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The effect of transmission-line dynamics on a globally synchronizing
controller for power inverters

Jean-Sébastien Brouillon, Marcello Colombino, Dominic Groß and Florian Dörfler

Abstract— In this work, we analyze a dispatchable virtual
oscillator control (dVOC) strategy for grid-forming power
inverters that ensures almost global synchronization of inverter-
based AC power systems when the dynamics of the transmission
network are neglected, i.e., if an algebraic model of the
transmission lines is used. While this approximation is often
justified for conventional power systems, the dynamics of the
transmission lines can compromise the stability of an inverter-
based power system. Therefore, in this article, we use tools from
singular perturbation theory to construct a Lyapunov function
candidate and explicit bounds on the controller gains that
guarantee global convergence to the set of steady-states for the
full power-system with transmission line dynamics. Moreover,
we show that the only undesirable steady-state is unstable.

I. INTRODUCTION

The electric power grid is undergoing a period of unprece-
dented change. A major transition is the replacement of bulk
generation based on synchronous machines by distributed
generation interconnected to the grid via power electronics
devices fed by renewable energy sources. This gives rise to
scenarios in which either parts of the transmission grid or an
islanded distribution grid may operate without conventional
synchronous generation. In either case, the power grid faces
great challenges due to the loss of rotational inertia and the
self-synchronizing dynamics of synchronous machines.

The problem of synchronization has been widely studied in
the recent literature. Most of the common approaches study
droop control [1], [2]. Other popular approaches rely virtual
oscillator control (VOC) [3]–[7]. However, standard VOC
cannot be dispatched and track pre-specified power and volt-
age setpoints. To address this challenge, the authors recently
proposed a dispatchable virtual oscillator control (dVOC)
strategy [8], [9] with almost global stability guarantees.

In order to simplify the nonlinear stability analysis, the
dynamic nature of transmission lines is often neglected in
the study of power system transient stability and synchro-
nization. In most of the aforementioned studies, the network
of transmission lines is modeled as an admittance matrix
that provides an algebraic relationship between voltages
and currents. This approximation is commonly used in the
analysis of power systems, for instance in the form of the
well-known phasor approximation, and can be made rigorous

This work was partially funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement N◦ 691800. This
article reflects only the authors’ views and the European Commission is not
responsible for any use that may be made of the information it contains.

J-S Brouillon, D. Groß, and F. Dörfler, are with the Automatic Con-
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using time-scale separation arguments [10]. This approxima-
tion is justified in a traditional power network, where the
bulk generation is provided by synchronous machines with
very slow time constants (seconds). As power inverters can
be controlled at much faster time-scales (milliseconds), the
transmission line dynamics can compromise the stability of
the power-network. This phenomenon has been noted in [2],
[11] for a droop controlled micro-grids and can be verified
experimentally for all control methods listed above. In [12]
small signal stability analysis for a steady state with no power
flow is used to obtain insightful stability conditions for droop
control in combination with a dynamic line model.

In this work we study the dVOC proposed in [8]. In [9] it
is shown that dVOC renders power inverters interconnected
through an algebraic network model almost globally asymp-
totically stable with respect to a synchronous steady-states
that corresponds to a desired solution of the power-flow
equations. We stress that these stability guarantees are not
restricted to operating points with zero relative angles (i.e.,
zero power flow). The aim of this paper is to provide a first
step towards establishing the same stability guarantees when
including line dynamics1. To this end, we use tools from
singular perturbation theory to construct a Lyapunov function
and explicit bounds on the controller gains that guarantees
convergence of the full power-system with transmission line
dynamics. Moreover, we show that the only undesirable
steady-state of the system is unstable.

Notation
The set of real numbers is denoted by R, R≥0 denotes

the set of nonnegative reals. For column vectors x ∈ Rn
and y ∈ Rm we use (x, y) = [xT, yT]T ∈ Rn+m to denote a
stacked vector, In denotes the identity matrix of dimension n,
⊗ denotes the Kronecker product, ‖x‖ denotes the Euclidean
norm, and ‖x‖C := minz∈C‖z − x‖ denotes the distance of
a point x to a set C. Given θ ∈ [0, 2π] the 2D Rotation
matrix is denoted by R(θ), and we define J := R(π/2) and
Jn := In ⊗ J . Given a matrix A, AT denotes its transpose,
‖A‖ denotes its induced 2-norm, and A � 0 denotes that
A is positive definite. Moreover, we use ϕf (t, x0) to denote
the solution of d

d tx = f(x) at time t ≥ 0 starting from the
initial condition x(0) = x0 at time t0 = 0.

II. MODELING AND CONTROL OF AN INVERTER BASED
POWER NETWORK

In this section, we introduce the model of the inverter-
based power grid that will be studied throughout the paper.

1Stability conditions that ensure global asymptotic stability including line
dynamics can be found in the preprint [13].



A. Inverter-based power grid

We study the control of N three-phase inverters intercon-
nected by M resistive-inductive transmission lines, i.e., it
is assumed that the shunt admittances of the transmission
lines can be neglected. All electrical quantities in the network
are assumed to be balanced. This allows us to work in αβ
coordinates, which we obtain by applying the well-known
Clarke transformation to the three-phase variables [14]. To
each inverter we associate a terminal voltage vector vk ∈ R2,
that can be fully controlled, and an output current io,k ∈
R2 flowing out of the inverter and into the network. We
model the transmission network as a simple, undirected, and
weighted graph G=(N , E ,W), where N ={1, ..., N} is the
set of nodes corresponding to the inverters, E ⊆N×N , with
|E| = M , is the set of undirected edges corresponding to the
transmission lines. To each transmission line, we associate
an impedance matrix Zl := I2rl + ω0J`l and an admittance
matrix Yl := Z−1l with

‖Yl‖ =
1√

r2l + ω2
0`

2
l

, (1)

where rl ∈ R>0 and `l ∈ R>0 are the resistance and
inductance of the line l ∈ {1, . . . ,M} respectively, and
ω0 ∈ R≥0 is the nominal operating frequency of the power
system. The oriented incidence matrix of the graph is denoted
by B and, duplicating each edge for the α and β components,
we define B := B ⊗ I2. The graph Laplacian matrix is
defined as L := B diag({‖Yl‖}Ml=1)BT, where ‖Yl‖ is the
weight associated with the transmission line with index
l ∈ {1, . . . ,M}. Moreover, we define the extended Laplacian
L := L ⊗ I2, the resistance matrix RT := diag({rl}Ml=1) ⊗
I2, the inductance matrix LT := diag({`l}Ml=1) ⊗ I2, the
impedance matrix ZT := diag({Zl}Ml=1), and the steady-
state admittance matrix of the network Y := BZ−1T BT.
The network couples the terminal voltages of the inverters
v := (v1, . . . , vN ) and line currents i := (i1, . . . , iM ) as
follows

LT
d

d t
i = −RT i+ BTv. (2)

We also define the vector of inverter output currents as io :=
(io,1, . . . , io,N ) = B i. We require the following standing
assumption which is typically satisfied for transmission lines
at the same voltage level.

Assumption 1 (Uniform inductance-resistance ratio) The
ratio between the inductance and resistance of every trans-
mission line is constant, i.e., for all (j, k) ∈ E it holds that
`jk
rjk

= ρ ∈ R>0.

To simplify the analysis, it is convenient to perform the
following change of variables to a rotating reference frame.

v = diag(R(ω0t))v, i = diag(IM ⊗R(θ))i (3)

where R(θ) = IN ⊗R(θ). The dynamics (2) become

LT
d

d t
i = −ZT i+ BTv. (4)

Using Assumption 1, we obtain L−1T RT = ρ−1I2M and the
steady-state map is(v) of the line dynamics (4) is given by

is(v) :=
(
ρ−1I2M + JMω0

)−1
L−1T B

Tv. (5)

B. Control objectives
The challenge of controlling an inverter based power

system is that each controller can only rely on local mea-
surements of the voltages and currents, while the control
objectives are global in nature. In particular, we would like
to design a decentralized controller of the form

d

d t
vk = uk(vk, io,k), (6)

such that the voltages v and currents i converge to the
following steady-state behavior.
• Synchronous frequency: Given a desired synchronous

frequency ω0 ≥ 0, at steady-state it holds that:

d

d t
vk(t)− ω0J vk(t) = 0, k ∈ N , (7)

• Voltage magnitude: Given a voltage magnitude v? > 0,
at steady-state it holds that:

‖vk(t)‖ = v?, k ∈ N , (8)

• Steady-state currents: it holds that: i = is(v),
• Power injection: Given set points p?k and q?k for the

active and reactive power injection of each inverter, at
steady-state it holds that:

vTk io,k = p?k, vTkJio,k = q?k, k ∈ N . (9)

Using i = is(v), the local nonlinear specification (9) on the
power injection can be equivalently expressed as non-local
linear specification on the voltages v as follows (see [8, Sec.
IV]):
• Phase locking: Given steady-state angles θ?k1, at steady-

state it holds that:

vk(t) = R(θ?k1) v1(t), k ∈ N \ {1}. (10)

Equation (7) and (8) specify that at steady-state, all voltages
in the power network evolve as perfectly sinusoidal signals
with frequency ω0 and magnitude v?. Equations (10) and (9)
fix the relative voltage angles and the power injection at every
node. Note, that the set-points p?k and q?k need to satisfy the
power-flow equations [8]. For ease of presentation all desired
voltage magnitudes are assumed to be equal. The results can
be extended to individual voltage set-points (see [9], [13]).

C. Controller and closed loop design
For every inverter with index k ∈ N , we propose the

decentralized dispatchable virtual oscillator control (dVOC):

uk := ω0Jvk + η
[
Kkvk −R(κ)io,k + αΦk(vk)vk

]
, (11)

with gains η > 0, α > 0, and

Kk :=
1

v?2
R(κ)

[
p?k q?k
−q?k p?k

]
, Φk(vk) :=

v?2 − ‖vk‖2

v?2
I2.

Note that the voltage error Φk has been modified compared
to [8], [9]. The matrix Kk can be equivalently expressed in



terms of the steady-state angles θ?jk and admittance ‖Yjk‖ of
the line connecting node j and node k as follows (see [8])

Kk =
∑

j:(j,k)∈E
‖Yjk‖(I2 −R(θ?jk)), ∀k ∈ N .

Using Φ(v) :=diag({Φk(vk)}Nk=1) and K:=diag({Kk}Nk=1),
the controller (11), together with (2), results in the following
closed loop equations for the power network

d

d t
v = ω0JNv + η [Kv −R(κ)B i+ αΦ(v)v] , (12a)

LT
d

d t
i = −RT i+ BTv. (12b)

III. A LYAPUNOV CHARACTERIZATION OF
ATTRACTIVITY WITH RESPECT TO A SET

In order to state the main result of the paper, we require
the following definitions of global attractivity with respect
to a set and its characterization via Lyapunov functions.

Definition 1 (Attractivity with respect to a set) A dynamic
system d

d tx = f(x) is called globally attractive with respect
to a compact set C if limt→∞‖ϕf (t, x0)‖C = 0 holds for all
x0 ∈ Rn.

Next, we define two classes of comparison functions which
are used to establish convergence properties of the system.

Definition 2 (Comparison functions) A function χc :
R≥0 → R≥0 is of class K if it is continuous, strictly
increasing and χc(0) = 0; it is of class K∞ if it is a K -
function and χc(s)→∞ as s→∞.

Finally, the following Theorem provides a Lyapunov charac-
terization of attractivity with respect to a set.

Theorem 1 (Lyapunov function) Consider a continuously
differentiable vector field f : Rn → Rn, a compact set
C ⊆ Rn, and a continuously differentiable function V :
Rn → R>0. The dynamical system d

d tx = f(x) is globally
attractive with respect to C if there exist χ1 ∈ K∞ and
χ2 ∈ K such that for all x ∈ Rn it holds that

χ1(‖x‖C) ≤ V(x) (13)
d

d t
V(x) :=

∂V
∂x

f(x) ≤ −χ2(‖x‖C). (14)

The proof follows from standard arguments (see [15, Sec.
25]) and is omitted for reasons of space.

IV. STABILITY ANALYSIS USING SINGULAR
PERTURBATION THEORY

In Section II we introduced the control objective and
proposed a control law that admits a decentralized imple-
mentation. We will now analyze the closed-loop system and
provide sufficient conditions for attractivity of synchronous
solutions which satisfy the objectives (7) to (10). To do
so, we will use ideas from singular perturbation analysis
following similar steps to [16, Sec. 11.5], but consider
convergence with respect to a set of steady states instead of
the origin. This will then allow us to prove the main result
of the paper: a bound for the control parameters (gains) such

that the system dynamics (12) converges to a set of steady-
states. Moreover, we show that the only steady-state that does
not satisfy the control objectives presented in Section II-B is
unstable.

A. Dynamics and control objectives in a rotating frame

Since R(θ) commutes with K,B and Φ(v) = Φ(v), the
dynamics (12) in the rotating coordinates (3) become

d

d t
v = η(Kv −R(κ)B i+ αΦ(v)v) =: fv(v, i), (15a)

d

d t
i = L−1T

(
−RT i− LTJMω0i+ BTv

)
=: fi(v, i). (15b)

Moreover, we let x = (v, i) ∈ Rn with n = 2N + 2M and
denote the dynamics of the overall system by d

d tx = f(x)
with f(x) = (fv(v, i), fi(v, i)). To formalize the control
objectives we define the sets

S =
{
v ∈ R2N | vk = R(θ?k1) v1, ∀k ∈ N \ {1}

}
,

A =
{
v ∈ R2N | ‖vk‖ = v?, ∀k ∈ N

}
,

as well as the target set

T := {x ∈ Rn | x = (v, i), v ∈ S ∩ A, i = is(v)} . (16)

Moreover, we define the set T0:

T0 := T ∪ {0n}. (17)

Note that all elements of T0 are equilibria for the dynamics
in the rotating reference frame (15). Therefore, in the static
frame, they correspond to synchronous sinusoidal trajectories
with frequency ω0. Furthermore, by the very definition of
the sets S, A, and T they also satisfy all control objectives
introduced in Section II-B.

B. Main result

We require the following stability condition on the network
parameters, steady-state angles, and control gains:

Condition 1 (Stability Condition) The graph G, the steady-
state angles θ?jk with θ̄? := max(j,k)∈E θ

?
jk, and the gain α

are such that the following inequality holds

max
1≤k≤n

∑
j:(j,k)∈E

‖Yjk‖| sin(θ?jk)|+ α <
1 + cos(θ̄?)

2
λ2(L),

where λ2(L) denotes the second smallest eigenvalue of
the Laplacian L and we define c(G, θ?jk, α) := 1

2 (1 +

cos(θ̄?))λ2(L) − max
1≤k≤n

∑
j:(j,k)∈E‖Yjk‖| sin(θ?jk)| − α .

Moreover, given Ȳ := max(j,k)∈E‖Yjk‖, η satisfies

η <
c(G, θ?jk, α)

ρȲ ‖B‖2(c(G, θ?jk, α) + 5‖K − L‖)
.

We can now state the main result of the manuscript.

Theorem 2 (Convergence of the closed loop) Consider
steady-state angles θ?jk and control gains α and η such
that Condition 1 holds. Then, the dynamics (15) are globally
attractive with respect to T0. Moreover, the origin 0n is an
unstable equilibrium.



Theorem 2 guarantees global attractivity of the union of the
desired set of equilibria (corresponding to harmonic solution
with desired power flows) and the origin (trivial solution with
zero voltages and currents) and establishes that the origin is
an unstable equilibrium of the system. The rest of this section
is devoted to proving Theorem 2.

C. Singular perturbation theory

In the following we will apply tools from singular per-
turbation theory to explicitly construct a Lyapunov function
that establishes convergence of the dynamics (15) to the
set T0 and allows us to show that the origin 0n is an
unstable equilibrium. By replacing the dynamics (15b) of
the transmission lines with its steady-state map is(v), we
obtain the reduced system

d

d t
v = fv(v, i

s(v)) = η [(K − L)v + αΦ(v)] v, (18)

which can be interpreted as the voltage dynamics under the
assumption that the line currents are at their rotational steady-
state and therefore io = Yv = R(κ)TLv. Finally, we denote
the difference between the line currents and their steady state
value as y = i− is(v) and define the boundary-layer system

d y

d t

∣∣∣∣
d
d tv=0

= fi(v, y + is(v)), (19)

where v is treated as a constant. We now follow a similar
approach to [16] to obtain conditions on the convergence
of the full system (15) based on the independent study of
the convergence of (18) and (19). Differently from [16] we
address attractivity with respect to the set T0 and not a single
equilibrium.

D. Lyapunov function for the reduced system

Let us begin by considering the reduced system (18).
Given the steady-state angles θ?k1 with θ?k1 ∈ [0, π/2], let
us define the matrix S as S := [R(θ?11)T . . . R(θ?1N )T]T

and I := [I2 . . . I2]T = 1 ⊗ I2. We further denote by
PS :=

(
I2N − 1

nSS
T
)

the projector onto the span of S. We
now define the Lyapunov function candidate V : Rn → R≥0
for the reduced system as

V (v) :=
1

2
vTPSv + ηαα1

N∑
k=1

(
v?2 − ‖vk‖2

v?

)2

, (20)

where α is the voltage controller gain and the positive
constant α1 is given by

α1 :=
c(G, θ?ik, α)

5η‖K − L‖2
. (21)

We also define the function ψ : R2N → R≥0 as

ψ(v) := η (‖K − L‖‖v‖S + α‖Φ(v)v‖) . (22)

In the following Theorem, we show the function V is a
Lyapunov function for the reduced system (18).

Proposition 1 (Convergence of the reduced system) Con-
sider θ?jk, α, and η such that Condition 1 holds. For all

v ∈ R2N the derivative of V along the trajectories of the
reduced system (18) satisfies

d

d t
V (v) :=

∂V

∂v
fv(v, i

s(v)) ≤ −α1ψ(v)2. (23)

Proof: We can write the derivative of V (·) along the
trajectories of the reduced system (18) as

d

d t
V (v) = ηvTPS ((K − L)v + αΦ(v)v)

− 2η2αα1 v
TΦ(v) ((K − L)v + αΦ(v)v) .

(24)

Next, following the approach used in [9, Propositon 6] it can
be shown that

vTPSΦ(v)v ≤ vTPSv = ‖v‖2S . (25)

Under Assumption 1, using the same techniques as in [9,
Proposition 7] and (25), we can bound (24) as

d

d t
V (v) ≤ −ηc(G, θ?ik, α)‖v‖2S

− 2η2αα1 v
TΦ(v) ((K − L)v + αΦ(v)v) .

(26)

Exploiting the fact that K−L = (K−L)PS , we can further
bound (26) as

d

d t
V (v) ≤− ηc(G, θ?ik, α)‖v‖2S − 2η2α2α1‖Φ(v)v‖2

+ 2η2αα1‖Φ(v)v‖‖K − L‖‖v‖S .

In order to prove that d
d tV (v) satisfies (23), we need to show

that the inequality

− ηc(G, θ?ik, α)‖v‖2S − 2η2α2α1‖Φ(v)v‖2

+ 2 η2αα1‖Φ(v)v‖‖K − L‖‖v‖S
≤ −α1η

2(‖K − L‖‖v‖S + α‖Φ(v)v‖)2
(27)

holds for α1 according to (21). By matching the coefficients
of the r.h.s and the l.h.s., we can rewrite (27) as[

‖v‖S
‖Φ(v)v‖

]T
Q

[
‖v‖S
‖Φ(v)v‖

]
≥ 0, ∀v ∈ R2N , (28)

with the matrix Q defined as

Q :=

[
ηc(G, θ?ik, α)− α1η

2‖K − L‖2 −2α1αη
2‖K − L‖

? η2α2α1

]
.

Using the Schur complement and α1 > 0 it follows that
Q � 0 if ηc−5α1η

2‖K−L‖2 ≥ 0. Thus, α1 defined in (21)
satisfies (28) and the proposition directly follows.

E. Lyapunov function for the Boundary layer system
In this section, we establish exponential convergence of

the boundary layer system (19). To this end, the Lyapunov
function candidate W : R2M → R≥0 is defined as

W (y) :=
ρ

2
yTy. (29)

Proposition 2 (Convergence of the boundary layer sys-
tem) For every fixed v ∈ R2N and all y ∈ R2M , the
derivative of W (y) along the trajectories of (19) satisfies

d

d t
W (y) :=

∂W

∂y
fi(v, y + is(v)) ≤ −α2‖y‖2,



where α2 :=
√

1 + ω2
0ρ

2 cos(κ).

Proof: Using Assumption 1 and RM (κ) :=
IM ⊗ R(κ), it can be verified that fi(v, y + is(v)) =

−
√

1
ρ2 + ω2

0RM (κ)y. This results in

d

d t
W (y)=ρyTfi(v, y + is(v))=−ρ

√
1

ρ2
+ ω2

0y
TRM (κ)y,

and the proposition immediately follows.

F. Proof of the main result
In Sections IV-D and IV-E we established that the Lya-

punov functions for the reduced system (18) and the bound-
ary layer system (19) respectively are decreasing. In this
section, we use these results to construct a Lyapunov func-
tion candidate for the overall system (15). The reduced
system (18) describes the voltage dynamics assuming the
currents are in steady-state and the boundary layer system
describes the dynamics of the transmission line currents
under the assumption that the voltages are constant (in the
rotating reference frame). The following propositions aim at
bounding the increase of the Lyapunov functions resulting
from considering the full dynamics (15).

Proposition 3 Let β1 = ‖B‖
‖K−L‖ . For all v ∈ R2N and y ∈

R2M it holds that
∂V

∂v
[fv(v, y + is(v))− fv(v, is(v))] ≤ β1ψ(v)‖y‖.

Proof: The function fv(v, i) introduced in (15a), is
separable in its two arguments and linear in i. Hence,

fv(v, y + is(v))− fv(v, is(v))=fv(0, y)=ηR(κ)By. (30)

It directly follows that

∂V

∂v
[fv(v, y + is(v))− fv(v, is(v))] ≤

= (ηvTPS + 2αα1η
2vTΦ(v))R(κ)By

≤ (η‖B‖‖v‖S + 2αα1η
2‖B‖‖φ(v)v‖)‖y‖ ≤ β1ψ(v)‖y‖,

with β1 := max
(
‖B‖
‖K−L‖ , 2α1η‖B‖

)
. From (21) and the fact

that c(G, θ?ik, α) < ‖K − L‖ we conclude that 2α1η‖B‖ ≤
2c(G,θ?ik,α)‖B‖

5‖K−L‖2 ≤ ‖B‖
‖K−L‖ . Therefore, β1 = ‖B‖

‖K−L‖ , and the
proof is complete.

Proposition 4 Consider β2 := ρ
(√

1
ρ2 + ω2

0

)−1
‖L−1T BT‖

and γ := ηρ
(√

1
ρ2 + ω2

0

)−1
‖L−1T BTB‖. For all v ∈ R2N

and y ∈ R2M it holds that[
∂W

∂v
− ∂W

∂y

∂is

∂v

]
fv(v, y + is(v)) ≤ β2ψ(v)‖y‖+ γ‖y‖2.

Proof: Using again the linearity of fv(v, i) in i and (5)
we can write[
∂W

∂v
− ∂W

∂y

∂is

∂v

]
fv(v, y + is(v)) (31)

=
−ρ√
1
ρ2 + ω2

0

yTR(κ)TL−1T B
T(fv(v, i

s(v)) + fv(0, y)).

We can bound

‖fv(v, is(v))‖ ≤ η‖K−L‖‖v‖S+ηα‖Φ(v)v‖=ψ(v). (32)

The result follows by combining (31), (32) and (30).
Using d = β1

β1+β2
> 0 and the functions V (v) and W (y)

introduced in (20) and (29), we define the Lyapunov function
candidate ν : Rn → R≥0 for the overall system (15) as

ν(x) := dW (i− is(v)) + (1− d)V (v). (33)

Finally, we can bound the decrease of ν along the trajec-
tories of the system (15).

Proposition 5 Under Assumption 1, there exist a function
χ2 ∈ K such that the derivative of ν along the trajectories
of the system (15) satisfies

d

d t
ν :=

∂ν

∂v
fv(v, i) +

∂ν

∂v
fi(v, i) ≤ −χ2(‖x‖T0) (34)

Proof: Using Propositions 1 - 4 and following similar
steps to [16] the derivative of ν along the trajectories of the
full system (15) satisfies the inequality

d

d t
ν ≤ −

[
ψ(v)
‖y‖

]T [
(1− d)α1 − (1−d)β1+dβ2

2
? d(α2 − γ)

] [
ψ(v)
‖y‖

]
,

where y = i − is(v) and the quadratic form on the r.h.s. is
positive definite if

1 <
α1α2

α1γ + β1β2
. (35)

Using the expressions for α1, α2, β1, β2 and γ derived in
Propositions 1 - 4, condition (35) is satisfied if

η <
c(G, θ?ik, α)

(
1
ρ2 + ω2

0

)
cos(κ)

‖L−1T BT‖‖B‖
(
c(G, θ?ik, α) + 5‖K − L‖

) . (36)

Noting that cos(κ) = rij/
(√

r2ij + ω2
0`

2
ij

)
, it can be

verified that (36) holds under Condition 1 and it follows
that d

d tν(x) < 0 for all (v, i) /∈ T0. Moreover, because
T0 is compact, and ψ(v) is positive definite and radially
unbounded with respect to (S∩A)∪{02N}, the steps in [15,
p. 98] can be used to show that there exists a function
χ2 ∈ K such that (34) holds.

We are now ready to prove Theorem 2.
Proof of Theorem 2:

Note that ν(x) is positive definite with respect to T , i.e.,
ν(x) = 0 for x ∈ T and ν(x) > 0 otherwise, and radially
unbounded with respect to T , i.e., ‖x‖T → ∞ implies that
ν(x) → ∞. Moreover T is a compact set, and, following
the steps in [15, p. 98], there exist χ′1 ∈ K∞ such that
χ′1(‖x‖T ) ≤ ν(x) for all x ∈ R2N . Because T ⊂ T0 there
exists χ1 ∈ K∞ such that χ1(‖x‖T0) ≤ χ′1(‖x‖T ) ≤ ν(x)
for all x ∈ Rn. Moreover, it follows from Proposition 5 that
there exists χ2 ∈ K such that d

d tν ≤ −χ2(‖x‖T0) holds for
all x ∈ Rn. It follows from Theorem 1 that the dynamics
(15) are globally attractive with respect to T0.

To show that 0n is an unstable equilibrium, let ε′ := 1
2v
?,

pick any v′0 ∈ S \ 02N such that ‖v′0‖ = ε′, and let
x′0 := (v′0, h(v′0)). For any constant c0 ∈ R(0,1) it holds



that ν(c0x
′
0) < ν(0n). Moreover, Proposition 5 implies that

d
d tν(x) < 0 for all x /∈ T0. It follows that the trajectories
starting at c0x′0 cannot converge to the origin, so they must
converge to T . Therefore, no matter how small c0 is chosen,
there exist a time t′ such that ‖ϕf (t′, c0x

′
0)‖ > ε′, and it

follows that the origin is an unstable equilibrium of (15).

V. POWER SYSTEMS TEST-CASE

In this section, we demonstrate the decentralized synchro-
nizing controller with a power systems test-case. We consider
three inverters connected by resistive-inductive lines (two
lines of 25 km and one of 125 km from inverters 1 and
2). The grid base power is 1 GW, the base voltage 320 kV.
The line resistance is 0.03 Ohm/km and the line reactance is
0.3 Ohm/km (at 50Hz). Therefore, the inductance/resistance
ratio ρ of the transmission lines is given by ω0ρ = 10. The
set-points are ω0 = 2π50, v? = 1, and the steady-state
angles are θ?21 = θ?31 = 1◦. Each inverter implements the
control law (11). We chose α = 5, and, from Theorem 2,
we obtain a guarantee of synchronization for η ≤ 2.9 ·10−4.
Figure 1 shows a simulation with η = 2.8 · 10−4 where the
controller synchronizes the network. In Figure 2 we see that
the states do not converge to the desired operating point for
η = 2.8 · 10−3.
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Fig. 1. As predicted by Theorem 2, for η = 2.8 · 10−4, the system
synchronizes to the desired solution, i.e., the system converges to T .
Note that the bounds predicted by Theorem 2 are only sufficient and thus
conservative.
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Fig. 2. With η = 2.8 · 10−3, i.e., larger than the bound from Theorem 2,
the system converges to a limit cycle which is not contained in T .

VI. CONCLUSION AND OUTLOOK

In this paper, we analyzed the effect of transmission-
line dynamics on the convergence properties of a network
of grid-forming power inverters using dispatchable virtual
oscillator control (dVOC). While dVOC ensures almost
global asymptotic stability when a quasi-steady-state network
model is used, this result no longer holds when consider-
ing the dynamics of transmission lines. Using tools from
singular perturbation theory, we obtained explicit bounds
on the controller gains that guarantee global attractivity of
the desired steady-state behavior as well as the origin. In
a separate argument, we showed that the only undesirable
steady-state, i.e., origin, is an unstable equilibrium of the
system. The results of this article provide a first step towards
establishing conditions under which dVOC ensures almost
global asymptotic stability of an inverter based AC power
system with respect to a pre-specified solution of the AC
power-flow equations.
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