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Summary

The irreducible components of rigid analytic moduli spaces of Drinfeld A-
modules with level structure may be described as quotients of Drinfeld’s
period domains by arithmetic groups. We provide comprehensive proofs
of well-known fundamental facts about such quotients.

We then use this description for the construction of a compactification
of any such component that is analogous to Satake’s classical compactifi-
cation. The compactification is a priori defined as a Grothendieck ringed
space whose boundary, as a set, consists of finitely many irreducible com-
ponents of moduli spaces of smaller dimensions. Its underlying topological
space coincides with the one of Kapranov’s compactification when A is a
polynomial ring.

The compactifications of the analytic moduli spaces are constructed in
a natural way as the disjoint union of the compactifications of their compo-
nents. For this, we use adelic language and find a uniform description for
the natural morphisms between these compactifications.

We further construct projective modular compactifications of some al-
gebraic moduli spaces of Drinfeld modules whose boundary is stratified by
moduli spaces of smaller dimension. They generalize Pink’s algebraic Sa-
take compactifications in the case of the moduli problem of Drinfeld F,|t]-
modules with level (¢) structure. Pink’s compactification in the general
case is the quotient by a finite group of the normalization of one of these
modular compactifications.

By means of explicit morphisms, we then show that the compactifica-
tions of the analytic moduli spaces are the normalizations of the analytifica-
tions of the compactifications of the algebraic moduli spaces. In particular,
the former are normal projective rigid analytic varieties.

We finally view the analytic Drinfeld modular forms as global sections
of ample invertible sheaves on these projective spaces. From this, we con-
clude finiteness results on the algebras and vector spaces of such modular
forms.






Zusammenfassung

Die irreduziblen Komponenten von rigid analytischen Modulrdumen von
Drinfeld A-Moduln mit Niveaustruktur lassen sich beschreiben als Quo-
tienten von Drinfeld’s oberen Halbraumen durch arithmetische Gruppen.
Wir geben ausfiihrliche Beweise bekannter fundamentaler Resultate iiber
solche Quotienten.

Wir verwenden diese Beschreibung dann zur Konstruktion einer Kom-
paktifizierung einer beliebigen solchen Komponente analog zu Satake’s
klassischer Kompaktifizierung. A prioriist die Kompaktifizierung definiert
als Grothendieck geringter Raum, dessen Rand sich mengentheoretisch aus
irreduziblen Komponenten von Modulrdumen niedrigerer Dimension zu-
sammensetzt. Der zugrunde liegende topologische Raum stimmt mit jenem
von Kapranov’s Kompaktifizierung tiberein, wenn A ein Polynomring ist.

Die Kompaktifizierungen der analytischen Modulrdumen konstruieren
wir auf natiirliche Weise als disjunkte Vereinigung der Kompaktifizierun-
gen ihrer Komponenten. Hierfiir verwenden wir adelische Sprache und
finden eine einheitliche Beschreibung der natiirlichen Morphismen zwis-
chen diesen Kompaktifizierungen.

Zudem konstruieren wir projektive modulare Kompaktifizierungen ge-
wisser algebraischer Modulrdumen von Drinfeld-Moduln, deren Rand strat-
ifiziert ist durch Modulrdaume niedrigerer Dimension. Diese verallgemein-
ern Pink’s algebraische Satake Kompaktifizierung im Fall von Drinfeld F[t]-
moduln mit Niveau (¢) Struktur. Pink’s Kompaktifizierung im allgemeinen
Fall ist der Quotient nach einer endlichen Gruppe der Normalisierung einer
solchen modularen Kompaktifizierung.

Wir zeigen dann mittels expliziter Morphismen, dass die Kompakti-
fizierungen der analytischen Rdume die Normalisierungen sind der An-
alytifizierungen der modularen Kompaktifizierung. Insbesondere sind Er-
stere normale projektive rigid analytische Varietaten.

Schliesslich fassen wir die analytischen Drinfeld’schen Modulformen
auf als globale Schnitte ampler invertierbarer Garben auf diesen projek-
tiven Kompaktifizierungen. Daraus folgern wir Endlichkeitsresultate tiber
die Algebren und Vektorrdume solcher Modulformen.
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1 Introduction

Drinfeld modules with level structure, introduced by Drinfeld [15] in 1974,
are a function field analogue to elliptic curves with level structure. They
give rise to fine algebraic moduli spaces and to coarse rigid analytic modu-
lar varieties. Any analytic irreducible component is the quotient of a Drin-
feld upper half space by an arithmetic group I' and thus carries natural
spaces of weak modular forms with respect to I' of varying integral weight.

In analogy to the weak modular forms on the complex upper half space
with respect to congruence subgroups of SL3(Z), such weak modular forms
have various Fourier expansions by means of which modular forms may be
defined. Such expansions were studied and used to define modular forms
by Gekeler [18] and Goss [22, 23] mainly in the case of Drinfeld modules of
rank 2 and in general by Basson, Breuer and Pink [3} 4} 5, 6].

In order to prove finiteness results for the spaces of modular forms, it
is a classical approach to construct compactifications of the modular vari-
eties which carry ample invertible sheaves whose global sections may be
identified with the spaces of modular forms of interest. In a special case,
such a compactification of an analytic modular variety was constructed by
Kapranov [30] up to explicitly specifying the invertible sheaves. Pink [34]
provided a normal compactification of a general algebraic moduli scheme
and defined algebraic modular forms as global sections of ample invertible
sheaves thereof.

In this thesis, we construct compactifications of general analytic modu-
lar varieties endowed with natural ample invertible sheaves whose global
sections correspond bijectively to modular forms. We further construct new
projective modular compactifications of algebraic modular schemes gener-
alizing Pink and Schieder’s [36]. We show that any analytic compactifica-
tion is the quotient by a finite group of the normalization of the analytifica-
tion of such a modular compactification. We apply these results to deduce
finiteness results for general spaces of analytic modular forms.

Drinfeld modular varieties and analytic modular forms

Consider any global function field F’ of characteristic p > 0 and any place
oo of F. Denote by E the completion of F' with respect to co. Let A C F' be
the subring of elements that are regular outside of co. The basic example
for A is the polynomial ring over a finite field.



Let d > 1 be any positive integer. Consider any ring R over F' and
denote by ¢: A — R the structure morphism. Denote by R{r} C R[T],
with 7 := TP, the subgroup of additive polynomials and equip it with the
ring structure for which multiplication is given by composition. A Drinfeld
A-module of rank d over R is a ring homomorphism

(1) 0: A= R{1},0# a— @4 = Z PaiT
0<i<d-deg(a)

with ¢, 0 = t(a) and @, g.4eg(a) € R, where deg(a) := dimp,(A4/(a)). Con-
sider any non-zero non-unital t € A. Set V := (A/(t))*and V := V' \ {0}. A

o

level (t) structure for such a ¢ isamap A\: V — R with A(V) C R* and

for which the induced map V' — Ker(R 2% R) is an A-linear isomorphism.

Consider any ideal 0 # I C A. More generally, one defines (see Section
Drinfeld A-modules with level I structures over arbitrary schemes S
over I'. This is done in a way such that the functor which associates to
such an S the set of isomorphism classes of Drinfeld A-modules of rank d
over S with level I structure is represented by an irreducible smooth affine
variety X¢ of dimension d — 1 over F (see Drinfeld’s [15, Section 5]).

Consider any non-Archimedean complete algebraically closed valued
tield C containing F as a valued subfield. A projective A-submodule A C C
of finite rank is called an A-lattice if the natural homomorphism A& 4 E — C
is injective. A level I structure of an A-lattice A of rank d is an A-linear
isomorphism (A/I)? — I"'A/A. Drinfeld [15, Prop. 3.1] showed that the
isomorphism classes of Drinfeld A-modules over C' of rank d with level
I structure are in natural bijective correspondence with A-lattices in C' of
rank d with level I structure up to homothety.

This correspondence is a function field analogue of the correspondence
between Z-lattices in the complex numbers C of rank 2 with level structure
and elliptic curves over C with level structure. However, by contrast, as
C is of infinite dimension over E, there exist A-lattices in C, and hence
Drinfeld A-modules over C, of arbitrary rank.

Drinfeld’s upper half space of dimension d — 1 is the PGL4(E)-invariant
subset Q%71 C P4 ! of the standard projective space over C' consisting of
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those elements lying in no E-linear hyperplane. Consider any irreducible
component Y of the rigid analytic variety X¢(C) of C-valued points. The
above correspondence yields the description of Y as the quotient

Qr :=r\Qé¢!

of Q%! by an arithmetic subgroup I" isomorphic to the kernel of the natural
morphism Aut4(A) — Auts(A/IA) for a projective A-module A of rank d.

In analogy to the quotients of the complex upper half plane by arith-
metic groups, the quotient () is naturally equipped with an invertible
sheaf Or(k) of analytic weak modular forms with respect to I' of weight k
for any integer £ > 0. Weak modular forms admit a Fourier expansion with
respect to certain irreducible components of modular varieties of codimen-
sion 1, called cusps. Using such expansions, one defines modular forms.
They form a C-subspace

Mr (k) C Or(k)(Qr).

Kapranov’s compactification

The component Qr of X¢(C) is affine and non-compact if d > 2. This is,
for instance, reflected in the fact that the space of weak modular forms
Or(0)(Q2r) is of infinite dimension over C. On the other hand, among the
weak modular forms, the modular forms are precisely the ones which ex-
tend to all cusps. It therefore seems natural to hope for a compactification
Q. of Qr whose boundary consists of irreducible components of smaller di-
mensional modular varieties including all cusps and on which any Or (k)
is extended by an ample invertible sheaf O} (k) whose global sections bi-
jectively correspond to modular forms of weight & via the restriction map.
Such compactifications then force the spaces of modular forms to be finite
dimensional.

Theorem 1.1 (Kapranov [30]). If A is a polynomial ring, then Qr admits a
normal compactification Qf. whose boundary is stratified by finitely many copies
of irreducible components Qr of X (C) forall 1 < d’ < d.

Furthermore, Kapranov along with Goss [20] sketched how to view
modular forms as global sections of invertible sheaves on 7.

Kapranov first constructed €2} as the disjoint union of {)r and certain ir-
reducible components 1 of smaller rank modular varieties and endowed
it with a suitable topology. He then specified a projective embedding of €2},
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using Eisenstein series of high weight and then defined the Satake compact-
ification of {Ir as the normalization of the image of Qf.. The construction
is largely analogous to Satake’s [38] construction of his compactification of
the analytic moduli space of abelian varieties of rank 2g but with a crucial
difference when g > 1: In that case, all boundary components in Satake’s
compactification have codimension > 1 so that by normality all — a priori -
weak modular forms extend to global sections.

When A is the polynomial ring, Gekeler [19] has recently, and indepen-
dently of this thesis, improved on Kapranov’s approach by carrying out an
embedding defined only by the Eisenstein series of weight 1.

Pink’s compactifications

In [34], Pink introduced the notion of generalized Drinfeld A-module of rank
< d over any scheme S over F'. It generalizes the notion of Drinfeld A-
module over S in that its fibres over the points of S — which are Drinfeld
A-modules of the form (1) — are allowed to have rank < d rather than only
= d. A generalized Drinfeld A-module over S is weakly separating if for any
Drinfeld A-module ¢ over any field extension F’ O F' at most finitely many
fibres of the generalized Drinfeld A-module over F’-valued points of S are
isomorphic to ¢.

Theorem 1.2 (Pink [34]). Uniquely up to unique isomorphism, there exists an
integral normal projective algebraic variety Y‘; over F together with an embedding

X4 — Y? and a weakly separating generalized Drinfeld module on Y? extending
the universal family on X .

The notion of level structure does not directly generalize to generalized

Drinfeld modules in a satisfying way so as to turn Y? in a fine moduli
space. In the case where A is the polynomial ring F,[t] over a finite field
F, and where I = (¢) and thus V = Fg, Pink and Schieder [36] instead
introduced and studied the notion of a reciprocal map. Over any ring R over
[F,, the injective reciprocal maps are precisely the ones that arise from the

o

injective Fy-linear morphisms A: V' — R with A(V')) C R* by the rule

. 1
: V= R* —.
P - s )\(’U)
The maps p, thus obtained are the injective maps p: V — R* such that

o Vo GIFqX,UE V: pla-v) IOfl'P(U)/

v



e Vo, €Vifo+0 €V = p(v) - p(t)) = p(v+ ) - (p(v) + p(v)))].

A general reciprocal map over R is then defined to be any map p: V — R
satisfying these polynomial conditions. Globally, reciprocal maps are de-
fined more generally to be certain maps from V to the set of global sections
I'(S, £) of invertible sheaves £ over schemes S over F,,.

Theorem 1.3. ([36, Theorems 1.7 and 7.10]) Consider the functor that associates
with any scheme S over F, the set of isomorphism classes of reciprocal maps V-
(S, £) whose induced morphism V — L ®og k(s) is non-zero for every point
s € S. It is represented by a normal projective scheme Qv over IF,.

Using the fact that a Drinfeld F,[t]-module over a scheme over F' is
uniquely determined by a level (¢) structure, Pink deduced from Theorem

L3t

Theorem 1.4. ([34, Section 7]) If A = F,[t], then Y?t) equals the pullback of Qv
to Spec(F') and is stratified by copies of X (dt/) forall 1 < d' < d indexed by the
non-zero F-subspaces of V.

In fact, Pink proved Theorem[1.2]by reduction to the case A = F,[t] and
I = (t) which he proved jointly with Theorem [1.4]using Theorem [1.3|

Main results

On the algebraic side, we prove versions of Theorems [I.3|and [1.4] for gen-
eral A and more general level. Namely, for suitable ¢ € A we construct
a projective modular compactification Qv r of X (dt) which is stratified by
finitely many copies of the X Eit') forall 1 < d’ < das follows:

Using the fact that A is finitely generated, choose ¢ such that its divisors
Divy(t) :={a € Alt € (a)}

generate A. In this case, too, a Drinfeld A-module over any ring R over
F with level () structure ) is uniquely determined by X and hence by the
reciprocal map

2 1

. X
p: V>R v— O}
Here as well, there is a set of necessary and sufficient polynomial conditions
for an injective map p: V' — R* to arise from such a A. An A-reciprocal map
over Ris then any map p: V — R satisfying this set of conditions. Globally,
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A-reciprocal maps will be defined (see Definition |8.14) more generally to
be certain maps from V' to the set of global sections I'(S, £) of invertible
sheaves L over schemes S over Spec(A4).

Theorem 1.5. (See Theorem [8.16|and Corollary[8.24) Suppose that Div 4(t) gen-
erates A. Consider the functor which assigns to a scheme S over Spec(A) the set of
isomorphism classes of A-reciprocal maps V. — T'(S, L) whose induced morphism
V — L ®oy k(s) is non-zero for every s € S.

i) This functor is represented by a projective scheme Qv over Spec(A).

ii) The pullback Qv r of Qv to Spec(F') contains X{it) as an open subscheme
and is stratified by locally closed subschemes Qyy for all free A/(t)-submodules
0 # W C V each of which is isomorphic to X (dt/), where d’ := rank 4 ;) (W).

iii) If t € I, then Y? is the quotient by a finite group of the normalization of
Qv,r.

In fact, the universal family on Qv r induces a generalized Drinfeld
module on Qv r and the pullback of this generalized Drinfeld module to

the normalization descends, if t € I, to the one on Y;l (see Corollary .
Note that, as long as I is fixed, one may choose ¢ € I such that Div 4(?)
generates A.

After the work presented here was done, Pink [35] modified the notion
of A-reciprocal maps by using defining conditions [35, Def. 2.3.1] that are
homogeneous equations solely of weight 1. His conditions are stronger (see
[35, Prop. 1.3.4 (b) and 2.4.4]) and more explicit than the ones here and en-
abled him to generalize computations from his and Schieder’s article [36].
However, the reduced scheme underlying the modular compactification
that he obtains coincides with the one underlying Qv and this is the scheme
that we use in the comparison with the following analytic compactification.

On the analytic side, we generalize Theorem [1.1| to arbitrary A. More
precisely, we construct a Grothendieck ringed space ()}, Of) whose un-
derlying topological space coincides with Kapranov’s when A = F,[t]. We
further define a natural sheaf

R =) Or(k)

k>0

of graded Oj:--algebras, where O}:(0) = Of and where the Of-module O;.(k)
of the homogeneous sections of weight k extends Or(k) for any k£ > 0.
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Theorem 1.6. (See Corollary The Grothendieck ringed space (0, OF) is a
normal projective rigid analytic variety over C.

Theorem 1.7. (See Corollary O5.(k) is ample invertible for any k > 1.

Before discussing their proofs, we state an application.

In Sections 5.4 and we recall the definition of Fourier expansions
of weak modular forms and provide in detail everything required for it.
Using these expansions as well as the normality of 2}, we show

Proposition 1.8. (See Proposition|10.10) The restriction morphism
Or(k)(2r) = Or(k)(Qr)
is injective with image Mry (k) for any k > 0.
By standard arguments, Theorems|[1.6/and[1.7]via Proposition[I.8/imply

Corollary 1.9. (See Cor. (10.7§10.11| and Prop. [10.10) The graded C-algebra
Mr = Y oo Mr(k) of modular forms with respect to I' is finitely generated

and Q. is the rigid analytification of Proj(Mr).

The interpretation of modular forms as global sections via Proposition
[1.8is useful beyond these corollaries. For instance, we introduce analogues
of the classical Poincaré-Eisenstein series by defining them, without tech-
nical difficulties, directly as global sections. Their Fourier expansions, on
the other hand, seem difficult to deal with. As an application, we show

Proposition 1.10. (See Proposition Any two points p,p’ € Qf admit a
Poincaré-Eisenstein series P for which P(p) # 0 = P(p').

The basic examples of modular forms with respect to I' are the Eisen-
stein series of weight 1 indexed by (A/I)?\ {0}. In this case, too, we directly
write down global sections E,, of 0% (1) for all « € (A/I)¢\ {0} which, a
posteriori, uniquely restrict to these series. They play a fundamental role
in our proof of Theorems|1.6/and [1.7|to which we turn now.

Suppose without loss of generality that ¢ € I. By construction, then
Qf is the quotient of f, by the finite group I'/T" , where I" is the kernel
of Auta(A) — Auta(A/t - A). Moreover, Of(k) is the subsheaf of (I'/I”)-
invariants of Oy, (k) for any k£ > 0. Thus, by standard arguments, Theorems
and [1.7| are reduced to the case where I = (t). In this case, they are
consequences of the following central result of the thesis which relates the
analytic compactification Q. with the algebraic compactification Qy .

Vil



Theorem 1.11. (See Theorem|9.1jand Corollary[10.6) Suppose that Div 4(t) gen-
erates A and that I = (t). Then the (Eq),y define a morphism of Grothendieck
ringed spaces E: Q. — Qv (C') onto an irreducible component X of the rigid ana-
lytic variety Qv (C) of C-valued points which is the normalization morphism of X
in the sense of Conrad [12]]. Moreover, Of.(k) is the pullback of the k-th twisting
sheaf under this morphism for any k > 0.

We finally outline our proof of Theorem[1.11] Consider any free A/(t)-
submodule 0 # W C V and the restriction E~1(Qu (C)) — Quw(C) of
FE via Theorem Via the isomorphism Qp = X (dt'), where d' =
rank 4 /(4 (W), this restriction is Drinfeld’s isomorphism from the analyti-
cally defined modular variety to Qu (C) if W C V. If W =V, it is the
restriction of this isomorphism to the irreducible component Q2r. Using
these isomorphisms and elementary inequalities of Drinfeld’s exponential

functions, we prove the following result as a step towards Theorem [1.11}

Proposition 1.12. (See Prop. [9.8and Cor. The morphism between Grothendieck
topological spaces underlying E is an isomorphism onto an irreducible component
X of Qv (C). Moreover, X N Qy (C') is an irreducible component of Qy (C') and

X =(XNy(0)u(Qv(C)\ ().

We further define a sheaf of rings Ox on X in terms of the stratification
by the Qy (C') provided by Theorem for which the following holds:

Corollary 1.13. (See Cor. The isomorphism between Grothendieck topolog-
ical spaces underlying E induces an isomorphism of Grothendieck ringed spaces

(2) (2, OF) (X, Ox).

The stratification of X may be described in terms of vanishing and non-
vanishing loci of subsets of some finite set of global sections of the first
twisting sheaf on X. More generally, with any finite set of global sections
of an invertible sheaf on a rigid analytic variety Z may be associated (see
Section (3) a stratification of Z by locally closed subvarieties and a natural
sheaf of rings O in terms of the stratification together with a morphism
of Grothendieck ringed spaces ny: (Z,07) — (Z,0z). In Section [3.3| we
specify conditions under which nz is the normalization morphism.

We show these conditions in the case Z = X using the isomorphism in
([@). The hardest condition to show is that any point in Q. admits a funda-
mental set of neighborhoods whose intersections with Qr are irreducible;
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this is essentially done in Section Having proved all conditions, we
then deduce that nx is the normalization morphism. Via Corollary
this yields the first part of Theorem The second part will then follow
directly from the first and the construction of E.

QOutline of the thesis

Let C be an algebraically closed complete non-Archimedean valued field.
From Section[p|on, suppose that the characteristic of C'is finite for otherwise
the theory will be empty. For any module M over any ring R and any ring
extension R C R' let

Mp =M ®pr R

denote the module over R’ obtained by extension of scalars.

Section 2l In this section we recall some definitions and results that are
fundamental to what will follow.

In Section 2.1 we recall the notion of Grothendieck ringed space.

In Section we define rigid analytic varieties over C as did Bosch,
Giintzer and Remmert [8] and recall some fundamental results about them.

In Section 2.3| we determine necessary conditions for the quotient of a
rigid analytic variety by a group to be again a rigid analytic variety.

In Section 2.4 we consider any non-Archimedean local field E and any
finite dimensional vector space V # 0 over E. We recall the structure of
G := Autg(V) as locally profinite group and characterize the discrete sub-
groups of G as well as of its quotient PG := PGL(V) = G/E*.

In Section 2.5\ we call a subring A C C an admissible coefficient subring if
it is a Dedekind domain and finitely generated over a finite subfield and if
its intersection with any ball in C'is finite. For example, if A and C are as at
the beginning of the introduction, then A C C'is an admissible coefficient
subring. We recall some basic facts about A-lattices in C.

Section 3} Let S be a finite set of global sections of an invertible sheaf
on a rigid analytic variety Z over C. For any 7' C S denote by Q(T") C Z
the intersection of the non-vanishing locus of 7" with the vanishing locus of
S\ T. These Q(T') for all ' C S form a stratification of Z, i.e., a covering
of Z by pairwise disjoint, locally closed subvarieties. In this section we
characterize the topology of Z and, in some cases, the normalization of Z
in terms of the stratification. The results of this section will be applied in
the proof of Theorem 1.11]to the case where S consists of global sections of
the first twisting sheaf on Qv (C).
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In Section 3.1 we characterize the Grothendieck topology on Z in terms
of this stratification.

In Section [3.2)we consider the special case in which a certain morphism
UT) — QT) is given for any Q(T) # (), where U(T) C Z denotes the
non-vanishing locus of 7', and reformulate the result in Section[3.1]in terms
of such morphisms. Suitable such morphisms are for instance given when
S is a basis of the space of global sections of the first twisting sheaf on any
standard projective space (see Example[3.3).

In Section[3.3lwe describe, under some conditions, the normalization (in
the sense of Conrad’s [12]) of Z in terms of the stratification. The criterion
obtained is analogous to a special case of [1, Theorem 9.2] by Baily and
Borel in the complex analytic setting.

Section[d] Let £, V, G and PG be as in Section 2.4 and suppose that £
is contained in C as a valued subfield. We recall the Bruhat-Tits building
for PG and the set of homothety classes of norms on V as well as the PG-
equivariant bijection between them that was considered by Drinfeld [15|
Section 6]. We try to give natural and rigorous arguments for all steps in-
volved. In the context of this thesis, this section serves as a preparation for
Section |5} where we will recall Drinfeld’s approach to endow the quotient
by any discrete subgroup of his period domain with the structure of rigid
analytic variety.

In Section [4.1) we furnish the geometric realization of an arbitrary sim-
plicial complex with a covering whose nerve is the barycentric subdivision
of the complex. This is an abstraction of parts of Drinfeld’s [15] Section 6].

In Section 4.2 we define in a usual way the Bruhat-Tits building Iy)(R~)
for PG as the geometric realization of some simplicial complex whose ver-
tices are the E*-classes of the free Og-submodules of V of maximal rank.

In Section we consider the set Ny, of norms on V and the set SNy,
of seminorms on V¢ that restrict to norms on V and the natural R~ (- and
G-actions on these sets. We define a right inverse in: Ny — SNy to the
natural R+ (- and G-equivariant restriction map rn: SNy — Ny.

To any v € SNy, uniquely corresponds the O¢-submodule ([0, 1]) C
Vc. Denote by My, the set of O¢-submodules of V¢ arising in this way. In
Section we give an intrinsic definition, in terms of modules, of My, of
its induced R+ - and G-action, and of the idempotent map r,: My — My,
corresponding to iy o rx.

In Section[d.5|we define a set Ty acted upon by G and freely by R and
define a G-equivariant map Ty — Iy (Rso) which induces an isomorphism

3) Rso\ Ty — Iy(Rsp).
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Using the intrinsic definition of My, we define an R+ - and G-equivariant
map rr: My — Ty and a right-inverse ip: Ty — My with i7 o rp = 7.
Identifying My and SNy, by then it is thus established that

iTOTT:iNOTN.

In particular, the right-inverses i1 and ix have the same image and thus
yield an R - and G-equivariant isomorphism Ty — Ny. Its induced iso-
morphism

R<o\ Ty —R<o\ Ny

is, up to (3), precisely the one considered by Drinfeld.

In Section we recall the metric on R\ Ny studied by Goldmann
and Iwahori in [25] Section 2]. We express in terms of modules the metric
induced on Rx¢\in(Ny). We compute the distance between an arbitrary
element and any vertex in Iy,(R~ ) with respect to the induced metric. This
computation makes the covering of Iy,(R~() provided by Section ex-
pressible in terms of the metric.

Section |5, We give comprehensive proofs of well-known fundamental
facts about the rigid analytic structure of Drinfeld’s period domain associ-
ated with V and its quotients by discrete subgroups of PG. For some parts,
we may proceed more generally: Consider any integer k£ > 1. Then

Phome (ve.ory = (Home(Ve, CF) \ {0})/C

is equipped with a structure of projective rigid analytic variety over C.
Consider the PG-invariant subset

vik - ]P)Homc(Vc,Ck)

of those C*~classes [I] of C-linear maps [: Vo — C* with Ker(l) NV = 0; if
k =1, this is Drinfeld’s period domain for VV which we denote by y,. Let

Akt Qi — Rop\ Ny

be the PG-equivariant map that sends any [/] = [(/;)1<i<x] to the class of the
norm
v — ’l(’U)| = maXi<i<k ’lz(’(})|

In Section 5.1} we show that Qv k C Py, (v,cr) is an admissible sub-
set and that its covering by the preimages of all closed balls under Ay j, is
admissible and consists of quasi-compact, resp. affinoid if £ = 1, subsets.
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If £ = 1, this is Drinfeld’s [15, Proposition 6.1]. Our proof specializes to the
one given by Schneider and Stuhler in [40].

In Section |5.2| we consider any discrete subgroup I' C PG. If k > 1,
we assume that its action on €2y, is free. The quotient Qr ; of Oy ;, by I' is
naturally equipped with a structure of Grothendieck ringed space via the
quotient map. We show that it is a normal rigid analytic variety over C.
If £ = 1, this is Drinfeld’s [15, Proposition 6.2]. We generalize his proof
as follows: Let C be the covering of )y defined as the preimage under
Ay i of the PG-invariant covering of R\ Ny provided by Sections4.1jand
[.2]via the the identification R~o\ Ny = Iy(Rs¢) discussed in Section 4] It is
admissible and Qr . is locally isomorphic to the quotient of some element of
C by some finite subgroup of I'. Moreover, in the case k£ = 1, the elements of
C, and hence their quotients by finite groups, are normal affinoid varieties.
In the case k > 1, the elements of C are no longer affinoid but still normal
quasi-compact; in order for their quotients to still be normal rigid analytic
varieties, we assume I to act freely which, in particular, allows us to apply
Conrad and Temkin’s criterion [14, Theorem 5.1.1].

We will use this section in Section [Z.4lin order to show that the isomor-
phism classes of A-lattices in C* with level I structures are parametrized
by rigid analytic varieties.

In Section 5.3| we prove, inspired by van der Put’s [43]], a result on the
connectedness of certain subsets of €2y. It implies that Drinfeld’s period
domain itself and hence its quotient by any discrete subgroup is connected
and hence, by normality, irreducible. The result furthermore implies that
any point in any of the Satake compactifications in Section [f|admits a fun-
damental set of irreducible admissible neighborhoods.

In Section 5.4) we suppose that dimg(V) > 1 and consider a natural
action on {2y by any discrete subgroup of any codimension 1 subspace
W C V. We prove that a certain map, defined using exponential functions,
from its quotient to {2y, x C'is an open embedding between rigid analytic
varieties. Such a result is fundamental in order to define the Fourier expan-
sion of weak modular forms and, in particular, to define modular forms.

Section[6] In this section we construct the compactification of any irre-
ducible component of the analytic modular variety viewing it as a quotient
by a congruence subgroup. Consider any admissible coefficient subring
A C C asin Section[2.5/and denote by E C C the completion of its quotient
tield. Consider any projective A-module A # 0 of finite rank, set V := Ap
and

Qp = Oy,
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Let €2} denote the disjoint union of the sets €, for all direct summands
0 # L C A. Consider any congruence subgroup I' C Aut4(A). Then Q}
is naturally equipped with a natural I'-action which is compatible with the
action of I' on the direct summands of A and which restricts to the action
on Q of its image in PG studied in Section[5.2]

In Section[6.1jwe endow Q7 with the structure of Grothendieck topolog-
ical space which induces on any stratum 2, the rigid analytic Grothendieck
topology and which contains €25 as a dense admissible subset.

In Section [p.2] we study the induced Grothendieck topology on

Qf =T\

and endow this quotient with a structure sheaf Of and a sheaf of graded
Or-algebras R{. whose homogeneous components restrict on () to the
sheaf of weak modular forms with respect to I'.

In Section[6.3|we define the natural morphisms between the Grothendieck
graded ringed spaces as I' varies. In fact, we define a category of such trip-
ples (A, A,T') and understand (A, A,T") — f as a functor.

In Section[6.4lwe define Eisenstein series and Poincaré-Eisenstein series
as explicit global sections of homogeneous components of R7..

In Section 6.5 we show that any two points p,p’ € Qf admit a Poincaré-
Eisenstein series P for which P(p) # 0 = P(p/).

In Section jointly with Section we provide a comprehensive
proof that any weak modular form has a Fourier expansion at any cusp.

Section 7} In this section we define the compactifications of the analytic
modular varieties using adelic language. Consider any A C C as before
and let A be its profinite completion. Let M # 0 be any free finitely gen-
erated A-module. We define Q,, resp. 2}, to be the disjoint union of
(copies of) the Grothendieck topological spaces (2, resp. the Q}, for all
A-submodules A C M for which A ; — M is an isomorphism.

Consider any congruence subgroup K C Aut ;(M). Then K acts in
a natural way on @}, which is compatible with the K-action on such A-
submodules A and which restricts to an action on €2,,. Then the quotient

Qi = K\

has the structure of rigid analytic variety and in fact any X¢(C) is isomor-
phic to such a quotient.
In Section 7.1} we endow the quotient

Qf = K\,
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with a structure of Grothendieck graded ringed space and show that it is,
as such, the disjoint union of finitely many spaces 2} as in Section@

In Sections 7.3/ and [7.4| we study the case where K is the kernel of the
natural morphism Aut ;(M) — Auta(M/IM) for some ideal 0 # I C A;in
particular, we provide a proof that Qi then parametrizes A-lattices in C' of
rank rank ; (M) with a level I structure.

Section [8} In Section [8.1] we recall the notion of (generalized) Drinfeld
module and Pink’s compactifications of the algebraic moduli spaces.
In Section 8.2 we define A-reciprocal maps and prove Theorem

Section 9] Here we prove Theorem [I.11]and then deduce various con-
sequences such as Theorems|I.6|and [I.7]as well as Corollary
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2 Preliminaries and preparation

Let C' be an algebraically closed complete non-Archimedean valued field.

2.1 Grothendieck ringed spaces

This thesis builds on the notion of Grothendieck ringed spaces and mor-
phisms between them as recalled in this section. In fact, the category of
rigid analytic varieties is defined (see Section as a subcategory of the
the category of Grothendieck ringed spaces. Moreover, our compactifica-
tions will a priori be defined (see Sections@and@ as Grothendieck (graded)
ringed spaces and will only after quite some work turn out to be rigid ana-
lytic varieties.

Definition 2.1. i) A family {U;}ic1 of subsets U; of a set U is called a cover-
ing of U if U = U Ui

i) A covering {U}je of aset U is called a refinement of a covering {Ui }ier
of U if there exists a map 7: J — I with U; C U for any j € J.

iti) The intersection of a covering {U; }icr of a set U with a subset U' C U is
the covering {U; N U'}ier of U'.

iv) The intersection of a covering {U; }icr of a subset U C X with a covering
{U]/-}jej of a subset U' C X is the covering {U; N U;}ie[’jej of UNU'.

v) The preimage of a covering {U;}icr of a subset U C X under a map
f:Y — X is the covering { f ~1(U;) }ier of f~1(U).

Definition 2.2. A Grothendieck topology on a set X consists of
o asystem S of subsets of X and

e a family C = {Cov(U)}ues of systems of coverings, where Cov(U) con-
tains coverings of U by elements in S for any U € S,

subject to the following conditions:
))UU eS=UnU eS8
ii) UeS = {U} € Cov(U).

iii) If U € S,{Ui}icr € Cov(U) and {Uj;}je, € Cov(Us;) forany i € I, then
{Uij}iejdeji S COV(U).



iv) IfU, U' e SwithU' c U and lf{Ul},e[ S COV(U), then {Uz N U/}iej S
Cov(U").

v) 0,X €8S.

vi) If U € Sand U’ C U such that there exists {U;}ic; € Cov(U) with
UnNU €S8 foranyie I, thenU' € S.

vii) Consider any U € S and any covering {U;}icr of U with U; € S for any
i € 1. If {U; }ier has a refinement in Cov (U ), then it is itself in Cov(U).

If a Grothendieck topology (S,C) on X is understood, then the elements of S are
called the admissible subsets of X and the elements of any Cov(U) are called
the admissible coverings of U. In this case, the topology (in the usual sense) of X
whose open sets are the unions of admissible sets, is called the canonical topology
of X.

Definition 2.3. A morphism of Grothendieck topological spaces is a map under
which the preimage of any admissible subset and of any admissible covering is
admissible.

Definition 2.4. Consider any Grothendieck topological space X and any ring R.

i) A presheaf of (graded) R-algebras on X is a contravariant functor from the
category of all admissible subsets of X with inclusions as morphisms into
the category of (graded) R-algebras.

ii) Given any presheaf F on X, we denote by
FU) = FU), f= flu
the morphism associated with any admissible subsets U' C U C X.

iii) A presheaf F on X is called a sheaf if any admissible subset U of X and any
admissible covering C of U satisfy:

o If f,g € F(U) are such that f|y = g|y forany U’ € C, then f = g.
o Forany family (fu)ree € (F(U'))rec with
v U,7 U"eC: fur |U’OU” = fyn |U’ﬂU”
there exists an f € F(U) such that f|y = fy forany U’ € C.

iv) The morphisms between sheaves on X are the morphisms between the un-
derlying presheaves.



Definition-Proposition 2.5. [8, Proposition 9.2.2.4] Any presheaf F on a Grothendieck
topological space admits a sheafification, i.e., a homomorphism i: F — F' into

a sheaf F' such that any homomorphism F — G into a sheaf G equals ¢ o i for a
unique morphism ¢: F' — G.

Definition 2.6. A Grothendieck (graded) ringed space over a ring R is a pair
(X, F), where X is a Grothendieck topological space and F is a sheaf of (graded)
R-algebras on X.

Definition 2.7. A morphism (X, F) — (Y, G) of Grothendieck (graded) ringed
spaces over a ring R is a pair (f, f¥), where f: X — Y is a morphism of
Grothendieck topological spaces and where f# is a collection of (graded) R-algebra
homomorphisms

1§ 6W) = F(F1 W)
compatible with restriction homomorphisms, where U ranges over all admissible
subsets of Y.

2.2 Rigid analytic varieties

In this section we briefly recall the language of rigid analytic varieties over
C as developed by Bosch, Giintzer and Remmert in [8] and some results
about such varieties that will be used repeatedly.

Definition 2.8. A C-algebra norm on a C-algebra R is amap |- |[: R — R>
which restricts to the norm on C such that every r, s € R satisfy

o |r|=0<1r=0,

o [r-s| <|rl-s],

o |r—s| < max{|r|,|s|}.
Definition 2.9. A C-Banach algebra is a C-algebra R together with a C-algebra
norm whose induced topology on R is complete.

Definition-Proposition 2.10. [|8, Proposition 5.1.1.1] For any integer n. > 0
the Tate algebra over C' in n variables is the subalgebra T,, of C[[X1, ..., X,]] of
elements

_ E ) ) 3t i
f - azly-uﬂn : Xl ..... XTLn

1150080 >0

for which |a;, .. ;,| = 0asiy + - -+ i, — 0o. The Gauss norm

[fl:= max_lag i,
115--5tn =

is a C-algebra norm on T,, by means of which T, is a C-Banach algebra.
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Definition 2.11. A C-Banach algebra R is called C-affinoid if there exists an
integer n > 0 and a continuous epimorphism T,, — R.

Definition 2.12. i) A C-affinoid variety is a pair Sp(R) = (Max(R), R),
where R is any C-affinoid algebra and Max(R) is the maximal spectrum
of R, i.e., the set of maximal ideals of R equipped with the Zariski topology.

ii) A morphism Sp(S) — Sp(R) of C-affinoid varieties is a pair (o,07),
where % : R — S is any C-algebra homomorphism and

o: Max(S) — Max(R),m — (¢7) "1 (m)
is the induced continuous map.
Definition-Proposition 2.13. [8, Proposition 7.2.2.1]

i) A morphism (i,i"): Sp(R') — Sp(R) is called an open immersion if for
any morphism

(o,07): Sp(S) = Sp(R) with o(Max(S)) C i(Sp(R'))
there exists a unique morphism (1,9%): Sp(S) — Sp(R') with
(0,0%) = (i,i%) o (v, 9%).
In this case, i is injective.
ii) Any composition of open immersions is an open immersion.

iii) A subset U C Max(R) is called affinoid if it is the image of i of an open
immersion (i,i%): Sp(R') — Sp(R). In this case, U is (uniquely up to
unique isomorphism) endowed with the structure of C-affinoid variety and
we identify U with Sp(R).

iv) The preimage of any affinoid subset under any morphism between C-affinoid
varieties is an affinoid subset.

Definition-Proposition 2.14. [8, Proposition 9.1.4.2] The following specifies a
structure of Grothendieck topology on any C-affinoid variety Sp(R):

i) A subset X C Max(R) is admissible if it admits a covering C by affinoid
subsets of Max(R) whose preimage under any morphism Sp(S) — Sp(R)
has a finite refinement by affinoid subsets of Max(S). In particular, the
union of any finitely many affinoid subsets of Max(R) is admissible.



ii) A covering C of an admissible subset X C Max(R) by admissible subsets
is admissible if its preimage under any morphism Sp(S) — Sp(R) has a
finite refinement by affinoid subsets of Max(S).

Definition-Proposition 2.15. [, Proposition 9.2.3.1] Consider any C-affinoid
variety Y = Sp(R). Then there exists a unique sheaf Oy of C-algebras on 'Y
with Oy (Sp(R')) = R’ for any affinoid subset Sp(R') C Y and such that for any
composition of open immersions
/! (-77-7#) /
Sp(R") =" Sp(R') Cc X

the restriction homomorphism Oy (Sp(R')) — Oy (Sp(R")) equals j7. In partic-
ular, the pair (Y, Oy ) is a Grothendieck ringed space over C.

Definition 2.16. A Grothendieck ringed space (X, O) over C' is a rigid analytic
variety over C'if X admits an admissible covering C and any U & C possesses
an isomorphism (U, O|y) = (Y, Oy) of Grothendieck ringed spaces for some C-
affinoid variety Y.

As C is algebraically closed, the elements of any affinoid C-algebra A
uniquely give rise to functions Sp(A) — C (see [8, Section 7.1]). The global
sections of any rigid analytic variety (X, O) over C may thus be viewed as
the functions f: X — C whose restriction to any admissible affinoid subset
Sp(A) are induced by elements of A.

Definition 2.17. Any such f: X — C'is called regular.
Definition-Proposition 2.18. For any affinoid varieties X,Y

Mor((X, Ox), (Y, 0y)) = Mor(X,Y), (f, f#) = (£, )

constitutes a bijection by means of which we view the category of C-affinoid vari-
eties as a full subcategory of the category of rigid analytic varieties over C.

Proposition 2.19. [8, Theorem 6.2.4.1] For any affinoid algebra A over C the map
A = |C|, f > supgegpay | f ()] is a complete norm on A.

Example 2.20. [8, Example 9.3.4.1] For any n > 0 the affine space C™ has a
unique structure of rigid analytic variety for which the covering by all closed balls
with radius in |C| is admissible affinoid, where any such ball is naturally isomor-
phic to Sp(T},).

Example 2.21. [8, Example 9.3.4.3] For any n. > 1 the projective space P} over C
has a unique structure of rigid analytic variety which is compatible with the ones
of all affine subspaces.



Proposition 2.22. Let Z be the product of any affine with any projective rigid
analytic variety. Then the intersection of finitely many affinoid subsets of Z is
again affinoid.

Proof. Both affine and projective rigid analytic varieties and hence their
products are separated in the sense of [8, Definition 9.6.1.1]. The propo-
sition then holds by [8, Proposition 9.6.1.6]. O

Definition 2.23. A morphism of rigid analytic varieties is called a locally closed
immersion if the underlying map is injective and the induced homomorphisms on
stalks are surjective.

Proposition 2.24. [8, Proposition 9.5.3.5] A morphism f:Y — X of rigid ana-
lytic varieties is a closed immersion if and only if

i) it is a locally closed immersion,
ii) its image is an analytic subset of X and

iii) there exists an admissible affinoid covering (X;)icr of X and, for eachi € I,
a finite admissible affinoid covering of f~1(X;).

Proposition 2.25. (Maximum Modulus Principle) [8, Lemma 9.1.4.6] Consider
any affinoid algebra A and any f € A. Then there exists ¢ > 0 with |f(z)| < ¢
forany x € X := Sp(A). Moreover, if f vanishes nowhere on X, then there exists
d > 0with |f(z)| > 0 forany x € X.

Definition 2.26. [8, Definition 7.2.3.5] A subset X of an affinoid variety Y =
Sp(R) over C'is called rational if

X={yeY|Vl<i<n:|r(y)l <[r(y)l}
for some r,ry,...,ry € R generating the unit ideal.

Proposition 2.27. [8, Proposition 7.2.3.4] Any rational subset of any affinoid
variety is admisible affinoid.

Theorem 2.28. (Gerritzen and Grauert) [8, Cor. 7.3.5.3] Any affinoid subvariety
of any affinoid variety X is the union of finitely many rational subdomains of X.

Corollary 2.29. Consider any n > 1, any closed subvariety Z C C™ and any
quasi-compact admissible subset X C Z. Then there exists an € > 0 such that

Vee XVzeZ:i|lz—z2|<e=zeX.



Proof. As X C Z is admissible quasi-compact, it is a finite union of affinoid
subsets of Z. We thus assume without loss of generality that X C 7 itself
is affinoid. Moreover, X is contained in some closed ball B ¢ C™ around
the origin. We assume without loss of generality that the radius of B is 1.
Let Y C B be an affinoid subvariety with Y N Z = X. By Theorem[2.28) Y/
is a finite union of rational subdomains of B. We thus assume without loss
of generality that Y is itself a rational subdomain of B, i.e., that there exist
regular functions fy, fi,..., fr on B without a common zero such that

Y = {be B|YL<i<k: [fi(b) < |fold)]}.

In particular, f; has no zero on Y. By Proposition there exists thus
d > 0 with |fo(y)| > 0 for any y € Y. Moreover, by [8, Prop. 7.2.1.1], there
exists ¢ > 0 with |f;(b) — fi(t))] < ¢ |b — V| for any b,b € B and any
0 <i<k Chooseany 0 < ¢ < 1withc-e <. Anyz € X,z € Z with
|z — 2| < e then satisfy that 2 € Y N Z = X since

|fi(2)| = [fi(2) — fi(x) + fi(z)| < max{c- |z — 2|, |fi(z)|} < max{d,|fi(z)[}
< |fo(x)| = |fo(z) — fo(z) + fo(2)| = | fo(2)]

for any 1 < ¢ < k, where in the last step we have used that

[fo(z) = fo(2)| < c- [z —z[ <c-e <0 <[fo(z)]
U

Corollary 2.30. Consider any rigid analytic variety Y and and any closed sub-
variety Z C Y. For any admissible quasi-compact O C Z exists an admissible
quasi-compact subset U C Y with U N Z = O. Moreover, if Y is affinoid, then
for any rational subdomain O C Z exists a rational subdomain U C Y with
unz=0.

Proof. By means of an admissible affinoid covering of Y/, the first part is re-
duced to the case where Y is affinoid. In this case the first part is reduced to
the second part by by Theorem [2.28] We thus assume that Y is affinoid and
consider first any rational subdomain O C Z. Let fi,..., fu, g be regular
functions on Z without common zeroes such that

O={z€eZ [ VI<i<n:|fi(z)| <l9(2)[}-

In particular, g has no zero on O so that, by Proposition it is bounded
from below on O by some € € |C*|. In particular, we may assume that
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fn = €. Choose then any lifts fiyeo s fagtoY of fi,..., fn,g with f, = &.
As € # 0, these lifts have no common zero. Hence

U:={yeY |Vi<i<n:|fily) <|gw)} CY
is a rational subdomain with U N Z = O. O

The equivalence of|[i)|and [iii)| in the next proposition is the Riemann ex-
tension theorem for affinoid varieties, which was proved by Bartenwerfer.

Theorem 2.31. [2} Section 3] Consider any normal quasi-compact rigid analytic
variety Y, any closed subvariety Z C'Y which is everywhere of positive codimen-
sion and any regular function s: Y \ Z — C. Then the following are equivalent:

i) s extends uniquely to a reqular function Y — C,

ii) s extends uniquely to a morphismY — C of Grothendieck topological spaces
whose restriction to Z is regular,

iii) s is bounded.

Proof. Thatl[i)|implies [ii)] follows immediately from the definitions and that
implies [iii)| follows from the quasi-compactness of ¥ and the fact that
covering of C by all closed balls of integer radius around the origin is ad-
missible. By means of an admissible affinoid covering of Y, the implication
= [iii)|is reduced the case where Y is affinoid which it is the content of [2,
Section 3]. O

In his proof of Proposition Bartenwerfer proved and used the fol-
lowing result on Laurent series.

Proposition 2.32. [2| Satz 12] Consider any separated quasi-compact variety O,

any e € |C*| and any regular function s: O x B. — C. Then there exist unique
reqular functions s;: O — C over all i € 7 such that

s((0,2)) = Zsi(o)zi, forany (o, z) € O x B..
i€z
Moreover, the following are equivalent:

i) s extends uniquely to a reqular function O x B, — C,

ii) s extends uniquely to a morphism O x B, — C' of Grothendieck topological
spaces whose restriction to O x {0} is reqular,

iii) s is bounded.

iv) Vi< 0:s =0,



2.3 On some quotients of rigid analytic varieties

Consider any group I' of C-linear automorphisms of any rigid analytic va-
riety Y over C. Let
p:Y > T\Y

be the quotient morphism, where I'\Y is endowed with the structure of
Grothendieck ringed space induced by the quotient map, that is, a subset
(resp. a covering of a subset) of I'\ Y is admissible precisely when its preim-
age is admissible and the sections on an admissible subset of I'\Y" are the
I'-invariant sections on its preimage.

Proposition 2.33. Suppose that Y = Sp(A) is the affinoid variety associated with
any affinoid variety A and suppose that T is finite. Then the subalgebra A" C A of
I-invariant elements is affinoid and induces an isomorphism of affinoid varieties

I'\ Sp(4) — Sp(A").
Moreover, A is a finite A'-module and if A is normal, then so is AT

Proof. For the first part see [26, Theorem 1.3]. Moreover, A is a finite Al-
module by [8| Proposition 6.3.3.3]. Finally suppose that A is normal. Then
the irreducible components of Sp(A) are disjoint and permuted by G. We
may thus assume without loss of generality that Sp(A) is irreducible. Then
A and hence AT C A is a domain. Consider any s,t € Al with ¢ # 0 such
that s/t is integral over A" and let us show that then s/t € Al'. Since A is
integrally closed, there exists an a € A such that s = ¢ - a. It remains to be
shown that in fact a € A'. As s and t are I'-invariant, a and va coincide
outside the zero locus of s for any v € I'. If s # 0, then normality of A
yields via Propositionthat a = vya for any v € T and hence thata € AL.
On the other hand, a = 0 € A if s = 0. O

We will use the following generalization of Proposition[2.33|

Proposition 2.34. Suppose that Y is separated (see [8, Definition 9.6.1.1.]). De-
noteby p: Y — T'\Y the quotient map. Consider any admissible affinoid covering
(Yo )n>1 of Y and finite subgroups (I'y,)n>1 of I such that

v/ >n>1:T,Ccl,AY, CY,,,
i) Vn > 1,Vy ey y(Yn) =Y,

iii) and any n > 1 admits an n' > 1 such thatVy € T\ T,y : v(Y,) NY, = 0.



Then (p(Yr)),,~ is an admissible covering of '\Y and any p(Y,,) is admissibly
covered by finitely many affinoid varieties. In particular, T\Y is a rigid analytic
variety. Moreover, if Y is normal, then so is '\ Y.

Proof. Consider any n > 1 and choose any n’ > n > 1 satisfying the prop-
erty inliii)] Let I be a set of representatives of I'/T',,s. Set

Vyel:Uy:= U () (V).
’y/GF"/

Then the U, are pairwise disjoint and they cover U = p~1(p(Y,)). We
claim that U C Y is admissible and admissibly covered by the U, and, in
particular, that p(Y;,) C I'\Y is admissible. In order to prove the claim,
it is enough, since (Y});>1 is an admissible covering of Y/, to check for any
k > 1that UNY}, C Y} is admissible and admissibly covered by (U,NY})~er-
Consider any such k. Since Y is separated, the intersection of any finitely
many affinoid subsets of Y is again affinoid [8, Proposition 9.6.1.6]. As U,
is the union of finitely many admissible affinoid subsets, thus so is U, N'Y},
for any ~ € I. Moreover, [iii) provides a k¥’ > 1 such that U, N Y}, = 0 for any
v € I'\T'y. Hence U NY}, is the union of finitely many admissible affinoid
subsets and hence an admissible subset of Y}, and the covering (U, NY})~er
has the finite affinoid, and thus admissible, refinement (U, NY})ernr,, and
is thus itself admissible. This yields the claim.

As T, is finite and acts on the affinoid Y, by i)} Proposition[2.33]yields
that I',,/\Y, is an affinoid variety and that its admissible subsets are pre-
cisely those whose preimages in Y, are admissible. Let ¢ € I represent
the identity. By i), U,, is the union of finitely many affinoid subsets of Y/,
and hence quasi-compact, and I',/-invariant. Hence its image I',/\U,, in
I',/\Y, is an admissible quasi-compact subset or, equivalently, the union
of finitely many admissible affinoid subsets. As the U, are pairwise dis-
joint and form an admissible covering, the inclusion morphism U,, — U
induces an isomorphism I',/\U,, — 7(Y},) of Grothendieck ringed spaces.
Thus p(Y;,) is indeed admissibly covered by finitely many affinoid varieties.
Moreover, if Y is normal, then so is Y, and hence I',/\Y,; by Proposition
and hence I,/ \U,,, and hence p(Y},).

It remains to be checked that the covering (p(Y},))n>1 of I'\Y is admis-
sible. Using that (Y};)x>1 is an admissible covering of Y/, it suffices to check
for any k > 1 that the covering (p~(p(Y;)) N Yk)n>1 of Yy is admissible. But
the latter covering has as admissible refinement the covering given by the
single subset p~!(p(Y%)) N Yy, i.e., by Vi, and is thus itself admissible. [
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2.4 PGL over a non-Archimedean local field

Consider any non-Archimedean local field E. Denote by OF the ring of
integers of . Choose a prime element 7 € O and set ¢ := |X|. Consider
any finite dimensional E-vector space V # 0 and set d := dimg(V). Set

G := Autg(V) and PG :=PGL(V) =G/E*.

We shall recall the structure of V and of G as locally profinite groups and
describe the discrete subgroups of G and of Pg.

Definition 2.35. i) A topological group is profinite if it is the inverse limit of
an inverse system of discrete finite groups or, equivalently, if it is Hausdorff,
compact and totally disconnected.

ii) A topological group is locally profinite if it is Hausdorff and if the identity
has a fundamental sytems of profinite open neighborhoods.

Definition 2.36. Let Sy be the set of free Op-submodules m C V of maximal
rank together with the action of E* by dilation, i.e., the one induced by scalar
multiplication.

Definition-Proposition 2.37. i) Any free Og-module m of finite rank to-
gether with the natural morphisms m — m/x"™m for all n > 0 is the in-
verse limit of the natural projections between these m/m"m, as such, endow
m with the structure of profinite topological group.

ii) Let V be endowed with the unique structure of locally profinite topological
group inducing on any free m € Sy the profinite topology and containing
m as an open subgroup. Let E*\V be endowed with the quotient topology.

Proof. As the field E is non-Archimedean local, O is the inverse limit of
the finite O /7" Of for all n > 0 and their projection morphisms. From
this, [i)| directly follows. Any m € Sy induces a unique structure of topo-
logical group on V which contains m as an open subgroup and induces the
profinite topology on it. This induced topology does not depend on the
choice of any such m since, as is directly checked, for any further m’ € Sy,
the fundamental sets of neighborhoods (7"m),>0 of 0 in m and (7"m'),>0
of 0 in m/ are cofinal. Moreover, the intersection for all n > 0 of the Op7™,
and hence of the 7"m, is 0. Since a topological group is Hausdorff if and
only if some open subgroups have trivial intersection, this topology is thus
also Hausdorff which yields O
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Lemma 2.38. Consider any non-negative integer n, any free Op-module m of
finite rank and any free Og-submodules m', m” C m each having a free direct
complement in m and such that m' := m’/7"m’ and m" = m" /7"m" coin-
cide as O /1" O g-submodules of v := m/n™m. For any Og-linear isomorphism
7:m' — m" and any e € Aute,, /0, () whose restriction to m' is the isomor-
phism m’ — m" induced by T there exists a 0 € Autp,(m) that induces e and
restricts to 7.

Proof. Consider any such 7 and e. Using surjectivity of the natural mor-
phism m — m and using any Og-basis of m that extends an Opg-basis of
m/, we may choose a 0 € Homp,, (m,m) that induces e and restricts to 7.
Then the determinant of ¢ modulo 7" equals the determinant of € and is
thus a unit. If n > 1, then the determininant of ¢ is thus itself a unit since
OfF is a discrete valuation ring so that o is in fact an automorphism. If n = 0,
then € = 0, so that 0 may be chosen to further be an automorphism. O

Definition-Proposition 2.39. Consider any free Op-module m of finite rank.
Then Auto,, (m) together with the natural surjective morphisms

4) Auto,(m) = Autp, /e, (m/m"m)

forall n > 0 is the inverse limit of all natural morphisms between these targets; as
such, endow Auto, (m) with the structure of profinite topological group.

Proof. By Lemma these morphisms are indeed surjective. The asser-
tion is then directly checked. O

Definition-Proposition 2.40. Let G be endowed with the unique structure of
locally profinite topological group such that for any m € Sy the natural embedding
Autp,, (m) — G is a homeomorphism onto an open subgroup. Let PG be endowed
with the quotient topology.

Proof. Any m € Sy induces a unique structure of topological group on G
for which the embedding Autp,(m) — G is a homeomorphism onto an
open subgroup. It remains to be shown that the induced such topology is
independent of the choice of m and that it is Hausdorff. Denote by K (m, n)
the kernel of the homomorphism in (. Then F,, = (K(m,n))n>o is a
fundamental system of open neighborhoods of the identity in Autp, (m)
for any m € Sy. In order to see, that the topologies on G induced by any
m,m’ € Sy coincide, it suffices to show that F,,, and F,,,, viewing any of
its elements as a subset of G, are cofinal. Consider any such m, m’ and any
n > 0. To find is an n’ > 0 for which K(m/,n’) C K(m,n). Using that any
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K(m/,n’) C Gisinvariant under dilating m/, assume thatm C m/. Any n’ >
0 for which 7¥'m’ C 7"m is then as desired. Finally, a topological group is
Hausdorff if and only if some open subgroups have trivial intersection. As

ﬂw”m =0 and hence ﬂK(m,n) =0
n>0 n>0

for any m € Sy, thus G is Hausdorff. O

In the sequel, view any such Autp, (m) as an open subgroup of G.

Lemma 2.41. A subgroup of G, resp. of PG, is discrete if and only if its intersetion
with Autp, (m), resp. Autp, (m) - E* /E*, is finite for any m € Sy.

Proof. This follows directly from the facts that G is locally profinite and thus
Hausdorff and that any Autep, (m) is open and profinite and thus compact.
O

Example 2.42. Consider any subring A C E and any discrete A-submodule A C
V for which the natural homomorphism A ® 4 E — V is an isomorphism. Then
Aut 4(A) embeds naturally into G onto a discrete subgroup whose image in PG is
discrete.

Proof. By virtue of the isomorphism A ®4 E — V, view I' := Auts(A) as a
subgroup of G. Let m € Sy and set G := Autp, (m). We shall show that

'NE*-G=InG

and that this group is finite; in view of Lemma this will yield the
assertion. Using that G C § is invariant under dilating m and that A ®4
E — V is an isomorphism, we assume m to be such that m N A contains a
basis of V. The natural homomorphism

I'nG — AutAm@E(Aﬂm)

is then injective. As the discrete subset A N'm of the compact m is finite, the
target, and hence the domain, of this homomorphism are finite. It remains
tobe shownthat'NE* -G C G. Letg e TN E* - G. Choose an e € E*
for which g(m) = e - m. Then ¢"(A N'm) = ANe™ - m for any integer n.
Thus e € O3F; indeed, otherwise the e" could become arbitrarily small so
that, A being discrete, A N e™ - m = 0 for some n whereas A N'm # 0. Hence
g(m) = m as desired. O

In Section .3 we will recall the usual definition of norm on V.
Lemma 2.43. Any norm on V induces the locally profinite topology.
Proof. This is Corollary [4.8 below. O
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2.5 On lattices over admissible coefficient subrings
Suppose that the characteristic of C' is finite.

Definition 2.44. A subset S C C is called strongly discrete if its intersection
with every ball of finite radius is finite.

Definition 2.45. We call a subring A C C an admissible coefficient subring if
it is strongly discrete and if it is a Dedekind domain that is finitely generated over
a finite subfield of C.

Example 2.46. Consider any finite subfield F, C C and any t € C with |t| > 1.
Then T, [t] is a polynomial ring over Fy and an admissible coefficient subring of C.

Proof. As the norm of C is non-Archimedean, as |z| = 1 for any 0 # = € F,
and as |t| > 1, any polynomial of degree n > 0 over [, evaluated at ¢ has
norm |t|" in C. This implies both that F,[t] is a polynomial ring and that it
is strongly discrete in C'. That any polynomial ring in one variable over a
field is a Dedekind domain, is a classical fact. O

Remark 2.47. Any admissible coefficient subring A C C'is the ring of sections
on X \ {z} for some closed point x in some projective smooth irreducible algebraic
curve X over a finite field such that the completion of the quotient field of A with
respect to the valuation corresponding to x is contained in C as a valued subfield.

Proof. (Sketch) Consider any admissible coefficient subring A C C. For
instance by Harder’s [27, Volume 2, Section 9.1-3], then A is the ring of
sections on X \ Y for some finite set Y of closed points in some projective
smooth irreducible algebraic curve X over a finite field. Moreover, from
the strong discreteness of A it follows that its unit group is finite. Then use
that the ideal class group of A is finite in order to conclude that |Y|=1. [

The following is an example to Example

Example 2.48. Consider any admissible subring A C C. Denote by E the com-
pletion of its quotient field. Let V be a finite dimensional vector space over E. Any
projective A-submodule A C 'V for which the natural homomorphism AQ o E — V
is injective is then discrete in V.

Proof. As A is discrete in C, it is discrete in E. Consider any such A-
submodule A C V and choose any free A-submodule A’ of A of maximal
rank. Then A’ is discrete in V. Moreover, A/A’ is a torsion A-module by
maximality of A’. As A/A’ further is finitely generated, it is in fact finite as
A is a Dedekind ring. Thus A is the union of finitely many translates of the
discrete A’ and hence itself discrete. O
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Lemma 2.49. Consider any non-Archimedean local field E contained in C as a
valued subfield. Let V C C be any finite dimensional E-subspace. A subset S C V
then is discrete with respect to the locally profinite topology if and only if it is
strongly discrete as a subset of C.

Proof. This follows from Lemma [2.43] O

Definition 2.50. Consider any admissible coefficient subring A C C and let E
be the completion of its quotient field. A finitely generated projective A-submodule
A C Cis an A-lattice if the natural homomorphism A ® 4 E — C'is injective.

Proposition 2.51. Any A-lattice A C C is strongly discrete.
Proof. Combine Example and Lemma O

Definition 2.52. Consider any admissible coefficient subring A C C, any projec-
tive A-module A of finite rank d > 0 and any norm | - | on A ® 4 E in the sense of
Section[d.3| where E is the completion of the quotient field of A. Forany 1 < i < d
call

wi(A) = inf{max{|A1],...,|\i|} | A1,..., N\i € A linearly independent }
the i-th successive minimum of A. Set fimax(A) := pa(A).

Definition-Proposition 2.53. Let A = F,[t] be as in Example Consider
any A-module A and any norm | - | as in Definition Then there exists a
minimal reduced basis of A, i.e., an ordered basis (\1,...,\q) of A such that
(IA1ly -y [Aal) = (pa(A), . .., pa(A)) and such that

Va € A?: Z a;\i| = max |a;| - | Al
1<i<d tsisd

Moreover, |\;| = ,{nf\ |Xi + - A| for any \; in any such basis.
€
Proof. Up to the last assertion, this is [7, Theorem 2.2.8]. Consider then any

A; in any minimal reduced basis (A1, ..., A,) of A. Any A = Z‘f:j a;-Aj € A
then satisfies as desired that

|Ai +tA| = mgx{!(l Fteai) il ft-ag- Al} = (141 aq) - A = Al
j#i

15



For any subset S of any normed vector space V set

A(S) = inf sl

this measures the distance of S\ {0} to the origin.

Corollary 2.54. Consider any A = F[t], any A and any norm on A @4 E as
in Def.-Prop. Consider any direct summand 0 # L C A. Consider the
projection m: t A — A:=t"'A/Aand set L .=t 'L/L C A. Then

©) max d(r () < pimax(L)-
acl

Moreover, choose a minimal reduced basis (1, ..., \,) of t "1A. Let L' C t—'A be
the submodule generated by the \; with |\;| < d(x=*(A\L)). Set L' := = (L'). If

(6) ng(fl({a})) <d(x'(A\ L)),

then T = Land d(t*A\ L) = d(x'(A\ L)).

Proof. Choose a minimal reduced basis \|,..., A, of t 1L. Any0 # a € L
admits an F-linear combination x # 0 of the X, in 771 («); then

d(m (@) = |ul < IN| = 17 (L) < (L)

Moreover, (7 1(0)) < [t| - |X,,| = [t| - pm (t1L) = piny (L) This yields (§).

Suppose @ Then L' ¢ L. Conversely, let a € L and choose any A €
7 Ha) with [\ = d(7 71 (). Write A = >, a;-\; forsome ay, . .., a, € A.
Then )\ € L' and hence o € ": Indeed, if A was not in L/, then we could
choose a \; ¢ L' for which a; # 0 and get the contradiction that

A = max g Ad > fag- Ayl = (0] 2 A (B\D) D maxd(2(@)) = Al
1SN aeL

Hence I' = L. This and the defining property of L' then imply that
QAN L) = Amga] = d(m A\ T)) = d(z~ K\ T)).
O

Definition-Proposition 2.55. For any strongly discrete subgroup A C C the

formula
ea(T):=T- [] (1 - f)

0£XEA
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defines a reqular function ey: C — C that is a surjective homomorphism with
kernel A. Moreover,

1 1
Vee C\ A: = :
\ ea(c) )\ze;\c—i-/\

Proof. This is explained for instance in [16, Chapter 2, Section 1] up to the

last part. The last part follows from logarithmic differentiation using that
diT expy(T) = 1. O

Proposition 2.56. Consider any A-lattice A C C and any 0 # ¢, € C such
that |c| < |A| and || < | + A for every 0 # X\ € A. Then

/ ‘ < ‘ -g-ranky, [ (A)

C

c

C/

C

ea(d)

= ea(c)

<

for any polynomial ring Fy[t] C A over any finite field with q elements.

Proof. The assumptions yield for any 0 # A € A that

e+ Al = A =1( + ) = | < max{|' + AL ||} < |+ Al

and that /s
¢+
= 1if | :
=it 1
and that /s . .
c + c c
< < | =] if (A < €.
C+/\‘_c+)\‘_ Al < |l
Hence . 'y, . ,
o e B
heal €T eale) AeA
IA<Ie’|
Consider any polynomial ring A’ := Fy[t] C A. It remains to be shown

that the number A € A with |A\| < |¢/| is bounded by )%‘ -q-d, where d :=
rank 4/(A). By means of Proposition choose a reduced basis A1, ..., \g
of the A’-module A. Any A € A then admits unique ay,...,aq € A’ with
A= Z?:l a; 'Ai and, if ’)\’ < ‘CI‘, then \aj -)\j| < maxi<i<d \ai )\z’ = M‘ < ‘C/‘
and hence |a;| < ‘f—;‘ < ’%‘ for any 1 < j < d. This yields the remaining
bound. O
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3 Onstratifications of rigid analytic varieties by global
sections

Throughout this section we consider any reduced rigid analytic variety Z
over an algebraically closed complete non-Archimedean field C' and any
finite set S of global sections of an invertible sheaf on Z. With any 7' C S
and any € € |C*| associate the reduced Zariski open, resp. admissible, resp.
locally closed subvariety

UT)={z€Z|VteT:  t(z)#0}C Z,
U(T,e) = {z cU(T) |Vs € S\ T, VteT: E(z)’ < e} CU(T),
UT) == {z € U(T) | Vs € S\ T, VteT:;(z):O}CZ.

This yields a stratification of Z by locally closed subvarieties

z=Jom).

TCS

3.1 Characterization of the Grothendieck topology

Proposition 3.1. A subset X C Z is admissible if and only if any T C S with
Q(T) # 0 satisfies that

i) the subset X N QT) C QUT') is admissible and that

it) any admissible quasi-compact U C U(T') with U N QT) C X admits an
g€ |C*lwithUNU(T,e) C X.

Moreover, a covering of an admissible X C Z by admissible subsets is admissible
if and only if its intersection with X N Q(T') is admissible for any T' C S.

Proposition 3.1 will essentially be a formal consequence of

Proposition 3.2 (Kisin). For any affinoid algebra A over C, any admissible U C
X := Sp(A) and any ay,...,a, € A whose common zeroes lie in U exists an
e > 0such that {x € X|V1 <i<mn:|a(x)] <e} CU.

Proof. See [13, after Remark 5.2.9] for Conrad’s short proof using Berkovich
spaces. t
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Proof of Proposition Consider any subset X C Z. Suppose first that X is
admissible and consider any 7' C S. Then|i)|follows from the fact that Q(7)
is a locally closed subvariety of Z. Consider further any admissible quasi-
compact (a.q.c.) U C U(T) with U N Q(T) N X. Then apply Proposition[3.2]
to the admissible subset U N X C U and the restrictions to Y of the $ over
alls € S\ T and t € T to get a desired € € |C*| fulfilling U NU(T,¢) C
UnXcX.

Conversely, suppose that i) and fii) hold. For any 0 < i < [S]| let (i) be
the union of the U (7T') for all T C S with |[S\ T'| > i and let P (i) be the claim
that X NU(i) C U(i) is admissible. Then P(]S|) is precisely the desired
statement. We shall prove P (i) by induction on 1.

As U(0) = Q(S), Condition [i)]implies P(0). Consider then any 0 < i <
|S| and suppose that P(i — 1) holds. As the U(T) over all ' C S with |S'\
T| = i form a Zariski open and hence admissible covering of (i), we may
and do thus choose any such 7', set U := U(T') and 2 := Q(T') and restrict
ourselves to showing that X N/ C U is admissible. In particular, we may
and do assume that X C U. By means of i), choose any admissible affinoid
covering C of XNQ. Applying Corollary[2.30|to the closed subvariety Q C U
choose for any O € C an admissible quasi-compact U(O) C U with U(O) N
Q = O and, furthermore using Condition [ii), with U(O) C X. Using that
X\ Q Cc U\ Qis admissible by the induction hypothesis, we further choose
any admissible covering D of X \ (2, for instance {X \ Q}. Let £ be the
covering of X consisting of all elements in D and the U(O,<(0)) for all
O € C. We claim that X is an admissible subset by means of &, i.e., that
for any morphism ¢: Y — U with image in X, where Y is affinoid, the
preimage of £ under ¢ has a finite subcovering.

Consider thus any such ¢: Y — U. Let Y’ C Y denote the common
zero locus of the f,/, := jop: Y — Cforalls € S\T and allt € T'. Then ¢
restricts to a morphism ¢: Y’ — X N Q. AsY is quasi-compact, the image
of v is contained in the union of finitely many O1,...,0;, € C. Being the
union of finitely many adissible quasi-compact subsets, U := U(O;)U---U
U(Oy,) is admissible. Its preimage ¢~ (U) C Y is thus admissible, too, and,
by construction, contains Y’. Proposition [3.2| thus provides an ¢ € |C*|
with

Vor={yeY | Vse S\T,Vt€T: |fs(y)| <e} C ¢ (V).

Since Y \ Y; is quasi-compact and since D is admissible, Y \ Y; is covered
by finitely many elements of the preimage of D under ¢. Together with the
¢ Y(U(0y)), such finitely many subsets yield a desired finite subcovering
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of the preimage of £ under . This finishes the induction step and hence
yields the first equivalence of the proposition.

Finally, suppose that X is admissible and consider any covering F of X
by admissible subsets. Suppose that the intersection of 7 with X N Q(7")
is admissible for any 7" C S and let us show that F is then itself admissi-
ble. By means of a similar induction argument as above, we assume that
X CU(T) for some T' C S and that the intersection D of F with X \ Q(T) is
admissible. Let D be an admissible affinoid, and hence quasi-compact, re-
finement of the intersection of F with X N Q(T"). For any O € C choose
an Xp € F such that O C Xp and, similarly as before, an admissible
U(O) C XowithU(O)NQ(T) = O. Let £ be the covering of X consisting of
all elements in D and of the U(O) for all O € C. It is enough to show that £
is admissible since, by construction, it refines F. By a previous argument,
the preimage of £ under any morphism ¢: Y — X, where Y is affinoid,
has a finite subcovering. Thus £ and hence F are indeed admissible.

Conversely, the intersection of any admissible covering of X with any
Q(T) is admissible since €2(T') is a locally closed subvariety of Z. O

3.2 The characterization in a special case

Assume for any Q(7") # () the existence and choice of a morphism
) pr: UT) — Q(T)
such that pr|or) = idg(r) and such that
U0, ) == p7 (0) NU(T, )
is quasi-compact for any quasi-compact O C Q(7T') and any ¢ € |C*]|.

Example 3.3. Let for example S be a C-basis of the global sections of the first
twisting sheaf of any standard projective space Z over C' and let pr be the natural
projection for any ) # T C S. Consider for any t € T C S the isomorphism

S

igLKTyﬁKMTyxCaTﬂF%(m{@%;@DESw>-

Forany 0 #T C S,any O C QT) and any € € |C*| then

U(0,e) = (i; (O x Be).

teT

In particular, such U (O, €) is quasi-compact, resp. affinoid, whenever O is.
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Corollary 3.4. Consider any Z, S and morphisms pr as in (7). Let Y C Z be any
closed subvariety. Then a subset X C Y is admissible if and only if any T C S
with Q(T) NY # 0 satisfies that

i) the subset X NQ(T) C Y NQT) is admissible and that

ii) any admissible quasi-compact O C Q(T) with O N'Y C X admits an
e(0) € |C*|witht/(0,e(0))NY C X.

Moreover, a covering of an admissible X C 'Y by admissible subsets is admissible
if and only if its intersection with X N Q(T') is admissible for any T' C S.

Proof. Consider any subset X C Y and any 7" C S with Q(T) NY # 0.
Set Q := Q(T) and U := U(T). In view of Proposition [3.1| applied to the
restrictions of the sections in S to Y, it is enough to assume that @ NY # (),
that X N Q2 C Y N is admissible and to show the equivalence of

(A) Condition of this corollary and

(B) the condition that any admissible quasi-compact U C U N'Y with
UNQC X admitsane € |C*|withU NU(T,¢e) C X.

First consider any such U assuming Then U N () is an admissible
quasi-compact of Y N © and hence, by Corollary [2.30} the intersection with
Y of an admissible quasi-compact O C 2. Choose such an O. Then (1)
provides an ¢’ € |C*| with X’ := U(O,e’)NY C X. By construction, then
UNQ=0nQ= X nNQ. Applying Proposition 3]to the admissible subset
X' CY,thusyieldsane € |C*|withUNU(T,e) C X' C X.

Conversely, assume|(B)|and consider any admissible quasi-compact O C
Qwith ONY C X. Choose any ¢’ € |C*|. By assumption on pr, the
subset U(0,¢’) € U, and hence U := U(O,e)NY C UNY, is then ad-
missible quasi-compact Condition (2) thus provides an &’ > ¢ € |C*| with
UO,e)NY =UNU(T,e) C X as desired. O

Corollary 3.5. Consider any rigid analytic variety R and any integer n > 0. Let
Y C R x C"™ be any closed subvariety. Then a subset X C Y is admissible if and

only if
i) the subset X \ R x {0} C Y \ R x {0} is admissible,
ii) the subset X N R x {0} C Y N R x {0} is admissible and

iii) for any admissible quasi-compact O C Rwith O x {0} C X existsane > 0
such that (O x B;)NY C X.
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Moreover, a covering of an admissible subset X C Y by admissible subsets is
admissible if and only if both its intersection with X \ R x {0} and its intersection
with X N R x {0} is admissible.

Proof. Suppose that Z = R x C™ and S consists of the regular function 1
and the i-th projection p;: Z — C forall1 < ¢ < n. For any T' C S then
Q(T) # 0 < 1 € T in which case we assume pr: U(T) — Q(T) to be the
natural projection. Moreover, let Z’ := Z \ R x {0}, Y/ := Y \ R x {0}
and S’ := {p!,...,p},}, where any p/, is the restriction of p; to Z’. For any
T' C S' define 4 (T") and ©(T") analogously with respect to Z’ and S’. Then
QT #0< T #Qforany T’ C S’. Forany such ) £ T" C S'let T C S be
the subset with1 € Tand V1 <i <n:p; € T < p, € T’; then

UT)=U(T) and QT") = QT)

and we set p/, := pr. Using that Q({1}) = R x {0}, the corollary then
follows by applying Corollary [3.4| twice; once as stated and once for Z, Y,
S, and the pr replaced by Z', Y’, S’, and the p/.. O

Corollary 3.6. Let R be any separated rigid analytic variety. Consider any ad-
missible subset X C R x C and any reqular function s: X \ R x {0} — C. Then
there exist unique regqular functions s;: X N R x {0} — C such that

s((0,2)) = Y _ 5i(0,0)2" forany (0,z) € O x B:\ O x {0}

1EL

for any admissibe affinoid O x {0} C X N R x {0} and any ¢ € |C*| with
O x B. C X. Moreover, the following statements are equivalent:

i) s extends to a regular function X — C.

ii) s extends to a morphism X — C' of Grothendieck topological spaces whose
restriction to X N R x {0} is regular.

iii) Any admissible affinoid O x {0} C X N R x {0} admits an ¢ € |C*| with
O x B, C X and such that s is bounded on O x B. \ O x {0}.

Z"U) V’L'<0281':0.
Moreover, the extension in[i)| resp. [it)} is unique if it exists.

Proof. LetC’ denote the covering of X N R x {0} by all its admissible affinoid
subsets. This is admissible since any admissible affinoid covering refines
it. By means of the first part of Corollary let C be the covering of X
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consisting of X \ R x {0} and the O x B, for all O x {0} € C’ and any
choice of £(0) € |C*| with O x B0y C X. Since the intersection of C with
X\ R x{0} is refined by the admissible covering { X \ R x {0} } and since the
intersection of C with X N R x {0} equals C’, the second part of Corollary[3.5)
yields that C is admissible. Proposition[2.32]yields unique regular functions
sio: O — C, one for each i € Z, for any such O such that

s((0,2)) =Y _ si0(0)2" forany (0,2) € O x B.o)\ O x {0}
1€EZ

By Proposition O N O' is affinoid for any admissible affinoid O x
{0},0" x {0} € X N R x {0} so that

si,0lono’ = si,ono’ = si,0'lono’ forany i € Z

by the previous uniqueness property. As C’ is admissible, any i € Z thus
admits a unique regular function s;: X N R x {0} — C with s;[px{03(0,0) =
si,0(0) for any o € O € C'. By the admissibility of C and again by Proposi-
tion[2.32} these s; therefore satisfy the desired properties. ]

Proposition 3.7. Let Z and S and the pr be as in Example Consider the
natural left-action on Z of any subgroup G of the symmetric group of S. Then for
any G-invariant closed subvariety Y C Z the quotient G\Y is a rigid analytic
variety and it is normal if Y is.

Proof. Forany 0 # T' C S and any r € |C] set

/

O(T,r) := {Z e QT) | Vt,t' eT: %(Z)

< r} c UT)

and for any further ¢ € |C*| set U(T,r,e) := U(O(T,r),e) C U(T). By
Example and the construction, any such U(T, r, ¢) is a Gp-invariant ad-
missible affinoid subvariety of Z, where G denotes the stabilizer of T" in
G. Fixany 1 > ¢ € |C*|. The construction yields for any 7/ C S with
T'¢ T ¢ T'and any g € G that

U(T,e)NU(T",e) = 0 and that g(U(T,r,e)) =U(g(T),r,e).
Hence the G-invariant subvariety

GU(T,re) = | Ju(g(T),re) Cc Z
geG
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is a disjoint union of finitely many admissible affinoids; in particular, it is it-
self admissible affinoid. Finally, let C be the covering of Z by the G(U(T', r,€))
for varying ) # T' C S and r € |C|. Its intersection with any Q(7') # 0 is
refined by the admissble covering of Q(T") by the O(T, r), for varying r, so
that it is itself admissible. By Proposition thus C is admissible. In par-
ticular, the intersection of C with any G-invariant closed subvariety Y C Z
is an admissible covering by G-invariant affinoids. The proposition then
follows from Proposition [2.33] O

3.3 Stratification and normalization

Consider first a general reduced rigid analytic variety X. We refer to Con-
rad’s [12] for the definition of the normalization of X and a proof that it
uniquely exists. Conrad uses it to define the irreducible components of X
as the images of the connected components under the normalization mor-
phism [12, Def. 2.2.2]. The irreducible components are then the maximal
irreducible Zariski closed subsets of X [12, Thm. 2.2.4.(2)]. If X is the ana-
lytification of an algebraic variety X’ over C, then its normalization, resp.
its irreducible components, are the analytification of the normalization of
X', resp. of the irreducible components of X’ [12, Thm. 2.1.3, resp. 2.3.1].

Denote then by O the structure sheaf of Z. Consider the Grothendieck
ringed space (Z, Oz) whose underlying Grothendieck topological space co-
incides with the one underlying (Z, O7) and whose section on any admis-
sible U C Z are precisely the functions f: U — C' that are continuous with
respect to the canonical topologies, that are bounded on any admissible
affinoid subset of U and that restrict to regular functions U N Q(7") — C for
any T' C S. Consider the morphism of Grothendieck ringed spaces

(8) ng: (Z, @Z) — (Z, Oz)

whose underlying topological morphism is the identity and whose homo-
morphism Oz(U) — Oz(U) for any admissible U C Z is the natural injec-
tion by means of the Maximum Modulus Principle, i.e., Proposition [2.25

Theorem 3.8. Consider the morphism ny defined in (8). Suppose that
1) Z is irreducible,
ii) the Zariski open subvariety Q(S) C Z is normal,

iii) Z \ Q(S) is of everywhere positive codimension in Z.
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iv) any function f: X — C on any admissible X C Z which is continuous
with respect to the canonical topology and restricts to a regular function on
X N Q(S) restricts to a reqular function on X N QT) for any T C S and

v) any z € Z has a fundamental basis of admissible neighborhoods U such that
U N Q(S) is connected and, in particular, non-empty.

Then n is the normalization morphism in the sense of Conrad [12]. In particular,
(Z,0y) is a normal rigid analytic variety.

We shall deduce Theorem [3.8] from Proposition [3.1 and the following
lemma. We have learnt through Conrad’s [12, End of proof of Theorem
1.1.3] about the following lemma and how to deduce it from Proposition

B.2

Lemma 3.9. Consider any morphism f:Y := Sp(B) — Sp(A) =: X between
affinoid varieties over C and any x € X. For any admissible V. C Y containing
f~Y(x) there exists an admissible U C X containing x with f~Y(U) C V. In
particular, if f~1(x) is finite, then the natural Ox ,-homomorphism

(f*OY)x — H OY,y

yef (=)
is an isomorphism.

Proof. Using that A is noetherian [8), Prop. 6.1.1.3], we choose finitely many
generators ay, ..., a, € A of the vanishing ideal of = in A. Then the b; :=
f*(a;) generate the vanishing ideal of f ~!(z). Consider any admissible V' C
Y containing f~!(z). Propositionthen provides an € € |C'*| such that

X (a1 <e,...;a, <€) =Y (b1 <e,....,bp<e)CV

which shows the first part. Suppose that, moreover, f~1(z) is finite. Since
for any y € Y the admissible affinoid subsets containing y form a funda-
mental system of open neighborhoods of y with respect to the canonical
topology on Y and since the latter is Hausdorff, we may then choose for
each y € f!(z) a fundamental system C, of admissible affinoid neighbor-
hoods of y such that O, N O,y = 0 for any O, € C, and any O,y € C,y with
y # vy € f~Y(x). As the union of any finitely many admissible affinoid
subsets is again admissible, the second part of the lemma then follows by
applying the first part to subsets V' of the form

U o

yef~H(z)

for various O, € C,. O
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Proof of Theorem Consider the normalization morphism in the sense of
[12]
(n,n*): (Z,0;) = (Z,07).

We shall show that (n,n*) induces an isomorphism
(n,n"): (Z,04) = (Z,02)

whose composition with ny is (n, n*); this will then yield the theorem.
For any T C S let T := n*(T) denote the set of global sections on Z
obtained by pulling back the elements of 7' by (n,n"). Analogously as for Z
and S, this yields a stratification of Z by reduced locally closed subvarieties
Q(T) C Z for various T C S. Then Q(T) = n~1(Q(T)) for any T C S; let

(nT,n#): QT) — Q(T)

be the morphism induced by (n, n#). Abbreviate Q := Q(S) and Q := Q(S).

We first show that n is bijective. As it underlies a normalization mor-
phism, it is surjective. We then consider any 2 € Z and claim that [n~1(2)| =
1. Since any normalization morphism is finite, Lemma3.9|applies to (n, n#)
and yields that the natural homomorphism

(n03), — H Oz,
(2)

yen—1(z

is an isomorphism. It thus suffices to show that (n.0;). is integral. As
Q(S) is normal by|ii)} its irreducible and its connected subsets coincide. As-
sumptions [v)| and [ii)| thus provide a fundamental system F of admissible
open neighborhoods U C Z of z such that U N 2 is irreducible or, equiv-
alently, such that Oz(U N Q) is integral. As (2 is normal by (ng, n?) is
an isomorphism so that (n,.0;)(U N Q) is integral, too, for any U € F. As-
sumptionimplies that Z is irreducible. As§umptionimplies that Q # 0
if Z # (). Thus the Zariski open subvariety Q of the irreducible Z is dense.
Consequently, the restriction homomorphism

(n.02)(U) = (n02)(UNQ)

is injective for any U € F so that, in fact, (n.O;)(U) is integral. Since F is
a fundamental system of admissible neighborhoods of z, this implies that
(n+03). is indeed integral. We have thus shown that n is bijective.

Since, furthermore, (n, n#) is finite, n is a homeomorphism with respect
to the canonical topologies by [8, Lemma 9.5.3.6].
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Let us then define n*. Consider first any admissible affinoid U C Z and
set U :=n"}(U). Let n* (U) be the composition

Oz(U) = Oz(UNQ° = 0z(UNQ = 0,(U0NQ)" = 0,(0),

where (-)° denotes the operator that associates the subalgebra of bounded
elements and where the arrows are defined as follows: The first arrow is
the restriction homomorphism; it is injective since {2 C Z is dense. As ()
is normal, the homomorphism nﬁ(U N ) is an isomorphism. The second
arrow is the restriction of this isomorphism to the subalgebra of bounded
elements. Finally, we claim that the restriction homomorphism

R:=0;U) - 0zUNQ) =5

induces an isomorphism onto S the last arrow is then defined to be the
induced inverse. As n is finite and U is affinoid, its preimage U is affi-
noid too by [8, Proposition 9.4.4.1]. The Maximum modulus principle thus
yields the boundedness of any element in R and hence of its image in S.
Conversely, any element in S extends uniquely to an element in R: In-
deed by normality of U and the Riemann extension theorem (see Theorem
, this holds true if U \ Q is of everywhere positive codimension in U.
But the latter condition is guaranteed by [iii)|since n is finite. This shows the
claim and thus finishes the definition of n™ (U).

In fact, n*(U) is surjective and hence, by the above, an isomorphism.
Indeed, consider any f € O;(U). As n is a homeomorphism,

f::fon_l\U: U—-C

is continuous with respect to the canonical topologies. As (’)Z(ﬁ ) is affi-
noid, the Maximum Modulus Principle (see Propostion yields that f,
and hence f, is bounded. In order to show that f € Oz(U), it remains to be
checked that the restriction fr of f to U N Q(T) is regular for any T C S.
Since fg corresponds to the restriction of f to U N Q via the isomorphism
Oz(UNQ)P — (’)Z(U N Q)?, it is regular. The regularity of an arbitrary fr
then follows from Assumptioniv)] Hence n™ (U) is indeed surjective.

For an arbitrary admissible subset X C Z, the homomorphism n*(X)
is then defined in the natural way by means of the admissible covering of
X by all its admissible affinoid subsets using the sheaf property of O;; by
the affinoid case above, it is an isomorphism as well.

It remains to be shown that n is an isomorphism of Grothendieck topolo-
gial spaces. We first consider any 7" C S with Q(T) # () and show that
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(np, n# ) is an isomorphism. As (n,n*) is finite and a homeomorphism
with respect to the canonical topologies, so is (nr, n# ). In order to see that
the latter is an isomorphism, it thus suffices, by Proposition to show
that n# induces isomorphisms on stalks. Consider any z € Q(T') and set
Z = n;'(2). As nr is surjective and Q(T) is reduced, the homomorphism
on stalks Oqr). — OQ(T), ; is injective. In order to see that it is also sur-
jective, consider any g € Og ) ; and choose, using that n is a homeomor-
phism, an admissible affinoid U C U(T') containing z such that g is defined
on U NQ(T), where U := n~}(U). As n is finite, also U is affinoid. Thus we
may and do choose an f € (’)Z(U ) that restricts to g on the Zariski closed
affinoid subvariety U N Q(T) C U. Let f € Oz(U) correspond to f under
the isomorphism n™ (U) discussed above. In particular, f restricts to a reg-
ular function g on U N Q(T'). By continuity of n and the construction, then

n# (9) = g. This yields surjectivity of the above map on stalks. We have

thus shown that (nr, n#) is an isomorphism.

That n is an isomorphism, then follows from the fact that the preimage
under the finite morphism (n, n#) of any quasi-compact is quasi-compact
and from applying Proposition [3.1| once as stated and once to Z and S re-
placed by Z and S using that U(T,e) = n~"(U(T,¢)) for any T C S and
any ¢ € |C*|. This finishes the proof. O
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4 On the building for PGL over a non-Archimedean
local field

Consider any non-Archimedean local field £. Denote by OF the ring of
integers of E. Choose a prime element 7 € O and set ¢ := |X|. Consider
any finite dimensional E-vector space V # 0 and set d := dimg(V). Set

G := Autg(V) and PG :=PGL(V) =G/E*.
In this section we give comprehensive proofs of results concerning the
Bruhat-Tits building for PG and related concepts.

Consider further any algebraically closed complete non-Archimedean
valued field C containing F as a valued subfield.

4.1 On a geometric covering attached to any simplicial complex

Consider any set S and any simplicial complex I whose set of vertices is S,
i.e., I is any set of non-empty finite subsets of S, called simplices, such that

e Vs S:{s} €Iand
e V) AAN CACS:Acel=ANel.

Denote by I the barycentric subdivision of I, i.e., the simplicial com-
plex whose set of vertices is I and whose general simplices are the sets
{A1,...,Ax} with A; € I such that

A1 DAy D - DAL

Denote by I(R) the set underlying the geometric realisation of /; it consists
of the functions « : S — [0, 1] for which

9) Ala):={s€ S | a(s) #0} € Tand ) a(s) = 1.
ses

Consider any real 0 < ¢ < 1. Associate with any A € I the subset

1+c 3—c¢
Za(s)Zl—éL#AansteA:a(s)zél#A} c I(R),

VA = {a € I(R)
SEA

where #A denotes the cardinality of A. The nerve of (Va)o¢; is the set of

I' C I such that
() Va #0.
Ael’
An abstract version of Drinfeld’s [15, Proposition 6.2] is
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Proposition 4.1. (Va) ¢, is a covering of I(R) whose nerve is 1.

Proof. Consider any a € I(R). Denote by s1, ..., sq the elements of A(«)
such that a(s1) > a(s2) > -+ > a(sq). By means of (9), let 1 < k < d be
such that

3—c . 3—c
1 andVd > i > k: a(s;) < P

Then a € Vi, . g1 as a(si) > a(sg) > % forany 1 <¢ < kandas

1-— Za(si): Za(si)<3'Z%<4—lk<%.

1<i<k k<i<d k<i

a(sk) >

Hence (VA)a¢; is a covering of I(R). It remains to be shown that its nerve
is I. Consider first any A € I and any ordering s1, ..., sq of the elements in
A. Let a € I(R) be the element that vanishes on S\ A and on A is defined
by
V1<i<d:as):= 341. € and a(sy) =1-— Z a(s;).
1<i<d

Thenae () Vi, .. Sk}asa(si)2%forany1<i§k§dandas
1<k<d

3—c 3—c) 1 1+c¢
VI<k<d: Za(si)>1—z =l w2l
1<i<k k<i

which further implies that a(s1) > % > % forany 1 < k < d. It follows
that I is contained in the nerve.

Conversely, consider any A, A’ € I such that A ¢ A" ¢ A. It remains
to be shown that VA N Var = 0. Assume without loss of generality that k :=
#A < #A" =: k. Choose then any sy € A\ A’. Assume, by contradiction,
the existence and choice of an o € VA N Vas. Then
Z a(s) > Za(s) >1- %, resp. a(sp) > %,

S0F£SES seA/

because o € Va/, resp. o € Va. Hence

1+4c 3—c¢ 2 2
1:2&(8)21—W+4T>1—F+47
seS

which contradicts our assumption that ¥’ > k as desired. O
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Corollary 4.2. Consider any left-action of any group G on I and the induced
left-action of G on I(R). For any g € G and any A € I then g(Va) = Vy(a) and

g(A) #A = g(Va)NVa = 0.

Proof. The first property follows from the construction and implies jointly
with Proposition 4.1| the second. O

4.2 The Bruhat-Tits building for PGL

Recall from Definition[2.36|that Sy, is defined as the set of free O g-submodules
m C V of maximal rank together with the action of E* by dilation.

Let Iy be the simplicial complex in the sense of Section 4.1 whose sim-
plices are the non-empty subsets A = {s;,...,s;} C E*\Sy admitting
representatives mi € 81,..., My € s such that

(10) lemQQ---kaQWml.
We call any sequence as in (10) a presimplex of Sy, for A.

Remark 4.3. The presimplices as in for fixed m; correspond bijectively
to strictly increasing sequences of O /mOp-vector subspaces of m/mm;.
In particular, k£ < d for any such presimplex.

The set of vertices of I, then coincides with E*\ Sy, and the natural left
action of PG on E*\ Sy naturally extends to one on Iy.

Lemma 4.4. The stabilizer {y € I': v(A) = A} of any A € 1y in any discrete
subgroup I' C PG is finite.

Proof. The stabilizer {g € PG: g(m]) = [m]} of any [m] € E*\Sy in PG
equals Autp, (m) - E*/E*; its intersection with I is thus finite by Lemma
As any A € Iy is a finite subset of E*\ Sy, the lemma follows. O

The following definition is a special case of the definition of the building
in the sense of Bruhat and Tits [11] of a general semi-simple group over a
local field. However, by contrast, we only define it as a set and will not use
its natural topology.

Definition 4.5. The set I)(R~¢) of functions oc: E*\ Sy — [1, q| for which

A(a) :={se€ EX\Sy | a(s) #1} €1y and H a(s) =¢q

SEEX\SV

together with its naturally induced PG-action is called the building for PG.
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Remark 4.6. Up to [0,1] — [1,¢],z — ¢%, the building coincides with the
set underlying the geometric realization Iy,(R) attached to Iy, by Section[4.1]

In Def.-Prop.’s and[.2Tbelow, we will define a natural G-equivariant
R -torsor Ty — Iy (Rsp).
4.3 A set of seminorms

For any vector space X overany D € {E,C}amapv: X — R>¢is called a
seminorm on X if

eVde DVre X:v(d-z)=1d|-v(z) and

o Vo, 2/ € X:v(x+2') < max{v(x),v(z)};
it is called a norm if furthermore

e VzeX:v(z)=0&2=0.

Any such seminorm v is called cartesian if it is induced by the norm

-1 e e
(11) X/v7H0) = Rxo, Y dimi max |di| - r;
1<i<k ==
for a basis z := (x1,...,2) of X/v~1(0)and anr = (r1,...,75) € (Rxg)".

Denote by SNy the set of seminorms on V¢ that restrict to norms on V.
It is naturally acted by Rygand G. Forany 1 < k < d let

(CSNVJC C) SNV,k C SNy,

denote the R - and G-invariant subsets of those (cartesian) seminorms v
for which the C-subspace v~1(0) C V¢ has codimension k.

Denote by Ny, the set of norms on V. It is naturally acted by R+ and G.
Lemma 4.7. [25| Proposition 1.1] Any v € Ny is cartesian.
Corollary 4.8. Any v € Ny, induces the locally profinite topology on V.

By Lemma choose for any v € Ny an (z,r) as in (11) in order to
define, viewing z as a basis of V¢, a cartesian norm vo € CSNy 4 on V¢
extending v.

Lemma 4.9. For any v € Ny, the norm vc € CSNy, 4 is independent of the choice

of (z,r).
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We shall prove Lemma .9 after Lemma below.

Definition-Proposition 4.10. Restricting any v € SNy, to V induces an R~¢-
and G-equivariant map ry : SNy — Ny having as a right-inverse

IN: Nv — CSNV,da Vi—=re.

Proof. This is directly verified. O

4.4 Interpretation of seminorms through submodules

For any C-vector space X and any Og-submodule M C X denote by
K (M) C X the maximal C-vector subspace contained in M and set

(12) VreRx: M= () ¢ M.
r<|cle|CX|

As |C*| contains ¢U, it is dense in R~q. Hence (r')M = r(r'M) for any
such M and any r,7" € Rso. But, in general, 1M need not equal M; for
instance, when X = C and M is the maximal ideal of O, it does not.

Definition-Proposition 4.11. Let My, be the set of Oc-submodules M C V¢
with

i) K(M)NVY =0and
i) 1M = M and U, c- M = V.

Then defines an R o-action on My, such that |c|M = ¢ - M for every c € C
and every M € My,. Moreover, My is closed under finite intersections.

Proof. This is directly checked using again that |C*| C Ry is dense. ]

Example 4.12. Let v € SNy. Then v=1([0,1)) C Ve satisfies i)l and it satisfies
[id))if and only if v=1([0,1)) = v=1([0,1)), i.e., if and only if |C*| N v(Ve) = 0.

Proof. 1f it satisfies|ii), then indeed

0. = (0,)) = (] evN([0,1) =7 (0,1]).

1<|cle|CX|

The converse direction follows similarly. O
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Caution 4.13. Defining rM in with < replaced by < would not yield an
R o-action on the set of all Oc-submodules M C V¢ neither; indeed, it would
yield for any v € SNy and any r,r’ € R \ |C*| with r’ € |C*|Nv(V¢) that

(rr)v= ([0, 1)) = w71 ([0,7)) # v ([0, 7)) = (v ([0,47])) = r(+'v7 ([0, 1)).
Definition-Proposition 4.14. Associating with any M € My the semi-norm
v Vo = Rsp, v—inf{r e Rso:verM}
yields an R~ - and G-equivariant bijection v,: My — SNy, inverse to
SNy — My, v — ([0, 1]).
Moreover, VM, M' € My,,Yv € V¢ : vyrnne (v) = max{vys (v), var (v)}.
Proof. This is directly checked. O

Any M C X asin (12) is called a G-lattice of X, where G C R is any
subgroup, if

M = @gI(Ocmc)

€S

for some basis 3 of X and some (g,).cs € G°, where g,,(Oc - 7) is defined
by means of . For instance, the |C*|-lattices of such an X are the free
Oc¢-submodules of X whose C-span is X.

Definition-Proposition 4.15. Any O¢-submodule M C V¢ for which M /K (M)
is an Rq-lattice of Vo / K (M) satisfies Def.-Prop. Denote by

Ly Cc My
the subset of those M for which M /K (M) is an R-lattice of Vo /K (M). Let
nyk C My and Lv,k C Ly

denote the subsets of those M with dimc (Ve /K (M)) =k forany 1 < k < d. All
these subsets are R- and G-invariant and for any 1 < k < d holds that

(13) Vo(MV,k) = SNVJC and Vo(LV,k) = CSNV’k .

Proof. This is directly checked. O
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Denote the free Oc-submodule of V¢ generated by any m € Sy by
(14) (m) € Lyg.

For any r € R denote by 7 the unique representative in [1, g) of the
class of r in R~/q” and by |r] the largest element in ¢Z being < r; then

(15) r=7-|r].
Lemma 4.16. i) VM € My,: M NV € Sy.
ii) Vm € Sy,Vr € Rug: VNr(m) = |r|-m.

Proof. Let M € My. Then M NV is the unit ball of rn(var). As rn(var) is
strictly cartesian, M NV is contained in some free Og-submodule of V of
maximal rank. As Op is a principal ideal domain, thus M NV is itself a
free Op-module of V and, being a unit ball of a norm, of maximal rank, i.e.,
M NY € Sy. In order to see Part choose an Og-basis for any m € Sy

and view it as an O¢-basis of (m). O
Lemma 4.17. Consider any basis vy ...,vq of V and any s1,...,sq € (1,q] and
set
M = @ SjOC "t V5.
1<j<d

Then M =q (| f(ynrM).

T€R>0

Proof. Denote by 1 < t; < --- < t}; < ¢ the ordered elements of {s;: 1 <
j <d}andsettyy :=¢q-t;. Forany 1 <i < kand any ¢; < r < t;1; then

VQ%MZ @ OE‘U]‘@ @ E‘OE"U]'

J:si>t; J:8i<t;
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using that VN 2 O¢ - vj = |22] - O - vj forany 1 < j < d. Hence

1
q ﬂ (YnrM) = ﬂ rq(Vﬂ;M>
T€R>0 b1 <r<tg41
1

= ﬂ m rg(V N ;M)
1§ZS]€ ti<7"§t¢+1

= ﬂ tiq GB Oc-v; ® @ Oc v;
1<i<k J: s>t 'R 5J<t

= m @ t;qO¢c - v D @ t;O¢ - vj
1<i<k \j: sj>t; J:8i<t;

= @ min ({t;q: s; > t;} U{t;: s; < t;}) Oc - v;
1<j<d
1<j<d

as desired. O

Proof of Lemma Consider any v € Ny and any (z,r) and (2/,7") both
satisfying for v. We have to show that the cartesian norms v¢, v €
CSNy 4 defined using (z, ), resp. (2, r’), coincide. Denote by M, M’ € Ly 4
the lattices corresponding to v¢, v(.. By Def.-Prop. it suffices to show
that M = M’. However, both M, M’ are of the form considered in Lemma

417 and
Vr € Rug: VNrM =v 1([0,7]) = VNnrM’

by construction. By Lemma thus M = M’ as desired. O

Definition-Proposition 4.18. The R~ - and G-equivariant map
rL = Vo_l 0INOTNOVs: My _>LV,d

satisfies that r1, o ri, = ry, and for any M € My, that

(16) —qm (YnrM) —qﬂ (M N V).
TER>0 ceCx

where (M N cV) € Ly 4 is the Oc-submodule generated by M N cV € Sy .
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Proof. Let us first argue for (16). Denote by /(M) the middle term of
for any M € My. Consider any M € My. Then vj; and v, (y) restrict to
the same norm on V. In particular, the unit balls VN M and V N ri,(M) of
their restrictions coincide. By R g-equivariance of ry, in fact VN r - M =
VNr-ry(M) for any r € Rso. Hence v'(M) = r'(r,(M)). Moreover,
7 (rr,(M)) = r,(M) by Lemma[4.17using that, by construction, any module
in the image of v; ! o iy is of the form considered in Lemma Hence
/(M) = r,(M) as desired. In the proof of Def.-Prop. [4.22]ii)| below, we will
further show that (irorr)(M) is equal to both the middle and the right term
of (16), where the definition of it ory is independent of this def.-prop.. This

yields (16).
That r,or, = rg, follows from Def.-Prop. . 10]but it may also be checked
using : Indeed, for any ¢ € C* holds that

"

<! 1
ﬂ <Mﬂc”V>ﬂch = ﬂ d(SMneV)yney
c’'eCX ceCx* ¢

1
= m d(=MnNeV)yncy
cecxglel<g

: 1
= (1 SMnev=rMncV=n(MncV),
c/eCX,lg\c'|<qc

where = holds by Lemma upon replacing V by cV. Hence
1 1
?TL(TL(M)) - ﬂ < ﬂ (M Nc"V) mcv> = ﬂ m(MNcV) = 5rL(M).

ceC* \c'eCX ceC'x q

O

4.5 The building as a quotient by a free R (-action

Using the notation in set Sy(Rso) := {r(m): r € Ryg,m € Sy} C Ly 4.
Definition-Proposition 4.19. Define Ty, to be the set of subsets

(17) {ti-1(ms): 1 <1 <k} CSy(Rso)

forall 1 < k < d, all presimplices mq 2 --- 2 my 2 mmy of Sy and all
1<ty < <ty ngithto = |7T| - tg. Then

i) any such subset uniquely determines such m; and t; and
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ii) the action of G, resp. the free action of R, on the set of all subsets of
Sy(Rso) induced by its natural action on Sy (Rs) restricts to T'y.

Proof. Partli)is directly checked using Lemma Consider then any
T = {ti-1(mi): 1 <i<k}eTypasin and any r € R>. Then

rT = {r ti1(mg): 1 <i<k}={ti_(mj): 1 <i<k},

where for any 0 < i < k, using the notation of (I5),

T AU U TR
|m| -7 t;, ifT-t; >q ~lrmg, if7-t;>q
There is thus a unique cyclic permutation o of {1,...,k} with 1 < ¢/, ) <

co <t 4y < gand such that m{ ;) 2 -+ 2 m ;) 2 mmy ) is a presimplex.

=

Hence rT' € Ty as desired. The statement for G is directly checked. O

Caution 4.20. The R~ -action on any T € Ty respects the ordering of the ele-
ments of T only up to cyclic permutations.

Definition-Proposition 4.21. Forany T = {t;_1(m;): 1 <i <k} € Ty let

t. . .
S if [m] = [my) for some 1 < i <k
: EX\ Sy — [1 > Q tim1? ’
or \Sv = {1, g, [m] { 1, otherwise.
This yields an R o-invariant and G-equivariant map Ty — Iy(Rso),T — ar
which induces a PG-equivariant bijection

R0\ Ty = Ip(Rso).

Proof. That the map is well-defined, invariant on R (-classes and that the
induced map R-o\ Ty — Ip(Rso) is injective and PG-equivariant is di-
rectly checked. Consider then any o € Iy(R) and choose any presimplex
my 2 -+ 2 my 2 mmy for A(a). Set

VO<i<k:iti= [[ a(lm).
1<j<i

Then T := {t;—1(m;): 1 <i <k} € Ty and ar = . Hence the map is also
surjective. O
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Definition-Proposition 4.22. i) Let M € My, with R g-class [M]. Then
Apg ={VNrM]:r € R} ={[VNrM]: 1 <r < g}
is a simplex admitting a unique presimplex my 2 --- 2 my,, 2 ™my with

(18) {VnrM:1<r<q}={mi,...,my,}

Moreover, any {1 < r < q: VN rM = m;} contains its infimum ryy;; in
particular, m; =V N ry ;M. Set rapo = q - Tk, and

Ty ::{ a (Yry;M):1 SiSkM} €Ty.
TM,i—1

ii) The map rr: My — Ty, M — T is Rso- and G-equivariant and has

1T TV_>LV,d7 T ﬂ M’
M'eT

as right inverse. Moreover, it o ro = r1,.
TOTT L

Remark 4.23. See below for a rather explicit description of the lattice
structure of any it(7).

Proof. Part[i))} From Lemma and Remark follows that the left
hand side of is of the desired form. Moreover, as M € My, the set
{1 <r <q:werM} contains its infimum ¢,, for any w € W. For any Op-
basis 3 of any m; thus {1 < r < ¢: VN rM = m;} has max,cgi, as its
infimum which it contains. The remaining assertions are directly checked.

Partfii)} That rr is R - and G-equivariant is directly checked. Consider
any

T = {ti,1<mi>: 1< < k} eTy.

Then it (M) € My 4 since My 4 is closed under finite intersections. That in
factit(M) € Ly 4, follows from Def.-Prop. £.18Jand the equality irory = 7L,
that we prove below. That (r o i1)(T") = T holds true since any r € [1,¢)
admits a unique 1 < j < k for which % <r< t]%l and hence

Vnor-(ir(T)) = ﬂ Vﬂrti_l(mi> ﬂ gm; N ﬂ m; = m;.
1<i<k 1<i<k 1<i<k
rt;_1>9q rt;_1<q
Let M € My and set r; := rps; forany 0 < ¢ < kjr =: k. We show that
(irorr)(M) is equal to both the middle and the right term of (16) and hence
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to 7,(M). Using, in the first of the subsequent equations, that |E*| = ¢*
and that any ¢V depends only on the class of cin C* /E*, yields that

N Mnevy= ) <M0%V): N %(Vﬂcl\@

ceCx ceCx ceCx
ri<lcl<rg rp<lel<rg
-N N leeen=n N lwan
1<i<k ceCX 1<i<k ceCX
ri<lel<ri_1 lel<r;_1

= ﬂ ! <Vﬂn~M>:£1](iTOTT)(M)-

Ti—
1<i<k 1

Hence (i1 o r1)(M) equals the right term of (I6). Moreover,
N tvnrmn= N Swoem = Liaror
r r q ’
r€R>o rE<r<ro

where the first equatlon is satisfied since any - L(Y nrM) depends only on
the class of r in R /¢% and where the second equat1on follows by the same
argument as in the previous sentence upon replacing C* by R-o. Hence
(it o r1)(M) also equals the middle term of as desired. O
4.6 Metrization

Throughout this section, a metric on a set X is any symmetric map

p: X x X = Rxy
such thatp(z,y) = 1< 2 =yand p(x,y) < p(x, 2)-p(z,y) forall z,y, z € X.
Definition-Proposition 4.24. [25| Theorem 2.3] Setting

V' (v) ()

oygl,%/}év v(v) V()

V[v], [V] € Roo\Ny: pn([V], [V]) =

defines a metric px on R0\ Ny for which any closed ball is compact.
Definition-Proposition 4.25. A metric pr, on R>o\ Ly 4 is given by setting
pL(S,S) :==inf{r e R>y |IM e S,M' € S": M Cc M' C rM}

forany S, S" € Rso\ Ly 4, where the set contains its infimum.
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Proof. This is directly checked using O¢-bases of the elements in Ly 4. [

Proposition 4.26. The injection (vo)™?

E~ \ NV — ]R>0\ Ly7d.

o iN induces an isometric embedding

Proof. Consider any v, € Ny, denote by M, M’ € Ly 4 their images under
(vo)~! 0 in and let us show that

(19) ri= pr([M], [M']) = pn([v], []).

Using the R+ -equivariance of (Vo) oin, we assume without loss of gener-
ality that M and M’ realize r, i.e., that M C M’ C rM or, equivalently, that

the global inequalities vy < vp;r < v, hold and that vy (v) = vy (v) and
1

vy (V') = vppr (V') for some v, v’ € V. As, by construction of (v5) ™" oip,
M = @ r;Ocv;, resp. M’ = @ riOcv,
1<i<d 1<i<d
for some E-basis v1, ..., vq, resp. vy,...,v,, of Vand some ry,...,rg € Ry,
resp. ri,...,7; € Ry, such a v, resp. v/, may in fact be chosen among the
v;, resp. the v.. Using that v,y = r - vy and that vy, resp. vy, restricts to
v, resp. v/, on V), the equality in (19) is then directly checked. O

Lemma4.27. i) Ym,m' € Sy: pr([(m)], [(m)]) € ¢%>o.

ii) Let S C E*\ Sy. Then S is a simplex if and only if pr,([(m)], [(m)]) < ¢
for any [m],[m/] € S.

Proof. This is directly checked; for instance, Part [ii)| follows directly from
Part[i) which in turn follows directly from Lemma O

Proposition 4.28. Consider any T = {t;_1(m;): 1 < i < k} € Ty asin
and any T" = {q(m)} € Ty, for any m € Sy. Then

wllin(r) fin(e)) = { 4 7o eI =llforeonel <1<

Proof. Set S := [ip(T)] and S" := [i7(T")] = [(m)] and p := pr.. Then p(S, 5’)
is the minimal quotient % of all r, s € R+ for which

(20) s(m) Cir(T) = () ti-1(ms) Crim).
1<i<k
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We first consider the case where {[m]} U {[m;]: 1 < i < k} is a simplex. In
order to show the proposition in this case, we may replace m by 7" - m for
any integer n and thus assume that

my D DmjDmDMmir1 D D Mpgq 1= TN

for a unique 1 < j < k. We further choose an Og-basis  of m; such that

8= |J B, where g := B0 (m \ miy1),

1<I<k

using that the m;/7mm, for all 1 <[ < k form a flag of Of/(n)-vector sub-
spaces of m; /mm;. For any 1 < i < k then

(21) m; = (@ @Omrv) @ (@ @OEU)

1<i<iveps 1<j<kvep

so that

(22) m ti_1<mi> =T - @ @ tl . Oc?}.

1<i<k 1<I<kvep

If m; = m, one directly deduces from and that holds true

if and only if s > || - t; and r < ¢;_; so that then p(S, S") = \;Itl' =q- tj;_l.
J J

If m; 2 m 2 mj1, assume without loss of generality that §; = B}- U 3/ ,
where B} := 8; N (m; \ m) and B7 := 8; N (m \ m;11), in order to write that

m = (@ @(’)va) @@OEFU@@OEU@ (EB @OEU);

1<i<iveps; v6ﬁ§ UEB;/ 1<j<kvepS

from this, jointly with , one directly deduces that holds true if and
only if s > |r| - t; and r < t; so that then p(S, ") = \7:|jtj =q.

Consider finally the case, where {[m]} U {[m;]: 1 < ¢ < k} is not a
simplex. Using Lemma choose an 1 < i < k for which ¢*> <

p([(ms)],S"). As p(S, [(ms)]) = ¢ - tlt—;l < ¢ by the previous case, then

¢ < p([(mi)), §") < p([{ma)], S) - p(S,S") < q-p(S, ")

so that p(S,S’) > ¢ in this case. This finishes the proof. O
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Definition-Proposition 4.29. The injections it and v~ 1o o iy, whose images
coincide, induce a G- and R o-equivariant bijection Ty — Ny and thus, by Def.-
Prop. a PG-equivariant bijection iy : 1y(Rsg) — R\ Ny such that

‘ ‘ —I- ifse Ala),
Va € Tp(Rso), s € EX\ Sy: pn(ip(a),ip(s)) = { ;(2 fotheru(Jisi }

Proof. Def.-Prop.’s|4.18| [4.21|and 4.22l}ii)| yield the desired map and the met-
ric is computed via Def.-Prop by Proposition [4.28| O

Definition 4.30. Denote by U, C V the unit ball with respect to any v € Ny,.

Definition-Proposition 4.31. For any m € Sy denote by v,, € Ny the norm
v inf{le| € |[E*|: v € e - m}; then U,,, = m \ wm and for arbitrary v € Ny:

maxyey,, V' (u)

(23) px (V] [v]) =

mingey,, V' (u)

Proof. This is directly checked. O
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5 Quotients of Drinfeld’s period domain by discrete
groups

Let £, m, q,V,G, PG and C be as in Section@and k a positive integer. Then

Phome (ve.ory = (Home(Ve, CF) \ {0})/C

is equipped with a structure of projective rigid analytic variety over C (see
Example[2.21). Consider the PG-invariant subset

QV7’€ C PHomc(Vc,Ck)
of those C'*-classes [I] of C-linear maps [: Vo — C* for which Ker() NV =
0; if £ = 1, this is Drinfeld’s period domain for V which we denote by 2y .
5.1 Admissibility of the period domain

Continue to denote by Ny, the set of norms on V, by Sy the set of free Op-
submodules of V of maximal rank and by v, € Ny the norm associated in
Def.-Prop. [§.31Jwith any m € Sy. Denote by B, ([v]) the closed ball of radius
r > 1 around any [v] € Rs(\ Ny with respect to the metric px introduced
in Def.-Prop. Consider the PG-equivariant map

At Qi — Rop\ Ny

that sends any [I] = [(li)1<i<k), where [;: Vo — C' is the i-th coefficient
function, to the class of the norm

v [l(v)] = max [1;(v)]-

Proposition 5.1. Let my,...,m; € Sy and forany 1 < ¢ € |C| set

1<s<t

X(e) = )\;}k ({[1/] € R\ Ny: H oN([V], [Vm,]) < c}) C Q.

Then Qy k C Prom, (v, 18 admissible, any such X (c) C Qy y is an admissible
quasi-compact, resp. affinoid if k = 1, subset and the covering (X (cy))n>1 of Qyp,
for any unbounded sequence (cy)n>1 in |C|, is admissible.

Remark 5.2. If £ = 1, this is Drinfeld’s [15, Proposition 6.1]. However, our
proof does not exactly specialize to his. In the case where k =t = 1, our
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proof specializes to the one given by Schneider and Stuhler in [40, Section
1, Proof of Proposition 4], where they denote X (¢") by Q,, for any positive
integer n. In fact, by means of such a covering, they show that €y, is a Stein
space.

Proof of Propositionﬂ Set P 1= Pyom(ve,cr)- Using Definition [£.30] and
Def.-Prop. [£.31} set U, := U,,,, forany 1 < s < t. Setm := [],,, ms and
U:= H1<s<t Usand J :={1,...,k}. Let 1 < c € |C]. Set

(24) X@ﬂuﬁr{UMIPc‘]I 11, (ug)| > IIImM%aleQ)}

1<s<t 1<s<t

for any (u,j) € U x J. By 23) and as V' \ {0} = E* - U, forany 1 < s < ¢,
(25) X(e)= () U X(eu i)
uelU jeJ

this is in fact a finite intersection since any X (¢, u, j) depends only on u mod
n"m for any n > 1 with ¢" > ¢. In order to see that any X (c) is admissible
quasi-compact, resp. affinoid if & = 1, it thus suffices, by Proposition [2.22}
to show that any such subset X (¢, u, j) C Pis admissible affinoid. Consider
any (u,j) € U x J and for any 1 < s < ¢ the admissible subset

X (s, js) = {[1] € B: 1, (u;) # 0} C P

any basis 5 of V containing u; yields the rigid analytic isomorphism

a5t X (s, o) %Agx{l,...,k}\{<us,js>},m = ( In(v)

L, (us) ) (v,0) #(us.js)

Let X (u, j) C P be the intersection of these X (us, js). Choose any Op-basis
B of m that contains u, for every 1 < s < t. As any of the maxima in (24)
is attained at an element of such a 3, thus

26)  X(cuj)= ) ﬂ{ € Xluj)je=z ZZJZEZLZ))}

venlgsgt Bsi€J

In particular, for any 1 < s < ¢ then X(c,u, j) is contained in the affinod

i;j j..5.(Bec), where B. denotes the closed polydisc of radius ¢ around 0.

Denote by X'(c,u,j) C P the intersection of all zu g, (Be) forall 1 <
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s < t; it is again affinoid by Proposition [2.22)and satisfies that X (¢, u, j) C
X'(c,u,j) € X(u,j). In particular, the equality in remains valid if
X (u, j) is replaced by X'(c, u,j). Thus X(c,u, j) is an admissible affinoid
subset of the admissible affinoid subset X’(c,u, j) C P and hence itself an
admissible affinoid subset of P. As argued before, thus X (c) C P is an ad-
missible quasi-compact, resp. affinoid if £ = 1, subset. Moreover, the cover-
ing (X (¢",u,j))n>1 of X (u,j) is admissible as the image of any morphism
Z — X(u,j) from an affinoid Z is already contained in some X (¢",u,j)
by the Maximum Modulus Principle (see Proposition applied to the
composition of ¢ with any of the products in (26).

Forany u € U let X (u) C P be the union of the X (u, j) forall j € J; then
(X (u, j))je is a Zariski open, and hence admissible, covering of the Zariski
open, and hence admissible, X (u). Thus (X (¢",u, j)jesn>1 is an admissi-
bly covering of any such X (u) and it refines the covering (X (¢",u)),>1 of
X (u), where

Ve e |C): X(c,u) := U X(c,u,7)
jeJ
is admissible quasi-compact. Thus (X (¢",«))n>1 is admissible.

Consider then any unbounded sequence (c;),>1 in |C|. Consider an
arbitrary morphism ¢: Z — P from an affinoid variety Z whose image
is contained in 2y . In order to show that Q) ; C P is admissible and
admissibly covered by the X (c,), it suffices (see [8, Prop. 9.1.4.2]) to show
that the image of ¢ is already contained in some X (c,,). Since Qy ; C X (u)
for any u € U and since (X (q", u)),>1 is an admissible covering of X (u),
the image of ¢ is contained in X (¢"*,u) for some n, > 1. Choose such an
n, > 1 for any v € U. By means of the quasi-compactness of U, choose a
finite subset Uy C U such that U is covered by the u+m"Tm forall u € Uyp.
Choose an n > 1 such that ¢, > ¢ for all u € Uy. Any v’ € U thus admits
an u € Uy for which v/ — u € 7™+1m and hence

X(cp,u') D X(¢",u') = X(¢"*,u) D Im(p).
Hence the image of ¢ is contained in X (¢,,) by as desired. O
Corollary 5.3. For any O C Qy , the following are equivalent:
i) O is contained in an admissible quasi-compact subset of {dy .

ii) Ay (O) is bounded.

iii) 35> 0:V[I],['] €O,¥0£myev: p4]

IN
&
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If k = 1, these conditions are equivalent to O being contained in an admissible
affinoid subset of .

Proof. Conditionliii)|is a reformulation of[ii)|(c.f. Def-Prop. #.24). The Corol-
lary then directly follows from Proposition O

Corollary 5.4. Consider any O C Qy , that is contained in an admissible quasi-
compact subset of 2y i, and consider any non-empty discrete subset A C V. Then
there exists a finite subset of A in which every [l] € O attains infyep |1(N)].

Proof. For any [I] € Q) the infimum i(l) := inf)e /()] is attained at some
element of A as I(A) is strongly discrete (see Example[2.48/and Lemma[2.49).
Assume without loss of generality that O # () and that 0 ¢ A. Choose any
% > 0 satisfying the property in Corollary|[5.3} iii)| for O. Choose any [ly] € O
and any Ao € A at which i(ly) is attained. Consider any further /] € O and
any A € A at which i(!) is attained. Then

oM . )]
[lo(Xo)] 1(o)]
and hence [lp(A\)| < |lo(Ao)|- As lp(A) is strongly discrete and as [y|y is injec-

tive, the last inequality requires A to lie in a finite subset of A that depends
only on [lp] and Ag and «. This yields the corollary. O

<K

Lemma 5.5. Any fiber of Ay . is open with respect to the canonical topology.

Proof. SetP := Pyqp, (., cn)- Let [I] € Qy . By means of Lemma[d.7} choose
a basis S of V such that

27) V(i )wep € B |l (Zﬂw : w) = max|u| - [l(w)].

wep

Choose any wg € 8 and any 1 < iy < k for which l;,(wo) # 0. We further
choose an ¢p > 0 such that for any 0 < ¢ < ¢g the closed ball

lgo(wo) #Z0AVYw e B,V1 <i<k:

Bep(ll]) = {U’] cP

around [/] is contained in 2y ;, where we use that such balls form a basis
of neighborhoods of [/] € P and that €y, ;, C P is admissible. Consider any
0 < € < gg such that

l(w)

Lig(wo) |~

(28) YweB:e<
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We claim that Ay (B: 5([1])) = Ay i([l]); this will then directly yield that
Ay L (Av.k([1])) is indeed open. It suffices to show that

(29) V[I'] € B g([l]), Vv € V:

indeed, any such [I'] then gives rise to the same class of norms on V as [{].
Consider any such [I'] and v and write v = 3~ 5 fto - w with i, € E. Then

L) L
iy (wo) — Lig (wo)

Li(w) _ li(w)
(w

~—

= Imax
1<i<k

< max max |fiy| -

1<i<kwep lio ) lio (wo)
< — .
JERE el e = g bl -
(28) l 7|
< max|fy] - (w) H (v) .
wep Liy (wo) Lig (wo)
As the norm on C* is non-Archimedean, this yields as desired. O

5.2 Quotients by discrete subgroups

By means of Def.-Prop. [£.29} identify I))(Rso) with R\ Ny and consider
for any 0 < £ < 1 its PG-invariant covering (VX)aer, from Proposition /4.
via Remark.whose nerve is the barycentric subdivision Iy of I, where

Vi = {OK S IV(R>0)

HpN(a,s) <dandVs e A:px(a,s) < c} )
SEA

Al-1-4& -7k
4#58 and ¢ = ¢¢ +#2 . For any such € and A set

Uik = M\i(VR),

where Ay ;0 Qp = R\ Ny is the PG-equivariant map from Section

where ¢ = ¢

Proposition 5.6. [15, Propositions 6.1 and 6.2] Let 0 < ¢ < 1 be rational. Then
(UA x)aer, is an admissible covering of Qy i, by quasi-compact, resp. affinoid if
k = 1, subsets which has nerve Iy; in particular,

VAA" ely: U NUA #0 & AC A VAD A

Moreover, Vg € PG, A € Iy: g(UR ;) = Ug a) -
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Proof. By Proposition [5.1|and since ¢© C |C|, any U A 18 the intersection
of finitely many admissible quasi-compact, resp. affinoid if £ = 1, subsets
of Qy ;. and is thus, by Proposition 2.22} itself an admissible quasi-compact,
resp. affinoid if £ = 1, subset of {2y .

In order to see that the covering (U3 ,)acr, of Qy is admissible, we
consider any closed ball B C Iy,(Rxg) around any [vp,] for any m € Sy,
set X := )\;7116(3) and are reduced to showing, by Proposition that
the quasi-compact X is admissibly covered by the U3 , N X or, equiva-
lently, that X is covered by finitely many of the U , or, equivalently, that
B is covered by finitely many of the V5. The latter follows from the quasi-
compactness of B (c.f. Def.-Prop. : Indeed, for any A € Iy let V5 be
defined like VX upon replacing < by < everywhere. Then Vg C Vi for any
A €Iy and any 0 < €’ < e. Hence the open ‘D/AE forall A € Iy, cover Iy(Rxo)
as well. The quasi-compact B is thus covered by finitely many of the Vg
and hence by finitely many of the V as desired. The remaining assertions
of the proposition follow directly from the discussion preceding it. O

Let I' C PG be any subgroup which is discrete with respect the locally
profinite topology on PG defined in Section[2.4] Consider the quotient map

prg: Qe = D\Qy i = Qry

and endow its target with the structure of Grothendieck ringed space which
itinduces, thatis, a subset (resp. a covering of a subset) of Qr ;, is admissible
precisely when its preimage is admissible and the sections on an admissible
subset of Qr ;, are the I'-invariant sections on its preimage.

Lemma 5.7. For any quasi-compact U, U’ C Qy i theset {y € T': U'ny(U) # 0}
is finite.

Proof. Consider any rational 0 < € < 1. As the covering (U} ;) aer, of 2y is
admissible by Proposition any quasi-compact subset of €y is covered
by finitely many of its elements. It thus suffices to show for any A, A’ € Ty,
that {y € T': UL, , N v(UL ;) # 0} is finite. However, this follows from
Proposition ar{d, using that T is discrete, from Lemma O

Proposition 5.8. If k > 1, suppose that the action of I" on Qy j, is free. Then
Qr 1, is a normal rigid analytic variety over C' and an admissible covering of Qr j,
by quasi-compact, resp. affinoid if k = 1, subsets is given by (prx(UR 1) aer, for
any rational 0 < ¢ < 1. ’
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Proof. Consider any such ¢. Set pr := pr . For any A € Iy, set Ua := UX ;.
and 7
IUA = U Y(Ua) = prt (pr(Ua))-

yel’
From Propositions2.22Jand [5.6|and Lemma[5.7|follows that (Ua/"T'UA) acr,,
is a system of admissible subsets of Uas for any A’ € I; it is then in fact an
admissible covering since it is refined by (Ua'NUA ) act,, which is an admis-
sible covering by Proposition As (Ua) arer,, is an admissible covering
of Qy 1, thus (I'Ua) acr,, is an admissible covering of Qy ;, and, equivalently,
(pr(Ua))aer, is an admissible covering of Qr .

Consider any A € Iy. It remains to be shown that any (pr(Ua)) is a
quasi-compact, resp. affinoid if k¥ = 1, rigid analytic variety over C. The
covering (y(Ua)) er of I'Ua is admissible since, by Propositions and
and Lemma 5.7} its intersection with any element of the admissible cov-
ering (Ua’)arer, of Qy . is admissible. Denote by I'a the stabilizer of A
in T; it is finite by Lemma By Proposition then v(Ua) = U, for
any v € I'a and 7(Ua) N Ua = 0 for any v € T' \ Ta. The inclusion
Ua — T'Ua thus induces an isomorphism of Grothendieck ringed spaces
TCA\Ua — pr(Ua). It thus suffices to show that the domain of this isomor-
phism is a normal quasi-compact, resp. affinoid if £ = 1, rigid analytic
variety over C. If k = 1, this follows from Proposition If £ > 1, except
for the normality, this follows from [14, Theorem 5.1.1 and Remark before
Lemma 5.2.1] since Up is separated and the finite I'n acts freely on it. If
k > 1, normality follows from Corollary [5.10|below whose proof does not
depend on it. O

Proposition 5.9. Consider any w € Sy, and denote by I, its stabilizer in T'.
Then there exists a basis of admissible affinoid neighborhoods U of w such that

) VyeTly,: v(U)=Uand

ii) Vye \Ty, : v(U)NU = 0.
Proof. Consider the fiber f := )\]jlk()\vyk(w)). Let S C T be the subset of
elements -y for which v(f) N f # 0; itis finite by Proposition5.]jand Lemma
Using that the canonical topology on 2y, is Hausdorff and that f C
Qy 1, is open by Lemma we choose for any v € S\ I',, an admissible

affinoid neighborhood U, C f of w for which (U,) N U, = 0. For any
neighborhood U’ of w then

U= ( N N v’(Uw) n (ﬂ ’V(U’)>

v €lwyeS\Iy, v€lw
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is an neighborhood of w that is contained in U’ and satisfies[i)]and i)} If such
an U’ is affinoid, then U is the intersection of finitely many affinoid subsets
and hence, by Proposition itself affinoid. As the affinoid neighbor-
hoods of w form a basis of neighborhoods of w, this yields the proposi-
tion. O

Corollary 5.10. The morphism pr j, is open with respect to the canonical topolo-
gies and, if I' acts fixed-points free on Qy , it induces isomorphisms on the stalks
and the stalks on Sy j, are then regular.

Example 5.11. Consider any admissible coefficient subring A C C' such that
the completion of its quotient field is E. Consider any projective A-submodule
A C V for which the natural homomorphism A @ E — V is an isomorphism. Let
0 # I C Abean ideal. Then the kernel of the natural homomorphism

Auty (A) — Auty (IﬁlA\A)
has discrete image in PG and, if I # A, its action on Qy j, is fixed-point free.
Proof. As A C V is discrete, the image in PG of Aut4(A) itself is discrete by
Examples and Consider any [/] € 2y, and any v in the kernel of
Aut4(A) = Aut4(I7"A\A) with y[l] = [I]. Hence vl = c- [ for some ¢ € C'*.
Using Example[2.48/and Lemma[2.49} choose an 0 # A € A for which [[())]
is minimal among |/(A)|\ {0}. Then |c-1(\)|is minimal among |c-I(A)|\ {0}.
As I(A) = c-U(A), thus [[(A)] = [c- 1) = [(YDN)] = [1(A) +1(v7IA = N
and hence
LOTIA =N < 1)

Moreover, v 'XA — X\ € TA by definition of I'. If I # A, then the smallest
non-zero element of [(IA) is strictly larger than the one of I(A). In this case,
thus y~'A — A = 0 and hence c - [(A\) = (y])(\) = I()\) and hence ¢ = 1 and
hence vl = I. As l|y is injective, thus 7 is the identity as desired. O

Remark 5.12. Let I C A and I be as in Example[5.11] If k£ > 1, suppose that
I ¢ A. InProposition[7.31and Corollary[7.32, we will use Proposition[5.8/in
order to construct a normal rigid analytic variety over C' that parametrizes
the isomorphism classes of A-lattices in C* with a level-I-structure.

5.3 Some connected subsets of Drinfeld’s period domain

Consider any E-subspace 1V C V and any discrete subset A C V such that
A N contains a non-zero element. For any O C )y and any r € |C| set

Uy(A,O,r) = {[l] e Oy

| o |
vl €OA inf IO =7 inf 10|
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Lemma 5.13. Consider any r € |C| and any admissible O C Qyy. For any
admissible affinoid U C Qy, then Uy(A,O,r) N U C U is admissible and, if O is
quasi-compact, quasi-compact. Moerover, Uy (A, O, r) C Qy is admissible.

Proof. Let U C 2y be affinoid. We first show that the intersection of

=<l € N
utr) {H € AEA\W 0£AAEANW

inf ((\)]>r- inf |l(>\)|}CQv

with U is a quasi-compact admissible subset of U. Suppose without loss of
generality that A \ W # (); otherwise U(r) = Qy and then the intersection
equals the affinoid U. Corollary 5.4 provides a finite subset 57 C A\ W,
respectively So C ANW \ {0}, in which every [I] € U attains

R Ei/rxl\fw\l()\)\, respectively 07&)\13/{01/\;“ (N)].

Hence
urnu = J N{euv: (N =r-iwl.
HESy AEST

By [8] Prop. 7.2.3.7], thus the subset /() N U C U is the union of finitely
many rational subdomains and hence quasi-compact admissible as desired.

Consider the morphism 7: 2y — Qyy, [I] = [l|w,]. Then Uy (A, O, r)NU
is the intersection of the admissible /(r) N U with the admissible 771(0)
and is thus itself admissible. Since U was arbitrary, the admissibility of
Uy (A, O, ) follows by virtue of an admissible affinoid covering of €2y.

Suppose then that O is quasi-compact. By means of Corollary[5.3, choose
an admissible affinoid O’ C )y such that 7(U) ¢ O’ and O C O'. Then
7 restricts to a morphism U(r) N U — O’ from a quasi-compact to an affi-
noid variety. By [8, Proposition 7.2.2.4], the preimage Uy (A, O, )N U of the
affinoid O under this restriction is thus quasi-compact as desired. O

The following definition and proposition concerning connected vari-
eties is due to Conrad [12, Below Theorem 2.1.3] except that we furthermore
ask them to be non-empty.

Definition 5.14. A rigid analytic variety X is connected if it is non-empty and
if any admissible covering {U, U’} of X satisfies that

UNnU =0=U=0vU =0.

Proposition 5.15. A non-empty rigid analytic variety X is connected if and only
if any x, 2’ € X admit connected admissible subvarieties X1, ..., X, of X such
that x € Xy and ' € X, and X; N X;41 # 0 forany 1 < i < n; in this case,
such X; can in fact be chosen to be affinoid.
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Theorem 5.16. Suppose that A C V is a discrete subgroup such that
A=ANW)SANE -v)®--®(ANE-vy)
#0

forsome 0 # v; € VsuchthatV =W G E-v1 & --- B E - v. ThenUy(A, O, )
is connected for any connected admissible O C Qyy and any 1 < r € |C|.

We shall prove Theorem at the end of this section. First, we apply
itt If A C W, then Uy (A, Qyy, 1) = Qy for any r € |C]. If dimg(W) = 1, then
Qyy is a point and thus connected. Theorem thus specializes to

Corollary 5.17. Drinfeld’s period domain 0y, is connected.

Corollary 5.18. The quotient of Drinfeld’s period domain by any discrete sub-
group of PG is irreducible.

Proof. As such a quotient is a normal rigid analytic variety by Proposition
it is irreducible if and only if it is connected (see Conrad [12} Definition
2.2.2]). However, any quotient of a connected variety is connected. O

Remark 5.19. In Example we will consider the case where A C C'is an
admissible coefficient subring, where A C V is a projective A-submodule
of maximal rank and where W is generated by a direct summand of A and
show that then the image of Uy (A, O,r) in I'\Qr is connected admissible
for any connected admissible quasi-compact O C Qyy, any 1 < r € |C] and
any subgroup I' C Aut4(A).

The proof below of Theorem is inspired by van der Put’s [43, Exam-
ple 3.5] and builds on the following results. In the case of Corollary[5.17 it
in fact specializes to a variation of the proof that van der Put outlines there.

Proposition 5.20. (Bosch, Liitkebohmert [9, Corollary 5.11]) Let p: X — Y be
a flat morphism between quasi-compact rigid analytic varieties over C. Then the
image under p of any admissible quasi-compact subset is admissible quasi-compact.

Corollary 5.21. Consider any flat morphism p: X — Y between quasi-compact
rigid analytic varieties over C. Suppose that Y and every fiber of p is connected.
Then X is connected.

Proof. By assumption, every fibre of p lies in a connected component of X.
Thus the images under p of the connected components of X are disjoint
and, by surjectivity of p, cover Y. By Proposition this covering of
Y is admissible. The connectedness of Y then yields that X has only one
connected component, i.e., that X is connected. O
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Definition 5.22. A subset S of the projective line P, is a closed ball if it is the
image of the closed unit ball of the affine line A}, under an element of PGL2(C).

Proposition 5.23. A subset S C P}, is a closed ball if and only if it equals
(30) {z€Al:|z—c|<|d|} or {z€ AL |z—c| > ||} U P\ AY)
for some 0 # ¢, c € Al.

Proof. That any subset as in (30) is a closed ball is directly checked. We
consider then any g = (a, b; ¢,d) € GL2(C) and need to show that

By :={z € Al laz +b| < |ez +d|}

is a subset of A}, of the first kind in @]) if la| > |c|, resp. of the second if
la| < |c|. If a = 0 or ¢ = 0, this is directly checked. Thus assume that a #
0#c Letz€ Al andsetz :=cz+dand p := @. Thenaz+b= 22"+ p
and a
z€ By & ‘—z’+u‘ < 7.
c

If |a] < |c|, thus z € B, < |p| < |2']. If |a] > |¢|, then
a , a, c
22 4 <1 e |22 u] < |54
c c a

since both sides imply that || = |22'|. From this is directly checked that B,
is of the desired form in both cases. O

Proposition 5.24. Any non-empty intersection of any finitely many closed balls
in P, is connected.

Proof. Consider any such intersection I. The connectedness of P{, yields
the proposition in the case where I is the intersection over the empty set.
Suppose then that I is contained in a ball. Then the image of I under the
transformation by a suitable element of PGL(C) is in A},. We thus assume
without loss of generality that I C Al. By Proposition [5.23|and since any
non-empty intersection of finitely many closed balls in A}, is again a closed
ball, there exista 0 < k < n — 1 and some ¢, ¢}, . .., cx, ¢, € Al such that

IT={2€Al:|z—co| <|ch| AVI < j<k:|z—cj| > i1}

By [8, Theorem 9.7.2.2], any non-empty such set is connected. O
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Proof of Theorem[5.16] Let 1 < r € |C| and set U(O) := Uy(A, O, r) for any
admissible O C Q)y. We shall show that ¢/(0O) is connected in the case
where O C )y is any connected admissible and affinoid subset. In partic-
ular, 4 (O) is then non-empty for any non-empty admissible O C €y since
the latter can be covered by connected subsets. Given this affinoid case, the
theorem thus directly follows: Indeed, for an arbitrary connected admissi-
ble O C Qyy use that any admissible affinoid O’,0” C O with O’ N 0" # ()
satisfy that U (O") NU(O") = U(O' N O”) # 0 and that, by the affinoid case,
both U(0O’") and U(O") are connected if O’ and O"” are.

Consider thus any connected admissible affinoid O C 2)y. Choose any
free Og-submodule of my C V of maximal rank such that A Nmgy # 0 and
any v; as in the theorem and, using that A is discrete, such that

(31) Vi<i<k: [AﬂE"Uz‘#OiAﬂoE'Ui#OZAﬂOE'ﬂ"’UZ‘].

Forany 0 <i<ksetm; :=my@®Op-v1 ®---® Op-v; and U; := m; \ mm;
and W; := E - m; and for any linear [: (W;)c — C set

(32) wi(l) == maxyey, |[(u)].
Any Qyy, is admissibly covered by the ascending affinoid subsets
Q= {ll] € Powyyy, | Vu € Uit [i(u)] = |7 - pa(1)}
for all n > 1 by Lemma5.1]and Def.-Prop. Consider the morphism

Di: QWZ — QWZ;U [l] = [”(Wz—l)c]

for any 1 < i < k. Choose any j > 1 for which ||~/ > r. Define Qf := Q2
for any n > 1 and iteratively

VI<i<kVn>i-j: QF:=p H(Q')nar

Since, by construction, p;(2}) C Q" ; for any n > 1 and since the preimage
of an affinoid subset under an affinoid morphism is affinoid by [8, Propo-
sition 7.2.2.4], any such Q7' C Q7 is an affinoid subset. Moreover, being
cofinal with (Q'),,>1, the system (£2}'),,~;.; of ascending subsets is an ad-
missible covering of Qyy, for any 0 <7 < k. Set

1

VO<i<k¥n>i-j:Y":=QNUy,(ANW;,0,r).

7

=U;(0)
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Thus U(O) = Uk(O) is admissibly covered by the ascending subsets Y,"
for all n > k- j. It thus suffices to show that Y;" is connected for any
large enough n. We choose, by means of Corollary any ng > 1 such
that O C Q(°. We are reduced to showing that Y;" is connected for any
0 <i¢ < kandanyn > ng+ - j. We prove this by induction on i. If i = 0,
it follows directly from the assumption on O using that ;' = O for any
n > ng. Consider then any ¢ > 0 and any n > no + ¢ - j and suppose by
induction hypothesis that ;77 is connected. By construction, p; restricts
to a morphism
p: Y = Y

As both Q7 and Q?:f are affinoid, Lemma yields that both Y;" and

Y/"}? are quasi-compact. Being admissible subvarieties of standard projec-

tive spaces, they are further regular. Let [I'] € Yfi—lj . In view of Corollary
5.21} it remains to show that p~1([I']) is isomorphic to a connected admis-
sible subvariety of P_.. In view of Proposition this follows from the
following lemmas.

Lemma 5.25. p—1([l']) # 0.

Proof. Use that |C|contains |7|, that |I'(W;_1)| is the union in |C| of finitely
many translates of |r|” by Lemma @ and that |7|=/ > r in order to choose
a linear form [: (W;)c — C such that

D Uowioe = v,
i) [l(vi)| € [CI\ ' Wi-1)l,

. (%) (%%)
iii) |77 - g1 (1) = [1(vi)| = - g (1),

We show that [I] € p~1([I]). By it suffices to show that [I] € Y. Asr > 1,
Condition (xx) implies that |I(v;)| > p;—1(1") and hence that

(33) pi(1) = max{|1(vi)|, i1 (1)} = [1(vi),

where the first equality holds true, as y;() is attained by an element of any
basis of m;, so for instance of a basis consisting of v; and a basis of m;_;.
Fromit follows, as | - | is non-Archimedean, that

(34) Vee E,Vw € Wi_1: |l(e-v; +w")| = max{|e| - |I(v)], |I'(w)]}
As [l'] € Q177 , that [I] € QF is equivalent to [I] € Q7 i.e., to

Vue U [1(w)] > |x]™ - (D).
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Consider any u € U; and write u = e - v; + w' for some e € O and some
w' € mi_1. If w' € U;_1, then

&) rear; . ()7 E3)
(u)] = V() > 7" pa ) > 7" ().

If w ¢ U;_1, then e € O as u € U;; in this case, thus

(4) (33) n
1) S el - li(w)] = lio)] € i) = [l ).
Hence [I] € Q7. It remains to show that [/] € U;(O), i.e., that

; : > i / .
VAe ANW \W: [l(AN)]| >r 0;&5]%1/{101/\/“ (w)]

Consider any A € ANW; \ W. Write A = e - v; + X for some e € F and
X' € W;_1. By assumption on A, both e - v; and X lie in A. If \' ¢ W, then

(34) [I']et;—1(0O)
<" 17(V < ) . / ‘
ool 2 o S i )

If N € W, thene-v; #0as A ¢ W;in this case, |¢| > 1 by and hence

(134) *k ANmo#£0

= ‘ NS e (] g ) . / S . / )
U S ekl = rpa@) 2 v min @) 2 min J(w)
Hence [I] € U;(O). As argued before, thus [I] € p~!([I']) as desired. O

Lemma 5.26. The fibre p~*([I']) is isomorphic to the intersection of finitely many
closed balls of P¢..

Proof. Denote by A the set of C*-classes of linear forms I: (W;)c — C
for which (I, ,).] = []. Then p~'([I']) = U;(O) N Q' N A. Choose any
0 # wo € W and consider the isomorphism

[(vi)
l(wo)

We first show that ¢(QF N A) is a closed ball of P}, and then that so is
eU;(0)N QPN A). For any [I] € P set

o: A— AL, [ =

(32)
pi—1(l) == pi1(lw,_,)e) = maxuey,, [[(u)]-

60



Choose a finite set of representatives S of U; modulo 7!

"m;, respectively
S’ of (U; \ U;—1) modulo 7" m;. Using that [I'] € Q7 C QF ; and that

1i(1) = max{|l(v;)|, pi—1(1)} by the same reason as in (32), then
QA ={[l] € A|Vu € S: |l(u)] > |7"1(v;)|AVY € S": [I(W)] > |7™|pi—1 (1)}

Write any element u of S (resp. of S’) in the form e, - v; + w, for some
Wy € m;_1 and some (non-zero) e, € O such that w, € U;_1 or e, € (’)g

and set

Plw) _ Wwa) g i) pica ()
(wo)  I(wo) V(wo) — I(wo)
for any [/] € A. Then ¢(Q N A) equals

7

Cy =

()
{z € ALIVu € S: ey 24y > |77 2| AVU €8 |ew -2+ cw| > |7 - |}

We may and do assume that e, = 0 for some v € S. For such a u then (2)
defines a closed ball in P}, which is already contained in A},. By Proposition
.23} thus (' N A) is a closed ball in P},

Choose then a \g € AN W for which |[I'(A\g)| = min [I/(\)|. Then

0ANEANW
(35) V{ile A:[l] cUi(O) & VA e ANW; \ W: ‘ll((zjo)) = ll//((i(;)) '

By Corollar 5.4} the affinoid Q7 admits a finite subset T C A N W, \ W in
which the infimum of the |I(\)| for all A € A N W; \ W is attained for any
[l] € QF. Choose such a T'. Write any A € T in the form e, - v; + w) for some
ey € F and some wy € W;_1 and set
P(wy) _ l(wy)

cy = e = (o) and ¢ :=

I'(Mo)
I'(wo)

for any [/] € A. Then
P ([1) = pU(O)NAFNA) = {2 € (QNA)| YA € T: |ex-viten| > rfeol}.

As (2 N A) is a closed ball of P}, which is already contained in A}, thus
sois ¢(p~1([l'])) by Proposition This yields the lemma. O

As argued before Lemmas and they finish the proof. O
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5.4 Quotient by a discrete subgroup of a codimension 1 vector
subspace

Suppose that d := dimg(V) > 2. Consider any E-subspace W C V of
codimension 1, any 0 # w € W, any v € V \ W and any discrete subgroup
I' C Autg(V) such that any « € I' restricts to the identity on )V and satisfies
that y(v) —v € W.

If Autg(V) is identified with GL4(E) via the choice of an ordered basis
of V whose first d — 1 vectors are an ordered basis of W, then any v € I is

of the form
id *
0o 1/°

Consider the admissible subvariety &€ C Py, of those [I] for which [I|w,] €
Qyy; it is isomorphic to 2y, x C via

(36) i: €= Oy x C, [l] — ([ZWCLZZ((Z)))) .

For any O C Qyy and any integer n > 1 set
£(0) =i 1 (O x C)and £(0,n) :=i (O x By),

where B,, C C denotes the closed ball of radius n around the origin. Thus
(£(0,n))p>1 is an admissible affinoid covering of £(0) for any admissible
affinoid O C Qyy. By construction, I" acts on £. Consider the quotient map

pr: &€ —>T\E

and endow its target with the structure of Grothendieck ringed space in-
duced by pr, that is, a subset (resp. a covering of a subset) of I'\& is ad-
missible precisely when its preimage is admissible and the sections on an
admissible subset of I'\ £ are the I'-invariant sections on its preimage. Thus
pr restricts to the quotient map Qy — Qr considered in Section[5.9)and I'\&
contains the rigid analytic variety {Ir as a Grothendieck ringed subspace.
By Lemma 5.30|below, I'\€ is in fact itself a rigid analytic variety.

Denote by vr C W the image of the injective continuous homomor-
phism
' =W, v—=uv,:=7(v) —v;
it is a discrete subgroup of W as I is discrete in Autg()). By Example
and Lemma thus [(vr) C C is strongly discrete for any [I] € Qyy, i.e.,
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its intersection with every ball of finite radius is finite. Set
o)) = S0 () ()

where ¢;(,.y: € — C'is the analytic surjective group homomorphism with
kernel [(vr) defined in Def.-Prop. We are thus given a bijective map

er: INE =y x C,pr([l]) = ([Uhwel, e([l]))-
Lemma 5.27. The map e: € — C, [l] — e([l]) is reqular.

Proof. Any admissible affinoid covering C of €2y yields via the admis-
sible affinoid covering (£(O,n))oec,n>1 of €. Consider any admissible affi-
noid non-empty O C )y and any integer n > 1. It thus suffices to show
that the restriction of e to Y := £(O, n) is regular. Choose any [lo] € O. As

L := vr C W is discrete, the subset m -lp(L) C C is strongly discrete by
Lemma For any integer k£ > 1 thus
LM:{AGD MQng}CL
lo(w)

is finite and hence the function

. I(v) )
ek.Y—>C,[l]»—>l(w) H (1 l()\)>

0£NELy,

is a finite product of regular functions and thus regular. As the sup-norm
on the ring of regular functions on Y is complete by [8, Theorem 6.2.4.1], it
thus suffices to show that the e, for all £ > 1 converge uniformly to e. By
means of Corollary 5.3} choose a x > 0 such that

: I(y) I'(y)
=<K .
V[, [I'] € O,Y0 # 2,y € W ‘l(:c) <K (2)
Forany £ > 1,any A € L\ L; and any [[] € Y then
)| _ (1) ] [iw) bhw)| 0k
'lm : ‘Z<w 0] =" )| < R
and, if 7* < 1, hence ‘1 — % = 1and
l(v) n-K
(37) 1- I Q_KM>Sk’
AEL\Ly,




Choose a kg > n - k. Using Proposition and that Y is affinoid, choose
a cop > 0 which bounds ey,. For any k£ > ko and any [I] € Y thus |ex([l])| =
lexo ([1])| < co and, further using (37), hence

ex((l) = e()] = lex()] - [1 = T] <1§§A§)l<0”k

MEL\Ly

This shows as desired that the e, converge uniformly to e. O

Proposition 5.28. The map er is an isomorphism of rigid analytic varieties. In
particular, it restricts to an open immersion on Q.

Since any [I] € Qy satisfies that I(v) ¢ I(vr) and hence that e([l]) # 0,
Proposition will thus directly yield

Definition-Proposition 5.29. The map

qr: Qr — Qw x C*,pr([l]) — (mV"C]’ e(?l]))

is an open immersion.
In order to prove Proposition we need the following lemmas.

Lemma 5.30. Consider any admissible affinoid covering C of Qyy. Then

(pr(£(0, n)))OeC,nZl

is an admissible covering of IT'\E and any pr(E(O,n)) is admissibly covered by
finitely many affinoid varieties. In particular, I'\E is a rigid analytic variety.

Proof. The covering (mr(€(0)))oec of T'\E is the preimage of C under the
natural morphism I'\E — )y and hence admissible. We consider any ad-
missible affinoid O C Qyy, setY := £(0) and Y,, := £(O,n) forany n > 1
and are thus reduced to showing the claim that I'\Y" is admissibly covered
by the pr(Y;,) and that each of them is admissibly covered by finitely many
affinoid varieties. In order to prove the claim, we shall apply Proposition
2.34]to the following setting: For any n > 1 denote by I,, C T' the subgroup
of those elements  such that

1(vy)
l(w)

<mn;

I

VileO:
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it is finite as ll((g)) C C is strongly discrete for any [[] € O. Moreover, any

Y,, is I'y-invariant. Furthermore, as )y and C are both separated, so is
their product and hence £ and hence the admissible subvariety Y C £. It
remains to verify the remaining Condition [iii)| of Proposition ie., that
any n > 1 admits an n’ > n such that

(38) Vyel \ Ly ’Y(Yn) ny, = 0.

In order to do so, choose, by means of Corollary a k > 0 such that

/ I(y) U'(y)
: > K- .
VL[l € O,Y0#z,y eW ’l(x) > K ()
Consider any n > 1, choose any n’ > % and consider any v € I' \ I';,;. Thus
I'(vy)
/ . 8i /
Il e0: () >n
which implies that
Z(Uv) !
: . >
V[lleO 'l(w) >kKk-n >n
and hence that
[(yv) l(vy) | l(v)
Y, : =
e [ = i + i) >
or, equivalently, that y(Y;,) NY;, = 0 as desired. O

Lemma 5.31. Any [l| € £ admits a basis of admissible neighborhoods such that
Y(U)NU = 0 for any U in this basis and any id # ~ € T and such that (y(U))~er
is an admissible covering of an admissible subset of £.

Proof. Let [I] € £ and set [y := l|yy,. Associate with any admissible neigh-
borhood O of [ly] in 2y and any € € |C*| the admissible neighborhood

U(v)  I(v) gs}

U(w) l(w)
of [I] in £. Using that ly(vr) C C is strongly discrete, we choose an ¢y >
0 such that 0 is the only element in lp(vr) whose norm is < &g - |lp(w)|.
Moreover, by Lemma [lo] admits an admissible affinoid neighborhood
O such that all elements in O induce the same class of norms on WW. Then

X(0,¢) := {[l'] e&: 'lw.] EONA
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the X(0,¢) for all such O and all ¢ > ¢ € |C*| form a desired basis of
admissible neighborhoods of [/]. Indeed, consider any such O and ¢ and
any [I'l € X(0,¢) and v € I" such thatv[l'] € X(O,¢). Then

_ ‘l’('yv —v)| _
V' (w)

lo(yv —v)
lo(w)

so that yv—v = 0. As y further restricts to the identity on W, itis the identity
as desired. In order to see that (v(X (O, €)),er is an admissible covering of
an admissible subset of £(0), it suffices, as (£(0,n)),>1 is an admissible
covering of £(0), to show for any n > 1 that (v(X(0,¢)) N E(O,n)) er is
an admissible covering of an admissible subset of £(O,n). However, this
holds true for any n > 1 since, by Proposition the intersection of the
affinoid v(X (0, ¢)) with the affinoid £(O, n) is again affinoid for any v € T’
and, by , empty for all but finitely many v € I'. O

Lemma 5.32. Consider any admissible O C Sy and any integer n > 1. Then
er(pr(€(0,n))) O O x By,.

Moreover, if O is affinoid, then there exists an m > 1 with
er(pr(€(0,n))) C O x By,

Proof. Set L := vr. As | - | is non-Archimedean, any [/] € £ satisfies that

i) ) )| | 1) 1(0) + 1(N)
@)1=y 1L 725 i AL '
LeNINU]

As I(L) is strongly discrete for any [ € Qp, any = € T'\E is represented by
some [I] € £ such that |I[(v)| < |I(v) +1(\)] for any X € £ and hence, by (39),

such that |er(x)| = |e([]])] > ‘ zl((qj;)) ‘ As er is surjective, this shows the first
part. Suppose then that O is affinoid. By (39), any [/] € £ satifies that

l(v) I(v) I(v) l(v)| [l(w)
@0 e < |1 IRy <14, T i |,
L) <L) L)L)

Moreover, any [I] € £(O,n) and any A € £ with |[()\)| < |I(v)]| satisfy that
’%’ < l((”) < n. By , it thus suffices to show that for any [I] € £(O,n)

I(w)
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both the number of A\ € £ with ‘ ‘ < n as well as the norm ‘ ‘ for any

such ) is bounded from above by a constant depending only on O and n.
Since O is affinoid, Corollary [5.3|provides a x > 0 such that

'\ L(A)
<k |z].
| = |

From this thus follows the second part as any [/] € O admits only finitely

many A € £ with ‘ o) ‘ < kK-nas é(w; C C'is strongly discrete. O

V[, [l] € O,VA € L:

Proof of Proposition[5.28, By Lemmal5.30} er is a morphism between reduced
rigid analytic varieties. As argued above, it is bijective. By Proposition[2.24}
it thus remains to be shown that er induces isomorphism on the stalks and
that there exists an admissible affinoid covering of {2), x C such that the
preimage under er of any of its elements is a finite union of affinoids. As

d
1 (e @) =1

the tangent map of er opr at any point is a triangular matrix with only ones
on the diagonal with respect to a suitable basis and thus an isomorphism;
thus it induces isomorphisms on the stalks (see [39) Part 2, Chapter 3.9, The-
orem 2]). By Lemma the quotient morphism pr induces isomorphism
on the stalks, too. Hence so does er. Moreover, the O,, := O x B, for all
admissible affinoid subsets O C )y and all n > 1 form an admissible affi-
noid covering of {2)y x C. Consider any such O,, and set X := pr(£(0,n)).
By means of Lemmanchoose anm > nwith O,, C er(X) C O,,. For any
affinoid X’ C X then e;.'(0,) N X' is the preimage of the affinoid subset
O,, under the morphism X’ — O x B, between affinoid varieties induced
by er and is thus [8, Proposition 7.2.2.4] itself affinoid. As, by Lemma5.30}
X is admissibly covered by finitely many such affinoid subvarieties X’, the
preimage e;.'(O,,) is thus a finite union of affinoid subsets. As argued be-
fore, er is thus an isomorphism. Finally, by Lemma the I'-invariant
2y C & is an admissible subvariety. Hence so is Qr C T'\E. Thus the
restriction of er to Qr is an open immersion. L]

Proposition 5.33. Let A and A C V be as in Example |5.11| and suppose that
b- L C vr forsome0 #be A. Let O C Qyy be admissible aﬁ‘mozd Then

i) any e > 0 admis an r > 0 such that gz (O x B.) D pr(Uy(A, O, 1)),

ii) any r > 0 admits an ¢ > 0 such that gz * (O x B.) C pr(Uy(A, O, 1)),
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where Uy (A, O,r) C Qy is the subset defined before Lemma5.13]

Proof. Set L := ANWand £ := vr C Land U(O,r) := Uy(A, O, r) for any
r € |C|. As O is affinoid, Corollary 5.3 provides a x > 0 such that

(41) V[I],['] € O,Yw" ,w' € W\ {0} ‘ll

Choose for any [I] € O an 0 # w; € L such that

|{(wr)] = inforer [(A)].

using that /(L) is strongly discrete by Proposition Then

(i), [1'] € O: ’

In particular, there exists an s > 0 such that

<s.

V[i] € O: ‘zl((;i))

Forany [I] € £(0) set w; := wy,,, . and choose a v; € A\ L such that

[l(vr)| = infyea\z [L(A)]-
Part fi) holds true as for any for any r € |C*| and any [I] € U(O,r) holds

e 0| <[] [t
o+ A)]| ~ |U(v) (o) U wy)| —r

and hence that
1 ‘: (w) ‘ <f
|~ Jerey@lo Aeﬂz <5

Let us then show Part As ﬁ -l(L) is co-compact in /(W) forany [I] € O,

there exists an ([l]) > 0 such that

l(x—A)
I(wy)

Using and that |I'(w;)| > |I'(wy)] for any [I],[l'] € O, we may and do
choose the r([l]) to be uniformly bounded. As U (O,r) C U(O,r") for any

(42) Ve e W3are L

‘ < ([,
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r > r’ > 0, it thus suffices to show Part i)l only for any r € |C| such that
r > r([l]) for any [[] € O. Consider any such r. By surjectivity of er, it
suffices to find an € > 0 such that

pr(E(0)\U(O, 7)) C e (O x Bu).
By the second part of Lemma it thus suffices to find an n > 1 with

(43) EO)\U(O,r) C | J1(E(0,n)).
~vel

Using the assumption, choose 0 # b € A such thatb- L C L. Using that
A/(A-v+ L) is a torsion A-module, we further choose a ¢ € A such that
c-A C A-v+ L. We claim that any n > max {|c|,|b|} - r satisfies (43).
Consider any [I] € £(0) \U(O,r). Then

' L(w)
I(wy)
indeed, if [I] € Q, this follows from the definition of (O, r) and if [I] ¢ Q4,
then [(V) = (W) so that provides for any z € W with [(v;) = I(z) an

: I(z—)\)
A € L with )

?

‘ < 7 so that
)| < [l(v = A)| = [l(x = A)| <7 [l(w)].

Leta € Aand X € L be such that ¢ v; = a - v + X. Using (42), choose a

A
A € L with l(l?wl))‘) < |b| - r. Write A = y(v) — v for a unique y € I'. Then
’ ()| ’zwﬂ)) _ ‘l(v+)\) |+ A+ A -2
(v (w) l(w) [(wr) ()
cl ' ) | (UG =)
<max<{ — - | =2 < max{|c|, |b|} -7
: {|a| twn)|*| ) {1y
which yields the claim and hence Part i)} O
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6 Compactification of analytic irreducible components

Consider any algebraically closed complete non-Archimedean valued field
C of finite characteristic.

Definition 6.1. Let A be the category of triples (A, A, T"), where
i) Ais an admissible coefficient subring of C' (see Definition [2.45),

ii) A is a non-zero finitely generated projective A-module,

iii) T'is a subgroup of Auta(A),
whose morphisms from any (A', ', T") to any (A, A, T') are the injective A-linear
maps ¢ : A" — A, where A’ O A, such that o(A") C A is a direct summand and
@) " (") = {g € Auta(p(\))| 7 €T 1 gop =07} CTyn),
where T, := {g € Auta(L)| Iy € T: 7|1 = g} for any A-submodule L C A.

Ultimately, we are interested only congruence subgroups I' C Aut4(A).
However, in Section [6.6| (see Def.-Prop. [6.42) we will apply the formalism
of the next two sections also to a non-congruence subgroup of Aut4(A) .

By means of Example and Proposition[5.8, with any (4,A,T) € Ais
associated the rigid analytic variety Qr := I'\Q2 over C, where Q0 := Q) ,,
where Ap := A ®4 E, for the smallest local field £ C C' containing A.

In this section we construct a functor (A4,A,T") — Qf from A to the
category of Grothendieck graded ringed spaces such that, as a set,

Qlt = H Qva
LeS

where S is a set of representatives for the natural I'-action on the set of
non-zero direct summands of A.

Notation 6.2. For any (A, A,T") € Aand any direct summand 0 # L C A let
o I'y :={yeTl|~y(L)=L}CT,resp.

° f‘L = {’}/ S FL’ ’y’L = ldL} crly,

restriction homomorphism T', — Aut 4(L) whose image is T 1, (see Definition

denote the normalizer, resp. centralizer, of L in I'; thus I 1, 1 the kernel oﬁh}e
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6.1 Grothendieck topology on the pre-quotient

Consider any (A,A,I') € A. In this section we construct a Grothendieck
topological space €2} which is acted by I' and whose quotient by I" will be
the Grothendieck topological space underlying Q..

Definition 6.3. For any subset S C C'let d(S) := 07Eafs|5|.
sE

Definition 6.4. Denote by [imax(L) the largest successive minimum of any A-
lattice L C C (see Definition [2.52).

Definition 6.5. Let 2} be the set-theoretic disjoint union of all the )y, for all
direct summands 0 # L C A.

Definition-Proposition 6.6. For any direct summand 0 # L C A and any
admissible O C Qp, and any r € |C| denote by

(45) U(A,O,r), resp. U'(A,O,r),
the subset of ¥y of all elements (1] with [l] € Qy/ for some L C L' C A for which
i) l|r.) € Oand

. d(U(L\L A(I(L'\L
i) (d%l(L\)))) >, resp. 7ur(n£x(l\(L))))

>,

Any such L and any admissible quasi-compact O C Qp, admit a ¢ > 0 such that

(46) Ve <re|C]: UNO,r) CUR,O, ) CU(A,O, 2).
Proof. Such constants ¢ are provided by Corollary[5.3| O

Definition-Proposition 6.7. Endow 2} with the following Grothendieck topol-
ogy: A subset Y C () is admissible if for every direct summand 0 # L C A

i) the subset Y N Qyp C Qp, is admissible and

ii) if every affinoid O C Y N Qy, and one, and hence every, U € {U, U’} admit
anr € |ClwithU(A,O,r) C Y.

Moreover, a covering of an admissible subset of (¥} by admissible subsets is ad-
missible if its intersection with every 1y, is admissible.

Proof. All properties required by Definition2.2|follow directly from the cor-
responding ones of the Grothendieck toplogical spaces €27, and the fact that
any admissible covering of an affinoid subset has a finite subcovering. [J
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Example 6.8. Any subset as in is admissible.

Proof. Consider any admissible O € Q and any r € |C|. By Lemma[5.13]
the intersection of U := U(A, O, r) with any Q;, is an admissible subset of
Qs for any further direct summand L C L' C A. By a similar proof as in
Lemma also the intersection of U’ := U'(A, O, r) with any such Q;, is
admissible. Consider then any affinoid O’ C U N Qy for any such L'. We
shall show that (A, O’,r") C U for some 7’ € |C|. Using Corollaries
and and that O’ is affinoid, choose an £ > 0 such that

Vi) € 0’ d(I (L)) 2 ¢ - d(I'(L)).
Let £ <¢' ¢ |C|and [I] € U(A,O',7") N Qpn forany L' C L” C A. Then

d(U(L"\ L)) = min{d(((L"\ L')),d(U(L"\ L))}
> min{r" - d(I(L)),r - d(I(L))} > r-d(I(L)).

As [l|pr] € O' Cc U, also [l|z] € O. Thus [I] € U. Hence U(A',0,7") C U.
Using (46), this yields the corresponding property for U’, too. Hence U and
U’ are indeed admissible. O

Corollary 6.9. Consider any admissible Y C Q} and for any direct summand
0 # L C A an admissible covering Cr, of Y NQy and an ro € |C| for any O € Cy,
such that Up := U(A,O,ro) C Y, resp. U}, == U'(A,0,70) C Y. Then the
covering C of Y by all these Uo, resp. U}, is admissible.

Proof. By Example any Up, resp. U/, is an admissible subset of Y.
Moreover, the intersection of C with any boundary component €2, is refined
by the admissible C, and is thus, by Property of Definition itself
admissible. Hence C is indeed admissible. ]

Corollary 6.10. For any direct summand 0 # L C A, any [l| € Qp, and any
countable neighborhood basis (O,)n>1 of [I] in Qp, the system (U(A, Opn,70))n>1
is a countable neighborhood basis of [I] in (¥} for any unbounded sequence {ry}n>1 C
€.

Proof. This follows directly from Example[6.8/and Definition O
Corollary 6.11. The canonical topology on 2} is first countable.

Corollary 6.12. Let Y C Q) be admissible. With respect to the canonical topolo-
gies, then a function f: Y — C is continuous if and only if it is sequentially
continuous.
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Proposition 6.13. [30, Proposition 1.4] Consider any 1 < r € |C| and any direct
summands Ly, Ly C A for which Ly ¢ Lo ¢ Lq. Then

Z/l/(A, QLl,T) ﬂul(A, QL2,T’) = 0.

Proof. Suppose, by contradiction, the existence and choice of an [I] € Q,
in the intersection in (6.13). By means of Def.-Prop. choose for any
1 <i < 2asubset 8; C L; whose image under [ is a realization of the set of
successive minima of I(L;). If

pi= fimax(1(L1)) < pmax({(L2)) =: v,

then choose, by means of the assumption, a A € 31 \ Ly to get the contra-
diction
IV < p<v<r-v<di(L) Ls) < IV]-

By symmetry, we also get a contradiction if > v. O

6.2 Structure of Grothendieck graded ringed space
Let (A, A,T') € A. Let F' be the quotient field of A and E C C'its completion.

For any direct summand 0 # L C A denote by Q;, the preimage of Qr,
under the quotient-by-C* morphism A \ {0} — P ; it consists precisely
of the C-linear maps [: Lo — C for which Ker(l) N Lg = 0.

Definition 6.14. Let Q¥ be the set-theoretic disjoint union of all such Q, equipped
with the induced C* -action.

Definition-Proposition 6.15. Set G := Autg(Ap). Equip Qf with a C*-
equivariant G-action by the rule

9(1) == 1o (g7 (1)) € Qgr, where gL := g(Lp) NA C A,
forany g € G and any l in any Q; its induced G-action on 0% is continuous and
(47) Vg € Auta(A): gUA,O,r)) =U(A, g(O),T).
Moreover, for any direct summand 0 # L C A holds that

(48) Vg € Auta(A): gL = g(L).
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Proof. 1t is directly checked that the rule defines a C*-equivariant G-action
on Qj‘\ and that then @ and hold. Let g € G. Then the bijection Q} —
2} given by the induced action of g restricts stratawise to isomorphisms of
rigid analytic varieties. Consider then any admissible affinoid O C 7, and
any r € |C|. It remains to find an ' € |C| for which

(49) U(A, g(0),r") C gUA,O,1)).

Using that both A and g(A) are projective A-submodules of maximal rank
of Ap, choose an f € F for which g(A) C f-A. Then g(L) C f - gL and

9M\g(L) =g(M)\g(L)r C [-AN\g(L)r = [-(A\g(L)r) = [-(A\gL)
from which 1@} is directly deduced for any 7z <1’ € [C]. O
Definition 6.16. By means of Def.-Prop- consider the quotient map

pri Qi - T\Q; = O

and endow its target with the structure of Grothendieck topological space which it
induces, that is, a subset (resp. a covering of a subset) of S is admissible precisely
when its preimage is admissible.

Remark 6.17. The induced canonical topology on Q. was introduced by
Kapranov [30] in the case, where A is a polynomial ring.

Example 6.18. Consider any direct summand 0 # L C A, any admissible
quasi-compact O C Qp, and any 1 < r € |C|. Then the v(U(A,O,r)) for all
v € T form an admissible covering of an admissible subset of Q5. In particu-
lar, pr(U(A, O, 1)) C Qf is admissible. Moreover, if O is connected, then so is
pr(U(A,0,7r)) NQp C Q.

Proof. Set U :=U(A, O,r). Let us show the first assertion. By construction,
any ~(U) depends only on v modulo I';,. By means of Example[6.8, Lemma
and any admissible affinoid covering of any stratum €, it suffices to
show for any admissible affinoid subset O’ of any Q, that y(U) N O’ = 0
for all but finitely many v € I' modulo I';. Thus consider any such ad-
missible affinoid O’ C Q. We assume that L' = A and that U N O’ # {);
the general case is directly reduced to this case. Using that O, resp. O/, is
quasi-compact, choose a k > 0, resp. ' > 0, which satisfies the property
in Corollary with respect to O and L, resp. O’ and Ag. Choose
any basis § of Lp that is contained in L and choose any [[] € U N O'.
Choose a A € L such that |I[(\)| = d(I(L)). Consider any v € I' for which
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Y(U) N O" # 0 and choose any [I']| € v(U) N O'. Choose a \' € vL with
/()| = d(I'(vL)) "Z" d(I'(A)). For any v € 3 then

) < [H < o [0 |G, O

1Y) I ROVE R TP | T
SN o] N LU LA R LT
- oI RECDIPY 0| 167
< ik

where at % we have used that [(71)|(,1),] € 7(O) as [l|.] € O and that, as
is directly checked, the constant « also satisfies the property in Corollary
for y(0) and (yL)g. As I(A) is strongly discrete, thus I(v(8)) lies
in a finite subset of [(A) that depends not on 7. As such a v modulo I';,
is uniquely determined by its action on 3, there exists thus indeed only
finitely many v modulo I';, satisfying the above inequality and hence that
v(U) N O’ # . Moreover, if O is connected, then so is U N 2, by Theorem
b.16land hence so is its admissible image pr (U)NQr = pr(UNQy) € Qr. O

Corollary 6.19. The map pr is open with respect to the canonical topologies.

Proof. This follows from Def.-Prop[6.7land Examples 6.8 and O

Corollary 6.20. Any point in QUf. has a fundamental basis of admissible neighbor-
hoods whose intersection with Qr is connected and irreducible.

Proof. As Qr is normal by Proposition its irreducible and connected
subsets coincide by [12, Definition 2.2.2]. The corollary thus follows from
Example and Corollary using that any point in any stratum
has a basis of connected admissible affinoid neighborhoods in 2. O

Example 6.21. Consider any admissible subset X C Q. For any direct summand
0 # L C A choose an admissible affinoid covering Cr, of pr.* (X) N Qy, and for any
O € Cranro € |C| for whichU(A, O,ro) C pp'(X). Then the covering C of X
by the pr(U(A, O,r0)) for all O in all Cy, is admissible.

Proof. By Example any element of C is admissible. Let D be the cov-
ering of p.' (X) defined as the preimage of C' under pr. It remains to
check that the intersection of D with any €, is an admissible covering of
Pr ! (X) N Q. However, by construction, such an intersection is refined by
Cr, and is thus admissible as desired. O
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Definition-Proposition 6.22. For any orbit O of the natural I'-action on the set
of non-zero direct summands let

Qp :=pr (U QL>

Leo

be equipped with the structure of Grothendieck ringed space turning the natural
map Qp, — Qg into an isomorphism for every L € O. Then a subset X C Q. is
admzsszble if and only if for every such orbit O:

i) X N Qo C Qo is admissible and

ii) every admissible quasi-compact Y C Qo with Y C X admits an r > 0 with

UNY,r) :=pr (U L{(L,plil(Y) ﬁQL,T)> c X.

Leo

Moreover, a covering of an admissible subset X C Qf by admissible subsets is
admissible precisely if its intersection with X N Qg is admissible for every orbit O.

Proof. Consider any X C €f. For any orbit O the subset X N Qp C Qy is
admissible if and only if for every L € O the subset p.. LX) N Qp is admis-
sible. Thus holds true for every orbit O if and only if pr* (X) N QL C Qf,
is admissible for every direct summand 0 # L C A. We assume that these
equivalent statements hold true. Similarly, it directly follows that a cover-
ing of X by admissible subsets is admissible if and only if its intersection
with X Ny is admissible for every such O. We are thus reduced to show-
ing that.holds true for every such O if and only if every such L and every
affinoid O C pp'(X) N Qp admit an r € |C| for which (A, O,r) C pr'(X).
First assume the first property and consider any such affinoid O C Qj, and
denote by O the I'-orbit of L. For any r € |C| then

pF(Z/[(A, 0, ’f’)) = M(A,pF(O), T)

is admissible by Example in particular, pr(O) C Qg is admissible
and, being the image of O, quasi-compact. Thusiii)| provides a desired r €
|C|. Conversely assume the second property and consider any admissible
quasi-compact Y C €2p. Choose any L € O and an admissible affinoid
covering Cy, of pfl(Y) N Qp and for any O € Cp, an rp € |C| such that
U(A,0,70) C pp'(X). Then (pr(O))oec, is a covering of Y it is in fact
admissible since any of its elements is admissible by Example since
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the preimage in 2, of the covering has the admissible refinement C;, and
is thus itself admissible. By quasi-compactness of Y, we may thus choose
finitely many pr(O1), ..., pr(Oy,) which cover Y. For any r € |C| greater
than the rp, forall 1 < ¢ < n then

1<i<n 1<i<n

U(A,Y,T) - U U(AJ)I‘(Oi)eri) =PpPr ( U U(AvOiarOi)) C X.

This yields the converse direction and finishes the proof. O

Definition-Proposition 6.23. Consider any integer k and any admissible Y C
Q) with preimage Y C Q2. A function f:Y — C'is called weight k regular if

) VeeC*leY: flec-1)=c" f(l)

ii) and every direct summand 0 # L C A, every admissible affinoid O C
Y N Qy, and one, and hence every, 0 # \ € L, admit an r € |C| such that
U:=UNO,r)CY and

(50) U—C I~ fl)- 1Nk

is bounded, continuous with respect to the canonical topologies and restricts
to a regular (see Definition function U N Qp — C for every direct
summand 0 # L' C A.

Proof. If forsome 0 # A € L the function in is bounded and continuous,
then the same holds true for any such X since for any 0 # M, \ € L the
regular function

(A

I(\)

is continuous and bounded; indeed the function is continuous as it factors
through the continuous restriction morphism ¢/ — O and it is bounded by
Proposition applied to the affinoid O. O

U—C I —

Definition-Proposition 6.24. For any admissible X C Qf and any integer k
let O}(k)(X) be the set of T-invariant weight k regular functions ' (X) — C,
where

s Q= Q) =D\Q, /C*

is the double quotient map. By means of the ring structure on C, then
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i) the Of.(0)(X) for all admissible subsets X C U together with the natural
restriction homomorphisms form a sheaf Of: of rings on Qf,, called structure
sheaf on €U, and

ii) for any integer k the Of.(k)(X) for all admissible X C U together with the
natural restriction homomorphisms form a sheaf Of.(k) of Of-modules on
Qf, called k-th twisting Of-module and

ii1) a sheaf Ry of graded Or-algebras on Q. is formed by the

RE(X) =) _Oh(k)(X)

keZ

for all admissible X C Q). together with the natural restriction homomor-
phisms.

In particular, (Qf., Of) (resp. (2, Ry)) is a Grothendieck (graded) ringed space
containing the rigid analytic variety Qr as an admissible Grothendieck ringed sub-
space.

Proof. This is directly checked. O

Remark 6.25. In fact, in Corollaries and [10.6] below we will show the
following: If I" is a congruence subgroup of Aut4(A), then (Qf, Of) is a
normal integral projective rigid analytic variety over C. If, furthermore, I
is fine, then Of.(k) is an ample invertible sheaf for any k& > 1.

Proposition 6.26. Consider any admissible X C §}f.. Then precomposition with
the restriction 7' (X) — X of 7 induces a bijection to O%(X) from the set
OR(X) of functions s: X — C that are continuous with respect to the canonical
topologies, that restrict to a reqular function on X N Qg for every I'-orbit O and
that are bounded on U(A,Y,r) for every admissible quasi-compact Y C Qg and
every r € |C| for whichtd(A,Y,r) C X.

Proof. Consider first any direct summand 0 # L C A in any orbit O. As
already argued in the proof of Def.-Prop. for any admissible quasi-
compact O C L then pr(O) C Qg is admissible quasi-compact and

pF(U(A, 0O, T)) = U(Av pF(O)7 T)

for any r € |C|. Using this, it directly follows that precomposition with
mr defines an injective map O (X) — Of:(X). On the other hand, consider
any f € Of(X). Being C*- and I'-invariant, it induces a function s: X — C
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which, by Corollary[6.19} is continuous with respect to the canonical topolo-
gie since f is. By construction of the (0, moreover, s restricts stratawise to
a regular function since f does. The boundedness property for s follows
from the one of f via the argument at the end of the proof of Def.-Prop.
6.22 O

6.3 Morphisms
Consider any (A’, A, T") 4 (A,A,T) € Aand the map

. = . 14 9071 14
le QA/ — QA’[ /C — C] — [SO(L/)C i) Lb — C]

Proposition 6.27. By Qj; is induced a morphism of Grothendieck graded ringed
spaces
(25, Re) = (P ) — (O, Ry)

which on sections of Ry is defined by precomposition with ij.

Proof. We first show that the map p: 0}, — Q} induced by Qj; is a mor-
phism of Grothendieck topological spaces. We consider any admissible
Y C Q} and claim that

Y'i=p YY) C QL

is admissible, i.e., that for any discrete summand 0 # L' C A/, the subset
Y’ ' NQp C Qp is admissible and admits an admissible covering C’ and for
any O' € C"anr € |C| withUU(A',0',r) C Y'. Consider any such L, and
set L := p(L'). By assumption, Y Ny C Qf, is admissible and admits an
admissible covering C and for any O € C anr € |C| withU(A,O,r) C Y.
Since the restriction pr/: Qr, — Qp, of p is a morphism,

Y'n Q= pZ,I(Yﬁ QL) C Qp

is admissible and admissibly covered by the preimage C’ of C under pj.
The claim then follows from the straightforwardly checked fact that

U(A,, p;/l(O)?T) = p_l(u(Aa O,r)) C p_l(Y) =Y

for any O € C and any r € |C|. The regularity of any such restriction
pr further shows that the preimage of any admissible covering of Y is an
admissible covering of Y”. Hence p is indeed a morphism of Grothendieck
topological spaces.
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Since ¢*(I") C Ty by assumption, p induces a map Q) : Qf —
Q. which is straightforwardly checked to be a morphism of Grothendieck
topological spaces using that p is one.

Finally, using the above properties of p and that Qf; restricts stratawise
to a morphism, it is directly checked that for any admissible X C Qf. pre-
composition with Qj; | ¢/ yields a a graded ring homomorphism

RL(X): RE(X) = Riv(X),

where X' := (2%)"'(X) and X' == 7' (X'), and that these R, (X) are
compatible with the restriction homomorphisms of RY, and Ry, as X varies.
U

Proposition 6.28. Consider any further (A", A", T") 4 (AN, T") € A. Then
(€25, RE) 0 (2, Ry) = (Qgoys Rioy)-

Proof. This is straightforwardly checked using that Qj‘P o Q:‘p =

porp -

Via restriction of the maps of R, to weight zero, (Q2},, R7,) induces a
morphism of Grothendieck ringed spaces

(€5, 0%): (Qpv, Orr) = (O, Orp).

Remark 6.29. In Corollary [10.5 below we will show the following: If I’ C
Auta(A) and IV C Auta(A’) are congruence subgroups, then (22, O7) is a
proper morphism of rigid analytic varieties. If, furthermore, the index of
o*(I") C fso( vy is finite, then the morphism is even finite.

Consider any integer k. Let ((9;)_1(9{2(16) be the sheaf on . associated
with the presheaf
X'— Or(k)(X),
xou r(k)(X)

where X’ is any admissible subset of Q}, and the limit is taken over all
admissible subsets X C Qf containing Q},(X’). Moreover, R}, induces a
morphism of sheaves

(51) (05)7' 01 (k) — Or(k)

by means of which we define the preimage of Or.(k) under O to be the sheaf
(O3)*Or(k) of OF,-modules associated with the presheaf

X' (0) ' OR (k) (X) ®(05)-105(x1) O (X).
The morphism in further yields a natural morphism of O},-modules
(52) (07) O (k) — Of (k).
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6.4 Examples of global sections of twisting modules

Consider any (A, A, T") € A. Denote by F the quotient field of A.

6.4.1 Eisenstein series

Denote by 7: Ap — Ap/A the quotient homomorphism. Consider any
a € Ap/A and set L(a) := 771 (a) N L for any direct summand 0 # L C A.
Let k be any positive integer. Consider the sum

< 1 _ .
EA,a,k: QA_>C7 l— E W, ifl € Qp.
0£NEL()

Proposition 6.30. E, ,, ;, converges everywhere and, if I fixes v, is in O (k) (§25).

Proof. Consider any direct summand 0 # Lo C A, any affinoid O C Qp,,
any 0 # \g € Lo and any r € |C|. Set U := U(A, O, r) and consider the sum

E:U — C,[l] = Enax(l) - 1(00)".

We first show via the following lemmas that for every further direct sum-
mand Ly C L C A the sum E converges to a regular function on Uy, :=
U N Qr, and that E is continuous with respect to the canonical topologies
and bounded.

Lemma 6.31. On every Uy, the sum E converges to a regular function.

Proof. By means of an admissible affinoid covering of any such Uy, it suf-
fices to show that the restriction Eo of E to every admissible affinoid
O" C Up, converges to a regular function. Consider any such O" C Uy, and
choose any [I] € O'. As L(«) C L is discrete, where E is the completion of
F, the subset [(L(a)) C C'is strongly discrete by Example and Lemma

In particular, for any integer m > 1 the subset L(«),,, C L(«) of those

A for which )%’ < m is finite; thus

Eom: O = C, [l )
O#AEL(OL)W

is a regular function. As the ring of regular functions on O’ is complete
with respect to the sup-norm by Proposition it suffices to show that the
Eor m for all m > 1 form a Cauchy-sequence; indeed, as L(«) is covered by
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the L(«),y, for all m > 1, their limit must then be Eo. Applying Corollary
to the affinoid O’, we choose a ' > 0 such that

I'(Mo)
VN |~

vm > 1,V[l'] € O',V\ € L(a) \ L(a)m:

This directly yields that the £ ,,, indeed form a Cauchy-sequence. ]
Lemma 6.32. E is continuous with respect to the canonical topologies and bounded.

Proof. As for continuity, it suffices, by Corollary to show that E is
sequentially continuous. Consider thus any [[|] € U and any sequence
{[ln)}n>1 C U converging to [I] and let us show that
(53) Tim B([1,)) = E([).
Let L D Lo, resp. L, D Lo, be such that [I] € Qp, resp. [I,)] € Q, for any
n > 1. Choose a fundamental basis of admissible affinoid neighborhoods
(On)n>10f [I] in Q, such that O,, D Oy, for alln > 1. Using Corollary |6.10
we choose a sequence {7, },>1 C |C| converging to infinity and an ng > 1
such that [I,] € U, := U(A, Oy, ) for every n > ng. The choice of the O,
and the regularity of the restriction Ep, of E to O; by Lemma imply
that

lim B((la|z.]) = lim Eo, (lalz.)) = Eo, (1) = E(1).

n—oo

It thus remains to show that E([l,]) — E([l,|L.]) converges to 0 for n — occ.
Applying Corollary [5.4 and Proposition to the affinoid O;, we choose
an s > 0 such that |[(Xg)| < s-d(I(L)) for every [/] € O;. Choose any f € F'
for which 77%(a) C f - A. For any n > ng and any A € Ly, (a) \ Lo then

(ln]€U,
] 2 d(a(n(@)\ Lo)) 2 [f] - d(a(Tn \ L)) > " 1f] -7 - A(ln(L)

> Loy o))

For any n > ng, as O1 D Oy, thus
k

ln()\o)k S
< — 0.
2 L0 ’
AeLyn(a)\L

’E<[ln]> - E(Un‘Lcm = = (|f’ 'T'n)k N—00

Thus F is indeed sequentially continuous. In order to see that £ is bounded,
we use the preceding calculations in the case, where O; = O and ng = 1
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and r1 = r, in order to see that

k
S
VI € U=Us: |E(l]) = Eo([llzc])| = [E([I]) — E([lzc])] < T F
Moreover, as Ep is regular by Lemma it is bounded by Proposition
Thus E is indeed bounded. O

By Lemma the sum FE converges everywhere on O. Hence E 4k
converges everywhere on O and thus, as O was arbitrary, on 2}. By con-
struction, it further holds that Ej o x(c 1) = ¢ ™% - Ep 4 (I) for any ¢ € C*
and any [ € Q0 and, if T fixes q, that E, , is T-invariant. Jointly with

Lemmas and this yields the proposition. O
6.4.2 Poincaré-Eisenstein series

Consider any direct summand 0 # L C A, any basis  of Ly and for every
w € B an integer k,, > 0. Associate with any further direct summand
0 # L' C A the set

pp={yel|LcyL)}

with its natural left action of I';, and with any v € I'y, 1/ the function

- 1
2
(54) PL/ .QL/ —>C, ngl(Fy—lu])kw

Using that P/, = P, for any v, 0 € I';, 1 whose classes 7,7 in
IV fL\PL,L’

coincide, we set PZ, = PZ,. Associate with any such L’ the sum

PL/ = Z PV/

REYRY,

Proposition 6.33. Any Pr, converges everywhere. The function Py»: Q; — C

whose restriction to any Qs equals Pr is in Of(k)(Qr), where k := 3, 5 ku.

Definition 6.34. Any C-linear combination of global sections of the above form
Py« of the same weight is called a Poincaré-Eisenstein series with respect to I'.
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Proof of Proposition[6.33] For a suitable f € F* the basis f - § of L is con-
tained in L. Using that P},(f-1) = f~*-P],(l) forany f € F*,anyy € Ty, 1/
and any ! € Q;, and using the linearity of any such /, we assume without
loss of generality that 3 is contained in L. Consider then any direct sum-
mand 0 # Ly C A, any affinoid O C Q,, any 0 # X9 € Lo and any
1<re|C|. SetU :=U(A,O,r) and consider the sum

P:U — C[l] = Pr(l) - 1(Xo)*, if [] € Q.

We first show via the following lemmas that for every further direct sum-
mand Lo C L' C A the sum P converges to a regular function on Uy, :=
U N Qs and that P is continuous with respect to the canonical topologies
and bounded.

Lemma 6.35. On every Uy the sum P converges to a regular function.

Proof. By means of an admissible affinoid covering of any such Uy, it suf-
fices to show that the restriction Py of P to every admissible affinoid O’ C
UL converges to a regular function. Consider any such O’ C Uy,. Set

fI: fL,L“

Choose any [I[] € O'. As (L) C C is strongly discrete and as any 7 € T is
uniquely determined by the action of v~! on f3, for any integer m > 1 the
subset
I(y"'w) ’
[(Mo)

is finite. With any m > 1 may thus be associated the regular function

Ty o= {’yGF‘VwEB: ’

Sm}CF

/ k
Porm: O' = C, '] = F(ho)

5 Hweﬁ l’(yflw)kw .

As the ring of regular functions on O’ is complete with respect to the sup-
norm by Proposition it suffices to show that the Por ,,, for all m > 1
form a Cauchy-sequence; indeed, as I' is the union of the I',, for all m > 1,

their limit must then be Pp. Applying Corollary [5.3|to the affinoid O/, we
choose a x’ > 0 such that

V[l e O',V0O# e L:
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Forany m > 1,any 5y € ' \ T',, and any [I'] € O’ then holds that
l/()\o)k

k( 10)] >’”,1
Mocs /(v Tw)Fe =7 \auwy)  w

This directly yields that the Py ,,, indeed form a Cauchy-sequence. O

k- [(Mo)"
[Toep (v w)ke

Lemma 6.36. P is continuous with respect to the canonical topologies and bounded.

Proof. As for continuity, it suffices, by Corollary to show that P is
sequentially continuous. Consider thus any [[] € U and any sequence
{lln]}n>1 C U converging to [{] and let us show that

(55) Tim P((L,]) = P(l]).

Let L' D Lo, resp. L, D Lo, be such that [I] € Q,, resp. [l,,] € Qr,, for any
n > 1. Choose a fundamental basis of admissible affinoid neighborhoods
(Op)n>1 of [I] in Qs such that O,, D O,y for all n > 1. Using Corollary
we choose a sequence {r,, },>1 C |C| converging to infinity with r,, > 1
for any n > 1 and an ng > 1 such that [l,,] € U, := U(A, O,,ry,) for every

n > ng. The choice of the O,, and the regularity of the restriction Pp, of P
to O by Lemma imply that

Tim P((lalz,)) = lim Po, ({alz..)) = Po, ({) = P([1]).

It thus remains to show that P([lx]) — P([ln|z;.]) converges to 0 for n — oco.
Applying Corollary [5.4) and Proposition 2.25 to the affinoid Oy, we choose
an s > 0 such that |I[(\g)] < s-d(I(L)) for every [I]] € O;. Consider any
n>npandanyy € 'z, \ Tz and set 8, := {w € B| v (w) € L'} C B.
Then 3, C fand hence k > ky := ) k.. Moreover

WE By

Yw € By (v (w)] = d(la(U(L1))) 2 - - lin(Xo)|

» | =

and

Y € B\B,: la(r )] 2 AL\ L) 5 red(l(E) = (o)l

k s \FF o gk
S S Y . JE— S —,
Tn Tn
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where the last inequality holds true as £ > &, and r,, > 1. Thus

l()\o)k Sk
[P([ln]) = P([lnl (e ) = > | < — — 0.
— — Hweﬁ l(’)/ w) w Ty N—00
YL, L, \I'p 1/
Thus P is indeed sequentially continuous. In order to see that P isbounded,
we use the preceding calculations in the case, where O; = O and np = 1
and r; = r, in order to see that

Sk
Vil € U =Us: |P([l]) = Po(lUr, DI = [P(I) = P(Uz DI < —

Moreover, as Fp is regular by Lemma it is bounded by Proposition
R.25 Thus P is indeed bounded. O

By Lemma@ the sum P, and hence P, , converges everywhere on O.

As Ly and O are arbitrary, thus P;/ converges everywhere for every direct

summand 0 # L' C A. The function Py-: Q% — C whose restriction to any

Q 1 equals Pr, is, by construction, I'-invariant and satisfies that PAl) =
6.3

¢% . Pp«(1) for any ¢ € C* and any | € Q. Jointly with Lemmas|6.35/and
this yields the proposition. O

6.5 Separation of points

Consider any (A4, A, T") € A. Inspired by Godement'’s [24] via its application
in Baily’s and Borel’s [1]], we show

Proposition 6.37. Consider any 1,I' € O with 7p(l) # wr(I'). Then there
exists an integer k > 0 and for any integer n > 0 a Poincaré-Eisenstein series
P € Of(n- k) such that P(l) # 0 and P(l') = 0.

Lemma 6.38. Consider any direct summands 0 # Ly, Lo C A such that
r1 :=ranky(Lq) > ranky(Lo) =: 1o

and any 1y € Qp, and Iy € Qp, with wr(l1) # 7 (lo). Then there exists an integer
k > 0 and for any integer n > 0 a Poincaré-Eisenstein series P € Of.(n - k) such
that |P(ll)’ > |P(12)’ and, if?“l > 1T, such that P(lg) =0.

Proof of Lemma Set L := L;. Choose a basis 3 of L such that |I; (w)| <
1 for every w € . Using the notation of Section associate with any
direct summand 0 # L' C A, any ! € Q;/ and any 7 € I', 1/ the product

J7() = [Ti w)).

we B
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Choose any 0 < ¢ < 1 and consider for any ¢ = 1, 2 the set
(A1
1 Lot 5 ),
| S5 (1) Sy (1)

it is finite as [;(L;) C C is strongly discrete by Example and Lemma
and as any 7 € ' 1, is determined by the action of y~! on 3. Set

F? = {’)/ € fL,Li

>eVdw e [:

Ly = {7 € T/ y([u]) = [h]} and Ty == TL\Lyy).
As Ty, C Auts(L), there is a natural embedding
Ly = {ceC*le-Li(L)=uL(L)}
whose target is the multiplicative group of a finite subfield of C'. Thus
k1= [Ty
is finite and is not a multiple of the characteristic of C' and
(56) ¥y €Ty, VA € Lot () (A" = ()™

Using that for any 7 € T \ [y, the kernels of [} and ol; are different C-
subspaces of L¢ of codimension 1, we choose for any such o a A\ € L¢ such
that [;(\7) # 0 and (ol;)(\]) = 0. Further consider any & € T5. As 1| > 79,
then L = O’(LQ) and hence U(ZQ) € QL. As TI'F(ll) % Wr(lg) == WF(U(ZQ)),
the kernels of /1 and ol are different C-subspaces of L¢ of codimension 1.
Using this, we choose a A\ € L¢ such that [;(A\) # 0 and (ol2)(A\]) = 0.
Consider the homogeneous function

k1

Q: O —C, 1 I - I3

el \T 1y el
Any X7 is uniquely a C-linear combination in 3. Let 1 > 0 be greater than
the norms of all coefficients of all A7. Choose an integer & such that
i) ko is a multiple of k1,

ii) ko > maéc deg,, (@) and
we

iii) |Q(l1)] > pd°8(@) . cko using that, by construction, Q(l;) # 0.
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Set k := |B| - ko — deg(Q) > 0. Consider any integer n > 0. Associate with
any direct summand 0 # L’ C A the function

e 0 (L))

Writing any A7 as a C-linear combination of  and using [ii), it is directly
checked that any such PZ is a C-linear combination of homogeneous func-
tions, all being of the same weight, of the form and that the coefficients
of this combination are independent of L’ and 7. Proposition [6.33|and Def-
inition [6.34] thus provide a Poincaré-Eisenstein series P € Of.(n - k) whose
restriction to any stratum Qy is

P o= Z PV/

RSN,

If 1 > ry, then Ty, 1, = 0 and hence P, = 0 and hence P(l;) = 0. We
are thus reduced to showing that |P(l)| > |P(l2)|. By construction, for any

i=1,2,anyy €Ty, \T; andany & € T, U (T} \ Ty,)) holds that

1 (V1) (A7) {‘(%‘)(M } 9
—— < e A |22 < p-max <p-e
| J5(1:)] ’ J=(1:)? wep || J5(li)?
and hence that

By construction of ), moreover PLZ (I2) = 0 for any 7 € T5. Hence
(57) ()] < s.

By construction of Q, also PZ (I1) = 0 forany 7 € T'; \ T;,). Hence

(58) S P <

VEL L1y \Fpy)
By and|i) and the construction of @, for any 7 € f[lﬂ holds that

Q) _ Q)
()R~ (gl
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and hence that PZ (lh) = Pg(ll). As ki = [Ty, is not a multiple of the
characteristic of C' and as | Jiq(/1)|™ < 1 by the choice of S, thus

(59) S PL)| = PR )] > [(QM)"] > .
RN
63,69 (7
Thus |P(1y)| > s |P(l2)| as desired. O

Proof of Proposition[6.37} Let L, L' C A besuch thatl € Q; and I’ € Qp.

Consider first the case, where r := rank4(L) > ranks(L') =: /. If r >
r’, then the proposition follows directly from Lemma Thus suppose
further that » = r/, Then Lemmal6.38|provides an integer i > 0, resp. i’ > 0,
and for any integer n > 0 a Poincaré-Eisenstein series P,.; of weight n - 4,
resp. P,.; of weight n -4/, satisfying | P,.;(1)| > |P,.i(I")|, resp. |P. (1) <
|P! ..(I)]. Set k := i - 7'. Thus for any integer n > 0 hols that

Pn-k<l/) /

P = Pn~k — P/ k([/) S S
n.

is a Poincaré-Eisenstein series of weight n - k for which P(l) # 0 = P(l).
This yields the proposition in the case, where r > 7.

Consider then the case, where r < /. The previous case provides an
integer j > 0 and for any integer n > 0 a Poincaré-Eisenstein series P,.; of
weight n - j with P,,.;(I') # 0 = P,.;(I). Lemma further provides an
integer j' > 0 and for any integer n > 0 a Poincaré-Eisenstein series P, ,
of weight n - j" with P, () # 0. Set k := j - j'. Thus for any integer n > 0
holds that

)
p.=p,—‘nk . p
n-k Pnk<l/) k
is a Poincaré-Eisenstein series of weight n - k for which P(I) # 0 = P(l').
This yields the proposition in the case, where r < 7. ]

6.6 Fourier expansion of weak modular forms

Let (A,A,T") € A such that d := rank4(A) > 2 and such that I is a con-
gruence subgroup of Auts(A). Denote by E C C the completion of the
quotient field of A.

Definition 6.39. For any integer k the sections in Of(k)(Sdr) are called weak
modular forms of weight k with respect to T
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The following remark discusses a bijective correspondence between weak
modular forms as above and weak modular forms as defined classically in
terms of coordinates by Goss [22], [23] and by Gekeler [18] in the case d = 2
and in general by Basson, Breuer and Pink (see e.g. [3, Definitions 3.1.7
and 3.3.1]). We have learned about the correspondence through Goss’ [22,
Corollary 1.40 and Proposition 1.43].

Remark 6.40. Let wy, ..., wq be an ordered basis of Ag. By means of this,
identify G := Autp(Ag) with GLy(E). Let Q%! denote the image of the
injection

i Qy — AL 1] —

1
@(l(wl), ceey l(wd))

The unique G-action on Q¢! with respect to which i is G-equivariant is
given by

Vg € G,Vz = (21,...,24-1,1) € Q-1 gz =

where zg~! is the matrix product of z with g=* and (zg~!), its d-th coordi-

nate. Consider any integer k. For any f € O} (k)(§r) then
h: Q41— C 2z — f(I), where z = i([l]) and I(wg) = 1,

is a weak modular form on Q4~1 of weight k and type 0 for I" as in [3, Defini-
tion 3.1.7], i.e., it is regular and satisfies that

Vy e,Vz e QL h(yz) = h(z) - (27 Y)a)k.

Conversely, any such weak modular form % induces the weak modular
form f € Ox(k)(Qr), where f(I) := h(i([l])) - l(wq) " for any I € Qa.
This yields mutually inverse isomorphisms of C-vector spaces between
O%(k)(Qr) and the space of such weak modular forms on Q4-1.

Proof. All of this is directly checked. O

Consider any direct summand L C A of corank 1. Choose any v € A\ L.
Denote by o
I'cry
the subgroup of elements ~ such that y(v) — v € L. Thus I is a discrete
subgroup of Autg(Ag) of the form considered in Section and

f—>L,7b—>v7::7(v)—v
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is a continuous injective group homomorphism. Denote by v C L its im-

age and set
1

ey (1)

Denote by I'z,, C I'z, the subgroup of elements v such that v(v;.) = vy, and
y(v) —v € vp and by I', C I'p, its image under the restriction homomor-
phism ', — T'. Thus I is the kernel of the homomorphism I'y, , — T'p,.
In fact, the index of 'y, , C 'y, is finite as is directly checked.

Vi€ Qp:u(l) =

In this section we show (see Corollaries [6.43| |6.44] and |6.45| below ap-
plied to X = U;) that any f € Of(k)(Qr), where k is any integer, admits
unique f; € Og, (k—i)(Qp, ) forall i € Z with the following property:
Any affinoid O C 0 Lis Contamed in an admissible Y C Q2 such that

(60) Vie QN =3 fillle)u(l)’;
1€EZ

in fact, any such O admits such a Y which satisfies for all such f.

Proofs of versions of this fact were already given by many people. Up
to the correspondence in Remark[6.40|and up to the homogeneity of the f;,
a proof of it was already given by Goss [22, Theorem 1.76] in the case where
d = 2 and later by Kapranov [30, Proof of Proposition 1.19] by an extension
of Goss’s arguments in the case where d is arbitrary and A is a polynomial
ring. In the general case, a generalized proof was recently given by Basson,
Breuer and Pink (see [3, Proposition 3.2.5]). Basson [3, Proposition 3.2.7]
was the first to note that any f; is homogeneous of weight k£ — i.

Essential in each of their work is some version of the following Definition-
Proposition We believe to furthermore have taken rigorous care of the
rigid analytic aspects involved in showing it.

Definition 6.41. U} := Q7 U Qp = pp(U(A,Qr, 0)).

Definition-Proposition 6.42. Choose any 0 # w € L. Then

([els Ww) - u(l)) i I} € Qa

(]:Z/[12\—>QL><C’apf‘([l])'_> {([l],()) iflGQL.

is an open immersion of regular rigid analytic varieties.
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Proof. Set V := Ap and W := Lg. Then q restricts to the open immersion
qp: Qp — hy x C* provided by Def.-Prop. Moreover, by assumption,
I' contains a principal congruence subgroup of some level 0 # (b) C A.
But b- L C vy for any such b. Hence Proposition applies and yields,
jointly with Corollary 3.5/and the fact that the restriction ¢;. of ¢ is an open
immersion, that ¢ is an isomorphism of Grothendieck topological spaces
onto an admissible subset of 1, x C.. Jointly with Corollary 3.6} this implies
that ¢ is an isomorphism of Grothendieck ringed spaces onto an admissible
subvariety of Q7 x C. O

For any ¢ € |C'*| denote by B. C C the closed disc around 0 of radius ¢.

Corollary 6.43. Any admissible X C Uy, and any admissible affinoid O C XNQy,
admit an e € |C*| such that O x B, C q(X).

Proof. This follows directly from Proposition and Corollary O
Forany O C 7 and any ¢ € |C*|sett(O,¢) := QxN (gom) 1O x By).

Corollary 6.44. Any admissible X C Uy, any k € Zandany f € Op(k)(XNQ;.)
admit unique f; € Ogqy(k —i)(X N Q) for all i € Z such that

(61) VIeU(O,e): f(I) = filllre)u(l)’

1€EZL

for every admissible affinoid O x B, C q(X). Moreover, the following are equiva-
lent:

i) Vi<0:f;=0.
it) f extends toan element in O (k)(X) which restricts to fo on WIZI(X NQr).
iii) The section |g: 7 (X NQp) = C L f(1) - l(w)*| € OR(0)(X N Q)

extends to a morphism of Grothendieck topological spaces wlzl(X ) = C
whose restriction to w ' (X N Q) is in Ogiqy (0)(X N QL).

iv) g is bounded on U(O, ¢) for any admissible affinoid O x B. C q(X).

Proof. Proposition and Corollaries [3.5|and 3.6] yield unique
9i € Oggy (=) (X N Q)
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for all i € Z that satisfy the desired properties when f is replaced by the
section g defined infiii)jand & by 0. It is then directly checked that the

fir m (X NQ) = C e gil[lle)) - Z(w)—ﬂ € Opqy(k — i) (X N Q)

satisfy the desired properties. O
Corollary 6.45. (Basson [3, Proposition 3.2.7]) Let f € Or, ,(k)(Qr, ). Then

VieZ: fi € Op, (k—14)(Qg ).

Proof. Consider any 7 € ', any lift v € I'z,, of 7 and any affinoid subset
O C Qp. By means of Proposition choose an ¢ € |C*| such that

O x B. C q(Up) and v(0O) x B, C q(Uy.).

Invariance of f and v under Iz, and (61)) yield that
VI e U(O,¢e): f = fillDee)u() =D fi(r(l|Le))u
1€Z i€Z

The f; o 7 are thus further coefficients satisfying and, by uniqueness,
thus coincide with the f;. Hence the f; are indeed I'y, ,-invariant. O

That the following Definition is independent of the choice of
v € A\ L follows from the equivalence of[iv)|and [i)|in Proposition [6.44]

Definition 6.46. Consider any X and f as in Proposition [6.44]
i) For any i € Z the element f; in Proposition is called the i-th (Fourier)
u-coefficient of f and
o fid
i€z
is called the (Fourier) u-expansion of f.

ii) The order of f is defined to be inf{i € Z | f; # 0}. Moreover, f is called
meromorphic, resp. holomorphic, resp. cuspidal, resp. double-cuspidal,
if its order is > —oo, resp. > 0, resp. > 1, resp. > 2.

Remark 6.47. In [3} Sections 3.4 and 3.5], Basson has computed the Fourier
expansion and the order of for instance the Eisenstein series from Section
6.4.1]

94



A further consequence of Proposition is
Corollary 6.48. i) Ur == pr(U(A,Qr,0)) is a normal rigid analytic variety.
ii) If =71 1, and the action of I on Q and the action of T; on Qp are both
fixed-point free, then the composition
-1
qUs) 1= Uy > U,

where m denotes the natural quotient morphism, induces isomorphisms on
stalks; in particular, Ur is then reqular.

Example 6.49. Set A’ :== L & A-v. As Auts(A) N Auta(A') is a congru-
ence subgroup of both Aut(A) and Auta(A’), the kernel T'(I) of Auta(A') —
Aut4(A'/IN') is contained in Auto(A) for some ideal 0 # 1 C A. If T =T'(I)
for such I, thenT' = ', and, by Example I acts fixed point free on Qpr = Qp
and T, being the kernel of Aut o(L) — Auta(L/IL), acts fixed point free on Q..

Proof of Corollary We first need some preparation. Consider any ad-
missible affinoid O C Q, such that

(62) Vy €T\ To:v(0O)NO =0, whereT'p := {y € T'| v(O) = O}.
Using (62) and Proposition [6.13|and Def.-Prop. [6.6] choose an r; € |C| with
(63) VyeT \To: y(UA,O,r1)) NUA,O,r1) = 0.

By (63) and Example the inclusion

U, 0,11) = | 2UA,0,m))
yel

induces an isomorphism of Grothendieck ringed spaces

(64) io: pro(UA, O, 1)) = prU(A, O,r1)).

Using Corollary|[6.43] choose an ¢ € |C*| such that
q(ppU(A,0,11))) C O x Be.

The quotient I'p/ I is finite as T'p/I';, is finite by Lemma [5.7|and as Ip/T
may naturally be embedded in the finite Aut4(A N E - v). By Proposition
thus
Up(02) =[] (a0 x Bo)) C Uy
Jelo/T
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is the intersection of finitely many normal affinoid subvarieties and hence,
by Proposition itself affinoid. Moreover, it is invariant under the finite
group I'p/T". Thus

Uro(0,e) == (Do /T)\U(O, )
is a normal rigid analytic variety by Proposition Hence so is its image
Ur(0,¢e) := 1(Up(0,¢)) = io(Ur, (0, ¢))

under the isomorphism . As O CUp(O,¢) and asT'o/ I is finite, Propo-
sition [5.33| provides an 73 € |C| with p(U(A, O,72)) C U (O, €). Thus

pr(U(A, O, 7“2)) C UF(O, 6)

is a normal rigid analytic subvariety.

Partfi)t By means of Proposition choose an admissible affinoid cov-
ering C of Q;, such that any O € C satisfies (62). By the above, choose for
every O € C some r2(0) € |C] such that pr(U(A, O,r2(0))) is a normal
rigid analytic variety. By Proposition also Qr is a normal rigid ana-
lytic variety. As, by Example Ur is admissibly covered by Qr and the
pr(U(A,O,r)) forall O € C, thus Ur is itself a normal rigid analytic variety.

Part assume that I' = T" 1, and that the action of " on Q24 and the
action of T';, on Qy, are both fixed-point free. By Proposition it suffices
to show that 7 induces isomorphism on stalks. As I' is a subgroup of T,
it also acts fixed-point free on 25. By Corollary thus the restriction
Q. — Qr of 7 induces isomorphism on stalks. Consider then any [/] € Q.
Using Proposition choose a fundamental basis (O,,),>1 of admissible
affinoid neighborhoods of [I] in ©;, such that O, satisfies and such that
Lo, = Iy for every n > 1. For every n > 1 choose an 71(0,,) € |C] that
satisfies for O,, and such that {r;(O,,) },>1 is unbounded. By Example

[6.18]and Corollary [6.10} then
(pl“ (u(Aa OTH Tl(On))))nzl resp‘ (pr(u(Av OTLa T (On))))nzh

is a fundamental basis of admissible neighborhoods of p:([l]) in U}, resp.
of pr([l]) in Ur. Now use the isomorphisms in forall n > 1 and that

VnZl:FOn:Fm ;fL:f,

where = holds true as T';, acts fixed-point free, in order to directly deduce
that 7 induces an isomorphism at the stalks of pj([l]) and pr([l]). O
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7 Compactification of analytic moduli spaces

Let C be the algebraically closed complete non-Archimedean valued field
of finite characteristic from Section [@

Notation 7.1. Consider any admissible coefficient subring A C C (see Definition
and any module M over its profinite completion A. For any B € {A, A},
any B-submodule P C M and any subgroup G C Aut ;4 (M) set

i) Gp:={g € Glg(P) =P},
i) Gp:={y € Autp(P)|3g € Gp: glp =}
Definition-Proposition 7.2. Let A be the category of triples (A, M, K) with
i) an admissible coefficient subring A C C' (see Definition 2.45),
ii) a finitely generated free A-module M # 0,
iii) a subgroup of K C Aut 4(M),

and whose morphisms from any (A', M',K") to any (A, M,K) are the tuples
(®, L) consisting of an injective A-linear map ® : M’ — M, where A" D A,
and an A-submodule L C M such that

(a) the natural map L ®4 A — AL is an isomorphism,
(b) ®(M')® AL = M,

(c) ®*(K') := {k € Aut 4(®(M"))| IK' €K' : ko ® =D ok} C (Kp)gp(ur)

and where the composition of any such (®, M) with any further morphism (U, L")
fromany (A", M" ,K") to (A, M',K') is

(®,L)o (U, L)) := (oW, d(L)d L).

Proof. That this well-defines the composition of morphisms is the content
of Proposition below and is in fact directly checked. O

Ultimately, we are only interested in those triples for which K is a con-
gruence subgroup of Aut ;(M).
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7.1 Structure of Grothendieck graded ringed space
Consider any object (A, M, K) € A. Denote by F the quotient field of A.

Definition 7.3. An A-submodule A C M is called an A-structure of M if the
inclusion induces an A-linear isomorphism A ; — M.

Proposition 7.4. Any A-structure of M is finitely generated projective.

Proof. As A is a faithfully flat A-algebra, an A-module A is torsion-free,
resp. finitely generated, if and only if A ; is a torsion-free, resp. finitely

generated, A-module (see for instance [42, 03C4]). Now use that A is a
Dedekind domain. O

Definition 7.5. Consider any A-structure A of M. Define the natural bijections
i) Q7 =) x {A} = QF, ([I,A) = [1],

i) Q) = Q8 x {A} = Q3 (LA) = 1

Endow Q7py with the Grothendieck topology for which the first bijection is an

isomorphism with respect to the topology of 2} defined in Def.-Prop. Endow
Q7 \y with the C*-action for which the second bijection is C* -equivariant.

Definition 7.6. Let Q3,, resp. Qs C 3, be the disjoint union of the Grothendieck
topological spaces €7 ,,, resp. Qgpy := Qp X {A}, for all A-structures A of M.

Definition 7.7. Let %, resp. Qur C %, be the disjoint union of the Q? A} Tesp.
Q{A} := Qp x {A}, for all A-structures A of M.

Definition-Proposition 7.8. Set G := Aut; (Mp). For any A-structure A of

M, any direct summand 0 # L C A, and | € QO and any g € G set g\ =
g(Ap) N M and gL = g(Lr) N M and let gl be the map

(gL)c = C, A = U(g™'N);
then gA is an A-structure, gL C gA a direct summand and gl € Qg L. Setting
Vg € G\V(LA) € Qe g(LLA) = (gl.gA)

defines a C*-equivariant action of G on Q% whose induced action of Aut 4, (Ar) C
G on 0 coincides with the one in Def.-Prop. for any A-structure A and
whose induced action on 0y, is continuous. Moreover, for any direct summand L
of any A-structure holds that

Vg € Aut 4(M): gL = g(L).
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Proof. All of this is directly checked using Def.-Prop. O
Definition 7.9. By means of Def.-Prop- consider the quotient map
prc: Q= K\Qy =: Qk

and endow its target with the structure of Grothendieck topological space which it
induces, that is, a subset (resp. a covering of a subset) of )i is admissible precisely
when its preimage is admissible.

Denote by 7 : 5, — K\Q35,/C* = Q& the double quotient map.

Definition-Proposition 7.10. For any admissible X C Q- and any integer k let
Ok (k)(X) be the set of K-invariant functions T (X) — C whose restriction to
T (X)N Qfpy 88 weight k regular (in the sense of Def.-Prop. @via Definition
for every A-structure A of M. Then, by means of the ring structure on C,

i) the O (X) := Ox(0)(X) for all admissible subsets X C - together with
the natural restriction homomorphisms form a sheaf Oy of rings on Q,
called structure sheaf on Qy., and

ii) for any integer k the O (k)(X) over all admissible X C Q. together with
the natural restriction homomorphisms form a sheaf Oy (k) of Ox.-modules
on Q. called k-th twisting O}-module and

iii) a sheaf R of graded Oi--algebras on Q- is formed by the
Ric(X) =) Op(k)(X)
keZ
for all admissible X C Q- and the natural restriction homomorphisms.
In particular, (Q., OF.) (resp. (i, Ri)) is a Grothendieck (graded) ringed space.
Proof. This is directly checked. O

Remark 7.11. In fact, in Corollaries and [10.6| below we will show the
following: If X C Aut ;(M) is a congruence subgroup, then (25, Ox) is a
normal projective rigid analytic variety over C. If, furthermore, K is fine
(see Definition [8.9), then Oy (k) is an ample invertible sheaf for any k& > 1.

Example 7.12. Consider any o € My /M and any integer k > 1 and associate
with them

EM,a,k: Q?w — C, (l,A) — EA,a,k(l)y
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where E\ o 1, is the Eisenstein series defined in Section and where « is viewed
in Ap /A via the natural isomorphism Ap /A = My /M. If K fixes «, then

Enak € Og(k) ().
Proof. This follows directly from the construction and Proposition O

Proposition 7.13. Consider any complete set of representatives S of the natural
K-action on the set of A-structures of M. Then the natural maps 3 — 7, —
Qo forall A € S induce an isomorphism of Grothendieck graded ringed spaces

(65) T, Re) — (9%, Ri)
N
which restricts to an isomorphism
(66) 1%, — .
AesS

Moreover, if K C Aut ;(M) is a congruence subgroup, then S is finite and is
an isomorphism between normal rigid analytic varieties over C.

Proof. Everything except for the last part follows directly from the construc-
tion. By Proposition Qf, is a normal rigid analytic over C for every
A € S and hence the spaces in are rigid analyitic varieties over C' if
and only if S is finite. If K is a congruence subgroup of Aut ;(M), then it
contains a principal congruence subgroup of Aut ;(M) so that S is finite by
Corollary [7.28|below whose proof does not depend on this result. O

Remark 7.14. Our definition of Q- is a coordinate-free version of the fol-
lowing double quotient: Let F'be the quotient field of Aand G := Aut 5 _(MF).
Choose any A-structure A of M. Then

Q) x G — Qiy, (1g) = (gL, g7)
induces a natural bijection
Autp(Ap)\ (23 x (G/K)) — Q.

Moreover, any choice of F-basis of Ar yields an Ap-basis of My and hence
identifies Autp(Ap) with GL4(F') and G with GLd(AJI;), where d := rank ;(M).
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7.2 Morphisms
We first show that the composition of morphisms is a morphism. Let

(¥, (®,L)

A" M ey R 4 M Ky € Aand (A, M7, O (4, M,K) € A.

Proposition 7.15. The tuple (® o ¥, (L") & L) satisfies Conditions of
Def.-Prop. [7.2} i.e., constitutes a morphism (A", M",K") — (A, M, K).

Proof. Set (O DoV, (L' )® L). Let us first show that (©, X) satisfies
Conditions n and (b ﬁ ie, that the natural A-linear map X; — Misan
isomorphism onto a direct complement of ©(M") in M. Condltlons and
. (b)|for ® and ¥ yield the direct sum of free A-modules

M=0M"YodA - LY®A- L
and imply that the natural map L; — A - L is an isomorphism. Via the
A-linear isomorphism
A= AgqA,
moreover, the A-linear map (L’ )i — (A - L ) is the compositon

Ao o) Ao L=V oyl — AL — &A - 1))

and hence an isomorphism since, by assumption, A@y L — A-Lis
one. Conditions [(a)] and [(b)] then follow from the distributivity of tensor
products over direct sums. It remains to show Condition|(c)| i.e., that

@*(IC//) C (KX)G(M”)'

Denote by ¥~! the inverse of the map M” — ¥(M") induced by the injec-
tion ¥ and define ®~! and ©~! analogously. Let x” € K”. We may choose
a

S (K}/)\II(M”) with ¥o I{',// o \1171 = E/‘\IJ(MH)

as U*(K") C (K/L’)\II(M”)' As ©*(K') C (K1) g (), we may further choose a
K€ (KL)(I)(M’) with ® o H/ o (I)il = KJ‘@(M/).

It is directly checked that « lies in (Kx)g(y) and restricts to © o " 0 ©71
on ©(M"), i.e., that as desired

O0r" 007" = kloum € (Kx)omm:
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Lemma 7.16. ®(A’) @ L is an A-structure of M for any A'-structure L' of M.
Proof. Proceed as in the first part of the proof of Proposition upon re-
placing X by ®(A’) ® Land A’ - L' by M. O
By means of Lemma associate with (®, L) the map
Vpry: U = Uy, (L N) = (N0 @), d(N) @ L),
where !’ € Q; and @, : Ly, — ®(L)¢ is the bijection induced by .
Proposition 7.17. The map QZ‘@’ 1) induces a morphism of Grothendieck graded
ringed spaces
(o) Ria,r) : ks, Rir) — (ks Rie)
which on sections of Ry is defined by precomposition with Q?q)’ L)

Proof. This is directly deduced from Proposition [6.27] O

Proposition 7.18.
(Q(kcb,L)a R?@,L)) °© (Q?\p,L/)vREk\I/,L/)) = (Q?cb,L)o(\p,L/y R?@,L)o(\P,L’))'

Proof. 1t is directly checked that Q&’, L ° Q’(‘lp’ ) = Q&n Lyo(w,17)- From this,

in turn, the proposition directly follows. ]
Definition 7.19. Denote by (24, 1), O(p 1)) (%, Oxr) = (2, Ox) the mor-

phism of Grothendieck ringed spaces induced by (QT‘R 1y Rip 1)) via restriction of

the maps of Rip, 1 to weight zero.

Remark 7.20. In fact, in Corollary below we will show the following: If

K C Aut ;(M) and K' C Aut 4,(M’) have finite index, then (Q’(kq) 1y Ols L)) is

a proper morphism between rigid analytic varieties. If, furthermore, the index of
O*(K') C Koy is finite, then the morphism is even finite.

7.3 Case of principal congruence subgroups

Consider any (A, M, K) € A and any ideal ideal 0 # I C A such that

K = Ker(Aut 4(M) — Aut4(M))

where A := A/I and M := I~'M/M. More generally, associate with any
A- or A-module () the A-module

Q:=17"Q/Q.
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Proposition 7.21. Consider any free direct summands N, N’ C M with N = N/,
any A-linear isomorphism v : N — N’ and any e € Aut (M) whose restriction
to N is the isomorphism N — N’ induced by T. Then there exists a o € Aut ;(M)
that induces € and restricts to 7.

Proof. By means of the unique prime factorization of the non-zero ideals
in the Dedekind domain A and by the Chinese remainder theorem, it is
enough to show the statement of the proposition for A replaced by the p-
adic completion A, of A at any prime ideal p C A and for I replaced by any
power (pA,)™; this in turn is the statement of Lemma 2.38]in the case where
O = A;. O

Corollary 7.22. The natural morphism Aut 3(M) — Aut5(M) is surjective.

We further need the following consequences of Prasad’s theorem [37,
Theorem A] on strong approximation for semi-simple groups over function
fields.

Proposition 7.23. Let F be the quotient field of A. Consider any finitely generated
projective A-module A. Surjective is then the natural homomorphism

SLA(A) := Auta(A) NSLp(Ap) — SLx(A).
Proof. By Prasad’s theorem [37, Theorem A], the subgroup
SLp(Ap) CSL; (Ag,)
is dense. Since Aut 4(A ;) is openin Aut 5 _(A ;4 ), then also the subgroup
SLa(A) = Aut;(A4) NSLr(Ap) C Aut4(A;) NSL; (Ag,) =SL;(Ay)

is dense. As, by Proposition the natural continuous group homomor-
phism

SL 4(A 1) — SL(A)
with discrete target is surjective, so is its restriction to SL 4(A). O
Corollary 7.24. The determinant induces an isomorphism
(67) Aut5(A)/ Aut4(A) = A" /A,
Proposition 7.25. Any projective module A of finite rank d > 1 over any Dedekind

ring A admits a unique class [J] € Pic(A) such that A = A1 @ J.
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Proof. See for instance [33, Theorems 1.32 and 1.39]. O

Corollary 7.26. Consider any finitely generated projective A-modules L and A
and any injective non-surjetive A-linear map v : L — A. Then there exists an
injective A-linear map L — A onto a direct summand of A which induces 7.

Proof. By the properties of 7, the rank of A is greater than the rank of L.
By means of Proposition we thus assume that L is a proper direct
summand of A. Using that L C A, we choose an extension p € SL4(A) of 7.
Proposition [7.23| then provides a desired o € SL4(A) inducing p. O

Corollary 7.27. Suppose that I C A. Then N — N induces a bijection from the
set of K-orbits of free direct summands of M to the set of free A-submodules of M.

Proof. Let N,N' C M be free direct summands with N = N’. As T C 4,
then
rank ;(N) = ranks(N) = ranky(N’) = rank ;(N)

so that N and N’ are A-linearly isomorphic. By Corollary the natural
homomorphism Aut ;(N) — Autz(N) is surjective. Hence there exists an
isomorphism 7: N — N’ inducing the identity on N = N’. By Proposition
such a 7 lifts to an element in K. This shows injectivity. Consider then
any A-submodule X C M. By means of a basis of M choose a free direct
summand M’ C M with

rank7(M’) = rank ;(M') = rankz(X).

Choose an € € Aut4 (M) with e(M’) = X. Proposition then provides a
lift o € Aut ;(M) of e. Then o(M’) = X which shows surjectivity. O

Corollary 7.28. Denote by h(A) the class number of A. For any complete set S of
representatives for the KC-action on the set of A-structures as in Proposition
then holds that

S| = (A) - [ A% /A

Proof. Set K' := Aut ;(M). If any A-structures A, A’ lie in the same K'-orbit,
ie, if A = £'(A’) for some ' € K/, then such a «’ restricts to an A-linear
isomorphism A’ — A. Conversely, any A-linear isomorphism ¢: A" — A
between any A-structures A, A’ induces an automorphism

M2N, A A =M
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in K'. In the case I = A, the corollary thus follows from Proposition [7.25]
Consider any A-structure A. In the general case, it thus suffices to show

that the number n(A) of K-orbits in the K'-orbit of A equals |A*JA%|. Set
I := Aut4(A) and let I C I be its principal congruence subgroup of level
I. The orbit K" - A, resp. K - A, is then in a natural bijection with ' /I, resp.
IC/T. Via the isomorphism A = M induced by A C M, then as desired

n(A) = |(K'/T)/(K/T)| = |(K'/K)/ (T'/T)] | Autg(M)/(I'/T)]
= | Autz(A)/(I/T)] = | Autg(A)/T'| =" [(A)*/A*].
O

Suppose finally that I C A and consider any free A-submodule 0 #
W C M. For any direct summand 0 # N C M view {y as a disjoint
union of the Grothendieck ringed spaces {1, for all A-structures L of N.
Consider the disjoint union of Grothendieck ringed spaces

QM,W = H QN

being naturally acted by K; let 2 1 be its quotient by K.

Proposition 7.29. For any free direct summand 0 # N C M with N = W the
inclusion Qn C Qpr,w induces an isomorphism of Grothendieck ringed spaces

QEN = Oew-

Proof. That it induces an injective morphism Qg = — € v follows directly
from the construction. Surjectivity follows from Corollary [7.27 O

Consider further any A-structure A of M and identify A with M as
above. SetT' := K,; it is the kernel of the natural homomorphism Aut4(A) —

Aut—(A). Consider the disjoint union of Grothendieck ringed spaces

QA,W = | | Qy,
LCA
L=W

being naturally acted by I'; let Qr y- be its quotient by I'.

Proposition 7.30. Suppose that W C V.. Then the injections Qp, — Qy, ,, [l] =

(1, L) forall L C A with L = W induce an isomorphism of Grothendieck ringed
spaces Qr w = Qi
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Proof. That itinduces an injective morphism Qr y — Q1 follows directly
from the construction. Let us show that it is also surjective. Consider any
direct summand N C M with N = W and any A-structure L’ of N. As
W C V, Corollary provides a direct summand 0 # L C A such that
L = L' via the canonical inclusions or identifications L CA =M D N =L/
and an A-linear isomorphism p: L — L’ that induces the identity map
L — L’. Proposition then provides a x € K that restricts to the tensor
product of p by A and hence restricts to p. Then K(Q2r) = Q) = Qpr from
which surjectivity follows. O

7.4 Isomorphism classes of lattices with level structures

Let (A, M,K) € Aand 0 # I C Abe asin the previous Section

Let k be any positive integer. For any A-structure A of M set Q4 j =
QA gk X {A}, where E is the completion of the quotient field of A and Q4 ,
is as defined in Section view it as a rigid analytic variety by means of
Proposition Let 2,/ . be the disjoint union of the Grothendieck ringed
spaces (5, 1 for all A-structures A of M. Let Qx j be the quotient of 2,/
by the natural action of IC. If k = 1, then Q7 = Qs and Qx 1, = Q.

Proposition 7.31. If k > 1, suppose that I C A. Then Qx j, is a normal rigid
analytic variety over C.

Proof. Choose any set S of representatives of the orbits of the natural K-
action on the set of A-structures of M. The inclusions Q5 , — €k, for all
A € S then induce an isomorphism of Grothendieck ringed spaces

HQEM — Qe
AeS

As any (Q , is a normal rigid analytic variety by Proposition and Ex-
ample and as S is finite by Corollary the proposition tollows. [

A finitely generated projective A-submodule Y C C* is called an A-
lattice if the natural homomorphism Y — E - Y is injective. Let d :=
rank ;(M). By a level-I-structure of an A-lattice Y C C* of rank d we mean
an A-linear isomorphism i: M — Y. An isomorphism from any such (Y, 1)
to any further such tuple (Y’,4’) is an element ¢ € C* such that multiplica-
tion by ¢ maps Y onto Y’ and such that the induced isomorphism Y — Y’
is compatible with the level structures.

For any A-structure A of M identify A with M via the isomorphism
induced by the inclusion A C M. Corollary essentially implies
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Corollary 7.32. A bijection between Qi i, and the set of isomorphism classes of
A-lattices in CF of rank d with level I-structure is induced by associating with
any ([I], A) € Qury the class of I(A) € C* with level-I-structure [: M — 1(A)
induced by 1.

Proof. 1t is directly checked for any ([I],A) € Qa4 that (I(A),1) is an A-
lattice with level-I-structure and that its isomorphism class depends only
on its class in Q. Consider any ([I], A), ([I'], A') € Qarx whose associated
isomorphism classes coincide and let us show the claim that their images
in Qi 1, coincide. Without loss of generality, we assume the representatives
1,I' to be such that I(A) = I'(A’). Thus also the free A-modules /(A) ; and
I'(A’) 4 of rank d are equal. There exists thus a unique « € Aut 4(M) whose
composition with the tensor product (1|4 ) 4 equals (I'|a/) 4 via the isomor-
phisms A; = M = A;. Asl =T, in fact s € K. This directly yields
the claim. Consider then any A-lattice Y C C* of rank d with any level
I-structure i: M — Y. Then Y} is a free A-lattice of rank d and hence
isomorphic to M. Further using Corollary we choose an A-linear iso-
morphism n: M — Y inducing i. Then A := = (Y is an A-structure of
M. AsY is an A-lattice, n|5 induces an isomorphism A — E - Y and thus
extends uniquely to a C-linear map /: A¢ — C* for which Ker()NAg = 0.
Thus [I] € Q4 x and, by construction, (I(A),1) = (Y, i) as desired. O
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8 Compactifications of algebraic moduli spaces

Consider the field C from Sections @ and @ and any (4, M,K) € A as in
Definition-Proposition such that £ C Aut ;(M) is a congruence sub-
group. Set d := rank 4(M). Denote by F the quotient field of A. Denote by
p the characteristic of F. For any 0 # a € A set deg(a) := dimg,(A4/(a)). For
any line bundle E over any scheme S over F, denoteby 7: £ — EP, x +— aP
the Frobenius homomorphism.

8.1 Pink’s compactification

In this section we briefly recall Pink’s normal algebraic Satake compactifi-
cation of Drinfeld modular varieties which he introduced in [34].

Proposition 8.1. (Drinfeld [15, Proposition 2.1]) Consider any line bundle E
over any field K of characteristic p and any homomorphism

v: A— End(E),a— ¢, = Zs%,ﬂ'i;
i>0

where any @, ; is in the one-dimensional K-vector space I'(Spec(K), E'P") and
any @q is the image of a under the structure homomorphism A — K . Then
there exists a unique integer r > 0 such that p,; = 0 for any i > r - deg(a) and
such that g y.deg(a) 7 0 for any 0 # a € A with r - deg(a) > 0.

Definition 8.2. Any ¢ as in Proposition [8.1) with r > 0 is called a Drinfeld
A-module over K of rank r.

Let S be a scheme over F.

Definition 8.3. (Pink [34, Definition 3.1]) A generalized Drinfeld A-module
over S is a pair (E, ) consisting of a line bundle E over S and a ring homomor-
phism
¢: A— End(E),a — ¢, = Z DaiT"
with o, € T(S, BYF") satisfying the following conditions:
o The derivative dp: A — @q 0 is the structure homomorphism A — T'(S, Og).

e Over any point s € S the map ¢ defines a Drinfeld A-module of some rank
rs > 1 in the sense of Definition
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A generalized Drinfeld A-module is of rank < r if
Va € A, Vi > r-deg(a): pq; = 0.

An isomorphism of generalized Drinfeld A-modules is an isomorphism of line bun-
dles that is equivariant with respect to the action of A on both sides.

Definition 8.4. (Pink [34, Definition 3.2]) A generalized Drinfeld A-module over
S of rank < r with ry = r everywhere is a Drinfeld A-module of rank r over S.

Lemma 8.5. If S = Spec(R) is affine, then giving a Drinfeld A-module of rank
r as in Definition 8.4|is equivalent to giving, as in the introduction, a ring homo-
morphism

p: A= R{t},a— v, = Z DaiT"
0<i<d-deg(a)

for which ¢, = t(a), where .: A — R is the structure morphism, and for which
Pa,d-deg(a) € B forany 0 # a € A.

Proof. See Pink’s [34] Proposition 3.4 and its proof]. O

Notation 8.6. For any ideal 0 # I C A denote by I~ M /M the constant group
scheme over S with fibers I~1M /M.

Definition 8.7. For any ideal 0 # I C A a level I structure on a Drinfeld
A-module ¢: A — End(FE) of rank d is an isomorphism of group schemes

I"'M/M — () Ker(pa).
a€el

Lemma 8.8. Suppose that S = Spec(R) is affine with structure morphism v: A —
R. Consider any non-zerot € A and set V := t~M /M. Then giving a level (t)
structure on a Drinfeld A-module ¢ over R is is equivalent to giving, as in the
introduction, a map \: V- — R for which A\(V \ {0}) C R* and

(68) o) =) T I (1_T>

for which the induced map \: V — Ker(R <% R) is an A-linear isomorphism.

Proof. Consider any level (t) structure A: V. — Ker(y;) in the sense of Def-
inition[8.7] Then ) is induced by the A-linear isomorphism

AV = V(R) 2 Ker(R 25 R).
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Moreover, for any maximal ideal m C R the map A(R,,/mR,,) is an isomor-
phism and induced by A; thus the composition of A with R — R,,,/mR,, is
injective. Thus A(V '\ {0}) C R* and the left hand side of must be a
multiple in R[T] of the right hand side. Moreover, both sides of have
the same degree in R[T| and have leading coefficient in R*. Thus both
sides coincide up to an element in R*. This element must be 1 since the
coefficient of T" of both sides equal ¢(¢) which is non-zero since R is over
F. Thus the equality in holds. Hence any level (t) structure ) induces
a A of the desired form. Conversely, it is directly checked that any such A
induces a unique morphism of group schemes A\: V. — Ker(y;) for which
AR) = A O

Denote by X fh ; Drinfeld’s [15} Section 5] fine moduli space over Spec(F)
of Drinfeld A-modules of rank d with level I structure; it is an irreducible
smooth affine algebraic variety of dimension d—1 of finite type over Spec(F').

Definition 8.9. The subgroup K C Aut 4(M) is called fine if for some maximal
ideal p C A the image of K in Aut(p~tM /M) is unipotent.

Definition-Proposition 8.10. Choose any ideal 0 # I C A such that KC contains
the kernel IC(I) of
Aut 4(M) — Auta(I7'M/M).

Then the natural action of IC on level I structures induces an action on X f\, ; that
factors through the finite group IC/KC(I). Denote its quotient by

X = (K/KIDNX4 -

If K is fine, then the universal family on X f‘, 1 descends to a Drinfeld A-module on

X‘/il,lc which is called the universal family on X falx,lc' Moreover, X f",c and, if K
is fine, its universal family are, up to a natural isomorphism, independent of the
choice of such 1.

Proof. See Pink’s [34] (1.1)-(1.3) and Proposition 1.5]. O

Definition 8.11. (Pink [34, Def. 3.91) A generalized Drinfeld A-module (E, p)
over S is called weakly separating if for any Drinfeld A-module (E’,¢') over
any field L containing F, at most finitely many fibers of (E, ) over L-valued
points of S are isomorphic to (E', ¢').

Theorem 8.12. (Pink [34, Theorem 4.2]) If KC is fine, then there exists a normal
projective algebraic variety Yi’ i« over F' together with an open embedding

d —~d
Xax = Xax
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and a weakly separating generalized Drinfeld A-module (E, @) on Yi,/c extend-

, . . —d = _ .
ing the universal family on X4 ,-; moreover, such X A and (E,9) are unique up
to unique isomorphism.

8.2 Moduli space of A-reciprocal maps

Using that A is finitely generated and that K C Aut 4(M) is a congruence
subgroup, choose any 0 # t € A such that A is generated by its divisors

(69) Diva(t) :=={a € Alt € (a)}

and K D K(t) := Ker(Aut (M) — Aut () (V)), where V := ¢~ M /M.

In this section we generalize work of Pink and Schieder [36] and Pink
[34) Section 7] that they did in the case where A is the polynomial ring F,[t]
over a finite field IF,,.

For any ideal a C A consider the a-torsion submodule
To(V):={veV|Vaca:a-v=0} CV.
Set To (V) :=T(4)(V) forany a € A. Forany W C V set
W =W\ {0}.

With any invertible sheaf £ on any scheme S associate the graded ring
of global sections

R(S, L) == T(S, L™,

n>0

where any I'(S, L) denotes the space of global sections of £".

Definition 8.13. A map V — T'(S, L) is called fibrewise non-zero, resp. fibre-
wise injective, if for any point s € S the composite V- — I'(S, L) — L ®p4 k(s)
is non-zero, resp. injective.

Definition 8.14. Consider any invertible sheaf L on any scheme S over Spec(A).
Amap p: V — T'(S, L) is called A-reciprocal ifall a € Div4(t) andallv,v' € V
satisfy that

DaveVsp@)TV =0 pav) T (o(v) - pw))
0AweT, (V)

i) v+ v €V = p(v) - p(t) = p(v + V) - (p(v) + p(),
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iii) there exists a ring homomorphism ¢?: A — R(S,L£){r} = End(L™!)
restricting to

Diva(t) = R(S,L)[T], ar ¢o(T) :==a-T - H (1—1-T).
0£lep(Ta(V))

Consider the polynomial ring Ay, := A[(Y,),oy]- Let I;; C Ay, be the
smallest homogeneous ideal for which

oy : V- Ay, v=Y,
induces an A-reciprocal map
pv:V = T(Qv,0q, (1) C Ay/Iy,
where Og,, (1) denotes the first twisting of Qv := Proj(Ay, /I;,). Denote by

Qv C Qv
the open subscheme defined as the non-vanishing locus of {py (v)|v € V'}.

Proposition 8.15. The scheme Qv, resp. Qdy, with the universal family (Oq,, (1), pv),
resp. (Oq, (1)|ay» pv i, ), represents the functor which associates with any scheme

S over Spec(A) the set of isomorphism classes of pairs (L, p) consisting of an
invertible sheaf £ on S and a fibrewise non-zero, resp. fibrewise injective, A-
reciprocal map p: V — T'(S, L).

Proof. Denote by Oy, (1) the first twisting sheaf of P;, := Proj(A,). By
[26, Chapter 2, Theorem 7.1], the scheme P;, with the universal family
(Oy,(1), 0v) represents the functor which associates with any scheme over
Spec(A) the set of isomorphism classes of pairs (£, p) consisting of an in-
vertible sheaf £ on S and a fibrewise non-zero map p: V — I(S,L). The
relations defining I, are precisely those that require such a p to be A-
reciprocal. The proposition then follows by construction of Qy and Q. O

Consider any free A/(t)-submodule 0 # W C V. Extending any fibre-
wise non-zero A-reciprocal map p: W — I(S,L) toV by setting p(v) := 0
for any v € V \ W yields a fibrewise non-zero A-reciprocal map. This
defines a closed embedding Qy, — Qv between the moduli schemes by
means of which we identify Qy with a closed subscheme of Qv .

Theorem 8.16. 1) Qv is the disjoint union of the locally closed subschemes
Qw for all free A/(t)-submodules 0 # W C V.
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ii) Consider the functor which associates with any scheme S over F' the set of
isomorphism classes of triples (E, ¢, \), where E is a line bundle on S and
¢: A — End(FE) is a Drinfeld A-module of rank d over S and \: V. —
Ker(p(t)) is a level (t)-structure. Mapping any such (E, ¢, \) to (L, p),
where L is the inverse of the invertible sheaf on S dual to E and where
p:V = T(S,L),v — ﬁ, induces an isomorphism of functors whose
image is the functor in Proposition represented by the pullback Qv of
QV to F.

Proof. The assertion in fii)|is local in S. Consider any ring homomorphism
t: A — R. Via Lemma 8.5} giving a Drinfeld A-module ¢ of rank d over R
is equivalent to giving for any a € Div 4(¢) a polynomial

Ya= >,  PaiT €R{7}

0<i<d-deg(a)
with g, 0 = ¢(a) and g g.deg(a) € R such that
(70) Divy(t) = R{t},a > ¢,

extends to a ring homomorphism A — R{7}. Via Lemma(8.8} giving a level
(t)-structure for such ¢ is equivalent to giving an injection A: V' — R for
which A\(V') € R* and for which holds and such that

(71) Va € Diva(t): a0l = Aoa and Vv,v' € V: Ao +2") = Av) + A(v).
Let a € Div4(t). We claim that any such level (t) structure satisfies that
T
(72) pa(T)=ua)- T ] (1-v=)
A(v)
0#4vETa (V)

Indeed, implies that A\(7,, (V")) is contained in the set of zeroes of ¢,. As
T, (V) is a free A/a-module of rank d, moreover

INTo(V))| = |[Ta(V)| = ghdes@ = gdegr ()

Hence the left and right hand side of coincide up to an element in
R*. This element must be 1 since the constant coefficient of each side is
t(a) which is non-zero as R is over F. This yields the claim. From this
characterization of Drinfeld A-modules over R with level (¢) structure, Part
is directly deduced.

114



Consider then any s € Qy with A-reciprocal map
PV = 0g, (1) ® Og, k(s) = K

induced by p. As p° is non-zero by assumption, the ring homomorphism
p: A — K{r} induced by p® does not coincide with the structure homo-
morphism A — K; as K is a field, it is thus, by Proposition [8.1|a Drinfeld
A-module of some rank 1 < d’ < d. Then Ker(py) is a free A/(t)-module
scheme of rank d’ (see e.g. [32 Proposition 4.1]). Let

(73) W = {0} U {v e V|p*(v) # 0}.
Properties|i) and [if)|in Definition of p® imply that
1

W — Ker(py), w —

p*(w)

extends to an A-linear isomorphism W — Ker(y;). Hence W C V is a free
A/(t)-submodule of rank d’ and s € Q. By (73), moreover, s ¢ Q- for
any other free non-zero A/(t)-submodule W’ C V. This yields Partfj)l O

Remark 8.17. Lemma [8.8] and Theorem work more generally for
schemes S over Spec(A[7]). Thus already over Spec(A[1]), the scheme Qy
is a compactification of Drinfeld’s moduli scheme of Drinfeld A-modules
of rank r with level (¢) structure.

Proposition 8.18. The pullback of Qv to F is irreducible.

Proof. Property [v)]in the proof of Theorem [9.14, which does not depend on
this proposition, implies that Q1 (C) is dense in Qv (C'). Hence the pullback
of Qy to Fis dense in the pullback of Qv to F'. That the latter is irreducible,
thus follows via Theorem from the irreducibility of Drinfeld’s mod-
uli scheme over F'. O

Definition 8.19. A subgroup A C Auta(V) is called fine if it has unipotent
image in Aut 4 (T, (V")) for some maximal ideal p C A containing t.

Proposition 8.20. Consider any fine subgroup A C Aut (V') by means of some
maximal ideal p C A and consider any free A/(t)-submodule 0 # W C V. Then
the stabilizer Ay = {6 € Al 6(W) = W} of W in A is a fine subgroup of
Aut 4 (W) by means of p and it has a non-zero fixed point in T,(W'), and hence in
W, under the natural action.
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Proof. The first assertion is directly checked. Let us show the second asser-
tion. The assumption that ¢ € p implies that 7;,(1V) # 0. It then suffices to
show that the image G of Ay in Auta(7,(W)) is a p-group, where p is the
characteristic of A. Suppose, by contradiction, the existence of a non-trivial
g € G of order k not divisible by p. Let x, resp. m, be the characteristic,
resp. minimal, polynomial of g over A/p and set r(X) := X* — 1. Since ¢
is unipotent, x is a power of (X — 1). Moreover, r is separable since p does
not divide k. As m divides both x and r, it thus equals X — 1. This implies
that g is trivial and thus yields a contradiction as desired. O

Lemma 8.21. K is fine if and only if its image in Aut 4 (V') is fine.

Proof. Denote by A the image of K in Aut4(V'). Suppose first that K is fine.
Choose any maximal ideal p C A such that the image in Aut4(p~1M/M)
of K is unipotent. As K O K(t), then t € p. The natural morphism
T,(V) — p~'M/M is thus an isomorphism which maps the image of A
in Aut4(7,(V)) onto the image of K in Aut4(p~tM/M). In particular, A is
fine. The converse direction follows similarly from a suitable isomorphism
as before. O

Proposition 8.22. Denote by A the image of KC. Then the correspondence in The-
orem induces an isomorphism between normal quasi-projective varieties

(74) Xbx — A\Qur.

Proof. Theorem provides an isomorphism X . (1) — Qv,r between
smooth quasi-projective varieties which is equivariant with respect to A =
IC/K(t). Its induced morphism on quotients is thus as desired. O

Denote by Ey the line bundle on @y dual to the minus first twisting
Oq, -module and view ¢V as ring homomorphism A — End(Ey ). Denote
by Qv,F, resp. Ev F, resp. cp%", the pullback of Qv, resp. Ey, resp. ¢V, to
F. Denote by n: Qf » = Qv,r the normalization morphism. The action of
A on Qy induces an action on the projective variety Qy; .; denote by Q7 its
quotient viewed as projective algebraic variety.

The following corollary follows from Theorem in the case where
A = 0 and then by Pink’s [34, Lemma 4.4 and its proof] in the general case.

Corollary 8.23. Suppose that K and its image A are fine. Then the pullback of
(Ev,r, @5 ) under n descends to a weakly separating Drinfeld A-module (E%, ™)
over QQ'x which extends, via (74), the universal family of the open subscheme

A\QV C QZ
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Proof. Theorem implies that (Ev r, ¢}") is a weakly separating Drin-
feld A-module over Qv that extends the universal family over Qy r. By
construction, it is A-invariant. Moreover, by means of the normality of
Qv r, we identify Qy, r with its preimage under n. Hence also the pullback
of (Ev,r, ¢7) under the finite morphism n is a A-invariant weakly sepa-
rating Drinfeld A-module over the projective scheme Q7, ;. that extends the
universal family over Qy r. By Pink’s [34, Lemma 4.4 and its proof], as A
is fine, then the quotient E'} of the pullback of EY; . under n by A is a line
bundle over Q’ and the pullback of (Ey, , ¢4 ) descends to a weakly sep-
arating Drinfeld A-module (E7%,¢>) over the projective scheme Q7 that
extends the universal family over A\Qy, . O

Corollary 8.24. Suppose that K and its image A are fine. Then Q' and (E%, o*)

coincide up to unique isomorphism with ij « and (E, ) from Theorem|8.12

Proof. This follows from Corollary and the uniqueness property in
Theorem[8.12] O

For any subgroup A C Aut4(V) view A\Qy(C) with its structure of
projective rigid analytic variety. For any integer £ denote by O(k) the ana-
lytifcation of the pullback of the k-th twisting Og, -module to Qv (C') under
Spec(C) — Spec(A). Pink’s [34, Lemma 4.4 and its proof] inspired

Proposition 8.25. Consider any fine subgroup A C Aut, (V') and any integer
k. Then the subsheaf of A-invariants of O(k) is an ample invertible sheaf on the
projective rigid analytic variety A\Qv (C) and its pullback to Qv (C) is O(k).

Proof. Let Oa(k) denote the subsheaf of O(k) of A-invariants. For any free
A/(t)-submodule 0 # W C V consider the Zariski open subset Uy C Qv
defined as the union of the Qyy- for all free A/(t)-submodules W ¢ W’ C V.
Choose thena 1 > ¢ € |C*|. For any such W consider the admissible subset

Y

U.2) = { [()e0] € U () [V € W v5 € VAW

< 5} C Q.
By Theorem and since Qu (C) C U(W,¢) for any such W, the rigid
analytic variety @ is covered by the U (W, C) for all such W. As this cover-
ing is finite, it is admissible. As ¢ < 1, it holds that U(W,e) N U (W', &) =0
for any free submodules W, W' Cc V with W ¢ W' ¢ W. Moreover,
g(UW,e)) = U(g(W),e) for any such W and any g € Aut (V). Conse-
quently, any such U(W,¢) is invariant under Ay := {6 € A[§(W) = W}
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and satisfies that §(U(W,e)) N U(W,e) = () for any § € A\ Ay. In or-
der to see that Oa (k) is an invertible sheaf, it thus suffices to to show that
for any such W the subsheaf Oy (k) of Ay-invariants of the restriction of
O(k) to U(W,¢) is an invertible sheaf on Ay \U (W, ¢). Consider such a V.
Then Proposition provides an 0 # « € W that is fixed by Ay . For
such an « the restriction of the global section (Y,,)* to Oy (k) thus induces
a nowhere vanishing global section in the quotient Ay \Ow (k) and hence
yields a trivialization of it as desired. Let F denote the pullback of O (k)
under the quotient morphism. Using the above trivialization, it is directly
checked that the natural morphism F — O(k) of O(0)-modules is an iso-
morphism. Having the ample pullback O(k) under the finite quotient map,
the invertible sheaf O (k) is itself ample by [28, Chapter 1, Proposition 4.4.]
via Kopf’s GAGA-Theorem [31} Satz 5.1]. O

118



9 Comparison of algebraic and analytic compactifica-
tions

Let A C C'be as in Sections[6} [7} 8] Let 0 # t € Abe such that Div4(t) gener-
ates A as in Section Consider any free A-module M # 0 of finite rank,
set V :=t"'M/M and V := V \ {0} and let K be the kernel of the natural
homomorphism Aut 4 (M) — Aut (V). Consider the closed subvariety

Q= Qv(C) C P := Proj(C[(Ys),ey )

provided by Section [8.2) with its structure of reduced rigid analytic variety
over C. By Theorem Q is stratified by the locally closed subvari-
eties Qyy (C) for all free A/(t)-submodules 0 # W C V;, any Qu (C) is the
intersection of the non-vanishing locus in @ of (Y4 )ozqew With the vanish-
ing locus in Q of (Y, )aerv\w- Set © := Qy(C). Recall the Eisenstein series

Eq := Enpo. forall « € V from Example

Theorem 9.1. The (E,), . define a morphism of Grothendieck ringed spaces
Ex: Qx — Q which is the normalization morphism (in the sense of Conrad’s
[12l]) of Q and restricts to Drinfeld’s isomorphism Q. — 2 between normal rigid
analytic varieties. Moreover, the morphism of Grothendieck topological spaces un-
derlying Ej restricts to isomorphisms between irreducible components.

We prove Theorem 9.1 at the end of this section. We first recall Drin-
feld’s correspondence between level structures of A-lattices and level struc-
tures of Drinfeld A-modules as well as the induced isomorphism between
moduli spaces.

Theorem 9.2. (Drinfeld [15| Proposition 3.1]) Consider any integer d > 1 and
any ideal 0 # I C A. For any A-lattice Y C C of rank d with level I-structure
i: (I7'JA)Y — I71Y/)Y (see Corollary the map

T
cA—=>C{rha— g :=a-T - 1-—
Ao Chanmmot I -0
Ala]el-1Y)Y

is a Drinfeld module of rank r with level I-structure
(I7PA/A)Y S T7YY )Y 0 = ey (i(v))

satisfying ey o a = @q o ey for any a € A. This induces a bijection from the set of
isomorphism classes of A-lattices in C of rank d with I-level structure to the set of
rank d Drinfeld A-modules over C with level I-structure.
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Proposition 9.3. (Drinfeld [15, Prop. 6.6]) The rule

(75) Qe = Qe A) = [(Ba(l,A)) yey ]

defines an isomorphism of rigid analytic varieties over C.

Proof. We provide some details of Drinfeld’s proof. By Def.-Prop. for
any a € V and any lift @ € ¢~ 'A of o holds that

Y(I,A) € Qu: Eo(lLA) = (@)

From Proposition and Theorem 9.2] applied to the case I = (t) and
from Theorem thus follows that the rule in (9) defines a bijective
morphism

E: Qx — Qy(C) =: Q.

Drinfeld uses the criterion given by Proposition in order to show that
E is anisomorphism. By the criterion it remains to be shown that E induces
isomorphisms at the stalks and that there exists an admissible affinoid cov-
ering (X;);jecs of Q such that E~1(Xj) is an admissible quasi-compact sub-
set for any j € J. That E induces isomorphisms at the stalks follows from
Part b) of Drinfeld’s proof to which we refer. Consider any A-structure A
of M and set I := K. By Proposition it suffices to show the second
property for E replaced by its restriction E’ to Qr. Identify A := ¢t~1A/A
with V' via the isomorphism induced by the inclusion t'A C t~!M. By
construction,
I' = Ker(Auta(A) — Auta(A))

and E' is the morphism defined by the Eisenstein series E,, := E) 4 for all
0 # « € A. Consider the admissible affinoid covering of 2 by the

Yo

X, = {[(ya)aef/] €N ‘ Vo, B €Vt s

Sn}CQ

for all positive integers n. Consider any n > 1. Proposition below
implies that X := E'~1(X,,) is contained in some admissible quasi-compact
subset X’ C Qr. As Eg/FE, restricts to a regular function on Qr for any
0 # o, B € A by Proposition m thus X is an admissible quasi-compact
subset of X’ and hence of Qr. O

Proposition 9.4. Let I" be the image in PG of the kernel in Example suppos-
ing that I C A. Consider any subset X C Qr. Then the following are equivalent:

120



i) X is contained in a quasi-compact admissible subset.
ii) Forany 0 # «, 3 € I A\A the function

Eapall)
Q o)
r — C, ﬂr(l) — EA7a,1(l)
is bounded on X.
iii) Forany 0 # «, 8 € I71A\A the function

min{|l(v)| | v € B}

Qr — |C‘, 7Tl"(l) — mlﬂ{”(w)‘ ‘ w E Oé}

1s bounded on X.

Proof. That [i) implies [ii)| follows directly from the Maximmum Modulus
Principle (see Proposition [2.25). That [ii)] implies [iii)| follows from Proposi-
tion and since, by Def.-Prop. forany 0 # o € I"'A/A and any lift
& € I A of a holds that

Vi e QA: EA,Oé,l(l) == W

That [iii)] implies [i)| follows from Drinfeld’s [15, Prop. 6.5] and Cor. O

Corollary 9.5. Consider any A-structure A of M, set T' := K and view U} as a
subspace of Qi via Prop. Consider any free A/(t)-submodule 0 # W C V
and recall the rigid analyitic variety Qr w defined before Proposition Then

Q1",W — QW(C)a ﬂT(l) = [(Ea(l’ A))QEW]

defines an isomorphism of rigid analytic varieties.

Proof. By means of Corollary choose a free direct summand N C M
such that t"*N/N = W. By Proposition[9.3}

Qe = W (0), 7 (L) = [(Bani(l L)) geyi/]

defines an isomorphism of rigid analytic varieties. It is directly checked
that the precomposition of this isomorphism with the isomorphisms Qr 7 —
Qr,w and Q,w — Qg provided by Propositions anddefines the
desired isomorphism. O
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Choose a finite set of representatives {A; },c of the orbits of the K-action
on the set of A-structures of M and recall from Proposition the isomor-
phism

[1or, = o,

i€l
whereI'; := KAi forevery ¢ € I. Forany i € I denote by (2; the image of Qr,
under the isomorphim Qi —  between normal rigid analytic varieties in
Proposition By Corollary the Qp, are the irreducible components
of Qx and hence the Q; are the irreducible components of (2.

Definition 9.6. Set Q; :=Q; U (Q\ Q) C Q forany i € I.
Lemma 9.7. Any Q; C Q is Zariski-closed.

Proof. By Proposition any Qr, is Zariski closed and open in (2. Hence
any (2; is Zariski closed and open in Q. As, furthermore, 2 is Zariski open
in @, thus any Q); is Zariski closed in Q. O

Proposition 9.8. For any i € I the rule

Ei: Qp, — Qiymr, (1) = (Ea(l, Ai)) pevr
defines an isomorphism of Grothendieck topological spaces which restricts to a map
Qr,w — Qw(C) underlying an isomorphism of rigid analytic varieties for any
free A/(t)-submodule 0 # W C V.

We will prove Prop. 9.8 before Cor. after more preparation. How-
ever, we may already see that the rule 7, (1) — (Ea(l, Ai)),y defines a bi-
jective map E;: Qf. — Q; which restricts to isomorphisms Qr, w — Qw (C)
of rigid analytic varieties: Indeed, this follows from Corollary[9.5as well as
the facts that Q \ €2, resp. Qf \ Qr,, is the disjoint union the Qw (C) for all

such 0 # W C V by Theorem resp. of the Qr, y by construction.

Let us recall the content of Proposition (3.4 in the present setup. Con-
sider any subset 7' C V and any ¢ € |C*| and associate with it the Zariski
open, resp. admissible, resp. Zariski closed subvariety

UT) = {[(ya)aef/] EP|VaeT y, #0} C P,

UT,€) == {[(ya) yoiy] €UT) | Vo' € VAT, Va €T : YZ& < e} cuU(T),
AT) = {[(ya)yop) €UT) |V € VAT, Va e T: L2 = 0} cu(T).

(0%
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Then Q(T) # 0 < T # (; in this case, denote by pr: U(T) — Q(T) the
natural projection morphism and for any O C Q(T') set

U(O,€) := p7(0) NU(T,e).

Proposition 9.9. Consider any closed subvariety P' C P. Then a subset X C P’
is admissible if and only if for any T C V with Q(T) N P’ # (:

i) the subset X N Q(T) C P' N QT) is admissible and

ii) any admissible quasi-compact O C Q(T) with ONP' C X admitsan e > 0
such that U(O,e) N P’ C X.

A covering of an admissible subset X C P’ by admissible subsets is admissible if
and only if its intersection with X N Q(T") is admissible for any T C V.

Proof. The present setup is a special case of Example Hence the propo-
sition is an instance of Proposition 3.4} O

Proposition 9.10. Let T C V. If T = W for some free A/(t)-submodule 0 #
W C V, then QT) N Q = Qw(C). Otherwise, Q(T) N Q = (. Moreover,
QV)NQ; =Q; forany i € 1.

Proof. This follows directly from Theorem The last assertion follows
directly from the definition of the Q;. O

For any i € I and any free A/(t)-submodule 0 # W C V denote by
Orb(i, W) the finite set of orbits O of the I';-action on the set of direct sum-
mand L C A; for which t71L/L = W. In the notation of Def.-Prop.
and Proposition for any i € I we have a disjoint union

(76) oarw= J[ o
DE0rb(i,W)

of rigid analytic varieties and for any Y C Qp,  and any r € |C| we set

(77) U, Y,r) = | U, ynQe,r) cof,
OeO0rb(i,W)

Lemma 9.11. Consider any i € I, any free A/(t)-submodule 0 # W C 'V, any

admissible quasi-compact O C Q(W) and any finite field F, C A with q elements.
Then there exist c,ro > 0 such that for any ro < r € |C|:

B (0, 71k ) < (A, B71(0),r) € B LU(0, <)

¢ T
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Proof. Using the quasi-compactness of O, choose a ¢ > 1 such that

Yy = [(yﬁ)ﬁef/] € OYa,o € W: % <ec.
Choose a basis a1, .. ., a, of the IF,[t]-module A and set

d = c-maxi<i<k |ail.
Using Cor. choose a & > 0 such that for any [y], [z] € Q(W):

Yo' Za!

Ya R

(78) {\m, o eW:

<5} = [y € O < [z] € O].

2 . —p-
Setro := max{c, & }. Considerany ro < r € |C|and sete :=r"" rankp, [ (A)

Set A:=A;and ' :=T; and E := E;. Denote by 7: t"'A — V the quotient
morphism. Moreover, for any subset S C C' set as before

d(S) == inforses|[s|.

Consider any | € O, say | € Q. Set £ := = (L) and n := ranky m(ﬁ)
Choose an z; € t~1£\ {0} of minimal norm and let a; := 7(I"!(x})). Propo—
sition [2.56| then yields for any further 2’ € ¢~1£ which is non-zero modulo
L and of minimal norm in 2’ + £, with o’ := 7(I71(2)), that

ZEI

/ zl

x

Ty

xl

ec(a’)
~ lec(z)

(79)

- ‘nggg' = x

Suppose first that 7r (1) € E~1(U (O €)). Then oy 6 W; indeed, if a; was
not in W, then we could choose an 2/ and o as in (79) with o/ € W and

apply the assumption that then er (1) ’ <ex<l1 contradlctmg the fact that

E Ey (D
\ml| < |#'| via the first inequality of (79] . Consider then any z and o, resp.
xh and a4, as in such that o/, € W, resp. o), ¢ W. The first, resp.
second, inequality of (79) then yields that

1

I

/
x

2 |.q-
T, |TT

Eo, (1)
Eo/l (l)

1
<e¢, resp. 1" < - <

e

Eo, ()
Ea’2 (l)

y

(80)

Iy

and, in particular, that |2)| < |z}| since r > ¢/. We have thus verified con-
dition @ of Corollary2.54]in the following case: Let x1,...,z, € t"'Lbea
minimal reduced F,,[t]-basis of t ' £ and let L’ C A be the IE‘ q[t]-submodule
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generated by the ¢ - [~ (z;) for all z; with |x;| < d := d(I(z—1(V\ W)) N L).
Thent 'L//L' = W and d(I(t 1L \ t7'L']) = d by Corollary Hence
@81) AL\ L)) _d@EUL\L)) _ d &

d@ery)) Al T
In fact, L' C A is an A-submodule and, as such, a direct summand: Indeed,
the first inequality of (80) and the definition of ¢’ and r imply that

VI<j<k1<i<n: |aj 2| <o <r |z <d=dl@E 'L\t L))

and thus, as t ' £ is an A-module, that a;-T; € t=(L") for any such ¢, j. The
basis property of bot the a; and the z; then yields that t~/(L') C t71£ and
hence L' ¢ L C A are A-submodules. Moreover, as L' C L and L C A are
direct summands as F,[t]-submodules, the quotient A/L’ is torsion-free as
[F,[t]-module and hence also as A-module. In particular, A/L’ is a projective
A-module. The short exact sequence 0 — L' — A — A/L" — 0 thus splits;
equivalently, the A-submodule L’ C A is a direct summand.

Set !’ := l|r,. Let O be the I'-orbit of L'. As argued above, ¢~ )n =
W. Hence O € Orb(z W) We claim that E(7p(I')) € O and hence, in view
of (81), that [I] € U(A,pr (E~1(0)) Ny, 7) so that as desired

mr(l) € U(A, E7H(0), ).
For the claim, it suffices, by and since py;, (E(nr(1))) € O, to show that

Ey(l) Ey()
- B

Eal) )| <

Va,aleﬁ/:

Forany 8 € W set
(82)
1
EﬁZEg(l) andEﬂ —Eg( )andqg —Eﬂ—Eﬁ— X
AEU(m=1(B)NL\t—1L")

We then have for any a, o € W that

€ 1i 1 1 ec(xy) ‘ Sl H xl+)\‘ jar|<IA| €
E, el |Eol 7 x E, T okae r
and hence as desired that
E
Eo E&/ _ Eoy Ey — €y _ % B Ec;/ ' %C;
Eo E)| |EBa Ea—e€| | 1-—%
1>8 ey By €q c? <5
 |E, E., E, r
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This shows the claim and hence the first inclusion stated in the lemma.
Conversely, assume that 7 (1) € U(A, E~1(0), ). Thus

1] € U(A,p~ (E7H(0)) nQpr, )

for some L' € O € Orb(i, W). Choose such an L’ and set I’ := |, € Qr
and define Ejg, £ and g for any 8 € W as in . Using similarly as
before, we shall first show that p;,(E(nr(1))) € O. The assumption implies
that E(rr(I')) € O and, as r > 1, that z; € I(t'L'). For any o, o/ € W thus
follows that

L 1 jaa@)| By
EL T ool B x| E,
1 T+ A Al €
<1 H 1+ ‘.Clxz|:<|
r r
0#£NEl (L)
and hence that
!
El E E/ E/ 70/ . 6704 J— i
o  Bad| o o + € _ | B4 EL Eg
’E{I E, ‘E& E! + e, 1+%’;
1>< |E', € € 2
SR AR Y
E' E FE r

Hence py;,(E(mr(1))) € O by (78) since E(mp(I')) € O. We finally show that

E,(I)
Eq (l)

(83) Vo € W,Ya e V\W: ' ‘gi

Consider any «, o as in (83). Suppose without loss of generality that E, (1) #
0 so that 7= (o) N L # (. Choose an z € (7~ !(a) N L) of minimal norm.
Then

Eoc(l) _ Eaz(l) . Ea(l) <c- €£(Il) c- )ﬂ < E
Ey (1) Ey(l) Eq() er(x) x r
Hence E(nr(l)) € U(O, %). This establishes the second inclusion. O

Proof of Proposition[9.8] As argued after Proposition it remains to be
shown the claim that £; induces an isomorphism of Grothendieck topolo-
gies. From Def.-Prop. [6.22] follows via , that a subset X C Q. is
admissible if and only if for any free A/(¢)-submodule 0 # W C V the
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subset X N Qp, w C Qr; is admissible and any admissible quasi-compact
Y € X NQp,w admits an r € |C| with U(A;,Y,r) C X. Moreover, for
any such W the admissible quasi-compact subsets of Qy (C') are precisely
the intersections with Qy(C) of the admissible quasi-compact subsets of
Q(W) (see Cor. . As FE; restricts to an isomorphism Qp, — 2; and to
an isomorphism Qr, w — Qu (C) for any such W C V by Corollary
the claim directly follows from Proposition 9.9|applied to the case P’ = Q;
jointly with Proposition[9.10/and Lemma [9.11] O

Corollary 9.12. The Q; for all i € I are the irreducible components of Q.

Proof. By Lemma[9.7), any Q; C Q is Zariski-closed. By Corollary [6.20} any
Qr, is dense in QF. . By Proposition thus any (); is dense in @;. Conse-
quently, any @; contains the dense irreducible subset €2; and is thus itself
irreducible. Moreover, for any irreducible Zariski closed subset Y C @ the
intersection Y N2 with the Zariski open (2 is irreducible and thus contained
in some (2; by maximality of the irreducible components ;. Hence the Q;
are maximal among the irreducible Zariski closed subsets of () and are thus
the irreducible components. O

Let i € I. Consider the Grothendieck ringed space (Q;, O,) whose un-
derlying Grothendieck topological space coincides with the one underlying
(Qi, Og,) and whose sections on any admissible U C @); are the functions
[: U — C that are continuous with respect to the canonical topologies, that
are bounded on any admissible affinoid subset of U and that restrict to reg-
ular functions U N Qy (C) — C for any free (A/t)-submodule 0 # W C V.
Denote by .

nQ,: (@i, 0qg,) = (@i, 0g,)
the morphism of Grothendieck ringed spaces whose underlying morphism
of Grothendieck topological spaces is the identity and whose homomor-
phism Og, (U) — Og,(U) for any admissible U C Q; is the natural injection
by means of the Maximum Modulus Principle, i.e., Proposition [2.25]

Corollary 9.13. The isomorphism E; of Grothendieck topological spaces yields an
isomorphism }

(©r,,Or,) = (Qi, Og,)
of Grothendieck ringed spaces, where the homomorphisms on sections are given by
precomposition with E;.

Proof. This directly follows from Proposition and the construction of
Og, via Proposition Corollary 9.5, Lemma and . O
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Theorem 9.14. The morphism ng, is the normalization of Q;.

Proof of Theorems[9.1jand[9.14, By means of the isomorphism in Corollary
we identify (2f , Or.) with (Q;, Og,) and are reduced to showing that
ng, is the normalization morphism for Q;. Set Z := Q;. We want to apply
Theorem 3.8/ to the present case, i.e., where the global sections S on Z are
the restrictions to Z of the Y, for all & € V. Let us verify its conditions:

i) Z isirreducible,
ii) the Zariski open subvariety §2(S) C Z is normal,
iii) Z \ ©2(S) is of everywhere positive codimension in Z.

iv) any function f: X — C on any admissible X C Z which is continu-
ous with respect to the canonical topology and restricts to a regular
function on X N Q(S) restricts to a regular function on X N Q(7T') for
any 7' C S and

v) any z € Z has a fundamental basis of admissible neighborhoods U
such that U N Q(S) is connected and, in particular, non-empty.

Conditionfollows from Corollary Normality of Q(S) = QVYNZ =
Q; follows from Theorem 5.8 via Theorem 9.3} this yields[ii)} By Proposition
Example[5.11|and Corollary[5.10, moreover, Qyy (C) is everywhere of di-
mension rank 4, (W) — 1 for any free A/(t)-submodule 0 # W C V. Via
Propostion [9.10} thus follows that Z \ ©(S) is of everywhere positive codi-
mension which yields As for Assumption|iv), consider any admissible
X C Z and any function f: X — C which is continuous with respect to the

o

canonical topologies and which restricts to a regular function on X NQ(V).
The regularity of the restriction of f to X N Q(W) for an arbitrary free A/(t)-
submodule 0 # W C V then follows from Proposition 6.44 by descending
induction on the rank of W. Taking Proposition again into account,
this yields Condition [iv)} Finally, Corollary provides Condition [v)} We

may thus apply Theorem 3.8 which concludes the proof. O
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10 Consequences of the comparison

Let A C C be as in Sections [} [7}[8] B} Consider any congruence subgroup
IC C Aut 4(M) as in Sectionm Choose 0 # t € A such that K contains the
kernel K(t) of the natural homomorphism Aut ; (M) — Auta(V'), where
V = t"'M/M, and, using that A is finitely generated, such that Div 4(t)
generates A as in Section[8.2] Identify A := K/K(t) with the image of K in
Auty (V). Let Q := Qv(C) and Q := Qy(C) be as in Section [}

Theorem 10.1. The normalization morphism Ej. ) in Theorem z's A-equivariant
and the induced morphism Ey: Qi — A\Q is the normalization morphism of
A\Q and restricts to Drinfeld’s isomorphism Qi — A\ between normal rigid
analytic varieties. Moreover, the morphism of Grothendieck topological spaces un-
derlying Ex restricts to isomorphisms between irreducible components.

Proof. By construction, Ei ;) is A-equivariant and thus induces a morphism
Ex: Q¢ — A\Q between their quotients. From Theorem follows via
Kopt’s GAGA-theorem [31, Satz 5.1] that the quotient Qi of {2 ;) by the
finite group A is a normal projective rigid analytic variety since Q. is.
Moreover, Ex is finite since Ey ;) is. Moreover, as Ej ) restricts to an iso-
morphism Q) — €, also E restricts to an isomorphism Qi — A\Q be-
tween their quotients. Furthermore, Corollary yields via Proposition
[7.13|that both the Zariski closed complement of A\Q in A\Q and its preim-
age in Q% are nowhere dense. By [12, Theorem 2.1.2], thus Ex is indeed
the normalization morphism. Moreover, as the Grothendieck topological
space on each side of F is the quotient by A of the respective side of E ),
the last assertion, too, follows from Theorem [9.1] O

Choose any complete set S of representatives of the natural K-action on
the set of A-structures of M and recall the isomorphism

(84) IT©x, Ry — (Q,Ri)
AesS

of Grothendieck graded ringed spaces provided by Proposition[7.13]

Corollary 10.2. Q% is a normal projective rigid analytic variety over C' whose
irreducible components are, via , the Q*EA forall A € S.

Proof. By [12, Theorem 2.1.3], the analytification functor commutes with
the normalization functor. From Theorem thus follows that QF is a
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normal projective rigid analytic variety. Moreover, via , the Q*EA are ad-
missible subsets of (2. and pairwise disjoint. It thus suffices to show that
each of them is irreducible. Consider any A € S. Then the admissible sub-
variety O C Q*KA is irreducible by Proposition and dense by Corollary
60.20, Thus Q*EA is itself irreducible as desired. O

Corollary 10.3. Let (A", M, K') 5 (A, M, K) € A, where K! ¢ Aut y(M’)
is a congruence subgroup. Then Qg ) Dk — Qi is a proper morphism of rigid
analytic varieties; it is even finite if the index of ®*(K') C Koy is finite.

Proof. If the index of ®*(K') C Kg(ary is finite, then any fibre of Qg 1) is
finite. The corollary thus follows from Corollary and [8, Prop. 9.6.2.4
and Cor. 9.6.3.6]. O

Consider any finitely generated projective A-module A # 0 and any
congruence subgroup I' C Auts(A). For the remainder we consider the
following special case of M,t, KC, S so that we may interpret A as an element
of S and T to be ICp: Assume that M = A ®4 A; then A is an A-structure
of M. Using that I' C Aut4(A) is a congruence subgroup, assume that 0 #
t € Ais such that Div 4(t) generates A and that furthermore I" contains the
kernel of Aut(A) — Auta(t71A/A). Identify t1A/A with V := t=1M/M
via the isomorphism induced by the inclucion A C M. Assume that K is
the preimage in Aut ;(M) of the image of I' in Aut4 (V). Assume finally
that S contains A. In this case indeed I = K.

Corollary 10.4. U} is a normal integral projective rigid analytic variety over C
whose admissible subvariety Qi is dense.

Proof. Cor. yields the first part and Cor. the second. O

Corollary 10.5. Let (A, L',T") % (A,A,T) € A, where I' C Auta(A) is a
congruence subgroup. Then Q7 : Qf, — Q. is a proper morphism of rigid analytic
varieties; it is even finite if the index of ¢*(I") C Tyary is finite.

Proof. If *(I') C f@( Ay has finite index, then €2, is quasi-finite. The corol-
lary thus follows from Cor. and [8} Prop. 9.6.2.4 and Cor. 9.6.3.6].  []

Recall that I" is called fine if its image in Aut4(A/pA) is unipotent for
some maximal ideal p C A.
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Corollary 10.6. Suppose that I is fine and let k > 0 be any integer. Denote by E
the restriction of Ex to Qf and by Y its image. Then the morphism

(85) EHOy (k) ®p-1(0y) OF — OF (k)

induced by E from the inverse image under E of the k-th twisting module Oy (k)
(provided by Prop. of Y to Of.(k) is an isomorphism and the natural mor-
phism (O%:(k)¥ — Of(k - k') is an isomorphism for any k' > 0. Consequently,
if k > 1, then Of(k) is an ample invertible Of-module.

Proof. The morphism of Grothendieck topological spaces underlying E is
an isomorphism by Theorem Thus

(86) EH(Oy (k)(X') = Oy (k)(B(X"))

for any admissible X’ C €. Moreover, by construction of O}, any nowhere
vanishing section in Or(k)(X’) is a basis for Or(k)|x+ over Or|x for any
admissible X’ C Q. Using that Oy (k) is invertible, choose any admissible
covering C of Y such that any Y’ € C admits a nowhere vanishing section
in Oy (k)(Y') which is a basis of Oy (k)|y’ over Oy|y,. Let Y’ € C and set
X'":= E~1(Y"). Using (86) and that E sends any nowhere vanishing section
in Oy (k)(Y') to a nowhere vanishing section in Or(k)(X’), it is directly
checked that restricts to an isomorphism on X’. As the preimage of
C under E is an admissible covering, this yields the first part. The second
part holds true since moreover, by [29, Chapter 2, Prop. 5.12], the natural
morphism Oy(k)kl — Oy (k- k') is an isomorphism for any &’ > 0 and since
the formation of tensor products and inverse images are compatible.
Suppose that k > 1. As Oy (k) is ample invertible by Prop. so isits
inverse image under the finite morphism E by [28, Ch. 1, Prop. 4.4] using
that I is the analytification of the algebraic normalization of Y by [12, Thm.
2.1.3]. Hence Or (k) is ample invertible by the isomorphism (85). O

Corollary 10.7. The C-algebra R} (§)}.) is finitely generated with O} (Q}) = C
and Q. is the analytification of Proj(R}(€2})).

Proof. By Kopf's GAGA-theorems [31] Sdtze 4.7 und 5.1] and Corollaries
and the variety Q. is the analytification of some normal integral
projective algebraic variety X and, if I' is fine, the ample invertible sheaf
Of(k) is the analytification of an ample invertible sheaf £;, on X for any
k > 0, and the global sections on O (k) are naturally isomorphic to the
ones of L. If T is fine, thus O} (€2})) = C and the corollary follows using
the isomorphisms (O%(k))* — Oi(k - k') for all k, k' > 0 as well as the
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fact (see [34, Theorem 5.7]) that the ring of sections in all powers of £ is a
finitely generated normal integral domain and that its Proj is X.

Via the choice of a fine normal subgroup I'' C T, the general case is
reduced to the previous case using that by Noether’s theorem (see [41} The-
orem 2.3.1]) the subring of invariants R} () C R (£2}) with respect to
the C-linear action by the finite group I'/I" is again finitely generated. [

Definition 10.8. For any integer k > 0 a weak modular form f € OF(k)(Qr) (see
Definition is called a modular form if the negatively indexed coefficients of
the Fourier expansions at all direct summands 0 # L C A of co-rank 1 all vanish;
denote by Mr(k) C Op(k)(Qr) the C-subspace of modular forms of weight k.
Set
Mp =) Mr(k).
k>0

Remark 10.9. Consider any integer k. The isomorphism in Remark
from O7(k)(€r) to the space of weak modular forms in coordinates re-
stricts to an isomorphism from Mp(k) to the subspace of modular forms
in coordinates in the sense of Basson’s [3], Definition 3.3.1].

Proposition 10.10. The restriction homomorphism Ry (§2) — Ry (Qr) is injec-
tive with image Mr.

Proof. Let QXQ be the union of the 2y, for all direct summands 0 # L C A
with rank 4 (L) > rank4(A) — 1 and consider the admissible subset

Q52 := pr(Q3?) C OF.

Corollary applied to the various such L yields that the restriction ho-
momorphism R:(Q52) — Ri(Qr) is injective with image Mr. We claim
that, moreover, the restriction morphism

RE(QF) = RE(QF?)

is bijective. Consider I" := K(t), C I'. By construction of Q57 and Q5 as
well as of O, and OF, the claim is directly reduced to showing the claim
in the case I' = I". Thus assume that I' = I". By the Riemann extension
theorem [2, Satz 10], the restriction morphism is bijective if Q} is normal
and if Qf \ Q5? C Q} is Zariski-closed of codimension < 2. From Corollary
[10.4)follows the normality of €}.. The image of Qf under Ef is then an irre-
ducible component @; of ). We are thus reduced to showing that the image
U of Qf \ Q5% C Of under the isomorphism E;: (Qf, 0f) — (Q;, Og,) pro-
vided by Corollary is Zariski-closed in Q; and of codimension < 2.
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By Corollary the image U is the union of the Qy (C) for all free di-
rect summands 0 # W C V with rank (W) < ranky ;) (V) — 2. By
Theorem equivalently, U is the union of the Qw (C) C Q; for all
such W. For any such W, moreover, Qw (C) is Zariski-closed in Qv (C)
and hence Zariski-closed in ); with respect to Og, and thus also with re-
spect to Og,. Being a finite union of Zariski-closed subsets, hence U itself
is Zariski-closed. Moreover, by Theorem for any direct summand
0 # W C V the dimension of any irreducible component of Qy (C) equals
rank 4 /4 (W) — 1. Hence U C Q) is Zariski-closed of codimension < 2. [

Corollary 10.11. My is a finitely generated C-algebra with Mr(0) = C.

Proof. This follows from Proposition and Corollary[10.7] O
Corollary 10.12. The C-vector space Mr (k) is finite dimensional for any k > 0.
Proof. This follows from Corollary[10.11] via induction on k. O
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