image illustrates 〈f, g〉 as the projection of f onto g
for g ∈ S.

It is furthermore true that the inner product 〈f, g〉 of f with g is related to the angle
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ϕ between them when considered as arrows. ∀f, g ∈ R2, the following holds:

〈f, g〉 = ‖f‖‖g‖ cos(ϕ) (1.6)

Proof: By the law of cosines ‖f − g‖ = ‖f‖2 + ‖g‖2 − 2‖f‖‖g‖ cos(ϕ). But

‖f−g‖ = 〈f−g, f−g〉 = 〈f, f〉+〈g, g〉−2〈f, g〉 and comparing both expansions

it follows that 〈f, g〉 = ‖f‖‖g‖ cos(ϕ).

Remark Note that cosϕ = 0 if and only if ϕ = ±π/2. Consequently for a right

angle ϕ one finds 〈f, g〉 = 0 which implies that that f ⊥ g ⇔ 〈f, g〉 = 0.

Remark Every f ∈ R2 can be split into two orthogonal components given some

g ∈ R2 according to the scheme exhibited on the right side of figure 1.2. If ‖g‖ = 1
then f = fg + f⊥

g = 〈f, g〉g + (f − 〈f, g〉g) where fg ‖ g and fg ⊥ f⊥
g since

〈fg, f⊥
g 〉 = 〈〈f, g〉g, f − 〈f, g〉g〉 = 〈f, g〉2 − 〈f, g〉2‖g‖2 = 0.

The set Mf := {αf : α ∈ R} for a fixed f ∈ R2 is a subset of R2 and is closed

under addition and multiplication by scalars. The setMf+f0 := {f0+αf : α ∈ R}
can be identified with the line through f0 extending in the f

/‖f‖ unit direction. For

two linesMf +f0 andMg+g0, their intersection is found by solving the following

system of linear algebraic equations (SLAE) in the unknowns α1, α2:

f0 + α1f = g0 + α2g

⇔ fα1 +−gα2 = g0 − f0

⇔
[
f1 −g1
f2 −g2

]
︸ ︷︷ ︸

A

[
α1

α2

]
︸︷︷ ︸

x

=

[
(g0 − f0)1
(g0 − f0)2

]
︸ ︷︷ ︸

y

(1.7)

The SLAE does not necessarily have a unique solution. If Mf + f0 = Mg + g0
then for every choice of α1 a corresponding α2 might be found and if Mf + f0 ∩
Mg + g0 = ∅ then no solution exists at all. Note that both of these special cases

are rare if f1 and f2 are chosen at random and the system is usually solvable (for an

example see figure 1.3) as the set of matrices A such that detA = 0 is a relatively

sparse subset of R4 [65, p. 53].

Figure 1.3: The set Mf + f0 corresponds to a line parametrized by a real parameter α. The right illustration depicts a

specific constellation in which two lines Mf + f0 and Mg + g0 intersect in one unique point that can be found by solving

a SLAE.
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In the example in figure 1.3, the system of linear equations has the form[
1 −1
1 1

] [
α1

α2

]
=

[
3
−1
]

(1.8)

which is solved iff α1 = 1 and α2 = −2 corresponding to the point

f0 + α1f = g0 + α2g = (0, 1). Replace now the symbol αk by xk and

x = (x1, x2)
T to denote its role as an unknown explicitly. Even though nothing

interesting seems to have been achieved, writing a system of equations as Ax = y
changes the flavor of its interpretation as A represents a mapping A : R2 → R2 and

Ax = y ⇔∑
k akxk = y, ak the k-th column of A. This then establishes the xk as

coefficients of a suitable zero-error approximation of y by a weighted superposition

of basis vectors ak ∈ R2.

Remark The matrix A in the example above can be written as a composition of 3

different matrices

A =

[
1 −1
1 1

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [√
2 0

0
√
2

] [
1 0
0 1

]
= UΣV T .

Therefore Ax can be interpreted as a sequence of actions consisting of scal-

ing the parameters x1 and x2 by
√
2 and then multiplying x1 by basis vector

a1
/‖a1‖ = (1

/√
2, 1
/√

2)T and x2 by a2
/‖a2‖ = (−1/√2, 1

/√
2)T with the total

effect then being one of scaling and subsequent rotation. By the proper change of

basis x = UT x̃, Ax = UΣV TUT x̃ =
√
2UIUT x̃ =

√
2x̃ where A acts diagonally

on x̃ reflecting the fact that f and g form an orthogonal basis. This is indicated by

〈f, g〉 = 0 as can be easily seen in the preceeding figure 1.3 by noting the right

angle betweenMf + f0 andMg + g0.

Remark The SLAE Ax = y is equivalent to a sequence of one dimensional con-

straints 〈ak, x〉 = yk, k = 1, 2 where ak is the k-th column of AT . Every linear

constraint for x in Rn forces x to lie in a plane of dimension n − 1. Only in R2

does this coincide with a line. Letting the j-th entry of ak be denoted by akj and

supposing akj �= 0 for some fixed j, the k-th constraint in equation 1.8 implies

x =

[ 1
ak1

(
yk − ak2x2

)
x2

]
or x =

[
x1

1
ak2

(
yk − ak1x1

)]
depending on which of the pair (x1, x2) is chosen as the independent variable.

Therefore given y ∈ R2 and one linear constraint 〈ak, x〉 = yk, x only depends

on 2−1 unknowns. Analogous statements hold for n-dimensional settings in which

the constraints give rise to feasible sets that form (n− 1)-dimensional hyperplanes.

Still, even after decoupling R2 from a strictly geometrical interpretation, two

problems persist. The low dimensional setting prohibits useful application and up

until now A, x, y were written as collections of real numbers which implies that
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some orthonormal basis has already been fixed. Both concerns will be addressed in

the next paragraphs.

§ Euclidean n-space

When visualizing f ∈ R2 as a point or arrow in the plane, much emphasis is given

to the ambient space R2 and little to f as the latter consists of two numbers only.

In the general setting with dimension n > 3 this approach fails to provide any

intuition regarding the ambient space Rn. Considering f ∈ R2 as an ordered se-

quence of numbers with length 2, f = {fk}2k=1
1 — or alternatively as a function

f· : T � t �→ ft ∈ R for T = {1, 2} — generalizes to arbitrary finite dimensional

Euclidean spaces Rn without much impediment to the instructivity of the functional

interpretation. Figure 1.4 seeks to support this claim.

Figure 1.4: In the left and middle plots, two vectors f, g ∈ R3 are illustrated. They are interpreted as geometrical objects in

three dimensional Euclidean space (left) and as functions f, g : T → R, T = {1, 2, 3}(middle). Their graphs {(t, ht) : t ∈
T}, h = f, g are plotted. The right side of the figure employs an analogous construction to represent vectors f, g ∈ Rn with

n = 1000.

Definition 1.1.1 For any finite n, the set Rn of n-tuples of real numbers together

with componentwise addition of elements (f + g)t = ft + gt, scalar multiplication

(αf)t = αft and inner product 〈f, g〉 = ∑n
t=1 ftgt ∀f, g ∈ Rn, ∀α ∈ R is called

the Euclidean n-space. Here ft or (f + g)t denote the t-th component of f or f + g
respectively.

As is mentioned in the next subsection in theorem 2.1.5, addition of elements

f, g ∈ Rn, scalar multiplication with α ∈ R and formation of inner products

are continuous operations given the norm topology on Rn. The same holds for

the projections πt : Rn � f �→ ft ∈ R as mappings on vectors. Therefore it is

reasonable to expect no pathologies where standard operations on vectors in Rn are

concerned.

Definition 1.1.2 If in a sequence {fk}mk=1 ⊂ Rn the implication

(
∑m

k=1 αkfk = 0) ⇒ (αk = 0, k = 1, ...m) holds, then the elements fk ∈ Rn

of that sequence are said to be linearly independent. A sequence {ek}mk=1 is called a

basis for Rn iff its elements are linearly independent and ∀f ∈ Rn ∃α ∈ Rm such

1The standard notation f = {fk}mk=1 indicates f to be an ordered sequence of elements (f1, ..., fm)
where f1 is the first and fm is the m-th element. The individual elements are themselves allowed

to be arbitrary objects and can therefore be sequences or Euclidean vectors themselves. See the

remark following definition 1.1.2 for more details.
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that
∑m

k=1 αkek = f .

A basis of Rn has always n elements [180, p. 40]. Caution is advised when

handling series expansions as in the above definition since the subscript notation is

overloaded and is used to denote sequences of elements fk ∈ Rn, k = 1, ...,m as

well as sequences of real numbers ft ∈ R, t = 1, ..., n that can be assembled to a

vector f =
∑n

t=1 ftet ∈ Rn. This notational inconvenience is unavoidable in this

context but will become both less cumbersome and less frequent when the moti-

vational subsection closes and Hilbert spaces are treated in an infinite-dimensional

setting in subsection 2.1.1 without references to components of a vector in some

auxiliary and arbitrarily fixed space.

Definition 1.1.3 The sequence {ek}nk=1 ⊂ Rn where ek = (0, ..., 0, 1, 0, ..., 0) ∈
Rn is a vector containing a 1 at position k and 0 otherwise is called the canonical

Euclidean basis. The ek, k ∈ {1, ..., n} are the canonical Euclidean basis vectors.

The sequence {ek}nk=1 as defined above is indeed a basis of Rn as is proven e.g. in

[180, p. 39]. From (ek)t = δkt, with δkt the usual Kronecker delta, it follows that

〈ek, el〉 =
∑n

j=1 δkjδjl = δkkδkl = δkl and the canonical Euclidean basis is seen

to be even an orthonormal basis (ONB) for Rn. When drawing upon the image of

f ∈ Rn as a function f : T � t �→ f(t) = ft ∈ R, et takes the role of evaluating f
at t since 〈et, f〉 = 〈et,

∑n
k=1 f(k)ek〉 =

∑n
k=1 f(k)δtk = f(t). There are several

different bases for Rn when n ≥ 2 and an element f ∈ Rn is represented by a

different sequence of expansion coefficients depending on the chosen basis.

Theorem 1.1.4 Given an orthonormal basis {ek}nk=1 of Rn, the expansion coeffi-
cients αk for f ∈ Rn, f =

∑n
k=1 αkfk, are given by αl = 〈f, el〉, l = 1, ..., n.

Proof: Given the ONB {ek}nk=1 by definition ∃{αk}nk=1 such that f =
∑n

k=1 αkek.

Then it holds that 〈f, el〉 = 〈
∑n

k=1 αkek, el〉 =
∑n

k=1 αkδkl = αl.

This shows that given the ONB {ek}nk=1 ⊂ Rn the series expansion of any f ∈ Rn

is simply given by
∑n

k=1〈f, ek〉ek. The expansion coefficients αk = 〈f, ek〉 can

consequently be calculated explicitly and efficiently. They are also named Fourier

coefficients of f with respect to the ONB {ek}nk=1, the reason for which becomes

apparent after consulting figure 1.5

Not necessarily orthogonal bases enjoy many of the same convenient properties as

ONB’s but the calculation of expansion coefficients is computationally and concep-

tionally more involved. They are treated in subsection 2.1.2.

To talk about differentiability or continuity of a function f : T � t �→ f(t) ∈ R
in the variable t demands t to be a topological space and for n → ∞, it might be

expected that the domain T = {1, ..., n} of f : T → R is interpretable as a real

interval [a, b] ⊂ R. It turns out that there is a different way to facultate the transition

from finite dimensional n-tuples of real numbers to functions on topological spaces.

The key steps include the introduction of the abstract concept of a vector space
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Figure 1.5: Expansions of the same function f — a superposition of four sinusoids with different wavelengths as indicated in

the top-right panel — in terms of different ONB’s. The underlying indexset is interpreted as time T with T = {1, ..., 1000}
implying f ∈ R1000. On the left, the canonical Euclidean basis is used; four exemplary basis elements corresponding to

the canonical Euclidean basis elements ek, k = 125, 375, 625, 875 having value 1 at index k and being zero otherwise

are plotted in the third row. The expansion coefficients in this basis are simply the point evaluations of f at the indicated

times as documented in the second row. In the middle, a Fourier-like basis was used, whose exemplary basis elements are

sinusoidals of different frequencies that are again plotted in the bottom row and whose expansion coefficients as recorded

in the middle row show sharp peaks at those indices corresponding to the frequencies used in the construction of f . The

same investigations have been carried out on the right for orthogonal (Legendre) polynomials. The expansion coefficients are

calculated according to theorem 1.1.4; for complex coefficients only their modulus is plotted. Different linestyles have been

used to distinguish different basis elements. The construction of the ONB’s themselves can be found in subsection 2.1.2.

without referral to sequences of numbers and a careful analysis of different notions

of convergence under some distance measure closely related to the norm ‖f‖ =

(
∑n

t=1 f
2
t )

1/2
in Rn.

§ Vector spaces

Recall the general definition of a vector space Vvs over a field F as a set V together

with an addition operation +V : V × V → V and scalar multiplication · : F ×
V → V . It is demanded that V is a commutative group under addition, and scalar

multiplication preserves linear structure [180, p. 31]. This notion of a vector space

encompasses the previous examples and does not depend on any arbitrary choice of

basis or representability of its elements as sequences of numbers. A vector space

can be augmented with additional structures like an inner product 〈·, ·〉 or a norm

‖ · ‖, but these are not part of the original definition.

The concern of this monograph lies exclusively with vector spaces V over the fields

of real or complex numbers. Examples are V = Rn or V = Cn for finite n ∈ N
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[180, p. 34] and spaces of real or complex valued functions on some set T with in

general infinite cardinality [181, p. 4]. The latter ones are central for the further

development.

As Shilov remarks in his introductory notes on functional analysis [181, p. 4], it is

straightforward to construct a tower structure of vector spaces given any field F:

F is a vector space under addition and multiplication inherited from F.

Fn := F × ... × F is a vector space of n-tuples under pointwise addition and

multiplication inherited from F.

F(T ) := {f : T → F}, for T some set, is a vector space of functions under

pointwise addition and multiplication inherited from F.

Fn(T ) := {f : T → Fn}, for T some set, is a vector space of vector valued

functions under pointwise addition and multiplication inherited from Fn.

The vector space Fn of vector-valued functions on T is already a space quite inter-

esting for applications. Different examples are given in figure 1.6.

Figure 1.6: On the left an element of F(T1) is shown where T1 ⊂ R2. A vector in this space is a function defined on a subset

of the Euclidean plane whereas on the right side a vector field is visible, i.e. an element of F3(T2), T2 ⊂ R3. In both cases

F = R.

§ Inner products and norms
Definition 1.1.5 Given a vector space V over C an inner product 〈·, ·〉 is a map from

V ×V to C that is positive definite (i), conjugate symmetric (ii), homogeneous w.r.t

scalar multiplication (iii) and additive (iv). That is, the relations

i) f �= 0V ⇒ 〈f, f〉 > 0, 〈0V , 0V 〉 = 0

ii) 〈f, g〉 = 〈g, f〉 ∀f, g ∈ V
iii) 〈αf, g〉 = α〈f, g〉 ∀f, g ∈ V, α ∈ C

iv) 〈f +V g, h〉 = 〈f, h〉+ 〈g, h〉 ∀f, g, h ∈ V
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hold [181, p. 63]. The overline denotes complex conjugation. A vector space to-

gether with an inner product is called a pre-Hilbert space or an inner product space.

Examples of inner product spaces are (R, 〈α, β〉R := αβ), (C, 〈α, β〉C :=
αβ), (Rn, 〈f, g〉Rn :=

∑n
k=1 fkgk) and (Cn, 〈f, g〉Cn :=

∑n
k=1 fkgk). Note that

the inner products are results of a choice and different choices of inner products

may lead to different inner product spaces. They all however satisfy the Cauchy-

Schwarz inequality [93, p. 10].

Theorem 1.1.6 (Cauchy-Schwarz) For any inner product 〈·, ·〉, it holds that

|〈f, g〉|2 ≤ 〈f, f〉〈g, g〉 ∀f, g ∈ V

The notion of the length or magnitude of a vector is axiomatized with the help of

what is called a norm.

Definition 1.1.7 Given a vector space V over C, a norm ‖ · ‖ is a map from V to

the positive reals R+ that is non-degenerated, homogeneous w.r.t. absolute values

and subadditive. This means the relations

Non-degeneracy: V � f �= 0⇒ ‖f‖ > 0, ‖0‖ = 0

Positive homogeneity: ‖αf‖ = |α|‖f‖ ∀f ∈ V, α ∈ C

Triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖
hold [180, p. 53]. A vector space V together with a norm ‖ · ‖ is called a normed

linear space.

Given any inner product space (V, 〈·, ·〉), (V, ‖ · ‖) is a normed linear space when

the norm is chosen to be the positive squareroot of the inner product of f with itself,

‖f‖ =√〈f, f〉. This implies that every inner product space is also a normed linear

space under the induced norm. However, not every normed linear space is also an

inner product space [93, p. 14]. Unless otherwise specified, when V is an inner

product space and a norm is mentioned then this norm is the induced norm.

By the above remarks, normed linear spaces are a proper generalization of inner

product spaces. Although normed linear spaces that are not inner product spaces

enter only in chapter 4, most approximation and estimation problems will be stated

in terms of the norm even when an inner product is available. The reason for that

decision is that a norm ‖ · ‖ on a vector space V provides a sensible way to talk

about closeness of two vectors f, g ∈ V . Therefore when approximating f by sums

of given vectors gk, k = 1, ..., n expressions like

d(f, f̂) = ‖
n∑

k=1

αkgk − f‖

naturally arise where the discrepancy measure d(·, ·) : V × V → R is demanded

to be small for the approximation f̂ =
∑n

k=1 αkgk to be considered appropriate. It
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even holds that for any normed linear space V , the function d(f, g) = ‖f − g‖ is

a metric and the topological structure induced by the open balls in that metric is

enough to determine answers to questions pertaining to convergence and continuity

of sequences and sums of vectors.

The last ingredient missing to upgrade inner product spaces to Hilbert spaces and

normed linear spaces to Banach spaces is topological in nature and necessary to

guarantee that every sequence of elements exhibiting shrinking pairwise distances

converges to a unique limit point lying in the space. This property is called

completeness; without it the transition to infinite dimensional spaces (e.g. spaces

of functions on arbitrary sets T ) would see many of the convenient properties

encountered in finite dimensional spaces lost.

Before the notion of a Hilbert space is made entirely formal in the next chapter, we

review its main features in an axiomatic list of statements that highlight the con-

cept’s usefulness and expected connections to data analytic questions. The theory

of Hilbert spaces

• is well established as a central tool in functional analysis and provides a

framework in which to efficiently reason about whole sets of functions si-

multaneously by employing geometric arguments;

• allows to inject objects from some base space into infinite dimensional spaces

in which easily analysable linear operations can achieve the same results as

highly nonlinear operations in the original base space;

• is general enough to include results valid for, among others, functions, mea-

sures, random variables and stochastic processes but still admits specific non-

trivial conclusions about the objects of investigation;

• due to its essentially linear nature often generates solutions that are readily

adoptable in conceptually simple and computationally efficient ways by stan-

dard linear algebra routines;

• is both statistical and physical in nature as is illustrated by Hilbert spaces aris-

ing as sets of solutions to differential equations governing the time evolution

of a system’s state given limited information while at the same time exhibiting

a measure of closeness that can be motivated stochastically.

This by no means exhaustive collection of rather empirical observations serves to

show that geodetic data analysis has much to gain from a Hilbert space based ap-

proach as it regularly acts in the area of conflict lying in the middle grounds between

deterministically driven physical systems and uncertainty in observations that is best

modelled probabilistically. This claim is further substantiated by several success-

ful applications of the theory of Hilbert spaces to problems from space geodesy that

range from satellite orbit determination [179] to the derivation of physically justified

estimators for the earth’s gravity field based on measurements of e.g. line-of-sight

acceleration data [144]. Several investigations have been carried out towards in-
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corporating the framework of Hilbert spaces into the mathematical foundations of

geodesy by noting the intrinsic ties between Hilbert spaces, boundary value prob-

lems and their respective variational formulations [pp. 29-45][24], [145] and by in-

troducing Hilbert spaces as the natural, infinite-dimensional generalizations of Eu-

clidean spaces into which least-squares methods can easily be transported to grant

them wider applicability [1]. Notions like stochastically motivated measures of

elastic energy quantifying uncertainty in geodetic networks [24, pp. 159-178] or un-

wanted deviations from a low-distortion state in the design of new map projections

[80] provide further proof of both the unifying generality of Hilbert space-based

optimization problems and their practical relevance for very specific problems. Al-

though Hilbert spaces seem to not have permeated fully the instruments and theory

of the rather practical discipline of engineering geodesy, it seems safe to assume

their usefulness even in this context.



Chapter 2
Theory of Hilbert spaces

This chapter focuses on the theory of Hilbert spaces and establishes basic theorems

needed later in the monograph. Geometric intuition is provided regarding important

concepts such as superposition, projections and bases, before questions of decom-

posability of a Hilbert space into subspaces are investigated. Linear operators on

Hilbert spaces are introduced along with properties such as boundedness, compact-

ness, selfadjointness and positivity, all of which allow to abstractly connect the

subclasses of operators enjoying these properties to operations prevalent in signal

processing. After further surveying the relationship between a linear operator and

the Hilbert space it acts on, focus is shifted onto the spectral theory of not necessar-

ily bounded selfadjoint operators. This line of inquiry culminates in a statement of

Stones theorem on strongly continuous one parameter unitary semigroups describ-

ing the time evolution of a dynamical system and lays the groundwork for incorpo-

ration of physical knowledge into the mathematical models representing real-world

processes. Reproducing kernel Hilbert spaces are defined and their connections to

energy minimization and feature representations are made explicit.

2.1 Topology and geometry of Hilbert spaces

In this section, Hilbert spaces are introduced as typically infinite dimensional vector

spaces of functions with a topology on them. Their definition is complemented by

a number of classical results pertaining to the connection between a Hilbert space

and the subspaces contained within it. The operation of creating a Hilbert space

from elementary building blocks is generalized to account for the more abstract

constructions of direct sums and tensor products. This reveals time series, vector

fields, features and spatiotemporal distributions of measurements to be elements of

their respective Hilbert spaces as well. As this section covers introductory material

largely unknown in the geodetic community, explanations and presentation will be

extensive. Theorems are furnished with proofs, if these highlight the use of an

important concept.
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2.1.1 Hilbert spaces

The norm induced by an inner product is interpreted as a distance function on a normed
vector space V and the topology induced by this metric can be deduced unambiguously.
Demanding sequences {fk}∞k=1 ⊂ V , whose consecutive elements eventually differ only
marginally, to converge to an element f in the normed space V amounts to a property called
completeness. Complete inner product spaces are called Hilbert spaces and complete normed
vector spaces are called Banach spaces. Some instructive examples of both Hilbert and
Banach spaces include objects known from time series analysis and differential equations
and the classical �p and Lp spaces. A set of canonical signal processing problems will be
introduced; these will be revisited and upgraded throughout the monograph to illustrate new
concepts in a familiar setting.

§ Topological considerations
Definition 2.1.1 A family O of sets in X is called a topology on X iff it satisfies

the following conditions:

I ∅, X ∈ O
II Oj ∈ O ∀j ∈ J ⇒

⋃
j∈J Oj ∈ O

III O1,O2 ∈ O ⇒ O1 ∩ O2 ∈ O
The set X together with the topologyO is called a topological space. The elements

ofO are called open sets. Sets F , whose complements FC := {x ∈ X : x /∈ F} are

open, are called closed. Sets may be open, closed, both or neither. For introductory

examples see [141, pp. 70-74].

Definition 2.1.2 In a normed linear space V , for any ε > 0 and f0 ∈ V the set

Bε(f0) := {f ∈ V : ‖f − f0‖ < ε} is called the open ball of radius ε around f0 .

Examples are found in figure 2.3.

Theorem 2.1.3 I For any normed linear space V the family of sets O with
elements ∅ ∈ O and otherwise O ∈ O ⇔ ∀f ∈ O∃ε > 0 : Bε(f) ⊂ O is a
topology on V , named the norm topology [207, p. 15].

II On Rn and Cn, n ∈ N all norms are equivalent, where two norms are called
equivalent if they induce the same norm topologies [206, p. 26].

As an immediate corollary, the topologies on Rn and Cn are independent of the

chosen norm. This follows directly from theorem 2.1.3.II and asserts that on finite

dimensional vector spaces the norm topologies (and therefore notions of continuity

and convergence) all coincide. In infinite dimensional vector spaces such as spaces

of functions from arbitrary sets T to C this convenient situation does not hold. The

norm topology admits a characterization of continuity in terms of the norm used in

its construction.

Definition 2.1.4 I A function A : V → W is called continuous iff

A−1(O) ∈ OV ∀O ∈ OW . Here OV and OW are topologies on the

topological spaces V and W .
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II For a normed linear space V with norm ‖ · ‖, a sequence {fk}∞k=1 ⊂ V is said

to converge to an element f ∈ V, limk→∞ fk = f if ∀ε > 0 ∃n0 ∈ N : n ≥
n0 ⇒ fn ∈ BV

ε (f) [108, p. 75].

At this point various technical lemmas from point set topology intervene

[141, 108, 71, 207] and establish instructive ways to rewrite the continuity

condition making use of the role of the ε-open balls in the definition of the norm

topology. Furthermore, topology, continuity and convergence are all interrelated as

indicated by the sequence of statements below.

Lemma 2.1.5 I The composition of continuous functions is continuous [141,
p. 39].

II A function A : V → W between normed linear spaces V,W is continuous,
i.e. A−1(O) ∈ OV ∀O ∈ OW iff ∀ε > 0 ∃δ > 0 : ‖f − g‖V < δ ⇒
‖A(f)− A(g)‖W < ε [141, p. 36].

III For any sequence {fk}∞k=1 such that limk→∞ fk = f one has limk→∞ ‖f −
fk‖ = 0 [71, p. 31].

IV Limits in normed spaces are unique [108, p. 89].

V A functionA : V → W between normed linear spaces V andW is continuous
if and only if ∀f ∈ V one has that limk→∞ fk = f implies limk→∞A(fk) =
A(f), i.e. limits and continuous functions commute [93, p. 73].

VI Vector addition, scalar multiplication and taking norms are continuous oper-
ations in the norm topology. If the norm is induced by an inner product, the
inner product is continuous too [71, p. 32].

This means that the usual notion of continuity coincides with the topological one

— at least for functions A : V → W and the choice of norm topologies on both

domain and codomain. Limits are well behaved and the limiting process commutes

with continuous operations. In later chapters other topologies designed in less

obvious manners to make certain sets of functions continuous will be employed as

well.

Definition 2.1.6 A sequence {fk}∞k=1 in a normed linear space V is said to be a

Cauchy sequence — or simply Cauchy — if ∀ε > 0 ∃n0 such that m,n ≥ n0 ⇒
‖fn − fm‖ < ε.

It is trivial to show that the pointwise sum of two Cauchy sequences and the point-

wise multiplication of a Cauchy sequence with a scalar is again Cauchy. If a se-

quence {fk}∞k=1 ⊂ V converges to f ∈ V then it is Cauchy. This follows almost

directly from the triangle inequality as

0 ≤ ‖fn − fm‖ ≤ ‖fn − f‖+ ‖fm − f‖

and both terms on the right hand side can be bounded by ε/2 ∀ε > 0 by virtue of

{fk}∞k=1 converging to f . More formally ∃n0 : n,m ≥ n0 ⇒ ‖fn − f‖ < ε/2
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and ‖fm − f‖ < ε/2 implying ‖fn − fm‖ < ε ∀n,m ≥ n0 and therefore {fk}∞k=1

is Cauchy. The converse does not hold in general, i.e. there exist sequences that

are Cauchy but do not converge. Any normed linear space V in which all Cauchy

sequences {fk}∞k=1 converge to an element f ∈ V in the sense of the norm topology

is called complete. Completeness is a central ingredient in the following definition.

Definition 2.1.7 (Banach and Hilbert spaces) A complete normed linear space is

called a Banach space. An inner product space that is also complete w.r.t. the

induced norm is called a Hilbert space.

If a normed linear space / pre-Hilbert space V is given, its completion V [182,

Section 3.8] is a Banach space / Hilbert space [181, p. 51], [181, p. 65].

§ Examples

The archetypal examples of Hilbert spaces are �2, the Hilbert space of square

summable sequences and L2(T ), the space of (equivalence classes of) square

integrable functions on a set T . When T = N and the counting measure on T is

used then unsurprisingly L2(T ) = �2. Every Hilbert spaceH admitting a countable

basis being in one to one correspondence to �2 is less intuitive but explains the

pervasive importance of this particular sequence space.

Example 1 The space �2 := {f = {fk}∞k=1 : fk ∈ C,
∑∞

k=1 |fk|2 < ∞} together

with pointwise addition of elements, scalar multiplication and inner product defined

as follows is a Hilbert space [93, p. 23].

f + g = {fk + gk}∞k=1 f, g ∈ �2 (2.1)

αf = {αfk}∞k=1 f ∈ �2, α ∈ C (2.2)

〈f, g〉�2 =
∞∑
k=1

fkgk f, g ∈ �2 (2.3)

Verification of the vector space axioms and the properties of 〈·, ·〉�2 is straightfor-

ward. Helmberg [93, p. 24] gives a constructive argument to show completeness of

�2. �

Example 2 The space L2(T ) of (equivalence classes of ) square integrable func-

tions on a measurable set T ⊂ Rn is a Hilbert space. L2(T ) := {f : T →
C measurable : ‖f‖L2 < ∞} where the inner product is given as 〈f, g〉L2(T ) :=∫
T
f(t)g(t) dλ(t) w.r.t. integration against the standard Lebesgue measure λ on

Rn. A rigorous explanation of all involved terms including an account of the role of

measurability can be found in [36, p. 131]. �

Remark In this definition two functions f, g are equivalent if they differ only on

a set of Lebesgue measure 0. This implies
∫
T
|f(t) − g(t)|2 dλ = 0 but f being

equivalent to g in this mean square sense does not equate to f taking the same values
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as g everywhere. If this stronger notion of equivalence is desired one may invoke

the ∞-norm: ‖f − g‖∞ = supt∈T |f(t) − g(t)| but the resulting norm does not

satisfy the parallelogram law, is therefore not induced by any inner product, and

L∞(T ) is consequently not a Hilbert space.

For the case where T = [a, b] ⊂ R is a finite closed interval on the real line

[93, p. 33] proves that L2(T ) is the completion of C(T ) := {f : T → C :
f is continuous}. One may introduce a different measure μ than the Lebesgue mea-

sure λ on Rn. The spaces L2(T, μ) := {f : T → C μ-measurable : ‖f‖L2(T,μ) <
∞} together with the modified inner product 〈f, g〉L2(T,μ) :=

∫
T
f(t)g(t)μ(dt) and

μ(Tsub) ≥ 0 ∀Tsub ⊂ T are Hilbert spaces in their own right [206, p. 205]. It is

noted in passing that if μ = wλ with w ≥ 0 some weight function then putting a

norm constraint on functions in L2(T, μ) will penalize functions f exhibiting high

function values in regions Tsub ⊂ T where w(t), t ∈ Tsub is extraordinarily high

and amounts to the inclusion of prior knowledge. The practicing geodesist already

sees a similarity between the measures introduced here and the precision matrix

employed in classical adjustment theory.

The space L2(T ) is of central importance in this monograph. As was alluded to

in the previous comment, L2(T ) provides an infinite dimensional setting for least

squares problems where the objects to be estimated are functions and not finite

dimensional vectors. Hilbert space methods involving L2(T ) are also prevalent in

solving linear differential equations as often encountered when the dynamics of a

physical system is sought. This is desirable in the context of estimating quantities

subjected to physical constraints — from gravity fields in physical geodesy to

bending plates and buckling beams in engineering geodesy. When T is not just an

arbitrary subset of Rn on which functions are defined but instead the phase space

Q × P of generalized coordinates and generalized momenta of a physical system,

unit vectors f ∈ S ⊂ L2(T ) can be related to probability densities ρ(·, ·) on that

systems phase space. By setting ρ(q, p) = |f(q, p)|2 one recovers a probabilistic

formulation of mechanics reminiscent to the Born rule fundamental to quantum

mechanics, [135, p. 34]. The time evolution of a systems state is then determined

by the Liouville operator instead of the Hamiltonian; more is found in subsection

2.2.4. For now a simpler approach is used to establish a relationship between

Hilbert spaces and stochastic quantities. This is the content of the next example.

Example 3 Given a probability space (Ω,Σ, P ) [9, p. 12], denote by L2(Ω,Σ, P )
all random variables f : Ω → R satisfying E[f ] = 0 and E[f 2] < ∞. Here E[·]
denotes the expectation operator, Ω is the sample space, Σ is a σ-algebra of events

and P is a probability measure. Then L2(Ω,Σ, P ) together with the inner product

〈f, g〉 = E[fg] ∀f, g ∈ L2(Ω,Σ, P )

and obvious addition and multiplication is a Hilbert space [159, p. 18]. By applying
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the Cauchy-Schwarz inequality one calculates immediately

|〈f, g〉|2 = |E[fg]|2 ≤ E[f 2]E[g2] = ‖f‖2‖g‖2

This implies the correlation coefficient ρ = 〈f, g〉/‖f‖‖g‖, ρ ∈ [−1, 1] as a suitable

normalized measure of linear stochastic dependence of f on g and vice versa. Com-

paring this to equation 1.6 ρ is seen to be the cosine between f and g ∈ L2(Ω,Σ, P ).
The inner product

〈f, g〉 = E[fg] =

∫
Ω

fgdP =

∫
R
fgdP(fg) =

∫
R2

fgdP(f,g)

identifies random variables f, g ∈ L2(Ω,Σ, P ) if ‖f − g‖ = 0, i.e. f − g = 0 ⇔∫
Ω
|f − g|2dP =

∫
R2 |f − g|2dP (f, g) = 0 which implies that f and g are allowed

to differ only on a set of measure 0 to be considered the same under the notion of

equivalence induced by the norm. In the above, P (fg) denotes P ◦ (fg)−1 and

P (f, g) is the measure P ◦ (f, g)−1 so that P (fg)(B1) = P (ω ∈ Ω : f(ω)g(ω) ∈
B1) and P (f, g)(B) = P (ω ∈ Ω : (f(ω), g(ω)) ∈ B2) for B1 and B2 in the Borel

σ-algebras of R1 and R2 respectively [36, p. 173]. �

With the space L2(Ω,Σ, P ) =: L2(Ω) a notion of randomness was introduced for

the first time in this monograph. Hilbert spaces of finite variance random variables

are of prime importance in data analysis and three specific examples of their

applications to modelling and inference for time series are given below.

Example 4 (White noise process) Given a finite set T , let for any t ∈ T Nt ∈ L2(Ω)
be a random variable of unit variance that furthermore satisfies

E[NsNt] = δts ∀t, s ∈ T.

Then the sequence {Nt}t∈T is said to be (weakly) white noise [140, p. 213] where

the adjective in parentheses is usually omitted. This convention will also be adopted

here - if the white noise follows a Gaussian distribution, this will be explicitly men-

tioned.

Apart from thermally induced noise, few real-world processes exhibit random be-

havior well modelled by white noise. It is rather an elementary building block

helpful for constructing models of autocorrelated processes. If T is interpreted as

discretized time T ⊂ Z this can be done in at least two ways: Define a new process

Xt either as a weighted sum of white noise variables or as a weighted sum of its pre-

ceding process variables Xt−k k ≥ 1 and a random perturbation that is known as

the innovation term. In the former case one arrives at what are called moving aver-

age processes in time series analysis and in the latter case autoregressive processes

result. �

Remark Typically the symbol Wt is reserved for the Wiener process at time t and
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white noise — defined as the time derivative of the Wiener process in the distribu-

tional sense — is simply denoted by dWt. To not overcomplicate matters in this

first example, the initially introduced symbolism will be kept and later changed to

adhere to standard nomenclature.

Some realizations of white noise, moving average and autoregressive processes

are plotted in figure 2.1. More rigorous definitions and proofs related to stochastic

processes can be found in chapter 3.

Figure 2.1: Two realizations of the three exemplary processes introduced above. The model coefficients α := {αk} are all

1/10 for the MA(10) and {0.6, 0.4, 0.2, 0.1} for the AR(4).

As the monograph progresses, the following three problems will be encountered

regularly in different disguises. As the catalog of available theoretical results grows,

they will be upgraded to more generality and then revisited.

Problem I : (Interpolation) Given some values {xt}t∈Tsub
, Tsub ⊂ T of some

realization of process {Xt}t∈T estimate the missing values {xt}t∈T�Tsub
.

Problem II : (Separation) Given some noisy measurements {yt}t∈T = {xt +
nt}t∈T where nt are realizations of a white noise process, estimate the values

{xt}t∈T .

Problem III : (Representation) Given values {xt}t∈T of some realization of a

process {Xt}t∈T provide a meaningful and efficient representation of its main

features in terms of elementary or non-elementary functions.

Figure 2.2 illustrates the simplest instances of Problems I, II and III very crudely.

Later iterations of these problems feature the full spatiotemporal setting including

physical constraints.

Banach spaces that are not at the same time Hilbert spaces will not be approached

in the context of application to signal processing until chapter 4, in which the

computational foundations necessary to deal with optimization problems in them

are laid out. Nonetheless, for reasons of motivation some examples of Banach

spaces are given below. Note that by definition all of the above examples for

Hilbert spaces are also examples of Banach spaces.

Example 5 The Lp spaces for 1 ≤ p < ∞ of equivalence classes of functions

f from a measurable set T ⊂ Rn to the complex numbers satisfying a finiteness
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Figure 2.2: One dimensional interpolation, signal separation and representation problems. Unbroken lines or circles are

problem data and the broken lines are part of a possible solution. They can be found by employing Hilbert space methods in

which the inner product is modified to act on whitened data, see section 3.1

property similar to the L2 spaces are Banach spaces. They are defined as

Lp(T ) := {f : T → C measurable : ‖f‖p <∞}

where the norm is ‖f‖p =
[∫

T
|f |pdλ]1/p [22, p. 46]. �

Figure 2.3 illustrates different elements of the unit spheres Sp := {f ∈ Lp(T ) :
‖f‖p = 1} with T = R for different p.

Figure 2.3: The boundaries of three different open balls B1(f0) corresponding to different norms on the vector space R2.

Typical unit norm elements of Lp(R) are plotted in the second row, where vaguely a function f is called typical for Lp∗ if it

has a smaller norm in Lp∗ than in any of the other two Lp spaces for p �= p∗. Δ = 1 is the coordinate difference between

the ball’s center point and its rightmost border; it is numerically equal to an analogously defined coordinate difference in the

direction of the second component.

Since ‖f‖p is a norm ρp(f) = c exp(−‖f‖p) is a valid probability density function

for c a normalizing constant. For p = 1 one recovers a multidimensional Laplacian

distribution, whereas p = 2 corresponds to a multivariate Gaussian. The limit-

ing case of p → ∞ has no specific name to the best of the authors knowledge.

The specific form of those probability density functions and their level sets has im-

portant implications: Minimization of the �1-norm promotes sparse solutions, the

�2-norm minimizers are maximum likelihood estimators for Gaussian distributed
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random variables and the sup-norm measures worst-case performance. More is to

be found in chapter 4 in subsection 4.4.1 dealing with applications of �p-norm based

estimation.

2.1.2 Geometry of Hilbert spaces

Norms and inner products are related to each other via the polarization identity and the
parallelogram identity. They furthermore satisfy the triangle, reverse triangle and Cauchy-
Schwarz inequality and can be used to imbue the set of subspaces of a Hilbert space with
additional structure by measuring the angle between them. Subspaces that are orthogonal to
each other satisfy certain optimality properties finding their expression in simple construction
rules for minimal-norm decompositions of their elements. A complete decomposition of a
Hilbert spaceH into a sequence of orthogonal subspaces {Hk}∞k=1 can be achieved with the
help of an orthonormal basis for H . If the elements of H are identified with functions in
the time domain (=”signals”), the representation in a certain basis can be interpreted as a
signal expansion.

§ Subspaces

The classical equations and inequalities are often ingredients to proofs and provide

tools for investigating the global algebraic structure of Hilbert spaces. However,

to solve the canonical problems I-III stated on page 21, the idea of decomposition

is central: either data is to be split into a noise and signal part or a signal needs to

be written as a superposition of elementary waves. The decomposition of Hilbert

space elements f ∈ H presupposes decomposability of the Hilbert space H itself.

Unless specified differently,H will be a Hilbert space over the complex numbers in

what follows during the rest of this section.

Definition 2.1.8 If a (nonempty) subset M of the Hilbert space H is closed under

linear operations, i.e. if f + g ∈ M ∀f, g ∈ M and αf ∈ M ∀f ∈ M, α ∈ C
then it is said to be a linear manifold inH [93, p. 36].

The definition here applies to Hilbert spaces over the field of complex numbers. For

an analogous definition suitable to cover the real case, just relax the requirement

regarding closedness under multiplication by scalars to αf ∈M ∀f ∈M, α ∈ R.

As −1 ∈ R ⊂ C, one always has f + (−1)f = 0 as an element of any linear

manifoldM inH and may visualizeM as a hyperplane through the origin ofH.

This motivates the nonstandard notation M � H for ”M is a linear manifold in

H”. For all Hilbert spaces H, clearly {0} �H and H �H. A linear manifold M
in a Hilbert space is not necessarily a Hilbert space in its own right as it may fail to

be complete. A condition precluding erratic behavior of this type is the topological

closure ofM inH.

Definition 2.1.9 A topologically closed and therefore complete linear manifold

H1 in a Hilbert space H is called a subspace and this relation will be denoted by

H1 �H. If two subspaces H1,H2 of H satisfy 〈f, g〉 = 0 ∀; f ∈ H1 and g ∈ H2

they are said to be orthogonal subspaces and one writes H1 ⊥ H2 to indicate this

relationship.
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The topological closure of H1 � H implies that H1 contains all its limit points

[141, p. 55], i.e. those f ∈ H1 with (U \ {f}) ∩ H1 �= ∅ for all neighborhoods

U containing f [108, p. 176]. H1 is closed in H iff for any sequence {fk}∞k=1 ⊂
H1, limk→∞ fk = f implies f ∈ H1 [141, p. 55] and H1 as a subset of a complete

normed spaceH is closed iff it is complete. A mere linear manifoldH1 �H can be

closed by adjoining its limit points.

The above remarks can be augmented with a verification of the closure’s closure

not only in the topological sense but also under linear operations. It then follows

that for any linear manifold M in a Hilbert space H, its closure cl(M) �H, i.e.

cl(M) is a subspace. Because the notation cl(M) can be cumbersome and in the

case of subspaces closure and completion are almost interchangeable, the closure

of a subset of H will also be denoted by an overbar. From now on M := cl(M)
and if a completion ofM is to be constructed this is mentioned explicitly.

§ Orthogonal complements and multiple subspaces

Two operations are available to combine subspaces and linear manifolds to provide

new objects. The ordinary vector sum of two subspaces consists of all sums f + g
where f and g are from the respective subspaces. Due to topological complications

the vector sum of two subspaces rarely forms a subspace and its closure has to be

taken instead. For a given subset U of a vector space H, the shorthand notation∨
U will stand for span U and U1

∨
U2 is used to symbolize span U1 ∪ U2 where

span U denotes the closure of the linear span generated by all finite linear combi-

nation of elements in U as described for example in [172, p. 104]. The closure of

the span of countable sequences of subsets is denoted by
∨∞

k=1 Uk = span
⋃∞

k=1 Uk.

Definition 2.1.10 For any two linear manifoldsH1 andH2 inH the set

H1 +H2 := {f ∈ H : f = f1 + f2, f1 ∈ H1 and f2 ∈ H2}

is called the vector sum of H1 and H2. For countable sequences {Hk}∞k=1 of linear

manifolds the symbol
∑∞

k=1Hk denotes the set {f ∈ H : f =
∑∞

k=1 fk, fk ∈ Hk}.

The vector sum of two linear manifolds is again a linear manifold. When Hk �H
for k = 1, ... one can show that the relationship

cl

( ∞∑
k=1

Hk

)
=

∞∨
k=1

Hk

holds [93, p. 39]. Then cl (
∑∞

k=1Hk) �H. When two subspaces H1 and H2 are

orthogonal to each other and for any subset F ⊂ H of a Hilbert space H, F⊥ is

used to denote the orthogonal complement F⊥ := {g ∈ H : 〈f, g〉H = 0 ∀f ∈ F}
of F inH, then the following collection of statements holds [93, pp. 40-47].
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Theorem 2.1.11 ForH1 ⊥ H2,H1 �H andH2 �H as well as F ⊂ H one finds

I (H1 +H2) �H
II Every element f ∈ H1 +H2 has a unique decomposition f = f1 + f2 where
f1 ∈ H1 and f2 ∈ H2.

III F⊥
�H

IV (F⊥)⊥ �H and since (F⊥)⊥ := {g ∈ H : 〈g, f〉 = 0 ∀f ∈ F⊥}, (F⊥)⊥ ⊃
F , i.e. it is a subspace containing F .

V (H⊥
1 )

⊥ = H1

The minimum distance between a point f in a Hilbert space H and one of its

subspaces H1 is δf = infg∈H1 ‖f − g‖. As is proven in [3, pp. 8-9] there exists a

unique vector PH1f inH1 closest to f ∈ H which means that ‖PH1f − f‖ = δf . It

will be called the projection PH1f of f onto H1. The following theorem is stated

without proof. Helmberg [93, pp. 38-47] and the introduction to Akhiezer and

Glazmans treatise on linear operators in Hilbert spaces [3] provide further details.

Theorem 2.1.12 I If PH1f denotes the projection of f onto H1 �H then
PH1f − f ∈ H⊥

1 .

II If f ∈ H1 then PH⊥
1
f = 0 since 0 = 〈f, PH⊥

1
f〉 = 〈PH1f + PH⊥

1
f, PH⊥

1
f〉 =

‖PH⊥
1
‖2 and PH⊥

1
f = 0 by the non-degeneracy of the norm.

III (Projection theorem) IfH1 �H thenH1 +H⊥
1 = H.

IV Given H1 �H, ∃! decomposition of any f ∈ H into f = f1 + f2 where
f1 ∈ H1 and f2 ∈ H⊥

1 .

Example 6 Let H = L2[0, 1] be the Hilbert space of square integrable complex

valued functions on [0, 1] and Uk := {exp(2πik·), exp(−2πik·)}1. DefineHm
1 as

Hm
1 :=

m∨
k=1

Uk = span
m⋃
k=1

{exp(±2πik·)}

and Hm
2 as (Hm

1 )
⊥. Hm

1 �H and Hm
2 �H by construction. Hm

1 corresponds to the

subspace of functions with frequencies up until m oscillations per unit interval. All

the high frequency dominated members of L2[0, 1] are subsumed in Hm
2 . Project-

ing f ∈ H onto PHm
1
f ∈ Hm

1 is the same as performing low pass filtering. The

decomposition of f ∈ H into two different components f1 ∈ Hm
1 and f2 ∈ Hm

2 is

illustrated in figure 2.4.

If one knew that f was noisily observed with the noise being purely high frequency

1By replacing a function’s argument by a dot and therefore referring to a function f on T as f(·)
instead of f(t), one emphasizes that the function f is not simply a collection of values f(t) asso-

ciated to index elements t ∈ T but that the whole rule of assigning values to index elements is the

object of consideration.
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and the signal purely low frequency as measured via oscillations per unit interval,

then one would have already derived a solution to problem II posed on page 21. �

Figure 2.4: On both sides of this figure a decomposition of f ∈ L2[0, 1] based on the two subspaces Hm
1 and Hm

2 is shown.

On the left side m = 5 and only low frequent functions are found in Hm
1 whereas on the right side m = 20 and Hm

1 contains

functions with much less smooth behavior. The indexset T = [0, 1] is interpreted as time.

Another way of writing PH1f is as the unique minimizer inH1 of ‖g− f‖ for some

f ∈ H, that is

PH1f = argmin
g∈H1

‖g − f‖ (2.4)

or in other words PH1f is that element g ∈ H1 whose deviation from some target

vector f ∈ H has minimum length.

Theorem 2.1.13 Let {Hk}∞k=1 be such thatHk �H ∀k ∈ N andHk ⊥ Hl ∀k �= l.
Then (

∑∞
k=1Hk) �H and ∀f ∈∑∞

k=1Hk ∃!fk ∈ Hk :
∑∞

k=1 fk = f .

As a tribute to the special situation encountered when dealing with mutually

orthogonal subspaces Hk �H — for which it always holds that
∑n

k=1Hk �H —

often the symbol
⊕

is used instead of Σ to denote the vector sum. The choice

of symbols is no coincidence and it can be shown (see subsection 3.1.3) that the

vector sum H1 + H2 of two orthogonal subspaces H1 ⊥ H2 is the same as the

external direct sum H1 ⊕ H2 known from abstract algebra. The general situation,

in which the Hk do not need to be contained in an apriori known auxiliary Hilbert

spaceH will be cleared up in subsection 2.1.3.

§ Bases

Several alternative but in the end interchangeable approaches to define bases for

infinite dimensional Hilbert spaces exist. The focus will be on Hilbert spaces, for

which a countably infinite orthonormal basis can be found as the general situation

without a constraint of this type admits many pathologies and requires a more

advanced apparatus than space permits to present here.

Definition 2.1.14 I A Hilbert space H is said to be separable iff there exists

a countable, everywhere dense subset H ⊂ H, i.e. cl(H) = H or in other

words ∀f ∈ H and ∀ε > 0 ∃g ∈ H : g ∈ Bε(f)[3, p. 5].
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II An orthonormal system (ONS) {ek}k∈K ⊂ H is called maximal inH if there

does not exist a nonzero vector f ∈ H with 〈f, ek〉 = 0 ∀k ∈ K[3, p. 17].

Theorem 2.1.15 I An orthonormal system {ek}k∈K is linearly independent.

II IfH is separable then for every orthonormal system {ek}k∈K ⊂ H,K is finite
or countably infinite.

III H is separable if and only if there exists a maximal orthonormal sequence
{ek}∞k=1 ⊂ H.

IV Any two maximal orthonormal systems in a Hilbert space H (separable or
not) have the same cardinal number; this cardinal number is also called the
dimension ofH.

Corollary 2.1.15.1 Since {ek}∞k=1 with ek = (0, ...0, 1, 0, ....) with a 1 at the k-th
position is countably infinite and dense in �2, �2 is separable.

The proof of I is trivial — {ek}k∈K ONS and
∑

k∈K αkek = 0⇒ ‖∑k∈K αkek‖2 =
0 but this is equivalent to

∑
k∈K |αk|2 = 0 which is only the case if the αk identically

vanish — and the proofs of II,III,IV are found in [3, pp. 17-20].

Part II of theorem 2.1.15 asserts that if one finds a maximal orthonormal sequence

inH,H is separable but it also says that if one starts with an orthonormal sequence

{ek}∞k=1 and then takes the subspace H1 :=
∨∞

k=1 = span
⋃∞

k=1{ek} , H1 is

separable by construction. As orthonormal systems in inseparable Hilbert spaces

feature uncountably many elements and are both less well investigated and from

the perspective of practical computability less tame than the systems for separable

Hilbert spaces, inseparable Hilbert spaces are disregarded for the rest of the

monograph. Since �2 and L2(T ) as the most relevant Hilbert spaces encountered in

the context of this monograph are separable, this omission is uncritical. It is also

for this special case that the definition of a basis is given.

Definition 2.1.16 For any Hilbert space H an orthonormal sequence {ek}∞k=1 ⊂ H
is called a basis of H iff the only vector in H orthogonal to all ek, k = 1, ... is the

zero vector 0. Often the acronym ONB (orthonormal basis) is used.

This definition is standard [3, p. 19] for infinite dimensional Hilbert spaces but

stricter than the classical linear algebraic notions of bases encountered in finite

dimensional settings due to the additional requirement of orthonormality. A

more liberal definition would not incorporate any extra properties of the sequence

{ek}∞k=1. One such relaxed notion of basis is called an exact frame [40, p. 121] but

it is rarely used outside of applied harmonic analysis and compressive sensing.

Theorem 2.1.17 (Basis theorem) The following six statements are equivalent [40,
p. 79].

I {ek}∞k=1 is a basis ofH.
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II If f ∈ H and 〈f, ek〉 = 0 ∀k ∈ N then f = 0.

III H = span ∪∞
k=1 {ek}.

IV If f ∈ H then f =
∑∞

k=1〈f, ek〉ek.

V If f ∈ H then 〈f, g〉 =∑∞
k=1〈f, ek〉〈g, ek〉.

VI If f ∈ H then ‖f‖2 =∑∞
k=1 |〈f, ek〉|2.

Remark The construction in statement IV is known as the Fourier expansion in

terms of the ONB {ek}∞k=1 and statement VI is also often called Parsevals identity.

From VI Bessels inequality ‖f‖2 ≥∑n
k=1 |〈f, ek〉|2 immediately follows.

Corollary 2.1.17.1 (Optimal approximation) Let {ek}∞k=1 be an ONB in a separable
Hilbert space H and let HΣ

n =
⊕n

k=1Hk where the Hk are again the subspaces
associated to the ek;Hk = span {ek}. If the optimal approximation to f ∈ H by
elements ofHΣ

n is denoted by f ∗n, that is

f ∗n = argmin
g∈HΣ

n

‖f − g‖H = PHΣ
n
f

then the basis theorem implies the following three instructive consequences.

i) The projection of f onto HΣ
n can be written explicitly as PHΣ

n
f =∑n

k=1〈f, ek〉ek.

ii) If n ≥ m then f ∗n approximates f better or equally well as f ∗m.

iii) If n > m then f ∗n − f ∗m ∈⊕n
k=m+1Hk.

In the preceeding statements, approximation quality is measured by the norm ‖f ∗n−
f‖H of the approximation residuals with higher norm indicating lower quality.

Proof: Once i) is shown ii) and iii) follow trivially.

i) Show that if f ∗n had any other coefficients αk than 〈f, ek〉, the norm of the

residual f − f ∗n would increase.

‖f − f ∗n‖2H = ‖
∞∑
k=1

〈f, ek〉ek −
n∑

j=1

αjej‖2H

= ‖
n∑

k=1

(〈f, ek〉 − αk)ek‖2H + ‖
∞∑

k=n+1

〈f, ek〉ek‖2H

= ‖{〈f, ek〉 − αk}nk=1‖2�2 + ‖{〈f, ek〉}∞k=n+1‖2�2
But both right hand side terms are nonnegative and only the left one does

depend on the expansion coefficients. Since it is zero iff αk = 〈f, ek〉, k =
1, ..., n this choice of expansion coefficients is optimal. By the non degener-

acy of the norm it is the only one to achieve that, hence unique.
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ii) ‖f − f ∗n‖2H =
∑∞

k=n+1 |〈f, ek〉|2 ≤
∑∞

k=n+1 |〈f, ek〉|2 +
∑n

k=m+1 |〈f, ek〉|2
= ‖f − f ∗m‖2H

iii) f ∗n − f ∗m =
∑n

k=1〈f, ek〉ek −
∑m

k=1〈f, ek〉ek
=
∑n

k=m+1〈f, ek〉ek ∈
⊕n

k=m+1Hk

One might originally be unsure if adding more terms by which f ∈ H is approx-

imated could potentially decrease the quality of the approximation in some way.

Statement ii) asserts that the approximation quality monotonically increases if the

terms ek form an ONB. The implications of statement iii) are particularly clear if

n = m+1. Then f ∗m+1 = f ∗m+〈f, em+1〉em+1 and the constancy of the firstm ex-

pansion coefficients {αk}mk=1 in fm
approx =

∑m
k=1 αkek is guaranteed when the degree

of approximation is increased by one or in fact by way of induction by any natu-

ral number. Figure 2.5 illustrates these comments and the fact that approximation

quality depends on the ONB.

Figure 2.5: The three plots depict approximations of a fixed function f given in terms of data points with different orthonormal

bases of L2[0, 1]. From the left to the right orthogonal polynomials, complex polynomials and a basis chosen numerically

from the set of eigenfunctions of a certain linear operator (the covariance operator, see subsection 2.1.4) were used. The

RMSE for f∗4 are 0.25, 0.24 and 0.19 respectively.

Corollary 2.1.17.2 (Riesz-Fischer) If H is separable with orthonormal basis
{ek}∞k=1 thenH = {∑∞

k=1 αkek : {αk}∞k=1 ∈ �2}.

Proof: If f ∈ H then ‖f‖2 < ∞ and ‖f‖2 =
∑∞

k=1 |〈f, ek〉|2 =
∑∞

k=1 |αk|2 < ∞
implying {αk}∞k=1 ∈ �2. If f =

∑∞
k=1 αkek : {αk}∞k=1 ∈ �2 then

∑∞
k=1 |αk|2 < ∞

proves
∑∞

k=1 |〈f, ek〉|2 = ‖f‖2 <∞ and f ∈ H.

The Riesz-Fischer theorem states in a very formal sense that there is only one sepa-

rable Hilbert space �2 and all other infinite dimensional separable Hilbert spaces H
can be mapped one to one onto �2 by identifying the expansion coefficients {αk}∞k=1

in some given orthonormal basis {ek}∞k=1 with the sequence {αk}∞k=1. This seems to

be a very specific theorem with limited applicability but as for example the sequence

{ek}∞k=1 of elements ek = exp(2πk·) is a countable basis for L2[0, 1] [93, p. 48] this

space is seen to be isomorphic to �2 as well. This is not obvious intuitively since

an f ∈ �2 is a function N → C with countable domain whereas a g ∈ L2[0, 1] is

an equivalence class of functions from the uncountable continuum [0, 1] to C. The

Riesz-Fischer theorem holds even under more surprising conditions. Ahmed [197,

p. 41.] proves a version of the theorem for a series of nonlinear operators defined
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by integration against the classical Wiener-Fourier kernels arising in Volterra series

or Wiener-G-functional expansions of nonlinear operators

Most theorems in this paragraph assume an ONB is already given. When this is

not apriori the case and only a sequence {vk}∞k=1 ⊂ H of linearly independent

vectors is accessible, then one can construct an ONB {ek}∞k=1 of H out of the

sequence {vk}∞k=1 with the help of the Gram-Schmid orthonormalization process

[3, pp. 10-13].

Theorem 2.1.18 Let a sequence {vk}∞k=1 of nonzero linearly independent vectors
in a Hilbert space H be given. Then the sequence {ek}∞k=1 constructed iteratively
via

ek =
uk
‖uk‖ uk = vk −

k−1∑
j=1

〈vk, uj〉
〈uj, uj〉uj (2.5)

is an orthonormal sequence in H. In this formulation sums of type
∑m

j=n fj with
n > m are set to zero.

The properties of the Gram-Schmidt orthonormalization process suggest to

construct ONB’s for a separable infinite dimensional H by designing linearly

independent sequences {vk}∞k=1 of vectors vk that have dense span in H and then

apply Gram-Schmidt orthonormalization to them. The next example illustrates the

orthonormalization procedure.

Example 7 (Legendre polynomials) Let {vk}2k=0 be the monomials x0, x1, x2 as

functions from T = [−1, 1] to R. They are linearly independent because any poly-

nomial p =
∑n

k=1 αkx
k does not have more than n roots precluding

∑n
k=1 αkx

k = 0
for coefficients αk not all zero. The inner product on this space is set to 〈f, g〉 =∫ 1

−1
f(t)g(t)dt. The polynomials constructed from monomials by way of 2.1.18 are

simply the first 3 Legendre polynomials appropriately rescaled to unit norm [153,

p. 443]. �
The relationship discovered between orthogonal polynomials of up to degree 2 on

[−1, 1] and Legendre polynomials holds for arbitrary degrees and it can be shown

that the Legendre polynomials form a countable ONB for L2[−1, 1] which is there-

fore seen to be separable. Analogue theorems hold for L2[α, β] and scaled Legen-

dre polynomials, L2[0,∞) and Chebychev-Laguerre functions, and L2(∞,∞) and

Chebychev-Hermite functions as well as for domains that are Cartesian products,

T = T1 × T2, Tk ⊂ R [93, pp. 55-66].
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2.1.3 Abstract constructions with Hilbert spaces

Several abstract constructions are available to combine two Hilbert spaces H1,H2 into a
new one that inherits properties from both H1 and H2. It is possible to form two different
types of sum — external and internal— of Hilbert spaces leading to a Hilbert spaceH1⊕H2
being populated by sums of elements of H1 and H2. Taking the tensor product of H1
with H2 results in a Hilbert space H1 ⊗ H2 of sums of products of elements in H1 and
H2 whereas also a construction rule exists to create a Hilbert space H1/H2 of equiva-
lence classes of elements inH1 that differ only by an element ofH2 ifH2 is a subspace ofH1.

§ Quotient spaces

Quotient spaces H2/H1 are sets containing equivalence classes of vectors. The

concept is made useful in a Hilbert space setting by endowing the quotient space

itself with a vector space structure and an inner product. This pre-Hilbert space

turns out to be isometrically isomorphic to the orthogonal complement of the

subspace that was collapsed to zero and is shown to be complete. Quotient space

constructions with certain minimality properties will be useful later. Their elements

may be interpreted as classes of signals that differ only by elements of a supposedly

irrelevant spaceH1 which is to be eliminated from further consideration.

Lemma 2.1.19 Let H1 and H2 be two Hilbert spaces with H1 ⊂ H2. Then the
relation f ∼ g ⇔ f − g ∈ H1 is an equivalence relation for elements ofH2.

Proof. Reflexivity follows from f ∼ f ⇔ f − f = 0 ∈ H1 since H1 is a subspace

ofH2 and contains 0. Symmetry is a consequence of the closure ofH1 under linear

operations by f ∼ g ⇔ f − g ∈ H1 ⇔ g − f ∈ H1 ⇔ g ∼ f and transitivity is

obvious as well since if f ∼ g and g ∼ h then f −h = (f − g)+ (g−h) is the sum

of two elements inH1 and therefore again an element ofH1 implying f ∼ h.

Definition 2.1.20 Let H1 and H2 be two Hilbert spaces with H1 �H2. Then the

set of all equivalence classes [f ] := {g ∈ H2 : f − g ∈ H1}, f ∈ H2 is called the

quotient space of H2 by H1 and denoted by H2/H1. The map π : H2 � f �→ [f ] ∈
H2/H1 sending Hilbert space elements to their corresponding equivalence class is

called the canonical projection.

Remark The canonical projection π : H1 → H2/H1 is surjective because

H2/H1 = {[f ], f ∈ H2} = πH2.

Theorem 2.1.21 The quotient space H2/H1 together with the linear algebraic op-
erations

[f ] + [g] = [f + g] [f ], [g] ∈ H2/H1 (2.6)

α[f ] = [αf ] [f ] ∈ H2/H1, α ∈ C (2.7)

is a vector space. This vector space can be embedded as a subspace intoH2.

Proof: It will be shown in detail that the operations of addition and multiplication

by scalars are well defined. Proving that the vector space axioms hold is trivial.
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Suppose that f1, f2 ∈ [f ] and g1, g2 ∈ [g]. Then f1 − f2 ∈ H1 and g1 − g2 ∈ H1

and (f1 + g1) − (f2 + g2) = f1 − f2 + g1 − g2 ∈ H1 and [f1 + g1] = [f2 + g2]
establishing well-definedness of addition. To prove well-definedness of multiplica-

tion by scalars, note that if f1, f2 ∈ [f ] then ∀α ∈ C one has f1 − f2 ∈ H1 ⇒
α(f1 − f2) = αf1 − αf2 ∈ H1 ⇒ αf1 ∼ αf2 and [αf1] = [αf2].
H2/H1 is a commutative group under addition. It is commutative as shown by

[f ] + [g] = [f + g] = [g + f ] = [g] + [f ] and associative as ([f ] + [g]) + [h] =
[f +g]+ [h] = [(f +g)+h] = [f +(g+h)] = [f ]+ [g+h] = [f ]+([g]+ [h]). Any

p ∈ H1 satisfies f +p− f ∈ H1 implying [f ]+ [p] = [f ] and [p] is the zero element

inH2/H1. As for inverses, any element g ∈ [f ] satisfies [f ] + [−g] = [f − g] = [0]
since f − g ∈ H1 and [f ]−1 = [−g] for any g ∈ [f ]. Scalar multiplication pre-

serves linear structure because αβ[f ] = α[βf ] = [αβf ], 1[f ] = [1f ] = [f ] and

distributivity over H2/H1 and C are inherited from distributivity over H2 and C.

Consequently H2/H1 is a vector space. Finally note that the map ψ : H2/H1 �
[f ] �→ ψ[f ] = PH⊥

1
f ∈ H⊥

1 embeds this quotient space intoH2.

Definition 2.1.22 Let 〈·, ·〉P † be a positive semidefinite, conjugate symmetric form

that is homogeneous with respect to scalar multiplication in the first argument and

additive. It induces a form | · |P † by
√〈·, ·〉P † = | · |P † . The form | · |P † is called a

seminorm onH2 if

i) |f |P † ≥ 0 ∀f ∈ H2

ii) |f |P † = 0⇔ f ∈ P
iii) |αf | = |α||f |P † ∀f ∈ H2, α ∈ C

iv) |f + g|P † ≤ |f |P † + |g|P † ∀f, g ∈ H2.

If | · |P † is induced by 〈·, ·〉P † as described above, the bilinear function 〈·, ·〉P † is

called a semi-inner product onH2.

Theorem 2.1.23 IfH1,H2 are separable Hilbert spaces withH1 �H2 thenH2/H1

is complete with respect to the norm topology induced by the inner product
〈[f ], [g]〉H2/H1 = 〈PH⊥

1
f, PH⊥

1
g〉H2 and therefore a Hilbert space.

Proof: It was already proven that H2/H1 is a vector space. What is left to show is

that 〈[f ], [g]〉H2/H1 is i) well defined, ii) an inner product and iii)H2/H1 is complete

w.r.t. the induced norm.

i) Suppose f1, f2 ∈ [f ] and g1, g2 ∈ [g] then f1 − f2 ∈ H1 and PH⊥
1
(f1 − f2) =

0 = PH⊥
1
(g1 − g2) since g1 − g2 ∈ H1. Therefore PH⊥

1
f1 = PH⊥

1
f2, PH⊥

1
g1 =

PH⊥
1
g2 and 〈PH⊥

1
f1, PH⊥

1
g1〉H2 = 〈PH⊥

1
f2, PH⊥

1
g2〉H2 so that 〈[f ], [g]〉H2/H1

is well defined independent of the choice of representer for the equivalence

classes [f ] and [g].

ii) If [f ] �= [0] then 〈[f ], [g]〉H2/H1 = 〈PH⊥
1
f, PH⊥

1
f〉H2 > 0 by argument of [f ] �=

[0] implying f−0 /∈ H1 and f = PH1f+PH⊥
1
f with PH⊥

1
f = f−PH1f �= 0.

Finally this shows PH⊥
1
f �= 0 and 〈[f ], [f ]〉H2/H1 > 0 byt the non-degeneracy
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of 〈·, ·〉H2 . Together with 〈[0], [0]〉H2/H1 = 〈0, 0〉H2 this establishes positive

definiteness. Conjugate symmetry follows from

〈[f ], [g]〉H2/H1 = 〈PH⊥
1
f, PH⊥

1
g〉H2 = 〈PH⊥

1
g, PH⊥

1
f〉H2

= 〈[g], [f ]〉H2/H1

and linearity is seen to be correct because

〈α[f ], [g]〉H2/H1 = 〈[αf ], [g]〉H2/H1 = 〈αPH⊥
1
f, PH⊥

1
g〉H2 = α〈[f ], [g]〉H2/H1

where the linearity of the projection was used. Lastly additivity holds as

〈[f ] + [g], [h]〉H2/H1 = 〈[f + g], [h]〉H2/H1

= 〈PH⊥
1
(f + g), PH⊥

1
h〉H2

= 〈PH⊥
1
f, PH⊥

1
h〉H2 + 〈PH⊥

1
g, PH⊥

1
h〉H2

= 〈[f ], [h]〉H2/H1 + 〈[g], [h]〉H2/H1

iii) The quotient space H2/H1 is complete since every Cauchy-sequence con-

verges. This can be seen by explicit construction of any Cauchy-sequences

{[f ]k}∞k=1 ⊂ H2/H1 limit [f ]. If {[f ]k}∞k=1 is Cauchy then ∀ε > 0 ∃n0 ∈
N : n,m ≥ n0 ⇒ ‖[f ]n − [f ]m‖H2/H1 < ε. Now let {fk}∞k=1 ⊂ H2 be any

sequence such that [fk] = [f ]k; it follows from {[f ]k}∞k=1 being Cauchy that

∀ε > 0 ∃n0 ∈ N : n,m ≥ n0 ⇒
‖[f ]n − [f ]m‖H2/H1 = ‖[fn]− [fm]‖H2/H1 = ‖PH⊥

1
fn − PH⊥

1
fm‖H2 < ε

and {PH⊥
1
fk}∞k=1 is a Cauchy sequence lying inH⊥

1 by construction. ButH⊥
1

is a Hilbert space and complete which guarantees that ∃f ∈ H⊥
1 ⊂ H2 with

limk→∞ PH⊥
1
fk = f . Then the element [f ] ∈ H2/H1 satisfies

lim
k→∞

‖[f ]− [f ]k‖H2/H1 = lim
k→∞

‖f − PH⊥
1
fk‖H2 = 0.

The equivalence class [f ] of f in H⊥
1 lies in H2/H1 and is the unique limit

of the Cauchy sequence {[f ]k}∞k=1. ConsequentlyH2/H1 is a complete inner

product space, hence a Hilbert space.

Corollary 2.1.23.1 I The quotient Hilbert space H2/H1 is isometrically iso-
morphic to H⊥

1 , i.e. there exists a bijective linear map from H⊥
1 to H2/H1

which preserves inner products.

II The inner product 〈[f ], [g]〉H2/H1 and norm ‖[f ]‖H2/H1 correspond to semi-
inner products and seminorms onH2 that annihilateH1.
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§ Direct sums and tensor products

Direct sums and tensor products are both ways in which to combine two spaces

H1,H2 to generate a third, enlarged one. As the name direct sum implies, the

resultant object can be interpreted as containing sums of elements f1 ∈ H1 and

f2 ∈ H2. However, that interpretation only makes sense when f1 and f2 are

summable, e.g. because they are functions on the same index set T , andH1,H2 are

apriori subspaces of some other Hilbert space. In all other cases, the direct sum has

more similarity with the Cartesian product. Both notions of direct sum coexist and

are useful at different times.

Definition 2.1.24 LetH1 andH2 be two Hilbert spaces with inner products denoted

by 〈·, ·〉H1 and 〈·, ·〉H2 .

i) The set H1 ⊕e H2 := {f = (f1, f2) : f1 ∈ H1, f2 ∈ H2} together with

the inner product 〈f, g〉H1⊕eH2 = 〈(f1, f2), (g1, g2)〉H1⊕eH2 = 〈f1, g1〉H1 +
〈f2, g2〉H2 ∀f, g ∈ H1⊕eH2 is called the external direct sum or the orthogonal

sum ofH1 andH2 [21, p. 157].

ii) If there exists an H3 with H1 �H3 and H2 �H3, then the set H1 ⊕i H2 :=
{f1 + f2 : f1 ∈ H1, f2 ∈ H2} together with the squared norm ‖f‖2H1⊕iH2

=
minf=f1+f2,f1∈H1,f2∈H2 ‖f1‖2H1

+ ‖f2‖2H2
is called the internal direct sum of

H1 andH2 [20, p. 24].

Whereas the external direct sum of H1 and H2 contains vectors with entries in H1

and H2, the internal direct sum is to be interpreted rather as a superposition of

H1 and H2. When both component spaces are not orthogonal to each other, the

constructions lead to significantly different results. Since this situation is explored

most instructively when the underlying Hilbert spaces have additional structure, a

systematic account of the interactions between external and internal direct sums

is postponed until reproducing kernel Hilbert spaces have been introduced. If

H1 ⊥ H2, then external and internal direct sums coincide, see theorem 2.1.11.

In this case, the subscripts e or i indicating a distinction will be omitted. In

comparison to the direct sum that roughly results in added output dimensions, the

direct product of H1 and H2, frequently also called the tensor product, leads to

added input dimensions.

Definition 2.1.25 Let H1 and H2 be Hilbert spaces of functions from T1, T2 to R
with inner products 〈·, ·〉H1 and 〈·, ·〉H2 respectively. The direct productH1⊗H2 of

H1 andH2 is the completion of the space of functions that are of form

f⊗(s, t) =
n∑

j=1

f 1
j (s)f

2
j (t) s ∈ T1, t ∈ T2, f 1

j ∈ H1, f
2
j ∈ H2
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together with the inner product

〈f⊗, g⊗〉H1⊗H2 =
m∑
i=1

n∑
j=1

〈f 1
i , g

1
j 〉H1〈f 2

i , g
2
j 〉H2

where the completion is executed w.r.t the induced norm ‖f⊗‖2H1⊗H2
[20, p. 31].

If H1 and H2 are spaces of functions on T1, T2 then H1 ⊗ H2 contains functions

f : T1 × T2 → R, see [127, p. 10] for additional explanations. One may de-

fine spaces of functions of several inputs, e.g. spatiotemporal functions, by tensor-

ing together simpler spaces. Often operations in the tensor product space factorize

through the base spaces and this makes them both easier to interpret and more effi-

ciently computable.

2.1.4 Linear operators on Hilbert spaces

In this subsection the concept of a linear operator on a Hilbert space is introduced. Bounded
linear operators constitute the most common linear operators encountered in practice and it
is possible to establish that linear operators are bounded iff they are continuous. Bounded
linear operators on a Hilbert space H form a space B(H) themselves and properties of
those operators can be related to the structure of H. Compact operators form a subclass
of B(H) exhibiting finiteness properties paralleling those of matrices and appear naturally
in Hilbert space embeddings of random variables. Orthogonal projection operators map a
Hilbert space onto its subspaces and form a subclass of B(H) containing slightly transformed
versions of pseudoinverses. They will be immediately used to provide solutions to simple least
squares problems.

§ Bounded linear operators

Bounded linear operators between Hilbert spaces H1 and H2 are topologically

well-behaved objects that interact with the natural notions of convergence in a

non-complicated manner. The case where H2 is R or C leads one to consider

bounded linear functionals forming themselves a Hilbert space called the dual

spaceH∗
1. For them the important Riesz representation theorem is available.

Definition 2.1.26 i) A map A : H1 → H2 between two vector spaces H1 and

H2 is called a linear operator if it satisfiesA(αf+βg) = αAf+βAg ∀f, g ∈
H1 and α, β ∈ C (or R)2.

ii) If the codomain of a linear operator is the underlying field F of the vector

space — C or R in most cases — then A : H1 → F is called a linear func-

tional.

Remark If A : H1 → H1 then A is called a linear operator on H1 and if

A :M→H1 withM�H1 then A is called linear operator inH1.

Definition 2.1.27 i) A linear operator A : H1 → H2 between two normed lin-

2When applying a linear operator A to an element f , one may either write A(f) or simply Af to

reduce the number of parentheses. There is rarely potential for any confusion.
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ear spaces is called bounded if ∃c ∈ R such that

‖Af‖H2 ≤ c‖f‖H1 for all f ∈ H1. (2.8)

ii) The smallest such c ∈ R in equation 2.8 is called the operator norm of A.

‖A‖op = sup
f∈H1\{0}

‖Af‖H2

‖f‖H1

(2.9)

One arrives at this specific formulation by reordering ‖Af‖H2 = c‖f‖H1

to c ≥ ‖Af‖H2/‖f‖H1 and realizing that the smallest c still satisfying this

equation can be found by taking the supremum of this particular ratio.

Example 8 A matrix A = {aij}m n
j=1,i=1 is a linear operator from Rm to Rn with the

usual matrix-vector multiplication. Its operator norm ‖A‖op depends on the norms

with which one endows H1 and H2; if for example the Euclidean standard norms

are used ‖A‖op =
√
λmax is the square root of the maximum eigenvalue ofA∗A [30,

p. 876]. Here again the asterisk denotes transposition and complex conjugation, i.e.

(A∗)ij = aji. �

Theorem 2.1.28 The operator norm is a norm on bounded linear operators and
furthermore it holds that [93, p. 80]

‖A‖op = sup
f∈H1\{0}

‖Af‖H2

‖f‖H1

= sup
f∈H1,‖f‖H1

≤1

‖Af‖H2 = sup
f∈H1,‖f‖H1

=1

‖Af‖H2 .

Corollary 2.1.28.1 Linear bounded operators on a Hilbert spaceH1 form a Banach
space under the operator norm ‖ · ‖op [93, p. 80].
Remark The Banach space of bounded linear functionals ϕ : H1 � f �→ ϕ(f) ∈ C
is called the dual space ofH1 and denoted byH∗

1.

Bounded linear functionals ϕ : H1 → C acting on a Hilbert space can be written

explicitly as inner products with certain elements fϕ ∈ H1. This is the content of

the Riesz representation theorem.

Theorem 2.1.29 (Riesz representation) Let ϕ : H1 → C be a bounded linear
functional. Then ∃!fϕ ∈ H1 with ϕg = 〈fϕ, g〉H1 for all g ∈ H1 and furthermore
‖ϕ‖op = ‖fϕ‖H1 [93, p. 76].

This representation will be important in section 2.3 where reproducing kernel

Hilbert spaces are introduced as those spaces of functions for which evaluation

et : H1 � f �→ et(f) = f(t) ∈ C at a point t ∈ T is continuous therefore guaran-

teeing the existence of a function Kt(·) ∈ H1 with etf = 〈Kt, f〉H1 ∀f ∈ H1.
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§ Special properties of operators

Matrices are finite-dimensional linear operators and compact operators as limiting

cases of finite rank operators can be interpreted as their infinite-dimensional gener-

alizations. Similarly, selfadjoint positive definite operators are likened to covariance

matrices for which they provide infinite dimensional analogues in form of the co-

variance operator. Apart from this, often operators arise whose adjoints are their

inverses — these unitary operators have a basic role as representers of basis change.

Any linear map L : Rn → Rn applied to f ∈ Rn has the result Lf with

(Lf)i =
∑n

j=1 αijfj as any output dimension i = 1, ..., n necessarily depends lin-

early on all the input dimensions j = 1, ..., n. The application of L to the vector f
can be represented as multiplying a coefficient matrix A with the coefficient vector

containing the components fj of f . Another way to write this is as

Lf =
n∑

i=1

n∑
j=1

〈f, ej〉Rn〈Aei, ej〉Rnei =
n∑

j=1

gj〈f, ej〉Rn (2.10)

where (A)ij = αij, gj =
∑n

i=1〈Aei, ej〉Rnei and {ei}ni=1 is an ONB of Rn. There

is no reason why one may not define for a fixed n < ∞ a linear operator on an

arbitrary Hilbert spaceH in a fashion similar to equation 2.10, i.e.

L : H � f �→
n∑

j=1

uj〈f, hj〉H ∈ H, (2.11)

where {uj}nj=1 and {hj}nj=1 are arbitrary sequences of elements in H. Operators

of this type are called finite rank operators. Their limits for n → ∞ are compact

operators [164, p. 204] which themselves contain subclasses of operators satisfying

different finiteness criteria and whose further properties require first defining the

concept of adjoint operators.

Definition 2.1.30 For a bounded linear operator A : H1 → H2, the operator A∗ :
H2 → H1 satisfying 〈Af, g〉H2 = 〈f, A∗g〉H1 is called the adjoint operator.

Definition 2.1.31 Let L : H → H be a bounded linear operator on the Hilbert space

H and let {ei}∞i=1 be an ONB ofH.

i) L is called compact iff it maps every weakly convergent sequence3 into a

strongly converging one [93, p. 187].

ii) L is called Hilbert-Schmidt iff
∑∞

j=1 ‖Lej‖2 < ∞. This is equivalent to∑∞
j=1 λj < ∞ for {λj}∞j=1 the sequence of eigenvalues of L∗L where L∗ is

the adjoint operator [63, p. 278].

iii) L is called trace class iff
∑∞

j=1

√
λj < ∞ where {λj}∞j=1 is the sequence of

eigenvalues of L∗L [63, p. 276].

3A sequence{xk}∞k=1 is said to converge weakly, iff there exists an element x with

limk→∞〈xk, y〉H = 〈x, y〉H for all y ∈ H.
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Both Hilbert-Schmidt operators and trace class operators are compact operators

[63, pp. 276-278]. The finiteness conditions on the sum of the spectrum can be

related to finiteness conditions on the energy of a sequence of random variables.

Theorem 2.1.32 The adjoint A∗ of A always exists, is unique [50, p. 514] and
satisfies the following equations [93, p. 97].

i) (A∗)∗ = A ii) (λA)∗ = λA∗ ∀ λ ∈ C

iii) (A+B)∗ = A∗ +B∗ and (BA)∗ = A∗B∗

iv) ‖A∗‖op = ‖A‖op v) If ∃A−1 : then (A−1)∗ = (A∗)−1

The adjoint operator A∗ is a generalization of the transpose AT of a ma-

trix A or in the complex case the Hermitian transpose AH = (AT ). The

adjoint x∗ of a finite-dimensional column vector x is xH as implied by

〈αx, y〉Rn = α〈x, y〉Rn = 〈α, xHy〉R. The following two classes of operators

are defined by demanding simple relationships between an operator and its adjoint.

Definition 2.1.33 Let L : H → H be a linear operator on the Hilbert space H.

Then [93, p. 98]

i) L is called unitary iff L∗ = L−1.

ii) L is called selfadjoint iff L∗ = L.

Since unitary operators satisfy 〈f, g〉H = 〈Lf, Lg〉H ∀f, g ∈ H, they do not

change a vectors length or two vectors relative orientation to each other — they are

isometries. As such they essentially represent a relabeling of the space H and are

related to basis changes similar to their finite-dimensional counterparts, the orthog-

onal matrices. The Fourier transform is an example of a unitary operator. It allows

representing a function f in a basis of complex exponentials, i.e. as a superposition

of elementary waves and has been used to generate signal decompositions as for

example already encountered in figure 2.5. If the selfadjoint operator L satisfies

〈Lf, f〉H ≥ 0 ∀f ∈ H, then it is called positive and it is suitable to define a new

semi-inner product on H via 〈Lf, f〉H = 〈f, f〉H̃. Positive definite matrices often

arise as the covariance matrices of random vectors and their infinite dimensional

analogues are called covariance operators.

Definition 2.1.34 Let X ·
· : Ω � ω �→ Xω

· ∈ HK be a Hilbert space val-

ued random variable having finite energy and therefore satisfying E[‖X ·
·‖2HK

] =∫
Ω
‖Xω

· ‖2HK
dP (ω) < ∞. Let Hk have the special property that it is a space of

functions on T on which evaluation at t ∈ T is continuous and represented by

K(t, ·) ∈ HK . Then for each ω ∈ Ω, Xω
· : T � t �→ Xω

t ∈ R is a real valued

function and the unique linear operator CX defined by

〈CXf, g〉HK
= E [〈X ·

· , f〉HK
〈X ·

· , g〉HK
] (2.12)

is called the covariance operator of X [20, p. 28].
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Note the defining equation’s similarity to the relationship 〈Σf, g〉Rn =
E[〈xxHf, g〉Rn ] = E[〈x, f〉Rn〈x, g〉Rn ] that is upheld between a random vector x,

its covariance matrix Σ and arbitrary, but fixed vectors f and g. In this sense, CX

is the infinite-dimensional, functional analogue of the covariance matrix Σ of a ran-

dom vector in Rn. The covariance operator CX is a selfadjoint kernel operator from

HK toHK in the sense that ∀f ∈ HK

(CXf)(t) = 〈K(t, ·), CXf(·)〉HK
= 〈CXK(t, ·), f(·)〉HK

= 〈u(t, ·), f(·)〉HK

u(s, t) = 〈K(s, ·), u(t, ·)〉HK
= E [〈K(s, ·), X ·

· 〉HK
〈K(t, ·), X ·

· 〉HK
]

= E [X ·
sX

·
t] (2.13)

with kernel u(s, t) equal to the covariance function of the process {X ·
t : t ∈ T} [20,

p. 29] which is assumed to have zero mean for reasons of notational convenience.

The operator CX can therefore be interpreted as a weighted integration against

a covariance function with the exact nature of the weights being determined by

choice of inner product onHK .

Theorem 2.1.35 The covariance operatorCX of a stochastic processX ·
· : Ω×T →

R2 with finite energy as measured by some norm ‖ · ‖HK
as in definition 2.1.34 is a

compact linear operator.

Proof: First note that CX is bounded. For this, recall that E[XY ] = 〈X, Y 〉L2(Ω) is

a valid inner product for square integrable random variables X and Y ∈ L2(Ω) on

some probability space Ω. It then holds that

‖CXf‖HK
= ‖E [〈X ·

· , f〉HK
X ·

· ] ‖HK

≤ ‖f‖HK
‖E [‖X ·

·‖HK
X ·

· ] ‖HK

≤ ‖f‖HK
E[‖X ·

·‖2HK
] = α‖f‖HK

(2.14)

with α < ∞ where Jensen’s inequality was used to derive α = E‖X ·
·‖2HK

as the

finite upper bound for the operator norm ‖CX‖op. CX is furthermore selfadjoint and

positive as implied by 〈CXf, f〉HK
= E

[〈X ·
· , f〉2HK

] ≥ 0 from which it follows

that |CX | =
√
C∗

XCX satisfies
∑∞

k=1〈|CX |ek, ek〉HK
=
∑∞

k=1〈CXek, ek〉HK
[63,

p. 276]. Then clearly CX is trace class since for any ONB {ek}∞k=1 forHK

∞∑
k=1

〈CXek, ek〉HK
=

∞∑
k=1

E
[〈X ·

· , ek〉2HK

]
= E

[
〈

∞∑
k=1

〈X ·
· , ek〉HK

ek,
∞∑
l=1

〈X ·
· , el〉HK

el〉HK

]
= E [〈X ·

· , X
·
· 〉HK

]

= E[‖X ·
·‖2HK

] <∞

where the Fourier expansion in terms of the ONB {ek}∞k=1 was used, recall theorem

2.1.17. As CX is trace class, CX is compact [63, p. 272].
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§ Projections

Orthogonal projections are those idempotent bounded linear operators which are

also selfadjoint. The interaction between different projections P1, P2 : H → H is

determined by the relation their images im(P1), im(P2) have as subspaces of H.

The orthogonal projection onto a subspace can be shown to have the same minimum

norm property that is demanded during least squares adjustment. Therefore the

solution to these problems is given by orthogonal projections that according to the

general formula for the construction of orthogonal projections from their image

and nullspace turns out to be related to the classical Moore-Penrose pseudoinverse.

Definition 2.1.36 A bounded linear operator P : H → H on a Hilbert space H
is called an (orthogonal) projection iff it is idempotent (PP = P ) and selfadjoint

(P = P ∗).

Remark The image H1 := PH = {Pf : f ∈ H} is a subspace , H1 �H [93,

pp. 102-104] and P : H → H is called the projection onto H1. This is often

emphasized by writing PH1 instead of P . Oblique projections do exist but will be of

no further concern herein; all projections are implicitly understood to be orthogonal

if nothing to the contrary is mentioned.

i) There is a straightforward relationship between projections and least squares es-

timators. For a design matrix A ∈ Rn ⊗ Rm of full column rank the choice of

parameters x ∈ Rm minimizing the residuals Ax − b for some vector of observa-

tions b ∈ Rn =: H is given by

‖Ax− b‖2Rn → min x̂ = (ATA)−1AT b = A+b (2.15)

where A+ is the Moore-Penrose pseudoinverse of A. The best reconstruction of

b ∈ Rn by means of the model Ax is then Ax̂;

Ax̂ = AA+b = A(ATA)−1AT b = Pim(A)b.

Here A(ATA)−1AT = Pim(A) is idempotent and selfadjoint and its range is that of

A implying Pim(A) to be the projection onto the column space of A as indicated

by choice of symbols. A direct interpretation is possible by recalling that PH1f =
argming∈H1

‖f − g‖2H. Then in the above least squares problem H1 = im(A) =
{Ax : x ∈ Rm} is the set of all observations possible under the model y = Ax
for observations y and Pim(A)b = b̂ is the projection of any observation b onto one

that is actually explainable by the model. If b were actually generated from some

q ∈ Rm via b = Aq, then

b̂ = Ax̂ = A[(ATA)−1ATAq] = AIq = b

where (ATA)−1ATA = A+A = I is the identity projection, b̂ reconstructs b and x̂
recovers the underlying true parameters q ∈ Rm.
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ii) If A has full row rank then one has enough parameters {xi}mi=1 to for any b ∈ Rn

find a suitable x ∈ Rm with Ax = b. The pseudoinverse is then A+ = AT (AAT )−1

and x̂ = A+b; consequently

Ax̂ = AAT (AAT )−1b = Ib

and the space of observations generated by the model Ax = y contains the actual

space of observations. The vector x̂ is the solution to Ax = b with the least norm

[190, p. 404], i.e.

x̂ = argmin
x∈A−1b

‖x‖2Rm .

In comparison to case i), it is typically not possible anymore to recover the true

value of a parametervector x from the measurements. If b = Aq for some q ∈ Rm,

then

x̂ = A+Aq = AT (AAT )−1Aq = Pim(AT )q

and the true underlying q is projected onto a guess x̂ that is of the same length

or shorter since ‖P‖op ≤ 1 generically. Whereas in case i) b̂ was the projection

of the observations b onto the ones consistent with the model, in case ii) x̂ is the

projection of the parameters x onto the nontrivial ones. They are orthogonal to

those parameters that predict trivial observations as ker(A) ⊥ im(AT ) according to

the fundamental theorem of linear algebra [190, p. 198]. One may think of least

squares, minimum norm solutions and the involved model equations entirely in

terms of projections. The next theorem has further implications.

Theorem 2.1.37 Let P1, P2 be projections onH and denote the corresponding sub-
spaces byH1 andH2. Then [93, pp. 105-107]

i) I − PH1 = PH⊥
1

is the projection ontoH⊥
1
∼= H/H1.

ii) H1 ⊥ H2 iff P1P2 = 0 and this is equivalent to P1 + P2 being the projection
onto the subspace (H1 ⊕H2) �H.

iii) H1 �H2 iff P1P2 = P2P1 = P1 and this is equivalent to P2 − P1 being the
projection onto the subspaceH2/H1

∼= H2 ∩H⊥
1 .

When Hilbert spaces are considered as containing signals, then the theorem admits

an easy interpretation. Suppose that H contains all observable signals and choose

two subspaces H1 �H and H2 �H that correspond to two models for the under-

lying process generating elements in H. For example H1 and H2 may be spaces

of polynomials, functions of explanatory variables or bandlimited functions. The

solutions

b̂1 = argmin
b1∈H1

‖b1 − b‖H b̂2 = argmin
b2∈H2

‖b2 − b‖H

are PH1b and PH2b, the best reconstructions of b via elements in H1 and H2. If one

supposes finite dimensionality and that each element in H1 and H2 can be written
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in terms of the two models

b1 ∈ H1 ⇒ b1 = A1x1 b2 ∈ H2 ⇒ b2 = A2x2,

the best guesses for the parameter vectors x1 ∈ HX
1 and x2 ∈ HX

2 are given by

x̂1 = A+
1 b and x̂2 = A+

2 b respectively. Theorem 2.1.37 implies statements i) to iii).

i) (I − PH1)b is the projection of b onto H⊥
1 . Since H1 is a model for the

(interesting part of the) signal, PH⊥
1
b is the best guess for the noise inherent

in the observations b. Analogously for I − PH2 = PH⊥
2

.

ii) If H1 ⊥ H2 then the two models H1 and H2 do not contain redundant com-

ponents as no nontrivial prediction of any observation by model H1 can be

recreated by model H2 and vice versa. As H1 �H⊥
2 and H2 �H⊥

1 , what one

model considers signal, the other one considers noise; if even H⊥
1 = H2 this

induces a splitting of H into H1 ⊕ H2 and b = b̂1 + b̂2. Note furthermore

that (H1 ⊕H2) �H implying that both models can be added yielding a new

model in which the best guess for b is b̂ = PH1⊕H2b = (PH1 + PH2)b.

iii) If H1 �H2 then the second model is more expressive than the first one as

any observation predicted with model H1 can also be recreated under model

H2. PH2 − PH1 = PH2/H1 is a projection onto that part of H2 which is not

explainable byH1.

Figure 2.6 illustrates these statements. The explanations were embedded into the

context of linear adjustment theory only for the sake of easier interpretability. The

Hilbert space approach to signal reconstruction and estimation does not require fi-

nite dimensionality and solutions can be stated in terms of projections without ref-

erence to linear algebraic equations of type Ax = b that need to be solved for the

parameters x. Since the previous interpretations make use primarily of the Hilbert

spacesH1 andH2 they stay valid even in this more general situation.

Figure 2.6: Data is fit by a fourth order polynomial and an eighth order polynomial (first panel). The guesses for the noise

using these two models are plotted in the center. Note that ‖I − PH1b‖ > ‖I − PH2b‖ even though H2 is not necessarily

a ’better’ model. The right hand side plots the projection (PH2
− PH1

)b to show the reconstructive benefit of the fifth to

eighth order terms. The scale is equal for all plots.

It should be clear from the basis theorem 2.1.17 that given an ONB {ei}∞i=1 ofH, the

sequence of Hi := {αei : α ∈ R} together with the inner product 〈αei, βei〉Hi
=

αβ is a sequence of orthogonal spaces and the direct sums Vn =
⊕n

i=1Hi form a

sequence of increasing Hilbert spaces. Then Vn �Vn+1 and the approximation error
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monotonically decreases with n as

‖PVnf − f‖2H = ‖
∞∑

j=n+1

〈f, ei〉Hei‖2H =
∞∑

j=n+1

|〈f, ei〉H|2

≥
∞∑

j=n+2

|〈f, ei〉H|2 = ‖PVn+1f − f‖2H.

Clearly, in the limit limn→∞ ‖PVnf − f‖2H is 0 as H =
⊕∞

i=1Hi. The gain in

approximation accuracy by addingHn+1 to Vn is

‖PVnf − f‖2H − ‖PVn+1f − f‖2H = |〈f, en+1〉H|2 = ‖(PVn+1 − PVn)f‖2H
= ‖PHn+1f‖2H. (2.16)

Different heuristics for choosing decompositions of H into an infinite sum of or-

thogonal basis Hilbert spaces arise from the eigendecomposition of positive defi-

nite operators. In section 2.2 these spectral theoretic aspects are treated in more

detail and ways of choosing a mean-square optimal basis by factorizing covariance

operators are provided in subsection 3.2.1.

2.2 Spectral theory of linear operators

In this section the analysis of linear operators commences by means of a general-

ization of the familiar eigendecomposition of a symmetric matrix to infinite dimen-

sional settings. The spectrum replaces the set of eigenvalues and eigenfunctions

take the role the eigenvectors had before. The spectra of orthogonal projections and

positive definite linear operators satisfy some simple equations that allow the defi-

nition of an order structure on them. By manipulation of the spectra of selfadjoint

operators a functional calculus can be established and nontrivial conclusions regard-

ing solutions to operator-valued equations are deduced. Furthermore, the thoughts

leading up to this functional calculus can be extended to include a decomposition

of a selfadjoint operator into a weighted integral of maximal projections onto one

dimensional subspaces. This is known as the spectral theorem and the set of meth-

ods associated with it will be applied immediately to calculate the time evolution of

physical systems by means of unitary state transition operators.

2.2.1 The spectrum of an operator

The spectrum of a linear operator A is defined as the set of complex values λ ∈ C such that
A acts similar to multiplication by λ in at least one of the subspaces spanning its domain.
Even though the spectrum is therefore related principally to questions of non-invertibility
of A, it gives insights into extremal properties upheld by A and indeed a variational
characterization of a subset of the spectrum exists. Its use implies the topological properties
of the spectrum via the Neumann series and the spectral radius formula gives a first hint at
how a measure of uncertainty may be extracted from a covariance operator. Some immediate
consequences can be drawn for the spectra of covariance operators and a natural partial
order can be established via a comparison of spectra.
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Definition 2.2.1 Let a not necessarily bounded operator A on a Hilbert spaceH be

given. The values λ ∈ C such that (A − λI), I the identity operator, is either not

injective or (A− λI)−1 is unbounded are said to constitute the spectrum σ(A) ⊂ C
of A. If λ ∈ C \ σ(A) then λ is called a regular value.

It can be shown that σ(A) is closed and the set of regular values is open [93,

p. 163]. The spectrum need not consist only of discrete points as is the case in the

finite dimensional setting of linear operators on Rn represented my matrices but

generally may also include continuous parts like entire intervals. Under certain

circumstances, the resolvent operator R(λ) := (A − λI)−1 is expressible as a

power sum in A.

Theorem 2.2.2 If for A ∈ B(H), ‖A‖op < |λ| then one has λ /∈ σ(A) and

(A− λI)−1 = −1

λ

∞∑
k=0

(
A

λ

)k

(2.17)

Proof: If ‖A‖op < |λ| then ‖A‖op/|λ| < 1 and ‖∑∞
k=0

(
A
λ

)k ‖op ≤∑∞
k=0

(
‖A‖op
|λ|

)k
. The latter term is a geometric series and therefore converges. It

then holds that

∞∑
k=0

(
A

λ

)k

(A− λI) =
∞∑
k=0

(
Ak+1

λk
− Ak

λk−1

)
=

∞∑
k=1

Ak

λk−1
−

∞∑
k=0

Ak

λk−1
= −λI

This implies equation 2.17. Technical details augmenting the outline of the proof

may be found in [93, p. 161]. Folland [63, p. 3] lists some corollaries.

Corollary 2.2.2.1 I For A,B ∈ B(H), if A−1 ∈ B(H) and ‖B‖op ≤
1/‖A−1‖op then (A−B)−1 ∈ B(H) with (A−B)−1 = A−1

∑∞
k=0(BA

−1)k.

II For A,B ∈ B(H) if A−1 ∈ B(H) and ‖B‖op ≤ 1/(2‖A−1‖op) then ‖(A −
B)−1 − A−1‖op ≤ 2‖A−1‖op‖B‖op ≤ ‖A−1‖op.

III Inversion as a map from the open set of invertible elements of B(H) to B(H)
is continuous.

IV For A ∈ B(H) the spectral radius ρ(A) = sup{|λ| : λ ∈ σ(A)} can be
written alternatively as ρ(A) = limk→∞ k

√‖Ak‖op.

V For λ, μ /∈ σ(A), λ �= μ one finds [μ − λ]−1[R(μ) − R(λ)] = −R(μ)R(λ)
which implies in the limit case μ→ λ that ∂

∂λ
[A− λI]−1 = −[A− λI]−2.

Remark It is possible to show that theorem 2.2.2 and corollaries 2.2.2.1 hold even

if not ‖ · ‖op is used but any norm on B(H) under which it is a Banach-algebra [63,

p. 3].

Corollaries I to V are useful later on for error estimates when uncertainty and

inference are limited no longer to vectors x ∈ H but encompass objects like
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for instance the covariance operator. Subsequently investigations into robustness

of the inversion process under perturbations of the involved operators become

important. The covariance operator CX was a bounded selfadjoint positive definite

compact kernel operator of trace class. It is to be expected that this assortment of

characteristic properties has some bearing on the spectrum of CX . This is indeed

the case as can be deduced from the set of statements below.

Theorem 2.2.3 Let A and B be not necessarily bounded linear operators on the
Hilbert spaceH and denote by σ(A), σ(B) their spectra.

I If A is bounded then σ(A) ⊂ B‖A‖op(0), the closed ball in C with radius
equal to A’s operator norm.

II If A is selfadjoint then σ(A) ⊂ R.

III If A is bounded and positive then σ(A) ⊂ [0,∞).

IV If A is compact then σ(A) = {0} ∪ λ(A) where λ(A) is the set of discrete
eigenvalues satisfying Av = λv for some eigenfunction v ∈ H. If there are
infinitely many eigenvalues then limk→∞ λk = 0.

V If A is compact, selfadjoint and nonzero, then σ(A) �= ∅ and ∃λ ∈ σ(A) :
|λ| = ‖A‖op.

The assertions are taken from [3, pp .117-132], [93, pp. 162-196] and [63, p. 274],

where also their proofs can be found. By combining I to V it is possible to deduce

that the spectrum of the covariance operator CX of a finite energy stochastic process

is indeed expressible as a norm-decreasing countable sequence {λk}∞k=1 ⊂ R+ that

converges to 0 and is entirely contained in the interval [0, ‖CX‖op]. The inversion

of an operator A essentially requires disassembling and then reassembling it with

inverted spectra σ(A−1) = {λ−1 : λ ∈ σ(A)} — a procedure that will be made

precise in the next subsection. It is therefore to be expected, that formation of C−1
X

is not entirely unproblematic as the eigenvalues of C−1
X will diverge. As a matter of

fact this behavior is already visible in most finite dimensional covariance matrices;

for an example see figure 2.7.

The findings are documented in the following theorem. It already foreshadows that

some work will need to be invested in later chapters to deal with inevitably arising

numerical questions.

Theorem 2.2.4 The inverse (if it exists) of the covariance operator CX acting in an
infinite dimensional Hilbert spaceH is unbounded, i.e. ∃f ∈ H with ‖f‖H ∈ R but
‖C−1

X f‖H ≮ α‖f‖H for any positive finite real number α.

Proof: As is proven in [93, p. 189] the compact operators onH form a topologically

closed symmetric two sided ideal4, in B(H). This ideal will be denoted by K(H)
and as a simple consequence ∀B ∈ B(H) and A ∈ K(H), AB,BA ∈ K(H) by

4Roughly, a subset K of an algebra B is called a two sided ideal iff it is a subgroup under addition

and K is absorbing w.r.t multiplication with elements from B(H). For a rigorous definition, consult

[94, p. 469].
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Figure 2.7: A covariance operator CX of a random vector X of dimension 1000 whose entries are associated to the unit

interval T = [0, 1]; consequently CX is a matrix whose elements quantify the covariance between X at different locations

on the unit interval. The second order moment function generating CX is E[XsXt] = K(s, t) = exp(−‖s − t‖2/d2)
and eigenvalues of CX (only the first ten are shown) converge rapidly to 0 leading to numerical problems during inversion as

illustrated by the plots showing the numerical inverse and its diverging spectrum. This behavior is symptomatic for covariance

operators. The bottom row shows that the action of CX on a step function results in an extremely smooth step-like wave.

The inverse C−1
X consequently would need to transform a smooth function into a step function — an operation that behaves

very irregularly as testified to by the results on the bottom right. The functions in the bottom row have been rescaled to unit

norm to increase comparability.

the absorption property of ideals [94, p. 469]. Let CX be the covariance operator.

Then CX is compact and CXC
−1
X = I . But I is not compact in infinite dimensions

because for any ONB {ek}∞k=1 of HK , {ek}∞k=1 is weakly convergent to zero by

‖g‖2 =
∑∞

k=1 |〈g, ek〉|2 ∀g ∈ H implying limk→∞〈g, ek〉 = 〈g, 0〉 = 0. However,

I{ek}∞k=1 is not even Cauchy since ‖ek − ek−1‖ =
√
2 ∀k ∈ N [93, p. 185]. This

implies that C−1
X /∈ B(H). It is therefore unbounded.

It is convenient to establish an order relation — called the Loewner partial order

in the finite dimensional matrix case — on the set P+(H) of positive operators

acting on a Hilbert space H. If an operator A is positive, this is indicated by

A � 0 and if A,B ∈ P+(H) then A � B is defined to hold iff A − B � 0. Note

that by Rayleigh’s principle (theorem 2.2.5.I) and the Courant minimax principle

(theorem 2.2.5.II) the eigenvalues of a compact positive selfadjoint operator admit

a variational characterization.

Theorem 2.2.5 Let a compact positive selfadjoint operator A on a Hilbert space
H be given and denote by Hn any one n-dimensional subspace of H. Then [85,
pp. 278-287]

I For λmax = supλ
λ∈σ(A)

it holds that λmax = sup
f∈H

〈Af,f〉H
〈f,f〉H = sup

f∈H,‖f‖H=1

〈Af, f, 〉H.

II For the n-th eigenvalue λn in descending order, a weaker version of I holds.

λn = sup
Hn �H

min
f∈Hn,‖f‖H=1

〈Af, f〉H = min
Hn−1 �H

sup
f∈H⊥

n−1,‖f‖H=1

〈Af, f〉H
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Alternatively λn = sup
f∈(∨n−1

k=1{ek})⊥,‖f‖H=1

〈Af, f〉H where {ek}n−1
k=1 are the n− 1 first

eigenfunctions corresponding to the biggest eigenvalues and en will be chosen to

maximize 〈Aek, ek〉 subject to being orthogonal to the space already spanned by

{ek}n−1
k=1 . Note that for the covariance operator CX , λmax(CX) gives the highest

variance achievable by any linear combination 〈f,X ·
· 〉, ‖f‖ = 1 of random variables

belonging to the stochastic processX ·
· : Ω×T → R and can therefore be interpreted

as the maximum uncertainty while the corresponding eigenfunction emax associated

with λmax provides the ’direction’ of maximal stochastic volatility. On the one

hand this allows one to identify particularly relevant subspaces of H that account

for much of the processes’ total variance and can be employed to derive sparse

representations and tackle the canonical problem III posed on page 21.

On the other hand theorem 2.2.3.V states that λmax = ‖CX‖op which implies that

λmax as a representative for the size ‖·‖op of the covariance operator is a worthwhile

minimization target whenCX depends on parameters that are to be chosen as to limit

the upper bound on a stochastic processes’ uncertainty [198].

2.2.2 Functional calculus
For each selfadjoint linear operator A there exists a continuous functional calculus and the
map from continuous functions to operators is an algebra homomorphism. Consequently
formation of an inverse A−1 can be written as an operation on the spectrum of A implying
large condition numbers for compact operators and a problematic situation where inversion
of covariance operators is needed for statistical inference. The functional calculus can be
used to not only define polar decompositions and square roots of positive operators enabling
whitening of random vectors but also allows for operator-valued functional equations to
be stated and solved. As such it can help to illuminate the connection between a random
variable and some of its transforms.

Theorem 2.2.6 Let a bounded selfadjoint operator A ∈ B(H) be given and denote
its spectrum by σ(A) ⊂ R. If f is any continuous complex valued function from
σ(A) to C, write f ∈ C(σ(A)). Then ∃!f(A) ∈ B(H) such that f(A) is a limit
of polynomials in A and the mapping ψA : C(σ(A)) � f(·) �→ f(A) ∈ B(H)
is a homomorphism from the algebra of continuous complex valued functions with
pointwise multiplication to the Banach algebra of bounded operators on a Hilbert
space H with multiplication as composition of operators. Practically, this means
that [93, pp.232-235]

I For any sequence of polynomials {fk}∞k=1 ⊂ C(σ(A)) with
limk→∞ sup{|fk(λ) − f(λ)| : λ ∈ σ(A)} = 0 ∃! limk→∞ fk(A) =
f(A) ∈ B(H).

II The mapping f �→ f(A) preserves linear structure and is multiplicative, i.e.
ψA(f+g) = ψA(f)+ψA(g), ψA(αf) = αψA(f) and ψA(fg) = ψA(f)ψA(g)
for any f, g ∈ C(σ(A)) and α ∈ C.

III The mapping f �→ f(A) is actually a ∗-homomorphism, i.e ψA(f) = ψA(f)
∗

where the overline denotes complex conjugation and the asterisk denotes tak-
ing the adjoint of a bounded linear operator.
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IV The norm of f(A) is upper bounded by the supremum of f applied to the
spectrum of A by ‖f(A)‖op ≤ 2 sup{|f(λ)| : λ ∈ σ(A)} and one even finds
σ(f(A)) = f(σ(A)).

Since the polynomials on [λmin, λmax] ⊂ R are dense in C[λmin, λmax] by the Weier-

strass approximation theorem [206, p. 29], statement I asserts that for any continu-

ous function on R, f(A) may be approximated to arbitrary precision by polynomials

in A because the existence of a polynomial sequence {fk}∞k=1 with limk→∞ fk = f
is guaranteed for f a continuous complex function. Results II and III can be gen-

eralized to larger classes of functions that include real valued step function and

characteristic functions as well [93, pp. 244-250] when the topologies are relaxed

appropriately.

Even though no constructive procedure to arrive at f(A) given f ∈ C(σ(A)) and

A ∈ B(H) with A∗ = A was given, the homomorphism properties II and III allow

some interesting conclusions — especially in the case of covariance operators. Note

that any algebraic property of functions f, g ∈ C(R), definable solely in terms of

multiplication and addition, carries over unperturbed to the operators f(A) and g(A)
since if

∑nf

k=0

∑ng

l=0 αklf
kgl = c, then

cI = ψA(c) = ψA

(
nf∑
k=0

ng∑
l=0

αklf
kgl

)
=

nf∑
k=0

ng∑
l=0

αklψA(f)
kψA(g)

l

=

nf∑
k=0

ng∑
l=0

αklf(A)
kg(A)l. (2.18)

It is then entirely possible to give existence guarantees for and analyze the spectra of

inversesA−1 (f = x−1, g = x, fg = 1), resolvents (A−λI)−1 (f = (x−λ)−1, g =
(x− λ), fg = 1) and square roots

√
A (f =

√
x, g = x, f 2 − g = 0).

For any positive semidefinite selfadjoint operator A, f(A) is obviously positive

semidefinite and selfadjoint again by theorem 2.2.6.III and IV if f ∈ C(σ(A)) maps

to the positive reals in the sense that f(σ(A)) ⊂ R+ ∪ {0}. Let now A ∈ B(H) be

positive semidefinite and selfadjoint. Furthermore suppose it to be invertible for the

time. Then ψA : C(σ(A)) �→ B(H) exists, is usually called the functional calculus

of A and indicates via fx = 1⇔ f = x−1, x �= 0 that

f(A)A = ψA(f)ψA(x) = ψA(fx) = ψA(1) = I. (2.19)

Since f(A) and A commute by f(A)A = ψA(fx) = ψA(xf) = Af(A), f(A) =
ψA(x

−1) is the unique two sided inverse of A. By theorem 2.2.6.IV

σ(f(A)) = {λ−1 : λ ∈ σ(A)}. (2.20)

This shows that λmax(A
−1) = 1/λmin(A) and λmin(A

−1) = 1/λmax(A) and recall-

ing theorem 2.2.3.V implies ‖A−1‖op = 1/λmin(A). This inspires the provably cor-

rect [93, p. 239] conjecture thatA is invertible iff 0 /∈ σ(A). In the context of covari-
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ance operators Cx this explains, why no bounded inverse exists — limk→∞ λk = 0
and σ(Cx) is closed implying 0 ∈ σ(Cx). This results in noninvertibility of Cx

inside the algebra of bounded operators and, even in the finite but high-dimensional

case, unfavorable condition numbers for both Cx and C−1
x because for n indicating

the number of dimensions:

lim
n→∞

μ(Cx) = lim
n→∞

λmax(Cx)/λmin(Cx)

= lim
n→∞

λmax(C
−1
x )/λmin(C

−1
x ) = lim

n→∞
μ(C−1

x ). (2.21)

Here μ(A) is the condition number of A [106, p. 37] and the central terms in

the chain equality both diverge for nonzero Cx. One may slightly generalize this

sequence of comments and investigate the functions fα ∈ C(σ(A)) satisfying

fα(x− α) = 1 ∀α /∈ σ(A) to conclude for the spectrum of the resolvent R(λ)

σ(R(λ)) = fα(σ(A))

= {(λ− α)−1 : λ ∈ σ(A)}. (2.22)

In light of the preceeding comments regarding the spectra of positive selfadjoint

operators (theorem 2.2.3.III) like the covariance operator Cx, one has

σ(αI − Cx) = {α− λ : λ ∈ σ(Cx)} (2.23)

for α ∈ R and this allows to deduce that λmax = inf α : αI−Cx � 0. This is a well

known result in semidefinite programming enabling minimization of maximum

eigenvalues [112, p. 4].

Similarly useful is the construction of square roots of positive semidefinite operators

A ∈ B(H). Let again w := W ·
· be white noise and x := X ·

· be a mean-zero

finite energy process, both finite dimensional to avoid compactness problems. The

covariance operators Cx, Cw can be written as [26, p. 96]

Cx = E[x⊗ x∗] Cw = E[w ⊗ w∗] = I. (2.24)

For Cx apply the functional calculus ψCx to the functions f =
√
t and g =

√
t
−1

for

which obviously

f 2 = t and g2 = 1/t

for t �= 0. Then ψCx(f) = f(Cx) and ψCx(g) = g(Cx) satisfy

y =
√
Cxw ⇒ Cy = E[

√
Cxw ⊗ w∗√Cx

∗
] =
√
CxI

√
Cx

∗
(2.25)

= ψCx(f)ψCx(f) = ψCx(f
2) = ψCx(t) = Cx

v =
√
Cx

−1
x⇒ Cv = E[

√
Cx

−1
x⊗ x∗

√
Cx

−∗
] =
√
Cx

−1
Cx

√
Cx

−1
(2.26)

= ψCx(g)ψCx(t)ψCx(g) = ψCx(gtg) = ψCx(1) = I,
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i.e. ψCx(g) is the whitening and ψCx(f) is the de-whitening operator. There exists

more than one de-whitening operator that maps white noise into a process with pre-

specified covariance operator Cx as a short investigation reveals. Let A now be any

bounded normal operator on H. Since A∗A satisfies 〈A∗Af, f〉H = 〈Af,Af〉H =
‖Af‖2H ≥ 0 ∀f ∈ H one finds σ(A∗A) ⊂ R+ ∪ {0}. Then

√
A∗A =: |A| can

be constructed via the functional calculus ψA∗A(·) applied to f =
√
t. A unitary

operator U exists [93, p. 242] such that

A = U |A| = |A|U. (2.27)

This is called the polar decomposition of A and it is clear that, irrespective of the

unitary operator U ,

E[|Cx|Uw ⊗ w∗U∗|Cx|∗] = |Cx|UIU∗|Cx|∗ = Cx

implying that the de-whitening operator is unique only up to a unitary transforma-

tion. It is interesting to apply complex exponential functions to selfadjoint operators

A to generate operators of type eitA. By the homomorphism property of the func-

tional calculus, if ft(·) = exp(it·) and fs(·) = exp(is·) then

ft(A)fs(A) = ψA(ft)ψA(fs) = ψA(ftfs)ψA(ft+s) = ft+s(A).

They behave just like the exponential function and arise frequently as solutions

to time evolution equations; this will be postponed however to the next sections

and as a last example for the application of ψA : C(σ(A)) → B(H) we mention

decompositions of covariance operators. This is the property of the next theorem,

whose proof depends on the Karhunen-Loewe expansion that is not rigorously

formulated until subsection 2.3.1 theorem 2.3.5 since it requires spectral theory and

additional nomenclature.

Theorem 2.2.7 (Functional calculus for covariance operators) Let Cx denote the
covariance operator of the finite energy stochastic process x := X ·

· : Ω × T → R.
For any placeholder expression y, interpret Cy in the same way.

I For any g ∈ C(σ(Cx)) set f(λ) = λ|g(λ)|2. Then C[g(Cx)]x = f(Cx).

II Let ϕ1, ϕ2 ∈ C(σ(Cx)) be a partition of unity on σ(Cx); i.e. ϕ1(λ)+ϕ2(λ) =
1 ∀λ ∈ σ(Cx). Then

Cx = [λϕ1(λ)](Cx) + [λϕ2(λ)](Cx) = C
[
√

ϕ1(·)](Cx)x
+ C

[
√

ϕ2(·)](Cx)x

III Let g1, g2 ∈ C(σ(Cx)) be real valued and set fk(λ) = λ|gk(λ)|2 for k = 1, 2.
Then

C[g1(·)+g2(·)](Cx)x = f1(Cx) + f2(Cx)

if and only iff supp g1 ∩ supp g2 ⊂ {0}. In that case also [g1(Cx)]x and
[g2(Cx)]x are uncorrelated.
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IV If supp g1 ∩ supp g2 = ∅ with g1(λ), g2(λ) ∈ {0, 1} ∀λ ∈ σ(Cx), then
ψCx(g1) and ψCx(g2) are mutually orthogonal projections. When furthermore
g1 and g2 form a partition of unity and supp g1 ∪ supp g2 = σ(Cx) then they
are exhaustive and ψCx(g1) + ψCx(g2) = I .

Proof: Statement I follows from the Karhunen Loewe decomposition of a stochastic

process and statements II-IV are simple corollaries of I, the homomorphism prop-

erty of functional calculus and some straightforward computation. As always, x is

assumed to be zero-mean and Cx is then Cx = E[x ⊗ x∗] =
∑∞

k=1 λkek ⊗ e∗k by

Mercers theorem. If g ∈ C(σ(Cx)) then it follows that g(Cx) =
∑∞

k=1 g(λk)ek⊗e∗k
and consequently

E [g(Cx)x⊗ x∗g(Cx)
∗] = g(Cx)Cxg(Cx)

∗

=
∞∑
i=1

∞∑
j=1

∞∑
k=1

g(λi)ei ⊗ e∗iλjej ⊗ e∗jg(λk)ek ⊗ e∗k

=
∞∑
k=1

λk|g(λk)|2ek ⊗ e∗k

= f(Cx)

with f(λ) = λ|g(λ)|2. This proves I. Using the property that ϕ1, ϕ2 are partitions

of unity, II follows immediately by applying I to C
[
√

ϕ1(Cx)]x
and C

[
√

ϕ2(Cx)]x
. For

III note that I implies

C[g1(·)+g2(·)](Cx)x = [g1(·) + g2(·)](Cx)Cx[g1(·) + g2(·)]∗(Cx)

= g1(Cx)Cxg1(Cx)
∗ + g2(Cx)Cxg(Cx)

∗

g1(Cx)Cxg2(CX)
∗ + g2(Cx)Cxg1(Cx)

∗

= f1(Cx) + f2(Cx) + 2Cxg1(Cx)g2(Cx)

where in the last step selfadjointness of gk(Cx) for gk real-valued and the com-

mutativity of functions of Cx was used. Now Cxg1(Cx)g2(Cx) = 0 if and only if

supp g1 ∩ supp g2 ⊂ {0} as follows from the calculations below.

i) supp g1 ∩ supp g2 ⊂ {0} ⇒ Cxg1(Cx)g2(Cx)

= ψCx(λg1(λ)g2(λ)) = ψCx(0) = 0

ii)¬ supp g1 ∩ supp g2 ⊂ {0} ⇒ Cxg1(Cx)g2(Cx)

= ψCx(λg1(λ)g2(λ)︸ ︷︷ ︸
q(λ)

) = ψCx(q(·)) �= 0

That for nonzero q(·) also ψCx(q) �= 0 follows from ‖ψCx(q)‖op = sup{|q(λ)| :
λ ∈ σ(Cx)} > 0 for q(·) not vanishing identically on σ(Cx). By the non-

degeneracy of the operator norm, ψCx(q) �= 0. Since E[g1(Cx)x ⊗ x∗g2(Cx)] =
Cxg1(Cx)g2(Cx) = 0 for supp g1 ∩ supp g2 ⊂ {0} the uncorrelatedness assertion is
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proven as well. Therefore II holds in its entirety.

If even supp g1 ∩ supp g2 = ∅ holds, then ψCx(g1)ψCx(g2) = ψCx(g1g2) = 0 and if

in addition gk(λ) ∈ {0, 1} for λ ∈ σ(Cx) then

i) ψCx(gk)ψCx(gk) = ψCx(g
2
k) = ψCx(gk)

ii) ψCx(gk)
∗ = ψCx(gk) = ψCx(gk)

Consequently ψCx(gk), k = 1, 2 are orthogonal projections and their ranges are

orthogonal by theorem 2.1.37. When g1(λ)+g2(λ) = 1 ∀λ ∈ σ(Cx) then ψCx(g1)+
ψCx(g2) = ψCx(g1 + g2) = ψCx(1) = I .

Remark The theorem is quite easily understood in the context of low-pass or high-

pass filtering. Suppose w is a Wiener process. Then Cw has as eigenfunctions

the Fourier-basis and the eigenvalues decay monotonically with the spectrum [38].

Suppose, Cw is split into a low-frequency part CL = ψCw(λ1[0,B)) and a high-

frequency part CH = ψCw(λ1[B,∞)) where λ indicates the independent variable

and 1E is the characteristic function of the set E evaluated at λ. One then has

Cw = CL+CH and it is implied by theorem 2.2.7.III that knowing the high-frequent

part of a signal does not allow forecasting the low-frequent part. See figure 2.8 for

an illustration.

Figure 2.8: The covariance matrix Cw of a discrete Wiener process w on T = [0, 1] has covariance function E[WtWs] =
min(t, s); Cw = CL + CH and E[[PLw](s)[(PHw](t)] = 0 for all s, t ∈ T as claimed in the preceeding remarks based

on theorem 2.2.7. Here PL, PH are the orthogonal projections 1[0,B)(Cw) and 1[B,∞)(Cw) as constructed according to

theorem 2.2.7.IV.

For a fixed selfadjoint operatorA ∈ B(H) the size of the set {f(A) : f ∈ C(σ(A))}
and its algebra structure can be surveyed quite easily, when A is the covariance

operator Cx of a finite energy stochastic process x. To this end, note that the algebra

A generated by Cx and I has a spectrum σ(A) consisting of multiplicative linear

functionals on A that is topologically isomorphic to σ(Cx) by [63, p. 8]. Since A
consists of bounded selfadjoint operators, it is a unital C∗-algebra and as for any
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f ∈ C(σ(Cx)), f(A) commutes with A by

Af(A) = ψA(x)ψA(f) = ψA(xf) = ψA(fx) = f(A)A (2.28)

for all A ∈ A, it is also commutative. As such the commutative version of the

Gelfand-Naimark theorem [63, p. 11] intervenes and guarantees that C(σ(Cx)) and

A are isometrically ∗-isomorphic as Banach algebras and there exists a one to one

correspondence between continuous functions on the spectrum of Cx and elements

of A. If Cx has simple spectrum — the multiplicity of each eigenvalue is 1 — then

a bounded operator S ∈ B(H) commutes with Cx if and only if S = f(Cx) [4,

p. 77] and consequently the set {f(Cx) : f ∈ C(σ(Cx))} is isomorphic to the set of

all S ∈ B(H) that commute with Cx.

Again under the assumption of a simple spectrum, one last comment is made.

It is well known [178, p. 46] that if two selfadjoint operators with simple spec-

trum commute, then they have the same eigenfunctions. Since by equation 2.28

Cx and f(Cx) commute, Cx and f(Cx) = Cy share the same eigenfunctions if

f : σ(Cx)→ R+∪{0} is injective. In light of f(Cx) as a selfadjoint operator being

completely described by spectrum and eigenfunctions, this suggests that application

of f can change any operator only as far as its spectrum is concerned and leaves its

eigenvectors unperturbed.

2.2.3 The spectral theorem

A functional calculus for function classes more general than continuous functions is reviewed
briefly for bounded selfadjoint operators at first and it is shown how projection valued mea-
sures can be assembled to yield this type of functions of an operator. Inversion of this con-
struction leads to the spectral theorem whose implications are illustrated. The more general
spectral theorem for not necessarily bounded selfadjoint operators — needed in the context
of unbounded observables occurring in the description of physical systems — is mentioned
but not stated. The theorem will be applied to the differentiation and Fourier-Plancherel
operators and to some of the usual constituents of the Schrödinger equation, of which an
interpretation is offered in subsection 2.2.4. Intuition is provided regarding the relationship
between approximately satisfied differential equations and Hilbert spaces in which the in-
duced norm provides a discrepancy measure quantifying a function’s departure from being in
the DE’s solution set.

As indicated in the last subsection, it is possible to extend the functional calculus

ψA : C(σ(A)) → B(H) associated to a selfadjoint operator AH → H to functions

that are no longer continuous on σ(A) but merely bounded and Borel-measurable;

this set is denoted by B(σ(A)). These functions include certain step functions and

characteristic functions of Borel-sets on σ(A) [36, p. 59], [63, p. 20]. In theorem

2.2.7 it was shown that if f(σ(A)) ⊂ {0, 1} then ψA(f) is an orthogonal projection.

A Hilbert space valued measure on σ(A) ⊂ R might be constructed by

P (E) = ψA(1E)

where E ⊂ σ(A) and 1E is the characteristic function of E. Since 1E(λ) is real

for all values of λ and 12E = 1E , ψA(1E) is selfadjoint and idempotent; i.e. an
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orthogonal projection onto its range. Choosing any real-valued f ∈ B(σ(A)), the

equation

B =

∫ ∞

−∞
f(λ)dP (λ) (2.29)

is interpreted in the Riemann-Stieltjes sense [164, p. 172] with P (λ) =
ψA(1(−∞,λ]). It results in a selfadjoint bounded operator with operator norm

‖B‖op = ‖fσ(A)‖∞ [63, p. 19]. The statement guaranteeing the possibility of as-

sembling a self adjoint operator in this way is sometimes referred to as the inverse

spectral theorem.

Clearly, the more interesting case is when an operator is given and its decomposi-

tion in terms of projections is to be determined. That this is always possible for a

not necessarily bounded selfadjoint operator is the content of the spectral theorem.

We present here a version due to Folland [63, pp. 20-27], which asserts under

certain conditions diagonalizability of a commutative algebra of operators in the

sense of equation 2.29 employing only a single family of projections.

Theorem 2.2.8 (Spectral theorem) Let A be a commutative C∗-algebra identified
with some subalgebra of bounded operators on a Hilbert spaceH. Let the spectrum
be σ(A) on which the standard Borel σ-algebra Σ is constructed. Denote forA ∈ A
by Â any A’s Gelfand transform ΓA : A � A �→ ΓA(A) = Â ∈ C(σ(A)) with
Â : σ(A) � λ �→ λ(A) ∈ C. Then there ∃! PA(·) : Σ � E �→ PA(E) ∈ B(H),
called projection valued measure, such that

I For all A ∈ A and f ∈ B(σ(A)), A =
∫
σ(A)

ÂdPA, f(A) =
∫
σ(A)

f ◦ ÂdPA
where the map ψA : f �→ f(A) coincides with the inverse Gelfand transform
Γ−1
A for f ∈ C(σ(A)). For an algebra generated by a single selfadjoint

operator A and the identity I , this trivially implies A =
∫
σ(A)

λdP (λ) and

f(A) =
∫
σ(A)

f(λ)dP (λ) where the homeomorphism Â : σ(A)→ σ(A) was
used to simplify the range of integration.

II For all E ∈ Σ, PA(E) ∈ B(H) is an orthogonal projection onto some sub-
spaceHE �H.

III The projection valued measure is increasing in the sense that for E,F ∈
Σ, E ⊂ F implies PA(E) ≺ PA(F ) with respect to the partial order on
positive selfadjoint operators. Furthermore for arbitrary E,F ∈ Σ one has
PA(∅) = 0, PA(σ(A)) = I, PA(E ∩ F ) = PA(E)PA(F ) and if Ei ∩ Ej =
∅ ∀i �= j then PA (∪∞

i=1Ei) =
∑∞

i=1 PA(Ei).

IV For T ∈ B(H), the conditions i)[T,A] = 0 ∀A ∈ A, ii) [T, PA(E)] =
0 ∀E ∈ Σ and iii) [T, f(A)] = 0 ∀f ∈ B(σ(A)) are all equivalent. Here
[·, ·] denotes the commutator [T,A] = TA− AT ∈ B(H).

For the case of one selfadjoint operator A acting on Rn — i.e. a symmetric matrix

— the theorem simplifies to asserting that A can be diagonalized and that there
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exists a family of mutually orthogonal projections {Pλ}λ∈σ(A) onto the eigenspace

corresponding to λ such that [63, p. 17]

I =
∑

λ∈σ(A)

Pλ A =
∑

λ∈σ(A)

λPλ f(A) =
∑

λ∈σ(A)

f(λ)Pλ. (2.30)

In the finite dimensional matrix case it is entirely standard to numerically generate

the spectral family {Pλ}λ∈σ(A) given some symmetric matrix A via eigendecom-

position and the functional calculus introduced in the previous subsection becomes

applicable for sufficiently small dimensions.

If A is a compact positive definite operator — say the covariance operator Cx :
H → H of a finite energy stochastic process x — then there is an ONB consisting

of eigenvectors of Cx [63, p. 27]. Furthermore positivity and countability of Cx’s

spectrum lead to the expressionCx =
∑

λ∈σ(Cx)
λPλ. Selfadjoint compact operators

may always be written in the form Cxf =
∑∞

k=1 αk〈f, gk〉Hgk [164, p. 233], the

one dimensional projections Pλ are of finite rank, therefore compact and might be

written as Pλf = 〈eλ, f〉Heλ instead with eλ ∈ H a unit vector spanning Pλ(H).
This implies with the usual identifications of eλk

= ek and e∗k ∈ H∗, e∗Kf = 〈ek, f〉H
as an element of the dual space ofH the decomposition

Cx =
∞∑
k=1

λkek ⊗ e∗k {λk}∞k=1 ⊂ R+ ∪ {0}. (2.31)

If x is a stochastic process on index set T then one may evaluate Cxf directly as

(Cxf)(s) =
∞∑
k=1

λkek(s)〈ek(·), f〉H = 〈u(s, ·), f〉H (2.32)

u(s, t) =
∞∑
k=1

λkek(s)ek(t) ∀s, t ∈ T (2.33)

with K(·, ·) the kernel of the operator Cx. Since kernels of operators are unique

given certain conditions onH [20, p. 27] and with the remarks from subsection 2.1.4

one sees that E[XsXt] =
∑∞

k=1 λkek(s)ek(t) is the second order moment function

of the stochastic process x. This is also known as the Mercer decomposition [164,

p. 245].

Remark Note that u(s, t) is not the reproducing kernel of H but the kernel of the

operator Cx. Both uses of the word ”kernel” are unfortunately standard and not to

be confused.

The expected energy ‖x‖2H of the process is given by the trace of the operator Cx.

E[‖x‖2H] = E

[ ∞∑
k=1

|〈x, ek〉H|2
]
=

∞∑
k=1

〈Cxek, ek〉H = trCx =
∞∑
k=1

λk (2.34)
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We might furthermore derive a low rank approximation to Cx that is optimal for

finite dimensional H in the sense of both the Frobenius and the spectral norm. For

a given n, Capprox
x =

∑n
k=1 λkek ⊗ e∗k is the minimizer of the problem

min
{αk}nk=1⊂R,{ϕk}nk=1⊂H

‖
n∑

k=1

αkϕk ⊗ ϕ∗
k − Cx‖F,2 (2.35)

where ‖A‖F =
√
trA∗A and as usual ‖A‖2 = sup{|λ| : λ ∈ σ(A)} [49]. It has

other convenient properties related to the Karhunen Loewe expansion of a stochastic

process that create opportunities for sparse representations and are surveyed later.

When investigating the dynamical behavior of physical systems, one often encoun-

ters selfadjoint differential operatorsA which are usually not bounded. By first sub-

jecting A to the Cayley transform U = ψA ([x− i][x+ i]−1) and thereby mapping

it into a unitary operator from whose spectral decomposition U =
∫ 2π

0
eiμdP (μ) the

selfadjoint operator A may be extracted, an analogue the spectral theorem can be

derived for unbounded operators [93, pp. 292-300]. Apart from some restrictions

regarding the mode of convergence, the appropriate representation is

A =

∫ ∞

−∞
λdP (λ).

Differentiation D = i∂/∂t and the Laplacian Δ = D∗D are selfadjoint on

H = L2(−∞,∞) as can be concluded by partial integration and observing that

necessarily limt→±∞ f(t) = 0 for f ∈ H. As is shown in [3, pp. 112-113], the

differentiation operator is unitarily equivalent to the multiplication operator with

the Fourier transform mediating between time/space and frequency domain.

Theorem 2.2.9 Let F : Habs � f �→ Ff ∈ L2(−∞,∞) with Ff(ω) =
(2π)−1/2

∫∞
−∞ eiωsf(s)ds be the Fourier-Plancherel operator acting on the space

Habs of absolutely integrable functions. Furthermore let D = i = i∂/∂t be the dif-
ferentiation operator and M : f(t) �→ tf(t) be multiplication by the independent
variable with the domain of both operators sensibly restricted as for example in [4,
p. 84]. Then

D = FMF∗ (2.36)

i.e differentiation corresponds to multiplication in the frequency domain and the
differentiation operator is diagonalizable by the Fourier transform.

As the projection valued measure for the multiplication operator M : domM →
L2(−∞,∞) ,domM = {f ∈ L2(−∞,∞) : Mf ∈ L2(−∞,∞)} is seen to be [93,

p. 303]

PM([α, β])f =

{
f(s) s ∈ [α, β]

0 s /∈ [α, β]
[α, β] ⊂ R2
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and the projection valued measure PD for differentiation satisfies PD([α, β]) =
FPM([α, β])F∗. A quick calculation [3, p. 84] reveals PD([α, β]) = PD(β) −
PD(α) to be

PD([α, β])f = FPM([α, β])F∗f︸︷︷︸
g

=
1

2π

∫ β

α

g(s)eiωsds

=
1

2π

∫ ∞

−∞

∫ β

α

f(γ)eisγeiωsdγds

=
1

2π

∫ ∞

−∞

eiβ(γ−ω) − eiα(γ−ω)

i(γ − ω)
f(γ)dγ.

This shows that the spectral family of the differentiation operator is explicitly

known. By an extension of the Riesz-Dunford functional calculus to sectorial op-

erators it is possible to define powers of selfadjoint unbounded operators [16] anal-

ogously to the bounded case. A detailed study of the many technical intricacies is

found for example in [89]. From

−Δ = DD = FM2F∗

=

∫ ∞

−∞
λ2dPD(λ) =

∫ ∞

0

λd
(
PD(

√
λ)− PD(

√
λ)
)

the negative Laplacian is seen to be a positive operator with projection valued mea-

sure [4, p.87]

PΔ([α, β]) = PΔ(β)− PΔ(α)

PΔ(λ)f(ω) =
1

π

∫ ∞

−∞

sin
√
λ(γ − ω)

γ − ω
f(γ)dγ. (2.37)

Clearly, the differential operators D and Δ are important since they feature promi-

nently in the description of many physical systems. More generally, if a systems

state f is supposed to satisfy the differential equation

Af = g (2.38)

A = ψD(p(·))

where A is a generally unbounded polynomial p(·) in the differential operator D =
i∂/∂t and g some suitably chosen function, then one may be tempted to postulate a

relaxed version of 2.38 as

Af − g = w w white noise (2.39)

and enter into the following calculation. Here as before, the author wants to avoid

the complications of white noise in infinite dimensional spaces and reverts to the

intuitive case of H = Rn, n finite with the operator A some suitable discretization
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of the original differential operator discussed above.

I = E[w ⊗ w∗] = AE[f ⊗ f ∗]︸ ︷︷ ︸
Cf

A∗ + E[g ⊗ g∗]︸ ︷︷ ︸
G

ACfA
∗ = I −G (2.40)

If the problem were homogeneous (g = 0 deterministically) and A invertible, equa-

tion 2.40 is invertible and

Cf = (A∗A)−1

‖w‖2�2 = ‖Af‖2�2 = 〈A∗Af, f〉�2 = 〈f, f〉H
with 〈h, g〉H = 〈A∗Ah, g〉�2 = 〈C−1

f h, g〉�2 . Then ‖w‖2�2 = 〈f, f〉H measures

how much f deviates from a solution to the differential equation 2.39 with g = 0
and establishes a link between inner products 〈·, ·〉H and Hilbert spaces that satisfy

some linear equation only approximately. More on the relation between covariance

operators, kernels and regularization is collected in the survey paper by Steinke and

Schölkopf [188] from which also the following insight is taken. From D = FMF∗

and A = ψD(p(·)) follows A = FMpF∗ and A∗A = FM|p(·)|2F∗ where Mp(·)
denotes multiplication by p(t) where t is the independent variable. Then

I Apparently to calculate the inner product 〈f, f, 〉H one may instead evaluate

the expression by looking at the inverse Fourier transforms and multiplying

these with the polynomial p(·) to derive p(γ)f̌(γ). This is readily seen by

‖w‖2�2 = 〈A∗Af, f〉�2 = 〈FM|p(·)|2F∗f, f〉�2 = 〈M|p(·)|f̌ ,M|p(·)|f̌〉�2 where

the inverse Fourier transform of a function f is denoted by f̌ .

As polynomials typically grow unboundedly on R the value p(γ) increases

for large γ leading to a penalization of higher frequencies as the discrepancy

measure ‖w‖2�2 = 〈f, f, 〉H = 〈pf̌ , pf̌〉�2 = ‖pf̌‖2�2 contains an amplification

factor of |p(γ)|2 >> 1 for large frequencies γ.

II As I shows, the modification of the inner product by inclusion of A∗A = C−1
f

has the effect of a regularization. As Cf = (A∗A)−1 = FψD(|p(·)|−2)F∗,

the corresponding kernel function of the operator Cf is given in the discrete

case as

(Cfg)(t) =
n∑

j=1

u(sj, t)g(sj)

u(sk, sl) =
n∑

j=1

1

|p(λj)|2 exp
(
2πi

n
j(k − l)

)
For more details and a proof as well as interpretations of the above facts

when (Cfg)(t) =
∫∞
−∞ u(s, t)g(s)ds with u(·, ·) typical kernel functions like

the squared exponential, see [188] and [75].

Therefore approximate satisfaction of a differential equation ψD(p)f =
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∑n
j=1 αjD

jf = 0 prescribes a certain covariance structure for the process f
whose second order moments are related to the (discrete) Fourier transform of a

polynomial acting on D’s spectrum. We summarize our findings in the following

conjecture.

Conjecture 2.2.1 (Approximate determinism) The positive definite linear operator
Cf is the covariance operator of a stochastic process f satisfying Af = w with w
weakly white noise and A some differential operator iff Cf is diagonalizable by the
Fourier transform. In this case f is second order stationary and Cf is an integral
operator with translation invariant kernel. |A| is given by FM1/

√
qF∗ where Mq =

F∗CfF .

2.2.4 One parameter unitary semigroups

The variational formulation of classical Newtonian mechanics is reviewed and the basic con-
cepts of Hamiltonian mechanics are interpreted in the sense of Gauss‘ principle of least con-
traint. An adaptation of Schrödingers formulism opens up the possibility to cast the search
for the time evolution of a mechanical system as a second order partial differential equation
in which a self adjoint linear operator appears. Employing functional calculus and Stones
theorem, the time evolution of a system through state space can be written with the help of one
parameter unitary semigroups of operators. Diffusion processes are investigated for illustra-
tive purposes and the question is raised, how partial knowledge of a systems Hamiltonian
could be incorporated into estimation problems.

Newtons second law of motion states that F = ṗ where F is the force, the dot

signifies differentiation w.r.t time and p is the momentum consisting of the product

of mass and velocity. As is well known from classical mechanics, there exist several

reformulations of the laws of motion that shift the attention away from a differential

interpretation focusing on incremental particle interactions and take a more holistic

perspective via a variational approach asserting global optimality properties of the

trajectories actually occurring in nature. Hamilton’s principle for example states

that for a motion between times t1 and t2 the action integral∫ t2

t1

T (t)− V (t)dt T : kinetic Energy V : potential Energy

takes on a stationary value [205, p. 74]. From this, d’Alembert’s principle can be

derived of which Gauss gave a statistical reinterpretation that postulates a least-

squares approach to mechanics [123, pp. 106-107]. For a system of n particles

with masses mk, accelerations q̈k and acted upon by forces Fk he proposed the

investigation of the objective function

z =
n∑

k=1

1

2mk

(Fk −mkq̈k)
2

and showed that the actual motion occurring in nature minimizes z out of all pos-

sible continuous trajectories potentially traceable by the particles. If no constraints

are present, F = mq̈ as one would expect. In all other cases this idea closely re-
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sembles the perspective put forward in the preceding section, where we allowed a

differential equation to be satisfied only approximately as measured by the discrep-

ancy term Af = w whose severity we subsequently quantified via the quadratic

scalar ‖w‖2H.

In the context of variational principles it is especially elegant to introduce the Hamil-

tonian function H(q, p), q, p ∈ Rn whose inputs are generalized coordinates q and

generalized momenta p that signify the systems position and velocity in phase space

Φ — the space of all possible configurations and configuration-changes of the sys-

tem which is represented as a point in this 2m dimensional not necessarily geomet-

rical space. For conservative systems, the Hamiltonian H(q, p) = T + V signifies

total energy and is the only quantity necessary to determine the systems time evo-

lution via the canonical equations of motion [205, p. 78]

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk
(2.41)

or in more compact notation

ẋ =

[
q̇
ṗ

]
=

[
0 I
−I 0

]
gradH = J∇H (2.42)

which looks a lot like a gradient system but with the symplectic gradient J∇ instead

of a regular one. This guarantees a flow orthogonal to the direction of steepest

descent and along the isolines of total energy.

Since dH
dt

=
∑n

k=1
∂H
∂qk
q̇k +

∂H
∂pk
ṗk =

∑n
k=1

∂H
∂qk

∂H
∂pk
− ∂H

∂pk

∂H
∂qk

= 0, the Hamiltonian is

furthermore a constant of the motion. It can be shown that for a Hamiltonian system,

the Euler-Lagrange equation 2.43 as well as Liouville’s theorem 2.44 towards the

incompressibility of the flow in phase space Φ hold [123, pp. 164-167, pp. 178-180].

The following two statements hold.

I Lagrange equations of motion[
∂

∂qk
− d

dt

∂

∂q̇k

]
L = 0 where L(t, q, q̇) = T − V, pk =

∂L
∂q̇l

, qk =
∂H

∂pk
(2.43)

II Liouvilles theorem

div(q̇1, ..., q̇n, ṗ1, ..., ṗn) =
n∑

k=1

∂

∂qk
q̇k +

∂

∂pk
ṗk (2.44)

=
n∑

k=1

[
∂

∂qk

∂

∂pk
− ∂

∂pk

∂

∂qk

]
H = 0

Both theorems are of importance to us. The Euler-Lagrange equations allow to swap
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between formulations in terms of often quadratic energy functionals of the form∫ t2
t1
T (t)−V (t)dt = 1

2
‖Dtq‖2HM

−〈1, V (q)〉L2([t1,t2]) whereHM is a non-orthogonal

sum of n copies of L2([t1, t2]) with inner product 〈f, g〉HM
=
∫ t2
t1
fT (t)Mg(t)dt,

M ∈ Rn⊗Rn � 0, and equivalent differential equations for which efficient numer-

ical computation is possible.

Liouville’s theorem implies that time evolution in phase space Φ is actually measure

preserving in the sense that the map Φ � x0 �→ xt ∈ Φ where xt = (q(t), p(t)) are

position and momentum at time t leaves invariant the integral [164, p. 388]∫
Φ

f(x0)dx =

∫
Φ

f(xt)dx t ∈ R, f ∈ L1(Φ).

In the Koopman-von Neumann interpretation of classical mechanics [118] the mo-

tion of a single point through phase space Φ is replaced by the time evolution of

a probability density ρ : Φ → R whose normalization condition may be written

as ρ = ψψ with ψ ∈ L2(Φ) and ‖ψ‖L2(Φ) = 1. The ψ’s are wavefunctions that

populate the unit sphere of L2(Φ) and satisfy a first-order-version of Schrödinger’s

equation with the Hamiltonian substituted by the Liouvillian. It can be shown [176,

p. 13] that Liouville’s theorem implies the total time derivative of the time depen-

dent probability density ρ(q, p, t) to vanish.

dρ

dt
=
∂ρ

∂t
+

n∑
k=1

[
∂ρ

∂qk

∂qk
∂t

+
∂ρ

∂pk

∂pk
∂t

]
= 0

But then

∂ρ

∂t
= −

n∑
k=1

[
∂ρ

∂qk

∂H

∂pk
− ∂ρ

∂pk

∂H

∂qk

]
=

n∑
k=1

[
∂H

∂qk

∂

∂pk
− ∂H

∂pk

∂

∂qk

]
ρ.

Finally by renaming the operatorial part of the right side to L/i, the evolution equa-

tion

iρ̇ = Lρ (2.45)

is recovered. Since the same equation governs the wavefunctions ψ via iψ̇ = Lψ
as well [135, p. 10], one suspects that a family of operators Ut, t ∈ T of the form

Ut = exp(−itL) exists with Utψ(·, ·, 0) = ψ(·, ·, t). Due to the properties of time

evolution UtUs = Ut+s should hold and Ut would necessarily have to be unitary to

conserve the property of ρ(·, ·, t) = ρt being a probability density integrating to one

because ∫
Φ

ρtdx = 〈Utψ0, Utψ0〉L2(Φ) = 〈U∗
t Utψ0, ψ0〉L2(Φ)

for all t ∈ T, ψ0 ∈ L2(Φ) which is fulfilled if U∗
t Ut = I . The existence of a

unitary operator with these properties is indeed guaranteed by Stones theorem on

one parameter unitary semigroups which is postulated without any reference to
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preceding physical considerations, see [164, pp. 380-388] for more details.

Theorem 2.2.10 (Stones theorem) Suppose that a family {Ut}t∈R of linear opera-
tors on H is given and depends continuously on t in the sense that lims→t ‖Us −
Ut‖op = 0. Suppose furthermore that U0 = I and UtUs = Ut+s. This one parame-
ter unitary semigroup has a simple representation in terms of complex exponentials
and is generated by a selfadjoint operator, that is

Ut =

∫ ∞

−∞
eitλdP (λ) Ut = exp(itA) A∗ = A

where P (λ) defines a spectral family, the elements of which commute with Ut ∀t ∈
R. The generator A is a selfadjoint not necessarily bounded linear operator satis-
fying iA = limt→0 t

−1(Ut − I).

Note that for some f0 ∈ H the expression for iAf0 is actually the rate of change

of f0 if it evolves over time according to the law ft(·) = Utf0(·) with ft then being

a solution to the initial value problem ∂/∂tft(·) = iAft(·), f0(·) given. With some

more work and by the usual procedure of variation of parameters one arrives at the

solution to the inhomogeneous abstract Cauchy problem for positive times t ≥ 0

ḟ(t) = Af(t) + g(t) g(t) ∈ H ∀t ∈ R+ ∪ {0}
f(0) = f0 f0 ∈ H (2.46)

where H is given, A is a linear operator from H to H that generates a strongly

continuous semigroup Ut in the sense of Stones theorem [52, p.166] and the solution

f(t) is to be found inH for all t ≥ 0. It is given by the formula [52, p. 437]

f(t) = Utf0 +

∫ t

0

Ut−sg(s)ds. (2.47)

This formula includes as special cases the solution to the heat, Schrödinger and

wave equations since they may all be written as

ḟ(t) = Af(t) f(0) = f0

where bar some constants A is either the Laplacian −Δ, the Hamiltonian H =
Δ +MV for some potential V or the positive semidefinite square root

√−Δ [57,

p. 412] [99, p.334].

With an explicit functional calculus ψCx available, it is possible to find families of

covariance operators ft(Cx) that satisfy differential equations inspired by physical

constraints. In analogy to the trivial scalar differential equation ∂tx = λx solved by

x = c exp(λt), problems of type ∂tx = Ax with x(t) an element of a Hilbert space

H and A : H → H a linear operator, have solutions

x = x0 exp(At), x(0) = x0.
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This identity is a simple consequence of formula 2.47 with g(·) = 0 and already

this simple formula allows injection of physical knowledge into a stochastic process

as illustrated by the following example.

Example 9 (Heat equation) Let u(·, ·) : T × X � (t, x) �→ u(t, x) ∈ R be the

function that assigns to each location x ∈ X its heat at time t ∈ T . It is determined

completely by the initial value problem [57, p. 412]

∂

∂t
u− α

n∑
j=1

∂2

∂x2j
u = 0 n = dimX

u(0, x) = u0(x) (2.48)

where α in this context is thermal diffusivity which we set to 1 for simplicity’s sake

and u0(·) is known. If we introduce the shorthand notation Δ =
∑n

k=1 ∂
2/∂x2k for

the Laplace operator it is clear by the preceding comments that

u(t, ·) = exp(tΔ)u0(·) =
∞∑
k=0

(tΔ)k

k!
u0(·).

Suppose now that the initial condition is actually random and the stochastic process

u0(·) in space has covariance operator Cu0 = Ct=0
u . The covariance Ct

u of the full

spatiotemporal process u(t, x) given the random initialization u0(x) is then simply

Ct
u = E[u(t, ·)⊗ u(t, ·)∗] = etΔCu0e

tΔ.

This allows accurate forecasting and reconstruction of a systems time evolution and

even closed form solutions given only very sparsely distributed measurements. See

figure 2.9 for an example which deals with heat dissipation in a rod. Applications

to the more mechanically inclined dynamical systems encountered in geodesy are

straightforward.

Figure 2.9: On the left the time evolution of a finite width impulse under the dynamics implied by the heat equation is

plotted, whereas in the middle column the initial value u0(·) was chosen randomly and the subjected to the time evolution

operator etΔ. The red asterisks mark measurements that were used to estimate the behavior exhibited in the middle column

via u(t, ·) = exp(tΔ)u∗
0, u

∗
0 = argminv∈HK

‖Av − um‖2
�2

+ ‖v‖2HK
where um is the vector of measurements and A

a linear operator consisting of point evaluations and exponentials of the Laplacian. The result of that estimation is plotted on

the right, only five measurements were used to derive it.
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Just from the properties of Δ, the limiting behavior of the system can be inferred.

The Laplacian on a periodic domain [0, 1] with vanishing boundary terms is

negative definite with eigenvalues λk = −(kπ)2 and (unnormalized) eigenfunctions

ϕk = sin(kπx) for k = 1, ... [57, p. 66]. The largest eigenvalue is still negative

and associated to the function sin(πx), consequently exp(tΔ) =
∑∞

k=1 e
tλkPΔ(λk)

is dominated by the first term of the infinite sum. For large t it is equal to

cϕ1(·) ⊗ ϕ1(·)∗ for some small c. This also finds its analogy in the time evolution

of the Covariance operator Ct
u, which is virtually indistinguishable from a rank-one

operator after a sufficient amount of time, see figure 2.10. Obviously, in the limit

t→∞, exp(tΔ) = 0 due to the negativity of the eigenvalues; all heat dissipates in

the end.

Figure 2.10: The time evolution of ut(·) is dominated by the first eigenfunction ϕ1(·), the Covariance operator Ct
u =

E[ut ⊗ u∗
t ] as a function of t behaves like having kernel K(·, ·) = ϕ1(·)ϕ1(·) for large t.

�
After this illustrative example linking statistical mechanics, deterministic dynamical

systems and covariance operators in Hilbert spaces, physical considerations will be

largely disregarded for the rest of the monograph and a stochastic perspective is

assumed. Although a deterministic prior on a systems time evolution is interesting

especially in the context of optimal control to integrate monitoring and manipulation

of objects, we leave this for future work. Lastly we remark that Stones theorem

on one parameter unitary semigroups and time evolution is closely related to von

Neumanns statistical ergodic theorem [93, p. 279] which states that for any unitary

operator U ∈ B(H) with spectral family P (λ)

lim
n→∞

‖ 1
n

n−1∑
k=0

Ukf − PIf‖H = 0 (2.49)

∀f ∈ H. PI is the projection onto the invariant subspace HI �H with f ∈ HI ⇔
Uf = f and HI possibly trivial. When U represents time evolution by some fixed

amount t then Uk = Ukt and f(kt) = Ukf0 ∈ H. If the initial condition f0 is

written as f0 = PIf0 + P⊥
I f0 = fI + fD the theorem asserts that the evolution of

the dynamic part fD is zero on average and over long times only the invariant part
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fI matters as fluctuations UkfD satisfy limn→∞ ‖ 1
n

∑n−1
k=0 U

kfD‖H = 0.

Note furthermore that the invariant subspace PIH is a property of the dynamics Ut

and independent of the initial condition f0. When the subspace HI is trivial, the

average converges to zero and this is obviously exactly the case if 1 /∈ σ(U) as then

(U − I)f = 0 has no nonzero solutions fI ∈ HI and UfI = fI never holds apart

from fI = 0 andHI = {0}.

2.3 Reproducing kernel Hilbert spaces

In this section reproducing kernel Hilbert spaces (the acronym RKHS will be used

for both the singular and plural form) are introduced as a subclass of function spaces

containing elements with structural properties inherited from a central object that is

called the kernel. Apart from the more technical definition involving the continu-

ity of evaluation functionals in the norm topology of the function space, insight is

given as to how a kernel determines a corresponding function space and vice versa.

Since RKHS are central to the whole monograph, special effort is undertaken to

demonstrate their usefulness by emphasizing the properties most convenient in the

context of estimation and providing examples of objects embeddable into an RKHS.

Keeping in line with the idea of an RKHS as a function space, splines enter the fray

naturally as solutions to optimization problems in RKHS, in which the objective

function to be minimized parallels the notion of mechanical energy in a quite real

sense. To complement this rather concrete perspective, it will also be shown how

RKHS can be interpreted as feature spaces in which nonlinear features can be rep-

resented and manipulated in a linear fashion.

2.3.1 Definition and properties of RKHS

RKHS are first and foremost Hilbert spaces, i.e. usually infinite dimensional vector
spaces augmented with an inner product and complete with respect to the topology
induced by the norm inherited from the inner product. Specifically, they are those Hilbert
spaces H, for which all the evaluation functionals et ∈ H∗, t ∈ T mapping functions
f(·) : T → C to function values f(t) are continuous and therefore admit a unique
representer Kt ∈ H, 〈Kt, f〉H = etf by the Riesz representation theorem. Surprisingly far
reaching consequences follow from this property —normwise convergence implies pointwise
convergence, all bounded linear operators can be written as kernel operators and the
representer theorem holds. It remains to be clarified, how Kt ∈ H can actually be found
given et ∈ H∗. Here the Moore-Aronszajn theorem fills in the missing links by stating
that every positive definite kernel K(·, ·) uniquely determines an RKHS, whose representer
of evaluation at t ∈ T is K(t, ·) and it furthermore asserts that this correspondence is
indeed a bijection. In recognition of the central role played by positive definite kernels, their
properties are briefly surveyed.

Definition 2.3.1 A reproducing kernel Hilbert space (RKHS) H is a Hilbert space

of real- or complex-valued functions on an index set T such that for all t ∈ T the

evaluation functionals et : H � f �→ etf = f(t) ∈ F,F ∈ {R,C} are continuous

[20, p. 9].
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Since in an RKHSH, et is continuous and linear, it is also bounded. Then the Riesz

representation theorem [93, p. 76] guarantees the existence of an element Kt ∈ H
such that

etf = 〈Kt, f〉H ∀f ∈ H (2.50)

i.e. 〈Kt, f〉H = f(t) and Kt is the representer of evaluation at t ∈ T . The

latter equality for Kt is called the reproducing property. Kt as an element of

H is itself a function from T to C (the restriction to R is trivial as [7] notes)

and for all s ∈ T , Kt(s) = 〈Kt(·), Ks(·)〉H which is also often expressed as

K(s, t) = 〈K(s, ·), K(t, ·)〉H. The notation Ks(t) = K(s, t) was used to em-

phasize the dependence of the number Ks(t) both on the location s ∈ T on which

〈Ks, ·〉H is evaluated and the location t ∈ T on which Ks is evaluated itself.

It can be shown that the properties of Kt are indicative for the properties of all

functions inH in the sense that one may always writeH as the closure of translates

of Kt, i.e.

H = cl

{
f : T → C : f =

∞∑
i=1

αiKti(·) and

∞∑
i=1

∞∑
j=1

αiαjK(ti, tj) <∞
}

(2.51)

where the closure is to be executed as described in [7]. Properties of Kt invariant

under linear combination like for example continuity pass down to all f ∈ H [20,

p. 35]. As a two-variable function, K(·, ·) : T × T → C provides a meaningful,

equivalent description of H that is more easily understood than an abstract

characterization and can be analyzed and manipulated using functional analytic

methods. This function is termed the reproducing kernel (RK) of the RKHS H;

when this relationship is to be made evident, the notationHK is used.

Definition 2.3.2 A two-variable function K(·, ·) : T × T → C satisfying

i) K(t, ·) ∈ H ∀t ∈ T
ii) 〈f(·), K(t, ·)〉H = f(t) ∀t ∈ T and ∀f ∈ H

is called the reproducing kernel of the Hilbert spaceH of functions from T to C.

From the reproducing property one may immediately derive that any reproducing

kernel K(·, ·) is conjugate symmetric and positive definite because

K(s, t) = Ks(t) = 〈Ks, Kt〉H = 〈Kt, Ks〉H = Kt(s) = K(t, s) (2.52)

and

n∑
i=1

n∑
j=1

αiαjK(ti, tj) = 〈
n∑

i=1

αiK(ti, ·),
n∑

j=1

αjK(tj, ·)〉H = ‖
n∑

i=1

αiK(ti, ·)‖2H ≥ 0

(2.53)
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where {αi}ni=1 ⊂ C and {ti}ni=1 ⊂ T are arbitrary sequences of complex coeffi-

cients and index elements. The positive definiteness demonstrated in equation 2.53

is significant and indeed the characterizing feature of a reproducing kernel as the

next theorem (taken from [7]) asserts.

Theorem 2.3.3 (Moore-Aronszajn) To any positive definite function K(·, ·) : T ×
T → C, one may associate a unique RKHS HK with reproducing kernel K. The
spanH0 of the set {K(t, ·)}t∈T satisfiesH0

�HK and clH0
�HK .

Apart from an RKHS H of functions on T being uniquely associated to a positive

definite kernelK with domain T ×T , the elements f ∈ H formed as superpositions

of kernel functions themselves exhibit some convenient properties that simplify

calculation in RKHS.

Theorem 2.3.4 LetHK be an RKHS of functions from T to C and denote byK(·, ·) :
T × T → C its reproducing kernel. Then the following statements hold.

1. Cauchy-Schwarz implies that ∀f, g ∈ HK , |f(t)− g(t)| = |〈f − g,Kt〉HK
| ≤

‖f−g‖HK

√
K(t, t). As a consequence, normwise convergence implies point-

wise convergence [20, p. 10] and if one finds limn→∞ ‖f̂n − f‖HK
= 0 for

any sequence of approximations f̂n ∈ HK for f then also limn→∞ f̂n(t) =
f(t) ∀t ∈ T .

2. For any bounded linear operator L : HK → HK , the function utL := L∗Kt ∈
HK satisfies 〈utL, f〉HK

= 〈L∗Kt, f〉HK
= 〈Kt, Lf〉HK

= (Lf)(t). The
unique two-variable function u·L : T × T → C is called the kernel of the
operator L [20, p. 27].

3. (Representer theorem) For an RKHS HK of real valued functions on T , a
strictly monotonically increasing function ϕ : R → R, b ∈ Rn and a linear
evaluation operator A : HK � f �→ {f(tj)}nj=1 ∈ Rn, the solution fopt to the
regularized reconstruction problem

fopt = argmin
f∈HK

‖Af − b‖2HK
+ ϕ (‖f‖HK

)

can be written as fopt =
∑n

j=1 αjK(tj, ·), a linear superposition of kernels
centered around the points tj, j = 1, ..., n at which f was observed [173].

Properties 1-3 are useful especially from a perspective focused on estimation and

computability. They guarantee that if an estimator f̂n converges to the ground truth

f in the norm topology, then f̂n’s values will eventually coincide with the ones of f .

Furthermore, optimal reconstruction problems have solutions that can be explicitly

written down, consist of a number of terms scaling linearly with the measurements

and have a coefficient vector {αj}nj=1 ∈ Rn as the only unknown quantity. Linear

transformations by operators L : HK → HK can be handled without leaving the

RKHS framework by reducing them to easily computable inner products. It is also

possible to start with a kernel function u(·, ·) and construct a linear operator Lu
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from it. When one starts from the second moment function K(s, t) = E[XsXt] for

a set of random variables Xt, t ∈ T , the resultant operator LK and RKHSHK have

a particularly telling decomposition that is summarized in the next theorem (taken

from [20, pp. 68-70]).

Theorem 2.3.5 Let K : T × T → R, T = [a, b] ⊂ R be the continuous second
order moment function of the set of random variables Xt, t ∈ T and denote by LK

the linear operator LKf =
∫
T
K(·, t)f(t)dt with domain and codomain L2(T ).

1. The Mercer decomposition K(s, t) =
∑∞

j=1 λjϕj(s)ϕj(t) holds where
{λj}∞j=1 ⊂ R+ and {ϕj}∞j=1 ⊂ L2(T ) are the sequence of eigenval-
ues and eigenfunctions of LK . The eigenfunctions are orthonormal, i.e.
〈ϕi, ϕj〉L2(T ) = δij .

2. The random function X ·
· : ω �→ X ·

ω can be written in form of the so-called
Karhunen-Loewe expansion (KLE) as X·(t) =

∑∞
j=1 ξ

·
j

√
λjϕj(t) where ξ·j :

Ω→ R is a weakly white noise random variable with E[ξ·iξ
·
j] = δij .

Even though the two theorems were presented only for the simple case of T ⊂ R
being a closed interval, they hold more generally. The Mercer decomposition of

an operator Lk : L2(T, μ) → L2(T, μ) is possible when K is a continuous positive

definite kernel and T is only supposed to be a topological Hausdorff space with

finite Borel measure μ [117, p. 145], [60]. When T is a subset of Rn, a Karhunen-

Loewe expansion is possible as well [131, p. 19]; the simulations in this monograph

are generated via KLE.

The Mercer decomposition allows to express the inner product and norm of HK as

a modified inner product in L2(T ). For the inner product inHK , it is demanded that

〈K(s, ·), K(t, ·)〉HK
= K(s, t) and this implies

〈K(s, ·), K(t, ·)〉HK
=

∞∑
i=1

∞∑
j=1

λiλjϕi(s)ϕj(t)〈ϕi, ϕj〉HK

!
=

∞∑
i=1

λiϕi(s)ϕi(t).

The easiest way to achieve this is by having 〈ϕi, ϕj〉HK
= λ−1

i 〈ϕi, ϕj〉L2(T ) which

then leads to a Hilbert spaceHK with inner product

〈f, g〉HK
= 〈L−1

K f, g〉L2(T ) =
∞∑
j=1

1

λj
〈f, ϕj〉L2(T )〈g, ϕj〉L2(T ) ∀f, g ∈ HK . (2.54)

By the uniqueness property mentioned in the Moore-Aronszajn theorem, there is

only one Hilbert spaceHK for which K is the reproducing kernel and therefore this

construction of inner product is not only valid but the only one possible. More on

this topic can be found for example in [148] where it is also shown that f ∈ HK if
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and only if

‖f‖2HK
=

∞∑
j=1

λ−1
j 〈f, ϕj〉2L2(T ) =

∞∑
j=1

f 2
j

λj
<∞ (2.55)

i.e. HK is that subset of functions f in L2(T ) whose coefficients in the ONB

{ϕi}∞i=1 decay significantly faster than the sequence {λi}∞i=1. This mirrors closely

theorems relating differentiability and the rate of decay of Fourier transforms.

The finiteness demand in equation 2.55 can be interpreted as the statement that

eigenfunctions ϕj with small λj are atypical for elements of HK — the norm

‖f‖HK
in this sense gives a continuous quantification of the degree to which f

belongs to HK and can be considered to be a generalization of the sum of squares

‖f‖2Rn =
∑n

i=1 f
2
i of an n-dimensional vector.

Example 10 Suppose T = {1, ..., n}, then K : T × T → R satisfies∑m
i=1

∑m
j=1 αiαjK(ti, tj) ≥ 0 ∀ vectors {αi}mi=1 ∈ Rm and positions {ti}mi=1 ⊂ T .

From it one constructs the positive definite operator

LK : L2(T ) � f �→
∫
T

K(·, t)f(t)dt ∈ L2(T )

where the right hand side is (Lkf)(s) =
∫
T
K(s, t)f(t)dt =

∑n
i=1K(s, ti)f(ti).

But then Lk is just the matrix with entries (LK)ij = K(ti, tj). According to Mercers

theorem, LK and its inverse have the decomposition

(LK)st =
n∑

j=1

λjϕj(s)ϕj(t) (L−1
K )st =

n∑
j=1

1

λj
ϕj(s)ϕj(t).

The inner product is then

〈f, g〉HK
=

n∑
j=1

1

λj
〈f, ϕj〉Rn〈g, ϕj〉Rn = 〈L−1

K f, g〉Rn

and the norm is ‖f‖2HK
= 〈L−1

K f, f〉Rn = ‖L−1/2
K f‖2Rn where it was used that

positive definite selfadjoint operators have well-defined square roots and inverses as

explained in section 2.2.2. If K were a covariance function, then LK would be the

covariance matrix and −‖L−1/2
K f‖2Rn would be the term appearing in the exponent

of a Gaussian probability density. This gives further intuition as to why one may

consider the norm as a measure of atypicality. �
By the Moore-Aronszajn theorem, positive definite (p.d.) kernels and RKHS can be

identified — operations on p.d. kernels leading to new p.d. kernels have analogues

in terms of new RKHS being assembled from base RKHS. The properties of the

convex cone [11, p. 39] of reproducing kernels listed in the next theorem are proven

in [7] and [20, pp. 24-30].
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Theorem 2.3.6 Let K,K1, K2 be real valued positive definite kernels. Denote by
HK ,HK1 ,HK2 the corresponding reproducing kernel Hilbert spaces.

1. For T1 ⊂ T , the restriction Kr := K |T1×T1 of K to the subset T1 × T1 is the
reproducing kernel of the space HKr consisting of restrictions f1 := f |T1 of
functions f ∈ HK together with the norm

‖f1‖2HKr
= min

f1=f |T1 ,f∈HK

‖f‖2HK
.

2. The sum K = K1 + K2 is a reproducing kernel with corresponding RKHS
HK = HK1 ⊕ HK2 . It has elements f ∈ HK such that f = f1 + f2 with
f1 ∈ HK1 , f2 ∈ HK2 and the norm is

‖f‖2HK
= min

f=f1+f2,fj∈HKj

‖f1‖2HK1
+ ‖f2‖2HK2

.

3. If K = K2 − K1 is a positive definite kernel, it is the reproducing kernel of
the RKHS HK := HK2  HK1 . One has HK1 ⊂ HK2 , ‖f‖HK1

≥ ‖f‖HK2

and HK is the Hilbert space formed by completing the everywhere dense set
H :=

(
I − PHK1

)HK2 where (PHK1
f2)(t) = 〈f2(·), K1(t, ·)〉HK2

∀f2 ∈
HK2 is the projection ontoHK1 . H is equipped with the norm

‖f‖2H = ‖
√
I − PHK1

f2‖2HK2
= 〈f2, f2 − PHK1

f2〉HK2

= ‖f2‖2HK2
− ‖PHK1

f2‖2HK1
(2.56)

for all f in the setH. The element f2 is chosen such that f2 − PHK1
f2 = f .

4. For Tj × Tj being the domain of Kj , j = 1, 2, the direct product kernel
K = K1 ⊗ K2 acting on (T1 × T2) × (T1 × T2) via K(s1, s2, t1, t2) =
K1(s1, t1)Kt(s2, t2) corresponds to the RKHS HK = HK1 ⊗ HK2 which is
the completion of the span of functions f = f1 ⊗ f2 : T1 ⊗ T2 � (t1, t2) �→
f1(t1)f2(t2) ∈ R, fj ∈ HKj

.

The above theorem and the general construction fo RKHS from basis functions are

illustrated in the next two examples.

Example 11 (RKHS of polynomials) Starting with the space spanned by mono-

mials on [−1, 1], one can obtain the Legendre polynomials via diagonalization and

assemble them into a positive definite kernel yielding the first example of a func-

tional RKHS readily available for concrete computations. Define T = [−1, 1] and

HPn as the RKHS of polynomials up to order n with the inner product of L2(T ).
Starting from the monomials

p1(t) = 1 p2(t) = t p3(t) = t2 ∀t ∈ T
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Gram-Schmidt orthonormalization leads to the orthonormal basis vectors

e1(t) =

√
1

2
e2(t) =

√
3

2
t e3(t) =

√
5

2

1

2

(
3t2 − 1

) ∀t ∈ T

which are just rescaled versions of the first three Legendre polynomials [153,

p. 443]. Creating the kernel K(s, t) =
∑3

j=1 ej(s)ej(t) = (1/2) + (3/2)st +

(5/8)(3s2−1)(3t2−1), it is easy to check that K(·, ·) is reproducing forHP2 as for

f ∈ HP2 it holds that f =
∑3

i=1 f̃ipi(·) =
∑3

i=1 fiei(·) and since 〈ei(·), ej(·)〉HP2
=

δij , one has

〈K(s, ·), f(·)〉HP2
=

3∑
i=1

ei(s)〈ei(·), f(·)〉HP2

=
3∑

i=1

ei(s)〈ei(·),
3∑

j=1

fjej(·)〉HP2
=

3∑
i=1

fiei(s)

which is nothing else than f(s) as required. �

Example 12 (Brownian bridge and Wiener process) Suppose one knows from ob-

servation that a good measure of atypicality of a function f is the L2 norm of its

derivative and that it always vanishes at the boundary points 0 and 1 of T = [0, 1].
The function spaceH1 containing these f is

H1 = {f ∈ L2(T ) : f(0) = f(1) = 0, ‖∂tf‖L2(T ) <∞}

with inner product 〈f, g〉H1 =
∫
T
(∂tf)(s)(∂tg)(s)ds where the derivatives ∂t are

defined in a suitably weak sense. Atteia [11, pp. 7-11] then shows that H1 is an

RKHS with the kernel K1

K1(s, t) = min(s, t)− st (2.57)

being a solution to a certain differential equation in order to guarantee the reproduc-

ing property. Functions in H1 = HK1 are called Brownian bridges since they start

and end at the same height and their increments have much of the characteristics of

white noise. In a similar way, the original Wiener process as integrated white noise

can be associated to the Hilbert space

H2 = {f ∈ L2(T ) : f(0) = 0, ‖∂tf‖2L2(T ) <∞}

with inner product 〈f, g〉H2 =
∫
T
(∂tf)(s)(∂tg)(s)ds and kernel

K2(s, t) = min(s, t) (2.58)

as [11, pp. 7-11] proves. The increments of functions f ∈ H2 = HK2 look like

white noise, the norm ‖f‖H2 = ‖∂tf‖L2(T ) therefore measures atypicality of f
by reducing it to the atypicality of its derivative. Figure 2.11 shows the kernels
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K1, K2, K3 = K1 + K2, K4 = K2 − K1, K5 = A ⊗ AK1 =
∫ s

0

∫ t

0
K1(u, v)dudv

and K6 = K1 ⊗ K2 as well as some randomly drawn elements from the RKHS

HK1 , ...,HK6 . It is notable that the kernel K5 = A ⊗ AK1 is related to the space

H5 = {Af1 : f ∈ HK1} although the relationship is not entirely straightforward in

general, see [170, pp. 89-91]. �

Figure 2.11: The kernels and some representative elements of the Hilbert spaces HK1 , ...,HK6 whose definitions are given

in the text. Whereas the scaling on the plots of the elements is equal, the colormap used to display the kernels varies to

guarantee good visibility of their main features. Notice that elements of HK3
are sums of elements from HK1

and HK2

and an analysis of HK4
reveals that a Wiener process is essentially just a Brownian bridge plus a randomly drawn line. Since

HK6
as a tensor product contains 2-dimensional functions that are Brownian bridges in x-direction and Wiener processes in

y-direction, only one of its elements is plotted. Simulations were generated via Karhunen Loewe expansion as described in

theorem 2.3.5.

As a last comment, note that for HK = HK1 ⊕ HK2 , K = K1 + K2, the inner

product of a function with one of the component kernels, i.e. the expression

〈f(·), K1(·, ·)〉HK
= 〈(L−1

K1+K2
f)(·), K1(·, ·)〉L2(T ) =

∫
T

K(·, s)(L−1
K1+K2

f)(s)ds

is the projection of f ∈ HK ontoHK1 [7]. This is easily seen to be Σ1(Σ1+Σ2)
−1f

in the discrete case where f ∈ Rn and (Σl)ij = Kl(i, j), l = 1, 2 are positive def-

inite matrices. As is shown later (91, theorem 3.1.5) this latter equation coincides

with a statistically motivated estimator for f1 based on observation of f = f1 + f2.
Even though this reasoning is made watertight only in section 3.1, we proceed
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to give examples of RKHS containing infinitely differentiable and continuous but

nowhere differentiable functions and tie their elements behaviour to the form of

their kernel via correlation based arguments. For the RKHS of smooth functions

HK1 , K1 = exp(−|s − t|2) [39, p. 89] and everywhere continuous but nowhere

differentiable functions forming HK2 , K2(s, t = exp(−|s − t|) [162, p. 86] an ex-

emplary result of a projection is plotted in figure 2.12.

Figure 2.12: The element f of HK plotted in the left panel is a sum of the elements f1 ∈ HK1
and f2 ∈ HK2

plotted in

dashed lines in panel two and three. The projections 〈f,K1〉HK
and 〈f,K2〉HK

are close to f1 and f2 respectively.

2.3.2 Interpretation of RKHS

RKHS can be defined as the closure of the span of kernel translates. This suggests that K
might play the role of an impulse response function linking superpositions of impulse-type
inputs to linear superpositions of kernel translates. To showcase this approach, a familiar
problem of theoretical mechanics is now attacked from a Newtonian perspective and the
solution is tied via its Hamiltonian formulation to the minimization of an energy functional
featuring spatial derivatives. This energy term is related to a norm in an RKHS and the
solution can be written as a superposition of basis functions related toK. On the other hand,
RKHS can also be perceived as purely abstract feature spaces. This perspective is illustrated
with the help of the archetypal X-OR example showcasing a 2-D classification problem that
can only be solved by a linear classifier after being nonlinearly injected into R3. The role of
kernels as tools to describe and manipulate high-dimensional features is emphasized.

§ RKHS as spaces of functions

Suppose a weightless elastic string is clamped at constant height 0 at both endpoints

of the interval T = [0, 1] in such a way that at its equilibrium state it is just a

horizontal line. It is then subjected to a spatially distributed load that is described

by the density function w(s), s ∈ T . The displacement function f(·) ∈ L2(T )
quantifying for each position s ∈ T the deviation from the trivial (w = 0) horizontal

position of rest is to be determined. This situation is illustrated in figure 2.13 where

also the expected solutions to very simple load configurations are plotted.
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Figure 2.13: An elastic string is clamped in at s = 0 and s = 1. Under the load w(·) it deforms; the displacement is given

by the function f(·) ∈ L2(T ). On the basis of intuitive physical reasoning, one would expect f(·) to behave like plotted in

the panels on the right. The arrows represent the force being exerted by load w.

The function w(s) is a density and should be interpreted in such a way that∫
[s−Δ,s+Δ]

w(s̃)ds̃ quantifies the total weight of the load in the interval [s−Δ, s+Δ].

The differential equation for f(s) in terms of the density function w(s) is then given

as the second order ODE [81, p. 22]

∂2

∂s2
f(s) = w(s) f(0) = f(1) = 0 (2.59)

where all the material constants have been chosen as to multiply to one for the sake

of simplicity. This equation can be derived using a purely Newtonian interpretation

[81, p.26] or as the Euler Lagrange equation associated to minimizing the energy H

H = 〈w, f〉L2(T ) +
1

2
‖f‖2H =

∫
T

w(s)f(s)ds+
1

2

∫
T

|∂tf |2ds (2.60)

[33, p. 49] where ‖ · ‖H is the norm in the Sobolev space from the examples on

page 71. This follows trivially from the fact — stated in equation 2.43 — that to

minimize
∫
T
g(s, f, fs)ds one may equivalently solve

∂g

∂f
− d

ds

(
∂g

∂fs

)
(2.61)

where in the above the subscript denotes differentiation, i.e. fs = ∂sf . Setting

g = (1/2)f 2
s − fw, clearly H =

∫
T
gds and

∂g

∂f
= w

d

ds

(
∂g

∂fs

)
= fss

implying the Euler Lagrange equation 2.61 to be fulfilled iff ∂2sf −w = 0. How the

energy functional H arises through consideration of elastic forces and potential en-

ergy is explained for example in [205, pp. 95-97]. A standard method for determin-
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ing solutions to linear differential equations Qf = w like equation 2.59 is to derive

Greens function for the problem, i.e. a two variable function G(·, ·) : T × T → R
such that (QG)(s, t) acts like the delta distribution δ(s− t) [81, p. 50]. Then

Q

∫
T

G(s, t)w(t)dt =

∫
T

(QG)(s, t)w(t)dt = w(s)

and
∫
T
G(s, t)w(t)dt = f(s) is a fundamental solution satisfying Qf = w. The

integral operator LG : w �→ ∫
T
G(s, t)w(t)dt maps weights distributions as quanti-

fied by the density w(·) to the displacement function; G(·, ·) is therefore some type

of impulse-response function. In the case of the loaded string and Q = ∂2s , G can

be calculated explicitly to be

G(s, t) = min(s, t)− st

[81, p. 24], which is just the kernel for the Brownian bridge. In this way the operator

LG of integration against a certain type of covariance is providing

• a solution to a differential equation Qf = w with boundary conditions.

• a solution to a Hamiltonian energy minimization problem 〈f, w〉L2(T ) +
(1/2)‖f‖2H → min in Hilbert space.

• the means of mapping input functions w(·) to outputs f(·).
Note however, that if one sets w to finite dimensional white noise and calculates the

covariance matrix Σf = E[f ⊗ f ∗] for f = LGw one gets Σf = LGL
∗
G rather than

LG so the solutions f are not realizations of the Brownian bridge process them-

selves. Instead of being elements ofHG, they are elements ofHG̃ where

G̃(s, t) =

∫
T

G(s, u)G(u, t)du

and conversely if one defines the positive semidefinite and selfadjoint operator
√
LG

via functional calculus, then
√
LGw has covariance matrix LG. It is therefore rea-

sonable to think of an RKHS HK as the function space containing the solutions

of Qf = w for w white noise and Q a selfadjoint differential operator satisfying

Q
√
LK = I , e.g Q = [LK ]

−1/2. Not all Greens functions are positive semidef-

inite kernels themselves and no identification can be made [8]. The relationship

between kernels K, Greens functions G, differential operators Q, and the function

spaces HK is nonetheless interesting especially from the perspective of differential

equations governing physical systems and more can be found for example in [161,

pp. 349-357] and [58]. Figure 2.14 concludes this example.
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Figure 2.14: Illustration of Greens function as a matrix. In this discretized version, (LGw)i =
∑n

j=1 G(ti, tj)wj for

w ∈ Rn. The last three panels of the top row contain example solutions for different load configurations that are indicated in

red; in the second panel they are simply point masses as represented by the canonical euclidean basis ek, k = 1, ..., n. The

bottom row shows G̃ = LGG such that LG̃ is the covariance matrix describing the solutions of the differential equations.

The other three panels show the matrix F =
√
LG such that Fw ∼ N (0, LG) for w white noise and different choices of

differential operators Q such that HG contains solutions to Qf = w. Whereas the first Q is similar to a discretized second

derivative, the second Q is arbitrarily transformed using some unitary matrix U .

Solutions to optimization problems involving norms and inner products in RKHS

are called splines. This class of objects does not only contain abstract constructions

consisting of superpositions of kernel functions but also the very simple piecewise

cubic splines for which Holladay proved that they minimize the curvature among

all sufficiently often differentiable interpolants going through a predefined set of

points {(si, fi)}ni=1 [98]. As a matter of fact, this constrained minimization of

the global curvature term ‖∂2sf‖2L2(T ) is equivalent to minimizing the mechanical

energy of a thin elastic rod forced through the various positions whose x and

y values are given by some set {(si, fi)}ni=1. These were the original physical

real world objects used extensively in shipbuilding to which the name ’spline’

was originally associated. We could have equivalently carried out the previous

investigations in the setting of Euler-Bernoulli beam theory but we decided to avoid

dealing with 4-th order derivatives to keep the presentation simple.

§ RKHS as spaces of features

The reason for the popularity of RKHS in the context of pattern recognition and

classification is that they can be interpreted not only as spaces of functions but from

a slightly different perspective do form spaces of potentially infinite-dimensional

features. This often allows to solve high-dimensional and nonlinear discrimination

tasks with what are essentially linear methods in Hilbert spaces.
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Figure 2.15 shows the archetypal X-OR exam-

ple that is often considered as an introductory toy

problem in machine learning related literature (see

e.g. [132]). If the goal is to separate linearly the

labeled data points

pi = {(xi, yi)}mi=1 xi ∈ X = R2, yi ∈ {−1, 1}

using a (2 − 1)-dimensional hyperplane P ⊂ R2,

i.e. to find a translation tP and a normal vector nP

such that

sign
[〈nP , x

i − tP 〉R2

]
= yi

Figure 2.15: The two classes repre-

sented by filled and empty circles are not

separable via a line in R2.

then figure 2.15 convinces the reader that this is impossible. However, if one were

to embed the problem into three-dimensional space by introducing feature maps φ

φ : X � x = [x1, x2]
T �→ [x1, x2, x1x2] = φ(x) ∈ R3,

then the data points piφ = {(φ(xi), yi)}mi=1 ⊂ R3 × {−1, 1} are easily linearly sep-

arable by the trivial (3− 1) dimensional hyperplane with nP = [0, 0, 1]T and tP =
[0, 0, 0]T . In this case a handcrafted nonlinear feature map φ : X → Rn, n > dimX
has revealed the dataset to have an only nonlinear structure in X but an exploitable

linear structure in Rn. The usual way to automatize this procedure and circumvent

the need to manually craft features is by introducing infinite-dimensional nonlinear

feature maps φ : X → HK taking values in some RKHSHK . If one sets

φ(x) = K(x, ·) ∈ HK ∀x ∈ X ,

the reproducing property 〈f(·), K(x, ·)〉HK
= f(x) guarantees that all inner prod-

ucts between features are efficiently evaluable as

〈φ(xi), φ(xj)〉HK
= 〈K(xi, ·), K(xj, ·)〉HK

= K(xi, xj) ∀xi, xj ∈ X .

Finding the optimal set of parameters describing the hyperplane separating the two

sets X− = {xi : yi = −1} and X+ = {xi : yi = +1} can be cast as a quadratic

program whose dimension is of the order of available observations thanks to the

representer theorem. This method of deriving a data driven classification rule is

termed a support vector machine (SVM) [174]. Given enough data consisting of

measurements x ∈ X and labels y ∈ {−1, 1}, it is therefore possible to potentially

extract the apriori unknown linear or nonlinear functionals

ψ : X � x �→ ψ(x) ∈ R

whose sign determines the label corresponding to x ∈ X . Unlike in the two-

dimensional illustration in figure 2.15, the underlying decision rule can not simply

be guessed from datasets in Rn, n ≥ 4, demonstrating that this approach delivers

a substantial increase in discriminatory power compared to visual inspection by a
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practitioner.

Being able to manipulate an expressive set of nonlinear features is helpful also when

one wants to quantitatively characterize probability distributions. Second and first

order moments are by far the most popular descriptors in this type of situation.

However, they are often not sufficient to distinguish even severely different distri-

butions and a correlation coefficient of zero between two random variables X and

Y is at times mistakenly considered indicative of independence between X and Y
ignoring nonlinear dependencies and potential non-Gaussianity. A brief overview

of typical pitfalls and problems is given in figure 2.16, which has been inspired

by examples provided in a talk held by Arthur Gretton at the Tübingen machine

learning summer school in 2015.

Figure 2.16: A Gaussian with parameters μ = 0 and σ = 1 has the same first two moments as a Laplacian probability

distribution with location parameter μ = 0 and scale b = 1/
√
2. They are indistinguishable when no higher order moments

are used for description and the problem naturally carries over to the comparison of finite samples. The panels on the

right hand side showcase two situations in which there is an obvious functional dependence of Y on X but the correlation

coefficient (almost) vanishes, | corr(X,Y )| < 10−1 in both cases. The observed nonzero correlation is induced by noise

only as point distributions on the true underlying models (parabola, circle) have vanishing central second order moments.

Smola et al. [184] and Le Song et al. [186] have established a systematic way to

embed probability distributions into RKHS of features and found a link between

linear operators on these spaces and typical operations occurring during Bayesian

inference. They show that the embedding is injective under mild conditions on

the kernel K of the embedding space HK and derive several independence criteria

that generalize the correlation coefficient towards quantities that detect nonlinear

functional dependencies. The ideas are as follows [184] , [186].

Definition 2.3.7 Suppose P and Q are probability distributions describing random

variables X and Y with realizations xj, yj respectively. HKP
and HKQ

are RKHS

with kernels KP and KQ.

1. The functions

μP := EX [KP (X, ·)] and μ̂P − 1

m

m∑
j=1

KP (xj, ·)

are called the kernel mean embedding and the empirical kernel mean embed-

ding.
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2. The operator

CXY := E[PQ][KP (X, ·)⊗KQ(Y, ·)∗]− EP [KP (X, ·)]⊗ EQ[KQ(Y, ·)]∗

is called the cross covariance operator; the covariance operators CXX and

CY Y are constructed analogously. [PQ] is the joint probability distribution of

X and Y .

3. The names of Hilbert Schmidt independence criterion (HSIC) and constrained

covariance (COCO) are given to the terms [83, 84]

HSIC([PQ],HKP
,HKQ

) : = ‖CXY ‖2HS (2.62)

COCO([PQ],HKP
,HKQ

) : = sup
f∈HKP

,g∈HKQ

cov (f(X)g(Y ))

‖f‖HKP
‖g‖HKQ

(2.63)

They are measures of X and Y ’s possibly nonlinear statistical dependence.

The subjects of the above definitions have some convenient properties.

Theorem 2.3.8 With the same notation as in definition 2.3.7, the following holds.

1. If EX [KP (X,X)] < ∞, then μP ∈ HKP
and μP is reproducing in the sense

that [186]
〈μP , f〉HP

= EX [f(X)].

2. If EX [KP (X,X)] < ∞ and EY [KQ(Y, Y )] < ∞, then CXX ∈ HKP
⊗

H∗
KP
, CY Y ∈ HKQ

⊗ H∗
KQ

and CXY ∈ HKP
⊗ H∗

KQ
. Furthermore CXY is

the centered kernel mean embedding of the joint probability distribution [PQ]
of X and Y , i.e.

CXY = μ[PQ] − μP ⊗ μ∗
Q

and it is the unique operator satisfying 〈f, CXY g〉HKP
= cov (f(X)g(Y ))

[146, p. 35]. Obviously, similar statements hold for CXX and CY Y .

3. IF KP and KQ are characteristic kernels [69] on compact domains, then

HSIC = 0⇔ X
∐

Y ⇔ COCO = 0.

HSIC is efficiently estimable from a finite amount of data by calculating

ĤSIC = [m− 1]−2 tr
(
LKP

HLKQ
H
)

where H = I − m−11 ⊗ 1∗, I is the unit matrix, 1 is a vector of ones and
(LKP

)ij = KP (xi, xj), (LKQ
)ij = KQ(yi, yj). COCO is equal to the spectral

norm of CXY , i.e. COCO = ‖CXY ‖B(L2,L2) = σmax(CXY ).

Part 3 of theorem 2.3.8 is interesting in the sense that it shows a solution to the

problems of the standard linear correlation exhibited in figure 2.16. Whereas many

other measures for detecting and quantifying nonlinear dependence between ran-



80 2.3.2 INTERPRETATION OF RKHS

dom variables exist, few have a simple computable representation in terms of linear

operators. Figure 2.17 aims to illustrate the procedure with which COCO identifies

functional dependence ignored by the linear correlation coefficient. Practical im-

plementation of an estimator resorts to reducing the computation of ‖CXY ‖B(L2,L2)

with infinite-dimensional CXY to solving for the largest singular value of an n× n
matrix

COCOemp =
1

n

√
σmax

(
HLKP

HHLKQ
H
)

where LKP
and LKQ

are n × n kernel matrices and H is the centering matrix as

before [84].

Figure 2.17: The samples from the previous figures can be transformed nonlinearly to reveal a linear dependence in feature

space. For this, the left and right singular eigenvectors of the cross covariance operator CXY are used. The value of COCO

is 0.0045 for the example in row 1, 0.0038 for row 2, 0.0018 for white noise and 0.045 for a straight line. The squared

exponential kernel was used.

As previously indicated, marginal probability distributions PX , PY , joint probability

distributions PXY and conditional probability distributions PX|Y can all be treated

in an RKHS framework. Le Song and Fukumizu show that marginalization and

conditioning correspond to applications of linear operators acting on RKHS; more

specifically it is even possible to find kernel analogues of the sum rule, the chain

rule and the Bayes rule [186, 68].

In section 3.3 the methodology of Hilbert space embeddings of probability distribu-

tions will be applied to compare samples and check independence in the context of

some simple geodetic problems featuring non-Gaussianity and nonlinearity. Other

than in this subsection, however, the view of RKHS as function spaces with physical

meaning will stay the predominant perspective.



Chapter 3
Statistical inference and splines

The goal of this chapter is to provide an account of practically useful information

that endows the functional analytic parts of chapter 2 with a stochastic background

and employs both for optimal estimation. Minimum norm problems as naturally

arising during investigations of physical systems like in subsection 2.3.2 will be

connected to maximum likelihood estimation. The end result of this line of thought

will be a seemingly simple formula for abstract splines that is linear in the data and

relies on the covariance matrices, and therefore the kernel, being known. Different

ways to handcraft kernels by transferring the Hilbert space operations of subsec-

tion 2.1.3 to a functional level are discussed and reveal the abstract spline formula

developed before as the basis case to which most problems can be reduced. Fo-

cus will then shift towards imbuing direct sum and tensor product constructions on

Hilbert spaces with concrete and interpretable meaning. The chapter is closed with

fully worked examples from geodesy that cover process modelling as well as high

dimensional inference and statistical testing.

3.1 Hilbert spaces and estimation

This section is meant as an exposition on how the exchange of an estimation prob-

lem for a norm minimization problem in RKHS can be justified. As a stochastic

perspective is assumed and signals are considered as collections of random vari-

ables that are mutually correlated, the validity of the arguments put forward will

depend explicitly on the involved probability distributions. It will prove therefore

necessary to first define what is understood by a stochastic process and a random

field before the task of best linear unbiased estimation is tackled. Several different

interpretations of the standard Kriging equation are provided and enable effortless

swapping to the perspective most convenient and intuitive under the circumstances

given. Independently of that, however, the mathematical formalism of choice will

always be the one associated to RKHS and abstract splines — solutions to opti-

mization problems in RKHS posed in terms of measurement operators and energy

operators that significantly generalize the idea of measurements as point evaluations

and energy as curvature.
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3.1.1 Stochastic processes and random fields

The arithmetic mean μ̂ of i.i.d. Gaussian distributed random variables is the maximum like-
lihood estimator for the common expected value μ of those random variables. During the
derivation, a quadratic form of the type

∑n
i=1(Xi − μ̂)2σ−2 is minimized explaining the

name least squares estimator. This establishes equality between LS- and ML-estimators for
this exemplary case and hints at connections to be discovered later in more general settings.
Examining the problem of interpolation instead of parameter estimation, one is lead to con-
sider as interesting objects assignments of random variables to an index set T rather than
single random variables. Such objects are called stochastic processes or random fields and
while each random variable Xt, t ∈ T can be described with a one dimensional probability
distribution, it is the global behavior of all Xt together as given by the joint probability dis-
tribution that is needed for inference. For a stochastic process and its covariance function
K(·, ·), Loewe’s theorem asserts constructively the existence of an isometric isomorphism
into an RKHS for which minimum norm problems of the form ‖x‖HK

arise naturally and
have an interpretation as maximum likelihood estimators for jointly Gaussian distributed
random variables.

Suppose a function f(·) =∑m
i=1 αigi(·) : T → R was measured at locations {ti}ni=1

and denote the vector of observations as y ∈ Rn. If the measurements are subject

to uncertainty, then the yi, i = 1, ..., n can be interpreted as realizations of random

variables

Yi = f(ti) +Ni (3.1)

where Ni : Ω → R, i = 1, ..., n for some probability space Ω is a mean zero noise

random variable subsuming the irreproducible random deviations of Yi from f(ti)
as induced by e.g. thermal noise or quantization errors in the measurement device.

If it is assumed that the setN1, ..., Nn is jointly Gaussian distributed with covariance

matrix ΣNN , then one may assemble them into the random vectorN : Ω→ Rn with

joint probability density function

pN(ε) = (2π)−n/2 |ΣNN |−1/2 exp

(
−1

2
‖Σ−1/2

NN (μN − ε)‖Rn

)
∀ε ∈ Rn (3.2)

where μN = 0 and |ΣNN | denotes the determinant of ΣNN [160, p. 68]. This is also

written as N ∼ N (0,ΣNN). From equation 3.1 and the linearity of expectation it

follows that Y : Ω→ Rn, (Y )i = Yi, is also a Gaussian random vector and

μY := E[Y ] = E[F +N ] = F ∈ Rn (F )i = f(ti)

ΣY Y := E[Y ⊗ Y ∗]− E[Y ]⊗ E[Y ]∗ = E[N ⊗N∗] = ΣNN

establishing Y ∼ N (μY ,ΣNN). Noticing the explicit dependence of pY (y) on μY

and setting L(μY |y) := pY (y), L measures how probable any concrete observation

vector y ∈ Rn is given the expected value μY . L is termed the likelihood and

maximizing it w.r.t. μY is akin to finding that μY which has the highest probability

of generating the observations. The resulting maximum likelihood estimator μ̂Y is

μ̂Y = argmax
μY ∈Rn

L(μY |y)
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= argmin
μY ∈Rn

− logL(μY |y)

= argmin
μY ∈Rn

1

2
‖Σ−1/2

Y Y (y − μY )‖2Rn (3.3)

where in the last step it was used that the expression (n/2) log(2π)+(1/2) log |ΣY Y |
does not depend on the parameter μY . If μY = {f(ti)}ni=1 and f(·) has the de-

composition f(·) =
∑m

i=1 αigi(·) then μY may be written as μY = Gα with

G ∈ Rn ⊗ Rn, (G)ij = gj(ti) and α ∈ Rm is the parameter vector to be deter-

mined. The least squares problem 3.3 can then be reformulated as μ̂Y = Gα̂ with

α̂ = argmin
α∈Rm

‖G̃α− ỹ‖2Rn ỹ = Σ
−1/2
Y Y y, G̃ = Σ

−1/2
Y Y G (3.4)

which, assuming m < n and G of full column rank, has as its solution α̂ = G̃+ỹ
[18, p. 108] with the +-sign denoting the pseudoinverse:

α̂ =
(
G̃∗G̃

)−1

G̃∗ỹ =
(
GΣ−1

Y YG
)−1

G∗Σ−1
Y Y y (3.5)

μ̂Y = G
(
G∗Σ−1

Y YG
)−1

G∗Σ−1
Y Y y (3.6)

Equations 3.5 and 3.6 are the well known least squares estimators widely used in ad-

justment theory [151, p. 133]. Notice that the matrix P = G
(
G∗Σ−1

Y YG
)−1

G∗Σ−1
Y Y

satisfies P 2 = P ∗ = P : Rn → Rn and is therefore an orthogonal projection

w.r.t. the inner product 〈f, g〉H = 〈Σ−1
Y Y f, g〉Rn hinting already at a Hilbert space

approach to the problem.

Model 3.1 presupposes a parametric form f =
∑m

i=1 αigi for the function f to

be extracted from the data y and the subsequent calculations operate under the

assumption that E[f ] = f , i.e. f is deterministic. This restricts the class F of

f ’s, for which inference is possible under this model and places on the practitioner

the burden of choosing a proper model. As additionally there is no way to prefer

certain parameter combinations and all f ∈ F are considered a priori to be equally

likely, the simple least squares procedure just outlined is both too rigid in its

assumptions and too weak in its ability to integrate prior knowledge. Typically, real

world phenomena are not described by a class F of deterministic functions that are

all equally likely and for reasons of robustness and flexibility one should allow the

class F to be rather broad and furnished with a probability measure. The concept

of a stochastic process [140, p. 190] achieves exactly that.

Definition 3.1.1 A map X·(·) : Ω× T � (ω, t) �→ Xω(t) ∈ C is called a stochastic

process on T . Here Ω is some probability space furnished with both a sigma algebra

and a probability measure [140, p. 20] . If E[‖X·(t)‖2C] < ∞ ∀t ∈ T , then the

process X·(·) is called second order. If for all finite {t1, ..., tn} the joint probability

distribution of [X·(t1), ..., X·(tn)]T is Gaussian, one speaks of a Gaussian process.
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Remark The property of being second order should not be confused with second

order stationarity which states that the first two moments of a process are translation

invariant: E[Xt] = μ ∀t ∈ T and E[Xt1+sXt2+s] = E[Xt1Xt2 ] ∀t1, t2, s ∈ T .

Remark When T ∈ Rm,m > 1, then the term ’random field’ is often preferred.

The definition given above is not the most general one but sufficient for the purposes

of this monograph. A stochastic process has two different interpretations. It is

possible to split the map X·(·) : Ω× T → C into

a) X·(·) :T � t �→ [X·(t) : Ω→ C]

b) X·(·) :Ω � ω �→ [Xω(·) : T → C]

Expression a) suggests that X·(·) may be seen as a set {X·(t)}t∈T of mutually

dependent random variables whereas b) corresponds to equating X·(·) to randomly

drawing functions Xω(·) from T to C. Both interpretations are valid and useful at

different times.

Example 13 Set T = {1, ..., n} and define Ni, i = 1, ..., n to be independent white

noise variablesNi ∼ N (0, σ2
0). The set {Xt}t∈T withXt =

∑t
j=1Nj is a stochastic

process with

E[Xt] = 0 (3.7)

E[XsXt] = σ2
0 min(s, t). (3.8)

As a discretization of the Wiener process it is not second order stationary. It arises

in many practical applications in which random deviations accumulate during mea-

surements and is a reasonable stochastic model for the error in leveling as illustrated

in figure 3.1. �

Figure 3.1: A sketch of the leveling procedure. The vertical bars symbolize the position of leveling rods and the rectangles

indicate the positions of the leveling instrument. Assuming each measured height difference ΔHj to be influenced by white

noise with variance σ2
0 , one recovers equations 3.7 and 3.8 for the leveling error Xt =

∑t
j=1 ΔHj − E[

∑t
i=1 ΔHj ].

Under the assumption of constant distances between rods, the usually claimed relationship σ2 ∝ L linking leveling variance

σ2 and length L [209, p. 272] follows.

Example 13 showcases that nontrivial processes can be generated from white noise.

The latter takes on a special role in stochastic calculus. To define it formally on

continuous domains, one would need to introduce generalized stochastic processes

— random linear functionals rather than random functions. The construction is
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given in e.g. [97] or [139]. When dealing with white noise we will either revert to

the finite dimensional case of a white noise random vector or argument informally.

Formally, the relationship between an RKHS HK and a Hilbert space of random

variables is one of being isometrically isomorphic rather than strict equality. Given

a mean-zero second order stochastic process X := {Xt}t∈T , the Hilbert space

L(X) := cl

{
n∑

j=1

αjXtj : tj ∈ T, αj ∈ R for j ∈ {1, ..., n}
}

〈X1, X2〉L(X) :=

∫
Ω

X1(ω)X2(ω)μ(dω) = E[X1X2]

with Ω a probability space with probability measure μ is called the Hilbert space

L(X) generated by the process X [20, p. 62]. In what follows, stochastic processes

will always assumed to be mean-zero if nothing to the contrary is mentioned.

Theorem 3.1.2 (Loewe representation theorem) The Hilbert space L(X) generated
by the second order stochastic process {Xt}t∈T on T is isometrically isomorphic to
the RKHSHK , K(s, t) = E[XsXt] ∀s, t ∈ T via (the extension of) the mappings

ψ : L(X) �
n∑

i=1

αiXti �→
n∑

i=1

αiK(ti, ·) ∈ HK (3.9)

ψ−1 : HK �
n∑

i=1

αiK(ti, ·) �→
n∑

i=1

αiXti ∈ L(X). (3.10)

A proof can be found in [20, p.65]. This indirect isometry argument is necessary

because — as [120] notes — it is impossible to construct Gaussian probability mea-

sures on infinite dimensional Hilbert spaces H directly. Classically, one follows

the construction proposed in [86, 87] and completes H w.r.t to the uniform norm

to create a slightly enlarged Banach space B on which Gaussian measures are de-

finable and directly related to the reproducing kernel of H (if it exists). Whereas

only then one might rigorously speak of having a probability distribution over the

function space B ⊃ H, it is conceptually convenient to speak of the likelihood p(f)
of f ∈ H

f ∈ H p(f) ∝ exp
(−‖f‖2H)

as then norm-minimization in H corresponds to minimum variance and maximum

likelihood estimation [124]. For clarifying comments and to provide intuition, we

will regularly argument as though H is furnished with a probability measure μ al-

though μ is in reality only defined on the closure ofH w.r.t. some norm. The author

hopes that this perspective is helpful even though it is not entirely accurate.

In finite dimensional cases, the isometric isomorphisms ψ and ψ−1 from theorem

3.1.2 have explicit representations in terms of covariance matrices and their in-
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verses. Denote by K the n × n matrix with entries (K)ij = K(ti, tj) and by K−1

its inverse. Then

ψ−1 : HK � f �→
n∑

i=1

n∑
j=1

Xti(K
−1)ij〈K(tj, ·), f〉HK

(3.11)

is the inverse to ψ.

Proof: If ψ−1 is defined as above, the one finds that ψ, ψ−1 are surjective and injec-

tive as

L(X) L(X)

HK

.................................................................................................................................................................................. ............

idL(X)
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................
............

ψ

........................................................................................................................................................................... .......
.....

ψ−1

ψ−1 ◦ ψ(Xtl)

= ψ−1[K(tl, ·)]

=
n∑

i=1

n∑
j=1

Xti(K
−1)ij〈K(ti, ·), K(tl, ·)〉HK

= Xtl ∀tl ∈ T

HK HK

L(X)

.......................................................................................................................................................................................................... ............
idHK

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................
............

ψ−1

........................................................................................................................................................................... .......
.....

ψ

ψ ◦ ψ−1[K(tl, ·)]

= ψ

(
n∑

i=1

n∑
j=1

Xti(K
−1)ij〈K(tj, ·), K(tl, ·)〉HK

)
= ψ(Xtl)

= K(tl, ·) ∀tl ∈ T
Since for all s, t ∈ T it holds that

〈Xs, Xt〉L(X) = K(s, t) = 〈K(s, ·), K(t, ·)〉HK
= 〈ψ(Xs), ψ(Xt)〉HK

〈K(s, ·), K(t, ·)〉HK
= K(s, t) = 〈Xs, Xt〉L(X) = 〈ψ−1[K(s, ·)], ψ−1[K(t, ·)]〉L(X)

and ψ, ψ−1 are both seen to be isometric as well.

For T = {t1, ..., tn} and denoting f ∈ Rn, (f)j = f(tj) and α ∈ Rn with X =∑n
j=1 αjXtj , the mappings are given by

ψ : X �→ Kα ψ−1 : f �→
n∑

j=1

(K−1f)iXti

This has immediate geometric relevance for the optimal estimation of random vari-

ables. Suppose a square integrable random variable X ∈ L2(Ω) is to be projected

onto the subspace L(X) generated by observations X1, ..., Xn. Then the
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minimum variance estimator X̂ satisfying

E[(X̂ −X)2] = ‖X̂ −X‖2L2(Ω) → min

is according to theorem 2.1.17.1 given by

X̂ = PL(X)X

where PL(X) is the orthogonal projection

from L2(Ω) onto its subspace L(X). As

follows from the rules governing projec-

tions (see 2.1.4) and figure 3.2,

X − X̂ = (I − PL(X))X ⊥ L(X).

Figure 3.2: Orthogonality relations for minimum

variance estimation.

Conversely, if ‖X− X̂‖L2(Ω), X̂ ∈ L(X) is supposed to be minimal, then X− X̂ ∈
L(X)⊥ since otherwise ‖X−X̂‖2L2(Ω) = ‖X−X̂‖2L(X)⊥+‖X−X̂‖2L(X)

and the last

term is ≥ 0. Therefore the minimum variance estimator X̂ ∈ L(X) for X ∈ L2(Ω)
must satisfy 〈X − X̂,Xtj〉L2(Ω) = 0 ∀Xtj spanning L(X). By the properties of the

isometric isomorphisms

〈X − X̂,Xti〉L2(Ω) = 0⇔ 〈ψ(X̂), K(ti, ·)〉HK
= ρX(ti)

with ρX(ti) = E[XXti ]. If ρX ∈ HK , this is the case iff X̂ = ψ−1ρX and the

estimation variance is ‖X̂‖2L(X)
= ‖ρX‖2HK

[20, p. 72]. If X = Xt and L(X) =

span {Xt1 , ..., Xtn}, then

X̂t = ψ−1ρX =
n∑

i=1

n∑
j=1

Xti(K
−1)ij〈K(tj, ·), ρx(·)〉HK

=
n∑

i=1

n∑
j=1

(K−1)ijK(tj, t)Xti

=
n∑

i=1

λiXti (3.12)

with λi =
∑n

j=1(K
−1)ijK(tj, t) is just the simple Kriging estimator as recorded

e.g. in [39, p. 151]. This shows that there is a relation between optimization in HK

and in L(X). It is summarized in the next theorem.

Theorem 3.1.3 Suppose L := L(X) is the Hilbert space generated by the mean-
zero second order process {Xt}t∈T with inner product 〈Xs, Xt〉L(X) = E[XsXt] =

K(s, t) ∀s, t ∈ T and HK is the corresponding RKHS. Let S(X) be the Hilbert
space generated by the random variables Xt1 , ..., Xtn ∈ L(X) and denote by ψ :
L → HK the isometric isomorphism from Loewe’s theorem. Then the following
ways to devise an optimal spatial estimator X̂t0 ∈ S(X) forXt0 ∈ L are equivalent.
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i) X̂t0 = argmin
X̂t0∈S(X)

‖X̂t0 −Xt0‖2L.

ii) X̂t0 ∈ S(X) solves 〈X̂t0 , Xti〉S(X) = K(t0, ti) for all Xti spanning S(X).

iii) f̂ = argmin
f∈HK ,f=

∑n
j=1 λjK(tj ,·)

‖f(·)−K(t0, ·)‖2HK
, X̂t0 = ψ−1f̂

iv) f̂ = argmin
f∈HK ,f(ti)=K(t0,ti)

‖f‖2HK
, X̂t0 = ψ−1(f)

They coincide with the simple Kriging estimator as known from the geostatistical
literature.

Proof: Straightforward computation reveals that all estimators have the same form.

A derivation of the optimizers i) and ii) and comments hinting at iv) can be found

in [39, p. 151] and [20, p. 72] and [20, p. 77] respectively; they are reproduced

below for the readers convenience. Denote by K the matrix with elements (K)ij =
K(ti, tj) and by K−1 its inverse. Let Kt0 ∈ Rn be the vector with entries (Kt0)j =
K(t0, tj) and λ = [λ1, ..., λn]

T the vector of coefficients.

i) Finding X̂t0 =
∑n

j=1 λjXtj to minimize ‖X̂t0 − Xt0‖2L(X)
is equivalent to

minimizing

‖X̂t0 −Xt0‖2L2(Ω) = ‖
n∑

j=1

λjXtj −Xt0‖2L(X)

=
n∑

i=1

n∑
j=1

λiλj〈Xti , Xtj〉L(X)

− 2
n∑

j=1

λj〈XtjXt0〉L(X) + 〈Xt0 , Xt0〉L(X)

= λTKλ− 2λTKt0 + σ2
0

Taking partial derivatives and setting them to zero produces λ = K−1Kt0 .

ii) The solution to 〈X̂t0 , Xti〉S(X) = K(t0, ti), X̂t0 ∈ S(x) is ψ−1[K(t0, ·)]. The

explicit formula for ψ−1 then leads to

ψ−1[K(t0, ·)] =
n∑

i=1

n∑
j=1

Xti(K
−1)ij〈K(tj, ·), K(t0, ·)〉HK

=
n∑

j=1

λjXtj λ = K−1Kt0

which is the same as the term derived for i).

iii) Since ψ : L(X) → HK is an isometry, f = ψ(X̂t0) minimizes

‖f(·) − K(t0, ·)‖2HK
iff ‖X̂t0 − Xt0‖2L(X)

is minimized by X̂t0 . Explicitly,
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f =
∑n

j=1 λjK(tj, ·) inserted into ‖f(·) − K(t0, ·)‖2HK
produces λTKλ −

2λTKt0 + σ2
0 which has a minimum at λ = K−1Kt0 .

iv) The constrained minimization ‖f‖2HK
→ min, f ∈ HK , f(ti) = K(t0, ti) can

be formulated with the help of Lagrangian multipliers μ ∈ Rn as

〈f, f〉HK
+ 2

n∑
i=1

μi (f(ti)−K(t0, ti))→ min

⇔λTKλ+ 2μT [Kλ−Kt0 ]→ min

where the representer theorem was used to express the minimizer f in terms

of the kernel. The corresponding SLAE has solution λ = K−1Kt0 .

The theorem establishes that minimum variance estimation of a random variable

Xt0 can be seen from different perspectives: As minimizing an error variance (i),

as an orthogonal projection onto a set of observed random variables (ii), as finding

an element with a closely aligned correlation structure in RKHS (iii), or as solving

a constrained energy minimization problem in RKHS (iv). When the underlying

process is Gaussian, minimum variance estimation, maximum likelihood estimation

and the formation of conditional expectation coincide [150].

Plugging in numbers xti into the estimator derived from the optimization problem

f̂(t) = argmin
f(ti)=K(t,ti),f(t)=

∑n
j=1 λjK(t,ti)

‖f‖2HK

one finds f̂(t) =
∑n

j=1 λjK(tj, t), λ = K−1Kt and consequently X̂t = ψ−1f̂ =∑n
j=1 λjXtj , λ = K−1Kt, i.e. x̂t = 〈K−1Kt, b〉Rn where b is the vector of obser-

vations (b)j = xtj . This is the same solution one would recover if one interpreted

HK itself as a Hilbert space of functions with a Gaussian measure on it in which

the negative log likelihood of a function f ∈ HK is given by c1‖f‖2HK
+ c2. One

would then solve

σx = argmin
Ax=b,x∈HK

‖x‖2HK

where A : HK → Rn is the linear operator of evaluation at points t1, ..., tn, b
is the vector of observed data b = [xt1 , ..., xtn ]

T and σx(t) now directly is an es-

timator for xt, t ∈ T . This follows trivially from any solution σx having form

σx(t) =
∑n

j=1 λjK(t, tj) according to the representer theorem and the fact that the

associated Lagrangian is

〈x, x〉HK
+ 2

n∑
i=1

μi

[
n∑

j=1

λjK(ti, tj)− bi

]
→ min

⇔λTKλ+ 2μT [Kλ− b]→ min
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The resulting SLAE has solution λ = K−1b which implies σx(t) =∑n
j=1(K

−1b)jK(tj, t) = 〈K−1b,Kt〉Rn . Since K is a symmetric positive semidef-

inite matrix, K−1 = (K−1)∗ and 〈K−1b,Kt〉Rn = 〈b,K−1Kt〉Rn which is the ex-

pression derived from optimization formulation iv). The objects σx are called inter-

polating splines and are covered in more generality in the next section.

Up until now only Gaussian probability distributions have been considered and in

the future it will often be assumed that some naturally occurring function can be

modelled as a Gaussian process. One may cite the following justifications for this.

1) The Gaussian probability distribution is the maximum entropy distribution

given only the first two statistical moments. If these come from observed data,

it is the probability distribution presupposing the least amount of additional

structure apart from what is observed.

2) Inference with random variables that are distributed according to joint Gaus-

sian laws can be reduced to linear algebraic manipulations involving covari-

ance matrices and observation vectors. This is convenient both computation-

ally and storage-wise and in contrast to inference procedures involving higher

order moments.

If the Gaussian process assumption is violated, the consequence is that the minimum

norm estimators are not maximum likelihood estimators anymore. Nonetheless,

they retain their property of having smallest expected square error.

3.1.2 Abstract splines for estimation

Instead of having as measurements available for estimation of f(·) ∈ H just a set of function
evaluations {f(ts)}ts∈Tsample it is also possible to have the measurements depending on f(·)
via a linear operator A : H → A. Similarly, it might be that the proper measure of energy
is not known for f but only for Bf where B : H → B is called Energy operator. A cer-
tain f∗ ∈ H satisfying f∗ = argminf∈H ‖Af − a‖2A + ‖Bf‖2B is then called an abstract
smoothing spline and it is clear that this framework contains previously covered methods like
Kriging as subcases when A is evaluation and B is the identity on H. Uniqueness and ex-
istence of solutions are not guaranteed anymore but under reasonable assumptions a closed
form solution can again be found and useful relationships regarding smoothing splines, inter-
polating splines and commutativity of linear operators with the problem formulation can be
established. Example calculations for tomography type problems will showcase the simplicity
and usefulness of abstract splines.

Definition 3.1.4 Let H,HA,HB be Hilbert spaces and denote by A ∈
B(H,HA), B ∈ B(H,HB) two bounded linear operators. For a ∈ HA, r ≥ 0,

the object

σf = argmin
f∈H

‖Af − a‖2HA
+ r‖Bf‖2HB

(3.13)

is called an abstract smoothing spline with measurement operator A, energy opera-

tor B and regularization parameter r [20, p. 116].

Example 14 Adjustment can be seen as a subcase of smoothing splines. Suppose
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in the smoothing spline

σf = argmin
f∈H

‖Af − b‖2HA
+ ‖Bf‖2HB

that H is the RKHS of functions of type f(·) =
∑n

j=1 cjgj(·) on S for example

by setting K =
∑n

j=1 gj ⊗ gj . If HA = Rnobs with covariance matrix ΣA, B :
HX → HB is the trivial operator that sends everything to zero, A is evaluation at

{sj}nobs

j=1 ⊂ S and G ∈ Rnobs ⊗ Rn is the matrix with entries (G)ij = gj(si), then

Ax = Gc and

Aσf = A

(
argmin

f∈H
‖Af − b‖2HA

)
= G

(
argmin
c∈Rn

‖Gc− b‖2HA

)
= G

(
GTΣ+

AG
)+
GTΣ+

Ab. (3.14)

Then Aσf are predictions equivalently derivable from the solution to an adjustment

problem in the coefficient vector c ∈ Rn with solution ĉ and σf =
∑n

j=1 ĉjgj(·). �
As just seen, the term ‖Af −a‖2HA

is similar to the expression ‖Af −a‖2Rn encoun-

tered in classical least squares. Both can be interpreted as penalizing deviations

between observations predicted by a model (Af) and the actual observations (a).
At the same time as minimizing this discrepancy, the term ‖Bf‖2HB

in the defi-

nition of abstract splines provides some intrinsic measure of energy for f that is

absent from least squares formulations. When f is a process driven by a differen-

tial equation, B often has concrete physical meaning and is related to the systems

Hamiltonian, e.g. B = Δ. From a stochastic perspective this could be considered as

jointly maximizing the likelihood of the residuals Af −a ∈ HA and of the function

f ∈ H as quantified by Bf ∈ HB. The relationship is illustrated in figure 3.3.

Under slightly less general conditions than the ones underlying definition 3.1.4, the

abstract smoothing spline equation can be solved uniquely.

Theorem 3.1.5 Let H = HK be an RKHS with RK K and HA = Rn with inner
product 〈u, v〉HA

= 〈Σ−1/2
A u,Σ

−1/2
A v〉Rn . Let A : HK → Rn consist of n linearly

independent linear functions l1, ..., ln : HK → R and B as in definition 3.1.4.

i) If kerA ∩ kerB = {0} and the range of the operator L : HK � f �→
(Af,Bf) ∈ HA ⊕HB is closed inHA ⊕HB, then the smoothing spline

σf = argmin
f∈HK

‖Af − a‖2HA
+ ‖Bf‖2HB

with measurement operatorA, energy operatorB and data a ∈ Rn exists and
is uniquely determined [21, p. 4].
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Figure 3.3: An interpretation of the smoothing spline formulation. Measurements a ∈ HA are known and should be close

to Af . The a priori likelihood of f ∈ H itself is not known but only the one for Bf ∈ HB . According to the explanations

given in the main text, the best f ∈ H is the one that minimizes the discrepancy Af − a and the energy Bf as measured

by the norms in the respective spaces HA and HB . In the above illustration, A is line integration and the energy of f is

quantified by measuring the size of its derivative. B is then representable in two equivalent ways as either differentiation

directly as on the right or as a canonical projection onto a Hilbert space of equivalence classes of functions that deviate only

by a constant with the differentiation operation built into the norm on HB . This is symbolized on the left half of the image

by equating one element of HB to an equivalence class of vectors in the base space H.

ii) The abstract smoothing spline is given by the expression [21, p. 51,p. 167]

σf =
n∑

i=1

λiliKB +
m∑
j=1

μjqj (3.15)

where the qj form a basis of kerB and KB is the reproducing kernel of
the semi-Hilbert space B̃ of functions in HK with inner product 〈f, g〉B̃ =
〈Bf,Bg〉HB

. The vectors λ = [λ1, ..., λn]
T , μ = [μ1, ..., μm]

T satisfy[
CK + ΣA Q
QT 0

] [
λ
μ

]
=

[
a
0

]
. (3.16)

The n× n matrix CK has entries (CK)ij = (A⊗AKB)ij = li⊗ ljKB and Q
is the n×m matrix with elements (Q)ij = liqj .

Theorem 3.1.5 is helpful in practice. If ΣA = 0 and B = I , it specializes to the

Kriging estimator defined by equation 3.12. The resulting spline has the property

that it also provides solutions to linearly perturbed problems in the sense that the

best estimator for Lf is Lσf if σf is the best estimator for f . This means that

for a bounded linear operator L : HK → Hg it is irrelevant if first f is estimated

optimally and L applied subsequently or Lf is estimated in a single step. We have

σLf = Lσf (3.17)

under reasonable construction of all participant entries. The proof is via straightfor-

ward computation comparing the estimation problems in table 3.1.
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According to theorem 3.1.5 the solution to the smoothing spline problem

σf = argmin
f∈Hf

‖ALf − a‖2HA
+ ‖f‖2Hf

is σf =
n∑

i=1

λiliLKf (·, ·) = aT [Cg + ΣA]
−1 liLKf (·, ·)

with the matrix Cg having entries (Cg)ij = liL⊗ ljLKf = li ⊗ ljKg. By the same

theorem, the solution to the smoothing spline problem

σg = argmin
g∈Hg

‖Ag − a‖2HA
+ ‖g‖2Hg

is σg =
n∑

i=1

μiliKg(·, ·) = aT [Cg + ΣA]
−1 liKg(·, ·)

with Cg and ΣA as before. Now, naming σg = σLf , one has

Lσf = aT [Cg + ΣA]
−1liL⊗ LKf = aT [Cg + ΣA]

−1liKg = σLf .

Estimating for example differentials or integrals of any noisily observed function f
is then possible simply by deriving the spline estimate σf for f and applying differ-

entiation or integration to it. One therefore does not have to leave the framework of

smoothing splines even if linearly transformed quantities are to be estimated.

Besides smoothing splines, one often encounters interpolating splines; solutions to

the problem

σf = argmin
f∈A−1a

‖f‖2HK
. (3.18)

With the same notation as in theorem 3.1.5 they have the solution σf =∑n
j=1 λjljK(·, ·) with λ = C−1

K a. If the RK K is the sum of two kernels,

K = K1 + K2, and consequently HK = HK1 ⊕ HK2 then σf can be written

as the sum of the two smoothing splines σf1 , σf2 as follows immediately from the

Table 3.1: Two related estimation problems

Problem To estimate Measured Penalized Data

a) f Lf via A f viaHf a = (AL)f
b) g = Lf g via A g viaHg a = A(Lf)

Comment Hf has reproducing kernel Kf andHg = HLf has RK Kg = L⊗ LKf .

A is made up of the linearly dependent linear functionals l1, ..., ln : Hg → R.
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closed form solutions of

σf1 = argmin
f1∈HK1

‖Af1 − a‖2CK2
+ ‖f1‖2HK1

=
n∑

j=1

λjljK1(·, ·)

σf2 = argmin
f2∈HK2

‖Af2 − a‖2CK1
+ ‖f2‖2HK2

=
n∑

j=1

λjljK2(·, ·).

In both formulations what is considered noise (Af − a) and what is considered

signal (f) are switched. In the first expression f1 is signal and f2 is noise and in the

second expression f1 is noise and f2 is signal implying that it is more appropriate to

call both f1 and f2 signals which simply are to be separated. As σf1 +σf2 = σf , the

interpolating spline can be said to be a superposition of a best guess for the signal

f1 and a best guess for the signal f2 — a smoothing spline is then nothing else

than the projection of σf ∈ HK1 ⊕ HK2 onto one of the subspaces. If we slightly

reinterpret σf as consisting of [σf1 , σf2 ] in the external direct sumHK1⊕eHK2 , then

one may write PHK1
σf = σf1 and PHK2

σf = σf2 where PHK1
, PHK1

are orthogonal

projections ontoHK1 andHK2 respectively.

Abstract splines have applications in statistics and the physical sciences, see e.g.

[203]. To illustrate the possibilities, three problems with varying degrees of gener-

ality are outlined together with an analysis of their solution in subsection 3.3.1.

• The simple problem of denoising total station measurements by solving

σd = argmin
d∈HD

‖Ad− a‖2Rn + ‖d‖2HD

where A is evaluation, d is deformation, a is data and HD is an RKHS of

smooth temporal functions.

• The tomography type problem of inferring a spatial distribution of changes in

refractive index nr from total station measurements towards stable prisms by

solving

σnr = argmin
nr∈HNr

‖Anr − a‖2Rn + ‖nr‖2HNr

where A is line integration, a is data and HNr is an RKHS of smooth spatial

functions.

• The problem of inferring the deformation of a clamped elastic string under

variable load from noisy measurements by solving

σd = argmin
d∈HD

‖Ad− a‖2Rn + ‖Bd‖2HB

where A is evaluation, d is deformation, and a is data. The operator B is

the Laplacian and HD,HB are RKHS of functions related to the underlying

differential equations.
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3.1.3 Hilbert space constructions

Hilbert spaces seem to provide a model of only a very restricted class of processes because
of the initial interpretation of an RKHS as a space of scalar functions on an index set T . This
limitation will be shown to be one of intuition only as the constructions carried out abstractly
in subsection 2.1.3 are translated into an RKHS setting providing a correspondence between
linear algebraic operations on vector spaces and bilinear operations on positive definite ker-
nels. By investigating the direct sum and tensor product of Hilbert spaces, both the combina-
tion of RKHS to a new one and the decomposition of a given RKHS into simpler ones become
feasible operations. This last statement implies that a decomposable RKHS’ elements are
interpretable as vector valued; consequently also the scalar abstract splines σ ∈ HK may be
seen in that way and σ ∼= (u, v) ∈ H1 ⊕H2 is then called vector spline. Tensor splines are
a computationally convenient way to handle spatiotemporal problems which normally can
not be solved in a reasonable amount of time due to the size of the involved kernel matrices
and the cost of inverting them. Their implementation is briefly discussed and an example
illustrates the effect of the tensor product factorization on prediction accuracy and runtime.

§ Direct sums

LetHA,HB be two reproducing kernel Hilbert spaces of functions on T with inner

products 〈·, ·〉HA
and 〈·, ·〉HB

and kernels KA and KB. Recall that there are two

types of algebraic direct sums, the external and internal direct sums as denoted by

⊕e and ⊕i respectively [10, p. 92].

He = HA ⊕e HB := {(a, b) : a ∈ HA, b ∈ HB} (3.19)

Hi = HA ⊕i HB := {a+ b : a ∈ HA, b ∈ HB} (3.20)

with the inner product 〈f, g〉He = 〈af , ag〉HA
+ 〈bf , bg〉HB

for the elements f =
(af , bf ), g = (ag, bg) ∈ He. He is a Hilbert space [21, p. 157] and HA ⊥ HB are

orthogonal subspacesHA �He,HB �He. If one introduces the map

ψ : He � (a, b) �→ a+ b ∈ Hi

and denotes by N the nullspace kerψ �He, then N has the elements

N = {(a, b) ∈ He : a+ b = 0} = {(a,−a) : a ∈ HA ∩HB}.

By theorem 2.1.11 one finds N⊥ ∼= He/ kerψ �He and the restriction ψ : N⊥ →
Hi is one-to-one allowing the definition of an inner product on Hi making it a

Hilbert space as well [21, p. 24] via

〈f, g〉Hi
= 〈ψ−1

(f), ψ
−1
(g)〉N⊥ = 〈(af , bf ), (ag, bg)〉N⊥

= 〈af , ag〉HA
+ 〈bf , bg〉HB

.

This establishes Hi
∼= N⊥ ∼= He/ kerψ and we may always interpret the internal

direct sum Hi : HA ⊕i HB containing elements a + b, a ∈ HA, b ∈ HB as a

subspace of the vector valued external direct sum He := HA ⊕e HB containing

elements of the form (a, b), a ∈ HA, b ∈ HB. As a direct consequence, if

HA ⊥ HB, then kerψ = {0} andHe
∼= Hi.
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Lemma 3.1.6 If X, Y,H1,H2 are Hilbert spaces and ϕ1 : X → H1, ϕ2 : Y →
H2 are isometric isomorphisms then ϕ := ϕ1 ⊕ ϕ2 : X ⊕e Y � (x, y) �→
(ϕ1(x), ϕ2(y)) ∈ H1 ⊕e H2 is also an isometric isomorphism.

Proof: Denote by Xe and He the external direct sums X ⊕e Y and H1 ⊕e H2

respectively. They are Hilbert spaces. As ∀q ∈ He, q = (f1, f2) and ϕ1, ϕ2

are isometries, ∃x ∈ X and y ∈ Y s.t. ϕ1(x) = f1 and ϕ2(y) = f2. Then

(ϕ1(x), ϕ2(y)) = ϕ ((x, y)) = (f1, f2) = q and ϕ is surjective. The map ϕ is injec-

tive because if u1, u2 ∈ Xe and u1 �= u2 then u1 − u2 = (Δx,Δy) and Δx or Δy
(or both) are �= 0. Consequently ϕ(u1 − u2) = (ϕ1(Δx), ϕ2(Δy)) �= 0 since the

components ϕ1, ϕ2 are injective and ϕ is therefore injective. For any u1, u2 ∈ Xe

〈u1, u2〉Xe = 〈
[
x1
y1

]
,

[
x2
y2

]
〉Xe

= 〈x1, x2〉X + 〈y1, y2〉Y
〈ϕ(u1), ϕ(u2)〉He = 〈

[
ϕ1(x1)
ϕ2(y1)

]
,

[
ϕ1(x1)
ϕ2(y2)

]
〉He

= 〈ϕ1(x1), ϕ1(x2)〉H1 + 〈ϕ2(y1), ϕ2(y2)〉H2

= 〈x1, x2〉X + 〈y1, y2〉Y
and both of the inner products are equal because the individual components ϕ1, ϕ2

of the map ϕ are isometries. This establishes Xe
∼= He via the isometric isomor-

phism ϕ = ϕ1 ⊕ ϕ2.

An analogous theorem does not hold for internal direct sums. If ϕ1 : X → H1, ϕ2 :
Y → H2 are isometries, X ⊕i Y and H1 ⊕i H2 are not necessarily isomorphic via

ϕ = ψHϕ1 ⊕ ϕ2ψ
−1

X if X ⊥ Y butH1 ∩H2 �= {0} and consequentlyH1 �⊥ H2.

This can be seen as follows: Let Xi := X ⊕i Y,Xe := X ⊕e Y,Hi := H1 ⊕i H2

and letHe be the external direct sumH1 ⊕e H2.
Take a nontrivial element 0 �= f ∈ H1 ∩ H2.

Construct the two elements u1 = ϕ−1
1 (f) ∈ X

and u2 = ϕ−1
2 (f) ∈ Y . Then 〈u1, u2〉Xi

=

〈ψ−1

X (u1), ψ
−1

X (u2)〉Xe = 〈(u1, 0), (0, u2)〉Xe =

0 since X ⊥ Y and ψ
−1

X is an isometry between

kerψ⊥
X = Xe and Xi. On the other hand we

have

Xi

Xe He

Hi
............................................................................................................
.....
.......
.....

ψ
−1

X

................................................................................................................ ............
ϕ1 ⊕ ϕ2

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

............

ψH

〈ϕ(u1), ϕ(u2)〉Hi
= 〈(ψH[(ϕ1(u1), 0)], ψH [(0, ϕ2(u2)]〉Hi

= 〈f, f〉Hi
�= 0

since f �= 0 and 〈·, ·〉Hi
is an inner product. This establishes the existence of ele-

ments u1, u2 s.t. 〈u1, u2〉Xi
�= 〈ϕ(u1), ϕ(u2)〉Hi

.

Using lemma 3.1.6 and the previous comments, it is straightforward to find the
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relationships between internal and external direct sums of spaces generated by

stochastic processes and their corresponding reproducing kernel Hilbert spaces.

Theorem 3.1.7 Let X = {Xt}t∈T and Y = {Yt}t∈T be two independent mean-zero
second order stochastic processes on T and denote by Z the composite stochastic
process with Zt = Xt + Yt ∀t ∈ T . Then

i) L(Z) ∼= HKZ
∼= HKX

⊕i HKY

ii) L(X)⊕i L(Y ) ∼= L(X)⊕e L(Y ) ∼= HKX
⊕e HKY

where L(X),L(Y ) and L(Z) are the Hilbert spaces generated by the respective
stochastic processes and HKZ

is the RKHS with kernel KZ(s, t) = KX(s, t) +
KY (s, t) ∀s, t ∈ T .

Proof: i) For two random variables Zs, Zt using the assumption that

Xs

∐
Yt ∀s, t ∈ T , it holds that E[ZsZt] = E[(Xs + Ys)(Xt + Yt)] =

E[XsXt] + E[YsYt] = KX(s, t) + KY (s, t) = KZ(s, t). By Loewes theorem

L(Z) = HKz . Since KZ = KX +KY , theorem 2.3.6 pertaining to sums of kernels

forming new kernels establishes that

HKZ
= {f1 + f2 : f1 ∈ HKX

, f2 ∈ HKY
}

‖f‖HKZ
= min

f=f1+f2,f1∈HKX
,f2∈HKY

√
‖f1‖2HKX

+ ‖f2‖2HKY

is just the internal direct sum HKX
⊕i HKY

. This is due to the fact that ‖f‖HKZ

is attained for (f1, f2) ∈ kerψ⊥
H, i.e. ‖f‖HKZ

= ‖ψ−1

H f‖HKX
⊕eHKY

where ψH :

HKX
⊕e HKY

� (f, g) �→ f + g ∈ HKX
⊕i HKY

and ψ
−1

H is the restriction onto

kerψ⊥
H, see [20, p. 25].

ii) Suppose that ∀s, t ∈ T Xs

∐
Yt. Then E[XsYt] = 0 and L(X)∩L(Y ) = {0} as

for subsets of L2(Ω) one has ∀X ∈ L(X), Y ∈ L(Y )

‖X − Y ‖L2(Ω) = 〈X − Y,X − Y 〉L2(Ω) = ‖X‖2L2(Ω) + ‖Y ‖2L2(Ω).

Since X = Y ⇔ ‖X − Y ‖L2(Ω) = 0, this implies X = Y = 0. Then clearly

L(X)⊕e L(Y ) ∼= L(X)⊕i L(Y ) since N = kerψL = {0} for

ψL : L(X)⊕e L(Y ) � (X, Y ) �→ X + Y ∈ L(X)⊕i L(Y )

and N⊥ was isometrically isomorphic to L(X) ⊕i L(Y ) via ψL. By lemma 3.1.6

L(X) being isometrically isomorphic to HKX
and L(Y ) being isometrically iso-

morphic toHKY
implies L(X)⊕e L(Y ) ∼= HKX

⊕e HKY
.

The theorem implies that a superposition {Zt}t∈T = {Xt + Yt}t∈T of independent

stochastic processes {Xt}t∈T and {Yt}t∈T has the RKHS representation HK with

K = KX +KY the reproducing kernel ofHK
∼= HKX

⊕i HKY
. One can therefore

perform optimal estimation of Zt by manipulation of HK and project elements f
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of HK onto the component spaces HKX
and HKY

to perform estimation of Xt, Yt
given measurements of Zt only. The two expressions

L(Z) = span {Xt + Yt : t ∈ T}
L(X)⊕e L(Y ) = {(X, Y ) : X ∈ L(X), Y ∈ L(Y )}

are different in the sense that the bottom one includes the top one and may be

interpreted as vector valued opening up the possibility to extend the estimation

framework from scalar functions toward vector valued ones.

Example 15 Let X ∼ N (0, σ2
X), Y ∼ N (0, σ2

Y ) be independent second order

random variables and define Z = X + Y . They can be identified with stochastic

processes on a one-element set T . The corresponding RKHS are

HKX
= R KX = σ2

X 〈f, g〉HKX
=
fg

σ2
X

HKY
= R KY = σ2

Y 〈f, g〉HKY
=
fg

σ2
Y

.

The external direct sum He = HKX
⊕ HKY

is given as R2 and for f = (f1, f2) ∈
He, g = (g1, g2) ∈ He the inner product is

〈f, g〉He = 〈f1, g1〉HKX
+ 〈f2, g2〉HKY

=
fg

σ2
X

+
fg

σ2
Y

.

He is the space of two dimensional vectors that are outcomes of sampling from

(X, Y ) ∈ L(X) ⊕e L(Y ) and the negative log likelihood of f ∈ He is (bar some

constants) given as ‖f‖2He
.

The map ψH maps f = (f1, f2) ∈ He to f1 + f2. Its kernel is given as N =
kerψH = {(a,−a) : a ∈ R} �He. The orthogonal complement is

N⊥ = {(f, g) ∈ He : 〈f, a〉HKX
− 〈g, a〉HKY

= 0 ∀a ∈ R}
= {(f, g) ∈ R2 :

fa

σ2
X

− ga

σ2
Y

= 0 ∀a ∈ R}
= {(q, qσ2

Y σ
−2
X ) : q ∈ R}.

Since Hi = HKX
⊕i HKY

is defined as {f + g : f ∈ HKX
, g ∈ HKY

}, clearly

Hi
∼= R ∼= N⊥ with the inner product

〈f, g〉Hi
= 〈ψ−1

H f, ψ
−1

H g〉He

= 〈
[
f 1

1+c

f c
1+c

]
,

[
g 1
1+c

g c
1+c

]
〉He c =

σ2
Y

σ2
X

=

(
1

1 + c

)2

〈f, g〉HKX
+

(
c

1 + c

)
〈f, g〉HKX
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where ψ
−1

H is the inverse of ψH : N⊥ � (f1, f2) �→ f1 + f2 ∈ Hi and given by

ψ
−1

H (f) =

[
f

(
σ2
X

σ2
X + σ2

Y

)
, f

(
σ2
Y

σ2
X + σ2

Y

)]
∀f ∈ Hi

∼= R.

Simplification yields

〈f, g〉Hi
= fg

[
σ2
X

(σ2
X + σ2

Y )
2
+

σ2
Y

(σ2
X + σ2

Y )
2

]
=

fg

σ2
X + σ2

Y

= 〈f, g〉HKZ

where KZ = E[ZZ] = E[(X + Y )(X + Y )] = σ2
X + σ2

Y = KX +KY . Therefore

Hi
∼= HKZ

and by Loewe’s theorem also Hi
∼= L(Z). If for example σ2

X = 1 and

σ2
Y = 2 then

i) ‖z‖2Hi
= z(σ2

X + σ2
Y )

−1 is proportional to the negative log probability that

Z = z.

ii) (x, y) = (zσ2
X(σ

2
X + σ2

Y )
−1, zσ2

Y (σ
2
X + σ2

Y )
−1) = ψ

−1

H (z) are the best

guesses for x and y given a specific value for Z = z, i,e, the ones satisfy-

ing ‖x‖2HKX
+ ‖y‖2HKY

→ min among all x, y s.t. x+ y = z.

These relations are illustrated in figure 3.4 �

Figure 3.4: The elements of HKX
⊕e HKY

are two dimensional vectors. Since HKX
⊕e HKY

∼= L(X) ⊕e L(Y ) one

may think of them as randomly sampled. The space decomposes into two orthogonal complements N and N⊥, the subspace

N⊥
�He is isometrically isomorphic to Hi and its members are best guesses for X and Y given Z.

The formal definition of internal and external direct sums allows to clarify the

relations between interpolating and smoothing splines in a lemma.

Lemma 3.1.8 Suppose σf and σf1 , σf2 are solutions to the interpolating and
smoothing spline problems

σf = argmin
f∈A−1a

‖f‖2H1⊕iH2
σfj = argmin

fj∈Hj

‖Afj − a‖2AHKj̄
+ ‖fj‖2Hj
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for j = 1, 2, j̄ = 3 − j where a ∈ Rn is a data vector, the measurement opera-
tor A : H1 ⊕i H2 → Rn is composed of n linearly independent linear functionals
l1, ..., ln and H1,H2 are RKHS with RK K1, K2. Then σfj is the orthogonal pro-
jection PHKj

σf of σf if one considers σf as injected into the external direct sum
H1 ⊕e H2.

Proof: Denote, as before, by ψ : H1 ⊕e H2 → H1 ⊕i H2 the addition mapping

(f1, f2) to f1 + f2 and use the abbreviations He,Hi for the external and internal

direct sums. Define q = (σf1 , σf2) ∈ He. If ψ is the restriction of ψ onto kerψ⊥,

then ψ
−1

exists. The solutions for σf , σf1 and σf2 are given by the terms

σf =
n∑

j=1

λjlj(K1 +K2) σf1 =
n∑

j=1

λjljK1 σf2 =
n∑

j=1

λjljK2

where the vector λ of coefficients is equal for all expressions, see equation 3.15.

Clearly ψq = σf . Since ψ
−1
(σf ) is the unique element of kerψ⊥

�He such that

ψ ◦ ψ−1
σf = σf it remains to show that q ∈ kerψ⊥ to prove that q = (σf1 , σf2) =

ψ
−1
σf . For this, notice that kerψ = {ne = (n,−n) : n ∈ H1 ∩H2} is closed and

〈q, ne〉He = 〈σf1 , n〉H1 − 〈σf2 , n〉H2 = 0.

This follows from the fact that n ∈ H1 ∩H2 and K1, K2 are both reproducing for n
under the inner products 〈·, ·〉H1 and 〈·, ·〉H2 as then

〈(ljK1(·, ·), n〉H1 = 〈
∞∑
i=1

λMi (ljϕi(·))ϕi(·), n(·)〉H1 = lj

∞∑
i=1

λMi ϕi〈ϕi(·), n(·)〉H1

= lj〈K1, n〉H1

= ljn

with K1 =
∑∞

i=1 λ
M
i ϕi(·)ϕi(·) the Mercer decomposition of the kernel K1. The

same steps lead to 〈ljK2(·, ·), n(·)〉H2 = ljn. Then

〈σf1 , n〉H1 − 〈σf2 , n〉H2 =
n∑

j=1

λj〈ljK1, n〉H1 −
n∑

i=1

λi〈liK2, n〉H2

=
n∑

j=1

λj(ljn− ljn)

= 0

and q = (σf1 , σf2) ∈ He is the unique element ψ
−1
σf . It is in this sense that a

smoothing spline is built from orthogonal projections of an interpolating spline as

σf1 = ψPH1ψ
−1
σf (3.21)
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σf2 = ψPH2ψ
−1
σf (3.22)

where PH1 , PH2 are the orthogonal projections inH1 ⊕e H2.

Remark Often we will not specifically mention the map ψ translating betweenH1⊕i

H2 and kerψ⊥
�H1 ⊕r H2 and just call σf1 , σf2 orthogonal projections of σf onto

H1 andH2. This is to be understood formally in the sense of the above equations.

The notion of a quotient space was introduced already in subsection 2.1.3. Quotient

spaces of RKHS can be made into RKHS again [21, p. 30]. If one defines a semi-

inner product 〈·, ·〉 for elements ofHK , e.g. via

〈f, g〉 = 〈Bf,Bg〉HK
B ∈ B(HK)

the resultant seminorm | · | is zero for elements of kerB =: P and the semi-inner

product 〈·, ·〉 is denoted by 〈·, ·〉P to reflect this. If for any functional l ∈ H∗
K ,

lKp ∈ HK and for any l ∈ H∗
K s.t. l(f) = 0 ∀f ∈ P the restricting reproducing

property l(f) = 〈lKP , f〉P holds, then KP is called a semi-reproducing kernel

[21, p. 30]. If B = I , then KP is simply the reproducing kernel K of HK ;

otherwise KP might be different. Since the case B = I will be most common,

semi-reproducing kernels will only be used sporadically and a detailed discussion

is avoided here apart from an instructive example in which the energy operator

B enables unpenalized estimation of a constant mean in an adjustment-like way.

More can be found in [21, pp. 26-31] and [20, pp. 40-42].

Example 16 Suppose HK is an RKHS of functions on T = [0, 1] with RK K
such that H0, the Hilbert space of finite constants, is a subspace of HK and split

HK = H0 ⊕ H1 where the sum is orthogonal and H1 = HK/H0. Denote by

PH1 the orthogonal projection onto H1. From this, build the seminorm | · |H0 with

nullspaceH0 and find

‖PH1f‖2HK
=: |f |2H0

= ‖[f ]‖2Hk/H0
.

The semi-inner product is 〈f, g〉H0 = 〈PH1f, PH1g〉HK
. The reproducing kernel for

the restricted set f ∈ H1 with semi-inner product 〈·, ·〉H0 is then still K as ∀f ∈ H1

f(s) = 〈f(·), K(s, ·)〉HK
= 〈P ∗

H1
PH1f(·), K(s, ·)〉HK

= 〈PH1f(·), PH1K(s, ·)〉HK

= 〈f(·), K(s, ·)〉H0 .

The solution to the interpolation problem with energy operator PH1 and interpolat-

ing conditions f(ti) = ai, i = 1, ..., n is then simply

σf =
n∑

i=1

λiK(ti, ·)[
λ
μ

]
=

[
CK F
F T 0

]−1 [
a
0

]
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with the matrix (CK)ij = K(ti, tj), a ∈ Rn the data and F ∈ Rn a vector of ones.

If for a certain t0 ∈ T , the vector [K(t1, t0), ..., K(tn, t0)]
T ∈ Rn is denoted by c,

the explicit solution is

λ = C−1
K

(
a− F (F TC−1

K F )−1F TC−1
K a
)

σf (t0) = cTC−1
K

(
a− F (F TC−1

K F )−1F TC−1
K a
)
. (3.23)

But this is just the ordinary Kriging solution [43] consisting of estimating a constant

mean with a best linear unbiased estimator (BLUE) and performing simple Kriging

on the residuals. The statement generalizes and introducing an energy operator PH1

with nullspaceH0 of functions g1, ..., gm allows g1, ..., gm to be chosen without any

penalization leading to the BLUE for the coefficients of g1, ..., gm [20, p. 89]. �

§ Vector splines

To extend the theory valid for the scalar case (spline σ : T → R) to apply also

to vector valued functions, only a few modifications are necessary. They require

primarily internal and external direct sums as well as quotient space constructions

and in analogy to the real-valued case allow the derivation of a formula suitable for

optimal estimation of a spline function σ : T → Rd based on measurements of Aσ
where optimality is quantified by the energy operator via ‖Bσ‖HB

. The class of

functions σ : T → Rd includes trajectories and vector fields. The theory is due

to Bezhaev and Vasilenko, whose chapter on vector splines [21, pp. 157-174] is

condensed in what follows to only cover the basic principles of construction and

solution. Recall the definition of abstract smoothing and interpolating splines and

denote by ⊕ the external direct sum.

If {HKj
}ns
j=1 is a sequence of reproducing kernel Hilbert spaces with RK Kj ,

then H =
⊕ns

j=1HKj
is a Hilbert space and each f ∈ H may be written as

f = (f1, ..., fn) for fj ∈ HKj
, j = 1, ..., ns The associated inner product is

〈f, g〉H =
ns∑
j=1

〈fj, gj〉HKj

where 〈·, ·〉HKj
denotes the inner product in HKj

. For HKj
, j = 1, ..., ns introduce

now the semi inner products 〈, ·, ·〉Pj
with Pj �HKj

. For the semi-inner product,

positive definiteness does not hold and 〈f, f〉Pj
= 0 does not imply f = 0 but

merely f ∈ Pj . Therefore if f, g ∈ HKj
then f = f0 + f⊥

0 where f0 ∈ P⊥
j and

f⊥
0 ∈ Pj with the same decomposition holding for g and

〈f, g〉Pj
= 〈f0 + f⊥

0 , g0 + g⊥0 〉Pj
= 〈f0, g0〉Pj

= 〈f0, g0〉HKj
.

An equivalent way of writing this is via quotient spaces. Since Pj �HKj
,HKj

/Pj
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is a Hilbert space of equivalence classes. For all f, g ∈ HKj
,

〈[f ], [g]〉HKj
/Pj

= 〈f0, g0〉HKj
‖[f ]‖2HKj

/Pj
= inf

g∈Pj

‖f + g‖2HKj

are the corresponding inner products and norms on the quotient spaces HKj
/Pj .

The maps [·] : HKj
→ HKj

/Pj are the canonical projections. If one denotes by P
the sum P1 ⊕ ...⊕ Pns =

⊕ns

j=1 Pj and defines for H =
⊕ns

j=1HKj
the semi-inner

product

〈f, g〉P =
ns∑
j=1

〈fj, gj〉Pj
(3.24)

thenH is a semi-Hilbert space w.r.t. 〈·, ·〉P andH/P ∼=⊕ns

j=1HKj
/Pj is the corre-

sponding quotient space with inner product 〈[f ], [g]〉H/P =
∑ns

j=1〈[fj], [gj]〉HKj
/Pj

.

Within this framework, one can solve the estimation of vector valued quantities.

Theorem 3.1.9 The solution to the interpolating vector spline equation

σf = argmin
f∈H,f∈A−1a

‖[f ]‖2H/P (3.25)

for A : H � f �→ [l1(f), ..., ln(f)]
T ∈ Rn and P finite dimensional exists and is

unique. It has the form σf = (σf1 , ..., σfn) with

σfi(·) =
n∑

j=1

λjljiKi(·, ·) +
dimPi∑
j=1

μjiqji(·) (3.26)

where qji is the j-th element of a basis for Pi, lji is the linear functional defined by
lj(f) =

∑n
i=1 lji(fi) and λ, μ1, ..., μns satisfy⎡⎢⎢⎢⎣

Σ1 + ...+ Σns Q1 · · · Qns

QT
1 0 · · · 0
...

...
...

QT
ns

0 · · · 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
λ
μ1
...
μns

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a
0
...
0

⎤⎥⎥⎥⎦ . (3.27)

The matrices Qm contain the elements (Qm)ij = limqjm and Σm is the matrix with
entries (Σm)ij = limljmK

Pm
m where the KPm

m are the semi-reproducing kernels of
the spacesHKm/Pm.

The original statement and a proof can be found in [21, p. 160]. If eachHKj
is itself

composite, i.e HKj
= HXj

⊕ HYj
, smoothing splines can be found by projecting

the interpolating spline orthogonally onto the spaces HXj
or HYj

in accordance to

lemma 3.1.8. Some exemplary results are plotted in figure 3.5.
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Figure 3.5: Exemplary interpolating splines in two and three dimensions. The circles indicate measurements which were

interpolated using the formulas in theorem 3.1.9 and a squared exponential kernel. The interpolating spline was evaluated on

a regular grid and has the form σ : T → F , where from left to right (T ⊂ R, F ⊂ R2), (T ⊂ R, F ⊂ R3), (T ⊂ R2, F ⊂
R2) and (T ⊂ R2, F ⊂ R3).

§ Implementation of tensor splines

Tensor product decomposition of the underlying RKHS H⊗
Z enables factorization

of the covariance matrices necessary to derive the estimator. We introduce some

notation that will help in dealing with the case whereH⊗
Z = Hs

Z ⊗Ht
Z andHs

Z ,Ht
Z

are themselves RKHS that are further decomposable. For the moment the reader

may interpret the setup as one concerned with signal separation of spatiotemporal

functions on the domain S × T with S, T and superscripts s, t denoting space and

time respectively. Set

H⊗
X = Hs

X ⊗Hs
X H⊗

Y = Hs
Y ⊗Ht

Y H⊗
Z = Hs

Z ⊗Ht
Z

Hs
Z = Hs

X ⊕Hs
Y Ht

Z = Ht
X⊕ Ht

Y (3.28)

with corresponding reproducing kernels Ks
X , K

t
X , K

s
Y , ... where we will also write

HKs
X

= Hs
X when the explicit dependence of the RKHS on the kernels is to be

emphasized. Furthermore denote by Ξu
∧ and Ξu

∼, u = s, t the solution operators for

the interpolating and smoothing spline equations, i.e.

σu
z = argmin

z∈(Au)−1au
‖z‖2Hu

X⊕Hu
Y

=:Ξu
∧a

u (3.29)

σu
x = argmin

x∈Hu
X

‖Aux− au‖2AuHu
Y
+ ‖x‖2Hu

X
=:Ξu

∼a
u (3.30)

where Au : Hu
Z → Rnu are the measurement operators and AuHu

Y := HAu⊗AuKu
Y

.

The next theorem provides a way of inferring a splines’ expansion coefficients

λ that is both computationally efficient and not too taxing on the memory. It

furthermore clears up the relationship between interpolating and smoothing splines

that are either only spatial or temporal and jointly spatiotemporal splines.

Theorem 3.1.10 Let the notation be as introduced above. Then

I The spatiotemporal tensor product smoothing spline σ⊗
X

σ⊗
X = argmin

x∈H⊗
X

‖As ⊗ At︸ ︷︷ ︸
A

x− a‖2
A[H⊗

Z/H⊗
X ]

+ ‖x‖2H⊗
X

(3.31)
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is just an orthogonal projection of the spatiotemporal tensor interpolating
spline and we have

Ξ⊗
∼ = Ξs

∼ ⊗ Ξt
∼ = P s

X ⊗ P t
XΞ

s
∧ ⊗ Ξt

∧ = P⊗
XΞ⊗

∧

where Ξ⊗
∼ : Rns ⊗ Rnt → H⊗

X is the solution operator for the tensor spline
3.31, P s

X and P t
X are orthogonal projections onto Hs

X and Ht
X respectively

and Ξ⊗
∧ is the tensor product of the solution operators of the separate spatial

and temporal interpolation problems as defined in 3.29

II The smoothing spline σ⊗
X(u, v) for any u ∈ S, v ∈ T can be given explicitly as

a superposition of linear operators As, At applied to the appropriate kernel
functions with their second arguments fixed to s and t.

σ⊗
X(u, v) =

ns∑
i=1

nt∑
j=1

λij(A
sKs

X(·, u))i(AtKt
X(·, v))j

λ⊗ = (Σs
X + Σs

Y )
−1 ⊗ (Σt

X + Σt
Y

)−1
a (λ⊗)ij = λij

The data a ∈ Rns ⊗ Rnt are assumed to lie on a regular grid in S × T
as the measurement operator A factorizes into two parts As ⊗ At. The ma-
trices Σu

q := Au ⊗ AuKq for q = X, Y and u = s, t are the covariance
matrices induced by the linear operator Au acting on elements of Hu

q , i.e.
Σu

q = E[Auq ⊗ (Auq)∗].

III The coefficient tensor λ⊗ ∈ Rns ⊗ Rnt may be calculated via the matrix
product

λ⊗ = (Σs
X + Σs

Y )
+ a
(
Σt

X + Σt
Y

)+
when the data a is assembled as a matrix a ∈ Rns ⊗ Rnt . If the cor-
responding spline σ⊗

X is to be evaluated on a regular grid, say σeval
X ={

σ⊗
X(s

eval
i , teval

j )
}neval

s neval
t

i=1,j=1
, then

σeval
X = (Qs)∗ λ⊗Qt (3.32)

(Qs)ij = (AsKs
X(·, seval

j ))i
(
Qt
)
ij
= (AtKt

X(ti, t
eval
j ))i.

IV The worst case computational complexity to calculate the full tensor σeval
X is

approximately n3
s+n

3
t +n

2
snt+n

2
tns+n

eval
s nsnt+n

eval
s ntn

eval
t when using the

formulas expounded in III. The naive implementation without tensor product
factorization roughly has worst case computational complexity of (nsnt)

3 +
neval
s neval

t nsnt.

Remark It is worth noting that tensorsplines are not more general than ordinary

splines. They are more suitable for large scale computations though, as problem

structure is used to simplify, or at least speed up, the solution of the SLAE’s arising

during their evaluation.
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Proof: I The space H⊗
X has RK Ks

XK
t
X =: K⊗

X and if A is written as l1, ..., ln
then A[H⊗

Z/H⊗
X ] has as kernel the matrix CZ/X with entries

(CZ/X)ij =
(
A⊗ A

[
(Ks

X +Ks
Y )(K

t
X +Kt

Y )−K⊗
X

])
ij

=
(
A⊗ A

[
Ks

XK
t
Y +K⊗

Y +Ks
YK

t
X

])
ij

= li ⊗ lj
[
Ks

XK
t
Y +K⊗

Y +Ks
YK

t
X

]
If the matrix A ⊗ AK⊗

X is denoted by CX then an alternative formulation of

equation 3.31 is σ⊗
X = argmin

x∈H⊗
X

‖Ax−a‖2CZ/X
+ ‖x‖2H⊗

X

to which the solution

is given as

σ⊗
X =

n∑
j=1

λjljK
⊗
X λ = (CZ/X + CX)

−1a

=
[
l1K

⊗
X , ..., lnK

⊗
X

]
(CZ/X + CX)

−1︸ ︷︷ ︸
Ξ⊗∼

where the operator Ξ⊗
∼ : Rn → H⊗

X is the solution operator for the tensor

smoothing spline. Now if one just splits the space H⊗
Z = Hs

Z ⊗Ht
Z into two

parts

H⊗
Z = Hs

X ⊗Ht
X︸ ︷︷ ︸

H⊗
X

⊕iHs
X ⊗Ht

Y ⊕i Hs
Y ⊗Ht

X ⊕i Hs
Y ⊗Ht

Y︸ ︷︷ ︸
H⊗

Z/X

then lemma 3.1.8 asserts that σ⊗
X = PH⊗

X
σ⊗
Z where PH⊗

X
is the orthogonal

projection onto H⊗
X as interpreted in lemma 3.1.8 and σ⊗

Z is the interpolating

spline

σ⊗
Z = argmin

z∈A−1a,z∈H⊗
Z

‖z‖2H⊗
Z
.

Then σ⊗
Z has the explicit representation

σ⊗
Z =

n∑
j=1

λjljK
⊗
Z λ = (CZ/X + CX)

−1a

=
[
l1K

⊗
Z , ..., lnK

⊗
Z

]
(CZ/X + CX)

−1︸ ︷︷ ︸
Ξ⊗
∧

a

where Ξ⊗
∧ : Rn → H⊗

Z is the solution operator for the interpolating spline.

According to [21, p. 181], Ξ⊗
∧ factors into Ξ⊗

∧ = Ξs
∧ ⊗ Ξt

∧. It is still left to

show that P⊗
X = PH⊗

X
factors as PHs

X
⊗ PHt

X
. This follows from

(PHs
X
⊗ PHt

X
)∗ = (PHs

X
⊗ PHt

X
)(PHs

X
⊗ PHt

X
) = PHs

X
⊗ PHt

X



3.1. HILBERT SPACES AND ESTIMATION 107

establishing it as an orthogonal projection and since its range is PHs
X
(Hs

Z)⊗
PHt

X
(Ht

X) = Hs
X ⊗ Ht

Z , it is the orthogonal projection onto H⊗
X . Then

P⊗
HX

Ξ⊗
∧ = PHs

X
⊗ PHt

X
Ξs
∧ ⊗ Ξt

∧ as claimed.

II This follows almost immediately from I. Note that A = As ⊗ At and it is

possible to rewrite the result of applying A as a matrix of dimensions ns×nt,

i.e.

(AK⊗
X)ij = (As ⊗ AtKs

XK
t
X)ij = (AsKs

X)i(A
tKt

X)j.

Similarly for λ⊗ one has

λ⊗ = [A⊗ AK⊗
X ]

−1a =
[
(As ⊗ As)⊗ (At ⊗ At)Ks

ZK
t
Z

]−1
a

=
[
As ⊗ AsKs

Z ⊗ At ⊗ AtKt
Z

]−1
a

= (Σs
X + Σs

Y )
−1 ⊗ (Σt

X + Σt
Y

)−1
a

III This is just a reformulation of II. For any selfadjoint matrices Cs, Ct and a ∈
Rns⊗Rnt it holds that the latter one can be written as a =

∑ns

i=1

∑nt

j=1 aije
s
i⊗

(etj)
∗ which enables the simplification

Cs ⊗ Cta =
ns∑
i=1

nt∑
j=1

aij(C
sesi )⊗ (Ctetj)

∗

= Cs

ns∑
i=1

nt∑
j=1

aije
s
i ⊗ (etj)

∗(Ct)∗ = CsaCt

and implies λ⊗ = (Σs
X +Σs

X)
−1a(Σt

X +Σt
Y )

−1 ∈ Rns⊗Rnt . The neval
s ×neval

t

matrix σeval
X has then the entries

(σeval
X )ij =

[
(AsKs

X(·, seval
i ))1, ..., (A

sKs
X(·, seval

i ))ns

]
λ⊗[

(AtKt
X(·, teval

j ))1, ..., (A
tKt

X(·, teval
j ))nt

]T
and the whole matrix can be written as (Qs)∗λ⊗Qt as claimed in the theorem.

IV For the tensor spline evaluation it is necessary to calculate

σeval
X = (Qs)∗λ⊗Qt = (Qs)∗︸ ︷︷ ︸

(neval
s ,ns)

(Σs
X + Σs

Y )
+︸ ︷︷ ︸

(ns,ns)

a︸︷︷︸
ns,nt)

(
Σt

X + Σt
Y

)+︸ ︷︷ ︸
(nt,nt)

Qt︸︷︷︸
nt,neval

t

where the inversion takes an amount of operations proportional to n3
s and n3

t

respectively, the inner matrix multiplications take n2
snt and nsn

2
t and the outer

matrix multiplications consume neval
s nsnt and neval

s ntn
eval
t steps. In total, the

worst case amount of operations may be written as ns(n
2
s + nsnt + neval

s nt) +
nt(n

2
t +ntns+n

eval
t neval

s ). For the naive evaluation of the spline it is necessary
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to calculate

{
σeval
X

}neval
s neval

t

i=1
=

{
nsnt∑
j=1

λjK(sj, s
eval
i )

}neval
s neval

t

i=1

.

This amounts to neval
s neval

t times nsnt operations plus the cost of determining

λ = (Σst
X + Σst

Y )
+
a which is dominated by inverting a matrix of dimension

nsnt. The total cost is approximately nsnt(n
eval
s neval

t + n2
sn

2
t ) for this im-

plementation and features terms of the sixth power in the number of points

compared to only the third power in the tensor spline formulation.

Interpretation of the tensorspline approach is relatively straightforward; one gains

computational speed by assuming that the task is to extract an element ofHs
X⊗Ht

X

from a space of the form (Hs
X ⊕Hs

Y ) ⊗ (Ht
X ⊕Ht

Y ) which is less general than to

extract an element of Hs
X ⊗ Ht

X =: H⊗
X from some H⊗

Z which contains H⊗
X as a

subspace. Figure 3.6 illustrates this.

Figure 3.6: A graphical sketch of the estimation problem underlying tensor splines. The RKHS Hs
X ⊗ Ht

X consists of

functions that have a correlation structure as prescribed by Ks
X in space and Kt

X in time and are to be separated from other

constituents of the square H⊗
Z = Hs

Z ⊗Ht
Z =

(Hs
X ⊕Hs

Y

)⊗ (Ht
X ⊕Ht

Y

)
based on measurements of elements in H⊗

Z .

It is not possible to reformulate problems of type ”extract an element of H⊗
X from

H⊗
X ⊕ H⊗

Y ” as a tensor spline problem; one is limited to ambient spaces with n2

components and n an integer. Even though this restriction is significant, the time

saved during computation makes tensor splines worthwhile entities to investigate

and employ when suitable. A simple spatiotemporal separation problem may serve

to emphasize that and prepare the stage for later applications of the theory to the

separation of atmospheric effects and deformations in terrestrial radar interferom-

etry. The runtimes are documented in table 3.2; some graphical results in figure

3.7.
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3.2 Construction of reproducing kernels

In section 3.1 a formalism was introduced that allowed the solution of abstract min-

imization problems corresponding to interesting real-world applications. The fo-

cus was, however, more on how to assemble a complex RKHS from simpler given

ones and represent the solution in terms of the kernels of those elementary RKHS.

Whereas in previous sections the kernels were assumed given, this section begins

a systematic investigation into the properties of positive definite kernels that will

allow the reader to guess kernels for a specific problem or infer them naively with-

out any convergence guarantees or error estimates. Regardless of this weakness in

rigor, the material presented here is sufficient for applying the theoretical apparatus

associated to abstract splines in practice. Finally, a scheme for approximation of

kernels by products of simpler kernels will be presented and questions of kernel in-

ference will be posed. The obstacles arising there can only be solved with methods

developed later during chapter 4. This section is therefore understood to have an

introductory character rather than a definitive one.

3.2.1 Properties of covariance matrices

The solution formula for an abstract spline problem is linear in the data and nontriviality
of the estimation is due to the complexity inherent in the covariance matrices describing the
correlation structure of the process whose realization is to be inferred. From this point of
view covariance matrices in the finite dimensional and covariance operators in the infinite
dimensional settings encode all the information available about the processes behaviour in
terms of lower order statistical moments and some of these relationships are collected below.

Recall that reproducing kernels K : T × T → R are always positive definite in the

sense that

n∑
i=1

n∑
j=1

αiαjK(ti, tj) ≥ 0 ∀n ∈ N {ti}ni=1 ⊂ T {αi}ni=1 ⊂ R

Size 5× 5× 5 10× 10× 10 50× 50× 50 100× 100× 100 500× 500× 500

Naive
RMSE: 0.42 0.35 ——————————– unsolvable ——————————–

Time (s): 3 ∗ 10−3 0.27

2-tensor
RMSE: 0.51 0.42 0.31 ——————– unsolvable ———————

Time (s): 3 ∗ 10−4 2 ∗ 10−3 3.8

3-tensor
RMSE: 0.58 0.52 0.45 0.42 ——- unsolvable ——-

Time (s): 2 ∗ 10−4 4 ∗ 10−4 5 ∗ 10−2 0.94

Nr. of elements in CM 104 106 1010 1012 1016

Table 3.2: Average root mean square errors and runtimes over 1000 simulations and successive inferences performed for

spatiotemporal data of the size indicated in the top row for different estimation schemes. The ’naive’ scheme uses full

covariance matrix, the ’2-tensor’ scheme a splitting of the underlying covariance matrices into spatial and temporal parts and

the ’3-tensor’ scheme factorizes in X and Y direction as well. The last row indicates the number of elements in the full

covariance matrix for the differently sized problems. A task is arbitrarily declared as unsolvable if its solution takes more

than 5 seconds to compute on an office computer with 3.5 GHz and 32 GB RAM.
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Figure 3.7: The first row of images shows time slices of one realization of a spatiotemporal random field at the times (arbitrary

units) indicated by the numbers above the images. The field is a superposition of a spatiotemporal field that is smooth in time

and space and one that is rough both in time and space — its covariance function is therefore not decomposable as would be

necessary for tensorsplines to be optimal. The second and third row feature the estimations and ground truths for the smooth

part of the realization. The colorscale is identical for all images.

as recorded in subsection 2.3.1 and that the RKHSHK with RK K is isometrically

isomorphic to a Hilbert space of T -indexed mean zero random variables {Xt}t∈T
whose covariance is given as E[XsXt] = K(s, t), see section 3.1. Therefore a

kernel can always be interpreted as a covariance function and for any finite n, the

matrix with elements (C)ij = K(ti, tj) for some choice of {ti}ni=1 ⊂ T is the

covariance matrix of the random vector {Xti}ni=1 ⊂ L(X). Since C is positive

semidefinite and the bounded operators on Rn form a C∗ -algebra, C : Rn � f �→
Cf ∈ Rn with (Cf)i =

∑n
j=1K(ti, tj)fj may be written as

C = B∗B = A2 A,B ∈ B(Rn) (3.33)

[48, p. 15] and is seen to be the square of another operator A : Rn → Rn. In the

limit case, the covariance matrix becomes the covariance operator CX with

(CXf)(t) =

∫
T

K(s, t)f(s)ds. (3.34)

It is a positive semidefinite kernel operator that is furthermore compact (subsection

2.1.4) and admits a spectral decomposition CXϕi = λiϕi for a sequence {ϕi}∞i=1 of

eigenfunctions and a sequence {λi}∞i=1 of nonnegative eigenvalues. This allows a
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practical implementation of functional calculus and therefore construction of square

roots C
1/2
X , pseudoinverses C+

X and arbitrary decompositions CX = C1 + C2 when

a partition of unity is applied to CX , see section 2.2. Using the same sequence of

eigenvalues λi and eigenfunctions ϕi, the kernel K can be written in form of the

Mercer decomposition

K(s, t) =
∞∑
i=1

λiϕi(s)ϕi(t).

For the associated stochastic process {Xt}t∈T , each of the random variables Xt can

be represented as a superposition of deterministic ϕi’s with random coefficients to

form the Karhunen Loewe expansion

Xt =
∞∑
j=1

ξj
√
λjϕj(t) with ξj mean zero, unit variance, i.i.d. .

In this way, one can easily generate samples of a stochastic process with covariance

function K(·, ·) from realizations of white noise if the eigenvalues and eigenfunc-

tions of the covariance operator CX are known. Note, however, that the sample

paths Xω(·) : T → R interpreted as realizations of random functions do not lie

in the associated Hilbert space HK with probability one in the case of Karhunen

Loewe expansions with infinitely many nonzero expansion coefficients [107].

A straightforward implication of the Karhunen Loewe expansion is that for finite

rank CX ,Xω(·) is a random superposition of finitely many functions. If for example

K(s, t) = σ2
0st then CX = σ2

0ϕ(s)ϕ(t)

is the spectral decomposition of CX with ϕ(s) = s and Xt = ξσ0t, ξ mean zero

and unit variance, is just a line passing through the origin chosen at random. This is

consistent with Xt = at, a ∼ N (0, σ2
0) from which E[XsXt] = σ2

0st = K(s, t) fol-

lows. Clearly, the structure ofK(·, ·) determines important features of bothHK and

{Xt}t∈T . Recall from page 83 that {Xt}t∈T is a second order stationary stochastic

process if E[Xt] and E[XsXt] − E[Xs]E[Xt] are translation invariant [39, p. 17],

i.e.

E[Xt] = E[Xt+Δ] Δ : t+Δ ∈ T (3.35)

K(s, t) = K(s+Δ, t+Δ) Δ : (s+Δ, t+Δ) ∈ T × T. (3.36)

This requires T to admit an additive structure. For the random vector X =
[X1, ..., Xn]

T , the expected energy E[〈X,X〉] = E[
∑n

j=1X
2
j ] is given as∑n

j=1 λj = tr(CX) where CX is the covariance matrix of X .

In general, constructing a kernel K by forming K(s, t) = f(s)f(t) for any function

f : T → R leads to the associated stochastic process being a randomly scaled

version of f(·) : T → R as implied by the Karhunen Loewe expansion. The
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associated Hilbert space is therefore one-dimensional and does not contain enough

different types of functions to be useful in the context of a typical nonparametric

estimation. Superpositions of arbitrarily many functions {fj}∞j=1, however, are

suited to construct kernels with nontrivial infinite rank structure under certain

conditions as recorded in Fortet’s theorem [20, p. 22].

Theorem 3.2.1 (Fortets theorem) K : T × T → C is a reproducing kernel iff
∃ϕ : T → �2 with K(s, t) = 〈ϕ(s), ϕ(t)〉�2 ∀s, t ∈ T .

This allows constructing arbitrarily complex kernels that strongly deviate from the

regular ones typically generated from a restricted family of kernels by fixing a small

amount of parameters. The associated random fields can feature sharp changes in

variance, ridges and locally variable anisotropies. Examples are collected in figure

3.8.

Figure 3.8: Kernels K constructed from specific sets of functions mentioned in the respective headlines. They are plotted

only for the case T ⊂ R for purposes of clarity; the realizations are generated from the Karhunen-Loewe expansion of tensor

products K ⊗K forming kernels on T × T ⊂ R2.

The stochastic interpretation of K(s, t) as a covariance function has direct conse-

quences for the quantification of the estimations reliability. As is recorded in the

geostatistical literature, the expected square deviation E[ε2] = E[(X̂t − Xt)
2] =

E[(σX(t)−Xt)
2] is explicitly given as [39, p. 169]

Var(ε) = Var(Xt)− λT [K(t1, t0), ..., K(tn, t0)]
T − μT [f1(t0), ..., fm(t0)]

T

(3.37)

where σX(t) is a solution to σX(·) = argminx∈A−1a ‖[x]‖HK
. In this formulation A
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is just evaluation at t1, ..., tn, f1, ..., fm form a basis of the nullspace of the canon-

ical projection [·] and a is the problem data. The vectors λ ∈ Rn and μ ∈ Rm are

as before solutions of the SLAE documented in theorem 3.1.5. Therefore, confi-

dence intervals can be derived for the estimator σX(t). Indeed, the aforementioned

equation is a special case of the formula to calculate the conditional covariance of a

mean-zero Gaussian random vector Z = [X;Y ], X : Ω → Rn1 , Y : Ω → Rn2 for

which it reads [160, p. 73]

ΣX|Y = ΣXX − ΣXYΣ
−1
Y YΣY X (3.38)

ΣZZ =

[
ΣXX ΣXY

ΣY X ΣY Y

]
.

The conditional mean of X given Y is then μX|Y = μX +ΣXYΣ
−1
Y Y (Y −μY ) [160,

p. 73] where μX , μY are the marginal means of X and Y . This allows conditional

simulation and the construction of covariance matrices whose associated vectors

satisfy certain boundary conditions, see figure 3.9 for examples. This idea will be

pursued further in subsection 3.2.2.

Figure 3.9: Theoretical confidence intervals and conditional simulations of a Brownian bridge process with known values at

the locations indicated by circles. The conditional covariance matrix detailing the kernel of the random variables conditioned

on the observations is plotted in the last panel.

Lastly, notice that in the finite dimensional case the spectral decomposition of CX

provides a solution to the problem of efficiently representing functions using only a

limited number of fixed basis functions and coefficients. This follows from the fact

that minimizing E[‖f −PH1f‖2H] withH1 �H unknown andH = Rn is equivalent

to minimizing

E[‖f − PH1f‖2H = E[〈f − PH1f, f − PH1f〉H]
= E[〈f, f〉H − 2〈PH1f, f〉H + 〈PH1f, PH1f〉H]
= E[〈f, f〉H − 〈PH1fPH1f〉H]
= trE[f ⊗ f ∗] = trE[(PH1f)⊗ (PH1f)

∗]

= tr(CX − PH1CXPH1).

If dimH1 = n1, then PH1CXPH1 is an n1-rank approximation to CX . But Δ =
CX −PH1CXPH1 is positive semidefinite and therefore tr(Δ) is just the trace norm
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‖·‖tr of Δ. It is proven in [136] that the choice of rank-n1 Q minimizing ‖CX−Q‖tr
is simply Q =

∑n1

j=1 λjϕj ⊗ ϕ∗
j where {λj}nj=1 and {ϕi}ni=1 are the eigenvalues

and eigenfunctions of CX . Therefore the basis vectors {ϕi}ni=1 provide an efficient

system, in which to represent any f = Xt(ω).

3.2.2 Approximation of kernels

For primarily computational reasons, it is often convenient to consider kernelsK : (S×T )×
(S × T ) → R that factorize as the tensor product of two simpler kernels Ks : S × S → R
and Kt : T × T → R. Inversion and spectral decomposition of the arising kernel matrices
can then be done in a fraction of the time needed otherwise and enables efficient simulation
and inference. When the kernel does not have a representation as a simple tensor but may
be approximated by a sum of simple tensors, the binomial inverse theorem can be of help.
Although only situationally applicable and affected by numerical instabilities, this approach
reliant on iterative schemes involving spectral decompositions is at times the only possibility
to handle large-scale problems.

Recall that the Karhunen-Loewe expansion guaranteed the decomposability of a

mean-zero, second order stochastic process {Xt}t∈T into a superposition of basis

functions as given in theorem 2.3.5. When the expansion is truncated after the n-th

term, the resultant expression X̃n
t =

∑n
j=1 ξj

√
λjϕj(t) is an approximation to Xt

whose error decreases monotonically with n. If as relative error εn one designates

the ratio of expected energy ‖X̃n
t −Xt‖2L2 of the error to the expected total energy

‖Xt‖2L2 , then one finds for εn the alternative expression

E[‖X̃n
t −Xt‖2L2

E[‖Xt‖2L2 ]
=

∑∞
i=n+1

∑∞
j=n+1E[ξiξj]

√
λiλj〈ϕi, ϕj〉L2

E
[∑∞

i=1

∑∞
j=1 ξiξj

√
λiλj〈ϕi, ϕj〉L2

] =

∑∞
i=n+1 λi∑∞
i=1 λi

.

(3.39)

As {λi}∞i=1 ⊂ R+ and limk→∞ λk = 0, the relative error εn converges to zero and

if the sequence of eigenvalues decays fast, it does so rapidly. The approximation

X̃n
t may be interpreted as being drawn from a degenerated stochastic process with

covariance operator C̃K — an n-term low rank approximation
∑n

j=1 λjϕj ⊗ ϕ∗
j to

CK . Constructing a functional calculus on C̃K , ψC̃K
(x−1) =

∑n
j=1 λ

−1
j ϕj ⊗ ϕ∗

j =

C̃+
K is readily computable and enables fast, approximate inference.

If the kernel K : (S × T ) × (S × T ) → R decomposes as K(u, v) =
K((s1, t1), (s2, t2)) = Ks(s1, s2)K

t(t1, t2) and the individual Mercer decompo-

sitions are known to be

Ks(s1, s2) =
∞∑
j=1

λsjϕ
s
j(s1)ϕ

s
j(s2) Kt(t1, t2) =

∞∑
j=1

λtjϕ
t
j(t1)ϕ

t
j(t2)

thenK can be written explicitly by simplifying the product toK((s1, t1), (s2, t2)) =∑∞
i=1

∑∞
j=1 λ

s
iλ

t
jϕ

s
i (s1)ϕ

s
i (s2)ϕ

t
j(t1)ϕ

t
j(t2). The positive Kernel operatorCK : f →
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∫
S×T

K(u, ·)f(u)du acting on functions on S × T then has the representation

CK =
∞∑
i=1

∞∑
j=1

λsiλ
t
j

(
ϕs
i (·)⊗ ϕt

j(·)
)⊗ (ϕs

i (·)⊗ ϕt
j(·)
)∗

=
∞∑
l=1

λ⊗l ϕ
⊗
l ⊗ (ϕ⊗

l )
∗

(3.40)

where the sequence {λl}∞l=1 contains positive eigenvalues and {ϕ⊗
l }∞l=1 are or-

thonormal eigenfunctions of CK . If the sequence of eigenvalues is rearranged

into descending order, then a low rank approximation C̃K can be found again via

truncation. This enables simulation and inference.

Example 17 Consider a spatiotemporal random field F from which a realization

is to be drawn. The index set is S × T ⊂ R3 with S = Sx × Sy ⊂ R2 and

T ⊂ R1. Suppose that S and T are sampled at discrete points leading to realizations

of F being sought on an n × n × n grid. A naive simulation requires the spectral

decomposition of a positive semidefinite covariance matrix with n6 entries whereas

a truncated tensor product approach employs the spectral decomposition of matrices

with n2 entries each. The runtimes for simulating a Gaussian random field with

squared exponential covariances in Sx, Sy and T for a relative error ε < 1% are

compared to a standard method of simulation (mvnrnd in Matlab) in table 3.3.

�
If the goal is not simulation but inference, one has to proceed differently. If n
denotes the number of observations, the covariance matrix of these observations

has n × n entries and a naive inversion e.g. With Gaussian elimination requires

the execution of floating point operations of order approximately n3. Usually

neither inversion nor storage are feasible on normal office computers if n is above

50000. However, this situation occurs routinely when dealing with spatiotemporal

problems as those encountered during the investigation of atmospheric effects

in terrestrial radar interferometry in section 5.2. If the RK K of HK can be

written as K = Ks ⊗Ks then a similar statement holds for the covariance matrix

C = Cs ⊗ Ct and its pseudoinverse C+ = (Cs)+ ⊗ (Ct)+, Cs ∈ Rns ⊗ Rns ,

Ct ∈ Rnt ⊗ Rnt . This reduces storage and inversion of an nsnt × nsnt matrix to

storage and inversion of both an ns × ns and an nt × nt matrix. The situation gets

more complicated when K is a superposition of simple tensors.

Theorem 3.2.2 (Binomial inverse theorem) Let A,B, U, V be matrices of ap-

Size 5× 5× 5 10× 10× 10 50× 50× 50 100× 100× 100 500× 500× 500

Runtime mvnrnd 0.0004s 0.170s ——————————– unsolvable ——————————–

Runtime tensor 0.001s 0.013s 0.331s 2.959s 800s

Table 3.3: Runtimes of different simulation procedures dependent on grid size based on 100 trial runs per scenario. A task is

arbitrarily declared as unsolvable if during computation a standard office computer (32 GB RAM) runs out of memory.
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propriate dimensions such that the term (A + UBV ) is well defined. If A and
B +BV A−1UB are invertible, then [160, p. 23]

(A+ UBV )−1 = A−1 − A−1UB(B +BV A−1UB)−1BV A−1. (3.41)

The binomial inverse theorem is also known as the matrix inversion lemma or as

the Woodbury matrix identity. In the simple case where B is the identity and U, V
are column and row vectors u and v respectively, the equation specializes to the

Sherman-Morrison-Woodbury formula

(A+ uv)−1 = A−1 − (A−1u)(vA−1)

1 + vA−1u
. (3.42)

This leads to a cheap update rule for the inverses of perturbed kernel matrices and

allows calculation of inverses (C1 + C̃n
2 )

−1, C̃n
2 a low rank approximation to C2,

that are otherwise intractable. Suppose now that K1 = Ks
1K

t
1 and K2 = Ks

2K
t
2

leading to the kernel matrices C1 = Cs
1 ⊗ Ct

1 and C2 = Cs
2 ⊗ Ct

2. When for

the sake of inference, (C1 + C2)
−1 is needed, the following theorem provides a

computationally efficient solution.

Theorem 3.2.3 Let C1 and C2 be defined as above. Denote by C̃n
2 the n-term low

rank approximation C̃n
2 =

∑n
j=1 λ

⊗
j ϕ

⊗
j ⊗ (ϕ⊗

j )
∗ =

∑n
j=1 uj ⊗ u∗j . The eigenvalues

and λ⊗ and the eigenvectors ϕ⊗
j are constructed as described on page 115. Then

with the notation Qj = (C1 + C̃j
2)

−1, one finds the recursive equation

Q0 = (Cs
1)

+ ⊗ (Ct
1)

+ (3.43)

Qj = Qj−1 − (Qj−1uj)⊗ (Qj−1uj)
∗

1 + uTj Q
j−1uj

1 ≤ j. (3.44)

The theorem follows directly from a successive application of the binomial inverse

theorem as stated in equation 3.42 to the term (C1 +
∑n

j=1 uj ⊗ u∗j ). Theorem

3.2.3 is useful, if λ⊗j decays fast as in that case only few steps n are necessary to

approximate (C1+C2) by (C1+ C̃
n
2 . It is then possible to approximate the inverses

of C = (C1 + C2 + ....) that are sums of simple tensors Cj = Cs
j ⊗ Ct

j , j =
1, ...,m without inverting the sum by reducing the calculation to manipulation of

(Cs
1)

+ ⊗ (Ct
1)

+ and the main spectral components of Cj, j ≥ 2.

Since sums of simple tensors can be arbitrarily complicated, this allows fast ap-

proximate inversion even of anisotropic and instationary kernel matrices C if a de-

composition into simple tensors
∑n

j=1Cj ≈ C,Cj = Cs
j ⊗ Ct

j is available and the

spectra of the individual components Cj decay sufficiently fast. As the relationship

between the individual spectra of C1 and C2 and the spectrum of the sum C1 + C2

is not straightforward and expensive to compute (see [31]), large scale simulation

of random vectors with covariance matrix C =
∑n

j=1Cj is more difficult than in-
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version and we leave it for future work. In practice, it is sometimes desirable to find

a C that satisfies certain boundary conditions. This can be done either by means

of solving a constrained variance components estimation problem C =
∑n

j=1 μjCj

for the coefficient vector μ ∈ Rn as in subsection 4.4.2 or directly in terms of the

elements of C. The latter is a special case of the former and will be treated in the

succeeding subsection.

3.2.3 Methods of construction and design

A certain amount of standard kernels exist but they are often insufficient in practical applica-
tions where a systems behavior is either unknown or satisfies constraints that are not reflected
in any of the widely used kernels. The proper choice of kernels based on observations is a
task that is tackled in chapter 4. For now the easier problem of constructing a kernel from
prior considerations is addressed. It will be shown how kernels can be derived when only
their linear transforms are known and and one is given a set of linear constraints. Examples
are provided to illustrate the construction rules practical meaning in the context of abstract
splines featuring nontrivial measurement and energy operators. Throughout this subsection,
an entirely finite-dimensional perspective will be taken and kernels, or rather kernel opera-
tors, are replaced by covariance matrices associated to Gaussian random vectors.

§ Linear relations between spaces

Let L2
q = Rnq be the Hilbert space of vectors in Rnq together with the standard

inner product 〈f, g〉L2
q
=
∑nq

j=1 fjgj inherited from the identity matrix I . Denote by

ε ∼ N (με, I) a white noise Gaussian random vector taking values in Rnε . HX ,HY

and Hε are finite dimensional (reproducing kernel) Hilbert spaces associated to

Gaussian random vectors

X ∼ N (μX , CX) Y ∼ N (μY , CY ) ε ∼ N (με, I)

taking values in RnX ,RnY and Rnε respectively. The corresponding inner products

are

〈f, g〉HX
= 〈C+

Xf, g〉L2
x

〈f, g〉HY
= 〈C+

Y f, g〉L2
Y

〈f, g〉Hε = 〈f, g〉L2
ε
.

Depending on the exact nature of the known relationships between HX ,HY ,Hε

some of the covariance matrices are considered known and some are to be deduced.

For now, let με = 0. The following two situations arise regularly in practice and

feature closed form solutions under mild assumptions.

a) Case: L2
ε

A→ HX , CX unknown. (’Variance propagation’)

Let X = Aε with A of full row rank. Then μX = E[Aε] = 0 and

CX = E[X ⊗X∗] = E[Aε⊗ ε∗A∗] = AIAT

implying X ∼ N (0, AAT ). Since A is full row rank, AAT is invertible and

the spaces HX and L2
ε are linked via the operator A ∈ RnX ⊗ Rnε by the
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relationship

L2
ε

A→ HX HX = im(A) 〈f, g〉HX
= 〈(AAT )−1f, g〉L2

X
.

Furthermore, straightforward calculation shows 〈f, g〉L2
X
= 〈AATf, g〉HX

=

〈ATf, AT g〉Hε and ifHX is restricted to im(A), then ∀ f, g ∈ HX ∃u, v ∈ Hε

s.t. f = Au, g = Av implying

〈f, g〉HX
= 〈(AAT )−1f, g〉L2

X
= 〈(AAT )−1Au,Av〉L2

X
= 〈A+Au, v〉Hε .

If A were invertible, then 〈u, v〉Hε = 〈(AT (AAT )−1A, u〉Hε = 〈Au,Av〉HX
.

b) Case: L2
ε

B← HX , CX unknown. (’Energy operator’)

Let ε = BX with B full column rank and therefore left invertible. If X is

known to be zero mean, then

I = Cε = E[ε⊗ ε∗] = E[BX ⊗X∗B∗] = BCXB
∗

implying CX = B+(BT )+ = (BTB)+ due to the rank condition. BTB is

invertible, X ∼ N (0, (BTB)−1) and the spacesHX and L2
ε are linked via the

operator B ∈ Rnε ⊗ RnX by the relationship

L2
ε

B← HX HX = B−1(L2
ε) 〈f, g〉HX

= 〈BTBf, g〉L2
X
.

Furthermore, straightforward calculation shows 〈f, g〉HX
= 〈Bf,Bg〉Hε .

If B were invertible, then 〈u, v〉Hε = 〈BTB(B−1u), (B−1v)〉L2
X

=

〈B−1u,B−1v〉HX
.

For both cases, the interpretations are relatively straightforward. If L2
ε

A→ HX , then

HX contains the responses of A to white noise and for f ∈ HX , ‖f‖2HX
= ‖u‖2L2

ε

where Au = f measures the negative log likelihood of f by reducing it to the

underlying noise variable. In contrast, if L2
ε

B← HX , then Bf contains white noise

and penalizing ‖f‖2HX
= ‖Bf‖2

L2
X

means demanding that f should approximately

satisfy the equation Bf = 0 or at least minimize the energy ‖Bf‖2
L2
X

of deviations

from 0.

We will continue to use the schematic diagrams of type HX
A→ HY and interpret

them as Y = AX on the level of random variables with consequences for the as-

sociated RKHS HX and HY . Before introducing linear constraints on covariance

matrices, investigate situations that feature spaces related to white noise in nontriv-

ial ways. Clearly, Lε
A→ HX

F→ HY and L2
ε

B← HX
G← HY are just versions of

cases a) and b) with FA replacing A and BG replacing B in such a way that

CY = FAATF T = FCXF
T (3.45)
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CY = B+(BTB)+(BT )+ = (G+)CX(G
+)T (3.46)

under the right assumptions for F,A,G,B. However, the following constellation

requires special care.

c) Case: L2
ε

A→ HX
G← HY , CY unknown.

From a) and b) one derives CX = (AAT ) and CX = GCYG
T . Introduce

Q = C
−1/2
X , the selfadjoint positive semidefinite inverse squareroot of CX

and assume QG is invertible. Then CX = GCYG
T is equivalent to

I = QGCYG
TQT

⇔ CY = (QG)+
(
(QG)T

)+
=
[
(QG)T (QG)

]+
=
[
GTQTQG

]+
=
[
GT (AAT )−1G

]−1

with CX = AAT or in a more convenient form CY = G+CY (G
T )+ when it

applies.

§ Linear constraints

Let HX
A→ Hε, A of full row rank with nullspace N(A) of dimension m. Let L be

a linear operator L : HX → Rm such that kerA ∩ kerL = {0} and Ac = [A;L] :
HX → Rnε ⊕ Rm invertible. Define as usual

Ac ⊗ AcCX = AcCXAc =

[
ACXA

T ACXL
T

LCXA
T LCXL

T

]
.

If HX
A→ Hε, then ACXA

T = I . If ACXL
T and LCXL

T can be specified with the

help of the boundary conditions introduced by L and given in the form ACXL
T =

qT , LCXL
T = S, then the system of equations

AcCXA
T
c =

[
I qT

q S

]
︸ ︷︷ ︸

Ic

(3.47)

follows. It has solution CX = (A−1
c )Ic(A

−1
c )T . If slightly more general, the situa-

tion is described by the schemeHY
A→ HX with CY unknown and CX known, then

the SLAE 3.48 ensues.

CY = (A−1
c )Fc(A

−1
c )T (3.48)

Ac =

[
A
L

]
Fc =

[
CX ACYL

T

LCYA
T LCYL

T

]
(3.49)

Example 18 Let A = ∇ be (a discrete version of) the derivative operator and

L = eT0 , i.e. Lf = f(0). Then N(A) are the constants and dimN(A) = 1. Since

∇ annihilates constants, CX can be inferred only up to a constant from the equation
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∇A∇T = I and L determines that constant. The usual Brownian motion is then

constructed from HX
Ac→ Hε ⊕ R where Ac = [∇;L]. For the boundary condition

Lf = f(0) = 0, one explicitly finds

Ac =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
. . .

. . .
...

...

0 0 0 · · · 1 −1
1 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ Fc =

[
I ∇CXe0

eT0CC∇T eT0CXe0

]
=

[
I 0
0 0

]

if it is demanded that CX is zero in the first row and column as forced by Lf =
eT0 f = 0. The equation CX = (A−1

c )Fc(A
−1
c ) gives the covariance matrix for

Brownian motion, as desired (see figure 3.10). �

Example 19 Let A = ∇2 = Δ be (a discrete version of) the second derivative

and L = [eT0 , e
T
n ], i.e Lf = [f(0), f(n)]T ∈ R2. Then N(A) are the first order

polynomials and dimN(A) = 2. If we choose to let f start and end at zero, then for

the underlying kernelK it holds thatK(t, 0) = 0, K(t, n) = 0 ∀t and consequently

∇K(t, 0) = ∇K(t, n) = 0. One explicitly finds

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
. . .

. . .
...

...

0 0 · · · · · · −2 1
1 0 · · · · · · 0 0
0 0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Fc =

⎡⎣ I ∇CXe0 ∇CXen
eT0CC∇T eT0CXe0 eT0CXen
eTnCX∇T eTnCXe0 eTnCXen

⎤⎦ =

⎡⎣I 0 0
0 0 0
0 0 0

⎤⎦
The result CX = (A−1

c )FC(A
−1
c )T is plotted in figure 3.10 and has some similarities

to the covariance matrix of a Brownian bridge process but is smoother due to the

act of integrating twice to counteract the second derivative. �
When more constraints are included than strictly necessary, Ac = [A;L] does not

have an inverse anymore. For the overdetermined system AcCYA
T
c = Fc a weight

matrix P⊗ = (Σ⊗)−1 could be introduced to weigh the different conditions against

each other. Then estimate

CY = argmin
CY ∈RnY ⊗RnY

‖Ac ⊗ AcCY − Fc‖2Σ⊗

=
(
(A⊗

c )
TP⊗A⊗

c

)+
(A⊗

c )
TP⊗Fc A⊗

c = Ac ⊗ Ac (3.50)
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Figure 3.10: A visualization of the results from examples 18 and 19. The constructed CY ’s (panel 1 and 3) are generated

using the equation Cy = (A−1
c )(CX)(A−1

c )T where CX is white noise covariance and Ac as in the examples. Panels 2

and 4 contain some realizations of a Gaussian process with the covariance matrices CY 1 and CY 2; note that they fulfill the

boundary conditions and also that ∇f or Δf respectively look like white noise.

If Σ⊗ = Σ⊗ Σ then P⊗ = P ⊗ P and the simplified version of equation 3.50 is

CY = (Aψ
c )Fc(A

ψ
c )

T (3.51)

Aψ
c =

(
AT

c PAc

)+
AT

c P. (3.52)

With this method, one can force for example Brownian motion to be approximately

periodic among other things. Note at this point however, that it is always assumed

that CY = E[Y ⊗ Y ∗] and CX = E[X ⊗X∗]. If the boundary conditions introduce

a non-zero mean, the more complicated terms CX = E[X ⊗X∗]−E[X]⊗E[X]∗

and CY = E[Y ⊗ Y ∗]− E[Y ]⊗ E[Y ]∗ have to be used.

§ Derivation of the matrix Fc

It is not always straightforward to derive the elements of the matrix Fc from prior

knowledge about the function space to be constructed. We will present a scheme

to derive a guess for Fc from linear boundary conditions that are in a first step

assumed to be stochastic but with mean zero. Represent this as follows.

HY (known)

(known)HX F(known)

..................................................................................................................................
.....
............

(known) A

....................................................................................................................................... .......
.....

L (known) Ac : HY �→ HX ⊕F
A+

c : HX ⊕F → HY

Here Ac = [A;L], E[X] = E[AY ] = 0 and it is supposed that kerAc = {0} such

that Ac is injective and there exists a left inverse. Then ∃A+
c : A+

c Ac = idHY
but

AcA
+
c �= idHX⊕F in general. To use equation 3.51, the terms F, q, S in the following

expression need to be determined.

Ac ⊗ AcCY =

[
ACYA

T ACYL
T

LCYA
T LCYL

T

]
=

[
F qT

q S

]
= Fc (3.53)

The equation AY = X gives information about the covariances of Y by relating
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them to the known covariances CX of X . LY = f gives additional information to

resolve ambiguities stemming from a nonzero nullspace N(A). It is allowed that f
is random but for now let E[f ] = 0. Writing

Fc =

[
CX CXF

CFX CF

]
(3.54)

CX = ACYA
T = E[AY ⊗ Y ∗AT ] = E[X ⊗X∗] (assumed known)

CF = LCY LT = E[LY ⊗ Y ∗L∗] = E[f ⊗ f ∗] (assumed known)

CXF = ACYL
T = E[AY ⊗ Y ∗L∗] = E[x⊗ f ∗] (fixed but unknown)

makes it clear that CX and CF are design choices determining the correlation struc-

ture of Y and the boundary conditions LY whereas the unknown CXF = CT
FX is

determined (not necessarily uniquely) through these choices and needs to be de-

rived. One finds

CFX = E[f ⊗X∗] = E[LY ⊗ (AY )∗] = E[LA+
c

[
X
f

]
⊗ (AA+

c

[
X
f

]
)∗]

= LA+
c︸︷︷︸

T

[
CX CXF

CFX CF

]
(A+

c )
TAT︸ ︷︷ ︸

S

(3.55)

In matrix notation, the individual terms have dimensions as listed below. Here by

writing Y [nY , 1] for example, it is meant that the random vector Y has as realiza-

tions elements of RnY .

dimHY = nY dimHX = nX dimF = nP

Y [nY , 1] X [nX , 1] f [nP , 1]

CX [nX , nX ] CY [nY , nY ] CF [nP , nP ] CFX [nP , nX ]

A [nX , nY ] Ac [nX + nP , nY ] A+
c [nY , nX + nP ] L [nP , nY ]

T [nP , nX + nP ] T = [Tl, Tr] Tl [nP , nX ] Tr [nP , nP ]

S [nX + nP , nX ] S = [Su;Sd] Su [nX , nX ] Sd [nP , nX ]

Equation 3.55 can be simplified. Rename CFX = Q and let ψ be the linear transpo-

sition operator satisfying ψM =MT for any matrix M .

Q =
[
Tl Tr

] [CX QT

Q CF

] [
Su

Sd

]
= TlCXSu + TlQ

TSd + TrQSu + TrCFSd

= Tl ⊗ ST
uCX + Tr ⊗ ST

d CF +
(
Tl ⊗ ST

d + Tr ⊗ ST
u

)
Q

This is the case iff

(I − Tl ⊗ ST
d ψ − Tr ⊗ ST

u )Q = Tl ⊗ ST
uCX + Tr ⊗ ST

d CF
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and we propose as a rule to infer CFX from CX and CF the equation

CFX =
(
I − Tl ⊗ ST

d ψ − Tr ⊗ ST
u

)+ [
Tl ⊗ ST

uCX + Tr ⊗ ST
d CF

]
(3.56)

For the mean zero case with E[X] = E[Y ] = E[f ] = 0, this concludes the

inference scheme as CX , CF , CFX are then known and one might infer CY via

(A+
c )Fc(A

+
c )

T . The formulas for this deduction in the presence of a nonzero mean

reduce almost completely to what was just derived. This is summarized below.

Define E[X] = μX ∈ RnX , CX = E[X ⊗X∗] − E[X] ⊗ E[X]∗ and suppose that

CY , CF , CFX are defined analogously. In the model

HY

HX F

...................................................................................................................................
.....
............

A

............................................................................................................................................. .......
.....

L Ac : HY �→ HX ⊕F
A+

c : HX ⊕F → HY

with Ac admitting a left inverse assume the following quantities to be known.

[A,CX , μX ] A relates the unknown function space HY to the known space

HX .

[L,CF , μF ] L determines via LY = f the stochastic boundary conditions to

be satisfied by elements ofHY .

Then for the mean of Y one finds

μY = E[Y ] = E[A+
c

[
X
f

]
] = A+

c

[
μX

μF

]
. (3.57)

Similarly to before, from Y = A+
c [X, f ]

T it is possible to derive

CY = (A+
c )

(
E

[[
X
f

]
⊗
[
X
f

]]
− E

[
X
f

]
⊗ E

[
X
f

]∗)
(A+

c )
T

= (A+
c )Fc(A

+
c )

T (3.58)

Fc = E

[
X ⊗X∗ X ⊗ f ∗

f ⊗X∗ f ⊗ f ∗

]
− E

[
X
f

]
⊗
[
X
f

]∗
=

[
CX CT

FX

CFX CF

]
(3.59)

Executing the same set of calculations as before and using the notation from equa-

tion 3.55, one arrives at

CFX = E[f ⊗X∗]− E[f ]⊗ E[X]∗

= LA+
c E

[[
X
f

]
⊗
[
X
f

]∗]
(A+

c )
TAT − LA+

c E

[
X
f

]
⊗ E

[
X
f

]∗
(A+

c )
TAT
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= LA+
c︸︷︷︸

T

Fc (A
+
c )

TAT︸ ︷︷ ︸
S

. (3.60)

The best guess for CFX emerges as

CFX =
[
I − Tl ⊗ ST

d ψ − Tr ⊗ ST
u

]+ (
Tl ⊗ ST

uCX + Tr ⊗ ST
d CF

)
. (3.61)

As the final result, one recovers μY = A+
c [μX , μF ]

T andCY = (A+
c )Fc(A

+
c )

T where

Fc is the matrix from equation 3.59 with CFX as guessed by equation 3.61. Figure

3.11 illustrates some results.

Figure 3.11: Results from the construction method for generating kernels satisfying boundary conditions. The first two

panels feature a space of functions which are integrals of white noise that take the same values at the start, middle and ending

positions although that function value is random. The second pair of panels features a space of functions the inhabitants of

which have derivative +1 in the middle position additionally to starting, ending and going through zero. Their second order

derivatives behave approximately as white noise.

3.3 Basic geodetic applications

This section is devoted to an exposition of practical applications of stochastic pro-

cesses and RKHS to problems routinely encountered in geodesy. Its purpose is

to provide a hands-on tutorial, expose strengths and weaknesses of RKHS based

processing approaches, and to collect a set of test-problems with different flavors.

Although mathematical rigor will not constitute one of this sections main concerns,

the experiences made and conclusions drawn should be sufficiently representative to

allow an intuitive assessment about which type of practical problems can be posed

and solved in an RKHS framework and which complications may arise in doing

so. The contents of this section are ordered roughly with respect to their difficulty.

Therefore stochastic processes X : T → L2(Ω), dimT = 1 are considered first and

it is shown how they can provide models for real world processes driven by random

inputs. Afterwards the focus will shift to modelling and analysis of random fields,

i.e. to assignments X : T → L2(Ω), dimT > 1 before the topic of Hilbert space

embeddings of probability distributions is brought up again.
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3.3.1 Modelling with stochastic processes

The Wiener process is also known as Brownian motion. Since it is the integral of white noise,
it can be considered as the archetypal process representing a system in which measurement
noise adds over time or space depending on the definition of the index set T . As such, it
also provides a stochastic model for the data gathered during either leveling or total station
measurements and the well known rules for distributing errors in leveling emerge as simple
consequences of the abstract spline equations. An abstract spline model can be specified for
the task of optimally estimating deformations based on total station measurements that are a
superposition of deformation, pure noise and atmospheric influences. As soon as measure-
ments to more than one prism are involved, the situation admits nontrivial statements that
rest on the measurement operator in the abstract spline formulation being integration along
a line rather than evaluation. It is not difficult to extend the calculations slightly and make
the estimation procedure applicable to highly dynamic movement processes by introducing a
more sophisticated stochastic model. Trajectory estimation of objects based on total station
measurements can then be done in virtually the same way as deformation estimation.

Example 20 Recall that the Wiener process X : T × Ω → R on the interval

T = [0, L] ⊂ R as integrated white noise has the kernel min(s, t). A discrete

version of X on the set T = {1, ..., n} with X(t) =
∑t

j=1 εj, εj ∼ N (0, σ2
0) was

shown to be a reasonable stochastic model for the distribution of errors in leveling

on page 84. As a matter of fact, it was even shown in subsection 3.2.3 that the

covariance matrices generated by this type of covariance function arise naturally

from demanding the leveling error to be zero at the beginning and to be composed

of uncorrelated noise that adds up over the course of measuring along the path, i.e.

X(0) = 0 and ∂tX(t) = ε(t) with ε(t) white noise.

Now consider the error at loop closure X(L) . Since for typical non-sophisticated

leveling tasks one starts and ends at the same location, the realization xL of X(L) is

known and one may guess from this the distribution of errors along the whole path

T . The interpolating spline problem

σx(·) = argmin
x∈HK ,eLx=xL

‖x‖HK

for the evaluation functional eL : f �→ f(L) ∀f ∈ HK andHK the Wiener process

RKHS with RK K(s, t) = min(s, t) provides this best guess in form of σx. The

explicit solution is

σx(·) = λeLK(·, ·) λ = K−1(L,L)xL

= min(·, L)xL
L

which is nothing but a function that is linear from t = 0 to t = L and then takes on

the value of the constant xL. Comparing to standard references, this is exactly the

rule for distribution of leveling errors in practice [209, p. 272]. �

Example 21 Reconsider the clamped elastic string under load on an interval

T = [0, 1] from subsection 2.3.2. Denote by w(·) a smoothly distributed weight

function that is supposed to lie in an RKHSHW of functions and let x ∈ HX be the

displacement induced by w; ∂2t x = w ∈ HW . Then the likelihood of x is quantified
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by

‖x‖2HX
= ‖∂2t x‖2HW

and B = ∂2t ,HB = HW are properly physically motivated choices for the energy

operator and its associated space. The nullspace of B are the constant and linear

polynomials, both of whose coefficients are necessarily zero due to the boundary

conditions x(0) = x(L) = 0. Assume the displacement has been noisily observed at

locations {si}ns
i=1 ⊂ T where the measurement noise has mean zero and covariance

matrix ΣN . Then the abstract smoothing spline

σx = argmin
x∈HX

‖Ax− a‖2ΣN
+ ‖∂2t x‖2HW

with A evaluation at {si}ns
i=1 provides a best guess for the displacement x based on

the measurements a and knowledge of the load configurations typical structure. At

the same time

σW = argmin
w∈HW

‖ALGw − a‖2ΣN
+ ‖w‖2HW

with LG being integration against Greens function , (LGf)(t) =
∫ 1

0
G(s, t)f(s)ds,

provides a best guess for the underlying load distribution. For specific choices of

parameters, results can be seen in figure 3.12

Figure 3.12: The kernel KX of HX such that ∂2
t x = w ∈ HW for some smooth load w is featured in panel 1. True

underlying load and displacement together with noisy observations serving as inputs to the estimation is plotted in panel 2

whereas the last two images show the best guesses for displacement and load based on our physical model and a generic

smooth squared exponential kernel. Ground truth is plotted for comparison.

The noisily observed loaded string is only a toy problem without any direct im-

plications for geodesy but the general approach of optimally estimating a physical

quantity based on unreliable measurements and understanding of the underlying

differential equations touches upon the interaction between measurements and sim-

ulations of physical systems. It has received heightened attention since the advent of

highly performant FEM-programs and measurement instruments which are capable

of generating geometrically dense samples, see for example [177] who considers

this in the context of terrestrial laserscanning. �

Example 22 A total station measures distances and angles by employing electro-

magnetic waves with wavelengths approximately in the spectrum of visible light.

They are emitted by the instrument and reflected by prisms mounted on the object
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whose coordinates are to be determined. Presuming the total station’s position to

be known, a sequence of measurements to an object leads to a noisy sequence of

measurements of three dimensional positions of that object. Before considering in

more detail the nature of the noise, the following two abstract spline problems arise

naturally when dealing with time series of coordinates.

I) Suppose that the measurements have been processed to yield a sequence of x
coordinates over which white noise of known variance is superimposed leading to

the data vector a = {xt+εtj}nj=1. If the true behavior of the x coordinates is smooth,

that is x ∈ HKX
with KX some smooth kernel, one may split signal and noise by

calculating the smoothing spline

σx = argmin
x∈HKX

‖Ax− a‖2Σ + ‖[x]‖2HKX

where A is the operator of evaluation at t1, ..., tn, [·] is the canonical projection

that annihilates constants, a ∈ Rn is the data and Σ is the noise covariance matrix

with entries (Σ)ij = σ2
0δij . Depending on HKX

, the classical mean estimator σx =
n−1

∑n
j=1 aj can be recovered for degeneratedly smooth kernel choices KX . In all

other cases, one arrives at more complex, time varying estimators. This is illustrated

in figure 3.13.

II) Suppose one has measured at certain times the three-dimensional trajectory of

an object that is rapidly moving to such an extent that the influence of the noise is

negligible. If the goal is to estimate the full trajectory x(·) : T → R3, this can be

formulated as the abstract interpolating vector spline.

σx = argmin
x∈A−1a

‖[x]‖2HKX

A : The measurement operator consisting of linear evaluation functionals

at times t1, ..., tn for all three coordinates.

a : The data containing x, y, z coordinates as a vector in R3n.

[·] : The canonical projection annihilating constants and linear functions.

HKX
: A Hilbert space of vector-valued functions T → R3 assembled as the

direct sum of the three component Hilbert spacesHXc ⊕e HYc ⊕e HZc .

The canonical projection allows for a drift in expected value of the objects position.

If noise would be incorporated into the model, the behavior would be similar as in

a). In the limit, infinitely strong regularity requirements on HKX
and high noise

variances lead to the best guess for the trajectory being a straight line; see figure

3.13.

There are more realistic models for the noise in total station measurements than

white noise. During the propagation through the atmosphere, the transmitted signal

is delayed compared to its propagation through vacuum. That delay is highly vari-

able in time and related to the refractive index of the medium, which in case of the
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Figure 3.13: The left panel shows data from a total station and two associated smoothing splines; one which presupposes the

x-coordinates to vary smoothly and one that presupposes that they do not change at all. Similar cases are also plotted in the

right panel which exhibits the result of a smoothing spline estimation of trajectory based on a sequence of three dimensional

coordinates. The data plotted on the right come from a real world experiment, in which trajectories of a skier were recorded,

see [23] .

atmosphere itself mainly depends on temperature, pressure and water vapor content.

Then one invokes an argument similar to the one put forward during the analysis of

leveling noise and claims that the incremental delays experienced by the wave on a

short part of its path are second order stationary and their integral along the whole

propagation path forms the actual total delay observed in the measurements.

The overall variance is then composed of an instrument specific pure noise part that

subsumes e.g. the relatively distance invariant quantization errors and electronic

crosstalk and an atmospheric part whose variance increases with the length of the

propagation path. A reasonable stochastic model is then that the measurements m
of coordinate changes are superpositions of uncorrelated noise n, atmospheric ef-

fects q and real deformations d. Associate to each of these terms an RKHS and

set

HM = HS ⊕HQ ⊕HN .

HQ consists of functions that are line integrals through the field of refrac-

tion changes r which is itself supposed to be a spatial random field asso-

ciated to the RKHS HR such that HQ = {Lr(·) : r(·) ∈ HR} where

L : HR � r �→ ∫ ·
s0
r(s)ds ∈ HQ is the operator of line integration from the

instruments position s0 to an arbitrary position. Clearly, this model is too simple

to capture all of the intricacies and interdependencies encountered in total station

measurements and therefore more a toy example than state of the art. The following

situations are interesting from a theoretical perspective.

III) If total station measurements have been made towards a set of stable prisms

located at positions {sj}ns
j=1 then HM = HQ ⊕ HN and one may try to tackle the

tomography problem of inferring the spatial distribution of refractive index changes

r(·) : R3 → R by solving the abstract smoothing spline problem

σr = argmin
r∈HR

‖ALr − a‖2AHN
+ ‖r‖2HR

A : Linear operator of evaluation at locations {sj}ns
j=1
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L : Linear operator of line integration from s0, (Lr)(·) =
∫ ·

s0

r(s)ds

a : Data of the ns measured distance changes

AHN : The Hilbert space of ns-vectors with the inner product

〈n1, n2〉AHN
= σ−1

0

ns∑
j=1

(n1)j(n2)j

HR : A Hilbert space of smooth spatial functions.

Some results of this procedure for a simulated dataset are plotted in figure 3.14.

Note that obviously the quality of the estimation depends strongly on a physically

justifiable choice of the space of functions HR. More information about this topic

can be found in the comments discussing stochastic models for atmospheric effects

observed in terrestrial radar interferometry in subsection 5.2.1.

Figure 3.14: The solution of the abstract smoothing spline problem is an estimator σr for the underlying field of refractive

indices r. The black arrows in the left panel signify that each measurement m(sj) is a line integral from the instrument

position to the prism at sj through r. There is therefore a noticeable difference between the correlation structure of the

refraction indices and the correlation structure of the atmospheric effects induced by them.

IV) if ns prisms at positions {sj}ns
j=1 have been measured over the time T =

{t1, ..., tnt} by the same total station, then the measurements m are vector valued

with

HM = HD ⊕HQ ⊕HN

HD =
ns⊕
j=1

iHDj
HQ =

ns⊕
j=1

iHQj
HN =

ns⊕
j=1

iHNj
.

Each of the component spaces HDj
,HQj

,HNj
represents deformations, atmo-

spheric effects or noise at location sj and an element of e.g. HDj
is an nt vector

containing a time series of deformations for that location. The non-orthogonal di-

rect sum was chosen to reflect that the quantities may well be nontrivially correlated

between different points.

The problem of jointly estimating the time series of deformations at each location

seems to be not immediately falling into the abstract spline framework but it can be

cast as a simple smoothing spline, a vector spline or as a tensor spline. To see this,

consider the new indexset Ts := $ns
j=1T formed by the disjoint union (see e.g. [2,

p. 14] for a definition) of ns copies of T . A measurement m is then a function on
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Ts and the kernels for the spaces HX , X = D,Q,N are spatiotemporal covariance

functions KX((si, ti), (sj, tj)) = E[X(si, ti)X(sj, tj)]. The best guess for d is the

smoothing spline

σd = argmin
d∈HD

‖Ad− a‖2HQ⊕iHN
+ ‖d‖2HD

with as usual A being evaluation and a the spatiotemporal dataset. If one would

consider a whole spatiotemporal field of (potential) measurements and factorize

HM into Hs
M ⊗Ht

M which is evaluated only at the times T and locations {sj}ns
j=1,

then one would recover a tensor spline. Similarly, if one interpreted the setup as

producing ns vectors with nt entries then it is possible to formulate a vector spline

problem to the same effect.

In any case, all three problems can easily be solved with the usual equations. The

solutions for the case of three points and a specific set of data and assumptions are

recorded in figure 3.15. Note that the results would have been different if the three

time series were not processed jointly. �

Figure 3.15: A signal separation problem in which several mutually correlated time series are to be decomposed into different

parts. The top collection of panels collects the results whereas the lower part showcases the nontrivial correlations between

the measurements at different times and at the three different locations.



3.3. BASIC GEODETIC APPLICATIONS 131

Interpolation and smoothing of vector fields f : T → Rd is possible in exactly the

same way. Just consider an RKHSHK of functions on $d
j=1T and solve

σx = argmin
x∈HK

‖Ax− a‖2HA
+ ‖Bx‖2HB

or the vector spline problem

σx = argmin
(x1,x2)∈HX1

⊕Hx2

‖A(x1, x2)− a‖2HA

+ |x1|2HX1
+ |x2|2HX2

for appropriate choices of measurement

operators, energy operators or corre-

sponding seminorms and data. An exem-

plary result can be seen in figure 3.16 and

could represent a field of deformations in-

terpolated for example from GNSS or to-

tal station measurements.

Figure 3.16: Illustration of vector field inter-

polation. Black circles mark observed vec-

tors.

It is possible to include special relationships as for example discontinuities or

boundary conditions via the kernel construction method outlined in subsection

3.2.3. In principle, it is also possible to perform estimation on the sphere, the torus

or other arbitrary manifoldsM by constructing kernels satisfying certain boundary

conditions (see figure 3.17).

Alternatively it is possible to consider

spaces of functions H on Rd ⊃ M and

work in the larger auxiliary space Rd be-

fore restricting any functions f ∈ H
to f |M to get the trace of a spline

on a manifold [21, pp. 135-145]. How-

ever, both of these methods are computa-

tionally inconvenient and if, like for the

sphere, orthonormal systems and kernels

constructed on them are available, these

are used instead. Figure 3.17: A vector field on the torus. Top

and bottom, left and right border are identi-

fied.

This was investigated for example by Wahba [202] and Swarztrauber [147] who

came up with solutions to estimating vorticity and divergence of vector fields on the

sphere. They also provide interpolating and smoothing spline procedures that are
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related to the Laplacian — an energy operator associated to the Poisson equation

governing the gravity fields behavior [203, pp. 28-30].

The model for atmospheric influences on total station measurements contains al-

ready first elements of a tomography problem. The connection between atmospheric

influences and refractive index could in principle be used to solve the inverse prob-

lem of optimally estimating the three-dimensional spatial distribution of refractive

indices based on total station measurements. The estimation of spatial quantities

for which measurements are available only in the form of aggregated values such as

line integrals or averages is quite recurrent in geodesy and another example for this

type of problem is given by GPS based estimation of atmospheric quantities.

Simple spatial estimation can also be used to create smooth maps for fingerprinting-

based WLAN positioning systems. Figure 3.18 showcases the effect of kernel-

smoothing on received signal strengths at different locations in an indoor area on

Hoenggerberg-campus, ETH. For more details, consult [213].

Figure 3.18: The left panel shows the received signal strength of a W-LAN access point. Several outliers and implausible

values are visible. If kernel smoothing (squared exponential kernel for the signal, white noise kernel for the noise) is applied

to the dataset, the best estimates of the underlying smooth signal and noise seem intuitively reasonable.

3.3.2 Statistical testing

Some geodetic problems like the comparison of different samples from the same instrument
are of a low dimensional nature but still interesting. Due to the prevalent focus on linearity
and correlation in RKHS-based approaches, problems requiring nonlinear measures of de-
pendence between random variables and manipulation of non-Gaussian probability density
functions have been neglected so far. This is rectified by using the RKHS embedding of prob-
ability distributions. The Hilbert-Schmidt independence criterion (HSIC) is compared to the
correlation coefficient by application to a simple example. The HSIC is employed to answer
geodetically motivated questions pertaining to the dependency of measurements on auxiliary
variables. Other than in this subsection, however, the view of RKHS as function spaces with
physical meaning will stay the predominant perspective.
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Suppose two different instruments A and B of the same type are used to produce

a series of measurements. Denote by X : Ω → R, Y : Ω → R the random

variables with probability distributions P,Q associated to measuring with A and B
respectively. If two samples x = {x1, ..., xm} and y = {y1, ..., yn} of realizations

of X and Y are given, the question may arise if A and B have been manufactured

alike or if one of the instruments is suffering from a malfunction detectable in the

statistical distribution of the measurements. In short, the task is to infer from x ∈
Rm and y ∈ Rn if P �= Q. This task has been analyzed in [82] where a two sample

test is derived on the basis of RKHS embeddings of distributions.

Suppose K(·, ·) is a positive definite kernel and denote by HK the corresponding

RKHS. One may try to find a smooth function f ∈ HK that distinguishes the sample

x and y maximally and designate the mean of f(x)−f(y) as an indicator of distance

between x and y. This leads to the maximum mean discrepancy

MMD = sup
‖f‖HK

≤1

EP [f(X)]− EQ[f(Y )] = sup
‖f‖HK

≤1

〈μP , f〉HK
− 〈μQ, f〉HK

= ‖μP − μQ‖HK
(3.62)

where μP = EP [K(X, ·)], μQ = EQ[K(Y, ·)] are the kernel embeddings of P and

Q. The element f ∈ HK leading to the maximum discrepancy is f = ‖μP −
uQ‖−1

HK
(μP − μQ) and an unbiased estimate of the MMD is given by [82]

M̂MD =
1

m(m− 1)

m∑
i=1

m∑
j �=i

K(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j �=i

K(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

K(xi, yj) (3.63)

Let m = n. Then for the hypotheses H0 : P = Q and H1 : P �= Q the distributions

of the test statistic M̂MD can be derived. Demanding an acceptance region leading

to a type I error of α leads to the thresholding test

M̂MD
2
<

(
4 sup

xi,xj

K(xi, xj) [m]−1/2
√

log(α−1)

)
(3.64)

where the nullhypothesis is rejected if statement 3.64 is untrue. See [82] for the

details. This test is illustrated schematically in figure 3.19 thereby concluding the

example.

Suppose now that radar interferometric measurements are made over a precisely

known stable length l with wavelength λ ≈ 17.6mm. As is shown later in chapter

5, the difference between received and sent phase is

Δϕ = mod

(
4π

λ
loptic, 2π

)
Δϕ ∈ [0, 2π]
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Figure 3.19: An example of the empirical kernel embedding — since the smooth squared exponential kernel was used, the

result looks like a kernel density estimate but should not be confused with one. The two panels on the right side showcase

in dashed lines the elements μP − μQ which are used to assemble the test statistic MMD = ‖μP − μQ‖HK
. The

more μP − μQ deviates from zero, the bigger the test statistic implying a higher tendency towards accepting P �= Q - this

coincides with the ground truth underlying the simulations (Gaussian vs uniform with different means in middle panel, two

identical uniform distributions in right panel).

and the optical path length loptic depends on meteorological parameters as recorded

on page 231. For the sake of simplicity, we consider here only the partial pressure

e of water vapor the temperature T . Given synthetic noisy observations of Δϕ, T, e
that were generated using this functional relationship, we want to use the Hilbert

Schmidt independence criterion to diagnose if Δϕ, T, e are statistically indepen-

dent. For reasons of contrast, also a dummy variable z completely independent of

the others has been included, see figure 3.20.

Figure 3.20: An illustration of the radarinterferometric toy example. Given the measurements for the phases, temperatures,

water vapor content and an unrelated dummy variable, HSIC is used to diagnose dependencies between the four sets of

measurements plotted in the second row. The results are reported in figure 3.21.

Given {Δϕi}ni=1, {Ti}ni=1, {ei}ni=1, {zi}ni=1 and kernels KX(·, ·) : R× R �→ R, X ∈
{Δϕ, T, E, z}, calculating HSIC between for example Δϕ and T is akin to estimat-



3.3. BASIC GEODETIC APPLICATIONS 135

ing

‖CΔϕT‖HS =

√√√√ ∞∑
i=1

σ2
i (CΔϕT ) CΔϕT =

n∑
i=1

KΔϕ(Δϕi, ·)⊗KT (ti, ·)∗

for example via [83]

HSIC =

[
1

n− 1

]2
tr
(
KLΔϕ

HLKT
H
)

(H)ij = δij −m−1

which is essentially a comparison metric evaluating how strongly (LKΔϕ
)ij =

KΔϕ(Δϕi,Δϕj) and (LKT
)ij = KT (ti, tj) are correlated as vectors in Rn ⊗ Rn.

Upper bounding the type I error by α and setting H0 : Δϕ
∐
T,H1 : Δϕ��

∐
T , a

threshold can be determined [83]. The results are documented in figure 3.21.

Figure 3.21: The different kernel matrices of the observations. Notice that LKz seems to be rather unrelated to the other

three as confirmed via a small inner product 〈HLKz , HLKX
〉F ∝ HSIC,X ∈ {Δϕ, T, e}.

For the HSIC values of the pairs (Δϕ, T ), (Δϕ, e), (Δϕ, z) one finds after 100 sim-

ulations the empirical mean values

HSIC(Δϕ, T ) = 0.04 HSIC(Δϕ, e) = 0.03 HSIC(Δϕ, z) = 0.0001

of which the last one is significantly below the other two. We reject Δϕ
∐
T and

Δϕ
∐
e and thereby come to the conclusion that the dependence of Δϕ on tem-

perature and content of water vapor is much stronger than explainable by random

chance. This is in accordance to what the data generation process suggests.
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Chapter 4
Theory of kernel inference

This is the last chapter in which new theoretical content will be presented. We will

focus primarily on deriving a systematic approach to kernel inference, i.e. the de-

termination of covariance functions and their corresponding RKHS from data. For

the sake of a more thorough comprehension, positive definite functions and positive

definite kernels K are first investigated in their own right independently of their po-

tential relation to elements of an RKHS HK . The theory of group (C∗)-algebras is

one of the settings in which positive definiteness admits an easy characterization in

terms of group algebraic multiplication and a ∗-structure. Bochner’s theorem pro-

vides necessary and sufficient conditions for a function to be the covariance function

of a second order stationary stochastic process. It makes use of the abstract notion of

a Fourier transform on locally compact abelian groups and relates positive definite-

ness of a function to positivity of its Fourier transform therefore opening up routes

to a formulation of kernel inference as an optimization problem with constraints

on its Fourier transform. The choice of correct distance measure to minimize is

as difficult as the derivation of an actual algorithm capable of minimizing it within

the feasible region determined by the constraints. Both questions receive some at-

tention and their resolution comes in the form of a type of optimization problem

that has some resemblance to semidefinite programs, or SDP for short. While a

brief description of their numerical implementation is unavoidable, the main inter-

est of this chapter is SDP-based kernel inference and the analysis and solution of

other geodetically motivated problems admitting a formulation in terms of spectral

quantities.

4.1 Group algebras

During the definition of second order stationary stochastic processes as those pos-

sessing a translation invariant covariance function K(·, ·), K(ti + τ, tj + τ) =
K(ti, tj) ∀ti, tj, τ ∈ T , use was made of an additional group structure on T that

allowed addition of its elements. The implications of a group structure on T for
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the vector space of functions T → C have so far been neglected together with the

existence of a natural multiplication of functions given either by pointwise multi-

plication or convolution. Both aspects are interrelated and function algebras with

an involution on locally compact abelian groups have irreducible one dimensional

representations in terms of special elements called group characters. The set of char-

acters can be endowed with a structure that mimics the original group. It is termed

the dual group and is a necessary ingredient for the abstract Fourier transform, for

which instructive applications from signals and systems theory will be collected.

4.1.1 (Locally) Compact groups and their algebras

A group T is called compact if it has a topology and every open cover of T includes a finite
open subcover. It is called locally compact and abelian if its group operation is commutative
and every group element has a closed compact neighborhood w.r.t. the topology τ . Complete
spaces L1(T ) of functions f : T → C that satisfy an L1-norm finiteness condition and
are endowed with the usual convolution of functions f ∗ g(t) =

∫
τ∈T f(τ)g(t − τ)dτ as

multiplication go by the name of group algebras. They are of interest because the additional
structure of a multiplication of functions on T is necessary to algebraically distinguish
positive definite functions from generic ones by e.g. relating positive definite functions to
squares f ∗ f∗ ∈ L1(T ). Ideals of an algebra L1(T ) are subspaces that are also absorbing
with respect to multiplication and the set of maximal ideals forms a particularly convenient
decomposition if L1(T ) into one dimensional subspaces of T is a locally compact abelian
group.

Definition 4.1.1 Let T be a set and a binary operation T × T → T be given. This

operation is typically denoted by ∗ or + depending on its properties. However, often

no special symbol is used at all and the operation is implicitly assumed to be applied

to two elements t1, t2 ∈ T if they are written in juxtaposition as t1t2.

I The set T together with the binary operation is called a group if [156, p.25]

∀s, t, u ∈ T it holds that i) (st)u = s(tu), ii) ∃e ∈ T : te = et = t, iii)

∃ t−1 ∈ T : t−1t = tt−1 = e.

II If the group operation is commutative and therefore satisfies iv) st =
ts ∀s, t ∈ T then T is called an abelian group [156, p. 28].

III The group T is called topological if a topologyO of open sets is defined on T
with respect to which the group operation (s, t) �→ st and inversion t �→ t−1

are continuous for all s, t ∈ T [95, p.16] and T as a topological space is

Hausdorff, that is ∀s, t ∈ T ∃ Os, Ot ∈ O : s ∈ Os, t ∈ Ot and Os ∩ Ot = ∅
[208, p. 85].

IV A topological group T is called compact if T is compact as a topological

space, i.e. if
⋃

j∈J Oj ⊃ Y ⇒ ∃J ′ ⊂ J , |J ′| finite, such that
⋃

j∈J ′ Oj ⊃ T
where in all of the above the Oj are elements of the topology O. T is called

locally compact if ∀t ∈ T ∃ a neighborhood U of t such that U is compact

[95, p. 11].

For a locally compact abelian group T that is also Hausdorff, the string of adjectives

will routinely be shortened by saying that T is LCA. Examples of compact groups

include the complex numbers of modulus 1 with multiplication, 3 × 3 orthogonal
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matrices with determinant 1 and rotations in the plane or 3-dimensional euclidean

space [74, p. 45] [63, p. 135]. The algebraic first pair of examples is obviously

related to the second pair which details groups of transformations. The real num-

bers with addition as well as their finite products (Rn,+) are examples of locally

compact abelian groups [113, p. 213] .

A function f on a group T is completely determined when its values f(t) at the

group members t ∈ T are known. In the case of countably many elements this

suggests a decomposition

f(t) =
∑
s∈T

αsδs(t) αs ∈ C ∀s ∈ T

where δs(t) is one for s = t and zero otherwise. A natural condition to impose on the

multiplication ∗ : (f, g) �→ f∗g of two functions f and g is that it is compatible with

the group operation in the sense of δs(·) ∗ δt(·) = δst(·) as then the delta functions

under multiplication mirror the groups behavior under the group operation. In this

way the basis of the space of functions on T may be identified with T itself. This

type of structure preserving multiplication is termed the (discrete) convolution and

extends to functions f, g on T via

(f ∗ g)(·) =
(∑

s∈T
αsδs(·)

)
∗
(∑

t∈T
βtδt(·)

)
=
∑
s∈T

∑
t∈T

αsβtδst(·)

and renaming st = u ∈ T this leads to

(f ∗ g)(·) =
∑
s∈T

∑
t∈T

αsβtδst(·) =
∑
u∈T

(∑
s∈T

αsβs−1u

)
δu(·)

implying (f ∗ g)(·) = h(·) = ∑s∈T γsδs(·) with coefficients γs =
∑

v∈T αvβv−1s.

One then notices that f(t) = αt, g(t) = βt and therefore

(f ∗ g)(t) =
∑
s∈T

αsβs−1t =
∑
s∈T

f(s)g(s−1t)

which gives an explicit formula for f ∗ g in terms of values of f(·) and g(·). To

guarantee existence of the convolution, it is enough to demand the coefficients of

f(·) and g(·) to be absolutely summable, i.e. f =
∑

s∈T αsδs(·) should satisfy∑
s∈T |αs| < ∞. In the algebra �1(T ) of absolutely summable functions on a

countable group T defined like this, it holds that (�1(T ), ∗) is a Banach algebra

with continuous involution f(s) → f(s−1) under norm ‖ · ‖�1 w.r.t. the counting

measure [128, pp. 120-122]. Furthermore �1(T ) is commutative iff T is abelian

because

(f ∗ g)(t)− (g ∗ f)(t) =
∑
s∈T

f(s)g(s−1t)−
∑
s∈T

g(s)f(s−1t) (4.1)
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s′=s−1t
=

∑
s∈T

f(s)g(s−1t)−
∑
s′∈T

g(ts′−1)f(s′) (4.2)

=
∑
s∈T

f(s)
[
g(s−1t)− g(ts−1)

]
(4.3)

is zero iff s−1t = ts−1 ∀s, t ∈ T . Any representation π : T → U(Hπ) of T by

means of unitary operators Ut ∈ U(Hπ) on some Hilbert space Hπ can be lifted to

a bounded ∗-representation on �1(T ) by π(f) =
∑

t∈T f(t)Ut ∀f ∈ �1(T ) [128,

p. 127]. This construction parallels the usual Fourier transform as for f, g ∈ �1(T )

Uf∗g =
∑
t∈T

(f ∗ g)(t)Ut =
∑
t∈T

∑
s∈T

f(s)g(s−1t)Ut

t′=s−1t
=

∑
s∈T

f(s)
∑
t′∈T

g(t′)Ust′

=
∑
s∈T

f(s)Us

∑
t∈T

g(t)Ut = UfUg (4.4)

and π[f ∗ g] = π(f)π(g) maps convolution to regular products. Since for any

q ∈ Hπ the function f(s−1t) = 〈Us−1tq, q〉Hπ is positive definite by

n∑
i=1

n∑
j=1

αiαjf(t
−1
j ti) =

n∑
i=1

n∑
j=1

αiαj〈Utiq, Utjq〉Hπ = ‖
n∑

i=1

αiUtiq‖2Hπ
≥ 0

for all choices of αi and evaluation points ti, the algebra �1(T ) and its unitary

representations are related to positive definite functions that correspond to co-

variance functions of second order stationary stochastic processes. Extending the

construction to cover uncountable groups while at the same time carrying over

the convenient properties requires introduction of an essentially unique invariant

measure — called the Haar measure — on T . The next theorem only sketches its

properties; more details, a proof and rigorous definitions of the involved quantities

can be found in [63, p. 41].

Theorem 4.1.2 For any locally compact group T there exists a nonzero Radon
measure μ(·) : B �→ μ(B) ∈ C such that μ(tB) = μ({tb : b ∈ B}) = μ(B) for
all t ∈ T and Borel sets B ⊂ T . This so called Haar measure is unique up to a
positive scaling constant.

Employing this theorem, integration against the Haar measure on T is invariant

against translation of functions f(t) by s ∈ T to f(s−1t) as∫
t∈T

f(t)dμ(t) =

∫
t∈T

f(t)dμ(st) =

∫
t∈s−1T

f(t)dμ(st)

=

∫
u∈T

f(s−1u)dμ(u) ∀s ∈ T (4.5)
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and essentially the calculations made during the exemplary study of countable

groups T carry over unperturbedly. One can then formulate the following theorem

listing properties of L1(T ) = {f : T → C :
∫
T
|f(t)|dμ(t) <∞}.

Theorem 4.1.3 Let T be an LCA group and μ its Haar measure. Then for L1(T )
with convolution (f ∗ g)(t) = ∫

s∈T f(s)g(t− s)dμ(s) as multiplication and involu-
tion ∗ : f(s) �→ f(s−1)

I L1(T ) is a commutative Banach ∗-algebra. The closure of L1(T ) under the
norm ‖f‖∗ = supπ ‖π(f)‖Hπ , π any continuous unitary representation of T
onHπ, is the group C∗-algebra C∗(T ) [48, p. 303].

II Functions f ∈ L1(T ) that are squares in the sense of f = g∗ ∗g or f = g ∗g∗
for some g ∈ L1(T ) are positive definite. This follows from

n∑
i,j=1

αiαjf(ti − tj) =
n∑

i,j=1

αiαj

∫
T

g(s− tj)g(s− ti)dμ(s)

=

∫
T

h(s)h(s)dμ(s) ≥ 0 (4.6)

for h(s) =
∑n

i=1 αig(s − ti) and implies a systematic way to construct co-
variance functions for second order stationary processes. Another method of
construction using more elementary functions is given in item IV. Note that
‖f‖1 = ‖g‖21 automatically by the Banach algebra property.

III Unitary representations π : T � t �→ π(t) = Ut ∈ B(Hπ) that are continuous
as maps T � t �→ π(t)q ∈ Hπ for q ∈ Hπ induce ∗-representations of L1(T )
on B(Hπ) via π(f) =

∫
t∈T f(t)Utdμ(t) [128, p. 127].

IV The functions f(t − s) = 〈Ut−sq, q〉Hπ for some nonzero q ∈ Hπ are then
bounded, continuous and positive definite with ‖f‖∞ = f(1) = ‖q‖2Hπ

[63,
pp.83,92].

We illustrate briefly for T = (R,+) and L1(T ) := {f : T → C : ‖f‖1 =∫
R |f(t)|dt < ∞} where we interpret f ∗ h = Lhf as the response of a linear time

invariant system to the input f .

We find by I that L1(R) is commutative with f ∗ h = h ∗ f and

(f∗h)∗ = h∗∗f ∗ ∀f, h ∈ L1(R) where (f ∗)(s) = f(−s) and ‖f∗h‖1 ≤ ‖f‖1‖h‖1.
The group C∗-algebra is the closure of L1(R) under the norm ‖f‖∗ = ‖f̂‖sup
and C∗(R) ∼= C0(R), the continuous functions on R vanishing at infinity [63,

p.225]. Since for every ω ∈ R, πω : T � t �→ πω(t) = exp(iωt) ∈ C creates a

unitary operator on C for every t ∈ T by III πω(f) =
∫
R f(t)e

iωtdt ∀f ∈ L1(R)
which as a function of ω is just the usual Fourier transform. It holds that

πω(f ∗ h) = πω(f)πω(h) which already hints at πω(f) = πω(h)
−1πω(f ∗ h)

and solvability of the inverse problem in case when the transfer function has

nonvanishing Fourier transform.
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Finally note that fω(t−s) = 〈πω(t−s)q, q〉C = |c|2eiω(t−s) is a continuous bounded

positive definite function on R for all ω ∈ R. The complex constant c ∈ C is

arbitrary and ‖fω‖sup = fω(0) = |c|2. The complex exponentials take a central

role in the next subsections as they turn out to be the extreme points of the convex

set of positive definite functions, which can consequently be written as integrals of

complex exponentials against a probability measure. The situation is clarified in

figure 4.1

Figure 4.1: Convolution as a way of superimposing signals has a simple relationship to the family of unitary representations

πω(t) = exp(iωt), that form elementary building blocks of positive definite functions.. On the left, an input signal f , the

transfer function h and its convolution can be seen, whereas the middle plots show their complex unitary representations for

a range of parameters ω. The right panel finally exhibits the positive definite convolution squares f ∗ f∗ and h ∗ h∗ and

(h ∗ f) ∗ (h ∗ f)∗.

The role of complex exponentials as constituting simple positive definite functions

is no coincidence. They arise naturally when one tries to decompose the algebra

L1(T ) into minimal parts to derive a structure theorem for algebras that generalizes

theorems about orthogonal decomposability of separable Hilbert spaces into direct

sums of one dimensional subspaces.

A subalgebra J of a commutative Banach ∗-algebra A is called an ideal if

∀f ∈ J and g ∈ A one has f ∗ g ∈ J . It is termed proper if J �= A and maximal

if � a proper ideal J ′ � J . Let as before Γ : A → C(σ(A)) be the Gelfand

transform and σ(A) be the set of multiplicative linear functionals from A to the

complex numbers.

Theorem 4.1.4 For a complex commutative Banach algebra A with ideal J , the
following statements hold

I Every maximal ideal J is the kernel of an h ∈ σ(A). IfA is unital,A/J has
dimension 1 [128, p. 69].

II If J is maximal, the quotient spaceA/J can be made into a Banach algebra
by defining multiplication on representations of equivalence classes. If A is
unital and every nonzero element of A/J is invertible, then A/J ∼= C [95,
p. 473].

III IfA is unital, A ∈ A has an inverse if and only if A /∈ J for any proper ideal
J [128, p. 64].

IV If A = L1(T ) for a commutative locally compact group T , then each homo-
morphism h ∈ σ(A) can be written as h(f) =

∫
T
f(t)χω(t)dμ(t) for some
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χω(·) ∈ L∞(T ). The so called character χω(·) is unique and a homomor-
phism from T to C [128, p. 135].

Let us again illustrate the theorems implications by investigating an instructive spe-

cial case. Let A be the algebra of selfadjoint linear bounded operators on H = Cn

which are generated from a selfadjoint A ∈ B(H) with simple spectrum by apply-

ing bounded Borel functions f to it. A is unital and commutative since A0 = I and

f(A)g(A) = g(A)f(A) ∀f, g,∈ B(σ(A)). They can be simultaneously diagonal-

ized by some unitary matrix U = [u1, ..., nn] ∈ Rn ⊗ Rn, see spectral theorem.

One can then construct explicitly h ∈ σ(A) such that h is a multiplicative functional

on A by setting — now for B,C ∈ A arbitrary —

hk(B) = 〈U∗BUek, ek〉H = dk(U
∗BU)

where ek is the k-th Euclidean unit vector and dk denotes the k-th diagonal element.

Since B = f(A) and C = g(A), U∗BU = ΛB and U∗CU = ΛC are diagonal

which implies the homomorphism properties

hk(B + C) = 〈(ΛB + ΛC)ek, ek〉H = dk(ΛB + ΛC)

= hk(B) + hK(C)

hk(BC) = 〈(ΛBΛC)ek, ek〉H = dk(ΛBΛC)

= hk(A)hk(B)

The map associating to B ∈ A its k-th eigenvalue (apart from some reordering)

is therefore a homomorphism for all k = 1, ..., n. By theorem 4.1.4.I the corre-

sponding maximal ideals Jk are the kernels of hk, i.e. are all those B ∈ A such

that their k-th diagonal element hk(B) = dk(ΛB) is zero. This property is con-

served under addition and under multiplication by elements of A. Jk consists only

of noninvertible elements by theorem 4.1.4.III. For each k = 1, ..., n an element of

A/Jk is an equivalence class containing linear operators in A whose k-th diagonal

element coincides. They form a one dimensional subalgebra of A in which every

nonzero element [B] ∈ A/Jk can be inverted by multiplying with some [C] for

which hk(C) = hk(B)−1. By theorem 4.1.4.II this allows to conclude A/Jk
∼= C.

Notice that A/Jk
∼= C and Cn =

⊕n
k=1A/Jk. Since bounded operators sat-

isfy ‖B∗B‖op = ‖BB∗‖op = ‖B2‖op ∀B ∈ B(H), A is also a C∗-algebra,

A ∼= C(σ(A)) ∼= C(range Â) by Gelfand Naimark theorem and [63, p. 7]. Since

the functions on an n-element domain (A was assumed to have simple spectrum)

can be represented as a vector in Cn, we find A ∼= ⊕n
k=1A/Jk and multiplica-

tion onA may equivalently be carried out via the trivial pointwise multiplication of

elements λ = {λk}nk=1 ∈
⊕n

k=1A/Jk
∼= Cn. All of this is relatively close to the

discussion of the spectral theorem in subsection 2.2.3 but now with an explicit focus

on the algebraic aspects of the operator algebra generated by a covariance operator.
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Figure 4.2: In the first row the elements sin(A), A1/2, A1, and A2 of the algebra A generated by A are plotted. In the

middle row representing elements [sin(A)], [A1/2], [A1], and [A2] of the quotient space
⊕4

k=1 A/Jk are exhibited. The

representers B ∈ [B] were chosen such that hk(B) = 0 for k ≥ 5. The complements of ker(hk) in A for k = 1, ..., 4 are

shown in the last row and correspond to a representing element of the one dimensional spaces not annihilated by hk .

4.1.2 Group characters and the Fourier transform

Every maximal ideal J of L1(T ) is the kernel of a unique algebra homomorphism ϕJ :

L1(T ) � f �→ f̂J ∈ C, ϕJ ∈ HomAlg(L
1(T ),C). Since ϕJ as a linear multiplicative

functional is also an element of the dual space (L1(T ))∗ ∼= L∞(T ), it can be written in the
form ϕJ (f) =

∫
T
χJ (τ)f(τ)dτ where the χJ (·) ∈ L∞ are called group characters. They

map T to S1 in a structure preserving way and their relevance lies in the fact that there is
a one to one correspondence between multiplicative linear functionals, maximal ideals and
group characters. Once they have been determined for certain groups T1 and T2 they are
readily computable for product and quotient groups involving T1 and T2. Group characters
form themselves an abelian group (T̂ , ·) under pointwise multiplication. Products as well as
powers of functions f, g ∈ L1(T ) are straightforward to analyze with the help of χJ ∈ T̂
since ϕJ (f ∗ g) = ϕJ (f) · ϕJ (g) and f is approximable as a weighted sum over group
characters χJ indexed by the set of all maximal ideals. Convolutions of functions are en-
countered in the theory of linear time invariant systems and when calculating the probability
density of sums of random variables.

Theorem 4.1.4 from the previous subsection suggests a one to one relationship

between maximal ideals of an algebra A, the set of homomorphisms from A to

C and certain unitary representations that act as homomorphisms from T to C
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if T is LCA and A = L1(T ). These functions χ have important properties

that stem from the fact that, for LCA groups T , their structure preserving prop-

erties as maps T → S = {z ∈ C : |z|2 = 1} lift to structure preserving

properties as maps L1(T ) → C when they are identified with linear functionals

lχ(f) =
∫
T
f(t)χ(t)dμ(t). In this case one finds among other relations

lχ(f ∗ g) =
∫
T

(f ∗ g)(t)χ(t)dμ(t)

=

∫
T

∫
T

f(s)g(t− s)χ(t)dμ(s)sμ(t)

t′=t−s
=

∫
T

∫
T

f(s)g(t′)χ(t′)χ(s)dμ(s)dμ(t)

=

∫
T

f(s)χ(s)dμ(s)

∫
T

g(t)χ(t)dμ(t) = lχ(f)lχ(g) (4.7)

in which lχ(·) : L1(T ) → C reveals itself as an algebra homomorphism from

the group algebra to the complex numbers and a one-dimensional analogue of the

Fourier transform but obviously more general. The exact nature of these χ(·) is

fixed in the next definition [128, pp. 135-138].

Definition 4.1.5 Let T be LCA and S the set of all complex numbers of modulus 1.

I If χ(·) : T � t �→ χ(t) ∈ S is a continuous homomorphism into the mul-

tiplicative group of complex numbers in the sense that χ(t + s) = χ(t)χ(s)
then χ is called a character of T .

II The set T̂ := {χ : T → S, χ a character} together with pointwise multiplica-

tion χ1χ2 = χ with χ(t) = χ1(t)χ2(t) ∀t ∈ T, χ1, χ2 ∈ T̂ is called the dual

group of T .

It is standard [128, pp. 137-138] to show that the set T̂ with multiplication as defined

above is actually again a locally compact group with χ−1 = χ. From χ ∈ T̂ by

lχ(f+g) = lχ(f)+ lχ(g) and lχ(f ∗g) = lχ(f)lχ(g) ∀f, g ∈ L1(T ) =: A as shown

in equation 4.7 it follows that lχ(·) : L1(T ) → C is a multiplicative functional and

therefore lχ ∈ σ(A). That also the converse is true and every l ∈ σ(A) arises as

lχ for some χ ∈ T̂ was the topic of theorem 4.1.4.IV. As under these conditions

the topology of compact convergence on T̂ coincides with the weak∗ topology on

{lχ : χ ∈ T̂} ⊂ L∞ [63, p. 97], the map

l : T̂ � χ �→ lχ ∈ σ(A), lχ(f) =

∫
T

f(t)χ(t)dμ(t)

is a homomorphism and T̂
l∼= σ(L1(T )), so that the spectrum of the algebra L1(T )

may be identified with the dual group T̂ in the future. If T is even compact

with μ(T ) = 1 then T̂ is an orthonormal basis for L2(T ) := {f : T → C :
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∫
T
|f(t)|2dμ(t0 <∞}, i.e. [63, p. 109]

〈χi, χj〉L2(T ) =

∫
T

χi(t)χj(t)dμ(t) = δij.

This allows orthogonal decomposition of functions for example on the circle

S without reference to the exterior space R2 into which one might embed it.

Originally χ(·) came from a unitary representation of the group T , and most

of its properties can be derived from this connection. It implies an interesting

relationship between the dual group T̂ and unitary representations of T by means

of one dimensional complex numbers or their Cartesian products.

Theorem 4.1.6 Let T be LCA. Then every irreducible unitary representation, i.e.
every π : T → B(H) which cannot be further decomposed into π = π1 ⊕ π2 with
πk : T → B(Hk),Hk �H unitary and Hk �= {0} for k = 1, 2, is one dimensional
[63, p. 72].

Furthermore for every irreducible π,Hπ
∼= C and π(t) ∈ B(C) ∼= C can be iden-

tified with a complex number χ(t) ∈ C ∀t ∈ T . The χ(t) constructed in this way

is a character and all characters have this form so that the dual group T̂ is in one to

one correspondence with all irreducible unitary representations [63, p. 96]. Conse-

quently π(f) =
∫
T
f(t)χ(t)dμ(t) ∀f ∈ L1(T ) is a multiplicative functional whose

kernel is a maximal ideal in L1(T ) [128, p. 135].

As a corollary, notice that if for k = 1, 2 πk : Tk → B(Hk) ∼= C is an irreducible

representation of of LCA Tk’s on Hk, then π1(s)π2(t), s ∈ T1, t ∈ T2 is a complex

number of modulus 1 and

π = π1 ⊗ π2 : T1 × T2 � (s, t) �→ π1(s)π2(t) ∈ S

is an irreducible unitary representation of T1 × T2 on Hπ
∼= C [128, p. 139]. It

follows that T̂1 × T2 ∼= T̂1 × T̂2. In a similar vein, if one decomposes

T ∼= T/S × S T̂ ∼= (T̂/S)× Ŝ S subgroup of T

one finds that the unitary representation

π(t) = π([t])π(s)

for t ∈ T, [t] ∈ T/S, s ∈ S implies that the characters of T/S are those characters

of T which are constant on S [128, p. 139]. In fact, if [·] is the canonical projection

T → T/S, then π ◦ [·] is a character on T/S. Typical examples of groups T for

which we will need the characters to construct positive definite functions include

[95, p. 366-388]

i) T = (R,+) T̂ ∼= T χω(t) = exp(2πiωt) ω ∈ R

ii) T = (Rn,+) T̂ ∼= T χω(t) = exp(2πi〈w, t〉�2) ω ∈ Rn
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iii) T = (S, ∗) T̂ ∼= Z χω(t) = exp(2πiωt) ω ∈ Z

iv) T = (R+, ∗) T̂ ∼= R χω(t) = exp(2πiω log t) ω ∈ R

where the properties of the positive reals under multiplication follow from the first

statement and the fact that (R+, ∗) and (R,+) are isomorphic as groups via the

exponential map [74, p. 15].

The relevance of examples i) and ii) is clear: when dealing with functions on Rn

from a stochastic perspective, the characters are elementary building blocks of trans-

lation invariant positive definite kernels which one might identify with covariance

functions of second order stationary processes. They will be shown to provide

something akin to a basis for covariance functions enabling inference of a processes

correlation structure in a non-parametric way. For iii) and iv) note that it might be

interesting to look at functions on R2 that are rotation invariant. We might then

decompose R2 in some way with T = (R+, ∗) × S via polar coordinates, focus on

the quotient space T/S and investigate functions and kernels on it.

As was just seen, ϕJ maps convolutions to pointwise multiplication and its

central ingredient χJ : T → S1 sets up a norm preserving isomorphism

F : L2(T ) � f(t) �→ (Ff)(ω) =
∫
τ∈T f(τ)χωdτ ∈ L2(T̂ ) so that analysis of

f ∈ L2(T ) is interchangeable with analysis of f̂ = Ff ∈ L2(T̂ ). The construction

of Ff is analogous to the usual Fourier transform f̂ when T = R and carries its

advantages over to function spaces on arbitrary locally compact abelian groups.

Definition 4.1.7 let T be LCA and denote again by T̂ its dual group. Then for

f ∈ L1(T ) the function f̂ : T̂ → C defined as

f̂(ω) :=

∫
T

χω(t)f(t)dμ(t) (4.8)

is called the Fourier transform of f . The map F : L1(T ) � f �→ f̂ ∈ C0(T̂ ) is

called Fourier transform on T [63, p. 102].

The Fourier transform on T is a ∗-homomorphism between L1(T ) and C0(T̂ ) and

many of the convenient properties listed in the theorem below are direct conse-

quences of (Ff)(ω) being effectively πω(f) for a family of unitary representations

indexed by χω ∈ T̂ . It is standard to identify the T̂ and {ω : χω ∈ T̂}.

Theorem 4.1.8 Let F be the Fourier transform on some LCA T with dual group T̂ .
Then the following assertions hold [63, pp. 101-114].

I If f̂ ∈ L1(T̂ ) then the Fourier transform can be inverted to yield

f(t) =

∫
T̂

χω(t)f̂(ω)dν(ω)
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where equality holds almost everywhere and ν is the dual measure of the
Haar measure μ on T . The Fourier transform can be extended to a unitary
isomorphism between L2(T ) and L2(T̂ ).

II For f, g ∈ L1(T ), the Fourier transform diagonalizes the convolution opera-
tor Lfg = f ∗ g which is unitarily equivalent to Mf̂ via

FLfg = F(f ∗ g) = f̂ ĝ =Mf̂Fg

by the homomorphism property implying Lf = F∗Mf̂F .

III The covariance operator C with kernel K(s, t) = f(t − s) given as Cg =∫
T
f(t − s)g(s)dμ(s) for some continuous positive definite f(·) absolutely

integrable on T is diagonalizable via Fourier transform. This is implied by II
via Cg = f ∗ g = Lfg = F∗Mf̂Fg. Particularly, C’s positivity means that
f̂ takes on only nonnegative values as σ(Lf ) = σ(Mf̂ ) = range f̂ where the
last equality holds because for a continuous function f̂ , essential range and
range coincide [168, p. 369] [196, p. 80].

IV (Poisson summation) If S is a closed subgroup of T , f ∈ L1(T ) with compact
support and f̂ |S⊥ ∈ L1(S⊥) then∫

S

f(st)dμ(s) =

∫
S⊥
f̂(ω)χω(t)dν(ω)

where equality again holds almost everywhere, μ (and ν) a suitably normal-
ized (dual) Haar measure and S⊥ := {χω ∈ T̂ : χω(s) = 0 ∀s ∈ S} ∼= T̂/S.

On a less formal level, theorem 4.1.8.I implies that one may investigate f̂ in-

stead of f without losses in explanatory power. Statement II furnished with ad-

ditional surroundings provides a method for fast inversion of covariance operators

whose kernel is a positive definite function. This speeds up one of the steps whose

computational cost is most prohibitive to practical applications of spline formulas

σf =
∑n

j=1 λjK(tj, ·), λ = C−1a to large scale estimation problems whereas III as-

sures that the action of applying C is unitarily equivalent to multiplication by some

f̂ , whose nonnegativity is necessary for C’s positive definiteness. Finally the Pois-

son summation formula exhibited in IV makes possible an extension of Shannon’s

sampling theorem to functions on LCA groups.
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4.1.3 Bochners theorem

The set of elementary positive definite functions χω, ω ∈ T̂ forms an important subset of
positive definite functions f with ‖f‖∞ = 1 for which they play a role similar to a basis in
ordinary vector space theory. The representation of f in terms of weighted sums of χω, ω ∈ T̂
has characteristic positivity properties that are stated formally in Bochner’s theorem and
provide a canonical link between correlation functions and different functions occurring in
probability theory. In its most simplistic form, Bochner’s theorem implies the possibility of
inferring positive definite functions f via classical least squares estimation of type ‖Af −
a‖2 → min augmented with a positivity constraint on the Fourier transform Ff .

Recall that a function f on an LCA group T was called positive definite if

n∑
i,j=1

αiαjf(ti − tj) ≥ 0 ∀ choices of αi ∈ C, ti ∈ T (4.9)

where n is an arbitrary natural number. If equation 4.9 holds for a function

K : T × T → C of two variables with f(ti − tj) replaced by K(ti, tj) then K is

called a positive definite kernel [19, pp. 67,87]. Denote by P the set of continuous

positive definite functions on some LCA T and let P1 be the subset consisting of

those functions f for which |f(0)| = 1 [63, p. 86]. Similarly let K be the set of

positive definite kernels without any continuity conditions imposed on them [19,

p. 80]. To investigate the structure of P,P1 and K, some definitions taken from

convex geometry are in order.

Definition 4.1.9 I A set C for which it holds that ∀c1, c2 ∈ C, λ(c1, c2) :=
λc1 + (1− λ)c2 ∈ C whenever λ ∈ [0, 1] is called convex and if furthermore

for all λ > 0, λC ⊂ C then C is a convex cone [50, p. 135].

II A is termed an extreme subset of the convex cone C if ∀c1, c2 ∈ C and λ ∈
(0, 1), λ(c1, c2) ∈ A implies c1, c2 ∈ A. F ⊂ C is an extreme ray if F =
{λc : λ > 0} for some fixed c ∈ C and for any f ∈ F, f �= c1 + c2 for any

c1, c2 ∈ C/F. Single points f ∈ C are termed extreme points if {f} is an

extreme subset of C [112, p. 239], [19, p 55].

As an example of a convex cone, take the set of positive semidefinite matrices Sn
+

acting on Rn. Obvious extreme rays are sets of the form {λf ⊗ f ∗ : λ > 0} for

some f ∈ Rn [112, p. 239]. Since for any nonzero Σ ∈ Sn
+, −Σ /∈ Sn

+ we find that

� nonzero Σ1,Σ2 ∈ Sn
+ with Σ1 + Σ2 = 0 and the zero matrix forms an extreme

point {0} of Sn
+.

In general for K1, K2 ∈ K and λ1, λ2 ≥ 0

n∑
i,j=1

αiαj [λ1K1(ti, tj) + λ2K2(ti, tj)] = λ1

[
n∑

i,j=1

αiαjK1(ti, tj)

]

+ λ2

[
n∑

ij=1

αiαjK2(ti, tj)

]
≥ 0
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and P as well as K are also closed under scaling by a positive scalar λ. Therefore

P and K are convex cones. The extreme rays of K and the extreme points of P1 are

given explicitly in the next theorem.

Theorem 4.1.10 Let P1 be the set of continuous positive definite functions f ∈ P
for which also |f(0)| = 1 and denote by K the set of all positive definite kernels.

I Any positive definite function f ∈ P can be written as f(t) = 〈πf (t)q, q〉Hf

for the unitary representation πf given by

πf (t)[g] = [g(· − t)]

for some g ∈ Hf . Here [·] is the canonical projection from L1(T ) to Hf , the
Hilbert space of equivalence classesL1(T )/N whereN is the nullspace of the
seminorm induced by the semi-inner product 〈g, h〉Hf

=
∫
T

∫
T
g(s)h(t)f(s−

t)dμ(s)dμ(t) [63, p. 84].

II The extreme points of P1 are those f ∈ P for which the unitary represen-
tation πf as determined in I is irreducible [63, p. 86]. These are also often
called elementary positive definite functions.

III The set {λK : λ > 0} is an extreme ray of K if and only if K(s, t) = g(s)g(t)
for some nonzero g : T → C. The RKHS Hk associated to k(·, ·) via the
Moore-Aronszajn theorem has dimension 1 [19, p. 83].

Theorem 4.1.10.II provides a systematic way to list all the extreme points of

normalized positive definite functions f ∈ P1 by enumerating the characters of

T . Item III does essentially the same for K and comes as no surprise due to it

being simply a further specification of properties for the Mercer decomposition of a

kernel. Since convex cones are the closure of the set of convex combinations of its

extreme points by the Krein-Milman theorem [119], both parts suggest that a) one

may deconstruct a given f ∈ P1 or K ∈ K into linear combinations of elementary

positive definite functions and b) synthesize f ∈ P1, K ∈ K by combining either

complex exponentials or tensor products of functions according to certain rules.

At least for the case of P and P1 this is made formal in Bochners theorem [63,

pp. 103-104].

Theorem 4.1.11 (Bochners theorem) Let T be LCA. Then f ∈ P on T iff

f(t) =

∫
T̂

χω(t)dν(ω) ∀t ∈ T (4.10)

for some unique positive measure ν on T̂ . If ‖f‖∞ = 1 or f(0) = 1 and therefore
even f ∈ P1, then ν(·) is a probability measure, i.e. ν(T̂ ) = 1.

For not necessarily translation invariant positive definite kernels K(·, ·) a similar

but weaker equivalence result is provided by Fortet’s theorem 3.2.1 on page 112.

The general situation is less accessible to systematic treatment and yields no easily
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implementable constraints expressible via linear transforms of K(·, ·). This cannot

be sidestepped and will make necessary the development of optimization procedures

that operate under cone constraints in the following sections.

Now four different options are available to construct positive definite kernels K on

T × T or positive definite functions f on T . In the translation invariant case, one

may either form square functions f ∗ f ∗ or integrate against a probability measure

on T̂ to get f =
∫
T
χω(·)dν(ω). When constructing positive definite kernels in gen-

eral there are two options as well: choose an arbitrary but normalized sequence of

functions {gk}∞k=1 and employ a converse of the Mercer decomposition to the effect

of creating a kernel K(s, t) =
∑n

j=1 λjgj(s)gj(t) for some summable sequence of

positive λj or freely specify the right-hand side of the equation in Fortet’s theorem.

According to Bochner’s and Fortet’s theorems as well as Mercers decomposition,

the last three constructions establish a one-to-one correspondence. This opens up

the possibility to approximate and estimate positive definite functions or kernels via

linear combinations of complex exponentials or squares gjgj on which the compli-

cated constraint of positive (semi)definiteness is replaced by the easy one of posi-

tivity of the expansion coefficients — a condition that is not only straightforward to

check but can also be included as a constraint during optimization procedures.

A similar but weaker statement can be made for the square construction f = g ∗ g∗.
Suppose f ∈ P ∩ L1(T ) with f̂ ∈ L1(T̂ ). By theorem 4.1.8.III f̂ ≥ 0 and if

ĝ =

√
f̂ ∈ L1(T̂ ) as well by the Fourier inversion theorem 4.1.8.I ∃g ∈ L1(T ) with

g(t) =

∫
T̂

ĝ(ω)χω(t)dν(ω)

F(g ∗ g∗) = F(g)F(g∗) = ĝĝ = |f̂ | = Ff

which implies that g∗g∗(t) = ∫
T̂
f̂(ω)χω(t)dν(ω) = f(t). Therefore under stronger

conditions on the positive definite function f , approximating or estimating them via

sums of type
∑n

j=1 λjgj ∗ g∗j for λj ≥ 0 is a reasonable approach as well.

4.2 Kernel inference

In this section different methods for estimating reproducing kernels from data are

evaluated. The goal is to create inference procedures based on nonparametric rep-

resentations of kernels K in terms of orthonormal bases in some Hilbert space H.

The theory outlined in section 4.1 suggests the existence of a decomposition into

a weighted sum of complex exponentials when the reproducing kernel is transla-

tion invariant. This observation serves as a suitable starting point for constrained

�2 norm minimization based kernel inference. It is easily implementable but the

performance of the inferred kernels for estimation purposes can be disappointing

necessitating further investigations into appropriate measures of closeness between

kernels and the possibility of regularization.
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4.2.1 Naive kernel inference

The optimal decomposition of a normalized translation invariant kernel into a weighted
superposition of group characters requires solution algorithms for constrained least
squares problems. One of these is the sequential coordinatewise algorithm for nonnegative
least squares. Its performance for estimation of positive definite functions and kernels
is assessed. While the approximative qualities of this approach are satisfying at first,
serious drawbacks emerge as soon as the p.d. functions and kernels are interpreted as
covariances and used for statistical inference. Further deficiencies become apparent when
the approach is employed to estimate instationary kernels with unknown eigenfunctions
and unknown linear relations to stationary kernels; i.e. when more is subject to incomplete
information than simply the spectrum of the covariance operator CK . The investiga-
tions leading up to these realizations are interesting in their own right as they pave the
way for more sophisticated approaches of kernel inference and are presented in what follows.

From Bochner’s theorem it is known that for each probability measure ν on T̂ , the

formula f(s − t) =
∫
T̂
χω(s − t)dν(ω) defines a p.d. function f(·) on the LCA

T . Particularly, this implies that for ν a weighted counting measure on some subset

W ⊂ T̂ , the equation

K(s, t) = f(s− t) =
∑
ω∈W

αωχω(s− t)

defines both a translation invariant kernel k(·, ·) and a p.d. function f(·) if αω ≥
0 ∀ω ∈ W . This relation can be used for purposes of estimating non-parametrically

a p.d. function from data. Let the LCA T be given and again introduce the Rn-

valued linear measurement operator A with domain either p.d. functions, kernels or

as needed on a case-to-case basis. Kemp ∈ Rn will denote any empirical data used

to narrow down the search for an appropriate K(·, ·), which satisfies AK ≈ Kemp.

The following three inference strategies suggest themselves immediately.

I If W ⊂ T̂ is a finite subset with |W | = m, then set the estimator

Kest(s, t) ∀s, t ∈ T to

Kest(s, t) = f(s− t) =
∑
ω∈W

αωχω(s− t)

where the parametervector α = {αω}ω∈W ∈ Rm
+ is determined as the solution

to the optimization problem

αopt = argmin
α∈Rm

+

‖Ψα−Kemp‖22 (4.11)

Here Ψ = [ψ1, ..., ψm] ∈ Cn ⊗ Cm with ψj = Aχωj
(· − ·) and ωj is the j-th

element of W .

II If {ϕj}mj=1 is a sequence of functions in L1(T ), then set the estimator

Kest(s, t) ∀s, t ∈ T to

Kest(s, t) = f(s− t) = (g ∗ g∗)(s− t) g(·) =
m∑
j=1

βjϕj(·)
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where the parametervector β = {βj}mj=1 ∈ Cm is determined as the solution

to the optimization problem

βopt = argmin
β∈Cm

‖Ψv(β ⊗ β)−Kemp‖22 (4.12)

Here v(·) : Cm ⊗ Cm → Cm·m is the vectorization operator and Ψ =
[ψ11, ..., ψmm] ∈ Cn ⊗ Cm·m with ψjk = A

∫
T
ϕj(· − ·+ t)ϕk(t)dμ(t).

III If {ϕj}∞j=1 is an ONB of L2(T ), then set the estimator Kest(s, t) ∀s, t ∈ T to

Kest(s, t) =
m∑
j=1

αjϕj(s)ϕj(t)

where the parameter vector α = {αj}mj=1 ∈ Rm
+ , m finite , is determined as

the solution to the optimization problem

αopt = argmin
α∈Rm

+

‖Ψα−Kemp‖22 (4.13)

Here Ψ = [ψ1, ..., ψm] ∈ Cn ⊗ Cm with ψj = Aϕj(·)ϕj(·).
The optimization problem posed in strategy II is obviously very complicated since

the unknown parameter vector enters the objective function in a nonlinear fashion

already before norms are evaluated and we will not pursue this approach further.

Note, however, that if in II {ϕj}mj=1 is an orthonormal system w.r.t. L2(T, μ) , e.g.

if ϕj = χωj
for T compact and abelian by Peter-Weyl theorem [63, p. 143], then

f(s) = (g ∗ g∗)(s) =
m∑
k=1

m∑
l=1

βkβl

∫
T

χωk
(s− t)χωl

(−t)dμ(t)

=
m∑
k=1

m∑
l=1

βkβlχωk
(s)〈χωl

, χωk
〉L2(T,μ)

=
m∑
j=1

|βj|2χωj
(s)

and processing strategy II reduces to I. The theoretical drawback of I and II is

that only translation invariant kernels can be inferred. The same limitation does

not hold for III which is slightly more general in this respect as setting ϕj to

χωj
recovers I. However, III is not a suitable strategy if the exact nature of K

is not known beforehand as the family constructible via positive linear combina-

tions of elements of ∪m
j=1{ϕj ⊗ ϕj} differs only in terms of the kernel operator

CK’s spectrum whereas the spectral family stays the same for all the families mem-

bers. This is due to the fact that whatever αj ∈ R+ are chosen in the expansion
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K(s, t) =
∑m

j=1 αjϕj(s)ϕj(t),

(CKϕi)(s) = 〈K(s, ·), ϕi(·)〉L2(T ) = 〈
m∑
j=1

αjϕj(s)ϕj(·), ϕi(·)〉L2(T ) = αiϕi(s).

This is particularly obvious in the real finite-dimensional matrix case, where we

can set ϕj to the canonical euclidean basis vector ej ∈ Rn which implies that CK =∑n
j=1 ek⊗e∗k could only ever be a diagonal matrix. The number of freely choosable

parameters αj ∈ R+ then amounts to nwhereas the set of n×n covariance matrices

has dimension at least (n2 − n)/2 because the manifold of symmetric matrices has

dimension n(n+1)/2 [45, p. 70] and only n further linear positivity constraints are

needed to enforce positive semidefiniteness.

Regarding the practical implementation of I and III there are at least two options:

Solve the constrained optimization problem for the parameters numerically with an

algorithm for nonnegative least-squares; e.g. the sequential coordinatewise algo-

rithm [67]. Alternatively solve a relaxation of the problem with αopt ∈ Rm
+ replaced

by αopt
2 ∈ Rm via pseudoinverse methods and project the resulting αopt

2 onto Rm
+ by

discarding any of its negative entries. We briefly describe both for the practically

relevant case where kernel and measurements are explicitly demanded to be real-

valued. Since α has trivial imaginary part as well by Bochner’s theorem, it holds

that

‖Re (AKest(·, ·)−Kemp) ‖2 = ‖Re (Ψα−Kemp) ‖2 = ‖Re(Ψ)α−Kemp‖2
and one might write the objective functions from equations 4.11-4.13 explicitly with

Ψ replaced by Re(Ψ) = Ψr.

The sequential coordinatewise algorithm [67] minimizes (1/2)‖Ψrα−Kemp‖22, α ∈
Rm

+ by first swapping it for the equivalent quadratic program

min
1

2
〈α,Ψ∗

rΨrα〉Rm + 〈α,−2Ψ∗
rKemp〉Rm

subject to α �C with C the nonnegative orthant in Rm

and then solving it by once initializing the algorithm in step i) and then applying

repeatedly step ii) until convergence.

i) Set α0 = 0, μ0 = −2Ψ∗
rKemp and H = Ψ∗

rΨr = [h1, ..., hm].

ii) Loop through the index set J = {1, ...,m} and update αk
j to αk+1

j where k
denotes the k-th iteration by setting

αk+1
j = max

(
0, αk

j −
μk
j

Hjj

)
μk+1 = μk +

(
αk+1
j − αk

j

)
hj
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i.e. the vector μ is modified after each update of an αj ∀j ∈ J . One typically

lets j run through J several times until a certain stopping criterion concerning

closeness between the parameter vectors αk and αk+1 as measured by the

norm of their differences is reached.

The algorithm is known to always converge for nonnegative least-squares problems

and typically does so rapidly, even for high-dimensional decision variables α [67].

The pseudoinverse method:

i) Solve αopt
2 = argmin

α∈Rm

‖Ψrα−Kemp‖22 = Ψ+
r Kemp.

ii) Project αopt
2 onto its positive part via Π+α

opt
2 where Π+ : Rm → Rm is the

orthogonal projection Π+ : v �→ Π+v = {[vk]+}mk=1 that maps every entry vk
of a vector v ∈ Rm to 0 if (αopt

2 )k < 0 and leaves it unperturbed otherwise.

iii) The vector Π+α
opt
2 is a vector of coefficients such that f =∑m

j=1

(
Π+α

opt
2

)
j
χωj

is positive definite and close to Kemp.

Since αopt
2 ∈ Rm is a solution to a relaxed problem and consequently the search

space for the minimum is bigger (Rm ⊃ Rm
+ ), Ψrα

opt
2 is closer to Kemp than Ψrα

opt

(or equally far away). Furthermore Π+α
opt
2 is an element of Rm

+ but not necessarily

the actually optimal αopt implying Ψrα
opt to be closer to Kemp than ΨrΠ+α

opt
2 (or

equally far away). This is summarizable as

‖Ψrα
opt
2 −Kemp‖2 ≤ ‖Ψrα

opt −Kemp‖2 ≤ ‖ΨrΠ+α
opt
2 −Kemp‖2

and leads via triangle inequality to an upper bound for the difference between true

optimum and approximation.

‖Ψrα
opt −ΨrΠ+α

opt
2 ‖2 ≤ ‖Ψrα

opt −Kemp‖2 + ‖ΨrΠ+α
opt
2 −Kemp‖2

≤ 2‖ΨrΠ+α
opt
2 −Kemp‖2 (4.14)

Strategies I and III are illustrated in figure 4.3 by applying them to exemplary data.

While strategy I’s performance looks reasonable for the translation invariant

squared exponential covariance matrix, it fails as soon as instationary CM’s are

encountered. Strategy III demands prior fixation of an ONB {ϕk}∞k=1 of L2(T ).
If the right one is chosen, it succeeds (see figure 4.3 column 4, row 2) even

for instationary CM — here the CM of Brownian motion on T = [0, 1] with

ϕk(t) =
√
2 sin

(
π
2
(2k + 1)t

)
. However, it fails for the example in figure 4.3 (col-

umn 4, row 3) because {ϕk}mk=1 is ”too far away” from the correct spectral family

of the underlying CM.

Even though the approximations might seem sensible, the predictions resulting from

estimated kernels Kest(·, ·) deviating from the true kernel only marginally in the

mean-square sense can be almost arbitrarily bad. This is illustrated in figure 4.4 and

the reasons for the observed shortcomings are twofold:
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Figure 4.3: An illustration of strategy I and III’s performance in estimating different types of covariance matrices from sam-

ples AK(·, ·) = Kemp where A is here simple evaluation and the data to be approximated are the full empirical covariance

matrices. In the third column, strategy I and in the last column strategy III was employed to first estimate a covariance

function K(·, ·) nonparametrically via the sequential coordinatewise minimization and then form a covariance matrix. To

approximate the covariance function, 50 expansion terms were used. The colorscale is identical for all images.

i) Whereas the �2-norm is a good measure of the distance between functions,

kernels mostly take on the role of key ingredients of linear operators, for

which different measures of closeness are appropriate.

ii) When choosing the optimization objective to be ‖A⊗K − a‖22, A⊗ measure-

ment operator, a data, K decision variable, no regularization term ‖K‖H re-

lated to the energy of K or any other indicator of its ’likelihood’ is included

in the problem formulation.

Insufficient reliability arising due to overfitting and lack of robustness are the con-

sequence. One might conclude then, that it is necessary to investigate more appro-

priate measures of closeness between kernels than the simple �2-norm. Recall for

example that the differentiability ofK(s, t) = f(t−s) around 0 is primarily respon-

sible for the global smoothness properties of a stochastic process with covariance

function K(·, ·). However, ‖ · ‖�2 does not distinguish between deviations around

0 and any other element of the parameter set T and therefore fails as a distance

measure for kernels.

One of the reasons is that the Frobenius norm ‖A‖F = (
∑

i,j a
2
ij)

1/2 for matrices
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Figure 4.4: In the first column a squared exponential (smooth, infinitely often differentiable sample paths) and an exponential

(nowhere differentiable, everywhere continuous sample paths) [162, pp. 83-85] covariance function are plotted. From some

sample values the positive definite functions in the middle columns are inferred as estimates for the underlying covariance

functions. Time series predictions using true and estimated covariances are plotted in the final two panels. Notice the large

deviations. Y values of zero are marked by the dashed grey line.

A ∈ B(Rn,Rn) is not an �p − �q operator norm (if it were ‖I‖F would have to

take the value 1) and as such fails to uphold inequalities of the type ‖Ax‖p ≤
‖A‖op‖x‖q that relate the norm of an operator A : H → H to its action on H.

Therefore the proper interpretation of ‖A‖F is simply that of the Euclidean length

of a vector in Rn ⊗ Rn equipped with the standard inner product and norm of Rn2
.

This is inappropriate both in the sense that ‖A‖F tells very little of A seen as an

operator and in the sense that the size of A is measured by considering the entries

aij to be white noise (then ‖A‖F ↔ probability density of A). A proper choice

of norm should be related to a more suitable choice of probability distribution of

the elements. The Wishart distribution as a generalization of the χ2 distribution

for matrix valued random variables is a natural candidate and regularization terms

based on prior assumptions of this type will be investigated in the next section.
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4.2.2 Regularization terms

If one wants to answer questions regarding which one of a choice of two kernels K1,K2
is the more reasonable option given some apriori preconceptions of the kernels behavior, a
probabilistic perspective is helpful. We pursue ideas similar to those in section 3.1, where
the link between norms and Gaussian processes helped reformulating statistical inference as
an optimization problem in a quadratic form. If functions fj are realizations of Gaussian
processes then in analogy kernels Kj are realizations of a kernel valued process that must
be a multivariate generalization of the χ2-distribution due to the Kj being sums of squares
according to the Mercer decomposition.

Likelihood based regularization terms require knowledge of the underlying probability dis-
tribution and may therefore be hard to justify. They can be swapped for functional analytic
terms that express the intuitive belief that kernels K as correlation functions representing the
laws governing a physical system are more likely to change smoothly than abruptly. Depend-
ing on the physical system whose state f is modelled as an element of HK this assumption
is incorrect to different degrees. However, this does not change the fact that in doing so one
derives one of the few kernel inference formulations, for which a solution can be found. High
likelihood, smoothness and robustness to inversion are all properties that make a kernel more
useful for statistical inference and their relative importance depends on the task at hand and
the preferences of the user.

Recall that covariance matrices K are positive elements of the C∗-algebra of

bounded operators in Rn and have therefore always a decomposition K = A∗A
for some A ∈ B(Rn) [48, p. 15]. This decomposition may be used to incorporate

prior knowledge about K’s nature while prescribing only a stochastic and flexible

model for K by

i) demandingA to be a random matrix drawn from a distribution related to prior

assumptions on K as expressed by a guess Cp for K.

ii) setting K = A∗A which is automatically positive semidefinite, has expected

value E[K] = Cp and a probability density suitable for inference.

Specific parts of this strategy and its properties are collected in the next theorem.

Theorem 4.2.1 Let a prior covariance matrix Cp =
∑n

i=1 λiϕi ⊗ ϕ∗
i be prescribed

and then set

A =
1√
trCp

n∑
i=1

n∑
j=1

ξij
√
λiλjϕi ⊗ ϕ∗

j ξij ∼ N (0, 1). (4.15)

The matrix A can be interpreted as both a random field on T × T and a linear
operator indexed by elements of T × T where T is the indexset of the process for
which inference is to be performed. When denoting by C(x) the function E[x ⊗
x∗] − E[x] ⊗ E[x]∗ and extending the trace to the usual tensor contraction, one
finds

I E[A] = 0, i.e. A has mean 0.

II C(A) = E[A⊗ A∗] = 1
trCp

(Cp ⊗ Cp)
T24 , i.e. A apart from some reordering

has covariance proportional to the tensor product of the prior guess Cp. Here
T24 denotes higher order transposition which interchanges the second and
fourth dimension of a tensor.
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III E[A∗A] = Cp ,i.e. the expected correlation for the model K = A∗A is Cp.

Proof: The statements are straightforward to verify. For I, note simply that E[A] =
1√
trCp

∑n
i=1

∑n
j=1E[ξij]

√
λiλjϕi ⊗ ϕ∗

j = 0. Similarly for II, we find

C(A) = E[A⊗ A∗]− E[A]⊗ E[A]∗

=
1

trCp

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[ξijξkl]
√
λiλjλkλlϕi ⊗ ϕ∗

j ⊗ ϕl ⊗ ϕ∗
k

=
1

trCp

n∑
i=1

n∑
j=1

λiλjϕi ⊗ ϕ∗
j ⊗ ϕj ⊗ ϕ∗

i

=
1

trCp

(Cp ⊗ Cp)
T24

and III follows from

E[A∗A] =
1

trCp

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[ξijξkl]
√
λiλjλkλlϕj ⊗ ϕ∗

l 〈ϕi, ϕk〉

=
1

trCp

(
n∑

i=1

λi

)
n∑

j=1

λjϕj ⊗ ϕ∗
j

= Cp

It is necessary to derive information that will help to evaluate the probability density

of A∗A. A simple calculation results in

A∗A =
1

trCp

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

ξijξkl
√
λiλjλkλl(ϕj ⊗ ϕ∗

i )(ϕk ⊗ ϕ∗
l )

=
1

trCp

n∑
i=1

n∑
j=1

n∑
l=1

ξijξilλi
√
λjλlϕj ⊗ ϕ∗

l

=
1

trCp

n∑
j=1

n∑
l=1

ϕj ⊗ ϕ∗
l

(
n∑

i=1

ξijξilλi
√
λjλl

)
︸ ︷︷ ︸

γjl

=
1

trCp

n∑
j=1

n∑
l=1

γjlϕj ⊗ ϕ∗
l (4.16)

It is possible to approximate the distribution of the matrix γ with (γ)ij = γij for

i, j = 1, ..., n as having a Wishart probability density. The goal is to prove this. To
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this end, start noticing that

γ =
√
Λ Ξ Λ Ξ∗ √Λ

∗
(4.17)

where Λ is an n×n diagonal matrix with entries (Λ)ii = λi and Ξ is an n×n random

matrix with (Ξ)ij = ξji ∼ N (0, 1). To see this, note that if ψ =
√
ΛΞ = [ψ1, ..., ψn]

one has γ = ψΛψ∗ =
∑n

i=1 λiψi ⊗ ψ∗
i and

n∑
i=1

λi(ψi ⊗ ψ∗
i )jl =

n∑
i=1

λi
√
λjλlξijξil = γjl

as defined in equation 4.16 and claimed by equation 4.17. This obviously implies

the decomposition

γ =
n∑

i=1

λiψi ⊗ ψ∗
i =

n∑
i=1

λiSi

where ψi = [
√
λ1ξi1, ...,

√
λnξin]

T ∼ N (0,Λ) from which it follows that Si ∼
Wn(1,Λ) for i = 1, ..., n. Typically the sum c1M1 + c2M2, c1, c2 > 0 of two

Wishart distributed matrices M1,M2 is not Wishart distributed anymore and the

sums probability density is given by a rather complicated term involving conflu-

ent hypergeometric functions of the first kind [121]; optimization and maximum

likelihood estimation become seemingly intractable.

Adopting an approximation approach proposed in [158] and slightly extending it to

cover sums of Wishart matrices whose expected values are not simply multiples of

the identity, we exchange the term

γ =
n∑

i=1

λiSi Si ∼ Wn(1,Λ)

for an approximation γ̃ defined as

γ̃ =
trCp

q
S S ∼ Wn(q,Λ) (4.18)

q = &[tr(C2
p)]

−1[tr(Cp)
2]' (4.19)

where &·' is the operator taking a real number to the nearest integer. The approx-

imation is motivated by the fact that the expected value of γ̃ equals E[γ] and the

second moments of γ and γ̃ coincide approximately on the diagonal [158]:

E[γ] =
n∑

i=1

λiE[Si] =
n∑

i=1

λiΛ =
trCp

q
(qΛ) = E[γ̃]

Var[(γ)kk] = Cov

(
n∑

i=1

λiS
kk
i ,

n∑
j=1

λjS
kk
j

)
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Si
∐

Sj ,i �=j
=

n∑
i=1

λ2i Cov
(
Skk
i , S

kk
j

)
= 2λ2k tr(C

2
p)

Var[(γ̃)kk] =
tr(Cp)

2

q2
Var[Skk]

=
tr(Cp)

2

q
2λ2k = 2λ2k

⌈
tr(C2

p)

tr(Cp)2

⌋
tr(Cp)

2

When [tr(C2
p)]

−1[tr(Cp)
2] is approximately integer, then Var[(γ)kk] ≈ Var[(γ̃)kk].

For the calculations we employed [160, p. 115] to derive the variance of diagonal

elements of Wishart distributed matrices.

Therefore γ is approximately distributed like γ̃ ∼ Wn(q,Λ); equivalently in terms

of the probability density function associated to the Wishart distribution [160,

p. 108] pγ̃(V ) for any positive definite V ∈ Sn
++ with entries (V )ij = vij

pγ̃(V ) =
1

2
nq
2 |Λ| q2Γn

(
q
2

) |V |( q−n−1
2 ) exp

(
−1

2
tr(Λ−1V )

)

=

[
2

nq
2 Γn

(q
2

) n∏
j−1

λ
q/2
j

]−1

|V |( q−n−1
2 ) exp

(
−1

2

n∑
j=1

vjj
λj

)
(4.20)

in which Γ(·) is the gamma function. As routinely encountered before, − log pγ̃(V )
is more suitable for inference. By denoting the appropriate term constant in V by

c0, one finds

− log pγ̃(V ) = c0 −
(
q − n− 1

2

)
log detV +

1

2

n∑
j=1

vjj
λj

(4.21)

This formula allows expressing the likelihood of a positive definite random A∗A =∑n
i=1

∑n
j=1 γijϕi ⊗ ϕ∗

j with E[A∗A] = Cp for some prespecified prior Cp. In suc-

cessive chapters equation 4.21 will be employed to numerically determine the maxi-

mum aposteriori (MAP) estimate for covariance matrices and kernels by supposing

the model K(γ) =
∑n

i=1

∑n
j=1 γijϕi ⊗ ϕ∗

j with parameters (γ)ij i, j = 1, ..., n
and interchanging pγ|f (γ|f) ∝ pf |γ(f |γ)pγ(γ) with the more easily optimizable

pf |γ(f |γ)pγ̃(γ) for some observations f .

Note that the mode of the Wishart distribution Wn(q,Λ) lies at (q − n − 1)Λ [59,

p. 653]. Therefore in specifying q we have the alternative choice of setting q = n+2
which guarantees that the mode of the distribution is exactly Λ but induces a devi-

ation in variance of the diagonal elements compared to the original model stem-

ming from A∗A =
∑m

i,j=1 ϕi ⊗ ϕ∗
j . Compared to the classical Wishart assumption

K ∼ Wn(q, Cp), expressing K as a random variable A∗A results in more flexible

class of models, see figure 4.5.
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Figure 4.5: Comparison between two different probability distributions on covariance matrices. The expected values Cp

of the random variables (first row: squared exponential; second row Wiener covariance matrix ) are shown in column one.

Columns two and three show realizations of Wishart random matrices K ∼ Wn(n,Cp) while the two rightmost columns

show realizations of K = A∗A for A a Gaussian random field with E[A∗A] = Cp. Note that the random field model is

able to generate highly flexible covariance matrices unlike the model based on directly sampling from a Wishart distribution.

4.2.3 Formulation of kernel inference tasks
When kernel inference is formulated as an optimization problem with a mixture of terms
measuring smoothness and plausibility given observations, the interpretation is similar as
in the abstract spline framework. In the previous subsection a probabilistic perspective was
developed that allowed to concretely express the prior likelihood of a kernel. An analysis of
the multivariate normal distribution extends this line of approach to derive equations relating
the likelihood of a kernel to observation data and the resulting optimization problem features
simple linear terms as well as complexity penalties involving determinants. The optimization
problem has similarities to a generalization of semidefinite programs called maxdet problems
which have received attention in the past due to their links to multivariate statistics and
experiment design. We relate our formulation of kernel inference to this problem class and
investigate certain trivial subcases. The theoretical analysis is aided by results provided by
implementations of numerical procedures recorded in the literature.

For K an n × n positive definite matrix, the probability density function pf (·) of a

multivariate Gaussian f ∼ N (μ,K) is given by [160, p. 68]

pf (fω) =
[√

(2π)n detK
]−1

exp

(
−1

2
(fω − μ)TK−1(fω − μ)

)
(4.22)

= (2π)−n/2(detK)−1/2 exp

(
−1

2
‖fω − μ‖2Hk

)
(4.23)

where we employ the custom of denoting a specific realization of the random vari-

able f : Ω � ω �→ fω ∈ R by fω where ω is an element of the probability space

Ω. Suppose now that a certain fixed fω was observed and the task was to infer the

most probable K from a θ-parametrized family of covariance matrices explaining

the data. The Bayes-law for probability densities suggests investigation of the term

pθ|f (θ|fω) =
pf |θ(fω|θ)pθ(θ)

pf (fω)

which is the posterior distribution of the parameters given the observations and an

obvious objective function to be optimized w.r.t. θ to arrive at an estimate of K. To
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derive this so called maximum aposteriori estimator, the normalization constant in

the denominator can be discarded as it does not depend on θ. Furthermore, instead

of maximizing pθ|f (θ|fω) one might instead minimize − log pθ|f (θ|fω).
Finally one arrives at

θ̂MAP = argmin
θ∈Θ

− log pf |θ(fω|θ)− log pθ(θ)

= argmin
θ∈Θ

n

2
log 2π +

1

2
log detK(θ) +

1

2
‖fω − μ‖2HK(θ)

− log pθ(θ)

with Θ the set of permissible values for θ. The term pf |θ(fω|θ) = L(θ; fω) is also

called the likelihood of θ. In absence of prior knowledge on the distribution of θ, it

is a common practice to either assume a uniform prior on Θ or to just ignore pθ(θ)
altogether leading in both cases to a maximum likelihood (ML) estimate for K
[162, pp. 112-114] whose properties and construction we briefly sketch. More de-

tails are found in a dedicated chapter on inference of hyperparameters for Gaussian

processes in the book by Rasmussen and Williams [162, pp. 105-125].

θ̂ML = argmin
θ∈Θ

log detK(θ) + ‖fω − μ‖2HK(θ)

= argmin
θ∈Θ

∑
λj∈σ(K(θ))

λj +
〈(fω − μ), ϕj〉2Rn

λj
(4.24)

where σ(K) denotes the spectrum of K(θ) and ϕj is the eigenfunction of K(θ)
corresponding to eigenvalue λj . Seen purely from a perspective of RKHS based

estimation, the term ‖fω − μ‖2HK(θ)
quantifies the likelihood of the residuals fω − μ

whereas terms of type log detK not expressible via norms have not been encoun-

tered before. They are often referred to as complexity penalties [162, p. 113] and

are vital for kernel estimation as the following train of thought suggests, in which

we compare the results of estimating a covariance matrix in absence (situation A) or

presence (situation B) of the complexity penalty. For simplicity’s sake, we suppose

μ = 0.

A) If we ignored the complexity penalty and would instead try to find a covariance

matrix K such that the negative log likelihood of fω as represented by ‖fω‖2HK

was minimal for some prespecified fω, there would be a simple solution. As the

maximizer Kopt for the likelihood of fω satisfies

Kopt = argmin
K∈Sn

+

‖fω‖2HK
= argmin

K∈Sn
+

fT
ωK

−1fω

it is clear that by choosing an arbitrary p.d. K and scaling it by some large α ∈ R
the term fT

ω (αK)−1fω = 1
α
fT
ωK

−1fω can be driven arbitrarily close to 0. Without

complexity penalty, the best guess for K making fω most likely would therefore

be any p.d. matrix scaled to large proportions as to keep ‖K−1‖op small — this is

obviously degenerated behavior to be avoided. �
B) Now in contrast to item A, investigate the same situation with the complexity
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penalty present. Given the true K,Ktrue, suppose the goal is to find α ∈ R+ such

that E[log det(αKtrue) + ‖f‖2H(αKtrue)
] is minimal. One has

E[log det(αKtrue) + fT (αKtrue)
−1f ] = log det(αKtrue) +

1

α
E[tr(f ⊗ fTKtrue)]

= nα + log detKtrue +
1

α
tr I

= n

(
α +

1

α

)
+ log detKtrue

To find the α minimizing the last expression in item B, solve equivalently

αopt = argmin
α∈R+

α +
1

α

where the first part of the optimization objective comes from the complexity penalty

and drives α towards 0. The second term originates from the data-fit penalty and

would again, analogously to the case discussed in A, drive α to ∞. Solving this

problem is possible analytically. Notice that

∂

∂α

(
α +

1

α

)
= 1− 1

α2
= 0

if and only if α2 = 1; i.e. α ∈ {1,−1} with α = −1 being ruled out by reasons of

positive semidefiniteness. Furthermore the Hessian is given by

∂2

∂α2

(
α +

1

α

)
=

1

α3
≥ 0 for α ∈ R+

implying α = 1 to be indeed a minimum and Kopt = αoptKtrue = Ktrue. It is

therefore demonstrated that the addition of the log det term can successfully avoid

the degeneracies encountered in the naive formulationKopt = argminK∈Sn
+
‖fω‖2HK

that find their expression in preference of unboundedly scaled versions of Ktrue.

�

A system similar to equation 4.24 has been investigated by Mardia and Marshal

[133] in the context of spatial statistics. They assume the mean function μ(t), t ∈
T = {1, ..., n} to be unknown as well but of type μ(t) =

∑nβ

j=1 βjgj(t) for some

given family {gj}nβ

j=1 and suggest for the joint estimation of β ∈ Rnβ and θ ∈ Rnθ

the following Levenberg-Marquard type of algorithm.

1. Start with an initial, potentially randomized guess θ0 ∈ Θ of the parameters

θ. Compute β0 = (GTK−1
0 G)−1GTK−1

0 fω where K0 = K(θ0) and G is an

n × nβ regressor matrix with (G)ij = gj(ti). The initial estimate is φ0 =
(β0, θ0).

2. Calculate the gradients ∇β and ∇θ of the log likelihood w.r.t the mean and
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covariance function parameters β and θ. They are

∇β = −GTK−1
0 Gβ0 +GTK−1

0 fω

(∇θ)j = −1

2
tr

(
K−1

0

∂K

∂θj

)
+

1

2
(fω −Gβ0)

T K−1
0

∂K

∂θj
K−1

0 (fω −Gβ0)

3. Update φ1 = φ0+B
−1(∇β,∇θ)

T whereB is block diagonal withB=Bβ⊕Bθ,

Bβ = GTK−1
0 G and the individual elements of Bθ given as

(Bθ)ij =
1

2
tr

(
K−1

0

∂K

∂θi
K−1

0

∂K

∂θj

)
.

4. Set φ1 as the initial estimate in step 1. and repeat until convergence.

Note that in a practical implementation, it is recommended to work with the loga-

rithm of typical parameters θ representing variances or ranges in covariance func-

tion models to avoid volatile behavior near the origin. The problem is not convex

and local optima may exist [162, p. 115] which suggests to start either with good

initial values for β and θ or to solve a sequence of problems with β and θ initialized

randomly and then pick the set of parameters with the highest likelihood as given by

equation 4.22. The implementation is straightforward otherwise and the maximum

likelihood estimator of covariance functions as described above seems to behave

favorably compared to the character-based estimation, see figure 4.6 and compare

to the predictions in figure 4.4. The supposition of already known parametric type

of covariance function is often approximately justified but can be a drawback.

If in model 4.22 one refrains from using covariance functions that are nonlinear in

the parameters, one recovers a convex optimization problem known as maxdet and

closely related to semidefinite programming.

Theorem 4.2.2 Fix an ONB {ϕj}∞j=1 of the real (separable, countably infinite)
Hilbert space L2(T ) for T ⊂ Rp and truncate the sequence at n ∈ N giving the
orthonormal sequence {ϕj}nj=1. A linear superposition K(·, ·) =∑n

i=1 αiϕi(·)ϕ(·)
with nonnegative αi is obviously positive (semi)definite; the more flexible

K(·, ·) =
n∑

i=1

n∑
j=1

αijϕi(·)ϕj(·)

is positive definite if and only if A ∈ Rn ⊗ Rn, (A)ij = αij is positive semidefinite
as a matrix.

Proof: ∀m ∈ N and ∀{tk}nk=1 ⊂ T, {β}mk=1 ⊂ R, one has

m∑
k=1

m∑
l=1

βkβlK(tk, tl) =
m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

αijβkϕi(tk)βlϕj(tl)
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Figure 4.6: The result of estimating a covariance function (squared exponential + white noise) based on observation data and

a correctly specified parametric model, the exact parameters of which are unknown. The inferred kernel exhibits convincing

performance when used to derive solutions to a signal separation problem.

=
n∑

i=1

m∑
k=1

βkϕi(tk)︸ ︷︷ ︸
γi

αij

n∑
j=1

m∑
l=1

βlϕj(tl)︸ ︷︷ ︸
γj

= γTAγ

where γ ∈ Rn is a vector with components (γ)i = γi. Now one may proceed to

show necessity and sufficiency of γTAγ ≥ 0 ∀γ ∈ Rn for K to be a positive

(semi)definite kernel. Sufficiency is simple; if γTAγ ≥ 0 ∀γ ∈ Rn, then also∑m
k=1

∑m
l=1 βkβlK(tk, tl) ≥ 0.

Necessity follow from the fact that if ∃γ with γTAγ < 0 then one may associate a

corresponding β ∈ Rm and a sequence {tk}mk=1 ⊂ T such that γi =
∑m

k=1 βkϕi(tk)
for all i = 1, ..., n. Constructability is guaranteed by solvability of γ = φβ for β
where φ ∈ Rn ⊗ Rm with φik = ϕi(tk) which in turn depends on the existence of a

solution β with φβ = γ. Therefore if ∃ a right inverse φ+ with φφ+ = I , β = φ+γ
satisfies

m∑
k=1

m∑
l=1

βkβlK(tk, tl) = γTAγ < 0

establishing K(·, ·) as not positive semidefinite. Existence of φ+ is asserted by the

following lemma.
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Lemma 4.2.3 Let {ϕi}ni=1 be an orthonormal sequence in a separable Hilbert space
H of functions on T . Then ∃m ∈ N and {tk}mk=1 ⊂ T such that the matrix with
entries (φ)ik = ϕi(tk) has a right inverse.

Proof: The matrix φ has a right inverse iff it is of full row rank. Note that the state-

ment of φ having full row rank is trivial for n = 1 as the orthonormality condition

ensures that ∃t1 ∈ T : ϕ1(t1) �= 0. Then proceed by complete induction through

dimensions q up to n. Suppose that the matrix

φq =

⎡⎢⎣ϕ1(t1) · · · ϕ1(tq)
...

. . .
...

ϕq(t1) · · · ϕq(tq)

⎤⎥⎦ =

⎡⎢⎣—(ϕq
1)—

...

—(ϕq
q)—

⎤⎥⎦ ∈ Rq ⊗ Rq

has full row rank of q. For q + 1 ≤ n, if φq is augmented with the row vector

ϕq
q+1 = [ϕq+1(t1), ...ϕq+1(tq)] to form a matrix of dimension (q + 1)× q, then that

matrix has row rank q since row rank equals column rank equals q. Then for the

unique c ∈ Rq such that ϕq
q+1 =

∑q
j=1 cjϕ

q
j , there exists at least one tq+1 ∈ T with

ϕq+1(tq+1) �=
∑q

j=1 cjϕj(tq+1) as otherwise 〈ϕq+1,
∑q

j=1 cjϕj〉 �= 0 in violation

to the presupposition that {ϕj}nj=1 is an ONS. Consequently, for any sequence of

coefficients cj, j = 1, ..., q s.t.
∑q

j=1 cjϕ
q
j = ϕq

q+1, one finds
∑q

j=1 cjϕj(tq+1) �=
ϕq+1(t1+1) and the matrix φq+1 has full row rank admitting a right inverse.

Now suppose the task is to find the sequence of coefficients α = {αij}mi≤j=1 such

that the function

K(s, t) =
m∑

i≤j=1

αij

(
1− 1

2
δij

)
[ϕi(s)ϕj(t) + ϕj(s)ϕi(t)]

best explains the data Af = fω for f ∈ H(T ), fω ∈ Rn and A evaluation at {tk}nk=1

in the maximum likelihood sense. If one denotes the covariance matrixA⊗AK(·, ·)
induced by the kernel function K(·, ·) by K and sets

F (α) =
m∑

i≤j=1

αijφij , (φij)kl =

(
1− 1

2
δij

)
[ϕi(tk)ϕj(tl) + ϕj(tk)ϕi(tl)],

optimizing αij with respect to the likelihood L(α; fω) = pf |K(fω|F (α)) leads to

minimize log detF (α) + fT
ω F (α)

−1fω

subject to F (α) � 0.

However, log detF is concave in F [28, p. 73] precluding minimization [28, p. 356].

Reformulating the estimation problem in terms not of the kernel K(·, ·) but of a

function Q(·, ·) such that the matrix Q with (Q)kl = Q(tk, tl) is the inverse covari-
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ance matrix changes it into a convex optimization problem [199]. When setting

Q(s, t) =
m∑

i≤j=1

αij

(
1− 1

2
δij

)
[ϕi(s)ϕj(t) + ϕj(s)ϕi(t)]

Q(α) =
n∑

i≤j=1

αijφij , (φij)kl =

(
1− 1

2
δij

)
[ϕi(tk)ϕj(tl) + ϕi(tl)ϕj(tk)]

and interpretingQ(α) as an estimator forK−1
true, maximization of the likelihood finds

its expression in the optimization problem

maximize − log detQ(α)−1 − fT
ωQ(α)fω

subject to Q(α) � 0

which can be slightly simplified to

minimize log detQ(α)−1 + tr(fω ⊗ fT
ωQ(α))

subject to Q(α) � 0.

This is a maxdet problem with decision variables {αij}mi≤j=1 and linear term 〈c, α〉
for c a vector with (c)ij = 2(1− 1

2
δij)〈fω, Aϕi〉〈fω, Aϕj〉 since, denoting Aϕi = ψi

for all i ∈ N

tr(fω ⊗ fT
ωQ(α)) = 〈fω ⊗ fT

ω , Q(α)〉F

=
m∑

i≤j=1

αij〈fω ⊗ fT
ω ,

(
1− 1

2
δij

)
[ψi ⊗ ψT

j + ψj ⊗ ψT
i ]〉F

=
m∑

i≤j=1

αij2

(
1− 1

2
δij

)
〈fω, ψi〉〈fω, ψj〉.

This follows from the Frobenius inner products behavior on simple tensors:

〈a⊗ bT , c⊗ dT 〉F = tr((a⊗ bT )T c⊗ dT ) = tr(b⊗ aT c⊗ dT )

= aT cbTd

The formula is readily extendable to the case where more than one fω was ob-

served, say a sequence {fωi
}nobs

i=1 in which case maximum likelihood estimation of

the inverse covariance matrix K−1 is given by

minimize log detQ(α)−1 + 〈Kemp, Q(α)〉F
subject to Q(α) � 0. (4.25)

If Q is subjugated to no constraint whatsoever, m = n, and the {ψi}ni=1 provide

the full canonical euclidean basis for Rn, the solution to 4.25 is the inverse of
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the empirical covariance matrix Kemp = 1
nobs

∑nobs

j=1 fωj
⊗ fT

ωj
(provided it exists)

[199][211].

Remark Rename the vector of logarithms of eigenvalues to {log λj}nj=1 = lλ ∈ Rn

and notice the formal similarity between the log det complexity penalty cp(K), the

Riemannian distance between positive definite matrices and linear/bilinear forms.

One has

d2(K, I) = ‖ logK−1/2IK−1/2‖2F =
n∑

j=1

| log λj|2 =〈lλ, lλ〉Rn

cp(K) = log detK =
n∑

j=1

log λj =〈1, lλ〉Rn

with 1 a vector of ones in Rn. To introduce a prior on K whose purpose it is to

prefer matrices K close to some prior guess Cp ∈ Sn
++, one might set pθ(θ) =

c exp (−(1/2)d2(K(θ), Cp)). Assume that K(θ) lies in the von-Neumann-Algebra

generated byCp, i.e. it commutes withCp and their spectral families coincide. Then

the MAP is

θ̂MAP = argmin
θ∈Θ

(fω − μ)T K(θ)−1 (fω − μ) + cp(K) + d2(K,Cp)

= argmin
θ∈Θ

n∑
j=1

|〈fω − μ, ϕj〉Rn |2e−(lKλ )j + 〈1, lKλ 〉Rn + ‖lKλ − l
Cp

λ ‖2Rn

which is a quadratic program in lKλ with an additional data term of the form ‖fω −
μ‖2K(θ).

Alternatively, and this turns out to be easier, it is possible to directly include a prior

on the coefficients α by specifying a prior covariance matrix Cp =
∑n

i=1 λiϕi ⊗ ϕ∗
i

and employing the induced probability distribution on the coefficients α derived in

previous subsections. Several approximations and assumptions are integral to this

formulation — the whole procedure including problem specification, mathematical

setup, and the associated optimization task, is outlined below. In the future, the

author will refer to this and similar procedures as ’kernel inference’.

Problem: Given measurements Lf = {f(tk)}nk=1 = fω of some function f ele-

ment of the RKHS HK on T , L ∈ B(HK ,Rn) being evaluation, infer optimally

the reproducing kernel K(·, ·) employing some prior guess Kp. Interpreted as a

stochastic process, the functions f chosen at random from the RKHS have mean μ
equal to zero.

Given: Lf ∈ Rn, Kp(s, t) =
∑n

i=1 λ
p
iϕ

p
i (s)⊗ ϕp

i (t), the evaluation operator L.

Assume: The true underlying kernel K(·, ·) is actually a realization of a degener-

ate, finite rank kernel valued random variable that is at the same time a stochastic

process on T × T . One may write K(·, ·) = Kω(·, ·) for ω ∈ Ω,Ω some probability
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space and

Kω(·, ·) = 1

trKp

m∑
i=1

m∑
j=1

αijϕi(·)⊗ ϕj(·)∗ α � 0 αij =
n∑

k=1

ξkiξkjλk.

The coefficient matrix α is to be inferred and can be assembled to provide a good

estimator for Kω(·, ·) even when only the analogue finite dimensional problem with

covariance matrices replacing kernels is solved.

Setup: Replace Kp(·, ·) by Cp = L ⊗ LKp = {Kp(ti, tj)}ni,j=1 and write Cp =∑n
i=1 λiϕi ⊗ ϕ∗

i where λi and ϕi are the eigenvalues and eigenvectors of Cp. If

C = L ⊗ LKω = {K(ti, tj)}ni,j=1 is the true underlying covariance matrix for fω
based on evaluating the kernel Kω; E[fω ⊗ f ∗

ω] = C ; then estimate C via

Ĉ =
1

trCp

m∑
i=1

m∑
j=1

αijϕi ⊗ ϕ∗
j

α ∼ Wm(q,Λ), q =
⌈
[tr(C2

p)]
−1[(trCp)

2]
⌋

where Λ is the m × m diagonal matrix containing λ1, ..., λm. Solve for α, the

positive semidefinite matrix of coefficients αij by solving an optimization problem.

Optimize: The maximum aposteriori optimization problem for the determination

of the α ∈ Sm
+ explaining best the data fω ∈ Rn while generating a covariance

matrix close to Cp is

α̂MAP = argmax
α∈Sm

+

pf |α(fω|α)pα(α) (4.26)

which we replace by

α̂ = argmax
α∈Sm

+

pf |α(fω|α)pα̃(α) (4.27)

where pf |α is multivariate Gaussian and pα̃ is Wishart according to equation 4.20.

Consequently one may equivalently minimize − log pf |α(fω|α)pα̃(α) where α � 0
are the decision variables. �

The rest of this section deals with the simplification of equation 4.27 towards

an optimization problem solvable with standard numerical methods. Denoting

pf |α(fω|α)pα̃(α) by p̃(α, fω) and using l̃(α, fω) for − log p̃(α, fω), then for some

constant c the usual formulas for the probability density functions [160, p. 108,p. 68]

imply

p̃(α, fω) =

[
(2π)n/22nq/2Γn

(q
2

) m∏
j=1

λ
q/2
j

√
detF (α)

]−1

[detG(α)](
q−n−1

2 )
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· exp
(
−1

2

[
tr(Λ−1G(α)) + fT

ω F (α)
−1fω

])
. (4.28)

Consequently the negative log density is found — apart from some constants irrel-

evant to the optimization performed later — as

l̃(α, fω) =
1

2

[
log detF (α) + fT

ω F (α)
−1
]

+ r

[
−
(
q − n− 1

2

)
log detG(α) +

1

2
tr(Λ−1G(α))

]
(4.29)

where r = 1 is a parameter that can be changed to adjust the weight of the prior and

F (α) =
1√
trCp

m∑
i≤j=1

αij[1− (1/2)δij]
[
ϕi ⊗ ϕ∗

j + ϕj ⊗ ϕ∗
i

] ∈ Rn ⊗ Rn

G(α) =
1√
trCp

m∑
i≤j=1

αij[1− (1/2)δij]
[
ei ⊗ e∗j + ej ⊗ e∗i

] ∈ Rm ⊗ Rm

with ek, k = 1, ...,m being the canonical euclidean basis in Rm. By splitting

l̃(α, fω) into the two terms

l̃1(α, fω) =
1

2

[
log detF (α) + fT

ω F (α)
−1fω

]
(4.30)

l̃2(α, fω) = r

[
−
(
q − n− 1

2

)
log detG(α) +

1

2
tr(Λ−1G(α))

]
(4.31)

and subsequently applying the substitution F (α)−1 = Q(α) while using

− log detA = log(detA)−1 = log detA−1 one may realize that both l̃1(α, fω) and

l̃2(α, fω) can in principle be interpreted as constituents of two maxdet problems that

have been joined and need to be solved simultaneously. [204] reports solvability

of a closely related but more complicated problem via Block-Coordinate-Descent;

implementation details will be given later. One might extend the framework to

include only indirect measurements based on arbitrary bounded linear operators A
more general than just pointwise evaluation and incorporate a joint estimation of

mean and covariance functions similar to what was done in [133]. We leave this for

future work.

The roles of l̃1 and l̃2 are clear. The solution to the pure l̃1 problem

X1
opt = argmin

X∈Sn
+

1

2
log |X|+ 1

2
tr
(
SX−1

)
(4.32)

is the empirical covariance matrix X1
opt = S = [nobs]

−1
∑nobs

j=1 fωj
⊗ f ∗

ωj
; the first

term drives X to zero and the second term prefers large X . In direct comparison,



172 4.2.3 FORMULATION OF KERNEL INFERENCE TASKS

the solution to the pure l̃2 problem

X2
opt = argmin

X∈Sn
+

− 1

2
log |X|+ 1

2
tr
(
Λ−1X

)
(4.33)

with q = n + 2 is X2
opt = Λ. The first term prefers large X while the second one

drives X to zero. Only solving the l̃1 problem amounts to absolute data fidelity

while solving the l̃2 problem amounts to ignoring the data and choosing the prior

covariance. A weighted mixture of both objectives is therefore a natural target for

optimization. As before, the derivation of l̃(α, fω) is extendable to cover more

than one observation fω. If the coefficient vector α is swapped for the coefficient

matrix γ and the more straightforward model C(γ) =
∑nexp

i,j=1 γijϕi ⊗ ϕ∗
j , γ �Sn

+

0 is employed, the calculations become less cluttered. Assume nobs independent

observations fω1 , ..., fωnobs
∈ Rn are given. Then

pγ|f
(
γ|fω1 , ..., fωnobs

)
=

nobs∏
j=1

pf |γ
(
fωj
|γ) pγ(γ) ≈ nobs∏

j=1

pf |γ(fωj
|γ)p̃(γ)

and the last term can be simplified to yields for
∏nobs

j=1 pf |γ(fωj
|γ)p̃(γ) the term

nobs∏
j=1

1√
2π

n|C(γ)|1/2 exp
(
−1

2
f ∗
ωj
C−1(γ)fωj

)
[

1√
2
nq
Γn (q/2) |Λ|n/2

|γ| q−n−1
2 exp

(
−1

2
tr
(
Λ−1γ

))]
= c̃|C(γ)|−nobs

2 |γ| q−n−1
2 exp

(
−1

2
tr
(
Λ−1γ

)− 1

2

nobs∑
j=1

f ∗
ωj
C−1(γ)fωj

)
=: p̃(γ, fω1 , ..., fωnobs

)

for some normalization constant c̃. Writing

nobs∑
j=1

fωj
C−1(γ)fωj

=

nobs∑
j=1

tr
(
fωj
⊗ f ∗

ωj
C−1

)
= nobs tr

(
SC−1

)
with S being the empirical covariance matrix, and taking the negative logarithm

l̃ = − log p̃(γ, fω1 , ..., fωnobs
) one finds

l̃(γ, S) = − log(c̃) + nobs

[
1

2
log |C(γ)|+ 1

2
tr
(
SC−1(γ)

)]
+

[
−
(
q − n− 1

2

)
log |γ|+ 1

2
tr
(
Λ−1γ

)]
(4.34)

Discarding the constant− log(c̃), minimizing l̃(γ, S) with respect to γ is equivalent
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to minimizing L(γ),

L(γ) =
[
log |C(γ)|+ tr

(
SC−1(γ)

)]︸ ︷︷ ︸
L1(γ,S)

+
1

nobs

[−c log |γ|+ tr
(
Λ−1γ

)]
︸ ︷︷ ︸

rL2(γ,Λ)

(4.35)

for r = n−1
obs, c = (q − n − 1). More observations therefore simply affect the

optimization objective via a decrease of the regularization parameter r.

4.3 Practical implementation

The kernel inference formulations encountered in subsection 4.2.3 exhibit con-

straints on the spectrum of a symmetric matrix and amount to demanding that the

decision variables can be assembled to lie in the convex cone of positive semidef-

inite matrices. Convex optimization problems with covariance matrix valued de-

cision variables are called semidefinite programs (SDP) and include as subclasses

linear, quadratic and second order cone programs. Many tasks in geodesy such as

robust estimation, �p-norm minimization, variance components estimation and cam-

paign design problems can be stated and solved in the SDP framework although the

SDP-embeddings are often nonobvious and the solution algorithms are less reliable

and less performant than those for linear or quadratic programs. Typical implemen-

tations are based on interior point methods: A self concordant barrier function is

added to the objective function and acts to enforce the constraints, then a sequential

minimization of incrementally modified problems generates a curve of solutions

that converges to the solution of the original problem in the limiting case. This

procedure will be modified to cope with the task of approximately minimizing ex-

pression 4.35 in order to derive a finite dimensional matrix representation of the

positive definite kernel most compatible with prior knowledge and observed data.

The algorithm can be extended in several directions; the most important one is the

inclusion of affine constraints.

4.3.1 Semidefinite programming

Semidefinite programs are optimization problems in a matrix X with a linear objective func-
tion expressible as 〈C,X〉F subject to linear equalities 〈Ai, X〉F = bi and the cone con-
straint X �Sn

+
0 demanding the decision variable to lie in the convex cone Sn+ of n × n

positive semidefinite matrices . The class of semidefinite programs properly includes as sub-
classes linear (LP) quadratic (QP) and second order cone programs (SOCP) and thus also
generalizes least-squares based estimation procedures. Consequently, they arise naturally in
statistics as soon as robustness (as measured by the �1-norm), maximum-likelihood estima-
tion under a joint Gaussian assumption (as measured by the �2-norm) or the properties of
covariance matrices (as measured by the distribution of their spectra) are of interest.

The positive definiteness constraint is not easy to enforce and requires algorithms

significantly different from the ones known to work for LP, QP and SOCP. Some of
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the most successful ones trace a continuous path through the interior of the feasible

set by solving a sequence of problems in which the constraint X �Sn
+
0 is replaced

by adding the self-concordant barrier function −μ detX to the objective. The steps

undertaken to derive these interior point algorithms can be modified slightly to

construct a practically implementable algorithm for kernel inference.

Definition 4.3.1 A function f : Rn → R is called convex if it satisfies

f (αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

for all x1, x2 ∈ Rn and α ∈ [0, 1] [149, p. 112].

The definition implies that for a convex function f , every line connecting two

codomain elements f(x1) and f(x2) lies above the function values f(αx2 + (1 −
α)x1), α ∈ [0, 1] generated by applying f to the line connecting two domain ele-

ments x1 and x2. For these functions, any local optimum is globally optimal [28,

p. 138] and they automatically possess a weak analogue of differentiability. Subgra-

dients may then be defined to approximate f ’s local behavior and lower bound its

minimum value, so that a generalized type of gradient descent is at least in theory

always available to perform minimization [149, pp. 141-143].

Many convex optimization problems can be written as ones with linear ob-

jective and conic constraints [5]; the generality of the order induced by the

cones C through X �C Y ⇔ X − Y ∈ C corresponds to the generality of

the convex optimization problem. A simple cone is the nonnegative orthant

Rn
+ := {x ∈ Rn : xk ≥ 0 k = 1...n}. Cone constraints of this type appear in linear

programming whereas the so, called Lorenz cone CL := {(x, t) : ‖x‖2 ≤ t} allows

a linear formulation of quadratically constrained quadratic programs which include

least squares problems as trivial cases. A more general partial order containing

�Rn
+

and �CL
is induced by the cone Sn

+ of positive semidefinite n× n matrices. If

constraints of the type
∑

j xjAj ∈ Sn
+ are imposed, one speaks of a linear matrix

inequality (LMI) and the whole problem of finding X �Sn
+
0 to minimize 〈C,X〉F

subject to linear equalities is a semidefinite program (SDP). See figure 4.7 for an

illustration of different cones involved and notice the heavy nonlinearities implicit

in the cone constraints as visible in the boundaries of the feasible sets.

Definition 4.3.2 (SDP) A semidefinite program in standard form [210, p. 113] is an

optimization problem

minimize 〈C,X〉F (4.36)

subject to 〈Ai, X〉F = bi i = 1, ..., nc

X �Sn
+
0

where 〈C,X〉F = tr(C∗X) is called the objective function, 〈Ai, X〉F = bi is a

set of nc affine linear constraints, X �Sn
+

0 is the cone constraint and the posi-

tive semidefinite matrix X ∈ Rn ⊗ Rn is the decision variable to be chosen as to
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Figure 4.7: An illustration of the positive orthant, the Lorenz cone and the semidefinite cone in R3. The latter is sometimes

also called a spectrahedron; its specific form depends on the exact type of inequality. The one plotted here is constructed on

the basis of a parametrization taken from [200].

minimize the objective function.

Alternatively, SDPs can be provided in inequality form as a minimization problem

with vector valued decision variable and a linear matrix inequality [28, p. 169].

They are then written as

minimize 〈C,X〉F (4.37)

subject to F0 +
m∑
i=1

xiFi �Sn
+
0

with the Fi symmetric n × n matrices for i = 0, ...,m. This form is especially

suitable to demonstrate embeddability of LPs and QPs into SDPs when one

furthermore employs the following lemma.

Lemma 4.3.3 (Schur complement) The (n+m)× (n+m) dimensional symmetric
matrix

M =

[
A B
B∗ C

]
A ∈ Sn

++, C ∈ Sm
++

is positive semidefinite if and only iff C �Sn
+
B∗A+B [210, p. 21].

Example 23 (LP) Employing the relationship between positive definiteness of a

matrix and the positive definiteness of its submatrices, it immediately follows that
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a linear program in standard form

minimize 〈c, x〉Rn

subject to Ax = b

x ≥ 0

is nothing more than an SDP in standard form with non-diagonal elements of the

matrix X in equation 4.36 constrained to be zero [112, p. 3]. This constraint is

obviously linear and LPs are therefore also often called diagonal SDPs. �

Example 24 (QP) Similarly, minimizing the quadratic form ‖Ax − a‖2�2 = (Ax −
a)∗(Ax− a) can be embedded into the SDP

minimize t

subject to

[
tI Ax− a

(Ax− a)∗ 1

]
�Sn

+
0

where the decision variable is the n + 1-dimensional vector [t; x]. By the Schur

complement lemma, the constraint is satisfied, iff tI �Sn
+

0 and 1 − t−1(Ax −
a)∗(Ax − a) > 0 ⇔ t > ‖Ax − a‖2�2 therefore forcing x ∈ Rn to take the values

minimizing ‖Ax− a‖2�2 . As the matrix appearing in the semidefiniteness constraint

can also be written as[
tI Ax− a

(Ax− a)∗ 1

]
=

[
0 −a
−a∗ 1

]
︸ ︷︷ ︸

F0

+t

[
I 0
0 0

]
︸ ︷︷ ︸

Ft

+x1

[
0 a1
a∗1 0

]
︸ ︷︷ ︸

F1

+...+xn

[
0 an
a∗n 0

]
︸ ︷︷ ︸

Fn

with A = [a1, ..., an] and all the matrices F symmetric, the problem is clearly an

SDP in inequality form. �

Adherence to a cone constraint of type X �Sn
+

0 is implicitly guaranteed by

adding the barrier-term −μ log |X|, μ ≥ 0, to the minimization objective 〈C,X〉F .

Roughly explained,−μ log |X| grows towards infinity on the border of the semidef-

inite cone (|X| = 0 iff X is singular) enforcing a strictly positive definite solution

when performing unconstrained minimization of

lμ := 〈C,X〉F − μ log |X|

with respect to X . Therefore for strictly positive μ this produces a minimizer Xμ

that lies in the interior of the semidefinite cone; solving a sequence of minimizations

of terms {lμj}∞j=1 with limμj = 0 and the sequence {μj}∞j=1 of barrier weights

decreasing monotonically traces out a curve through the interior of the semidefinite

cone that converges to the correct solution of problem 4.36 and is known as the

primal path.

More detailed information on these interior point algorithms including convergence
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guarantees and theoretical justifications can be found in Nesterov’s book on convex

optimization [149, pp. 192-210] and in [112, p. 77], where specific schemes of type

Xj+1 = argmin lμj(X), X initial = Xj (4.38)

μj+1 = αμj, α ∈ [0, 1)

are outlined which construct and follow the primal path even for cones C different

from Sn
+ if log |X| is replaced by a self-concordant barrier function for C. Solving

the subproblems of minimizing lμj appearing in algorithm 4.38 is efficiently possi-

ble with Newtons method, because the self-concordant barrier function −μ log |X|
has gradients and Hessians that can be calculated explicitly as∇lμ = C−μX+ and

∇2lμ = μX+ ⊗X+ respectively [112, p. 79].

To every convex optimization problem P there exists a dual problemD. In the SDP

case a problem is given as minX�0〈C,X〉F subject to 〈Ai, X〉F = bi, i = 1, ...,m
and its Lagrangian dual is given as maxS�0,y∈Rm〈b, y〉Rm subject to

∑n
i=1 yiAi+S =

C. Notice the similarity of D and the LMI formulation of an SDP. In a very coarse

sense the constraints in the primal problem are stated in terms of membership to a

cone C whereas its dual makes use of the dual cone C∗ := {X ∈ Rn2
: 〈X, Y 〉Rn2 =

0 ∀Y ∈ C}. The cone Sn
+ of positive semidefinite n × n matrices is one of only

three self-dual cones over the reals, the other ones being Rn
+ and the Lorentz cone

CL ([112], p. 21).

The main information a dual offers about its corresponding primal are lower bounds

on the latter’s optimal value. For any feasible point (y, S) of the dual, 〈y, b〉Rm ≤
〈C,X〉F ∀X feasible for the primal problem and the difference of these two values

is called the duality gap. If P and D fulfill the Slater constraint qualification, the

primal’s optimal value coincides with the dual’s optimal value and it is reasonable

to manipulate both decision variables of P and D to minimize the duality gap. In

the limit the result is a smooth curve through feasible primal and dual variables —

the central path — that as in the purely primal case converges to the solutions of P
and D.

One of these primal-dual path following methods is Mehrotras predictor correc-

tor method [138]. It is comprising of a sequence of steps that roughly follow the

idea outlined above and are implemented in existing openly accessible software

packages SeDuMi by Sturm [192] and SDPT3 by Toh et al.[195]. Both software

implementations do not require feasible starting points and are as such suitable to

find positive semidefinite solutions X to linear equations by solving the standard

SDP

minimize 0

subject to 〈Ai, X〉F = bi

X �Sn
+
0.

When this is handled via primal path following and therefore effectively maximiza-



178 4.3.1 SEMIDEFINITE PROGRAMMING

tion of |X|, the result is called the analytic center of the inequalities [199]. This

way to construct the analytic center provides a feasible initial iterate as necessary in

the kernel inference algorithms devised later.

If not for the problem that the Frobenius norm is unsuitable to measure distances

between covariance matrices in any meaningful way one could now solve an SDP

constructed as described below as a means for kernel inference. Recall the SDP

embedding of a least squares problem and notice that K =
∑nexp

i,j=1 γijϕi ⊗ ϕ∗
j is

positive semidefinite if γij is positive semidefinite due to the fact that γ �Sn
+

0

implies v∗Kv =
∑nexp

i,j=1 γij〈v, ϕi〉〈v, ϕj〉 = w∗γw ≥ 0. Write K ∈ Rn ⊗ Rn as the

superposition of matrices Ψij ∈ Rn ⊗ Rn;

K =

nexp∑
i,j=1

γijϕi ⊗ ϕ∗
j =

nexp∑
i,j=1

γijΨij, (Ψij)mn = (ϕi ⊗ ϕ∗
j)mn

and identify K with its vectorized version inhabiting Rn2
. Each element of Kmn is

again a weighted sum of elements of the matrices Φmn ∈ Rnexp ⊗ Rnexp .

Kmn =

nexp∑
i,j=1

γij(Ψij)mn = 〈γ,Φmn〉Rn2 , (Φmn)ij = (ϕi)m(ϕj)n⎡⎢⎣K11
...

Knn

⎤⎥⎦
︸ ︷︷ ︸

K

=

⎡⎢⎣(Ψ11)11 · · · (Ψnexpnexp)11
...

. . .
...

(Ψ11)nn · · · (Ψnexpnexp)nn

⎤⎥⎦
︸ ︷︷ ︸

Ψ

⎡⎢⎣ γ11
...

γnexpnexp

⎤⎥⎦
︸ ︷︷ ︸

γ

.

Given an empirical covariance matrix Kemp one could now search for that positive

semidefinite γ for which ‖Ψγ −Kemp‖2F → min. The associated SDP in inequality

form is

minimize 〈c, γ̃〉
Rn2

exp+1 (4.39)

subject to F0 + tFt +

nexp∑
i,j=1

γijFij �Sn
+
0

F0 =

⎡⎣ 0 −Kemp 0
−K∗

emp 1 0
0 0 0

⎤⎦ Ft =

⎡⎣I 0 0
0 0 0
0 0 0

⎤⎦ Fij =

⎡⎣ 0 Ψij 0
Ψ∗

ij 0 0
0 0 Qij

⎤⎦
with Qij = ei⊗e∗j ∈ Rnexp⊗Rnexp , the tensor product of the i-th and j-the canonical

euclidean basis vectors in Rnexp . In the above, c = [1, 0, ...., 0] ∈ Rn2
exp+1 and γ̃ =

[t, γ11, ..., γnexpnexp ] ∈ Rn2
exp+1. In the context of what was said before, it should be

clear that the block diagonal structure of the linear matrix inequality implies its
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equivalence to the two separate LMIs

[
tI (Ψγ −Kemp)

(Ψγ −Kemp)
∗ 1

]
�Sn

+
0 and

⎡⎢⎣ γ11 · · · γ1nexp

...
. . .

...

γnexp1 · · · γnexpnexp

⎤⎥⎦ �Sn
+
0

which in turn means problem 4.39 has the simple interpretation

minimize ‖Ψγ −Kemp‖2F
subject to γ �Sn

+
0;

i.e. γ is the positive semidefinite least squares solution to the approximation prob-

lem K = Ψγ ≈ Kemp. We will not pursue this approach farther due to the subopti-

mality of the Frobenius norm for this task and the fact that solving SDP 4.39 poses

a severe computational challenge.

4.3.2 Unconstrained kernel inference
Maximum likelihood and maximum aposteriori estimation of covariance matrices C ∈ Rn⊗
Rn under the model

C =

nexp∑
j=1

γijϕi ⊗ ϕ∗
j

is possible. Inclusion of prior knowledge in form of a probability distribution on the coeffi-
cients γ ∼ Wnexp(q,Λ) for (Λ)ij = δijλi,ϕi ∈ Rn is straightforward for λi, ϕi eigenvalues
and eigenfunctions originating from some prior covariance matrix C ′

ps spectral decompo-
sition Cp = ΦΛΦ∗. We record in the following the calculations necessary to formulate a
Newton-type algorithm based on Fisher scoring to approximately minimize the regularized
discrepancy measure L = L1 + rL2 from equation4.35 with respect to the positive semidefi-
nite coefficient matrix γ ∈ Snexp

+ .

Bearing in mind the general setup of the optimization problem whose goal is infer-

ence of a reproducing kernel, task is to find

γopt = argmin
γ∈Snexp

+

L(γ)

L(γ) = log |C(γ)|+ tr(SC+(γ))︸ ︷︷ ︸
C(γ)=

∑nexp
i,j=1 γijϕi⊗ϕ∗

j

+r
[−c log |F (γ)|+ tr(Λ−1F (γ))

]︸ ︷︷ ︸
F (γ)=

∑nexp
i,j=1 γijei⊗e∗j

(4.40)

Here {ei}ni=1 is the canonical Euclidean basis of Rn, S = (nobs)
−1
∑nobs

j=1 fωj
⊗ f ∗

ωj

is the empirical covariance matrix calculated from realizations fωj
∈ Rn of the ran-

dom vector f whose covariance matrix is to be inferred and r is a regularization

parameter. The value of r may be set to n−1
obs to recover the objective function cor-

responding to the statistically motivated MAP estimation derived in section 4.2.3

equation 4.35, the constant c = q − n− 1 could play a similar role as r though we

will typically fix it to be 1.

The goal is to find the gradient Lγ and the information matrix Bγ such that the
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numerical scheme

γk+1 = γk − B+
γ Lγ (4.41)

produces a minimizer of equation 4.40. As it holds that log |C| = tr logC, one has

∂/∂γij log |C| = tr(C+Cij) [133] where for now the sub- and superscripts indicate

differentiation; i.e.

∂

∂γij
C = Cij and

∂

∂γij
C+ = C ij

Lemma 4.3.4 Let Qij = ϕi ⊗ ϕ∗
j and Λ be diagonal with elements λi. For every

ONB {ϕj}nj=1 of Rn and any matrix C =
∑nexp

i,j=1 γijQij with nexp ≤ n it holds that

I Cij = Qij

II QklQij = δilQkj

III C+ =
∑nexp

i,j=1 γ
ijQij for γij = (γ+)ij

IV C+Cij =
∑nexp

k=1 γ
kiQkj

V C+CijC
+ =

∑nexp
k,l=1 γ

kiγjlQkl

VI tr(C+Cij) = γji

VII tr(C+CijC
+Ckl) = γilγjk

Proof: It is clear that Cij = ∂/∂γij
∑nexp

i,j=1 γk,lϕk ⊗ ϕ∗
l = ϕi ⊗ ϕ∗

j = Qij thus

proving I. As QklQij = (ϕk ⊗ ϕ∗
l )(ϕi ⊗ ϕ∗

j) = 〈ϕi, ϕl〉Rnϕk ⊗ ϕ∗
j = δilQkj , II

follows. For III, note that if nexp ≤ n finite, the matrix C may be written as

C =

nexp∑
i,j=1

γijϕi ⊗ ϕ∗
j =

[
ϕ1, ..., ϕnexp

] ⎡⎢⎣ γ11 · · · γ1nexp

...
. . .

...

γnexp1 · · · γnexpnexp

⎤⎥⎦
⎡⎢⎣ ϕ∗

1
...

ϕ∗
nexp

⎤⎥⎦ = ΦγΦ∗.

It is then trivial to show that the matrix C̃ =
∑nexp

i,j=1 γ
ijQij with γij = (γ+)ij

satisfies the four Moore-Penrose conditions [18, p. 40]

C̃CC̃ = C̃ CC̃C = C (CC̃)∗ = CC̃ (C̃C)∗ = C̃C

implying C̃ to be the pseudoinverse C+. The matrix multiplication of C+ with Cij

yields

C+Cij =

nexp∑
k,l=1

γklQklQij =

nexp∑
k,l=1

δilQkj

nexp∑
k=1

γkiQkj

and ultimately leads to the trace formula

tr(C+Cij) =

nexp∑
k=1

γki tr(Qkj)︸ ︷︷ ︸
tr(ϕk⊗ϕ∗

j )=〈ϕk,ϕj〉Rn

=

nexp∑
k=1

γkiδkj = γji.
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This proves IV and V I; equations V and V II are a result of straightforward com-

putation as well.

C+CijC
+ =

nexp∑
k,l=1

γklQklQij

nexp∑
p,q=1

γpqQpq =

nexp∑
k,l=1

nexp∑
p,q=1

γklγpqδilδjpQkp

=

nexp∑
k,l=1

γkiγjlQkl

Equation V II can be proven be reformulating the term tr(C+CijC
+Ckl) as

tr

(
nexp∑
p,q=1

nexp∑
r,s=1

γpqγrsQpqQijQrsQkl

)
=

nexp∑
p,q=1

nexp∑
r,s=1

γpqγrsδqiδskδjr tr(Qpl)

=

nexp∑
p=1

γpiγjk tr(Qpl)︸ ︷︷ ︸
tr(ϕp⊗ϕ∗

l )=〈ϕp,ϕl〉Rn

= γliγjk

With the help of lemma 4.3.4 it is possible to calculate gradients and (expected)

Hessians of L1 and L2 from equation 4.35 with L(γ) = L1(γ) + rL2(γ).

Theorem 4.3.5 With the same notation as before, the gradients L1
γ and L2

γ with
respect to the parameters γij, i, j = 1, ..., nexp are given by

L1
γ =

[
γ+ − γ+Sϕγ

+
]

(4.42)

L2
γ = r

[−cγ+ + Λ−1
]

(4.43)

where r = n−1
obs, c = q − n − 1 and Sϕ = n−1

obs

∑nobs
j=1 f

j
ϕ ⊗ (f j

ϕ)
∗ with f j

ϕ ∈ Rnexp a
vector with elements (f j

ϕ)i = 〈fωj
, ϕi〉Rn . The information matrices B1

γ and B2
γ act

on symmetric matrices A ∈ Snexp as

B1
γA = γ+Aγ+ (4.44)

B2
γA = rcγ+Aγ+ (4.45)

Proof: (Equation 4.42) From L1 = log |C|+ tr(SC+) it follows that

(L1
γ)ij = tr(C+Cij) + tr(SC ij) = γji −

nexp∑
k,l=1

γkiγjl tr(SQkl).
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Since γ is symmetric, γij = γji and one also finds that tr(SQkl) satisfies

tr(SQkl) =
1

nobs

nobs∑
j=1

tr
(
fωj
⊗ f ∗

ωj
Qkl

)
=

1

nobs

nobs∑
j=1

〈fωj
, ϕk〉Rn〈fωj

, ϕl〉Rn .

Employing the notation fk
j = 〈fωj

, ϕk〉Rn for the coordinates of fωj
in the ONS

spanned by {ϕi}nexp

i=1 one arrives at

nexp∑
k,l=1

γkiγjl tr(SQkl) =
1

nobs

nobs∑
p=1

nexp∑
k=1

γkifk
p

nexp∑
l=1

γjlf l
p =

1

nobs

nobs∑
p=1

(
γ+f p

ϕ

)
i

(
γ+f p

ϕ

)
j

where (f p
ϕ)k = 〈fωp , ϕk〉Rn . To get the whole matrix {(L1

γ)ij}nexp

i,j=1 we may sim-

ply form
(
γ+f p

ϕ

) ⊗ (γ+f p
ϕ

)∗
= γ+(f p

ϕ) ⊗ (f p
ϕ)

∗γ+ and collect terms yielding
1

nobs

∑nobs

p=1 γ
+(f p

ϕ)⊗ (f p
ϕ)

∗γ+ = γ+Sϕγ
+ and finally

L1
γ = γ+ − γ+Sϕγ

+

for Sϕ = 1
nobs

∑nobs

j=1(f
j
ϕ)⊗ (f j

ϕ)
∗ the empirical coefficients γemp.

(Equation 4.43) From L2 = r [−c log |F (γ)|+ tr (Λ−1F (γ))] it can be derived that

(L2
γ)ij = r

[−c tr (F+Fij

)
+ tr

(
Λ−1Fij

))
= r

[−cγij + δijλ
−1
i

]
By the same arguments as for the preceding equation, we may explicitly rewrite L2

γ

in matrix form as

L2
γ = r

[−cγ+ + Λ−1
]
.

(Equation 4.44). Mardia and Marshal [133] prove that under the simplifying as-

sumption E[f ⊗ f ∗] = C, the Fisher information matrix B1
γ = E[L1

γγ] for L1
γγ the

Hessian of L1 has elements

(B1
γ)(i,j)(k,l) = tr

(
C+CijC

+Ckl

)
= γjkγli

Then for A ∈ Sn
+, B

1
γA can be written as

B1
γA =

nexp∑
i,j=1

nexp∑
k,l=1

γjkγliei ⊗ e∗j ⊗ ek ⊗ e∗lA

=

nexp∑
i,j=1

nexp∑
k,l=1

γilalkγ
kjei ⊗ e∗j

=

nexp∑
i,l=1

γilei ⊗ e∗lA
nexp∑
k,j=1

γkjek ⊗ e∗j = γ+ ⊗ γ+A
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Similarly, it is straightforward to prove equation 4.45. The information matrix

B2
γ = L2

γγ (since the random variables fωj
does not appear here, taking expecta-

tions is not required) has elements (B2
γ)(i,j)(k,l) computable as the ij-th element of

−rc(∂/∂γkl)γ+ = rcF+FklF
+. Since Fkl = ek ⊗ e∗l =: Pkl, one finds

−rc
(

∂

∂γkl
γ+
)

ij

= rc〈F+PklF
+, Pij〉F = rc tr

(
F+P T

klF
+Pij

)
= rcγljγik

The direct calculation B2
γA = rc

∑nexp

ij=1

∑nexp

k,l=1 γ
ljajiγ

ikel ⊗ e∗k =

rc
∑nexp

k,l=1

∑nexp

i,j=1 γ
ilalkγ

kj , where we exchanged l and k, then commuted the

scalar factors, establishes B2
γA = rcγ+Aγ+ for symmetric A. Therefore B2

γ acts

on A ∈ Sn
+ as rcγ+ ⊗ γ+.

To minimize L = L1 + L2, find the zeros of the gradient

Lγ = L1
γ + L2

γ = γ+ − γ+Sϕγ
+ + r

[−cγ+ + Λ−1
] !
= 0 (4.46)

This is a continuous time algebraic Riccati equation [126] for which solutions γ+

can be constructed from the spectral decomposition of a certain symplectic matrix.

However, in our experiments these solutions were typically not positive definite and

instead of the closed form solutions, we employ a sequence of Newton steps.

γk+1 = γk −B+
γ Lγ (4.47)

B+
γ Lγ =

(
B1

γ +B2
γ

)+ (
L1
γ + L2

γ

)
=

1

1 + rc
γ ⊗ γ

[
(1− rc)γ+ − γ+Sϕγ

+ + rΛ−1
]

=

(
1− rc

1 + rc

)
γ − 1

1 + rc
Sϕ +

r

1 + rc
γΛ−1γ (4.48)

This implies the following explicit formula for γk+1 dependent on the previous iter-

ation γk, the prior Λ and the matrix Sϕ = ΦTSΦ representing the empirical γ-values

(see remarks later).

γk+1 = γk −
(
1− rc

1 + rc

)
γk +

1

1 + rc
Sϕ − r

1 + rc
γkΛ−1γk

= (1 + rc)−1 [2rcγk + sϕ − rγkΛ−1γk
]

(4.49)

Recalling r = n−1
obs and using rc(1 + rc)−1 = c(c + nobs)

−1 one may alternatively

write

γk+1 =

(
2c

c+ nobs

)
γk +

(
nobs

c+ nobs

)
Sϕ −

(
1

c+ nobs

)
γkΛ−1γk (4.50)
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§ Detailed investigation of the kernel inference procedure

When initializing γ0 = Λ, equation 4.50 leads to fast and reliable guesses for γ; see

figures 4.8 to 4.11. When no observations are available, equation 4.50 specializes

to

γk+1 = 2γk − 1

c
γkΛ−1γk. (4.51)

Similarly, if no prior knowledge about γ is specified and c = 0, then

γk+1 = Sϕ. (4.52)

The matrix Sϕ can be interpreted as a low-dimensional approximation to the matrix

γ̃ that forms the empirical covariance matrix S via S = Φγ̃Φ∗. Notice that

S =
1

nobs

nobs∑
k=1

fωk
⊗ f ∗

ωk
=

n∑
i,j=1

γ̃ijϕi ⊗ ϕ∗
j = Φγ̃Φ∗. (4.53)

If nexp were n, one would have γ̃ = Φ∗SΦ and (γ̃)ij =
1

nobs

∑nobs

k=1〈ϕi, fωk
〉〈ϕj, fωk

〉.
Since nexp ≤ n, Sϕ = Φ∗SΦ is only an approximation to γ̃ derived from the norm

minimization problem

‖ΦSϕΦ
∗ − S‖2F → min⇔ Sϕ = (Φ)+ ⊗ (Φ∗)+S = Φ∗SΦ.

Equation 4.52 determines therefore a reasonable guess for the coefficient matrix γ in

the absence of prior knowledge. Equation 4.51 has a specific interpretation as well.

Suppose the task would be to only minimize the prior term L2(γ). The obvious

solution is to investigate the gradient L2
γ = r [−cγ+ + Λ−1] which equals zero for

γ+ = c−1Λ−1 and γ = cΛ, the mode of the Wishart distribution. If these exact

solutions were unknown, one could try to optimize L2(γ) (and L1(γ)) numerically

via semidefinite programming. For L2(γ), the projected Newton direction Δγ can

be calculated directly [112, p. 77-80] as

Δγ = argmin
Δγ∈Sn

〈L2
γ,Δγ〉F +

1

2
〈L2

γγΔγ,Δγ〉F = −γ1/2
[
γ1/2Λ−1γ1/2

c
− I

]
γ1/2

= γ − γΛ−1γ

c
(4.54)

and leads to the update rule γk+1 = 2γk − c−1γkΛ−1γk exhibited in equation 4.51.

Optimizing only the prior probability is therefore expressable as semidefinite opti-

mization leading to an iterative update rule for the coefficient matrix γ. A similar

investigation is possible for equation 4.52. Suppose for the sake of illustration that

nexp = n and γ is invertible. Then |C(γ)| = |ΦγΦ∗| = |γ| by the properties of

determinants. If one writes L1(γ) as

L1(γ) = log |C(γ)|+ tr
(
SC−1(γ)

)
= log |γ|+ tr

(
Sϕγ

+
)
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= − log |γ+|+ tr
(
Sϕγ

+
)

(4.55)

the result is a term in Z = γ+ that is again amenable to semidefinite programming

and has projected Newton direction [112, p. 77-80]

ΔZ = Z − ZSϕZ (4.56)

where ΔZ is an update for the inverse γ+ of γ. In conclusion, investigation of the

special cases inherent to the iteration scheme proposed in equation 4.50 reveals it

to be a mixture of weighted simultaneous manipulations of the coefficient matrix γ
and its pseudoinverse γ+ via the action of regularization and data terms. We suggest

to set c = 1 to avoid issues evoked by the mode of the Wishart distribution scaling

with c. The pseudocode below summarizes our approach.

Nonparametric unconstrained kernel inference

Input

S = 1
nobs

∑nobs

j=1 fωj
⊗ f∗ωj

, the empirical n× n covariance matrix

Kp, the prior kernel with decomposition Kp(s, t) =
∑n
i=1 λiϕi(s)ϕi(t)

Parameters

nexp ≤ n, the expansion depth determining the dimension of γ

r ∈ [0,∞), a regularization parameter which can be set to r = n−1
obs

Begin

γ0 = Λ, with Λ ∈ Snexp

+ and (Λ)ij = δijλi

Do until convergence:

γ = 1
1+r [2rγ + Sϕ − rγΛ+γ]

where Sϕ ∈ Snexp

+ Sϕ = (Φ+)S(Φ∗)+, Φ = [ϕ1, ..., ϕnexp
]

End

Output

γ, a nexp × nexp coefficient matrix such that C(γ) =
∑nexp

i,j=1 γijϕi ⊗ ϕ∗
j is both likely

under the observations and probable under the prior assumptions.

Since all operations act only on the finite dimensional coefficient matrices, there

is no inherent reason, why the algorithm should not work for infinite dimensional

covariance matrices — or the underlying kernel functions if one swaps Rn for L2.

The algorithm is illustrated on subsequent pages by plotting in the figures 4.8 to

4.11 some results showing performance for inference and simulation tasks and by

comparing it to other methods.
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Figure 4.8: Inferred coefficient matrices γ and covariance matrices C = ΦγΦ∗ for different regularization parameters r.

The expansion depth nexp is 10, the dimension n of the observed process is 100 whereas the number nobs of observations that

contributed to the empirical covariance matrix S is assumed unknown precluding any informed choice of r. The influence of

the regularization parameter r on the result of the inference procedure is well visible. The algorithm terminated in approx-

imately 0.01 seconds. The colorscale is identical for all plots of the same type. In all cases the true underlying covariance

function was the squared exponential kernel.

4.3.3 Extensions
It is possible to solve the kernel inference problem under affine constraints on the coefficient
matrix γ albeit at the cost of further computational effort and reliability of the solutions. The
resultant algorithm can be used for example to formulate a procedure for variance compo-
nents estimation centered around the likelihood as optimization objective. The calculation of
the closed forms of gradients, Hessians and derived information matrices provided by theo-
rem 4.3.5 exploited the orthonormality of the family {ϕi}nexp

i=1. Especially in the infinite dimen-
sional case, where the Mercer decomposition of the priorKp(s, t) is

∑∞
i=1 λiϕi(s)ϕi(t) with

{ϕi}∞i=1 an ONS of functions in L2(T ), one typically has access and works with only a finite
vector of point evaluations [ϕi(t1), ..., ϕi(tn)]T ∈ Rn or more generally with Aϕi = ψi for
some linear operator A : L2(T ) → Rn. Then the ψi are not necessarily orthogonal any-
more; however if the sequence {ψi}ni=1 ⊂ Rn is linearly independent, the results derived for
the ONB-case mostly still hold as will be shown in what follows.
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Figure 4.9: The same setup as in the previous figure but with a massively misspecified prior covariance. The true underlying

covariance function is the min(s, t)-kernel of the Wiener process. If r is set to n−1
obs = 0.05 (20 observations), the prior is

overridden as more data comes in and the result of inference is a covariance matrix that lies between the one plotted in the

first and second column.

§ Inclusion of affine constraints

Recall from theorem 4.3.5 that the gradient and Hessian of the approximate maxi-

mum a posteriori objective function

L = log |C(γ)|+ tr
(
SC+(γ)

)
+ r

[− log |γ|+ tr
(
Λ+γ

)]
(4.57)

were given by the expressions

Lγ = (1− r)γ+ + rΛ+ − γ+Sϕγ
+ (4.58)

Lγγ = (1 + r)γ+ ⊗ γ+. (4.59)

If it is now demanded that γ ∈ Rnexp ⊗ Rnexp is the solution to some linear equation

Aγ = b where b ∈ Rnc , A : Rnexp ⊗ Rnexp → Rnc and nc is the number of

constraints, then one may try to optimize L with respect to γ ∈ A−1b, i.e. enforce

γ to lie in the preimage of b under A. Given some initial guess γ0 lying in the

feasible set A−1b, the projected Newton direction Δγ ∈ Snexp is that symmetric

matrix, which minimizes a Taylor expansion based approximation to L at γ0 while
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Figure 4.10: Kernel estimations of the kernels exhibited in the first column based on several observations whose locations are

marked by the dashed black lines in the second column. The empirical covariance matrices are illustrated in column 3, the

MAP estimates in column 4. The regularization parameter was chosen according to the rule r = n−1
obs . As a prior, the smooth

squared exponential kernel was used. Finally column 5 reports the results of spline estimation for a simple interpolation

problem using the true kernels (dashed lines) and the inferred ones (unbroken lines). Compare to figure 4.4.

additionally satisfying AΔγ = 0. Then, if the initial iterate is chosen correctly,

γ1 = γ0 + Δγ has a smaller objective value L(γ1) than γ0 and still satisfies

Aγ1 = Aγ0 + AΔγ = b; see [112, p. 78] for more details.

Theorem 4.3.6 With notation as above, the projected Newton direction

Δγ = argmin
Δγ∈Snexp

〈Lγ,Δγ〉F +
1

2
〈LγγΔγ,Δγ〉F (4.60)

subject to AΔγ = 0

is — presupposing invertibility of γ and AγA∗ — given by the expression

Δγ =
1

1 + r

[
γA∗ (AγA∗)+A− I

] [
(1− r)γ + rγΛ+γ − Sϕ

]
. (4.61)

Proof. Write A : Rnexp ⊗ Rnexp → Rnc as the matrix A∗ = [A1, ..., Anc ] where each

Ai ∈ Rn2
exp is the vectorization of the matrix Ai such that tr(Aiγ) = 〈Ai, γ〉F =

(Aγ)i. When convenient, we will identify Ai, γ,Δγ either as elements of Rn2
exp or

of Rnexp ⊗ Rnexp . The Lagrangian of the problem is

L = 〈Lγ,Δγ〉F +
1

2
〈LγγΔγ,Δγ〉F +

nc∑
i=1

μi〈Ai,Δγ〉F
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Figure 4.11: Column one shows a certain kernel K and exemplary members of HK . These samples are used to infer K via

MAP and parametrically. Simulations illustrate that the elements of HKMAP
capture more of the underlying global structure

than an arbitrarily chosen parametric model (squared exponential). Notice that the input is an empirical covariance matrix

whereas the outputs of the inference procedures are kernel functions that can be employed in spline constructions.

and consequently the KKT conditions [25, p. 161] are

∇ΔγL = Lγ + LγγΔγ +
nc∑
i=1

μiAi = 0

∇μi
L = 〈Ai,Δγ〉F = 0.

This can be written as a system of linear equations for Δγ. With μ ∈ Rnc such that

(μ)i = μi, the SLAE has the form

LγγΔγ + A∗μ = −Lγ

AΔγ = 0

One might denote as Ã the matrix [Lγγ, A
∗;A, 0], set Δ̃γ = [Δγ;μ] and L̃γ =

[Lγ; 0]. This would allow to write the equation as

ÃΔ̃γ = −L̃γ

and solve it by means of simple matrix inversion, albeit very inefficiently. Instead,

under assumption of invertibility of γ and full row rank of A, a sequence of substi-

tutions produces

I Δγ = −L+
γγ(Lγ + A∗μ)

II AΔγ = 0

⇔ μ = −(AL+
γγA

∗)+AL+
γγLγ

III LγγΔγ + A∗μ = −Lγ
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⇔ Δγ = −L+
γγ

(
Lγ − A∗(AL+

γγA
∗)+AL+

γγLγ

)
= L+

γγ

(
A∗(AL+

γγA
∗)+AL+

γγ − I
)
Lγ

Since Lγγ and L+
γγ only act on symmetric matrices in the above expression, they can

be simplified by using Lγγ = (1 + r)γ+ ⊗ γ+ on Snexp . Now investigate separately

Δγ = −L+
γγLγ︸ ︷︷ ︸

Δγ1

+ L+
γγA

∗ (AL+
γγA

∗)+AL+
γγLγ︸ ︷︷ ︸

Δγ2

. (4.62)

For Δγ1, one arrives in analogy to the unconstrained case at

Δγ1 = −L+
γγLγ = − 1

1 + r
γ ⊗ γ

[
(1− r)γ+ + rΛ+ − γ+Sϕγ

+
]

=
1

1 + r

[
(r − 1)γ + Sϕ − rγΛ+γ

]
(4.63)

For Δγ2, notice that Δγ2 = (1 + r)−2γA∗ (AL+
γγA

∗)+AγLγγγ and that since

AL+
γγA

∗z = (1 + r)−1AγA∗zγ, the inverse
(
AL+

γγA
∗)+ acts on some b ∈ Rnc as

(1 + r) (AγA∗)+ bγ+. Since we assume γ to be invertible, we may write

Δγ2 =
1

1 + r
γA∗ (AγA∗)+ [AγLγγγ] γ

+ = γA∗ (AγA∗)+A
(

1

1 + r
γLγγ

)
= −γA∗ (AγA∗)+AΔγ1 (4.64)

Adding Δγ1 and Δγ2 and collecting terms proves the theorem.

We can then summarize the result of the projected Newton steps as

γ +Δγ = γ +Δγ1 − γA∗ (AγA∗)+AΔγ1 (4.65)

Δγ1 = (1 + r)−1
[
(r − 1)γ + Sϕ − rγΛ+γ

]
. (4.66)

The term (AγA∗)+ has dimension [nc, nc] and is easy to invert. It can be constructed

as the pseudoinverse to the operator AMγA
∗ where Mγ = I ⊗ γ is matrix multipli-

cation by γ but slightly modified to act on vectors of dimension n2
exp in an analogous

way.

§ Nonorthogonal basis vectors

Suppose an arbitrary ONB {ϕi}ni=1 ⊂ Rn is given and express the covariance matrix

in terms of a matrix η of coefficients for the elementary matrices ψi ⊗ ψ∗
j formed

by tensoring together the elements of a linearly independent but otherwise arbitrary

sequence of vectors {ψi}ni=1.

Cη =
n∑

i,j=1

ηijψi ⊗ ψ∗
j {ψi}ni=1 linearly independent . (4.67)
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Let the matrix η have prior Λ. In the loss function L(η) = L1(η) + L2(η) =
log |Cη|+ tr

(
SC+

η

)
+ r [− log |η|+ tr (Λ+η)], the first term L1(η) is related to the

likelihood of Cη given the data and one might express Cη using the elementary

matrices Qij = ϕi ⊗ ϕ∗
j . Naming the coefficients of this expansion γ; i.e.

Cη =
n∑

i,j=1

ηijψi ⊗ ψ∗
j =

n∑
i,j=1

γijϕi ⊗ ϕ∗
j = Cγ

one has L1(η) = log |Cη| + tr
(
SC+

η

)
= log |Cγ| + tr

(
SC+

γ

)
= L1(γ), where the

expansion in terms of γ uses the ONB {ϕi}ni=1. Gradients and Hessians for this

case are provided in theorem 4.3.5. If a prior Λ is given only for η and not for γ,

then the second term L2(η) has to be rewritten slightly. Denote by D the matrix of

expansion coefficients (D)ij = dij where ψi =
∑n

j=1 dijϕj , or Ψ = ΦDT for short

with Ψ = [ψ1, ..., ψn] and Φ = [ϕi, ..., ϕn]. Then rewrite

Cη =
n∑

i,j=1

ηijψi ⊗ ψ∗
j =

n∑
i,j=1

ηij

(
n∑

k=1

dikϕk

)
⊗
(

n∑
l=1

djlϕl

)∗

=
n∑

k,l=1

n∑
i,j=1

dikηijdjl︸ ︷︷ ︸
γkl

ϕk ⊗ ϕ∗
l

=
n∑

k,l=1

γklϕk ⊗ ϕ∗
l =Cγ

The relationship between the coefficient matrices η and γ is therefore seen to be

γ = DTηD (4.68)

as γij =
∑n

k,l=1 dkiηkldlj = d∗i ηdj for D = [d1, ..., dn]. As D = (Φ+Ψ)
∗
= Ψ∗Φ

with both Ψ∗ and Φ quadratic and full rank, it holds that D has also full rank and is

therefore invertible [100, p. 13] with inverse F = D+.

This allows to reformulate L2(η) in terms of γ by replacing η with F ∗γF leading

to the loss function

Lη = log |Cη|+ tr
(
SC+

η

)
+ r

[− log |η|+ tr
(
Λ+η

)]
(4.69)

= log |Cγ|+ tr
(
SC+

γ

)
+ r

[− log |F ∗γF |+ tr
(
Λ+F ∗γF

)]
(4.70)

completely described by the coefficients γ of an expansion in terms of the ONB

{ϕi}ni=1. Now note that − log |F ∗γF | = − log |F ∗||F ||γ| = −2 log |F | − log |γ|
with−2 log |F | being a finite constant due to F being invertible. It is independent of

γ and therefore ignorable for purposes of minimization w.r.t γ. One may therefore

equivalently optimize

L̃2 = log |Cγ|+ tr
(
SC+

γ

)
+ r [− log |γ|+ tr (GγF )] (4.71)
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withG = Λ+F ∗. Apart from the term tr (GγF ) all first and second derivatives have

already been calculated before. It is obvious that the second derivatives all vanish

and that its first derivatives are given as FΛ+F ∗ because

∂

∂γij
tr (GγF ) =

∂

∂γij

n∑
k,l=1

GmkγklFlm =
∂

∂γij

n∑
k,l=1

γkl

n∑
m=1

GmkFlm

=
n∑

m=1

FjmGmi

= (FG)ji

and (FΛ+F ∗)ji = (FΛ+F ∗)ij by symmetry. Then it is possible to employ the same

Newton-type algorithm as before to minimize L̃2 by iterating γk+1 = γk−B+
γ ∇γL̃2

where

B+
γ ∇γL̃2 =

(
1

1 + r

)
γ ⊗ γ

[
(1− r)γ+ − γ+Sϕγ

+ + rFΛ+F ∗]
=

(
1− r

1 + r

)
γ −

(
1

1 + r

)
Sϕ +

(
r

1 + r

)
γFΛ+F ∗γ∗.

The expression for γk+1 based on the k−th iterate γ is then

γk+1 =

(
1

1 + r

)[
2rγ + Sϕ − rγFΛ+F ∗γ∗

]
(4.72)

where after convergence the relationship η = F ∗γF can be used to find the opti-

mal η. Alternatively one might directly write down an iteration scheme for η by

exploiting γ = D∗ηD via

ηk+1 = (1 + r)−1(D∗)+
[
2rD∗ηD + Sϕ − rD∗ηDFΛ+F ∗D∗ηD

]
D+

= (1 + r)−1
[
2rη + F ∗SϕF︸ ︷︷ ︸

Sψ

−rηΛ+η
]

(4.73)

Effectively, the scheme is the same as the one presented previously for γ but with

Sϕ replaced by F ∗SϕF =: Sψ. The interpretation is as follows.

Sψ = F ∗SϕF = F ∗Φ+SΦF = (ΦD∗)+S[(ΦD∗)+]∗ = (Ψ+)S(Ψ+)∗

At the same time one finds

argmin
η̃∈Rn⊗Rn

‖Ψη̃Ψ∗ − S‖2F = Ψ+ ⊗Ψ+S = (Ψ+)S(Ψ+)∗ = Sψ

i.e. Sψ is the coefficient matrix such that
∑n

i,j=1(Sψ)ijψi ⊗ ψ∗
j is closest to S.

The matrix contains the expansion coefficients of S in the linearly independent

system given by {ψi}ni=1. When nexp < n expansion coefficients are used, the least
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squares interpretation still holds. The surprising conclusion is that the algorithm

as sketched on page 185 still holds even if only a system of linearly independent

vectors spanning Rn is used but not an ONB.

Remark The reader may notice that this situation was already encountered during

the computations for figure 4.10. There an np × np covariance matrix C with prior

Cp =
∑np

i=1 λiϕi⊗ϕ∗
i ∈ Rnp ⊗Rnp had to be inferred from samples fωj

∈ Rn with

n < np.

We summarize the results in the following general algorithm for constrained kernel

inference for which some geodetic applications are provided in the final section of

this chapter.

Nonparametric kernel inference with affine constraints

Problem

The kernel K(s, t) on an indexset T × T is to be inferred based on nobs observation

vectors fωl
= [fωl

(t1), ..., fωl
(tn)]

T ∈ Rn that provide point evaluations of the func-

tions fωl
(·) drawn fromHK for l = 1, ..., nobs.

A prior guess Kp(·, ·) for the kernel with Mercer decomposition
∑∞
i=1 λiϕi(·)ϕi(·)

is to be respected and the result of inference has to satisfy the affine constraints

〈Am, γ〉 = bm,m = 1, ..., nc where γ is a coefficient matrix determining the guess for

K.

Model

The best guess forK(·, ·) is determined by that γ ∈ Snexp

+ for which the log probability

is maximal; i.e. which minimizes

L(γ) = log |Cγ |+ tr
(
SC+

γ

)
+ r

[− log |γ|+ tr
(
Λ+γ

)]
where Cγ =

∑nexp

i,j=1 γijψi ⊗ ψ∗
j with ψi = [ϕi(t1), ..., ϕi(tn)]

T ∈ Rn is the covari-

ance matrix induced by the kernel guess K(s, t) =
∑nexp

i,j=1 γijϕi(s)ϕij(t) and other

quantities are as defined below.

This probabilistic model corresponds to the assumption of Gaussianity for fωl
∈ Rn

and approximately a Wishart distribution on γ ∈ Snexp

+ .

Input

S = 1
nobs

∑nobs

j=1 fωj
⊗ f∗ωj

, the empirical n× n covariance matrix

Kp, the prior kernel with known Mercer decomposition Kp(s, t) =∑n∞
i=1 λiϕi(s)ϕi(t) where n∞ is allowed to be finite or infinite and the sequence

{ϕi(·)}n∞
i=1 ⊂ L2(T ) constitutes an ONB.

A ∈ Rnc ⊗ Rn
2
exp , the operator determining the nc affine constraints Aγ = b =

{〈Am, γ〉F }nc
m=1.

γ0 ∈ Snexp

+ ∩A−1b, a feasible initial guess for γ used as a starting point for iteration.

Parameters

nexp, the expansion depth determining the dimension of γ

r ∈ [0,∞), a regularization parameter which can be set to r = n−1
obs
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Begin

Set Λ ∈ Snexp

+ , (Λ)ij = δijλi

Do until convergence:

γ = γ +Δγ1 − γA∗(AγA∗)+AΔγ1
where Δγ1 = (1 + r)−1[(r − 1)γ + Sψ − rγΛ+γ] ∈ Snexp

+

and Sψ = (Ψ+)S(Ψ∗)+ ∈ Snexp

+ , Ψ = [ψ1, ..., ψnexp
]

End

Output

γ, a nexp × nexp coefficient matrix subject to linear constraints such that C(γ) =∑nexp

i,j=1 γijϕi ⊗ ϕ∗
j is both likely under the observations and probable under the prior

assumptions. A kernel estimate K(·, ·) =
∑nexp

i,j=1 γijϕi(·)ϕj(·) having those same

properties and generalizing C(γ).

4.4 Selected applications

In this last section of chapter 4, the theoretical apparatus developed in sections

4.1 to 4.3 will be given practical meaning by applying it to geodetically motivated

problems. These include but are not limited to different versions of variance and

covariance estimation tasks for which kernel inference methodologies are an obvi-

ous choice due to the central role played by positivity in the characterizations of

variances, covariance matrices, and kernels. Less expected might be the applica-

tion of linear programming to robust estimation, in which primarily �1-norm based

minimization problems are employed to handle sparsity constraints and introduce

robustness into geodetic standard procedures such as the otherwise �2-norm based

estimation of Helmert transformations. The use of LP methods raises the question,

which additional geodetic problems might admit a formulation in terms of quadratic

programs or the more general semidefinite programs and first nonobvious applica-

tions of kernel inference are investigated.

4.4.1 Robust estimation

The choice of parameters x based on �2 norm minimization of residuals r = Ax−b, withA, b
problem data, results usually in nonsparse residuals even if an x exists with (Ax)j = bj for
all but one j ∈ J . Furthermore, due to the square r2j in ‖r‖22 =

∑n
j=1 r

2
j large residuals are

strongly penalized and during the minimization of ‖r‖22 it regularly happens that the decrease
of a large residual rl by Δrl is bought by an increase of several small rj by Δrj , j ∈ J

/{l}
s.t.

∑
j∈J |rj + Δrj |2 <

∑
j∈J |rj |2 but the absolute value of the residuals has grown:∑

j∈J |rj+Δrj | >
∑
j∈J |rj |. This tendency to overemphasize the largest residuals can lead

to inconvenient behavior when outliers are encountered. Sparsity and robustness to outliers
are linked to the �1-norm rather than the �2-norm and intuitive explanations for that fact
are presented in this subsection. As �1, �2 and �∞-norm minimization can be cast in an LP
respectively QP framework, SDP embeddings exist and solutions to σ = argminx∈Rn ‖Ax−
b‖p, p ∈ {1, 2,∞} can be calculated numerically. These then help to solve both the robust
estimation of parameters in a linear model and the more challenging nonlinear problem of
inferring the parameters of a Helmert transformation H : R2 → R2 given identical points in
different coordinate systems.
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As shown previously, norm minimization tasks of the type

σf = argmin
f∈HK

‖Af − y‖2�2 + ‖f‖2HK
(4.74)

correspond to optimal estimation in presence of white noise on the measurements

Af of a stochastic process f with covariance function K(·, ·). This interpretation

is also valid for adjustment problems Aλ − y = v with white noise v on the

measurements and a prior that favors small lengths of the coefficient vector λ
although A is a design matrix rather than a measurement operator in this case. Even

though a prior on coefficient vectors λ with (Aλ)k =
(∑m

j=1 λjgj(xk)
)
k
≈ yk

seems, at least from this perspective, puzzling at first, it enters naturally if one

assumes that the linear combination
∑m

j=1 λjgj(·) is itself chosen randomly with

the λj’s distributed as multivariate Gaussian.

This establishes interpretations of further machine learning methods that are similar

in flavor to the abstract spline problem 4.74. Consider for example

Ridge regression : σf = argmin
f∈Rm

‖Af − y‖2�2 + α‖Bf‖2�2

LASSO : σf = argmin
f∈Rm

‖Af − y‖2�2 + α‖f‖�1

Elastic net : σf = argmin
f∈Rm

‖Af − y‖2�2 + α1‖f‖2�2 + α2‖f‖�1

[92, pp. 61,68,118] where the α’s are some positive constants that determine if

faithfulness to the data or regularity of the estimator are prioritized and B is some

linear operator. In the above, ‖ · ‖�p denotes the classical �p norms, i.e.

‖f‖�p = p

√√√√ m∑
k=1

|fk|p.

Note that for some nonnegative function q(f) ≥ 0 ∀f ∈ Rm satisfying additional

constraints exp(−q(f)) is normalizable with c−1 =
∫
Rm e

−q(f)df < ∞ implying

that c exp(−q(f)) is a valid probability density function (pdf). Therefore to each

norm type there corresponds a unique probability density function: to the �2 norm

one may associate the multivariate Gaussian and to the �1 norm a multivariate ver-

sion of the Laplacian distribution. See Fig. 4.12 below for some sketches of the

respective norms and densities in the instructive 1 dimensional case.

The Gaussian pdf’s derivative at its mean is zero; the pdf’s value converges to zero

extraordinarily fast. The Laplacian pdf in contrast has heavy tails but its derivative

at the mean is undefined. We extract the following from our discussion and the

images in Fig. 4.12:

I When minimizing the �2-norm or equivalently maximizing the likelihood un-

der a Gaussian pdf, small residuals are considered almost irrelevant since the
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Figure 4.12: The �1, �2 and �∞ norms and their corresponding probability densities associated with the Gaussian and Lapla-

cian distribution. Note the Laplacian’s heavier tails. In the 2-D images, brighter color corresponds to higher density values.

To the best of the authors knowledge, the exact nature of the pdfs associated to �∞-norms in dimensions greater or equal than

two has not yet been investigated.

gradient of ‖ · ‖2�2 around 0 is zero. Large deviations are punished dispropor-

tionately strong: During minimization decreasing a big residual is considered

more favorable than decreasing several small ones by the same amount.

II When minimizing the �1-norm or equivalently maximizing the likelihood un-

der a Laplacian pdf, small residuals are punished less than big ones but still

severely as the gradient of ‖ · ‖�1 around 0 is constant and positive driv-

ing either f to sparsity (if ‖f‖�1 → min) or leading to sparse residuals (if

‖Af − y‖�1 → min). Big residuals are penalized proportionally: decreasing

a big residual is as good as decreasing an already small residual by the same

amount.

Combining I and II explains why �1-norm minimization leads to sparse and robust

estimators that can systematically outperform �2-norm based least squares solutions.

Therefore ridge regression might be seen as adjustment with a prior on the length of

Bλ, LASSO has a sparsity prior on the parameter vector λ and elastic net regular-

ization balances both. To obtain the usual interpretations, swap f for λ in the above

and assume the stochastic process f to be determined by a multivariate Gaussian on

Bf , sparse or a combination of both.

The behavior of �1, �2 and �∞-norm based estimation procedures differs signifi-
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cantly. For an illustration of the results of fitting optimally a line and a parabola

to data subject to noisy measurements and outliers see figure 4.13. Minimizing

‖Aλ − y‖p can be cast as a linear program for p ∈ {1,∞} and as a quadratic

program for p = 2, which establishes the optimization task as a subproblem of

semidefinite programming. The exact SDP-embeddings are reproduced below for

the reader’s convenience, with more details available in [28, pp. 293-294,].

• The �1-norm based estimation problem is a diagonal SDP. It can be written as

λ∗ = argmin
λ=[λ1,...,λm]∈Rm

‖Aλ− y‖1 = argmin
λ=[λ1,...,λm]∈Rm

n∑
k=1

|〈ak, λ〉�2 − yk|

This is equivalent to the following formulation.

min
q∈Rs

〈c, q〉�2
subject to Gq ≤ h

c =

[
�0
�1

]
; q =

[
�λ
�v

]
; G =

[−A −I
A −I

]
; h =

[−�y
�y

]
where λ is the set of m parameters to be inferred, y contains the n observa-

tions, and A is the design matrix with rows ak.

• The �2-norm based estimation problem has an SDP-embedding as well; its

explicit form was derived earlier in example 24. As there are closed-form

solutions to the problem that do not rely on numerical optimization, those

will be given instead.

λ∗ = argmin
λ=[λ1,...,λm]∈Rm

‖Aλ− y‖22 = argmin
λ=[λ1,...,λm]∈Rm

n∑
k=1

|〈ak, λ〉�2 − yk|2

The solution is

λ = A+y

where the notation is as in the �1-norm minimization case and A+ denotes the

pseudoinverse of A.

• The �∞-norm based estimation problem is a diagonal SDP. It can be written as

λ∗ = argmin
λ=[λ1,...,λm]∈Rm

‖Aλ− y‖∞ = argmin
λ=[λ1,...,λm]∈Rm

sup
k∈{1,...,n}

|〈ak, λ〉�2 − yk|

This is equivalent to the following formulation.

min
q∈Rs

〈c, q〉�2
subject to Gq ≤ h
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c =

[
�0
�1

]
; q =

[
�λ
�v

]
; G =

[−A −1
A 1

]
; h =

[−�y
�y

]
where the notation is as in the �1-norm minimization case and 1 is a vector of

ones.

Figure 4.13: The best fitting lines and parabolas based on data contaminated by noise with different probability distributions

where ”best” is meant as the lowest �p-norm, p ∈ {1, 2,∞} of the residuals. Both of the lower images show the estimation’s

sensitivity with respect to outliers. Where the red line (ground truth) is not visible, it is covered by the coinciding �1-norm

based estimation.

This performance difference of �2 and �1-norm based estimation in the presence of

outliers carries over to the nonlinear but nonetheless typical geodetic task of infer-

ring a Helmert transformation with fixed scale from coordinate measurements, see

Fig. 4.14. We briefly sketch the algorithm used to find the optimal transformation

A(λ∗) with

λ∗ = argmin
λ=[xA,yA,ϕA]∈R3

‖A(λ)x− y‖�p p = 1, 2 (4.75)

that maps the coordinates x in system 1 onto the coordinates y in system 2:

1. Get initial solution: λ0 ∈ R3.

2. Set up problem: yk = A(λk)x,Δyk = yk − y.

3. Estimation step: Δλ∗ = argmin
Δλ∈R3

‖DA[λk]Δλ−Δyk‖�p .

4. Update step: λk+1 = λk +Δλ∗. Repeat steps 2-4 until convergence.
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In the above, D denotes the differential with respect to the parameters. The initial

solution can be guessed via an initial least squares step or by solving a subproblem

which is neither over- nor underdetermined. The minimization problem in step 3

is either solved analytically (�2-norm) or via linear programming (�1-norm) [28,

p. 294].

Figure 4.14: The left panel shows three sets of coordinates. They represent the same set of material, real-world points in

two different coordinate systems in the presence of noise and outliers. The noisy dataset was used to infer translation and

orientation parameters of a Helmert transformation using the two different �p-based schemes as outlined on page 198. As is

visible in the figure, �1-norm based estimation is much more robust than the �2-norm based estimation. The scale in the pair

of images placed on the righthand side is identical.

4.4.2 Kernel estimation
The estimation of variance components has a long standing history in geodesy. It is used most
widely to provide a test of the validity of a hypothetical stochastic model based on real data in
conjunction with an updated guess on the diagonal covariance matrix characterizing the pre-
cision ratios of the observations. Kernel inference includes as a special case the estimation of
a positive diagonal matrix and for purely illustrative purposes the two methods are compared
w.r.t the results they offer when applied to instructive numerical examples. As soon as nonzero
nondiagonal terms E[XiXj ] = σij , i �= j arise, the simple variance components estimation
associated to the covariance matrix model ΣX =

∑n
k=1 λkek⊗ ek � 0, ek standard basis of

Rn, is not sufficient anymore. The covariance model KX =
∑n
i,j=1 λijϕi⊗ϕj � 0 includes

nonzero crossterms and by a proper choice of ϕk it is possible to estimate covariance func-
tions and covariance matrices as superpositions of orthogonal parametric or nonparametric
basis functions depending on auxiliary information.

Approximation via sequence expansions can be modified to cover decompositions of co-
variance matrices ΣX � 0 into two covariance matrices ΣX1

,ΣX2
� 0 by projection∑n

i,j=1 λijϕi ⊗ ϕj onto subspaces spanned by subsets {ϕk}k∈S . This is illustrated by split-
ting the empirical covariance matrix of exemplary total station measurements into parts cor-
responding to pure noise and correlated influences explainable by atmospheric effects or
smooth movements of the measured object.

Nonparametric kernel inference with affine constraints can be used for what is called

variance components estimation in the geodetic literature [114, p. 265]. There,

a combination of linearly independent elementary positive semidefinite matrices

Cj, j = 1, ..., nexp into a single covariance matrix Cμ is sought in such a way that

Cμ and the observations are minimally contradictory.

A covariance matrix Cμ =
∑nexp

j=1 μjCj assembled from the Cj ∈ Sn
+ is interpretable
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as the joint covariance matrix resulting from having several independent observation

processes each with covariance matrix Cj . Suppose for example that x = [x1, x2] =
[ε1, ε1+ε2] for two independent white noise variables ε1, ε2 with unknown variances

μ1 and μ2. Then

Cμ = E[x⊗ x∗] =
[
μ1 0
0 μ1 + μ2

]
= μ1

[
1 0
0 1

]
+ μ2

[
0 0
0 1

]
=

2∑
j=1

μjCj

motivating this approach and giving the matrices Cj the interpretation of being co-

variance matrices of blocks of observations. One can come up with similarly sensi-

ble explanations for nondiagonal Cj , see for example [151, p. 320]. Given a prior

Wishart distribution with scale matrix Λ for μ (considered as a diagonal matrix),

finding the maximum aposteriori parameter matrix μ corresponds to minimizing

L(μ) = log |Cμ|+ tr
(
SC+

μ

)
+ r

[− log |μ|+ tr
(
Λ+μ

)]
(4.76)

where Cμ =
∑nexp

j=1Cj and S is an empirical covariance matrix derived from

observations. One might swap Cμ =
∑nexp

j=1 μjCj for the more general model

Cγ =
∑n

i,j=1 γijϕi ⊗ ϕ∗
j with {ϕi}ni=1 some ONB of Rn and as a compensation

impose an affine constraint on γ ∈ Sn
+ to ensure that ∃μ ∈ Rnexp such that Cμ = Cγ .

Since converting a prior on μ into a prior on γ is nontrivial in the case where the

transformation is not of the form μ = ΦγΦ∗, attention will be restricted to the spe-

cial case of r = 0, thereby effectively neglecting regularization and only performing

maximum likelihood estimation.

Note that demanding Cγ ∈ span{C1, ..., Cnexp} is the same as demanding PCγ =

Cγ where P : Rn2 → Rn2
is the orthogonal projection onto the column space of

C = [C1, ..., Cnexp ] ∈ Rn2⊗Rnexp . The appropriate linear constraint on γ is therefore

(I − P )ΦγΦ∗ = 0 P = C(C∗C)+C∗ (4.77)

and by renamingA = (I−P )Φ⊗Φ, the problem of maximum likelihood estimation

can be encapsulated as the optimization problem

minimize log |Cγ|+ tr
(
SC+

γ

)
subject to Aγ = 0. (4.78)

But this is just constrained kernel inference with regularization parameter r = 0
and can be solved by employing the algorithm outlined on page 193. The steps are

briefly listed below for convenience.

Maximum likelihood variance components estimation
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Input

S = 1
nobs

∑nobs

j=1 fωj
⊗ f∗ωj

, the empirical n× n covariance matrix

{ϕi}ni=1, an ONB of Rn

{Cj}nexp

j=1 a linearly independent sequence of positive semidefinite matrices

Begin

γ0 = Φ∗C̃Φ with Φ = [ϕ1, ..., ϕn], C̃ =
∑nexp

j=1 Cj

Do until convergence:

γ = Sϕ − γA∗(AγA∗)+ASϕ + γA∗(AγA∗)+Aγ
where Sϕ = Φ∗SΦ and A = (I − C(C∗C)+C∗)Φ⊗ Φ

and C = [C1, ..., Cnexp
] ∈ Rn

2 ⊗ Rnexp

End

Output

γ, a n× n coefficient matrix such that C(γ) =
∑n
i,j=1 γijϕi ⊗ϕ∗

j is the matrix of the

form Cγ =
∑nexp

j=1 μjCj with the highest likelihood given the data.

Remark If γ or AγA∗ are not invertible, numerical problems during formation

of Δγ can induce nonzero AΔγ implying that later iterations of ΦγΦ∗ are not

expressible anymore as
∑nexp

j=1 μjCj . Typically noninvertible γ are encountered,

when the initial construction C init =
∑nexp

j=1Cj does not have full rank as then

rank γ0 = rank(ΦC initΦ) = rankC init [100, p. 13] for Φ constructed from an ONB

{ϕi}ni=1.

§ Comparison with least squares

Estimation of variance components for geodetic applications has received some

attention particularly during the advent of affordable compute power during the late

1970’s. Iterative schemes were published during that era, see [64] for an overview.

They generalize the well known formulas for empirical variances and covariances

and are of type BIQUE (best invariant quadratic unbiased estimators). Estimation

of variances or coefficients in a functional model describing variances is still an

important problem lacking a universally agreed upon success criterion and closed

form solutions. We will briefly sketch the construction of a least squares estimator

that is fast and relatively reliable but can lead to negative guesses for variances

and under unfortunate circumstances results in covariance matrices that are not

positive semidefinite. In what follows, the outputs of kernel inference and the

the least squares based algorithm are compared with respect to the computational

cost associated to deriving them, several error metrics and their performance for

estimation purposes where applicable.

Estimation of coefficients μj may be solved within a least squares framework by
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solving the problem

μopt =argmin
μ∈Rnexp

‖
nexp∑
j=1

μjCj − S‖2F = C+S. (4.79)

Although a direct generalization of the straightforward scalar estimators for empiri-

cal variances and covariances, least squares estimators can lead to model covariance

matrices
∑nexp

j=1 μjCj that are not positive semidefinite, violate the conditions sen-

sibly imposed on covariance matrices and perform insufficiently when themselves

used for estimation. Three problems will illustrate the behavior exhibited by the

least squares solution and the Maximum Likelihood estimator derived in the kernel-

inference framework. The summary statistics provided for each of the problems

are generated using simulated data based on synthetic ground truth and 1000 trial

runs, in which both kernel inference and the classical method are employed to de-

rive a solution. The entries ‖x̂Cest− x̂Ctrue‖2 are the average �2-norms quantifying the

lengths of the deviations between solutions of the problems

x̂Cest = argmin
x∈Rnexp

‖Ax− b‖2Cest
and x̂Ctrue = argmin

x∈Rnexp

‖Ax− b‖2Ctrue
;

i.e they quantify how far estimation with Cest deviates from estimation with Ctrue.

In the above, A and b are white noise variables of the appropriate sizes randomly

drawn for each of the trial runs and Cest and Ctrue are, of course, the estimated and

the underlying true covariance matrices of the problem.

Example 25 (Problem I) Estimation of basis variances μ1 and μ2 in total station

measurements with observation variances σobs = μ1 + μ2dobs where dobs is the

distance to reflective targets in m. The goal is to find μ1 and μ2 ≥ 0 such

that μ1I + μ2D is most likely given an empirical covariance matrix S. D is

a diagonal matrix with (D)ij = δijdobsi with i, j ranging from 1 to nobs, the

number of observations. In the specific instance of problem I treated below,

nobs = 5, D = 100 diag[1, 2, 3, 4, 5], the true μ1 and μ2 are μtrue
1 = 1 m and

μtrue
2 = 10−3, and the empirical covariance matrix S comes from 50 simulations

drawn from the true underlying distribution. The results of this and the following

examples are summarily interpreted after example 27.

Runtime in s Absolute error RMSE Likelihood ‖x̂Cest − x̂Ctrue‖2
LS 4.3 ∗ 10−5 μ1 : 0.2042

μ2 : 0.0007
μ1 : 0.2556
μ2 : 0.0008

7.7140 0.0409

KI 0.0449 μ1 : 0.2022
μ2 : 0.0007

μ1 : 0.2533
μ2 : 0.0008

7.7136 0.0406

�

Example 26 (Problem II) Estimation of variance of leveling instruments. Let a

simple leveling setup with known point heights and lengths L1, L2, L3 = L1 + L2
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be given as specified in figure 4.15.

Figure 4.15: The hypothetical leveling setup for purposes of instrument testing investigated in Problem II. The Δ’s are

measured height differences between the points of known height marked as empty circles and can therefore be directly

converted to residuals.

Presupposing the usual model claiming leveling variances to be proportional to lev-

eling lengths, it is trivial to check that

σ2
x1

= μ1L1 σ2
x2

= μ1L1 + μ2L2 σ2
x3

= μ1L1 + μ2L2 + μ2(L1 + L2)

σ2
x1x2

= μ1L1 σ2
x1x3

= μ1L1 σ2
x2x3

= μ1L1 + μ2L2

where σ2
xk

denotes the variance of xk and σ2
xixj

denotes the covariance between xi

and xj . This implies that the model Ŝ for the covariance matrix of the observations

depending on the variance factors μ1, μ2 is

Ŝ = μ1

⎡⎣L1 L1 L1

L1 L1 L1

L1 L1 L1

⎤⎦+ μ2

⎡⎣0 0 0
0 L2 L2

0 L2 L1 + 2L2

⎤⎦
Now infer from 50 realizations of x and the associated empirical covariance matrix

S the coefficients μ1 and μ2. They correspond to 2σ2
I1

and 2σ2
I2

, multiples of

the two instrument variances per 1 km double run. The synthetic ground truth is

μtrue
1 = 1 and μtrue

2 = 2. Note that an imaginary average likelihood implies, that

invalid covariance matrices have been produced by the LS procedure.

Runtime in s Absolute error RMSE Likelihood ‖x̂Cest − x̂Ctrue‖2
LS 3.5 ∗ 10−5 μ1 : 0.3055

μ2 : 0.3258
μ1 : 0.3867
μ2 : 0.4067

5.873 + 0.003i 0.083

KI 0.0610 μ1 : 0.2354
μ2 : 0.2834

μ1 : 0.3010
μ2 : 0.3539

5.8484 0.063

�

Example 27 (Problem III) Approximately decompose an empirical covariance ma-

trix S derived from time series into a superpositions of two parts Sl, Sh that cor-

respond to low and high frequency components. The goal is to use Sl and Sh for

signal separation and filter out the high-frequency ’noise’ from a time series. To

this end, set the ground truth covariance function to be a superposition K(·, ·) of
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a squared exponential covariance and a pure white noise covariance, both with co-

efficients 1. This ground truth is unknown to the algorithm. Afterwards sample

50 realizations of a stochastic process with covariance K, then form the empiri-

cal covariance matrix S. Decompose S into the weighted sum C0 +
∑nexp

j=1 μjCj

where C0 is the identity matrix and the Cj, j = 1, ..., nexp are covariance matrices

of smooth processes. Figure 4.16 illustrates this procedure and the associated table

again compares performances of the classical solution and kernel inference. Sur-

prisingly, Least squares and kernel inference are identical up to machine precision

in this example.

Runtime in s Absolute error RMSE Likelihood Prediction RMSE

LS 1.1 ∗ 10−4 μ0 : 0.0284
μ1 : 1.0399

μ0 : 0.036
μ1 : 1.3081

20.3766 1.3945

KI 0.2134 μ0 : 0.0284
μ1 : 1.0399

μ0 : 0.036
μ1 : 1.3081

20.3766 1.3945

Remark Note that in these tests, we are restricting kernel inference to solve a task

similar to the one solved by variance components estimation. It should be clear,

that the least squares algorithm can be outperformed significantly w.r.t. prediction

RMSE by employing the more general model S ≈ Ŝ =
∑nexp

i,j=1 γijϕi⊗ϕ∗
j +γ0I for

{ϕi}nexp

i=1 some ONB coming from the spectral decomposition of a smooth covariance

matrix. However, inference with this model is impossible with least squares as it is

unable to assure a choice of γ that leads to positive (semi-)definite Ŝ.

�
Note that our algorithms runtime scales unfavorably with the dimension n×n of the

matrices involved because the full n× n matrix γ is is formed and inference is per-

formed by iterating over γ subject to affine constraints. The least squares algorithm

manipulates the coefficients directly and only once; it is therefore much faster. By

extrapolation from problems I to III, one might conclude that least squares estima-

tion finds itself at an advantage over kernel inference in situations where numerical

simplicity and lower runtimes are of the essence whereas the kernel inference shows

better results in terms of those parameters likelihood, which can be imaginary ow-

ing to violations of positive definiteness constraints in the least squares approach,

and prediction performance.

§ Inference of instationary covariance functions

The inference of covariance functions of random fields is included as a subcase

in the kernel inference algorithm. It is mentioned here explicitly only because the

practical application may seem nonobvious. Suppose an instationary random field

N has been observed at several locations {sk}nk=1 ⊂ R2 where sk are spatial co-

ordinates and for purposes of illustration N·(·) is the distribution of a modified

refractivity N = 106(nair − 1) where nair is the refractive index of air. For each

ω ∈ Ω, Nω(·) : R2 → R is a specific spatial distribution of N in x and z, i.e.

a profile drawn at random and indexed by an element in the probability space Ω.
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Figure 4.16: In Problem III, variance components estimation (VCE) is used to approximately decompose an empirical covari-

ance matrix into a rough part (C0) and a superposition of smooth parts (e.g. C1). Later on, this decomposition of covariance

matrices is used for signal separation.
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Given the nmeas = 40 measurements of the of the nobs = 6 realizations Nω1 , ..., Nω6

at the locations s1, ..., nmeas shown in figure 4.17, the task is to infer the kernel

KN(·, ·) : R2 × R2 → R thereby enabling inference of the whole of N .

Figure 4.17: Six realizations of the random field N·(·) : Ω×R2 → R representing a modified refractivity. For the simulations

a stochastic model was used; it features smooth changes in N·(·) and increasing variability for high altitudes. The red boxes

mark the locations of measurements to be used for kernel inference.

To perform inference, use an exponential kernel Kx
N and Kz

N in x and z direction

respectively. Choose the range parameters reasonably and construct the prior

Kprior
N = Kx

NK
z
N .

From the Mercer decompositions Kx
N =

∑∞
i=1 λ

x
i ϕ

x
i ⊗ϕx

i and Kz
N =

∑∞
i=1 λ

z
iϕ

z
i ⊗

ϕz
i construct via tensorization the Mercer decomposition of Kprior

N as

Kprior
N (·, ·) =

∞∑
i=1

λiϕi(·)⊗ ϕi(·)

where λi is the i-th element of the sequence {λxkλzl }∞k,l=1 sorted in descending order

and ϕi(·) = ϕx
k(·)⊗ϕz

l (·) is the tensor product of the eigenfunctions corresponding

to the eigenvalues λxk and λzl . Each ϕi(·) is therefore a function from R2 to R. There

are no affine constraints. To minimize the objective function

L(γ) = log |Cγ|+ tr(SC+) + r
[− log |γ|+ tr(Λ+γ)

]
Cγ =

nexp∑
i,j=1

γijΨi ⊗Ψ∗
i Ψi ∈ Rn, (Ψi)k = ϕi(sk)

with nexp = 20,Λ ∈ Rnexp ⊗ Rnexp , λij = δijλ and S the empirical covariance

matrix, execute the iterative scheme proposed for unconstrained kernel inference.
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This means, repeat

γk+1 =
1

1 + r

[
2rγ + Sψ − rγΛ+γ

]
until convergence, where the nexp × nexp symmetric matrix Sψ is defined as Sψ =
(Ψ)+S(Ψ∗)+. The result is a symmetric positive semidefinite matrix γ such that

KN(·, ·) =
∑nexp

i,j=1 γijϕi(·) ⊗ ϕj(·) is a reasonable kernel given the observations.

Using the classical Kriging formulas, interpolation can then be performed, yielding

the results plotted in figure 4.18. The figure suggests that, compared to other ap-

proaches, interpolation with covariance functions determined by kernel inference

potentially frees the user from the negative impact that misspecified covariance

models can have on the estimation performance. This is especially the case when

correlation data is reliable and has been gathered densely; then the advantage of ad-

ditional flexibility of a non-parametric model outweigh the disadvantage of worse

regularity properties.

Figure 4.18: The interpolations performed with kernels extracted from the data plotted in the previous figure. The first column

shows the ground truth, two different realizations and an empirical covariance matrix. The three columns right of that show

the guesses of the ground truth based on the measurements marked with the red squares. Estimation was performed using

the kernel from kernel inference (2nd column), a squared exponential kernel close to the true underlying kernel (3rd column)

and an exponential kernel (4th column) that one may actually count as a gross misspecification. Notice that the KI-kernel is

nonstationary and exhibits a truthful representation of the variation structure even though the prior was the poorly performing

covariance function in the fourth column.
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Chapter 5
Applications to terrestrial radar interferometry

In this last chapter, the concepts introduced in chapters 2 to 4 — Hilbert spaces of

functions, probability distributions on them, and their choice — will be employed in

the context of radar interferometry. In order to do this, it is necessary to review the

basic principles of terrestrial radar interferometry (TRI) first and explain the rela-

tionship between objects surveyed, data produced, and the role of the transmission

medium. It will not take long to identify the atmosphere as one of the main contrib-

utors to the artifacts contaminating TRI-data whereupon we focus on extracting the

deformations from the noisy data in an RKHS framework. The way the data is nor-

mally represented as a complex number encoding phase and amplitude leads us to

consider complex covariance matrices whose interpretation is followed by practical

strategies for estimating them in the framework of kernel inference. The standard

approaches for solving TRI signal separation tasks turn out to be special cases of

RKHS-based processing and we provide the appropriate Hilbert space embeddings

that establish this link.

5.1 Basics of terrestrial radar interferometry

Terrestrial radar interferometry (TRI) is a relatively young technology devoted

to employing electromagnetic waves to derive coarse digital elevation models

or highly precise deformation estimates for surveying or monitoring purposes.

TRI as a remote sensing technology also used by geodesists has been applied

successfully in practice to derive safety-relevant deformation estimates for land-

slides, glaciers, volcanoes, and man-made infrastructure among other objects

[194, 166, 201, 167, 47]; more comprehensive overviews can be found in [35] and

[143]. However, the technology is still only partially understood from a scientific

standpoint as testified by still ongoing discussions as to what is actually measured

and how the data are to be interpreted exactly. Instruments have been designed,

developed, completed and made available to the market before the real-world im-

plications of their wave-theoretical underpinnings had fully been worked out.
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This precludes a completely satisfactory and closed treatment of TRI from a math-

ematical perspective, and topics like scattering theory and phasor arithmetics will

only be touched upon briefly herein. Instead, a rough survey of principles and

instruments will be provided and serves as an intuitive guide to the functional re-

lations between surveyed objects and data. We will allow ourselves to be guided

by empiricism and use mathematically sound reasoning based on formulae only in

a supporting role. In the same spirit, the standard processing chain producing un-

wrapped interferograms from SLCs will be presented; uses and motivations behind

the products generated in this way are emphasized. A detailed look at some appli-

cations will reveal current limitations that are inherent to the technology and can

only be approached via more sophisticated data analysis.

5.1.1 Survey of principles and instruments

TRI is as an active remote sensing technology that uses radar waves to derive deformations by
evaluating changes of the backscattering behavior of natural surfaces. Even though the phys-
ical and electrotechnical realization of the instrument and explanations of its characteristics
rely on quantum mechanical arguments, simply relating changes of a surface’s mean-distance
(to the instrument) to differences in measured phase and focusing almost exclusively on these
works well enough as a mental model and first order approximation to reality.

Spatial resolution in range direction is generated via frequency modulation whereas the way
in which the resolution in angular (cross-range) direction is formed depends on the type of
system used. One mainly differentiates between systems with real or synthetic aperture and it
makes sense to treat these separately. The geometric configuration inherent to the measure-
ment process has immediate consequences in terms of certain effects on the distribution of
noise, radar shadows, and classes of movements that are indistinguishable from the perspec-
tive of TRI.

Before any interferometric post processing happens, a terrestrial radar interfer-

ometer provides amplitudes A and phase values ϕ for a discrete set of positions

(xkl, ykl), (k, l) ∈ Zm×Zn corresponding to real-world surface patches. These sets

of values (Akl, ϕkl), Akl ≥ 0, ϕkl ∈ [−π, π], are typically stored in complex form

as a matrix z ∈ Cm ⊗ Cn representing the totality of waves scattered back by sur-

faces associated to the positions {(xkl, ykl)}(k,l)∈Zm×Zn ⊂ R2. More on the exact

interpretation of these complex values can be found in the subsequent subsection

and the general scheme is illustrated in figure 5.1.

The matrix z is also called a Single-Look Complex image, or SLC for short.

Whereas the phases {ϕkl}(m,n)
(k,l)=(1,1) are basically realizations of spatial uniform

noise on the interval [−π, π] [91, p. 89] they should stay constant in time in ab-

sence of any changes of instrument conditions, propagation medium or backscatter-

ing surfaces. Conversely for different times t1 and t2, non-zero phase differences

Δϕkl = ϕt2
kl − ϕt1

kl correspond to changes in topography or atmosphere and often

have a strongly autocorrelated and highly intricate structure that reflects underlying

meteorological phenomena or deformation processes; see figure 5.2 for interfero-

grams featuring both. Note that it is common to use the word ’phase’ also for the

phase difference Δϕ of the interferogram. This introduces a slight ambiguity and

terminological overlap as the same nomenclature is used for the phase of an SLC.
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Figure 5.1: The top panel illustrates the measurement process schematically. Waves are emitted, scattered back by terrain

and objects and then received by the radar. Due to occlusion, certain regions should theoretically have a backscattering

intensity of 0, however, noise, small scale scatterers and meteorological effects preclude this. Different systems patch these

one-dimensional slices together differently. The result is nonetheless always a set of two two-dimensional images in polar

coordinates that detail amplitude and phase values (bottom panels). If, as will be the case in later practical applications, an

instrument with a real aperture is used, then each line of constant polar angle in the resultant images is associated to the signal

backscattered by a one-dimensional section of the topography. In this way, the measurement situation depicted in the top

panel may lead to the single lines marked in the bottom two panels, see comments in the text.

However, since the original phases ϕ of the SLCs are rarely the subject of discus-

sion directly, the potential for confusion is limited. The same holds for the symbol

’ϕ’ which may either denote a phase or a phase difference depending on context.

Of the four quantities Akl, ϕkl, xkl, ykl provided by a TRI measurement, the way

the positions as given by tuples (xkl, ykl) are formed is indicative of the type of in-

strument used. All of them employ either frequency modulated continuous waves or

stepped frequency continuous waves to derive distances d between instrument and

backscattering surface by comparing the difference in phases of transmitted and re-

ceived signals. These differences are time-dependent and by analyzing the mixture

of transmitted and received signals one finds the formula

d =
c

2

fbeat
μ

(5.1)
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Figure 5.2: The phases of two subsequent interferograms formed by differencing three SLCs that were acquired two minutes

apart. In these interferograms, one part of the phase is dynamic and changes even in the course of two minutes time difference

and the other one is more slowly varying. The data are taken from the dataset described in subsection 5.2.2.

where c is the speed of light, μ the rate of change in frequency, fbeat the time

derivative of the mixtures phase and d is the distance to be inferred. More details

can be found for example in [189], [109, p. 14], and [111, pp. 90-92] . In this way, a

one-dimensional slice of distance measurements is generated from the superposition

of received signals by low-pass filtering their mixtures with the transmitted signal

and performing Fourier analysis to decompose them into elementary waves with

different frequencies (distances) and complex coefficients (amplitudes and phases).

This however is not yet sufficient to derive a spatial distribution of amplitudes and

phases, which is why additional measurements have to be made to guarantee suffi-

cient cross-range resolution. One may distinguish between radars with real aperture

(RAR), which are limited in terms of cross-range resolution by the antenna’s gain

pattern and radars with synthetic aperture (SAR). For the latter ones, the width at

half maximum is typically not a limiting factor as they acquire the set of range-

profiles necessary for generating a spatial distribution of amplitudes and phases not

via reorientation of their antenna but via movement of the whole instrument. Both

types of radars are in practical operation. A brief sketch of the TRI instruments

available on the market follows. Although care was taken to compile all informa-

tion found on that topic in scientific papers, no guarantee can be given as towards

the list’s completeness. Where detailed information regarding an instrument’s spec-

ifications is otherwise unavailable from scientific sources, webpresences of manu-

facturing companies are referenced.

At the time of writing there exist at least six commercially available systems for

measuring medium- to large-scale surface deformations with TRI [143]. Three

types of essentially different working principles may be distinguished. Four sys-

tems that have reached technological and commercial maturity rely on the SAR
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principle and use a multitude of acquisitions from slightly different perspectives to

synthesize a nontrivial cross-range resolution purely computationally. To this end,

the TRIs ’FastGBSAR’ of Metasensing BV, ’IBIS-FM’ manufactured by IDS, and

’LiSALab’ by Ellegi S.r.l. translate their antennas along a rail of approximately 2 m

length whereas ’IBIS-ArcSAR’ by IDS employs a circular motion. The instruments

going by the name of ’GPRI’ and ’SSR-XT’ produced by Gamma Remote Sensing

AG and GroundProbe ltd. respectively are real aperture radars. All systems apart

from SSR-XT and LiSALab operate in a frequency spectrum ranging from 17.1 to

17.3 GHz.

FastGBSAR: With acquisition times of less than 5
seconds per image, this currently fastest commercially

available system is part of the products offered by the

Dutch company Metasensing BV [167]. It is operable

in two different modes (either as SAR or RAR) which,

according to the manufacturer, enables its usage for the

purposes of both structural health monitoring as well

as for risk assessment of geotechnical constructions and

widespread geological phenomena. The instrument has

to be fixed on a tripod for RAR-usage. This mode of

Figure 5.3: The FastGBSAR

system (Image: [167]).

operation allows measurement of approximately 4000 range profiles per second and

enables the analysis of vibrations and rapid movements of structures or industrial

objects requiring supervision.

IBIS-FM: This system by the Italian company IDS is

widely used in the mining industry. With an acquisition

time of approximately 3 minutes, it is still suitable

for continuous monitoring [102]. It has already been

used for risk assessment in different scenarios related

to geohazards; usage for structural health monitoring

is possible as well in a slightly modified version that

goes by the name of IBIS-FS. The mode of operation

is analogous to that of FastGBSAR but offers only a

temporal resolution of 200 Hz in RAR mode [103].

Figure 5.4: The IBIS-FL sys-

tem (Image: IDS).

LiSALab: This instrument by company Ellegi S.r.l is based on research done in

cooperation with the Institute for the Protection and Security of the Citizen which

is a Joint Research Center of the European Commission. It is very similar to the

other two ground-based SAR systems mentioned previously but differs slightly with

regard to the frequency spectrum, that for LiSALab spans the interval from 17.0
to 17.2 GHz [187, 47, 193]. Neither the homepage nor the papers available to

the author mention any possibility of operating it in a stationary mode enabling

temporally highly frequent measurements.

The three instruments mentioned above are able to operate within ranges of up to

4 km. The precision of deformations derived from SAR measurements is approx-

imately 0.1 mm under laboratory conditions whereas the operation in RAR-mode
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leads to results an order of magnitude better. For SAR measurements, the instru-

ments are typically installed at a fixed location that stays constant for the measure-

ment campaign’s duration. This ’zero baseline condition’ guarantees negligibility

of topography-induced phases and allows for easy extraction of deformations from

the measurements but prevents the derivation of a DEM. The condition can be bro-

ken on purpose. Resolutions for all three systems are 0.75 m in range direction and

4.4 m
km
∗ distance to radar in cross-range direction. The range resolution is a con-

sequence of operating the radar with a bandwidth of 200 MHz. Nontrivial angular

resolution results from processing data gathered by an antenna moved either along

a line or any other well known trajectory.

IBIS-ArcSAR: As explained in [110], spatial distributions of amplitudes and

phases are extractable from measurements made by an omnidirectional antenna that

rotates along a circular trajectory. Prototypes of an instrument of this type featuring

continuous wave stepped frequency transmitters and a step motor driving a robotic

arm have been developed by IDS and did lead to the commercially available IBIS-

ArcSAR system, whose specifications are documented in [101]. The instrument

performs similar to the IBIS-FM in practical applications w.r.t. resolution and ac-

curacy but, as [155] records, the antenna’s more complex motion pattern induces

an elevation-dependent error term that results in a non-negligible defocusing not

encountered in the rail-based systems.

GPRI: The Gamma Portable Radar Interferometer

(GPRI) is a terrestrial radar interferometer with real aper-

ture [191]. It can be deployed for deformation measure-

ments as well as temporally dense monitoring of profiles

and the generation of DEMs. For completion of the latter

task, a nonzero baseline is required. For the GPRI this

baseline is implemented in form of two separate receiver

antennas mounted on a rotating tower that is fixed atop

a tripod. The emitted radiation is concentrated in a cer-

tain direction orthogonal to the main axis of the antennas,

which is why the instrument tower holding transmission

and receiver antennas needs to be set into rotary motion

to acquire an SLC. The acquisition time for one complete

180 degree acquisition is 30 seconds for instruments of

the second generation.

Figure 5.5: The GPRI system

(Image: AP Swiss).

SSR: Manufactured by the Australian company Groundprobe and designed specif-

ically for slope stability assessment, this system features a parabolic antenna that

is rotatable horizontally and vertically. Its pencil beam is moved over the slope to

sample it at regular intervals. With measured amplitude and phase as well as the

time of flight and given the angles, a digital elevation model can be reconstructed

from which regions of particular interest to the risk assessment might be extracted

and automatically monitored [88]. The sampling method is in itself similar to the

one used by laserscanners and especially in comparison to competing systems can

be interpreted as less areal and more pointwise.
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One advantage of the RAR approach over the SAR-systems is the suppression of

effects induced by moving machinery necessary for day-to-day mining business.

Due to the radar wave not being sharply focused in SAR, strongly reflective material

can have an influence even on neighboring resolution cells [91, p.42] and these so-

called sidelobes can lead to false alarms.

5.1.2 Typical processing chain

The minimum requirement for assessing surface deformations are unwrapped interferograms.
These are available only after a sequence of post-processing steps that takes as input an or-
dered set of SLCs and converts them to interferograms via multilooking and complex con-
jugation. A global optimization routine then searches for that spatial distribution of phase
differences which is simultaneously well explainable by the observed interferogram and has a
low amount of large phase gradients between neighboring pixels [72]. Several algorithms ex-
ist, some of them easily interpretable in an RKHS framework and therefore especially suitable
as a basis for explanations. Other interferometric byproducts exist that are not of immedi-
ate relevance in the above pipeline but provide either helpful estimations of a measurement’s
reliability or further insight into an observed phenomenon’s dynamics. The information com-
piled in this section is well known generally but its presentation is scattered in the literature
due to textbooks focusing mostly on spaceborne SAR. Nonetheless, almost everything apart
from a few computational details may be found for example in [91]. 1

SLCs and MLIs: Averaging the raw data to improve the signal-to-noise ratio (SNR)

leads to SLCs. In each pixel of an SLC z, phases and amplitudes are encoded in the

form of a complex number

zkl = a+ ib = |zkl|eiϕkl .

where k and l are indices quantifying row and column. Calculating the absolute

value of zkl via |zkl| = ‖zkl‖C =
√〈zkl, zkl〉C =

√
z∗klzkl and its angle ϕkl as

ϕkl = atan (Im(zkl)/Re(zkl)) from the representation of zkl in the complex plane

amounts to extracting amplitude and phase, see figure 5.6. This is more than just a

computational sleight of hand; the algebra of complex numbers mimics the behav-

ior of the real backscattering process in some important aspects [91, p. 89]. The

result of adding two complex numbers in neighboring pixels corresponds to that

complex number, one would have recovered as a result of measuring jointly the

surface patches associated to those two pixels. In this sense, addition of complex

numbers imitates constructive and destructive interference of backscattered waves;

the same cannot be said for example about the alternative candidate procedure of

simply adding amplitudes and phases.

This relation can be used to form Multi-Look Images (MLI) which exhibit worse

geometric resolution but a superior signal-to-noise ratio. To generate an MLI zM ∈

1Parts of the material in this subsection are translated excerpts from an unpublished report on results

of a measurement campaign that was carried out on initiative of the Swiss office for the environ-

ment. The report was compiled together with professor Martin Funk, ETHZ. The excerpts presented

here were written by the author of this monograph.
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Figure 5.6: The amplitudes and phases are encoded in SLCs as the absolute values and angles of complex numbers. The axis

of SLCs correspond to range and cross-range and are indicative of a polar geometry that first has to be transformed into the

Cartesian plane or onto a DEM.

Cmnew ⊗ Cnnew , one effectively applies a boxcar filter to an SLC z resulting in

(zM)kl =
nr−1∑
o=0

nc−1∑
p=0

z(k−1)nr+o+1,(l−1)nc+p+1 (5.2)

for individual entries in the MLI matrix zM . Here nr and nc are the desired num-

bers of looks in range and cross-range direction and problems pertaining to out-

of-bounds indices arising at the border of the SLC are obviously solvable by some

convention or demanding mnewnr ≤ m,nnewnc ≤ n. For computational reasons

one may reformulate equation 5.2 to make use of linear operators to derive the

equivalent equation 5.3 posed in terms of matrix multiplications,

zM =Mz =M1 ⊗M2z =M1zM
∗
2 (5.3)

M1, the mnew index matrix for range summation

M2, the nnew index matrix for cross-range summation,

where, as before, the asterisk denotes forming adjoints. (M1)kl is 1 iff l ∈ [(k −
1)nr + 1, knr] and (M2)kl is 1 iff l ∈ [(k − 1)nc + 1, knc]. They are 0 otherwise.

This is easily implementable and computationally efficient if Multi-looking is to be

performed on a batch of SLCs as the matrices M1,M2 have to be formed only once

upon which they are readily available for the subsequent matrix multiplications.

Interferograms: The interferometric phase ϕ, given here the symbol ϕInt for clar-

ity, is the temporal difference between two spatially corresponding pixels in two

different SLCs z1 and z2. It can be calculated via pointwise multiplication of the

SLC z1 with the elementwise complex conjugated z2 of z2. The choice of order is

inessential as it changes only the phase’s sign and and leaves all other characteris-

tics of the complex number untouched although the one presented here seems to be

the most widespread. The individual entries of the complex interferogram zInt are

(zInt)kl = (AInt)kle
i(ϕInt)
kl = (A1)kl(A2)kle

i[(ϕ1)kl−(ϕ2)kl]

= (z1)kl(z2)
∗
kl =(z1 ◦ z2)kl.
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Calculating z1 ◦ z2 = zInt ∈ Cm ⊗ Cn (◦ is the pointwise Hadamard product,

not matrix multiplication) has the advantage that it produces complex numbers that

can be coherently added in a second step. As alluded to during the explanation

of MLIs, this improves the interferometric phase’s signal-to-noise-ratio. Choosing

natural numbers nr and nc determining the number of looks in range and cross-

range direction, one arrives at a formula almost entirely analogous to the one for

MLIs. For the interferogram zMInt ∈ Cmnew ⊗ Cnnew generated via simultaneous

multilooking one finds the components and the whole matrix to have the form

(zMInt)kl =
nr−1∑
o=0

nc−1∑
p=0

(z1 ◦ z2)(k−1)nr+1+o,(l−1)nc+1+p

zMInt =M1(z1 ◦ z2)M∗
2

where M1 and M2 are index matrices as defined before. More information can be

found in [91, p. 93].

There are still two problems. First, there may be regions in which the interfero-

metric phase seems to be almost completely randomly distributed; those regions

are said to exhibit low coherence. The other problem is that the values extractable

for ϕInt are bound to lie in [−π, π] even though the true phase change that occured

between the acquisition times is ϕInt + k2π for some k ∈ Z. As even in the absence

of noise one would be able to reconstruct the true interferometric phase only up to

a multiple of 2π due to ϕInt = mod(ϕtrue
Int , 2π), it is necessary to employ additional

information to resolve this ambiguity; a task that is known as unwrapping. Both

problems are illustrated in figure 5.7.

Figure 5.7: The amplitudes and phases of an interferogram. The two panels on the right side are magnifications of the areas

outlined in the phase image. They show clear phase jumps (A) of 2π that do not reflect the true underlying phase and are due

to the ambiguities in the measurement process. In areas of especially low backscattered intensity, the measured phase can be

pure noise (B). Note that the interferometric phase is almost nowhere zero even though the covered scene is composed mostly

of stable areas; this is due to the influence of atmospheric effects.

Unwrapped interferograms: It is often possible to resolve the phase ambiguities

and the corresponding uncertainties regarding the sign of a pixels motion. This can

be seen in figure 5.8 on the right hand side, which exhibits an unwrapped version of

the interferogram previously shown in figure 5.7; note the different colorscale.
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Most of the errors in sign and discontinuities are gone

in the regions exhibiting good SNR and a spatially

coherent interferometric phase. The most common

methods for unwrapping search paths between re-

gions separated by phase discontinuities along which

the phase gradients vary smoothly. Along those

paths, the phase gradient can be integrated consis-

tently meaning that the result of the integration is in-

dependent of the specific path taken. An example of

this type of method is the branch-cut algorithm first

proposed by Goldstein et al. [77]. It is also often

coupled with a denoising step that smoothes out the

spatial Fourier spectrum [76] and a phase gradient es-

timation based on a minimum cost flow problem that

Figure 5.8: The range of the phase

value after unwrapping spans mul-

tiple ranges of 2π.

minimizes a global measure of error based on network programming [41]. The lat-

ter method was employed to generate figure 5.8. Even though approaches based on

local integration of phase gradients are fast, the choice of integration path is a con-

sistent source of uncertainty and global methods based on the �p norm minimization

ϕ̂Unw = argmin
ϕUnw∈Rm×n

‖W∇ϕInt −∇ϕUnw‖p (5.4)

have been designed to sidestep these problems [72]. Here ∇ denotes the discrete

gradient, ϕInt the wrapped phase, ϕ̂Unw the best guess for the unwrapped phase and

W is the wrapping operator Wϕ = mod(ϕ, 2π). The p-norm ‖ · ‖p is understood

to act on tuples of functions as ‖(f, g)‖pp = ‖f‖pp + ‖g‖pp. For p = 2, essentially

a least squares estimator results, that is both fast and global but suffers from over-

smoothing and spreads residual errors over the whole interferogram instead of con-

centrating them in isolated spots as should be clear from the discussion surrounding

subsection 4.4.1. One may as well formulate the problem of phase unwrapping as

an inference problem in a reproducing kernel Hilbert space by posing the following

problem.

ϕ̂Unw = argmin
ϕUnw∈Hϕ

‖∇̂ϕInt −∇ϕUnw‖2HN
+ ‖ϕUnw‖2Hϕ

(5.5)

Here ∇̂ϕInt is a guess for the phase gradient,HN the noise RKHS with inner product

〈f, g〉HN
=

mn∑
j=1

fjgj
σ2
j

and σ2
j the noise variance as derivable for example from coherence maps. Hϕ is the

Sobolev-type RKHS with inner product

〈f, g〉Hϕ = 〈∇f,∇g〉HK

for some appropriately smooth kernel K. As usual, the first term enforces fidelity



5.1. BASICS OF TERRESTRIAL RADAR INTERFEROMETRY 219

to the data whereas the second one regularizes the solution to have apriori likely

properties amounting to simultaneous smoothing and denoising during unwrapping.

Interferograms after atmospheric corrections: Even after unwrapping and poten-

tially denoising, the interferogram retains artifacts that do not relate to real deforma-

tion and are instead stemming from short- and long-term meteorological changes.

Separating the so called atmospheric phase screen (APS) from deformation is still

an open research question and the whole of section 5.2 is dedicated to its solution.

As this is an ill-posed problem without exact solution and nontrivial ground truth

is usually unavailable outside of image regions known to be stable, a multitude of

approaches has been developed to deal with this problem.

The APS is temporally and spatially highly variable; timewise it consists of a tur-

bulent part that changes within minutes and a long term periodic trend that operates

in the frequency region of 1/day. The most basic correction methods consist of

simply averaging the interferometric phase in time to low-pass filter out the highly

frequent part of the APS. This approach is termed stacking and the results can be

seen in figure 5.9. Other approaches focus entirely on the spatial aspects and try to

fit parametric or nonparametric models to predict and subtract the APS. Physically

motivated simulations have been successfully tested for spaceborne SAR [79] but

seem to be infeasible for TRI due to the small-scale nature of the local meteoro-

logical fluctuations. All these methods have a probabilistic interpretation that will

be made explicit when a RKHS-based framework is introduced to solve the spa-

tiotemporal signal-splitting problem in a stochastically rigorous setting in section

5.2

Figure 5.9: The longer one averages in time, the less prominent atmospheric effects induced by turbulent meteorological

changes become. However, it is typically not possible to reduce them to zero and long term changes in temperature and

humidity prevent convergence of the sequence of averages to the true underlying deformations.

Coherence images: Two SLCs describing the same real-world surface patch at

different times are not necessarily sensibly comparable. Specifically this is the case

when the surface under consideration has undergone significant transformations that

have altered its reflective properties drastically. Changes in humidity and water

content or the random movements of vegetation due to wind can therefore already
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deteriorate the comparability of two image regions [91, p. 98],[15]. The coherence

γ, |γ| ∈ [0, 1] is a measure for the systematicity of joint phase variations in two

image regions and is used to exclude unsuitably incoherent and noise-dominated

areas from further processing. It is a function of the expected value E[·] of the

interferometric phase ϕInt which is estimated by considering all values in a moving

window. If z1 and z2 denote two complex-valued random variables, whose phase

difference forms the interferometric phase to be evaluated w.r.t. its coherence γ,

then

γ =
E[z1z

∗
2 ]√

E[|z1|2]E[|z2|2]
γ ∈ C. (5.6)

Several convenient properties carry over from the calculation of the real corre-

lation coefficient to the complex coherence unperturbedly. Note for example,

that for two complex random variables z1 and z2, if z2 = cz1, then E[|z2|2] =
|c|2E[|z1|2], E[z1z∗2 ] = c∗E[|z1|2] and consequently

γ =
E[z1z

∗
2 ]√

E[|z1|2]E[|z2|2]
=
c∗E[|z1|2]
cE[|z1|2] = c∗c−1 (5.7)

has modulus |c∗c−1| = |ae−iϕ[aeiϕ]−1| = |e−2iϕ| = 1 just as in the purely real

case. Therefore a coherence with absolute value close to 1 indicates linear relation-

ships between the random variables, although the coefficient relating both may be

complex and encode not only scaling but phase shifts as well.

Coherence is high, if neighboring pixels behave simi-

larly. This is typically indicative of the existence of

reliable backscatterers. Often one does not distin-

guish between the complex coherence γ and its mod-

ulus |γ|. Usually no confusion arises between the two

and we will follow this convention; to avoid ambigu-

ities we will explicitly mention the coherence being

complex when necessary. In figure 5.10 a coherence

estimate |γ̂| on the basis of a two minute interfero-

gram can be seen. Regions lying in the radar shadow

are dominated by noise and therefore black, regions

featuring vegetation are still relatively noisy and are

assigned a grayish color (bottom parts). Areas con-

taining objects that scatter incoming waves in a con-

sistent manner are brightly colored and indicate high

quality of the interferometric phase.

Figure 5.10: The coherence image

provides information about phase

quality.

Under certain simplifying assumptions, the coherence is the only quantity necessary

to compute the variance of the interferometric phase and closed form expressions

exist for σ2
ϕInt

(γ) [14]. Even more, it is shown in [15] that under the assumption of

finite and identical signal-to-noise ratios SNR in the two SLCs forming an interfer-
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ogram and supposing an absence of changes of the imaging process itself,

|γ| = SNR

SNR + 1
or equivalently SNR =

|γ|
1− |γ| .

This shows that the coherence is useful to examine the interferometric phase’s relia-

bility and by providing covariance matrices helps to define inner products in RKHS

for which norm ‖ · ‖HN
and likelihood of phase-noise are in one-to-one correspon-

dence. Coherence is estimated via a moving window approach and an efficient

implementation based on matrix multiplication is possible similarly to what was

presented in the previous explanations, see page 256 for more details. Points ex-

hibiting especially reliable 2 phase information are often called persistent scatterers

(PS); see page 264 for more detailed procedures on how to determine them.

Derived products: The unwrapped and corrected interferograms featuring primar-

ily deformation rates need to be interpreted in the light of the initial monitoring task.

Aggregating information to aid decisions is not part of the generic radar interfero-

metric set of methods and needs to be done in a way tailored to the specific task at

hand. TRI data are particularly suitable for a subsequent time series analysis of in-

dividual pixels or whole regions. Due to the data being in the form of a sequence of

matrices, tools from computer vision like optical flow or segmentation are as easily

applied as extraction of statistical moments or special features like the coherence

that are indicative of the surveyed surface’s state.

5.1.3 Practical applications and limitations

Its ability to autonomously measure deformations over wide areas and with high temporal
repeatability has lead to TRI being deployed primarily for purposes of monitoring medium- to
large-scale natural phenomena like landslides, potential icefalls and volcanic activity as well
as structural health of geotechnical constructions in the mining industry. Typically, the results
of TRI measurements are then temporally dense, two-dimensional spatial maps quantifying
deformation velocities and time series derived from these maps. Most instruments listed in
subsection 5.1.1 can also be operated in a way that suppresses the formation of any angular
resolution enabling them to perform measurements of a one-dimensional slice of a structure
of interest directly in their field of view with very high frequency. Even though the practical
performance of TRI is often satisfactory, certain theoretical problems recurrently appear
in almost all applications. Most prominently, these are the effects induced by atmospheric
changes between two acquisitions, unknown stochastic properties of the data, and a lack of
interpretability stemming from an unclear relationship between measured changes in phase
and underlying changes of the topography.

Since terrestrial radar interferometers are suitable for surveying and monitoring of

various objects with differing characteristics and behavior, also the mathematical

models representing those objects are different. It is common to perform comple-

mentary measurements with instruments other than TRI to derive the parametersets

necessary to harmonize observations and models of either objects or measurement

processes. We will call such a problem-specific strategy determining the mode of

2Reliability here is not meant in the classical engineering geodetic sense of Baarda [12] but in the

more colloquial one implying high quality and low proportions of noise
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gathering information a monitoring concept and explain its components for a few

selected representative examples encountered in the current literature.

For one, there are validation measurements to verify the correctness of data pro-

vided by TRI. Apart from their use for detecting errors — particularly important in

the early stages of instruments as young as TRIs — they provide additional value in

the sense that the coordinates they deliver can serve as reference points for phase un-

wrapping. The latter is a problem of integrability and as such depends on the differ-

entiability of the interferometric phase, which is why local decorrelations can neg-

atively impact the success probability of extracting from the interferometric phase

an absolute phase difference that is independent of the path of integration. Pixels

in the interferogram with unambiguously identifiable deformations are particularly

suitable reference points for unwrapping and as such can diminish the potential for

contradictions between several separately unwrapped image regions. The ground

truth derived in this way further helps to quantify deviations and artifacts encoun-

tered in TRI data and supports the development of stochastic models that enable

statistical inference and uncertainty quantification also for derived products like de-

formation rates and failure probabilities.

Instead of investing time and financial resources into gathering data that are com-

pletely redundant in the worst case, it often seems more desirable to conduct com-
plementary measurements to gather the information necessary to apply correc-

tions and uniquely determine model parameters. Compiling meteorological data

via thermometer, barometer and hygrometer to estimate and subsequently subtract

the atmospheric phase screen [165] falls into this category, as does the deployment

of ultrasound sensors and stream gauges for quantification of the phase induced by

melting snow and other meteorological phenomena unrelated to kinematic changes

of the ground [163]. Gathering physical and geometrical properties for a joint pro-

cessing with TRI data seems to be fairly widespread and is implemented in different

variants. In the framework of already existing projects, the following instruments

and surveying principles have been used in conjunction with TRI:

• Terrestrial laser scanners (TLS) to generate three-dimensional models of steep

surfaces with the intention of georeferencing the deformations extracted from

TRI data [194].

• Spaceborne SAR interferometry to offer a different, independent line of sight

and in combination with TRI-data the possibility to derive two dimensional

vectors to quantify ground motions.

• GNSS to monitor the movement of particularly important points in a geodetic

network that cannot reliably be surveyed by TRI.

• Geological field measurements, infrared tomography and thermochemical de-

vices to infer information about composition of and processes in geological

formations [134].

• Measurements of mechanical tension for structural health monitoring and in-

clinometers, hydraulic as well as borehole measurements and geoelectrics for
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geotechnical monitorings [29].

• Documentation of human construction together with measurements of pre-

cipitation to find a causal connection between particularly rapid deformations

and their triggers [29].

As far as possible and accessible, theoretical geotechnical models have increasingly

been tied into the monitoring concepts; see for example [194]. In that source, a

finite difference model has been designed to model the dynamics of a landslide that

occurred in the province of Belluno, Italy. It has been changed regularly based

on TRI data to minimize the contradictions between predicted and observed move-

ments. Simple prediction procedures based solely on deformation measurements

have thereby been replaced by a more algorithmic approach in which that physical

model is derived that is most accurately explaining the observations. It is then used

for further predictions. Apart from this inclusion of models, in practice one often

encounters activities of a supporting nature, e.g. the installation of corner reflectors

to increase partially the SNR in natural scenes that otherwise exhibit only a low

proportion of stable backscatterers [152].

The possibilities for application of and practical experiences with TRI are the sub-

ject of disproportionately many articles owing probably to TRI still being consid-

ered as a technique in the experimental stage. While deformation monitoring of

geometrical surface changes is still the primary area of application, the dependence

of the interferometric phase on material properties of the reflecting surfaces has re-

ceived attention sporadically as well and found its use in vegetation and land cover

estimation. Since there are by now several companies originating from academic

institutions dealing with monitoring of geohazards via TRI, it is to be expected that

TRI will be deployed for a wider spectrum of tasks going beyond what it was origi-

nally designed for. Eight representative applications are listed below including their

results and further references.

1. Landslides: Each of the systems previously presented is used for monitoring

potential landslide areas. While for the SSR, these are primarily the techni-

cally created slopes of open pit mines [137] and for FastGBSAR these are

dykes [167], GPRI, IBIS and LiSALab have been used for monitoring of a

diverse set of regions with varying characteristics, see e.g. [194], [34], [47].

Publications are focused particularly on comparisons between data gathered

with classical geodetic measurements and TRI.

2. Monitoring of dykes: Metasensings FastGBSAR was tested in August 2012

in an area specifically designed to simulate dyke failure and enable early

warning. The result of these measurements were a sequence of time series

that describe the kinematic progress of the artificially induced formation of

crevasses [167].
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3. Early warning against volcanic geohazards:
IBIS-L has been deployed within the frame of the

project ’Exupery’ under the auspices of the Ger-

man program ’Geotechnologien’ as part of a moni-

toring system to enable early warning and rapid re-

sponse to volcanic activity [166]. After creation of

an artificial spatial baseline, the ground based SAR

was able to generate a DEM and deliver a common

reference system allowing inclusion of other obser-

vations and the geometric components of the mon-

itoring scheme, that furthermore featured tempera-

ture measurements, seismic recordings and chem-

ical analysis of gaseous emissions. For further in-

formation on volcanic monitoring with TRI and

their integration with geomorphological surveys,

consult [105].

Figure 5.11: TRI was used

for deformation monitoring of

Stromboli. Image: [6]

4. Glacial monitoring: Several articles were published by or in cooperation

with expert staff from Swiss Gamma Remote Sensing AG on the topic of

glacial monitoring. These publications showcase functionality and practical

applicability of their in-house development ’GPRI’ in the context of real-

world measurement campaigns including outlet glaciers in Greenland [201]

as well as several ones in Switzerland. The results indicate fast decorrelations

induced by melting processes and atmospheric effects as the main hindrances

preventing reliable deformation data, see [163] and [191] .

5. Cliff stability monitoring: Martino and Mazzanti [134] used IBIS-L to sup-

plement TLS and infrared tomography thereby deriving statements about cliff

stabilities on Mount Pucci, Italy. The GBSAR extracted local motions and the

results were embedded into a framework that also employed geotechnical and

continuum mechanical calculations. The authors identify as problems of this

in principle successfully approach especially foreshortening effects and an

almost invariably insufficient set of possible instrument positions suitable for

cliff monitoring.

Figure 5.12: TLS and TRI can be combined to visualize three-dimensional deformations. The image is from [134].
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6. Monitoring of snow depth: For the case of mainly dry snow, accumula-

tion of snow induces changes of a region’s topography that can be sensed

almost analogously to surface deformations. Early warning of persons and

localities potentially threatened by avalanches by means of TRI was tackled

in [130], however the measurements to gauge snow-depth changes via TRI

were delivering values that were at best moderately close to the ground truth

as influences of material properties — especially those of wet snow — on

penetration depth and phase retardation have not been fully understood yet.

7. Monitoring of infrastructure and historic building fabric: The leaflets of

Nhazca S.r.l. and Metasensing list several projects related to man-made struc-

tures. Among them are analysis of long- and short-term dynamics of railroad

bridges under different load configurations, of hydroelectric dams and of road

beds and road superstructures. School buildings, high-rise buildings, towers,

pillars, power plants, storage tanks and interim storages are mentioned as

well as examples of objects potentially suitable for monitoring with GBSAR,

especially in the RAR mode of operation. A specific application detailing

concept, execution and results of monitoring a bridge is described in [122].

8. Digital elevation models for visualization purposes: Gamma Remote

Sensing AG published a paper, in which the process of estimating a digital el-

evation model of a glacier from GPRI data was described in detail. In compar-

ison to the official swisstopo DHM25 model provided by national authorities

in 1992, height differences of approximately 40 m were recorded that may

be traced back to melting processes and glacial recession [191]. The stan-

dard deviation of the difference between interferometrically generated height

model and the one provided by governmental institutions was around 3.4 m

at stable locations unaffected by glacial phenomena.

There exists an extensive supply of commercial and openly accessible software for

processing and evaluation of data gathered via satellite radar interferometry. The

main providers of open source software and freeware in that area are either public

research institutions like ESA, NASA, and TU Delft or collaborations of motivated

individuals. As an example of software originating from the latter constellation,

one may notice RAT (RAdar Tools); developed under the supervision of and with

contributions from Andreas Reigber, who codeveloped the software and augmented

it with E-learning tutorials while working at DLR [115].

Commercial packages are offered by suppliers of programs for professional visu-

alization of geodata or industry-oriented companies that sell hardware and moni-

toring services. The collections of programs typically offer the full functionality

needed to process raw data all the way up to differential interferograms. Programs

that go beyond this and support the user by assisting with examination and inter-

pretation of the data seem to be implemented only seldomly. Another example is

GMTSAR, which offers access to a preprocessor for every type of satellite currently

in operation, an InSAR processor for coregistration, interferogram calculation and

derivation of the topographic phase. A postprocessor enables coherence estimation,
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complex filtering, the plotting of displacement maps, georeferencing, and provides

a set of scripts for two-pass interferometry and time series analysis [171].

For TRI, however, the author failed in identifying openly accessible software. This

may have at least two reasons.

1. The necessity for a concerted effort to construct and operate TRIs is signif-

icantly smaller than the one for successful completion of a satellite mission.

Consequently, in TRI there is no large publicly subsidized institution that

considers itself responsible for developing and sharing high-quality program

packages. Market shares are split between small private providers whose pri-

mary goal of generating revenue conflicts with making openly accessible the

software that is often sold in conjunction with their hardware.

2. Apart from conversion of data in proprietary and company specific formats to

SLCs and other accepted standard products, further processing can be done

analogously to the spaceborne case. In principle, it is therefore possible to

perform further processing steps with already existing software; the exactly

known spatial baseline and a lack of any topographic phase even imply a

significant simplification.

The analysis of TRI data has received a surprisingly small amount of attention up

until now and is done essentially by visual inspection. Even though TRI has the

potential to provide measurements with high spatial and temporal resolution and

thereby acquire a large set of mutually correlated time series, papers rarely deal

with TRI data from this perspective. In a 40 month long investigation of an area

subject to frequently occurring landslides, Mazzanti et al. were able to identify

typical patterns indicative of onsetting landslide activity. Exploiting this knowledge

allowed to diagnose creep movements of soil and connect the time immediately

preceding an event to a decrease in surface acceleration [29]. Presupposing a power

law for velocity and acceleration during slope motion, they were able to successfully

predict 8 out of 10 landslides with temporal deviations of less than 2 hours via

back-analysis. Manually tuning a finite-impulse-response filter further increased the

prediction accuracy. Failure cases dominated by strongly nonlinear creep processes

still evaded any kind of reliable prognosis.

A different group of researchers considers the sensitivity of the interferometric

phase to meteorological conditions as a disadvantage that might be mitigated by

applying methodology from computer vision to the intensity images. Crosetto et

al. utilize methods for sub-pixel exact image registration to examine the geomet-

ric content of a sequence of amplitude images. They claim that, unlike the normal

interferometric procedure, their approach is not adversely affected by aliasing, at-

mospheric influences and is not restricted to inferring motion only in line-of-sight

[44]. Obvious disadvantages are the need for corner reflectors in case of insufficient

amounts of natural backscatterers of high quality and a cross range sensitivity that

is linearly decreasing with distance.

The main obstruction to extracting true deformations from sequences of interfero-
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grams are the atmospheric effects that affect the interferometric phase ϕInt at every

pixel and form an APS overlaying all of the image [157]. If no corrections are ap-

plied to the original measurements, the results of data processing are systematically

wrong due to the effects of air pressure, air moisture and temperature [166]. Exten-

sive and spatially low-frequent atmospheric effects can entirely mask the deforma-

tions [152]. Up to first order, they are proportional to the lengths of the propagation

path and can lead to errors of magnitudes up to 1 mm/km if the partial pressure of

water vapor changes only slightly from 0 mbar to 0.2 mbar with temperature and

total pressure as in the definition of the standard atmosphere and remaining con-

stant. To the best of the author’s knowledge, estimation and subtraction of the APS

is the most serious non-profane limitation faced in practice and no reliable solution

accounting for the highly complicated spatiotemporal structure of the APS has been

proposed as of yet.

5.2 Mitigation of atmospheric effects

The preceding section concluded with the claim that atmospheric artifacts (in form

of the APS) are the main obstruction in TRI. A brief investigation into the reason

for their occurrence will reveal certain characteristics that imply the APS to be inac-

cessible to modelling via physical models. A closer examination of real-world data

will validate these suspicions and provides a first opportunity to design and test

stochastic models for the APS and noise components of interferograms. It is then

possible to develop different optimization problems in RKHS, whose solutions co-

incide with estimators for deformation, APS and noise respectively. As soon as this

is done, the machinery assembled in chapters 3 and 4 directly delivers efficient pro-

cedures to construct and evaluate these spatiotemporal splines. Due to the approach

being fairly abstract, an analysis of the estimator’s behavior in several special situ-

ations will aid the tangibility of its results; the section closes with a reinterpretation

of commonly used APS correction methods in the RKHS framework allowing the

derivation of the hidden stochastic assumptions underlying them.

5.2.1 The atmospheric phase screen

The theory of electromagnetic waves provides well-known formulas relating attenuation,
phase delay, and trajectories of propagating waves to material properties of the medium they
travel in. These physical models have been extensively studied for classical geodetic mea-
surements; they explicitly depend on temporally and spatially highly variable meteorological
quantities. This indicates that forward modelling of the APS based on an understanding of
atmospheric dynamics supplemented by measurements of meteorological parameters is un-
feasible and needs to be replaced by a data-driven approach. This conclusion is supported by
the theoretical considerations developed by researchers primarily involved with the mechan-
ics of turbulent fluids, who have proposed early on to employ statistical tools for handling
such ill-posed problems [142]. Nonetheless, the physical measurement process has certain
implications even for the statistical model that restricts the potential behavior and as such is
useful as prior knowledge.
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The propagation of radar waves is governed by Maxwell’s equations, which are a

set of four differential or integral equations linking the behavior of the electric field

E : R4 → R3 and the magnetic field B : R4 → R3. In differential form and in

absence of any matter or electric charges, they are [66, p. 3]

〈∇, E〉 = 0 ∇× E = −μ0∂tB (5.8)

〈∇, B〉 = 0 ∇× B = −ε0∂tE (5.9)

where μ0, ε0 are the permeability and permittivity of the vacuum. As is the usual

notational custom in physics, the del operator ∇ = [∂x, ∂y, ∂z]
T is treated as a nor-

mal vector subjectable to inner products 〈·, ·〉 : R3 × R3 → R and cross products

· × · : R3 × R3 → R3 and whose components interact with any function by form-

ing its derivative. Whereas the left hand side equations in 5.8 and 5.9 claim that

electric and magnetic fields are divergenceless, the right hand side equations imply

that a changing electric field induces a magnetic field with nontrivial curl and vice

versa. Once initiated, the resulting chain of interlocking electric and magnetic fields

propagates through the medium [175, p. 137]; this is then called an electromagnetic

wave. By the usual identities for curl and divergence [32, p. 161] one finds

∇×∇× E = −μ0∇× ∂tB = −μ0ε0∂
2
tE

∇×∇×B = ε0∇× ∂tE = −μ0ε0∂
2
tB.

Since∇×∇× g = ∇〈∇, g〉−Δg, it is clear from Maxwell’s equation that both E
and B satisfy the wave equation

∑3
k=1 ∂

2
xk
g − μ0ε0∂

2
t g = 0. The same equation is

rewritten slightly with the help of the negative semidefinite self-adjoint unbounded

operator Δ, the componentwise Laplace operator, as

∂2t g = c2Δg c = (μ0ε0)
−1/2 (5.10)

where c is the speed of light in vacuum [51, p. 250]. Intuitively the wave equa-

tion 5.10 can be solved via a modification of the functional calculus defined in

subsection 2.2.2 by constructing the positive semidefinite square root
√−Δ of the

negative Laplacian. For this, note that g(t, x) = exp
(
t i√

μ0ε0

√−Δ
)
g0 satisfies the

wave equation, and real valued solutions to the problem

∂2t g = Δg

g(0, x) = g0 ∂tg0 = g′0

can be found by taking the real part resulting in terms involving sines and cosines of

the operator
√−Δ. More information on the explicit construction of wave operators

and solutions to second order partial differential equations of hyperbolic type and

their dependence on the initial conditions can be found in [53, pp. 377-397] and

[99, pp. 267-272]. By renaming h = [g, ∂tg]
T , A = [0, I; Δ, 0], h0 = [g0, g

′
0]

T , the



5.2. MITIGATION OF ATMOSPHERIC EFFECTS 229

problem may also be written as the abstract Cauchy problem

∂th = Ah

h(0, x) = h0

and subsequently solved with the help of the one-parameter semigroup generated

by A leading to h = exp(tA)h0 [154, pp. 219-222]. The simplest solutions to the

scalar versions of the wave equation are plane waves which one may represent as

the real part of the complex exponential

g = a exp (i (〈k, x〉R3 − ωt+ ϕ0)) = z exp (i (〈k, x〉R3 − ωt)) (5.11)

for angular frequency ω = 2πf and some complex z ∈ C that encodes both the

phase shift ϕ0 and the amplitude a. The vector k ∈ R3 is called the wave vector and

determines the main direction of propagation; planes of constant phase are exactly

those orthogonal to k as for any x⊥ ∈ {k}⊥ one has 〈k, x+x⊥〉−ωt = 〈k, x〉−ωt.
If during the propagation of an electromagnetic wave the medium’s material prop-

erties change, then the wave’s frequency f = [2π]−1ω stays constant whereas the

wavelength λ changes in a way that guarantees that λf = v where v = (εμ)−1/2

is the propagation speed in a medium with permittivity ε and permeability μ [66,

p. 4]. The ratio n = c/v of speed of propagation in vacuum to speed of propagation

in the medium is called the index of refraction and for the wavelength the relation

in equation 5.12 holds.

λ =
v

f
=

1

f
√
με

=
c

nf
(5.12)

Basic wave dynamics are illustrated in figure 5.13. Furthermore, at the boundaries

(both fuzzy and hard) between regions of different indices of refraction, at least two

effects can occur.

1. Refraction: According to Fermat’s principle, light interpreted as a particle

takes those trajectories which lead to extrema in the optical path length loptic =∫ s1
s0
n(s)ds. Snell’s law follows and any change of refractive index implies the

the possibility of a small deflection of the propagation direction [51, p. 321].

2. Reflection: From Huygens principle one may derive the reflection coeffi-

cients describing the energy ratio R of incident and reflected light which is

R =

∣∣∣∣areflected

aincident

∣∣∣∣2 = ∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2
irrespective of polarization [66, pp. 43-45] for the case of a planar wave in-

teracting with a planar boundary whose normal is parallel to the wavevector.

At the interface, reflection occurs that is stronger if the gradient of n is big-

ger. The reflections can constructively interfere and form clear-air echos if

the reflective structures have dominant spatial frequencies of order λ/2 [54,



230 5.2.1 THE ATMOSPHERIC PHASE SCREEN

pp. 13-15].

Refraction changes the trajectory of the path taken by light and as such primarily

affects the phase via bending of the ray and slight differences in path length and

acquisition geometry. The influence is demonstrated to be negligible in [17]. Re-

flection leads to spurious signals especially in areas purportedly hidden in radar

shadow. It is responsible for deteriorating SNR in regions already exhibiting un-

favorable conditions. In what follows, we will largely ignore these two effects or

consider them as subsumed under the general random field model proposed later

on.

Figure 5.13: The top left panels show the evolution of a free 2D plane wave over time t. On the top right the influence of the

index of refraction n on the propagation of a light ray is highlighted in red. The curved trajectory is calculated by a differential

version of Snell’s theorem that at each timestep estimates the curvature of a single ray on the basis of the refraction occurring

at a plane oriented normal to the gradient of the continuous index of refraction. The lower two plots illustrate the wavelengths

dependence on n, which is plotted as a dashed line. Note that in these plots the gradients in n are unrealistically high to yield

deflections and phase delays visible to the naked eye.

Figure 5.13 indicates that a change in refractive properties of a medium induces a

change in phase between transmitted and received signal. If the angular frequency
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ω stays constant and the time of travel t increases as measured by the optical path

length soptic, one may write a time increment Δt as (Δt/Δs)Δs = (Δs/Δt)−1Δs
which in the limit becomes [v(s)]−1ds. Then

t =

∫ s1

s0

1

v(s)
ds =

1

c

∫ s1

s0

c

v(s)
ds =

1

c

∫ s1

s0

n(s)ds =
soptic

c
(5.13)

for s the spatial coordinate. Scaling up the path length locally by multiplying it with

n(s) is therefore equivalent to taking into consideration the reduced propagation

velocity v(s). A plane wave g with angular frequency ω, wave vector k, phase shift

ϕ0, and amplitude a starting at s0 is consequently found in state

g(s, t) = exp (iϕ(s, t)) = exp (i (〈soptic, k〉 − ωt+ ϕ0)) (5.14)

at position s and time t as implied by equation 5.11. Comparing the phase terms

ϕreceived and ϕtransmitted of a wave, reflected at geometrical distance s and measured

at the origin s0 = 0, at a certain instant of time t yields

φt = ϕreceived − ϕtransmitted = ϕ(t, 2s)− ϕ(t, 0) = 2ksoptic

This only holds, however, if the optical path length stays constant in time. In TRI

this is typically not the case and measurements taken at different times t1, t2 exhibit

different phase values φt1 , φt2 due to changes in optical wavelength induced by at-

mospheric dynamics. As the values φt1 and φt2 are recorded in the SLCs as phases,

the interferometric phase ϕInt depends on time via changes of refractive index even

in complete absence of any deformation according to

ϕInt = φt2 − φt1 = 2k [soptic(s, t2)− soptic(s, t1)]

= 2k

∫ s

s0

[n(s̃, t2)− n(s̃, t1)]

= 2k

∫ s

s0

Δn(s̃)ds̃ (5.15)

where Δn(s̃) is the difference of indices of refraction at position s̃ between times

t2 and t1. For general radio meteorological use covering a broad range of stan-

dard atmosphere conditions and radio frequencies of up to 30 GHz, Smith and

Weintraub [183] propose the two term equation 5.16 linking scaled up refractiv-

ity N = 106(n − 1), temperature T , partial pressure e of water vapor, and total

pressure p.

N =
77.6

T

(
p+ 4.81 ∗ 103 e

T

)
(5.16)

T : Absolute temperature in K

p : Total pressure pdry + e in mbar

e : Partial pressure of water vapor in mbar
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The refractivities N predicted with this model align closely with ones derived in

a later metastudy [169, eq 9] (< 0.15% deviation for T ∈ [250, 310] K, e ∈
[0, 100] mbar, predicted N ranging between 245 and 895) . Choosing T = 288 K,

p = 1013.25 mbar and e = 0mbar producesN ≈ 273 for the standard atmosphere.

A TRI measurement extending over a distance of s = 1 km through standard atmo-

sphere leads to a phase

φ = 2k

∫ 1 km

0 km

n(s̃)ds̃ =
4π

λ

(
1 + 273.0146 ∗ 10−6

) ∗ 1000, λ ≈ 17.6 mm

whose wrapped value mod (φ, 2π) ≈ 2.44 rad is associated to the corresponding

pixel in the SLC. Changing the temperature by 1 K or the partial pressure of water

vapor to 0.2 mbar along the whole propagation path already changes the observed

phase by 0.7 rad ∼= 1 mm. For the phases φt1 , φt2 at different times, it is possible to

rearrange equation 5.15 to

φt2 − φt1 = 2k

∫ s

s0

Δn(s̃)ds̃ = 2k|s− s0|
∫ s

s0

Δn(s̃)

|s− s0|ds̃

= 2k|s− s0|Δn

with Δn the mean value of difference in refractive indices along the LOS at both

epochs. Operating on the unwrapped interferometric phase ϕInt = φt2 − φt1 only

and ignoring the effects of the wrapping operator, variance propagation can be used

to derive a first approximation to interferometric phase variability dependent on

the variability of meteorological quantities. For the sake of argument, assume that

the temperature and water vapor are the same everywhere in space and just vary

temporally and that no variations occur in the total pressure. Presupposing standard

atmosphere during the first epoch and denoting by c1 and c2 the constants appearing

in equation 5.16, the relationship is

Δn = nstandard −
[
1 + 10−6 c1

T

(
p+ c2

e

T

)]
σΔn = 10−6

√(
∂

∂T
Δn

)2

σ2
T +

(
∂

∂e
Δn

)2

σ2
e |T,e=standard atmosphere

= 10−6

√[ c1
T 2

(
p+ 2c2

e

T

)]2
σ2
T +

[c1c2
T 2

]2
σ2
e |T,e=standard atmosphere

= 10−6
√
c̃1σ2

T + c̃2σ2
e

σϕInt
= 2k

‖s− s0‖
106

√
c̃1σ2

T + c̃2σ2
e (5.17)

where c̃1 = [c1T
−2(p + 2c2eT

−2)]2 ≈ 0.9 and c̃2 = [c1c2T
−2]2 ≈ 20.25. For

s0 = 1 km, σT = 1 K, σe = 0.1 mbar, λ = 17.6 mm, one derives an interfero-

metric phase variance of 4πλ−110−3
√
0.94 + 0.21 ≈ 0.76 rad. This translates to a

variance of estimated deformations of size 1.1 mm. It is quite clear that realistically
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the temperature and water vapor changes are not distributed homogeneously and

instead have to be treated as random fields implying Δn(·) to be a random field as

well. This is illustrated in figure 5.14 which also plots systematically the influence

of temperature and water vapor on the interferometric phase per 10 m.

Figure 5.14: The top panels show two-dimensional simulations of temperature and water vapor changes (both assumed to

be Gaussian random fields) and the changes they induce for the index of refraction. The resultant phase as calculated via

the line integration in equation 5.15 is plotted in the bottom left image. The instrument position is assumed to be at [0, 0]T .

Since the standard atmosphere only allows positive deviations of water vapor, phase delay is dominantly positive in that

case. To prevent the false impression of a nonnegative phase delay being the standard case, the middle panel shows what

happens when standard atmosphere is not assumed and deviations of water vapor are therefore allowed to be both positive and

negative. The bottom right image shows the unwrapped interferometric phase between a measurement of 10 m length under

standard atmosphere conditions and a measurement of the same length under the meteorological conditions indicated on the

axes. Due to linearity, these values may be scaled up by distance d and wrapped as W (dφ(T2, e2)) − W (dφ(T1, e1)) to

derive a guess for the interferometric phase between measurements taken during conditions (T2, e2) and (T1, e1).

The highly dynamical nature of meteorological phenomena and the complexity al-

ready exhibited by the simple simulations in figure 5.14 suggest that an approach

based on forward modelling of the atmospheric phase screen will fail. Neither

can one expect measurements of temperature and water vapor distributed densely

enough to form initial conditions that enable solving the associated differential

equations nor would there be any confidence in a solution derived in this way since

the Navier Stokes equations are known to be typically ill-posed with solutions ex-

hibiting sensitive dependence on the input data [46, 27].

This seems to be a problem that is encountered routinely when dealing with turbu-

lent media. To summarize Monin and Yagloms reasoning for tackling the problem

from a statistical perspective [142, pp. 1-30], the behavior of turbulent media is

so complicated and disorderly that the underlying velocity field is typically a non-

sparse superposition of infinitely many base-vector fields and no analytical closed-
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form expression may be derived. The latter would also not likely to be helpful due

to the sensitivity of the solutions to boundary conditions; instead the fields gener-

ated by virtually identical boundary conditions are best perceived as realizations of

a random field whose persistent statistical features are to be emphasized. Modern

day understanding of the ’problem of turbulence’ is that it is one of determining

a one-parameter family of probability distributions Pt(·) over the phase space of

solenoidal vector fields indexed by time t. In principle, a nonlinear solution oper-

ator Ut determining a one parameter semigroup may be found demonstrating Pt(·)
to be uniquely defined by P0(·) and the dynamics [142, p. 8].

Instead of calculating Pt(·) directly, Monin suggests an approach akin to the method

of moments [142, p. 8]. The PDE governing the system is used to derive evolution

equations for the statistical moments; they correspond uniquely to a probability

distribution. The advantage is that one may focus on first and second order statistical

moments and still arrive at telling information about the system’s global dynamics.

From first principles based on cascades of self-similar eddies, power laws for the

spectrum of covariance functions of quantities like velocities and kinetic energy

can be deduced [142, p. 15]. These ideas are closely related to the investigations

carried out in subsection 2.2.4 for the heat equation. Nonetheless, this is still not

satisfactory in the context of our purposes. Even a self-similar theory sufficient

for characterizing turbulent flows in regions far from any boundary interactions is

bound to fail as a stochastic model for the APS in TRI, in which the topography and

its interaction with air flow, temperature exchange and humidity transport takes on

a central role.

Still, the general approach of deriving hypotheses for the shape of the statistical mo-

ments based on physical considerations is a promising one since the sheer amount

of measurements generated by TRI allows to choose unknown parameters in a data-

driven way and facilitates a semi-empirical model. The following hypotheses form

the basis of later considerations.

1. TRI data contain the effects of deformation, atmosphere and noise. The at-

mospheric term (APS) is dominated by the influence of the phase delay inte-

grated along the propagation path; other effects like ray bending and reflec-

tion are ignorable to the point, that no explicit stochastic model is needed for

them. All involved quantities are spatiotemporal random fields.

2. The turbulent field Δn(t, s) of changes in refractive index is ergodic [70] with

an expected value of zero. Since integration is a linear operation commuting

with expectation, also the first moment of the APS vanishes whereas the sec-

ond moment is nontrivial and found by a double integration of the second

moments of Δn(t, s).

We remark that these hypotheses are debatable and counterarguments may be found.

Their merit lies in suggesting a stochastic model for TRI data that is flexible enough

to account for the complicated nature of the behavior witnessed in practice while

still restricted enough to allow for inference.
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5.2.2 Bisgletscher case study

In the preceeding sections, hypotheses regarding behavior of the APS have been motivated
mostly by theoretical considerations. To alleviate this, an extensive TRI dataset is now in-
troduced. It features challenging topography with height differences of several km, distances
of up to 8 km, significant surface displacements and spans several months. It has originally
been gathered to evaluate the suitability of TRI for glacial monitoring and early warning
purposes. Duration and spatial dimension are helpful to form conjectures of the limiting
average behavior of the APS and check the validity of the propositions put forward in the
last subsection. This can be done by calculating statistical moments like expected values and
variances and quantifying their dependence on distance to the instrument and topographical
features.

In the mountainous regions of Switzerland, glacial icefalls and the avalanches po-

tentially induced by them pose a constant risk towards rural communities in their

vicinity. One such potentially dangerous glacier is the Bisgletscher, which is located

in the southern part of Switzerland in canton Valais and may put the Mattervalleys

critical transportation infrastructure in form of the local cantonal road and railway

line at risk. Installation of classical geodetic measurement devices like GNSS re-

ceivers or prisms for total station measurements in this case is both expensive and

dangerous. It is wasteful as well in the sense that the instruments often suffer fatal

damage and glacial activity indicating a potential event is best quantified by a dense

spatial distribution of glacial velocities [56] [55]. To sidestep these problems and

complement the cameras already installed in the region, a GPRI terrestrial radar in-

terferometer was installed in 2014 on the slope opposite to the Bisgletscher. It was

operated almost continuously for 3 months during summertime to gain insight into

the suitability of TRI for deformation monitoring in alpine regions. The setup is

illustrated in figure 5.15. 3

The radar was placed and in the vicinity of a mountain hut that provided power

supply and data infrastructure. Apart from a few system failures due to power

spikes and outages, the GPRI was continuously operated between mid July and

mid September and acquired an SLC every 2 minutes during that time leading to

a dataset containing approximately 65.000 SLCs. Each of the interferograms has

a dimension of at least 1300 × 260 [range×cross-range] pixels covering an area,

which spans 15 km2. The geometry is outlined in figure 5.16.

The different types of scattering mechanisms as well as the geometrical proper-

ties of the acquisition geometry clearly affect the distribution of the interferometric

phase. Examining short- and long-term behavior reveals good agreement between

the actual data and the hypotheses stating an expected value of APS + noise of zero,

3The project was carried out in collaboration with Prof. Martin Funk (ETHZ) who took the orga-

nizational lead, Prof. Martin Truffer (University of Alaska) who provided the instrument and his

expertise, and Dr. Jan Beutel from the ETHZ Computer Engineering Group who provided the in-

frastructure necessary to remotely access the instrument. It was partially funded by the Swiss Office

for the Environment. Georg Eisler from Swiss Alpine Club section Uto and Renato Schaller from

the Domhütte mountain hut provided logistical support.
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Figure 5.15: In the background, the Bisgletscher is visible with its two steep scarps and its suspension glaciers adhering to

the prominent pyramidal form of the Weisshorn peak. The foreground shows the radome covering the GPRI for reasons of

weather protection.

as for randomly chosen stable points s and times t

μtemporal =

ntime∑
j=1

(ϕInt)s,j = εt ≈ 0

However, the data does not conclusively support the hypothesis of mean-square

ergodicity in the first moment as defined for example in [185, p. 170] because spatial

and temporal averages, interpreted as ensemble averages of realizations of random

fields, differ significantly. One has

μspatial =

nrow∑
k=1

ncol∑
l=1

(ϕInt)kl,t = εs �≈ 0

and no type of convergent behavior is observable when the area used for averaging

is continually increased. This may be due to the systems boundaries not being set in

a way that the atmospheric dynamics average out over space in the given geometry

or because no conservation laws hold for the refraction index for specific moments

in time. In the above, εt < 10−1 rad in nearly 100% of the cases but εs < 10−1 rad
only in 30% of the cases. One day worth of interferograms has been used for these

calculations and areas of actual motion have been masked out beforehand.

When directly plotting averages of interferograms over an increasing amount of

time like in figure 5.17, it becomes apparent that over a relatively short period of
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Figure 5.16: The area surveyed by the radar. Several distinct features of the landscape have direct consequences in the form

of radar shadows, low coherence and increased noise levels. The radar is installed 3.5 km away from the lower edge of shown

terrain at coordinates [0, 0]T (not visible).

time, the temporally highly frequent atmospheric effects of locally turbulent behav-

ior cancel out and give way to the ones connected to slow and systematic changes in

temperature, water vapor and total pressure. These are persistent, spatiotemporally

autocorrelated and depend on topographical features.

Figure 5.17: Temporal averages over 2 minutes, 20 minutes, 3 hours, and 1 day respectively. Notice the decrease in turbulent

behavior and high spatial frequencies as well as the significant influence of the topography.

Based on these observations, one may concretize the initial hypotheses and state the

decomposability of data into realizations of random fields corresponding to

• pure noise (negligible spatial and temporal autocorrelation)

• turbulent APS (significant spatial but negligible temporal autocorrelation)

• laminar APS (significant spatial and temporal autocorrelation)

• deformation (structure depending on observed object).
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Analyzing the validity of the second hypothesis regarding the integral nature of

the APS requires more of a spatial approach. Integration as a linear operator does

commute with expectation meaning that the first moment stays unchanged by this

hypothesis. Instead what will increase with integration length are the fluctuations of

the values and by virtue of that also the variance of the interferometric phase. Figure

5.18 indicates that this is actually the case in practice by plotting phase variances as

a function of distance to the instrument for different populations of pixels.

Figure 5.18: The scatterplot shows the phase variance of different populations of pixels and their respective distances to the

instrument. Only a random subset of the points is plotted. The right plot demonstrates that the phase variance is not simply

due to incoherent fluctuations associated to higher noise on longer propagation paths as phase variance increases though

coherence stays good. Indeed, the random fluctuations of incoherent points are resulting in phase variances higher than those

of coherent points only for small distances as APS induced phase-changes lessen in magnitude. 24 h worth of data were

used to calculate the phase variances. Phases of points with an especially low SNR are set to zero before unwrapping. SNR

is estimated for each epoch separately leading to these low-SNR points being unwrapped occasionally and having non-zero

phase variances.

Similarly to the first order moments, the estimated average central third order mo-

ment approaches zero more reliably the more data is used and one finds for a specific

day (01.08.2014) the values −0.92 rad3, −0.09 rad3 and −0.01 rad3 when 10, 100
and 720 interferograms are used for estimation. The third order moment can deviate

consistently and significantly from zero for individual pixels, however, indicating

that the underlying probability distribution is not really Gaussian and prediction ac-

curacy could be gained by incorporating statistics of higher order. Since inference

procedures that take third order moments into consideration are not covered in the

RKHS approach to optimal estimation, attention will be restricted to second order

moments.

Figure 5.18 implies that to predict the variance of the interferometric phase, one

should incorporate the distance to the instrument and consequently a first ad hoc

model could be of the form

σ2
ϕInt

= α0 + α1h+ α2r + α3az (5.18)

h : Altitude r : Range az : Azimuth

where dependence on azimuth and elevation are included to allow for more flex-

ibility in cross-range direction and influence of topographical information respec-



5.2. MITIGATION OF ATMOSPHERIC EFFECTS 239

tively. The relationship is only approximately supposed to hold for interferometric

phases primarily affected by APS and explicitly neglects measurements with bad

coherence as they would necessitate the inclusion of an SNR-based variance com-

ponent. A simple least squares fitting of model 5.18 to the empirical phase variances

finds α0 = −0.35 rad2, α1 = 2.1 ∗ 10−4 rad2/m, α2 = 3.6 ∗ 10−4 rad2/m, α3 =
1.7 ∗ 10−3 rad and α2 as the factor quantifying propagation distance to be the most

important as measured via a sensitivity analysis of prediction performances. Figure

5.19 shows this model and the results in two exemplary situations.

Figure 5.19: Empirical variances and the variances predicted by the simple ad hoc model described in equation 5.18 for

two regions corresponding to the topmost part and the bottom of the area surveyed by the radar. Estimations can be invalid

(negative) owing to the least squares nature of the estimator. Only pixels that neither move nor show bad SNR are plotted.

Note that as a means for inference, this stochastic model for σ2
ϕInt

is insufficient. It

demonstrates, however, that the general proposition of the APS being formed via

line integration is supported by data. The linear relation between variance and dis-

tance hints at it behaving similar to a Wiener process, see subsection 2.1.1 for a

discussion of the integral nature of the Wiener process. Based on these observa-

tions, we will elevate the hypotheses 1 and 2 from subsection 5.2.1 to the status

of assumptions that will be tacitly presupposed in the further developments of a

stochastic model suitable for large scale inference.

5.2.3 A stochastic model for TRI
Before actually formulating and solving the problem of estimating deformations from TRI
data, the qualitative hypotheses have to be reframed in a quantitative setting. Based on the
last subsection’s findings, a stochastic model is presented that consists of a joint normal dis-
tribution of the deformations, APS, and noise whose superposition forms the measurements.
The stochastic perspective based on random fields and random functions is complemented
by an equivalent functional one making use of reproducing kernel Hilbert spaces; abstract
splines are reinterpreted in this context. The impact of measurement principle and geometry
on the probability distribution of the data is included into the stochastic model by introducing
an auxiliary random field of refraction changes; the line integrals through this field form the
APS.

Ignoring amplitude information, unwrapped interferograms can be interpreted as

functions m : U → R, U ⊂ R3 that associate to a certain point in space the phase

of the signal scattered back by the region surrounding that point. Alternatively, it

is possible to map each of these points into a plane of constant height and interpret
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the result of this projection as functions U → R, U ⊂ R2. In both cases, the inter-

ferograms m are then functions that — although defined on an uncountable domain

U — are only known through some of their values. This mirrors the construction

in which a function m is associated with a finite set of values Am ∈ Rn via the

measurement operator A during the formulation of abstract splines in subsection

3.1.2 . In accordance with the introductory remarks about turbulence stated in sub-

section 5.2.1, it seems sensible to consider m to be a realization of a random field

M : Ω × U → R with Ω some probability space and m(·) := M(ω, ·) : U → R
or equivalently but with slightly different terminology as a realization of a random

function M .

Associating to the random function M a Gaussian probability measure on function

space as done throughout chapter 3 and constructing the corresponding reproducing

kernel Hilbert space HM , the following statements are consistent with the assump-

tions put forward in subsections 5.2.1 and 5.2.2.

1. The RKHS HM of measurements m(·) is a direct sum of the RKHSs

HD,HP ,HN containing the deformation functions d(·), the atmosphere func-

tions p(·) and the noise n(·) respectively. One has

HM = HD ⊕HP ⊕HN

where D,P,N are random fields containing d(·), p(·), n(·) : U → R.

2. Setting X ∈ {D,P,N} as a placeholder and assuming X·(·) : Ω × U �
(·, u) �→ Xu ∈ L2(Ω) to be mean-zero and square integrable, E[Xu] =
0, E[X2

u] <∞ ∀u ∈ U , the reproducing kernel for X can be written as

KX(u, v) = Cov(Xu, Xv) = E[XuXv]

i.e. the respective kernels are just the second order moment functions detail-

ing the autocorrelations of the involved random fields.

3. Sequences of interferograms are spatiotemporal functions m(·) : U →
R, U = S × T where S is space and T is time. Using superscripts s and

t to denote spatial or temporal parts of the random fields or their realizations,

we propose a tensor product decomposition of HX . If assumed to hold, HX

will be written asH⊗
X with

H⊗
X = Hs

X ⊗Ht
X

for X ∈ {M,D,P,N} and the tensor product symbol indicating the full

RKHS of spatiotemporal functions. This placeholder notation will be used

throughout the rest of this section.

Remark The above statements will be interpreted as the qualitative versions of the

statements found on page 234. We will tacitly assume their correctness or at least

usefulness for the rest of the chapter as they form our description of a stochastic
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model for TRI. Statement number 3 can be omitted for most of the theoretical con-

siderations and has primarily implications for the factorizability of equations and

therefore the computational cost of the algorithm’s practical implementation.

In the context of what was said about the stochastic implications of algebraic de-

composability of an RKHS into tensor products and direct sums, statement 1 means

that the measurements M are a superposition of deformations D, atmosphere P
and noise N . All three of them are spatiotemporal random fields that may show

complicated autocorrelated behavior but are uncorrelated with each other, i.e.

E[DuPv] = E[DuNv] = E[PuNv] = 0 ∀u, v ∈ U.

Assuming Gaussianity of the probability measure on the space of functions is akin

to asserting that one only deems relevant the first and second order moments as the

Gaussian distribution is the maximum entropy distribution [42, p. 413] given fixed

mean values and covariances. It is therefore the distribution including the least

amount of additional assumptions given those two pieces of information. Using

only second order statistics is justifiable primarily from a functional and algorithmic

perspective as the objective of minimizing terms of type

‖Ad− y‖2H1
+ ‖Bd‖2H2

y ∈ Rn observations

w.r.t. deformation functions d(·) ∈ HD is a reasonable one for estimating d(·) and

second order statistics are sufficient for that. It is also clear that including j-th order

moments or cumulants would lead to exploding computational costs and memory

requirements since it would be necessary to store and manipulate j-tensors with nj

elements.

Decomposability of the Hilbert space H⊗
X of spatiotemporal functions into a ten-

sor product of Hilbert spaces Hs
X of spatial functions and Hilbert spaces Ht

X of

temporal functions implies that every function x(·) ∈ H⊗
X may be written as a su-

perposition of base functions ϕs
i ∈ Hs

X and ϕt
j ∈ Ht

X as

x(u, v) =
∞∑
i=1

∞∑
j=1

αijϕ
s
i (u)ϕ

t
j(v);

∞∑
i,j=1

|αij|2 <∞ (5.19)

where α forms an infinite second order coefficient tensor [7, pp. 358-361]. Equiva-

lently, the reproducing kernel K⊗
X ofH⊗

X is just the product of the separate kernels

K⊗
X ((s1, t1), (s2, t2)) = Ks

X(s1, s2)K
t
X(t1, t2) (5.20)

which precludes certain types of complicated correlation patterns. The advantage

of demanding a Hilbert space to be of this restricted class are that statements can be

derived regarding representation and truncation of multivariable functions and the

factorization of problems into subproblems.

The local and global structure ofHM = HD⊕HP ⊕HN is determined by the struc-
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ture of the constituent Hilbert spaces which are in turn determined by the Kernels

KD, KP , KN . It is to be expected that KN is white noise with pointwise vary-

ing variance and no autocorrelations whatsoever. The comments on generalized

stochastic processes from chapter 3 apply because KN as defined on a continuous

domain is not actually a function but a functional — however, when N is consid-

ered on the set of pixels, the distinction vanishes and no complications arise when

K⊗
N(u, v) is just considered as σ2

uvδuv with δij the Kronecker delta.

The kernel K⊗
D should reflect the spatiotemporal behavior expected of the deforma-

tion. Depending on the mechanism behind it, it may be written as K⊗
D = Ds

DK
t
D

with Ks
D and Kt

D both smooth for e.g. creep processes or as K⊗
D = Ks

DK
t
D with

Ks
D ragged and long correlation length on Kt

D to model spatially localized but tem-

porally relatively persistent motion as encountered for example during monitoring

of glacial iceflows. The choice of K⊗
D is a design decision and the author sees

few possibilities to infer it from data as deformations seldomly occur in TRI data

without being accompanied by APS and noise. Whereas it might be sensible to

first learn jointly KP +KN with kernel inference by training on stable regions and

then split any guess for KM based on regions where D,P and N are nonzero into

KP +KN and a guess for KD, the same will not work in early warning applications

where the deformations are seldomly observed and too much adherence to observed

data could cause a bias against recognizing deformations at their onset. Especially

for rare events, the best choice of K⊗
D needs to be discussed critically and in all

likelihood on a case-by-case basis.

The stochastic model and its associated Hilbert space formulation are summarized

below compactly for convenience and easier reference. The (phase) measurements

M are the zero-mean random field

M ·
· : Ω× (S × T ) � (ω, v) �→Mω

v ∈ R (5.21)

Ω : Some probability space

S × T : Subset of R4 indexing the measurements

v = (s, t) Element of S × T ; s, t space, time index

If interpreted in the sense of functions S × T → R chosen at random via X ·
· :

Ω � ω �→ Xω
· ∈ HX , HX being an RKHS with RK KX , the notation x(·) or

plainly x will be used instead of X ·
· . Then one may reformulate the equation M ·

· =
D·

· + P ·
· +N ·

· in terms of Hilbert space valued random variables:

m = d+ p+ n (5.22)

d ∈ HD RKHS containing deformations

p ∈ HP RKHS containing phase screens

n ∈ HN RKHS containing noise functions

m ∈ HM HM = HD ⊕HP ⊕HN

where ⊕ denotes the orthogonal direct sum of Hilbert spaces and HX has RK KX
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s.t. KX(·, ·) : (S × T )2 � (v1, v2) �→ KX (v1, v2) = E
[
X ·

v1
X ·

v2

] ∈ R from which

it is straightforward to show that KM = KD +KP +KN .

There are several possible approaches

to generate structure identification pro-

cedures using the theorems and discus-

sions contained in chapter 4. Apart

from numerical issues that can arise

when evaluating the solutions to opti-

mal estimation problems in an RKHS

framework, the main problem still left

is one of kernel inference. The ker-

nels KD, KP , KN need to be esti-

mated from data or, if no other way

is found, prescribed on a reasonably

sound physical basis. As indicated

before, KP + KN is indirectly ob-

served via measurements on stable ar-

eas and can be separated due to the

white noise assumption that distin-

guishes KN from KP . Nonetheless,

the exact way in which inference of the

reproducing kernels is carried out, i.e.

the objective function to be minimized,

has a significant impact on the form of

the inferred kernels and consequently

on the estimators that are derived us-

ing these kernels.

Figure 5.20: The actual measurements M are a superposition

of deformations D, atmospheric phase screen P strongly au-

tocorrelated due to measurement geometry, and uncorrelated

noise N .

As implied by figure 5.20 p(s, t), the phase screen associated to index (s, t), sub-

sumes all atmospheric effects Δp(·) influencing the electromagnetic wave along its

propagation path linking location of instrument s0 with the location of backscatter-

ing s ∈ S. This will be reflected by including the functional relationship

p(s, t) =

∫ s

s0

Δp(r, t)dr = ϕsΔp(·, t) (5.23)

Δp(·, t) : ch(S ∪ s0) � s �→ Δp(s, t) ∈ R (5.24)

where p(·) ∈ HP ,Δp(·) ∈ HΔP , ch(S ∪ s0) is the closure of the convex hull of

S ∪ s0 andHΔP is the RKHS with RK KΔP . KΔP and KP are related via

KP (v1, v2) = E [ϕs1Δp(·, t1)ϕs2p(·, t2)]
= ϕs1 ⊗ ϕs2KΔP ((·, t1), (·, t2))
=

∫ s1

s0

∫ s2

s0

KΔP ((r1, t1), (r2, t2)) dr1dr2 (5.25)
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in which we understand ϕs1 ⊗ ϕs2 to act on the Mercer decomposition

KΔP ((·, t1), (·, t2)) =
∑∞

i=1 λiei(·, t1)⊗ ei(·, t2) of KΔP .

The Moore-Aronszajn theorem immediately asserts that to KP there corresponds

a unique RKHS HP with RK KP and ∃ a random field {P ·
(s,t) : Ω → R, (s, t) ∈

S × T} whose covariance function is KP . However {P ·
(s,t), (s, t) ∈ S × T} and

{P ·
(s,t), (s, t) ∈ S× T} may differ from each other in moments of order higher than

2 [129, thm. 6.1].

5.2.4 Reproducing kernels arising in TRI

Whereas the correlation structure of the deformations is to a certain degree an unknowable
design parameter to be prescribed by prior knowledge or assumptions, the covariance func-
tions of noise and APS can reasonably be inferred from observations via kernel inference
and compared to the theoretical model based on line integration. Several flexible approaches
are possible; they are employed to guess the involved correlation functions which in turn are
identified with the reproducing kernels of RKHS. The solutions to small-scale toy problems
give intuitive insight into the suitability of the different stochastic models.

To illustrate the approaches listed in section 4.2, Bochner’s theorem and kernel

inference are contrasted with an approach making use of the line integration model.

Suppose the problem were to infer the correlation structure of the APS in the regions

outlined in red in figure 5.21. The region is assumed for now to be free of noise and

deformations after some elementary preprocessing.

Figure 5.21: The TRI data in the subregions outlined in red are dominated by APS and noise. Two example interferograms

detailing these regions are shown in the second column. The two lines indicate the two sets of points, for which the empirical

covariance matrices are plotted in the four right images. For the calculation of the covariance matrices 24 h worth of data

were used.

A first, purely ad hoc least squares based idea consists in presupposing the existence

of a radial second order stationary kernel K(u, v) = C(u − v) = C(Δr) that is

linearly related to the observed empirical covariance matrix S ∈ Rn ⊗ Rn ∼= Rn2

via

S = AC. (5.26)

Here A is a linear operator encoding double integration (Af)(u, v) =
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∫ u

s0

∫ v

s0
f(ũ, ṽ)dũdṽ and if C(·) is represented as a discrete vector Ĉ in Rm, A can be

written as a matrix in Rn2 ⊗ Rm and C = A+S ∈ Rm would be an obvious candi-

date providing sample values of the function C(·) that could be used for estimation

of C(·) via for example the fitting of splines.

Apart from the problem of providing only values, through which a positive defi-

nite function is to be fitted carefully, figure 5.22 clearly indicates this procedure to

be unreliable. Furthermore the shape of the guess Ĉ ∈ Rm of C(·) looks highly

unexpected and with its strong fluctuations is both implausible and unlikely to al-

low fitting of a positive definite function as the Toeplitz matrix generated by Ĉ is

not positive semidefinite due to off diagonal terms being larger than their diagonal

counterparts. This approach is therefore unsuitable for inference of the involved

covariance functions. It is thus interesting to investigate the more sophisticated

models explained in section 4.2 and what they tell about the correlation structure of

TRI data.

Figure 5.22: Guesses for underlying radial stationary covariance functions using equation 5.26. The empirical covariance

matrices are extracted from the regions outlined on the previous figure by evaluating 24 h of TRI data. The guesses for

the covariance functions in the last column look highly implausible and the reconstructed covariance matrices in the second

column are very irregular compared to the original empirical covariance matrices. The correlation structures encoded in

Ĉ1 = A+
1 S1 and Ĉ2 = A+

2 S2 do not coincide with what one would expect from atmospherically driven processes and are

very dissimilar to each other.

§ Estimation by Bochners theorem

Given an empirical covariance matrix S ∈ Rn� ⊗ Rn� ∼= Rn2
� deviating from the

true one (Ktrue(vi, vj))
n�

i,j=1 , n� number of persistent scatterers, in a nonsystematic

manner and Ktrue = L⊗Ctrue = L ⊗ LCtrue, Ctrue ∈ P(Space) one may propose for

Ktrue the estimator K̃ as defined below.

K̃ = argmin
K=L⊗C,C∈P(Space)

‖Re (S − A⊗K) ‖2L2 (5.27)

Again, A =
⊕n�

i=1Ai is evaluation at points {vi}n�

i=1 ⊂ Space, A⊗ = A ⊗ A,
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and L is the bounded linear operator relating a s.o.s. random field with covariance

C(· − ·) 4 to the instationary one with covariance function K(·, ·). Inclusion of this

assumption allows C to be written as a weighted integral of complex exponentials

χv = exp(2πi〈v, ·〉) against a non-normalized probability measure. Approximation

via

C̃ =

nexp∑
l=1

γ̃lχl γ̃ = (γ̃l)
nexp

l=1 ∈ Rnexp

+ (5.28)

for χl = χωl
for some choice of wavevectors {ωl}nexp

l=1 is then a reasonable option

as by positivity of coefficients γl, C̃ is positive definite (see equation 4.1.11).

Consequently K̃ = L⊗C̃ is also positive definite and a valid reproducing kernel.

The right hand side of equation 5.27 can be simplified sufficiently to allow express-

ing the problem in a more amenable form. Considering S and A⊗K as column

vectors in the tensor spaces Rn� ⊗ Rn� or Cn� ⊗ Cn� respectively and introducing

the notation L⊗χl = ψl as well as A⊗ψl = Ψl ∈ Cn� ⊗ Cn� we find

‖Re (S − A⊗K) ‖2L2 = ‖S − Re

(
nexp∑
l=1

A⊗ψlγl

)
‖2L2

= ‖S − Re
[
Ψ1 · · ·Ψnexp

]
γ‖2L2

= ‖S −Ψγ‖2L2 (5.29)

where Ψ is as defined by equation 5.31. The optimal choice γ̃ ∈ Rnexp

+ to minimize

expression 5.29 and by extension solve the nonnegative least squares problem

γ̃ = argmin
γ∈Rnexp

+

‖S −Ψγ‖2L2 = nnls(S,Ψ) (5.30)

Ψ =

⎡⎢⎣ Re (Ψ1)11 · · · Re
(
Ψnexp

)
11

...
. . .

...

Re (Ψ1)n�n�
· · · Re

(
Ψnexp

)
n�n�

⎤⎥⎦ (5.31)

S : Column vector of empirical covariances

is well known to be approximable using iterative standard methods from convex

optimization [37, p. 72].

To reduce the computational burden arising later during evaluation of K̃, coeffi-

cients γ̃l so small as to be virtually negligible w.r.t. their contribution to K̃ =∑nexp

l=1 γ̃lψl will be discarded. Truncation of γ̃ leads to the reduced coefficient vector

γ̃red and the reduced positive definite function C̃red =
∑nexp

l=1 (γ̃red)l χl. Using the

L2 − L2 operator norm ‖A‖op = sup‖x‖2=1 ‖Ax‖2 it is possible to assemble the

4This notation indicates that C is a function acting on tuples of arguments via C : (s, t) �→ C(s− t)
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following inequalities.

‖K̃ − K̃red‖L2 =‖L⊗
(
C̃ − C̃red

)
‖L2

≤‖L⊗‖op‖C̃ − C̃red‖L2 (5.32)

‖K̃‖L2 ≤‖L⊗‖op‖C̃‖L2 (5.33)

To ensure negligibility, it is then demanded that

‖L⊗‖op‖C̃ − C̃red‖L2 ≤10−2‖L⊗‖op‖C̃‖L2

⇔ 10−2 ≥‖C̃ − C̃red‖L2

‖C̃‖L2

≥
√∑nexp

l=1 (γ̃l − (γ̃red)l)
2∑nexp

l=1 (γ̃l)
2 (5.34)

Effectively this limits the upper bound for the energy of K̃ − K̃red to 1% of that of

K̃. Calculating K̃s
M = K̃s

P + K̃s
N requires the evaluation of the more complicated

terms ψs
j (·, ·) = ϕ· ⊗ ϕ·χs

j(· − ·), where ϕ· is the line integration introduced in

equation 5.23.

Ks
M(sn, sm) =

nexp∑
l=1

ψs
l (tn, tm)γ

s
P,l︸ ︷︷ ︸

Ks
P (sn,sm)

+
ns∑
l=1

δsl (sn, sm)γ
s
N,l︸ ︷︷ ︸

Ks
N (sn,sm)

(5.35)

In the above, δsl (sn, sm) is a Kronecker-delta type function that is 1 if sl = sn = sm
and 0 otherwise. With the same notation as before and using the fact that the dual

group R̂n of Rn is R̂n implying its characters χs
j to satisfy

χs
j(sl) =

n∏
k=1

exp(2πiωk
j s

k
l ) = exp(2πi〈ωj, sl〉) (5.36)

sl = (skl )
n
k=1, ωj = (ωk

j )
n
k=1 a direct computation is possible.

Ak ⊗ Alψ
s
j = ϕsk ⊗ ϕsl exp(2πi〈ωj, · − ·〉)
=

∫ sk

s0

∫ sl

s0

exp(2πi〈ωj, u− v〉)dudv

= gj(s0, sk)gj(s0, sl) (5.37)

gj(s0, sk) =
‖sk − s0‖�2

2π〈ωj, sk − s0〉
[
e2πi〈ωj ,sk〉 − e2πi〈ωj ,s0〉] (5.38)

If 〈ωj, sk − s0〉 = 0 then gj(s0, sk) is trivially ‖sk − s0‖�2 . It immediately follows

by means of equations 5.30 and 5.31 that
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γsM = (γ̃sP , γ̃
s
N) = nnls(S,Ψs) (5.39)

Ψs =

⎡⎢⎣ f1(s1, s1) · · · fnexp(s1, s1) δ1(s1, s1) · · · δns(s1, s1)
...

. . .
...

...
. . .

...

f1(sns , sns) · · · fnexp(sns , sns) δ1(sns , sns) · · · δns(sns , sns)

⎤⎥⎦
(5.40)

fj(sk, sl) = Re(gj(s0, sk)gj(s0, sl)) (5.41)

The coefficients {γ̃sP,l}nexp

l=1 and {γ̃sN,l}ns
l=1 are then inserted into formula 5.35 com-

pleting step 1 of the estimation process followed by truncation of the coefficient

vectors. Some results of this procedure can be seen in figure 5.23.

Figure 5.23: For the same empirical covariance matrices S1 and S2 as in figure 5.22, the Bochner type approach provides an

estimate of an underlying stationary covariance function C(·) and the model predictions A⊗L⊗C(·) are positive semidef-

inite. The third column shows the inferred underlying stationary covariance functions at altitude z = 0, i.e. it shows an

assortment of values C(x, y, 0) detailing the covariance of any two points having respective coordinate separation of x ,y,

and 0. The parameter vector γ has approximately 340 entries and highest frequencies of 1 cycle per 500 m.

The derivation of a stationary covariance function C with L⊗C = K and A⊗K
close to S via Bochner’s theorem is pleasing from a theoretical point of view and

as figure 5.23 indicates, the results can be reasonable. However, some of the the

practical disadvantages are prohibitive. For example, it is unclear, how to choose

the right set of wavevectors ω for the complex exponentials χω(·) and the re-

sults of inference can change drastically depending on that choice. The expansion

C(·) = ∫
ω∈R̂n χω(·)dν(ω) is only guaranteed to hold if the domain of integration is

the whole dual group R̂n and not only a discrete subset {ωl}nexp

l=1 . Furthermore the

closing comments from subsection 4.2.1 hold: Even in the case where approxima-
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tion to the underlying ground truth is good in the �2-sense and

C̃(·) =
nexp∑
l=1

γ̃lχl(·) satisfies ‖A⊗L⊗C̃(·)− S‖2F is small

it is by no means guaranteed that the covariance matrix A⊗L⊗C̃(·) derived from C̃
is likely in the statistical sense given the observations summarized in the empirical

covariance matrix S. The truncation induces persistent long range oscillations in the

correlations between far away regions and harms this model’s credibility further.

§ Estimation using parametrized families of kernels

The most obvious way to avoid regularity problems is to choose C(·) from a set of

well-behaved kernels. Again, the main assumption will be that the relation

KP (si, sj) = (L⊗C(· − ·))(si,sj) =
∫ si

s0

∫ sj

s0

C(u− v)dudv

holds where KP (·, ·) is the kernel for Hs
P , L is the operator of line integration and

C(·) is to be inferred from a class of parametric kernels. If the dependence is to

be made explicit, C(·) is also written as Cθ(·) where θ ∈ Θ are the parameters.

The goal is to determine θ in such a way as to minimize the discrepancy between

empirical and predicted covariance matrices as, for the sake of simplicity, measured

by the Frobenius norm.

θopt = argmin
θ∈Θ

‖A⊗L⊗Cθ(·)− S‖2F (5.42)

When θopt is found, the kernel Kθopt(·, ·) = L⊗Cθopt(·, ·) is considered the best guess

and Hs
P is set to HKθopt

. To keep the optimization 5.42 feasible, the covariance

functions Cθ(· − ·) are allowed to be a part of only 3 restrictive families with two

parameters each. The main properties of these covariance models are outlined be-

low and described more comprehensively in [39, pp. 84-101].

1. Name: Squared exponential covariance function

Equation: Cθ(si − sj) = θ1 exp
(
−‖si−sj‖2

θ22

)
, (θ1, θ2) ∈ R+ × R+

Corresponds to: Δn is an infinitely differentiable field of changes in

refraction index.

2. Name: Exponential covariance function

Equation: Cθ(si − sj) = θ1 exp
(
−‖si−sj‖

θ2

)
, (θ1, θ2) ∈ R+ × R+

Corresponds to: Δn is an everywhere continuous but nowhere differen-

tiable field of changes in refraction index.

3. Name: Spherical covariance function
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Equation: Cθ(si − sj) = �[‖si−sj‖≤θ2]θ1

(
1− 3

2

‖si−sj‖
θ2

+ 1
2

‖si−sj‖3
θ32

)
,

(θ1, θ2) ∈ R+ × R+, �x = 1 if statement x is true and 0 otherwise

Corresponds to: Δn exhibits a behavior in between being smooth and

discontinuous and is an irregular and, near the origin, structurally scale

invariant field of changes in refraction index similar to fractal fields gov-

erned by a power law variogram E[(Δn(si)−Δn(sj))
2] = ‖si − sj‖α.

Even though only two parameters are involved, the range parameter θ2 enters the

equations for Cθ(·) nonlinearly. Since evaluation of the covariance functions can be

made relatively cheaply with the help of numerical methods, a brute force approach

is adopted to estimate θ2. It consists in evaluating the objective function in equation

5.42 for a range of positive values θ2 and following up with a refinement step. Once

a specific value θ2 is chosen, the optimal θ1 can be calculated in closed form as the

term

θopt
1 = argmin

θ1∈R+

‖θ1Kθ2 − S‖2F

where Kθ2 = A⊗L⊗Cθ=(1,θ2)(· − ·). Then

‖θ1Kθ2 − S‖2F = 〈θ1Kθ2 − S, θ1Kθ2 − S〉F
= θ21〈Kθ2 , Kθ2〉F + 〈S, S〉F − 2θ1〈Kθ2 , S〉F
= θ1‖Kθ2‖2F − 2θ1〈Kθ2 , S〉F + ‖S‖2F

Taking the derivative ∂θ1‖θ1Kθ2 − S‖2F and equating it to zero to determine the

minimum of this convex problem yields

∂θ1‖θ1Kθ2 − S‖2F = 2θ1‖Kθ2‖2F − 2〈Kθ2 , S〉F !
= 0

which is immediately resolved and establishes

θopt
1 =

〈Kθ2 , S〉F
〈Kθ2 , Kθ2〉F

.

No need exists therefore to brute force search for θopt
1 as it is uniquely determined

once θ2 has been chosen. The brute force algorithm then takes the form

1. Choose a sequence of ranges {θ2j}nbf

j=1 ⊂ R+ and calculate the sequence

{Kθ2j}nbf

j=1. Calculate {θ1j}nbf

j=1 = {〈Kθ2 , S〉F‖Kθ2j‖−2
F }nbf

j=1.

2. Evaluate the sequence {‖θ1jKθ2j − S‖2F}nbf

j=1 and determine the parameters

θ̂1
opt
, θ̂2

opt
leading to its least value. They are approximators for the optimal

tuple θopt = (θopt
1 , θopt

2 ).

3. Repeat step 1 and 2 with a new sequence of ranges {θ2j}nbf

j=1 that is centered

around θ̂2
opt

.
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Although not very involved, this procedure did lead reliably to parameter estimates

arbitrarily close to the optimal ones for the data we tested it on. We observed the

existence of a well defined global optimum of ‖θ1Kθ2 − S‖F w.r.t θ2 in all cases

where S had more than 1 element.

Figure 5.24: The best choices of the range parameters are relatively easy to determine via brute force; the simplicity of the

empirical relationships between θ2 and ‖θ1Kθ2 − S‖F exhibited above are representative for the data we investigated .

Notice that the predicted covariance matrices exhibit features that are deviating more from the empirical covariance matrices

compared to the Bochner approach but have stronger regularity properties. The third column features a best fit of a stationary

covariance model and allows the comparison of the two covariance models K(·, ·) = C(·−·) and K(·, ·) = L⊗C(·−·). The

results directly imposing a stationary covariance on the APS are overly smooth and (apart from stationarity) show too strong

long-distance correlations compared with the observed behavior. The integration model performs better as quantified by the

normalized error measure ε = ‖K − S‖2F ‖S‖−2
F . The minimal error εmin is (0.0092,0.0081) for the two different regions

respectively using the line integration model and (0.0162,0.0123) using the stationary model. The underlying covariance

function is the exponential one in both cases.

If one abandoned the model KP = L⊗C and would instead directly fit one of the

aforementioned stationary covariance models C(·− ·) : R3×R3 → R to the data, a

lot of computation will be avoided. The approximation quality, however, is visibly

worse. See figure 5.24 for a comparison between the covariance models featuring

path integration and those that do not. In reality, the distribution of points from

which the empirical covariance matrix is to be generated is less geometrically regu-

lar and more scattered. Then the stationary models are even less able to capture the

correlation structure of the point set; presumably since the full 3-dimensional vari-

ation patterns are not isotropic and the line integration model has a natural built-in

anisotropy distinguishing range and azimuth. See figure 5.25 for a concrete example

featuring an irregular distribution of points.

The best fitting of the three covariance function models is the squared exponential

one under the no-line-integral assumption and the exponential covariance in the

line-integral case. This reflects the regularity properties: The APS is rather smooth

and this can be either modelled directly by the covariance of a smooth process or by

having its derivative at least continuous and having the smoothness emerge during

the act of integration.
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Figure 5.25: The best fits of three different covariance models to an empirical covariance matrix, where the points don’t

lie on a line. The normalized approximation errors ε are (from left to right) 0.007, 0.011 and 0.065 respectively. Line

integration was performed against an exponential covariance function to generate the image in the second panel. The bottom

row illustrates the underlying geometric distribution of the points whose correlation structure is to be reconstructed. The

point enumeration scheme is derived from matrix vectorization, i.e. the ordering is column-by-column and within a column

row-by-row.

The most expensive step in the procedure described above is the calculation of the

covariance matrices with entries ϕsk ⊗ϕslC(·− ·). Analytical expressions for these

terms are not available and numerical approximation of the integral

KP (sk, sl) =

∫ sk

s0

∫ sl

s0

C(r1 − r2)dr1dr2 (5.43)

is costly in terms of the number of function evaluations, if not a scheme more so-

phisticated than discretization on a regular grid and subsequent averaging is em-

ployed. In one dimension, n-point Gauss quadrature rules of type∫ 1

−1

f(u)du ≈
n∑

i=1

f(ui)wi (5.44)

are optimal in the sense of being exact for polynomials of degree 2n − 1, if the ui
are the n roots of the n-th (orthogonal) Legendre polynomial on [−1, 1] and the wi

are the integrals over the associated Lagrange interpolation polynomials [73, § 5.3].

According to a theorem by [78], thewi can be found efficiently from the eigenvalues

and eigenvectors of the matrix J encoding the three term recurrence relation (k +
1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x) satisfied by Legendre polynomials Pk in
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the following way:

J =

⎡⎢⎢⎢⎢⎢⎣
0 α1 0 . . . 0
α1 0 α2 0 . . .
0 α2 0 α3 . . .
... 0 α3

. . . . . .

0
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦ (5.45)

αk =

√
k2

(2k + 1)(2(k − 1) + 1)
=

k√
4k2 − 1

(5.46)

uk = k-th eigenvalue of J (5.47)

wk =

∫ 1

−1

(
e
(1)
k /‖ek‖

)2
du = 2(e

(1)
k )2 (5.48)

where e
(1)
k is the first component of the k-th normed eigenvector ek of J . For two-

dimensional integrals, the tensor product of the n-point Gauss quadrature rule given

by specifying evaluation points u⊕ and weights w⊗, while denoting by 1 ∈ Rn a

vector of ones, as∫ 1

−1

∫ 1

−1

f(u1, u2)du1du2 ≈
n∑

i=1

n∑
j=1

f(u⊕ij)w
⊗
ij (5.49)

u⊕ = (1⊗ {ui}ni=1)⊕ ({uk}nj=1 ⊗ 1) ∈ R2n2

(5.50)

w⊗ = {wi}ni=1 ⊗ {wj}nj=1 ∈ Rn2

(5.51)

is not strictly optimal any more. However, it turns out to approximate dou-

ble integrals to sufficient numerical accuracy for our purpose with only a mod-

est amount of function evaluations. The appropriate coordinate diffeomorphism5

φ : U = [−1, 1]2 → [0, 1]2 = V inducing a pullback φ∗ mapping integral 5.43 to

integral 5.49 can be given by

φ(u1, u2) =

[
v1(u1, u2)
v2(u1, u2)

]
=

[
1
2
u1 +

1
2

1
2
u2 +

1
2

]
. (5.52)

With this definition and setting u = (u1, u2), v = (v1, v2) the following sequence of

integral substitutions holds:

KP (sk, sl) =

∫ sk

s0

∫ sl

s0

C(r1 − r2)dr1dr2 (5.53)

= c
�
[0,1]2

C(r1(v1, v2)− r2(v1, v2))dv1dv2

5A diffeomorphism is a differentiable one-to-one map with differentiable inverse.
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= c
�

φ−1[0,1]2

φ∗C(r1(v)− r2(v))

∣∣∣∣ ∂v1∂u1

∂v1
∂u2

∂v2
∂u1

∂v2
∂u2

∣∣∣∣ du1du2
=
c

4

�
[−1,1]2

C(r1(v(u))− r2(v(u)))du1du2 (5.54)

where φ∗ : (V → R) → (U → R) is the usual pullback on functions [62, pp.

22 -25] and c = ‖sk − s0‖�2‖sl − s0‖�2 . Ultimately, the cubature rule yields the

expression:

KP (sk, sl) =
c

4

n∑
i=1

n∑
j=1

C
(
r1(v(u

⊕
ij))− r2(v(u

⊕
ij))
)
w⊗

ij (5.55)

Here C(· − ·) might be any positive definite function; we have chosen it to be an

exponential kernel. The error in the one dimensional case is bounded by the 2n-th

derivative ∂2n

∂u2nC(r1(v(u)) − ·) [90, p. 325] implying it to be non-negligible for

rapidly decaying covariance functions C. In our experiments, this did not seem to

be of much concern, as the optimally inferred Ks
ΔP all exhibited smooth behav-

ior, correlation lengths between 200 m and 1500 m and their integrals were well

approximated using the tensor product of a 5-point Gauss rule. In comparing the

5-point Gauss rule to the trivial integration procedure consisting of taking the av-

erage of 10.000 function evaluations on a regular grid, one finds both method’s

approximation qualities to be quite similar. The trade-off for the potential (but in

our experiments not significant) loss in numerical accuracy is an increase in speed

of up to a factor of 400 for an interferogram with 1000 persistent scatterers and

300.000 pixels for which estimation is to be performed. This reduced the time

for the calculation of the covariance matrices to 10 minutes on an office computer

with 32.0 GB RAM and a 3.50 GHz processor. Once the covariance matrices have

been calculated, APS estimation for a single interferogram can be executed in less

than 1 second. Nonetheless, we suggest to recalculate the covariance matrices in

regular intervals of several days to avoid long term changes in meteorological cor-

relations to negatively impact the estimations although further investigations would

be needed to derive a reliable rule of thumb.

§ Kernel Inference

Inferring a suitably flexible kernel from data is exactly the task, for which the al-

gorithm described as ’nonparametric kernel inference with affine constraints’ ex-

plained on page 193 was designed. In the case of the APS in TRI, the kernel

K(·, ·) : S × S � (si, sj) �→ K(si, sj) ∈ R, si, sj ∈ R3

of the APS is to be inferred on the index set of spatial coordinates S, whose exact

format is irrelevant for but will occasionally be assumed to consist of local carte-

sian coordinates centered around the instrument’s position for the sake of simplic-
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ity. The observations are given as a sequence of interferograms evaluated at stable

points {si}ni=1 ∈ R3 with good signal-to-noise ratio to guarantee that the empiri-

cal covariance matrix (also denoted as S) is formed solely by values of realizations

Pω(·), ω ∈ Ω where P·(·) is the random function corresponding to the APS.

To keep arrangements simple and runtimes short, we will for now neither include

any affine constraints nor give too much weight to the prior guess for the covariance

function. To get an initial orthonormal basis {ϕi}nexp

i=1 , ϕi : R3 �→ R, set

Kprior(si, sj) = Kx
sq(x(si), x(sj))K

y
sq(y(si), y(sj))K

z
sq(z(si), z(sj))

where Kx
sq is the squared exponential kernel on the x-coordinates of the three-

dimensional coordinates si, sj and analogously for Ky
sq, K

z
sq. Employing the in-

dividual Mercer decompositions

Ku
sq(·, ·) =

∞∑
i=1

λui ϕ
u
i (·)⊗ ϕu

i (·), u = x, y, z

allows to write

Kprior(·, ·) =
∞∑
i=1

λiϕi(·)⊗ ϕi(·)

where λi is the i-th element of the sequence {λxjλykλzl }∞j,k,l=1 sorted in descending

order and ϕi(·) = ϕx
j (x(·))⊗ϕy

k(y(·))⊗ϕz
l (z(·)) is the tensor product of the eigen-

functions corresponding to the eigenvalues λxj , λ
y
k, λ

z
l that form λi. Apart from pro-

viding the orthonormal basis, the prior will be made rather unimportant by setting

to zero the parameter r in the objective function 6

L(γ) = log |Cγ|+ tr
(
SC+

γ

)
+ r

[− log |γ|+ tr
(
Λ+γ

)]
Cγ =

nexp∑
i,j=1

γijψi ⊗ ψ∗
j , ψi ∈ Rn, (ψi)k = ϕi(sk).

This sidesteps the need for an iteration and in accordance to the remarks in subsec-

tion 4.3.2, page 184, the explicit formula 5.56 is found.

γ = Sψ = (Ψ)+S(Ψ∗)+, Ψ = [ψ1, ..., ψnexp ] ∈ Rn ⊗ Rnexp (5.56)

The solution is then K(·, ·) =
∑nexp

i,j=1 γijϕi(·)ϕj(·) and the predicted covariance

matrix is

Cγ =

nexp∑
i,j=1

ψi ⊗ ψ∗
j = ΨγΨ∗ = (ΨΨ+)S(ΨΨ+)∗

which is PψSP
∗
ψ with Pψ the orthogonal projection onto the range of Ψ. The results

of this procedure are plotted in figure 5.26 as well as the results obtained when

6Note that γ is a positive semidefinite coefficient matrix in the equations surrounding 5.56 and not,

as in the next paragraph, the coherence.
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different amounts of regularization are used.

Figure 5.26: The results of kernel inference for the same empirical covariance matrices S1 and S2 as in figure 5.22 with and

without regularization. When prior knowledge is ignored, the reconstructive performance of kernel inference exceeds that

of both the parametric and the Bochner-type approach. Imposing stronger requirements on a kernel’s regularity discourages

sharp changes in the associated covariance matrices; care must be taken to ensure that this effect is avoided if improper (first

row). Due to numerical problems, the regularization was introduced by means of moving along the geodesic path connecting

Sψ and Λ as parametrized in [96].

Remark Up until now only the negative log likelihood was used to assess the qual-

ity of the approximation. This is not wrong per se but incomplete as any kernel

being identical to the empirical covariance matrix S at the measurement points has

the best score under this metric. But these kernels obviously do not have the best

generalization performance, so the negative log likelihood should be seen more as a

measure of a models flexibility to emulate the structure encountered in the matrix S
rather than a definite performance indicator. As discussed before, a kernel’s suitabil-

ity for purposes of inference and prediction depend also on that kernel’s regularity.

The only procedures guaranteeing this are kernel inference and the parametric in-

ference scheme. For reasons of simplicity, the latter approach will be adopted for

the practical implementations presented later during this chapter.

§ Estimation of noise variance

Typically one links coherence, phase noise variance and signal-to-noise ratio [91,

p. 98]. The classical estimator for the coherence employs spatial averages and is, as

already mentioned in subsection 5.1.2,

γ̂spatial =

∑
j∈Nbd z

j
1(z2

j)∗√∑
j∈Nbd |zj1|2

∑
j∈Nbd |zj2|2

(5.57)

for a certain spatial neighborhood Nbd of a fixed point. In this formula zji denotes
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the complex number encoding amplitude and phase of the the j-th pixel in the i-th
interferogram zi and ergodicity is assumed to hold [91, p. 96]. In the privileged

situation where TRI measurements are dense in time, one can estimate the complex

correlation coefficient γ at a certain fixed pixel location j (dropped from the notation

for economy of presentation) as the normalized off-diagonal entries of the complex

covariance matrix

Σ[z1,z2]T = E

[[
z1
z2

]
⊗
[
z1
z2

]∗]
∈ C2 × C2

Σ̂[z1,z2]T =
1

n− 1

n−1∑
i=1

[[
zi
zi+1

]
⊗ [z∗i z∗i+1

]]

for zi := zji ; i = 1, ..., n denoting the complex number of the pixel at location j in

the i-th epoch. This immediately leads to the alternative expression

γ̂temporal =
n

n− 1

∑n−1
i=1 ziz

∗
i+1∑n

i=1 |zi|2
. (5.58)

The interpretation of equation 5.58 is different from the interpretation of the usual

estimator 5.57. Both estimation formulas for γ take on high values if an image patch

in image 2 is a scaled and phase-shifted version of the same patch in image 1. But

whereas 5.57 takes on low values if the interferometric phase varies randomly in a

spatial image patch, expression 5.58 takes on low values only if the interferometric

phase varies randomly in time. In the presence of other temporally high frequent

sources of strong phase variation like atmospheric influences, the estimator 5.58

does not deliver a suitable indicator for phase reliability of individual pixels whereas

5.57 still does.

From a purely practical point of view, the assumptions regarding the pure noise

component (see page 237) permit to estimate the phase noise as that part of the

measurements which exhibits low temporal and low spatial correlation to its im-

mediate vicinity. The author proposes the following estimators for noise and noise

variance at location sk.

N(sk) =M(sk)− 1

|Nbd(k)|
∑

j∈Nbd(k)

M(sj) (5.59)

σ2
N(sk)

=
1

nt

nt∑
l=1

⎡⎣M(sk, tl)− 1

|Nbd(k)|
∑

j∈Nbd(k)

M(sj, tl)

⎤⎦2

(5.60)

where Nbd(k) is a set containing the indices j of the locations sj that form the

spatial neighborhood of the location sk.
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5.2.5 Spatiotemporal deformation estimation

Given a Hilbert space model HM for the measurements that decomposes into direct sums
of Hilbert spaces HD,HA,HN , estimating deformations d when only a superposition of
deformation, atmosphere and noise is measured can be formulated as the task of finding a
certain spatiotemporal smoothing spline σd. The corresponding norm-minimization problem
is at the same time a maximum likelihood problem when the kernelsKD,KA,KN are chosen
to reflect the different phenomena’s covariance functions. Several different formulations of
this estimation problem are possible and correspond e.g. to interpolating the APS given some
of its values, solving spatial and temporal filtering separately, or doing full spatiotemporal
signal separation. Briefly surveying these formulations in order of ascending generality and
focusing on computability leads to the tensor-spline construction explained in subsection
3.1.3. Assuming second order stationarity of all quantities involved yields immediate results;
implementing the more justified line integral covariance model requires methods of numerical
integration. The end result is an algorithm the author terms TRI-MAPS, where the latter part
is an acronym for ’mitigation of atmospheric phase screen’. It produces three sequences of
two-dimensional maps depicting deformation, atmosphere, and noise.

Suppose the Hilbert space model HM = HD ⊕HP ⊕HN is given and the kernels

KD, KP and KN determining the reproducing kernel Hilbert spaces of deforma-

tions, atmospheric phase screen and noise are known. Without specifying a priori if

the domain U of the functions in these four RKHS is space, time or spacetime, the

following general interpolating spline contains all subcases relevant for deformation

estimation.

σm = argmin
m∈A−1a

‖m‖2HM
(5.61)

where A : HM → Rn is the measurement operator of evaluation at {uj}nj=1 ⊂ U
and decomposes as A = AD ⊕ AP ⊕ AN , AX : HX → Rn, X ∈ {D,P,N}.
The data is provided as an n-dimensional vector a ∈ Rn whose exact nature de-

pends on that of U . By the remarks in subsection 3.1.2, the smoothing splines

σd, σp, σn corresponding to optimal estimators of deformation, APS, and noise

can be derived via orthogonal projection of σm onto the respective subspaces

HX �HM , X ∈ {D,P,N}. This means

σd = argmin
d∈HD

‖ADd− a‖2A(HM/HD) + ‖d‖2HD
=ΠHD

σm (5.62)

σp = argmin
d∈HD

‖APp− a‖2A(HM/HP ) + ‖p‖2HP
=ΠHP

σm (5.63)

σn = argmin
d∈HD

‖ANn− a‖2A(HM/HN ) + ‖n‖2HN
=ΠHN

σm (5.64)

where the Hilbert spaces A(HM/HX) have kernel (A⊗A)[KY1(·, ·) +KY2(·, ·)] ∈
Rn ⊗ Rn with Y1, Y2 the elements of the set {D,P,N}/{X}.
The probabilistic interpretation is simply that the objective functions in equa-

tions 5.62 to 5.64 are the negative log likelihoods of Gaussian processes whose

minimizers correspond to those elements σx in an RKHS HX of functions that

maximize jointly both the likelihood of σx and of the residuals Aσx − a. It

was mentioned in chapter 3 that given a certain set of assumptions, splines σx
minimize the expected square loss and as such are analogues to conditional
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expectations E[X(·)|Am = a] =: E[X|a]. Before any processing happens, a

decision has to be made about which data to include for the estimation step and

which data to discard. Ignoring data corresponds to the strong assumption that

asserts this data’s lack of informativity for the specific estimation purpose. This can

be made formal using the concept of conditional independence of random variables.

Definition 5.2.1 Two random variables M1 and M2 are conditionally independent

given a third random variable M3 if

fM1,M2|M3(m1,m2|m3) = fM1|M3(m1|m3)fM2|M3(m2|m3)

where fY is the probability density function of expression Y . This is written as

M1

∐
M2|M3. M1,M2,M3 can also be sets of random variables [116, p. 24].

Theorem 5.2.2 Conditional independence has the following three properties.

Weak union: M1

∐
M2,M3|M4 ⇒M1

∐
M2|M3,M4

Decomposition: M1

∐
M2,M3|M4 ⇒M1

∐
M2|M4

Intersection: (M1

∐
M2|M3,M4)∧(M1

∐
M4|M2,M3)⇒M1

∐
M2,M4|M3

The original statements including details on their interpretation and their proofs

can be found in the literature concerned with graphical models and causal-

ity, e.g. in [116, p. 25]. Theorem 5.2.2 can be used to prove that from

X
∐
Y1, ..., Yn|Z1, ..., Zm it follows that

fX|Y1,...,Yn,Z1,...,Zm(x|y1, ..., yn, z1, ..., zm) = fX|Z1,...,Zm(x|z1, ..., zm)

whenever the conditional distribution is well defined. Renaming Y1, ..., Yn to Y ,

Z1, ..., Zm to Z and compressing the subscript indicators for the probability density

functions and the notation for any realizations in the same way, this can be deduced

from

fX|Y,Z(x|y, z) =
fX,Y |Z(x, y|z)
fY |Z(y|z)

X
∐

Y |Z
=

fX|Z(x, z)fY |Z(y|z)
fY |Z(y|z) = fX|Z(x|z)

when the denominator is nontrivial. This subsequently implies that the conditional

expectation E[X|Y = y, Z = z] =: E[X|y, z] can be written as

E[X|y1, ..., yn, z1, ..., zm] =
∫
Ω

X(ω)fX|Y,Z(x|y1, ..., yn, z1, ..., zm)dω

=

∫
Ω

X(ω)fX|Z(x|z1, ..., zm)dω
= E[X|z1, ..., zm] (5.65)

Recalling that E[X|z1, ..., zm] and E[X|y1, ..., ym, z1, ..., zm] as conditional expec-

tations are in the Gaussian case the typical Kriging estimators, this allows one to
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conclude that data y1, ..., yn can be ignored for optimal estimation under the spe-

cific assumption of X
∐
Y1, ..., Yn|Z1, ..., Zm.

As concrete examples, consider two special cases. Let Ms̄,t̄ := {M(si, tj)}nsnt
i=1,j=1

be the set of all random variables associated to measurements M : Ω×S×T → R.

For a specific spatial position s ∈ S, denote by

Ms,t̄ := {M(s, tj)}nt
j=1 the ’pillar’ of all mea-

surements at different times t1, ..., tn at location

s ∈ S and denote by Ms̄,t := {M(si, t)}ns
i=1 the

’slice’ of all measurements at different locations

taken at time t ∈ T . Suppose that for all s ∈ S it

holds that

Ms,t

∐Ms̄,t̄

Ms̄,t

| Ms̄,t

Ms,t

(5.66)

where the fraction notation is to be interpreted as

set subtraction, i.e. X
Y
= X \ Y .

Figure 5.27: Different ways to cluster se-

quences of interferograms

Expression 5.66 then means that a specific random variable Ms,t is independent of

all other random variables Ms̄,t̄ \ Ms̄,t that lie in different time ’slices’ (interfer-

ograms) given knowledge of all other measurements Ms̄,t \Ms,t in the time slice

that contains M(s, t). By making recursive use of the intersection property and the

symmetry of conditional independence, one then finds(
Ms̄,t̄

Ms̄,t

∐
Ms1,t |

Ms̄,t

Ms1,t

)
∧ ... ∧

(
Ms̄,t̄

Ms̄,t

∐
Msn,t |

Ms̄,t

Msn,t

)
⇒Msj ,t

∐Ms̄,t̄

Ms̄,t

for j = 1, ..., n .

This implies that time slices are independent of each other and optimal estimation

of Ms,t via the conditional expectation M̂s,t = E[Ms,t|Ms̄,t̄ \Ms,t] can be reduced

to M̂s,t = E[Ms,t|Ms̄,t\Ms,t] meaning that the interferogramMs̄,t at time t contains

all relevant information about Ms,t. Analogously it is possible to derive

Ms,tj

∐Ms̄,t̄

Ms,t̄

for j = 1, ..., n

based on the assumption Ms,t

∐ Ms̄,t̄

Ms,t̄
| Ms,t̄

Ms,t
. This corresponds to the assertion that

the time evolution of a single pixel contains all information necessary to charac-

terize that pixel thereby reducing a spatiotemporal estimation to a purely temporal

one:

M̂s,t = E[Ms,t|Ms̄,t̄ \Ms,t] = E[Ms,t|Ms,t̄ \Ms,t]

The assumptions are in general too strong to be accepted; nonetheless they are im-

plicit when instead of the full spatiotemporal situation only spatial or temporal as-

pects are respected. In the same spirit, it will be shown that for example the stacking
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of interferograms is stochastically optimal only under the hypothesis that the APS

behaves as spatiotemporal white noise and the deformation is constant.

Given a sequence of unwrapped interferograms interpreted as a function from

S × T → R and n� = nsnt measurements where ns is the number of pixels per

interferogram and nt is the number of interferograms, define

As, At the spatial and temporal evaluation operators for locations

{si}ns
i=1 or times {tj}nt

j=1 respectively.

A = As ⊗ At the spatiotemporal evaluation operator Af = {f(si, tj)}ns,nt

i=1,j=1.

BHK the RKHS with reproducing kernel B ⊗ BK for any bounded

linear operator B.

HKM
/HKX

the quotient RKHS with reproducing kernel equal to KM −KX

whereHKM
= HKY

⊕HKX
.

H⊗
X = Hs

X ⊗Ht
X the tensor product RKHS with reproducing kernel Ks

XK
t
X .

In general all involved quantities receive the additional superscript s or t if their

explicitly spatial or temporal nature is to be highlighted. The special case where

only one interferogram is used for estimation amounts to fixing a certain time t0 in

the spatiotemporal problem

σd = argmin
d∈H⊗

D

‖Ad− a‖2
AH⊗

M/H⊗
D
+ ‖d‖2H⊗

D
, (5.67)

restricting the involved operators accordingly and solving the minimization problem

only for t = t0. The estimator for the deformation is then

σs
d =argmin

ds∈Hs
D

‖Asds − as‖2AsHs
P⊕AsHs

N
+ ‖ds‖2Hs

D
(5.68)

= [(Ks
D(si, ·))ns

i=1]
T
[
((Ks

M)(si, sj))
ns

i,j=1

]−1

︸ ︷︷ ︸
Ξs:Rns→Hs

D

as (5.69)

Equivalently for a fixed location s = s0 the solution to a temporal filtering problem

can be written analogously with obvious change of notations.

σt
d =argmin

dt∈Ht
D

‖Atdt − at‖2AtHt
P⊕AtHt

N
+ ‖dt‖2Ht

D
(5.70)

=
[(
Kt

D(ti, ·)
)nt

i=1

]T [(
(Kt

M)(ti, tj)
)nt

i,j=1

]−1

︸ ︷︷ ︸
Ξt:Rnt→Ht

D

at (5.71)

By passing from the assumption d(·) ∈ HD with RK KD to the less general as-

sumption d(·) ∈ Hs
D ⊗Ht

D =: H⊗
D, i.e. d(s0, t0) =

∑∞
i=1 d

s
i (s0)⊗ dti(t0),‖d‖H⊗

D
<

∞, ds ∈ Hs
D, d

t ∈ Ht
D, equations 5.68 and 5.70 can be joined to form the spa-
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tiotemporal tensor spline equation 5.72

σd = Ξs ⊗ Ξta (5.72)

= argmin
d∈H⊗

D

‖As ⊗ Atd− a‖2 ⊗
i∈{s,t}

AiHi
P⊕AiHi

N
+ ‖d‖2H⊗

D

+ ‖As ⊗ idHt
D
d‖2AsHs

D⊗Ht
D
+ ‖ idHs

D
⊗Atd‖2Hs

D⊗AtHt
D
.

Theorem 81.3 in [21] together with the abstract spline representation of the solution

in terms of superpositions of kernel functions shows that, given trivial nullspace

ker(B) = {0}, equation 5.72 is equivalent to the following expression.

σd = Ξs ⊗ Ξta (5.73)

= argmin
d∈H⊗

D

‖As ⊗ Atd− a‖2
AM/DH⊗

M/H⊗
D
+ ‖d‖2H⊗

D

H⊗
M = (Hs

D ⊕Hs
P ⊕Hs

N)⊗
(Ht

D ⊕Ht
P ⊕Ht

N

)
The interpretation is as for normal abstract splines. The first term measures fidelity

to the data by quantifying the likelihood of the gap between predicted values As ⊗
Atd and an actually observed a. The second term assesses the likelihood of d itself

by smoothness criteria derived from assumptions on the function spaceH⊗
D.

§ Special cases

Three special cases are particularly useful in applications. Although the estimators

derived in this subsection are not strictly optimal in the sense defined above, they

share the property of being practically feasible and can circumvent problems arising

due to apriori unknown kernels.

Case 0: Deformations constant, APS white noise

This situation is purely hypothetical and serves more as an example than a practi-

cally relevant set of conditions and solutions. IfH⊗
D = Hs

D⊗Ht
D withHs

D spatially

uncorrelated white noise and Ht
D the semi-Hilbert space of constants with semi-

reproducing kernel Kt
D(ti, tj) = 1, H⊗

P = Hs
P ⊗ Ht

P is spatiotemporally white

noise andHN = ∅, then

σd = Ξs ⊗ Ξta

= argmin
d∈H⊗

D

‖As ⊗ Atd− a‖2AHP
+ ‖d‖2H⊗

D︸ ︷︷ ︸
0

= argmin
d∈H⊗

D

ns∑
i=1

nt∑
j=1

(d(si, tj)− aij)
2 d ∈ H⊗

D ⇒ d(si, tj) = d(si)

= argmin
d={d(si)}ns

i=1

ns∑
i=1

(
nt∑
j=1

(d(si)− aij)
2

)
(5.74)
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From the last line it follows that d(si, t) = (nt)
−1
∑nt

j=1 aij which is the temporal

average for each pixel si individually. This confirms the initial considerations that

established a purely temporal approach as sufficient when no spatial dependence

can be found between any of the random variables.

Case 1: Deformations confined in space

When no valid information about the expected smoothness of potential deforma-

tions is available at all andKD therefore unknown, estimation of d(·) is still possible

when the deformations are known to be zero outside a fixed spatial domain V ⊂ S.

Given this information, σd+p reduces to σp in (S ∩ V C) × T . It is then natural to

calculate σp based on data available at spacetimes (SM ∩ V C) × TM and estimate

d(·) by d̂(·) = σm − σp − σn on (SM ∩ V ) × TM . A subscript M indicates the

restricted sets of positions and times, for which measurements are available. Since

n(·) is assumed to be uncorrelated noise with mean zero and m(·) was measured

directly this simplifies to

d̂(·) = m(·)− σp(·) (5.75)

σp can be calculated with aid of equation 5.73 by setting σd to zero.

σp(·) = Ξs
P ⊗ Ξt

Pa (5.76)

Ξs
P = [(Ks

P (si, ·))ns

i=1]
T
[
((Ks

P +Ks
N)(si, sj))

ns

i,j=1

]−1

Ξt
P =

[(
Kt

P (ti, ·)
)nt

i=1

]T [(
(Kt

P +Kt
N)(ti, tj)

)nt

i,j=1

]−1

For practical evaluation it will be necessary to use a tensor representation of the data

a, achievable e.g. via singular value decomposition, to write explicitly

σp(·) =
min(ns,nt)∑

j=1

Ξs
Pa

s
j ⊗ Ξt

Pa
t
j. (5.77)

KP and KN need to be estimated from the data, which is to be restricted to (S ∩
V C)× T first. The complete implementation consists of the three steps

1. Choice of stable persistent scatterers {si}ns
i=1 ⊂ S ∩ V C .

2. Inferring kernels KP and KN from data.

3. Performing APS interpolation and denoising in S ∩ V
As all points in S∩V C are stable by assumption, step 1 reduces to finding a suitable

metric to evaluate the noise level associated to a pixel. The amplitude dispersion

index (ADI) [61]

ADI(s) =
μ(Amp(s))

σ(Amp(s))
(5.78)
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detailing the ratio of expected amplitudes μ(Amp) to amplitude standard deviations

σ(Amp). is a useful measure in this regard since high, stable amplitudes indicate

the presence of a single object in the resolution cell that dominates the backscattered

signal. Additions of smaller complex numbers corresponding to random processes

affecting the reflected wave in a noise-like way then leave the phase relatively un-

perturbed, see [91, p. 51] for more details. From a sequence of interferograms,

an ADI map is easily generated. Thresholding and thinning of points with good

ADI, typically < 0.25 [61], leads to a set of stable pixels with reliable phases —

these will be used as persistent scatterers and their coordinates form the sequence

{si}ns
i=1 ⊂ S ∩ V C .

Inferring KN is done as described in the previous subsection, i.e. KN is estimated

from phase deviations of a pixel from that pixel’s neighborhood’s average as

Ks
N(si, sj)K

t
N(tm, tn) =

δijδmn

nt

nt∑
l=1

⎛⎝ail − 1

|Nbd(i)|
∑

p∈Nbd(i)

apl

⎞⎠2

︸ ︷︷ ︸
ntσ2

i

where apl are the measurements (interferometric phases) at pixels with index p at

time l and Nbd(i) is a neighborhood of pixel i. Typically, KN ≈ 0 on the persistent

scatterers which permits ignoring the noise when trying to extract the correlation

structure of the APS. For Ks
P , the parametric approach is chosen and it is estimated

as

Ks
P (si, sj) =

∫ si

s0

∫ sj

s0

KΔP (r1, r2)dr1dr2 (5.79)

KΔP (ri, rj) = copt
1 exp

(
−‖ri − rj‖R3

copt
2

)
(5.80)

(copt
1 , copt

2 ) = argmin
(c1,c2)∈R2

+

‖{Ks
P (si, sj)}ns

i,j=1 − S‖2F (5.81)

where S is the empirical covariance matrix for the persistent scatterers at {si}ns
i=1.

Fitting Kt
P to the data can be done by adopting the parameter c2 in an exponential

covariance model and setting c1 = 1 to guarantee a correlation model close to the

observed one. One then has everything to directly implement equation 5.77. In

figure5.28 the spatial APS interpolation using the integral covariance model was

performed for single interferograms averaged in time. The term p̂ = σp(·) was first

calculated and then subtracted from the data yielding d̂ + n̂. Subsequently n̂ was

estimated by comparing d̂(s) + n̂(s) to the average value of its neighbors. This is

summarized in equation 5.82.

σp(·) =
ns∑
i=1

λiKP (si, ·) (5.82)
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⎡⎢⎣ λ1...
λns

⎤⎥⎦ =

⎡⎢⎣
∫ s1
s0

∫ s1
s0
KΔP (rr, r2)dr1dr2 . . .

∫ s1
s0

∫ sns

s0
KΔP (rr, r2)dr1dr2

...
. . .

...∫ sns

s0

∫ s1
s0
KΔP (rr, r2)dr1dr2 . . .

∫ sns

s0

∫ sns

s0
KΔP (rr, r2)dr1dr2

⎤⎥⎦
−1 ⎡⎢⎣ a1...

ans

⎤⎥⎦
Notice that the APS+noise estimation using the integral covariance is better than the

one provided for example by simple Kriging. There are clear effects of the topog-

raphy and anisotropies stemming from the measurement geometry that a standard

Kriging approach operating only on pixels or their three-dimensional coordinates

is not able to model. Performance differences are made more formal in the results

section. Figure 5.29 aims to highlight visually the quality of the APS interpolation.

Figure 5.28 also confirms that especially the turbulent parts of the APS are hard to

predict. This is why, as more interferograms are averaged together and the correla-

tion structure of the averaged APS gets smoother, both the APS estimations and the

deformation estimations get more reliable.

Case 2: Deformations confined in time

This is in a sense the most general situation for which estimation is still possible

in the framework presented in this monograph. Here no apriori information about

the behavior of noise and atmospheric effects is supposed to be accessible and the

spatial extent of the deformations is unknown. Assuming the deformations to occur

only outside a certain time interval V ⊂ T , all measurements m(vi), vi ∈ SM ×
(TM ∩ V ) consist only of noise and APS enabling estimation of their covariance

functions. The set of empirical covariance functions Ks
P , K

t
P , K

s
N , K

t
N needs to

be completed by adding Ks
D, K

t
D based on knowledge of the underlying physics

and implied spatiotemporal correlation structure of the motion phenomena to be

observed. Equation 5.73 can then be used directly.

It is worth noting, however, that the quality of the solution to this ill posed signal

extraction problem depends on the validity of assumptions regarding the motion

patterns encoded in the choice of Ks
D and Kt

D. Two problems may arise:

i) H⊗
D := Hs

D⊗Ht
D with RKKs

DK
t
D does not contain the deformation functions

d(·). If the prespecified structure of the deformation is ’too erroneous’, the

estimated deformations σd(·) ∈ H⊗
D differ from the real ones systematically.

ii) Ks
DK

t
D is ’too similar’ toKs

PK
t
P orKs

NK
t
N . If the spatiotemporal structure of

the deformation is virtually indistinguishable from that of the APS or noise,

the amount of confidence awarded to the results of signal separation needs to

be evaluated critically.

The author suggest to choose the squared exponential kernel Ksq(t1, t2) =
c0 exp (−(‖t2 − t1‖/r0)2) , c0, r0 constants, to model smooth behavior as f ∈ HKsq

implies f to be infinitely differentiable. Jagged and irregular behavior will be as-

sociated to the exponential kernel Kexp(s1, s2) = c0 exp (−‖s2 − s1‖/r0) , c0, r0
constants, as f ∈ HKexp implies f to be continuous but not differentiable [39, pp.

88-89]. For deformations like locally incohesive glacial motion that are nonrapid
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Figure 5.28: Example of APS and deformation estimation performance using the RKHS approach. The region featured in

the interferogram is mostly stable. Any nonzero guesses for the deformation are erroneous and optimally the predicted APS

plus noise values should be close to the original interferogram. The red squares in the first image showcase the basepoints

(PSs), over which the APS is interpolated. A clearer image of the estimator’s performance and topography dependence can be

found in figure 5.29. The zone of persistent phase change identifiable in the upper part of the stacked interferogram covering

4 hours is of unknown origin but may actually be due to local motion as the area under question is an inclined ice-covered

slope topographically close to the glacial scarp. It is unlikely to be induced by locally confined melting or snow accumulation

processes as the detected phase changes persistently reappear during several consecutive days.
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Figure 5.29: The data points in the left panels provide values of the APS at certain locations. These values are used to predict

the APS at all other locations using the RKHS approach and the standard method of natural neighbor interpolation. The

ground truth is plotted in the second column; as the regions are mostly stable in the time interval considered, the sum of

APS and noise is equal to the whole interferogram. The differences in interpolation performance are especially noticeable in

regions with severe topographical changes.

w.r.t the sampling frequency it seems reasonable to assume strong autocorrelation

in time but not in space, i.e. d(·) ∈ H⊗
D with RK KD = Ks

expK
t
sq. Together with

the often turbulent nature of the APS this guarantees good separability. Other de-

formation phenomena like slow creep processes affecting widespread regions of

homogeneous soil are represented more faithfully by elements of an RKHS with

RK KD = Ks
sqK

t
sq. in this case signal separation will likely suffer from problem

ii) in the above list since the assumed spatial structures of APS and deformation are

similar.

Since it was not assumed that the points used for estimation were stable or of high

phase quality, it is not necessary to restrict attention to the persistent scatterers.

Instead one may directly write down the solution to

σd(·) = argmin
d∈H⊗

D

‖As ⊗ Atd− a‖2
A(H⊗

M/H⊗
D)

+ ‖d‖2H⊗
D

(5.83)

after inference of kernels has been performed as in case 1. Then

σd(·) = Ξs ⊗ Ξta (5.84)

Ξs = [(Ks
D(·, si))ns

i=1]
T
[
(Ks

M(si, sj))
ns

i,j=1

]
︸ ︷︷ ︸

Σs
M

Ξs =
[(
Kt

D(·, ti)
)nt

i=1

]T [(
Kt

M(ti, tj)
)nt

i,j=1

]
︸ ︷︷ ︸

Σt
M
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Ks
M(si, sj) = Ks

D(si, sj) +

∫ si

s0

∫ sj

s0

Ks
ΔP (r1, r2)dr1dr2 + δijσ

2
i

Kt
M(ti, tj) = Kt

D(ti, tj) +Kt
P (ti, tj) + δij

Employing theorem 3.31 from subsection 3.1.3, it is possible to evaluate σd(·)
at all locations {seval

i }ns
eval

i=1 and times {teval
j }nt

eval

j=1 simultaneously in a computation-

ally efficient way. When denoting by σeval
d the Rneval

s ⊗ Rnt
eval matrix with entries(

σeval
d

)
ij
= σd(s

eval
i , teval

j ), then

σeval
d = (Qs)∗ (Σs

M)+ a
(
Σt

M

)+ (
Qt
)

(5.85)

a ∈ Rns ⊗ Rnt : The phase observations in form of a ns × nt matrix

Qs ∈ Rns ⊗ Rns
eval : Matrix with entries (Qs)ij = Ks

D(si, s
eval
j )

Qt ∈ Rnt ⊗ Rnt
eval : Matrix with entries (Qt)ij = Kt

D(ti, t
eval
j )

Equation 5.85 speeds up the evaluation significantly and reduces the memory re-

quirements to a level that can be handled by ordinary office computers. As a matter

of fact, the author was unable to implement and evaluate computationally unopti-

mized estimators7 at all on ordinary personal computers for the spatiotemporal case.

The results of using σeval
d as a deformation estimate are collected in figure 5.30.

It is again necessary to use numerical integration to calculate the double integrals

in an efficient way. Please note that generally the performance of the deformation

estimate will be worse compared to the one exhibited in case 1, equation 5.82.

This is due to the fact that the assumptions are weaker: the method just developed

presupposes virtually no prior structure and is usable quite generally whereas the

spline estimator for case 1 relied heavily on the deformations only occurring in a

confined region in space.

§ TRI MAPS

To conclude, we propose to integrate cases 1 and 2 as alternative subprocesses into

an algorithm called TRI-MAPS, that tackles the mitigation of atmospheric phase

screens in terrestrial radar interferometry.

TRI MAPS

1. For a series of interferograms, calculate the ADI maps and associate to each

pixel its three-dimensional coordinates.

2. Perform parametric kernel inference to determine the spatiotemporal kernel

K⊗
P = Ks

PK
t
P and the noise kernel K⊗

N = Ks
NK

t
N from measurements on the

identified PS..

7Here, an estimator is considered to be ’unoptimized’ if it is of the same form as in equation 3.15

and the involved matrices are not expressed as tensor products of simpler matrices.
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Figure 5.30: Unwrapped but not otherwise preprocessed interferograms at three different times and the tensor splines for

deformation, APS and noise respectively. No stability assumptions have been made for the scene; the spatiotemporal signal

separation was executed as described in the sequence of steps named as ’case 2’ starting on page 265. The first three rows show

the glacial tongue for which deformation actually occurs whereas the second set of rows show the tensor spline estimations

for a stable area. Comparing the estimations recorded in them to the average of 24 h of interferograms, one can notice a

tendency to overestimate the size of small deformations and to underestimate the size of big, locally confined deformations.

The results are nonetheless significantly better than simple averaging in time as documented on later occasion in figure 5.33.

Note the different color scales.
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3. Depending on stable areas being known or unknown, either solve

σd = m− σp − σn σp(·) = argmin
p∈A−1a∩H⊗

P

‖p‖2H⊗
P

for averaged interferograms or

σd(·) = argmin
d∈H⊗

D

‖As ⊗ Atd− a‖2
A(H⊗

M/H⊗
D)

+ ‖d‖2H⊗
D

for the whole sequence where the kernel K⊗
D = Ks

DK
t
D represents prior

knowledge about the deformation process.

4. If the interferograms are too big to solve the problems in step 3, apply step 2

and 3 locally to spatiotemporal subsets {subi}npart

i=1 ⊂ S×T of interferograms.

Then patch the local estimations together using an overlapping partition of

unity {ϕi}npart

i=1 on the indexset S × T such that
∑npart

i=1 ϕi(·) = �S×T (·) and

each ϕi has support exactly on subset subi.

This concludes the description of algorithms for atmospheric correction. At this

point we want to remark in the sense of an outlook that it is entirely possible to

swap what one subjectively considers noise and what signal thereby shifting focus

towards the APS as an entity of interest in itself. The amount of information that

TRI data can provide about microlocal changes in meteorology and tropospheric

dynamics is significant and to just eliminate it from further processing seems waste-

ful. In fact, by changing slightly the formulation of the abstract spline interpolation

problem

σp(·) = argmin
p∈A−1a∩HP

‖p‖2HP
(5.86)

A : Measurement operator, evaluation at stable points {si}ns
i=1

a : Data consisting of ns atmospheric phase delays at locations {si}ns
i=1

HP : RKHS pf phase delays, has reproducing kernel KP

to include instead of the APS P : Ω×R3 → R the differential field ΔP : Ω×R3 →
R and designating it as the target of estimation, one recovers problem 5.87.

σΔP (·) = argmin
Δp∈(AL)−1a∩HΔP

‖Δp‖2HΔP
(5.87)

L : Operator of line integration from s0 to a variable s ∈ R3

HΔP : RKHS of differential phase delays, has reproducing kernel KΔP (5.88)

where A, a are as before and (ALΔP ) = {∫ si
s0
Δp(r)dr}ns

i=1. Relating the field

ΔP of differential atmospheric phase delays to the field of refraction index changes

Δn : Ω× R3 → R via

ΔP(·)(s) =
4π

λ
Δn(·)(s) (5.89)
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Figure 5.31: The left panel shows a randomly generated landscape. The instrument’s position is s0 = [0, 0]T and the

measurements in the second column are generated via line integration from s0 to the surface’s coordinates s through the

field ΔP illustrated in the third column. The estimations of ΔP derived as solutions to problem 5.87 are plotted in column

4. Note that the estimation errors grow rapidly when leaving the volume through which P was measured. The results are,

however, promising.

for λ the wavelength of about 17.6 mm and s ∈ S a location enables some type of

TRI meteorology by solving the tomography problem 5.87 for the field of refraction

changes Δn(·)(·). The solution to abstract spline problem 5.87 can be written down

explicitly and in closed form. It is

σΔp(·) =
ns∑
i=1

λi

∫ si

s0

KΔP (·, r)dr (5.90)⎡⎢⎣ λ1...
λns

⎤⎥⎦ =

⎡⎢⎣
∫ s1
s0

∫ s1
s0
KΔP (rr, r2)dr1dr2 . . .

∫ s1
s0

∫ sns

s0
KΔP (rr, r2)dr1dr2

...
. . .

...∫ sns

s0

∫ s1
s0
KΔP (rr, r2)dr1dr2 . . .

∫ sns

s0

∫ sns

s0
KΔP (rr, r2)dr1dr2

⎤⎥⎦
−1 ⎡⎢⎣ a1...

ans

⎤⎥⎦
or in more compact notation denoting h(·) = ∫ ·

s0
KΔP (·, r)dr as

σΔp(·) = [h1(·), ..., hns(·)]

⎡⎢⎣ 〈h1, h1〉HΔP
. . . 〈h1, hns〉HΔP

...
. . .

...

〈hns , h1〉HΔP
. . . 〈hns , hns〉HΔP

⎤⎥⎦
−1 ⎡⎢⎣ a1...

ans

⎤⎥⎦ .
(5.91)

Figure 5.31 records some solutions for synthetic examples. Potentially, one might

try to extract temperature and water vapor changes by inverting equation 5.16 but

this constitutes a severely ill-posed problem that is left for future work.
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5.2.6 Results and comparisons
It is important but difficult to check the validity of any methodology for filtering of TRI-data
as ground truth is available only for the regions known to be stable. Alternatively one may
simulate deformation data, which acts as synthetic nonzero ground truth when mixed into
measurements known to consist only of APS and noise. In a comparison between TRI-MAPS
and more common methods based on the fitting of parametric models, TRI-MAPS exhibits
superior performance as measured by the RMSE both in stable and unstable areas. It is
possible to choose kernels and probabilistic assumptions in a way such that the RKHS based
approach reproduces the easier models like stacking, Kriging, or topography induced phase
variation models. Therefore one is able to write down the specific set of assumptions under
which they are stochastically optimal.

A completely hypothesis free check of estimation performances is not possible

given the state of technology. TRI is as of now the only ground based geodetic

technique capable of surveying spatially densely areas of up to 100 km2 in less than

a minute and with high repetition rates. The spatial density of GNSS measurements

and total station measurements (per minute) is not high enough and terrestrial laser-

scanning exhibits a whole other set of unresolved problems and comparability issues

when displacements vectors are to be extracted from point clouds — apart from the

fact that these systems are influenced by atmospheric effects as well. Therefore,

ground truth covering the whole area essentially needs to come from apriori knowl-

edge about the deformation behavior that is occurring and not from other measure-

ment systems.

When stable areas are surveyed, one may assume that any phase changes docu-

mented in interferograms are due to atmosphere and noise. The ground truth to

compare the deformation estimation against should then be zero. The downside of

this assumption is that the ground truth is always zero and the root mean square error

is the RMSE1 = ‖σd‖2L2 which implies that no algorithm, no matter how sophis-

ticated or stochastically justified, would ever outperform the trivial but practically

useless estimator that guesses a deformation of zero uniformly and independently of

observed data. Evaluating performance on stable areas only would introduce a bias

towards assessing those estimators as lacking in quality that actually at some point

assert the presence of deformation in the TRI signal. Optimizing w.r.t. this perfor-

mance measure would lead to estimators that consistently underestimate deforma-

tion and in a sense minimize the α-error of rejecting stability when it is actually the

underlying ground truth.

To prevent this, the estimator also has to be tested on regions including nontrivial

deformations dtrue(·) to quantify RMSE2 = ‖σd − dtrue‖2L2 . Since such regions do

not exist in the data available for this dissertation and can hardly be provided at all,

we will simply simulate dtrue as a spatiotemporal random field dsimu, superimpose it

on data M = P + N coming from stable regions and assess the performance by

comparing the estimations to this synthetic ground truth. The choice of probabil-

ity distribution for the simulated field of deformations dtrue impacts the estimation

performance since the spline σd is explicitly constructed from what one considers

apriori to be the correlation functions that determine the spatiotemporal structure of

d(·). The RKHS approach shares this problem with the other estimators commonly

used in the literature that all propose parametric or nonparametric models of equal
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likelihood on either the APS or the deformations. It should be noted that by tuning

the probability distribution of dtrue, one can make the spline estimator look almost

arbitrarily bad or even stochastically optimal depending on how aligned the prior

guess for K⊗
D and the true underlying deformation structure are. We will therefore

make explicit what type of deformation model we use and in how far the estimators

are based on misspecified assumptions. This second performance measure is then

related to the β-error of wrongly accepting stability and the relative importance of

RMSE1 vs RMSE2 depends on the concrete application and should be subject to

a risk-oriented discussion.

Figure 5.32 shows an exemplary simulated deformation field and its evolution over

time. The spatiotemporal behavior is indicative of the correlation model that is used

to generate samples of dtrue for performance evaluation purposes.

Figure 5.32: An exemplary deformation field detailing coordinate changes at different times. Each image reflects the sum

of deformations that occurred during the 2-minute interval preceding the timestamp and is thereby of the same incremental

form as the deformations underlying interferograms. The correlation model is squared exponential in space and time. It will

be used generically to generate synthetic ground truth if nothing to the contrary is mentioned.

It was explained before that the APS consists of a turbulent part that approximately

averages out over time and a persistent, smooth part that evolves over time scales of

several hours and reflects changes in average meteorological parameters. The latter

one is easier to predict and estimation performance gets better if the algorithms for

APS estimation act on more data that they can potentially average. The graphs in

figure 5.33 compare simple stacking, the RKHS approaches, second order polyno-

mial fitting, and a multiple regression model based on elevation information (see

[104]) in this respect.

Several methods other than the RKHS approach have been developed in the liter-

ature under different assumptions. They span the whole range from parametric to

nonparametric estimators and from estimators that use only temporal information

to ones that employ primarily spatial information. Approaches based on Kriging of

the APS over stable points have become more widespread recently although in con-

trast to the RKHS method presented here, they incorporate only piecewise constant

deterministic models for the deformation and second order stationary covariances

[212, 13]. Most of the methods are data-driven and it is possible to find an RKHS

embedding of the estimation problem in such a way that these correction methods

emerge as splines in that framework enabling a clear stochastic interpretation.
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Figure 5.33: The performance of RKHS-based methods (spatiotemporal splines as in cases 1 and 2 in subsection 5.2.5),

second order polynomial fitting, simple stacking, and other methods for extraction of deformations. The two plots on the

top were generated by evaluating 24 h worth of data by passing averaged interferograms of increasing integration time to the

algorithms. The region of interest is the same one as the bottom region plotted in figure 5.21. Nonzero ground truth has been

simulated as described before and illustrated in figure 5.32. Note that the RMSE in the moving areas does not converge to zero

but instead to the standard deviation of the movement; as from an averaged interferogram only a constant estimator for the

deformations is extracted, faithful reconstruction of the time-varying ground truth is not possible. The second row presents

the results of several algorithms for full spatiotemporal estimation of the sequence of two-dimensional deformations. The

trivial model consists in taking the individual interferograms phase values directly as estimators for the deformation without

further processing. Bandlimiting is described in subsequent explanations. Note the different length scales of the y-axis.

Stacking

Explanation: Interferograms are simply averaged in time; potential spatial

correlations are ignored.

Equation: σd(t) =
1
nt

∑nt

j=1m(ti)

RKHS embedding:

σd = argmin
d∈Ht

D

‖Atd− at‖2AtHt
P

Ht
M = Ht

D ⊕Ht
P

Ht
D = Hilbert space of constants with RK Kt

D(t1, t2) = 1[170, p. 71]

AtHt
P = Rnt , Hilbert space of white noise residuals

Stochastic interpretation: This approach is optimal under the assumption that

the atmosphere behaves as white noise and the deformations are constant in

time. If the topography is trivial and the APS purely turbulent, the method

can work. Otherwise it is not recommended.

Proof: We know that d ∈ Ht
D is a constant and at the same time σd =

argmin
d∈Ht

D

∑nt

i=1 [d(ti)− ati]
2
= argmin

c0∈R

∑nt

i=1 [c0 − ati]
2
= 1

nt

∑nt

i=1 ai.
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Polynomial fitting

Explanation: A second degree polynomial in range is fitted to explain the

APS observed on stable persistent scatterers and predict it at other locations,

see [152].

Equation: σd(r, az) = m(r, az)− σp(r)

σp(r) = [1 r r2]
(
F TF

)−1
F Tas , (F )ij = (ri)

j−1

RKHS embedding:

σp = argmin
p∈Hs

P

‖Asp− as‖2AsHs
N

Hs
M = Hs

D ⊕Hs
P ⊕Hs

N

Hs
D = unspecified Hilbert space of deformations

Hs
P = Hilbert space of second order polynomials in range.

Has kernel Ks
P (ri, rj) = c20 + c21rirj + c22r

2
i r

2
j .

AsHs
N = Rns , Hilbert space of white noise residuals

Stochastic interpretation: This approach is optimal under the assumption that

the local phase delay varies linearly in range and therefore integrates to a

second order polynomial that forms the APS. The stable points are known and

residuals between predicted APS and observed phase values are uniformly

white noise on these parts. If the topography is trivial, the APS highly regular

and the area is small, the method can work.

Proof: We know that p ∈ Hs
P is of the form p(r) = c0 + c1r +

c2r
2 and at the same time σp(r) = argmin

p∈Hs
P

∑ns

i=1 [p(si)− asi ]
2 =

argmin
c0,c1,c2∈R

∑ns

i=1 [c0 + c1ri + c2r
2
i − asi ]

2
for which the solution is simply the

usual expression (F TF )−1F Tas known from adjustment theory.

High pass filtering

Explanation: The signal is split into a part with high spatial frequencies and

a part with low spatial frequencies [34].

Equation: σd =
(
I −F∗

�[−b,b]F
)
m F Fourier transform

RKHS embedding:

σd = argmin
d∈Hs

D

‖d−m‖2Hs
P

Hs
M = Hs

D ⊕Ht
D

Hs
P = Paley Wiener space of bandlimited functions with kernel

Ks
P (si, sj) =

π

b
sinc(b(si − sj))[20, p. 304]

Hs
D = L2(S)/Hs

P , Hilbert space of deformations that have no
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frequencies less than |b|

Stochastic interpretation: This approach is optimal if there is no noise, the

deformations occur only locally and the APS is smooth. If the deformation

and the APS have non-disjoint support in frequency space or the deformations

behavior is unknown, it is not usable.

Proof: Notice that PHs
P
= F∗

�[−b,b]F : L2(S) → Hs
P is an orthogonal pro-

jection as P ∗
Hs

P
= P 2

Hs
P
= PHs

P
as one can easily check using unitarity of F .

The set of functions f : PHs
P
f = f is precisely those f with frequencies con-

tained in the interval [−b, b] and therefore PHs
P

is the orthogonal projection

ontoHs
P [93, p. 103]. Consequently PHs

P
m satisfies

PHs
P
m = argmin

p∈Hs
P

‖p−m‖2L2(S)

and I−PHs
P

is the projection onto L2(S)/Hs
P
∼= Hs

D. The best reconstruction

of m by functions in Hs
D is given by (I − F∗

�[−b,b]F)m. As ‖ · ‖L2(S) and

‖ · ‖2Hs
P

coincide for elements ofHs
P [20, p. 304], the claim follows.

These and other methods are illustrated in figure 5.34 which shows estimated at-

mospheric phase screens and deformations for two exemplary interferograms with

known , but in the case of the second interferogram, synthetic, ground-truth. As

is clearly visible and quantified more objectively in figure 5.33, the deformation

estimations provided by stacking and parametric modelling of the APS based on

observations of the phase on stable points are not very accurate. The method de-

scribed as RKHS case 2 does not use any potentially inaccessible prior information

about the stability of the observation points and the corresponding lack of assump-

tions on the one hand improves the generality under which it is applicable but also

degrades estimation results. The RKHS approach that also integrates stability in-

formation performs best and exhibits realistic estimations of APS and deformations

although bad signal-to-noise ratio and unwrapping errors can deteriorate the quality.
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Figure 5.34: The estimators for APS and deformation previously described in the text. They act on 1 h of data whose average

is plotted in the first row. The interferogram in column 3 is a superposition of the non-zero ground truth plotted in column

4 and the APS shown in column 1. The reference for the regression model featuring explicit dependence of the APS on the

elevation is [104].
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Chapter 6
Conclusions and outlook

This monograph investigated, explained, and advanced a Hilbert space-based ap-

proach to signal processing, in which spaces of functions are furnished with proba-

bility distributions to solve challenging and often ill-posed estimation problems by

reformulating them as optimization tasks in infinite-dimensional functional spaces.

Our main contributions are the introduction of a probabilistically motivated non-

parametric algorithm for a data-driven choice of the Hilbert space most suitable for

estimation and the application of the theory to the problem of separating signal and

noise in terrestrial radar interferometry.

An introductory chapter aimed at familiarizing the reader with functional analytic

notions and concepts within the context of low dimensional spaces for reasons of ac-

cessibility. After introducing some standard notation and basic theorems expound-

ing Hilbert spaces and linear operators on them, light was shed on their relationship

to signal processing by showing that optimal approximation tasks can equivalently

be formulated as norm-minimization problems. In this sense, the choice of mod-

els for representation of signals, the choice of basis elements in a Hilbert space,

optimality in the least-squares-sense and orthogonal projections are all related to

problems of interpolation, smoothing, and efficient representation of observational

data. With the help of spectral theory, we derived and presented new results that

relate certain transforms of a covariance operator’s spectrum to equivalently trans-

formed stochastic processes. Employing the exact same functional calculus allowed

to solve physically motivated deterministic differential equations as well; estimating

a system’s state subject to physical constraints and uncertainty in the observations

was shown to be feasible and simple for exemplary diffusion-type problems. The

duality between stochastic and deterministic perspectives is explorable especially

well in the framework of reproducing kernel Hilbert spaces. They allow the cou-

pling of differential equations, correlation structures and feature representations.

Several equivalent formulations of optimization problems were investigated and

their relationship to geostatistical standard methods was made explicit. Extending

these optimization problems such that their solutions could be expressed as abstract

splines allowed the target of estimation to be related to a prior and to the given

measurements nontrivially via linear operators. Direct sums, quotients, and tensor
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products of RKHS lead again to RKHS and widen the applicability of the abstract

splines framework to include estimation of function tuples, equivalence classes and

tensors. We presented new memory efficient and cheaply implementable equations

for tensor splines that facilitate spatiotemporal estimation infeasible otherwise. In a

similar spirit, sequential approximation schemes for inverses of nonfactorizable ker-

nel operators were discussed primarily from the perspective of computational load

and practicability before matters of kernel construction and design were touched

upon. We proved the relevance of the RKHS approach by solving nonobvious

geodetically motivated problems that involved vector fields, tomographic imaging,

and nonlinear hypothesis testing.

We proposed a novel solution to the open question of how to actually infer the

kernel uniquely determining an RKHS in the absence of prior knowledge of its

parametric form. After reviewing abstract harmonic and operator-theoretic notions

of positivity, we introduced a Wishart-type probability distribution over the convex

cone of all kernels by expressing kernels as superpositions of simple tensors com-

posed from the eigenfunctions of a prior guess’s associated kernel operator. This

representation led to a matrix-valued coefficient structure that has to be determined

in the kernel’s stead. Ensuring positive definiteness, a necessary and sufficient key

requirement for a two-variable function to be a reproducing kernel and determine

an RKHS, amounts to introducing positivity constraints on the coefficient matrix’s

spectrum. Under these spectral constraints, solving for the optimal coefficients is

a numerically challenging task for which we suggested an iterative Fisher-scoring-

type algorithm that, bar occasional convergence problems, leads to nonparametric,

highly complex kernel estimations that are consistent with the observed data and

likely under some freely selectable prior assumptions. We showed that they out-

perform popular parametric families of kernels in both reconstructive flexibility and

estimation quality in practical applications.

Investigating our algorithm further revealed ties to semidefinite programming and

enabled us to extend the kernel inference procedure to respect linear equality con-

straints and lessen the requirements on the basis functions into which the kernel

is supposedly decomposable. We showed that this approach is suitable to solve

instationary spatial estimation problems intractable with other methods and empha-

sized its generality as well as its practical applicability by expressing the problem

of variance components estimation in terms of our kernel inference framework.

Assembling the tools devised previously in the monograph, we tackled and solved

a difficult signal separation problem arising regularly during TRI-based deforma-

tion monitoring of geohazards in mountainous terrain. This problem featured tur-

bulence induced artifacts and instationary long-term drifts highly autocorrelated in

time and space with a strong but not deterministically expressible dependence on the

topography. Both of these noise components differed from the deformation signal

to be extracted only in terms of their probability distribution. By embedding spa-

tiotemporal sequences of interferograms into infinite-dimensional RKHS exhibiting

a tensorproduct structure, we prove that it is possible to explicitly pose and solve



stochastically motivated optimization problems whose solutions are optimal estima-

tors for the spatiotemporal evolution of deformations noisily observed by terrestrial

radar interferometry.

In the most general formulation, our approach does neither assume the accessibility

of prior knowledge about stable areas nor simple, parametrically describable corre-

lation structures of the artifacts to be filtered out. Instead, it splits the full sequence

of measurements into guesses for noise and signal based on a detailed analysis of

the correlation structure of TRI-data resulting in a data-driven learning scheme that

improves with the amount of data observed. Our method is neither expressible as the

fitting of a parametric function nor as a simple geostatistical procedure of Kriging-

type and, in fact, properly generalizes and contains both of these approaches that

were previously proposed in the literature for solving the problem of signal sepa-

ration in TRI-processing. We reformulated the most common previously proposed

solutions in an RKHS framework enabling an explicit stochastic interpretation that

allowed uncovering their underlying probabilistic assumptions and straightforward

comparison. We found that in comparison to the widely employed temporal averag-

ing, our method’s root mean square error converges to zero more reliably and faster

by almost a factor of 10. Although less drastically, the method also outperformed

a host of other approaches ranging from topography-based regression models to

spectrum-based filters as tested with the help of a real-world dataset gathered dur-

ing a monitoring campaign in the Swiss Alps that features distances of up to 8 km
and elevation differences of up to 3 km.

The author hopes that the monograph suitably demonstrated the unifying power

and potential of reproducing kernel Hilbert spaces for spatiotemporal statistics and

its many uses for geodetic data. There is still much to improve and even more

to discover. Questions like the following are both interesting from a theoretical

perspective and practically relevant:

• Can one implement a holistic joint inference on complex radar interferometric

data and avoid splitting amplitude and phase information?

• Is it possible to implement rigorous stochastically driven linear dynamics of

probability distributions and use them to do inference for physical systems?

• Can one efficiently optimize over arguments in kernels to find optimal exper-

iment designs?

• Are there better priors on covariances than the Wishart distribution?

• What exactly is the relationship between kernels, dynamical systems, physi-

cal laws and learning?

In the end, the effort put into them might very well contribute to a general frame-

work for optimal monitoring and uncertainty quantification. At the very least, im-

mediate improvements in specific instances of typical engineering geodetic tasks

are to be expected. These prospects are well worth pursuing.
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