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Abstract

Due to the immutability of smart contracts, it is of paramount impor-
tance to ensure their correctness before deployment . In this report
we introduce IRSRI, a language-independent intermediate representa-
tion (IR) built on top of a combination of static single assignment and
continuation-passing style. In addition we derive the rules of an at-
tribute grammar to translate Solidity code into IRSRI. We showcase the
strength of our IR by building a prototype symbolic execution engine
on top of IRSRI and use it to prove properties of Solidity smart con-
tracts.

i





Acknowledgements

I thank Prof. Dr. Martin Vechev for the opportunity of writing my
master’s thesis in his group.

I am grateful to my supervisors Dr. Petar Tsankov and Dimitar Dim-
itrov who have proved invaluable with their great expertise and helpful
guidance throughout this entire project.

My thanks go to all the other members of the SRI Lab that were always
there to provide support in a range of subjects. I would like to specially
thank Lavrenti Frobeen, who is writing his master’s thesis on a related
subject, for the great collaboration.

Last but not least I extend my gratitude towards my family and friends
for supporting me in every situation in any possible form.

So long, and thanks for all the fish!

iii





Contents

Contents v

1 Introduction 1

2 Background 5
2.1 Smart Contracts – A Brief History . . . . . . . . . . . . . . . . 5
2.2 Programming in Solidity . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 State Variables . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Structs and Enums . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Arrays and Mappings . . . . . . . . . . . . . . . . . . . 10

3 IRSRI: A New Intermediate Representation 11
3.1 Control-Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Static Single Assignment . . . . . . . . . . . . . . . . . 12
3.2 IRSRI in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 The Block Object . . . . . . . . . . . . . . . . . . . . . . 18

4 Attribute Grammars 21
4.1 Introductory Example . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 The Semantic Rules Translating Solidity . . . . . . . . . . . . . 25

4.2.1 IRSRI Representation . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Current Basic Block . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Case study: Symbolic execution using IRSRI 29
5.1 A Brief Overview of Symbolic Execution . . . . . . . . . . . . 30
5.2 Symbolic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Path Constraint . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Account and Environment . . . . . . . . . . . . . . . . 32
5.2.3 Stack, Frames and the Symbolic Store . . . . . . . . . . 33

v



Contents

5.3 Post-Condition Checking with Symbolic Execution . . . . . . 35
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Outlook 39

Bibliography 41

vi



Chapter 1

Introduction

June 2016: an attacker exploits a bug in the code of The DAO and steals over
$50 million [1].
By switching two operations in the contract code the bug would have been
prevented.

July 2017: a bug in the code of a popular wallet contract is used to steal $30
million [2].
Making a single function private would have mitigated the bug.

November 2017: $150 million are frozen after a wallet library contract is
killed [3].
The library contract, implementing all the wallet functionality, was not ini-
tialised. A random user was able to get ownership, allowing him to call the
selfdestruct method.

All these examples were bugs in the smart contracts, not the underlying
blockchain. Due to the special nature of blockchains and the immutability
of deployed contracts it is of paramount importance to reliably find bugs
and unwanted behaviour before deployment.

Several security analysis tools have since been introduced working on top
of either original source language (mostly Solidity) or on the compiled
Ethereum Virtual Machine (EVM) bytecode. The main advantage of ana-
lysing the bytecode lies in its guarantees. By directly analysing the code
that is being run on the EVM it is certain that no errors can get inserted
”down the road”, e.g. by a compiler. In addition EVM bytecode has only
114 operations, making the analysis simpler compared to the analysis of a
high-level language. However there are certain important drawbacks. First
and foremost a significant amount of useful information is lost (or at least
difficult to access) when compiling down from a high-level language. In the
case of EVM code there is an additional issue with the location of storage
slots of mappings and arrays. On most systems, collections are stored in
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1. Introduction

a consecutive block of memory with the index representing the offset from
the start address. In contrast, Solidity stores the data located at index idx of
an array A with ID idA at the storage location

Keccak-256(idA||key)

where || indicates concatenation. Symbolic execution can infer nothing
about hash functions since the output is evenly spaced. By analysing the
Solidity source code we are able to symbolically analyse mappings and re-
flect about them.

Notwithstanding, the overall complexity of Solidity (or any other high-level
language) remains prohibitively high to analyse successfully.

Contributions. To simplify the analysis of high-level languages we have
developed a new language-independent intermediate representation (IR)
called IRSRI built on top of a combination of static single assignment and
continuation-passing style that aims at reducing the complexity of the source
code while still maintaining high-level semantics. We showcase this in a case
study where we translated Solidity code into IRSRI and performed symbolic
execution on it with promising results in terms of complexity and usability.

Related work. Securify [4], MAIAN [5], and Rattle [6] all perform dif-
ferent kinds of static analysis on the EVM bytecode as do Vandal [7] and
EtherTrust [8]. Other tools (OYENTE [9] and Manticore [10]) perform sym-
bolic execution and taint analysis on bytecode. Mythril [11] uses its backend
LASER-Ethereum, a symbolic virtual machine (VM), to detect a variety of
vulnerabilities performing symbolic analysis based on Solidity code or EVM
bytecode.

By analysing bytecode these tools cannot precisely capture the semantics of
contracts because of the challenges of correctly modelling them.

Other tools have been developed that operate on Solidity code. Slither [12]
performs static analysis on Solidity code translated into their IR SlithIR. The
same approach is used by SmartCheck [13], another static analysis tool for
Solidity based on an XML parse tree. The Ethereum Foundation is also
building a satisfiability modulo theories (SMT)-based verification module
within the Solidity compiler [14].

All these tools are closely tied to Solidity. It it therefore difficult to port them
to other languages and to maintain them when the Solidity specifications
change.

In addition to tools for performing different kinds of security analyses other
analysis tools have been introduced. EthIR [15] is a framework for decompi-
lation of EVM bytecode and representing it in a rule-based form. Scilla [16]
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is an intermediate language aimed at smart contracts. It aims at reducing the
complexity of high-level languages and being a solid base to perform differ-
ent kinds of analyses. Gigahorse [17] is a tool to decompile EVM bytecode
into a three-address code (3AC) based IR. Solhint [18] is a tool to annotate
Solidity code in case it detects bad security practices.
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Chapter 2

Background

In this chapter we will provide some background information on two sub-
jects. First we will have a look at the history of smart contracts and blockchains
before we introduce Ethereum’s smart contract programming language of
choice, Solidity.

2.1 Smart Contracts – A Brief History
According to Szabo ‘the contract, a set of promises agreed to in a “meeting
of the minds”, is the traditional way to formalize a relationship’ [19]. How-
ever, whenever there is a dispute about the semantics of a contract or an
eventuality that has not been foreseen, some kind of arbitration is needed,
mostly performed by courts of justice. These arbitrations thus require a
trusted third party. In his paper Szabo introduces the term of smart contract
to denote contracts embedded in hardware and software that are digitally
controlled. They allow contract clauses to be enforced proactively and offer
better observability where proactive measures cannot be implemented.

However smart contracts are still missing a framework where consensus can
be achieved without trusted third parties. Another concept missing the same
framework is peer-to-peer electronic cash, where double-spending must be
prevented. Without framework a third party is needed to verify that no
token has been spent before.

In 2008 Satoshi Nakamoto presented a truly peer-to-peer solution to double-
spending: the first blockchain with the name of Bitcoin [20]. The basic prin-
ciple to prevent double-spending is simple: transactions are timestamped by
chaining them together using a proof-of-work based on hashes. The record
formed by the chain cannot be altered without redoing the proof-of-work.

Five years later in 2013 Buterin presented a new type of blockchain with an
integrated almost Turing-complete programming language, Ethereum [21].
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2. Background

The blockchain allows for writing decentralized applications and smart con-
tracts whose state is stored on the blockchain. The underlying currency is
called Ether and is used to pay transaction fees amongst other things. As
in other blockchains the state is modified by collecting single transactions
into a new block containing a reference to the previous head of the chain. In
contrast to Bitcoin, Ethereum has a concept of accounts. Externally owned
accounts are controlled by a private key and can send messages by creat-
ing a signed transaction. Contract accounts are controlled by the code of
the contract, which is activated every time the contract account receives a
message.

Due to the nature of blockchains, contracts deployed to the chain are im-
mutable and publicly visible. Any bug in a smart code can thus neither by
fixed nor is it hidden from malicious parties. This makes security analysis
of code so relevant in the field of smart contracts.

2.2 Programming in Solidity
Solidity is an object-oriented, statically typed language developed to tar-
get the Ethereum Virtual Machine (EVM). It is influenced by C++, Python
and JavaScript and has been developed for implementing smart contracts.
Objects in Solidity are called contracts and are similar to classes in other
object-oriented languages. Each contract holds the code to control a single
contract account.

Once a contract is created its constructor is invoked and executed. The final
part of the contract is then deployed to the blockchain.

There are three different places to store items: the storage, memory and
the stack. The stack and memory are quite cheap to use but are not persis-
tent across transactions. In contrast, the storage costs more to access but is
persistent.

Contracts can inherit from other contracts; multiple inheritance and poly-
morphism are supported. However when a contract inherits from other
contracts only a single contract is deployed to the blockchain. The code
from all the base contracts is compiled into the deployed contract.

We will now delve into more detail about the language with help of the
bank contract shown in Listing 2.1.

The code implements a simple banking contract. It stores the current balance
of each account in the mapping balances. There are four available functions.
payment allows to transfer a certain amount from the own bank account to
another. withdraw drains the bank account and sends all contained funds
to the calling account. deposit allows anyone to deposit money into their
bank account. Finally there is a function without name that deposits the
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2.2. Programming in Solidity

1 contract Bank {
2 address bank_owner = address (0 xDEADBEEF );
3 mapping ( address => uint) private balances ;
4
5 function payment (uint amount , address recipient ) public {
6 uint current_balance = balances [msg. sender ];
7 if ( amount <= current_balance ) {
8 balances [msg. sender ] -= amount ;
9 balances [ recipient ] += amount ;

10 } else {
11 balances [msg. sender ] = 0;
12 balances [ recipient ] += current_balance ;
13 }
14 }
15
16 function withdraw () public {
17 uint current_balance = balances [msg. sender ];
18 balances [msg. sender ] = 0;
19 msg. sender . transfer ( current_balance );
20 }
21
22 function deposit () public payable {
23 balances [msg. sender ] += msg. value ;
24 }
25
26 function () external payable {
27 balances [ bank_owner ] += msg. value ;
28 }
29 }

Listing 2.1: Bank contract

sent funds into the bank account specified by bank owner. This is a special
function which we will discuss in more detail later.

It is important to note that the mapping balances doesn’t actually hold any
funds. These are tied in the balance field of the account and stored on the
blockchain. The mapping’s only purpose is to map how much of the funds
belong to which address.

We will now look at different aspects of Solidity in turn.

2.2.1 State Variables

State variables are variables that are stored in contract storage and are thus
persistent across transactions. In our example we declare the state variable
balances as we need to persistently store each user’s balance as well as
bank owner to hold a certain account address.
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2. Background

2.2.2 Functions

In Solidity functions are methods that can be invoked either by other con-
tracts or by externally owned accounts.

In contrast to other languages there are two fundamentally different ways
of invoking another function in Solidity: message calls and jumps. Whereas
jumps are restricted to functions inside the current contract, message calls
can further invoke functions from other contracts.

Each function invoked by a message call gets executed in the context of
that call. Whenever a new message call gets issued to invoke some other
function this new message call is nested inside the enclosing message call of
the issuer. Jumps on the other hand do not initiate new message calls but
execute in the current one.

Message calls are always executed atomically in the sense that the entire
message call including nested message calls either succeeds or gets reverted.
Functions can trigger exceptions by calling the revert function. This will
abort the current message call. All changes made to the state will be undone
and the remaining gas will be returned. Whenever an exception occurs it
is propagated upwards, undoing all the changes made before returning an
error to the originally calling externally owned account.

If any function invoked by a jump calls revert the entire message call –
including the caller – will be aborted and the state reverted.

Functions take a fixed number of input arguments and can return multi-
ple values to the caller. Although being used internally to handle multiple
return values, tuples are not first-order objects in Solidity.

Function Visibility

There are different levels of visibility for functions that define who can in-
voke them. They are

external
External functions can be called from other contracts and via transac-
tions as they are part of the contracts interface, however they cannot
be called internally.

public
Public functions can be called via messages or internally.

internal
Internal functions can only be called internally by the current contract
and all derived contracts.
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2.2. Programming in Solidity

private
Private functions are only accessible by the current contract (and not
by derived ones).

The same visibility levels also apply for state variables (with exception of
external) and regulate who can access them.

Our example bank contract contains three functions, each with a visibility
of public. The state variable balances is declared private and can thus not
be accessed from outside of the current contract.

Fallback Function

Each contract can have exactly one unnamed function. This function may
not take arguments or return anything and is invoked on a call if no other
function matches the given identifier. In our bank contract we have such a
fallback function, it adds the value of received Ether to the balance specified
by the address bank owner.

Function Modifiers

Functions can be decorated by function modifiers that are similar to Python’s
function decorator. They wrap a function and have access to all symbols in
the scope of the wrapped function.

State Mutability

Functions can be declared as being pure, view or payable. view functions
are prohibited from changing the state, whereas pure functions also promise
not to read from state. To be able to accept Ether, functions must be declared
payable. In the bank contract the functions deposit and the fallback func-
tion are declared payable as they need to accept Ether from another address.
As the payment function only changes the balances mapping and does not
actually change anything about the account’s balance it does not need to be
payable.

2.2.3 Structs and Enums

Next to contracts there are two other ways to declare new types in Solidity,
structs and enums. Structs bundle several variables together. They don’t
offer any further functionality besides interacting with the contained vari-
ables. Enum members can be explicitly converted to any integer type and
are used to represent certain options.

9



2. Background

2.2.4 Arrays and Mappings
There are several different types of arrays and mappings in Solidity. Fixed-
size byte arrays hold a sequence of 1 up to 32 bytes. They are a value type
allowing them to be compared, shifted and used in bit operators as well as
being accessed by index.

Regular arrays hold elements of a common type and can either have a fixed
or a dynamic size.

Finally, mappings form a key-value storage that can only be declared in the
contract storage. They map elements from a key type to elements from a
value type where the key type must be any of the built-in value types. They
do not need to be initialized since each possible key is mapped to the default
value of the value type (all zero byte representation). As explained in the
introduction, the value at key k in mapping M is stored at the location given
by

Keccak-256(idM||k)

where idi is the internal ID of object i and || stands for concatenation.

This concludes the overview of the history of smart contracts and the intro-
duction to Solidity. In the next chapter we will delve into our intermediate
representation (IR).
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Chapter 3

IRSRI: A New Intermediate
Representation

In this chapter we introduce a new language-independent intermediate rep-
resentation (IR) IRSRI. It aims at reducing the complexity of high-level lan-
guages to facilitate analysis whilst keeping the high-level concepts relevant
for analysis. The overall design of the IR is similar to the one developed by
MLton1.

The underlying principle is a basic-block based control-flow graph (CFG).
Besides being in static single assignment (SSA) form for variables and three-
address code (3AC) for statements, our basic blocks resemble continuations
usually seen in continuation-passing style (CPS): each block can take argu-
ments and has a pointer to the next block in form of a transfer that can pass
arguments.

We will now describe our IR in more detail, starting with CFGs.

3.1 Control-Flow Graph

Introduced in 1970 by Allen [22], CFGs are directed graphs representing
programs where each node represents a basic block of the program. A basic
block is defined as being ‘a linear sequence of program instructions hav-
ing one entry point [. . . ] and one exit point’ [22] and contains program
statements that are executed sequentially without branching. A basic block
can have multiple predecessors and – in case of branching – have multiple
successors.

CFGs abstract away several high-level control structures and represent them
in the same way. Compare the if-else statement, the while loop and the

1http://mlton.org/
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3. IRSRI: A New Intermediate Representation

for loop in Listings 3.1, 3.2 and 3.3. Although they have different syntaxes
and elements we can represent them using the same structures, as their
respective CFGs show.

1 ...
2 if ( condition ) {
3 true body;
4 } else {
5 false body;
6 }
7 ...

Listing 3.1: If-else statement

condition

true body;

True

false body;

False

...

1 ...
2 while ( condition ) {
3 loop body;
4 }
5 ...

Listing 3.2: While loop

condition

loop body;

True

...

False

1 ...
2 for(init; condition ; loop expression ) {
3 loop body;
4 }
5 ...

Listing 3.3: For loop

init;
condition

loop body;
loop expression;

True

...

False

A property often used in conjunction with CFGs is called SSA and is de-
scribed next.

3.1.1 Static Single Assignment
SSA is a property in which each variable gets a value assigned to it exactly
once [23]. Consider the following code example. The code in Listing 3.4
makes no use of SSA. To find out which version of a variable is used in
each expression, we would need to track the definition-use chain for each

12



3.1. Control-Flow Graph

1 function foo(uint a, uint b) returns (uint) {
2 a = a + b;
3 b = a * a;
4 uint c = b - 1;
5
6 return c;
7 }

Listing 3.4: Without SSA

1 function foo(uint a0 , uint b0) returns (uint) {
2 uint a1 = a0 + b0;
3 uint b1= a1* a1;
4 uint c0 = b1 - 1;
5
6 return c0;
7 }

Listing 3.5: With SSA

variable. A definition-use chain maps a single definition Dv of a variable v
to all uses Uv where no other definitions D′v exist on the path between Dv
and Uv.

SSA solves this problem. In Listing 3.5 we introduce a new variable (repre-
sented as numbered versions) every time we assign to a variable. Since each
version is assigned to exactly once it becomes trivial to find its uses in the
following code.

An important property of SSA is that each use of a variable is strictly domi-
nated by its definition. For many optimizations on and analyses of SSA it is
in fact a necessary property [24].

A peculiarity of SSA will become visible in Listing 3.6. It represents the
absolute function and works as follows. We check if the argument a is less
than zero. If it is we assign its negative to itself, we then return the variable.

In Listing 3.7 we bring the code into SSA form. However, at the return
statement in line 5 we do not know which version of the variable to use.

Figure 3.1 shows the CFG of the code. As one can see, depending on the
condition the variable a1 will be defined or not. When reaching the return

13



3. IRSRI: A New Intermediate Representation

1 function abs(int a) public returns (int) {
2 if (a < 0) {
3 a = -a;
4 }
5 return a;
6 }

Listing 3.6: Branching without SSA

1 function abs(int a0) public returns (int) {
2 if (a0 < 0) {
3 int a1 = -a0;
4 }
5 return a??;
6 }

Listing 3.7: Branching with SSA

a0 < 0 ?

a1 = -a0;

True

return a??;

False

Figure 3.1: The CFG of Listing 3.7

statement we need to either return a1 if the condition was true or a0 it it
was false.

ϕ-Functions

Rosen et al. introduce ϕ-functions to deal with the problem of multiple pos-
sible values at the same node [23]. For any node u with an assignment of the
form Vk ← ϕ(Vi, Vj) the ϕ-function is defined as follows. If control reaches
u by the left inedge, then Vk ← Vi. If control reaches u by the right inedge,
then Vk ← Vj. Thus the ϕ-function ”magically” returns the correct value,
depending from where the control reaches it.

A way to avoid ϕ-functions was introduced by the developers of the Stan-
dard ML compiler MLton2 [25]. Their basic blocks are similar to functions,

2http://mlton.org/
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a0 < 0 ?

a1 = -a0;

True

a2 = φ(a1, a0);

return a2;

False

(a) Using ϕ-functions

param0

param0 < 0 ?

Transfer → 2, 3

1

 

a0 = -param0;

Transfer → 3

2

True

arg0

return arg0;

Transfer return

3

False
param0

a0

(b) Using arguments, the edges
show the values passed

Figure 3.2: The CFGs of Listing 3.7 using ϕ-functions and arguments

in that they can take arguments. Whenever a ϕ-function would have been
input in standard SSA, the basic block in MLton will take the value as an
argument. In addition each basic block has a continuation which indicates
where the execution continues after the current basic block. In this sense
continuations are similar to a call of the next block, passing the necessary
arguments.

Our IR is heavily influenced by MLton and uses the same basic design.
Each basic block can take arguments and has a transfer to the next block. By
being in SSA form each block has implicitly access to the variable scope of
previous blocks.

Figure 3.2 shows the CFG of the same code as Figure 3.1. Figure 3.2(a) uses
ϕ-functions while Figure 3.2(b) uses arguments and transfers.

Handling basic blocks as functions and giving each block a continuation to
the next one are elements that come from an alternative to SSA called CPS.

It is known that SSA can be transformed into CPS and vice-versa [26]; more-
over Appel makes the argument that SSA is in itself a form of functional
programming [24].

Now that we have laid out the basic principles influencing our IR we will
follow with a more in-depth explanation of all aspects.

15



3. IRSRI: A New Intermediate Representation

Kind IR Type Description

CFGNodes SourceUnit Represents single source unit
Contract Represents single contract
Block Represents single basic block
Function Represents single function
Statement Represents single statement
Comment Debug node

Expressions Assignment Assignment to local variable
Argument Input to Block
Emit Represents the emit keyword
Const Constant value
MagicVariable Special Solidity variable (msg.sender, . . . )
Mapping Mapping variable
Array Array variable
MemberStore Store into member (obj.member = v)
MemberLoad Load from member (obj.member)
BinaryOp Binary operation
UnaryOp Unary operation
StateVariableLoad Reading value of state variable
StateVariableStore Assignment to state variable
ArrayLoad Load from array (a[i])
ArrayStore Store into array (a[i] = v)
MappingLoad Load from mapping (m[key])
MappingStore Store into mapping (m[key] = v)
Placeholder Represents in modifiers

Transfers Goto Simple transfer to other block
Jump Internal function call
Call External function call
Branch Branch
Return Function return

Table 3.1: Overview of IR

3.2 IRSRI in Detail

We will now further describe our IR. Table 3.1 gives an overview of all the
possible IR types and a short description of each. The main element is the
Block, which represents a basic block of the CFG. Each Block can have
multiple Argument objects, a list of Statement objects and a Transfer object
pointing to the next Block.

16



3.2. IRSRI in Detail

1 function sum(uint a, uint b) public returns (uint) {
2 uint c = a + b
3 return c;
4 }

Listing 3.8: Sum function

param0, param1

Parameter param0

Parameter param1

BinaryOp (Parameter param0) + (Parameter param1)

Assignment (BinaryOp (Parameter param0) + (Parameter param1))

Return (Assignment (BinaryOp (Parameter param0) + (Parameter param1)))

Figure 3.3: The CFG (single block) of Listing 3.8 implementing SSA using the pre-
vious objects

A Function represents a single function in Solidity. It contains a pointer
to the entry Block of the function. Function modifiers are not modelled
separately, their effects are inlined into the CFG of the function that use
them.

All Function instances of a Solidity contract are bundled in a Contract ob-
ject. Additionally, Contract objects contain Expression objects representing
the declaration of state variables.

We differentiate two basic methods of representing variables. For local vari-
ables we use SSA by using an Assignment object. The ”new” variable is
represented by the object itself, the value is held in the object.

For non-local variables as well as local variables of not-primitive type (ar-
rays, members) we use the special methods xLoad and xStore where x can
be any of the following: Member, StateVariable, Array or Mapping. When
one of the listed objects is accessed, we emit a new xLoad object. When one
of the listed objects is assigned to, we emit the corresponding xStore object.

Expressions are represented by several objects. Besides the xLoad and xStore
objects described previously, we define a BinaryOp object for binary opera-
tions, a UnaryOp object for unary operations and Const for constants. Ad-
ditionally we introduce Array and Mapping for the variable (the pointer) of
arrays and mappings (accessing those is done as explained above).

Finally we introduce Transfer objects that represent edges between Block
instances. They are Goto, Jump, Call, Branch and Return. They all contain
arguments and – except for the Return – have a reference to the following

17



3. IRSRI: A New Intermediate Representation

Block instances. Whereas Goto objects represent a simple transfer from one
Block instance to the next, Jump and Call objects are more complex. Both
represent the transfer to another function; Jump objects point to functions
in the same contract, Call objects to functions in another contract. Branch
objects are used in conditional jumping. Each Branch contains a reference
to a condition Expression and point to two Block instances: one if the
condition evaluates to true, the other if the condition evaluates to false.

We will now take a closer look at Block objects to describe how the argu-
ments work and how statements are listed.

3.2.1 The Block Object

As we have seen before, a single basic block is represented by a Block in our
IR. Each Block consists of three parts: a list of arguments, a list of statements
and finally a transfer. We will now describe each part in turn.

Arguments

As described in Section 3.1.1 we eliminate the use of ϕ-functions by intro-
ducing arguments to our basic blocks. We have two different kinds of argu-
ments in our IR. The first is the Argument. It represents a general argument
in a basic block and is needed after branches or function calls to hold the
return values.

To determine which arguments are needed, we need to differentiate between
branches and function calls. In the latter case we introduce an argument for
each return value. As described in Section 2.2, Solidity handles return values
as tuples, which can be nested. We perform a linearisation on nested tuples
such that there is an argument for each single return value.

In the case of branching, an argument is needed for each local variable that
has been changed between the branch and join. Each following reference to
one of those variables will access the Argument object instead of the current
assignment value.

We also introduce a subtype of Argument objects called Parameter. They are
used to represent arguments to a function in the original code.

Now that the Block is initialised with its arguments, we will explain how
the list of statements is structured.

Statements

The central part of each Block is its list of statements. When executing
a basic block, each statement is executed in order and sequentially. Each
Statement contains exactly one Expression representing the final value of
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1 function pythagoras (uint a, uint b) public returns (uint) {
2 return a*a + b*b;
3 }

Listing 3.9: Without 3AC

1 function pythagoras (uint a, uint b) public returns (uint) {
2 uint t0 = a;
3 uint t1 = t0 * t0;
4 uint t2 = b;
5 uint t3 = t2 * t2;
6 uint t4 = t1 + t3;
7 return t4;
8 }

Listing 3.10: With 3AC

param0, param1

Parameter param0

BinaryOp (Parameter param0) * (Parameter param0)

Parameter param1

BinaryOp (Parameter param1) * (Parameter param1)

BinaryOp (BinaryOp (Parameter param0) * (Parameter param0)) + (BinaryOp (Parameter param1) * (Parameter param1))

Return (BinaryOp (BinaryOp (Parameter param0) * (Parameter param0)) + (BinaryOp (Parameter param1) * (Parameter param1)))

Figure 3.4: The CFG (single block) of Listing 3.10 showcasing 3AC and SSA using
the previous objects

the Statement. To facilitate any further analysis we keep our list of state-
ments in 3AC form.

In 3AC form each statement is of the form x = y op z. If nested expressions
are present in the original code, we split them up and bring them into 3AC
form. An example of such a translation can be found in Listings 3.9 and
3.10. First the values are assigned, then the multiplication is handled and
finally both results of the multiplications are added together.

3AC can be very easily combined with SSA as is shown in Figure 3.4. Each
statement in 3AC form gets translated to a single SSA statement and each
new temporary variable for intermediate results is represented by the corre-
sponding object in our IR.

After having described Argument and Parameter objects as well as the inner
workings of the Statement object, we are still missing the final part of each
Block, the Transfer. We will present it next.
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Transfers

In this section we will describe some more features of Transfer objects; this
will conclude our description of the inner workings of the IR.

The sole purpose of Transfer objects is to link the basic blocks together,
so to speak they form the edges of the CFG. As described previously, we
introduce five different types of transfers to represent different cases. All
transfers can carry arguments to the next Block.

The first one is the Goto. It represents a simple transfer to a different block
and is used to join two branches back together.

Next are Jump and Call objects. They both represent a transfer to another
function and differ only in their meaning. Jump objects are used whenever
a function of the same contract is called; Call objects are used for external
functions. Besides the destination they transfer to, both also hold a reference
to the continuation block. This continuation is needed to know which block
to execute after the function returns.

The next type of transfer we use is Branch. Essentially they represent condi-
tional jumps. Each Branch object has a reference to a condition Expression
and points to two blocks. Depending on the condition, the execution will
continue in the one or in the other block. Additionally arguments are stored
for each branch separately.

Last there is the Return transfer. It does not contain a link to another block,
however it holds arguments. Return objects are emitted for every return
keyword used in the code. An additional Return object is issued for implicit
returns. The arguments contain the values being returned.

This concludes the chapter about IRSRI. We have introduced a new IR based
on MLton using a combination of SSA and CPS. In the next chapter we
will show how to translate from Solidity to IRSRI using attribute grammars
before performing a case study that aims at demonstrating the advantages
of IRSRI.
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Chapter 4

Attribute Grammars

In this chapter we will introduce attribute grammars and use them to trans-
late from Solidity code to a IRSRI representation.

One of the most used methods to translate from an abstract syntax tree (AST)
to an intermediate representation (IR) is a Visitor Pattern. Introduced by the
Gang of Four in 1994 [27], it allows to add (and change) functionality to a
structure without changing the structure itself. In compilers the underlying
structure is an AST and several visitors can be written to handle different
tasks on that AST.

However Visitor Patterns not only define the what but also the how. The
order of traversal is fixed as is the number of passes over the AST. Addition-
ally, several different visitors might be needed for different tasks creating
overhead.

That is why we decided to base our translation from the AST to our IR on
attribute grammars. Invented in 1968 by Donald Knuth and Peter Wegner
[28], they provide a way of assigning meaning to a language via attributes
of the grammatical categories of the language. These attributes are defined
by functions that are associated to each production rule of the language’s
grammar. By definition, attributes only define the what and do not make
any statement about how the value of the attributes must be computed.

Since the evaluation of the grammar is orthogonal to the grammar itself it
allows us to implement different evaluation methods without the need to
change the underlying grammar. On the other other hand we can change
the meaning of the grammar without changing its evaluation. Details on the
evaluation method are described in [29].
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4.1 Introductory Example
We will illustrate attribute grammars with an example from [28]. The exam-
ple defines the meaning of the binary notation for writing numbers.

The language has the following context-free grammar:

B→ 0
B→ 1
L→ B
L→ LB

N → L
N → L · L

The terminal symbols of this grammar are 0, 1 and ·, while the non-terminal
symbols are B, L and N. The grammar defines strings made from a sequence
of the symbols 0 and 1 potentially followed by the symbol · and a further
sequence of the symbols 0 and 1.

It is important to note the difference between the symbol 0 and the mathe-
matical concept of the number zero. In itself the formal grammar only gives
rules to produce certain strings.

If we wish to attach some meaning to the rules and give them certain se-
mantics, we can add attributes to the grammar. We want the grammar to
have semantics about binary numbers. Therefore we introduce the attribute
v(S) holding the meaning of a value to each non-terminal symbol S. We
define that it is of type integer for non-terminals B and L; for N it is of type
rational number. We introduce one more attribute to the non-terminal L:
l(L) of type integer that denotes the length of the bit sequence to which the
symbol expands to.

By adding semantic rules to our formal grammar, the mere string of symbols
we started with can now represent the concept of binary numbers. The
attribute v(S) holds the value of the symbol S while the attribute l(L) holds
the length of a list of bits L. The semantic rules are

B→ 0 v(B) = 0

B→ 1 v(B) = 1

L→ B v(L) = v(B), l(L) = 1

L1 → L2B v(L1) = 2v(L2) + v(B), l(L1) = l(L2) + 1

N → L v(N) = v(L)

N → L1 · L1 v(N) = v(L1) + v(L2)/2l(L2)
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N(v = 13.25)

L(v = 13, l = 4) · L(v = 1, l = 2)

L(v = 6, l = 3) B(v = 1) L(v = 0, l = 1) B(v = 1)

L(v = 3, l = 2) B(v = 0) 1 B(v = 0) 1

L(v = 1, l = 1) B(v = 1) 0 0

B(v = 1) 1

1

Figure 4.1: Attribute evaluation for 1101 · 01

As an example we take the string 1101 · 01 produced by our formal grammar.
By evaluating the attribute v(1101 · 01) according to our semantic rules we
will get the value of the string in the context of our semantics, which is
v(1101 · 01) = 13.25 The evaluation of the string 1101 · 01 is shown in Figure
4.1.

All the attributes used until now depend only on the descendants of the
non-terminal symbols. They are called synthesized attributes.

In the context of our current semantic rules for any two symbols B1 and
B2 the value v(B1) = v(B2) if B1 = B2. However when considering binary
numbers, the n-th closest bit to the radix point left of it represents the value
2n−1. On the right hand side of the radix point, the n-th-closest bit represents
the value 2−n . We want to adapt our semantic rules to behave accordingly.
To this end it is necessary to add some information about the distance from
the radix point to each symbol B. We introduce a new attribute s(S) of type
integer that holds positional information in form of a scale. Starting from
the radix point, the n-th bit Bn will have s(Bn) = n on the left hand side and
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N(v = 13.25)

L(v = 13, l = 4, s = 0) · L(v = 0.25, l = 2, s = −2)

L(v = 12, l = 3, s = 1) B(v = 1, s = 0) L(v = 0, l = 1, s = −1) B(v = 0.25, s = −2)

L(v = 12, l = 2, s = 2) B(v = 0, s = 1) 1 B(v = 0, s = −1) 1

L(v = 8, l = 1, s = 3) B(v = 4, s = 2) 0 0

B(v = 8, s = 3) 1

1

Figure 4.2: Attribute evaluation for 1101 · 01 using the new rules

s(Bn) = −n on the right hand side. Our new semantic rules are thus

B→ 0 v(B) = 0

B→ 1 v(B) = 2s(B)

L→ B v(L) = v(B) l(L) = 1,

s(B) = s(L)

L1 → L2B v(L1) = v(L2) + v(B), s(B) = s(L1),

s(L2) = s(L1) + 1, l(L1) = l(L2) + 1

N → L v(N) = v(L), s(L) = 0

N → L1 · L1 v(N) = v(L1) + v(L2)/2l(L2), s(L1) = 0,

s(L2) = −l(L2)

The scale attribute s(B) is defined when the non-terminal B is on the right
side in the syntactic rule L1 → L2B. It therefore depends on the ancestor of
the non-terminal symbol; those attributes are called inherited attributes.

To evaluate the value attribute in N we need to evaluate the length attribute
from the bottom up first. We can then evaluate the scale attribute from the
top down and finally evaluate the value from the bottom up again. The
resulting evaluation tree for the example 1101 · 01 is shown in Figure 4.2.

This example introduced the basic idea of attributes, which are semantic
information attached to a grammar. Attributes come in two forms: syn-
thesized attributes only depend on attributes from descendent non-terminal
symbols; inherited attributes only depend on ancestor attributes.

After this short introduction into attribute grammars we will now describe
some attributes used in the translation from Solidity to IRSRI.
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4.2 The Semantic Rules Translating Solidity
There are several concepts we need to handle during the translation from
Solidity to IRSRI. We will now present the most important ones as well as
showing the formal definition of some grammar rules.

4.2.1 IRSRI Representation
The primary semantics we want to extract from the AST is the representation
of the Solidity code in IRSRI. We introduce an attribute cfg that contains the
meaning of this concept. The attribute is defined for each rule in the gram-
mar of the Solidity AST. For a node N in the AST the IRSRI representation
of the subtree with root N is returned by evaluating N.cfg.

To translate an entire source unit into IRSRI we follow the following proce-
dure:

1. Get the AST of the contract from the Solidity compiler solc1.

2. Transform the returned JSON-object into our class-instance based rep-
resentation holding the attribute grammar rules.

3. Evaluate the cfg attribute of the SourceNode object

Every attribute grammar needs to be backed by an evaluation method.
When evaluating an attribute, the method works out all the dependencies
between used attributes and evaluates them in a suitable order. Our evalu-
ation method is presented in [29].

To evaluate the correct IRSRI representation we need to handle further con-
cepts. We will explain the two concepts of the current basic block and vari-
ables next.

4.2.2 Current Basic Block
Since our IR is essentially a control-flow graph (CFG) we need to correctly
identify basic blocks in the code. We do this using the following three at-
tributes:

Attribute name Type Description

current block pre inherited Current basic block before the node
current block synthesized ”Working copy” for current node
current block post synthesized Basic block after the node

We show the formal rules for the current block mechanism in Table 4.1. For
the production rule B→ ∅ (block without any statement) the working copy

1https://solidity.readthedocs.io/en/v0.5.7/using-the-compiler.html
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B→ ∅
B.current block = clone(B.current block pre)
B.current block post = B.current block

B→ S

B.current block = clone(.current block pre)
S.current block pre = B.current block

B.current block post =

{
B.current block, if type(S) ∈ D

S.current block post otherwise

B→ S1, S2, . . . , Sn

B.current block = clone(B.current block pre)
S1.current block pre = B.current block
Si+1.current block pre = Si.current block post

B.current block post =


B.current block, if type(S1) ∈ D

Si−1.current block post if type(Si) ∈ D

Sn.current block post otherwise

Table 4.1: Attribute grammar rules for AST-node block B. Each block can have
multiple statements S. D is the set containing the node types return, continue and
break.

B.current_block is defined as the clone of B.current_block_pre. Since
there are no statements that could change the ”state” of the current block
B.current_block_post is equal to B.current_block.

For blocks that contain a single statement S we need to slightly adapt the
rules. The value of the inherited attribute S.current_block_pre in the state-
ment is set to B.current_block. This ensures S has a reference to the
current basic block which it can use to e.g. add a statement to it. Since
the statement could change the current basic block (if it contains a func-
tion call for example) the current basic block for following AST blocks will
be different. Therefore the value of B.current_block_post corresponds to
S.current_block_post. However if the type of S is any one of return,
continue or break they break the execution flow and B.current_block_post
takes the value of B.current_block.

For a block with multiple statements we chain the current_block_post
attribute of one statement to the current_block_pre attribute of the next
statement. Additionally we also check for each statement if it is of type re-
turn, continue or break and assign S.current_block_post of the previous
statement to B.current_block_post.

4.2.3 Variables

Next to the concept of basic blocks we also need to correctly translate local
variables into SSA. This is done with three attributes that behave similarly
to the ones presented to handle basic blocks. The formal grammar for the
three attributes variables_pre, variables and variables_post is shown
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B→ ∅
B.variables = clone(B.variables pre)
B.variables post = B.variables

B→ S

B.variables = clone(.variables pre)
S.variables pre = B.variables

B.variables post =

{
B.variables, if type(S) ∈ D

S.variables post otherwise

B→ S1, S2, . . . , Sn

B.variables = clone(B.variables pre)
S1.variables pre = B.variables
Si+1.variables pre = Si.variables post

B.variables post =


B.variables, if type(S1) ∈ D

Si−1.variables post if type(Si) ∈ D

Sn.variables post otherwise

Table 4.2: Attribute grammar rules for handling variables at AST-node block B.
Each block can have multiple statements S. D is the set containing the node types
return, continue and break.

A→ Ele f t, Eright
A.variables = clone(A.variables pre)
A.variables post = A.variables[Ele f t.id 7→ Assignment(Eright.c f g)]

Table 4.3: Attribute grammar rules for handling variables at AST-node assignment
A. Each assignment has a left-hand side expression Ele f t and a right-hand side
expression Eright. In this example we assume Ele f t to be of type identifier.

in Table 4.2.

In Table 4.3 we show the formal grammar for the attributes variables and
variables_post of an assignment A of a local variable. We use m[k] to
denote the value stored at key k of a mapping m and m[k 7→ v] to denote
a new mapping that is identical to m except for value v at key k. As de-
scribed in Section 3.2 we use the current Assignment object as value for
local variables. The semantic rule A.variables post = A.variables[Ele f t.id 7→
Assignment(Eright.c f g)] shows how this is done in our IR. In an assignment
we will create a new IR Assignment object containing a reference to the IR
representation of the right hand side (Eright.c f g).

Variables can be shadowed which is why the name of the variable is un-
suitable to use as definitive identifier. To keep track of scoping of variables
we can use information provided in the AST by the Solidity compiler. Each
identifier node holds the ID of the referenced declaration. Since each identi-
fier referencing the same declaration actually accessed the same variable, we
use this ID as key to the current assignment of that variable. In the semantic
rule discussed above, the access to the ID is seen in the expression Ele f t.id.
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We have shown in this chapter how we have established the IR of a smart
contract using our evaluation framework. We will now show how to per-
form symbolic execution to prove post-conditions on the code.
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Chapter 5

Case study: Symbolic execution using
IRSRI

To test our IR we used IRSRI to perform symbolic execution of Solidity code.
We will introduce and explain symbolic execution based on an example
contract shown in Listing 5.1. The contract consists of two functions, abs
and neg. The function neg(a) returns neg(a) = −a and is used in the
second function abs(a) which returns the absolute value abs(a) = |a|. The
CFG returned by IRSRI is shown in Figure 5.1.

We will start by giving a short introduction to symbolic execution and the
general idea behind it. The introduction will be followed by in-depth expla-
nations of the path constraint (PC) and the symbolic state. Finally we will
show how to use symbolic execution to prove post-conditions over code.

1 contract Foo {
2 function abs(int a) public returns (int) {
3 if (a < 0) {
4 a = neg(a);
5 }
6 return a;
7 }
8
9 function neg(int a) private returns (int) {

10 return -a;
11 }
12 }

Listing 5.1: Implementation of absolute function in Solidity
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Function abs

Function

a

Assignment (a=a)

Const 0

BinaryOp ((a=a) < 0)

Branch ((a=a) < 0)

IF_TRUE

 

Jump

True 

IF_FALSE

 

Goto

False 

IF_JOIN

arg0

Assignment (a=arg0)

 [(a=arg0)]

CONTINUATION

arg0

Assignment (a=arg0)

Goto

(a=arg0)

arg0

Function neg

(a=a)

(a=a)

Function

a

Assignment (a=a)

Const 0

BinaryOp (0 - (a=a))

 [(0 - (a=a))]

Figure 5.1: The CFG of the contract from Listing 5.1 returned by IRSRI

5.1 A Brief Overview of Symbolic Execution

Introduced by King in 1976 [30], symbolic execution in its essence consists
of executing a program while using symbolic values as inputs instead of
concrete ones. Normal program execution takes concrete values as input
and explores a single execution path returning a certain output. By contrast,
symbolic execution can explore many different execution paths. This allows
us to analyse code in more detail than with usual test-case based analysis.
As in regular program execution, we need to keep track of the current state
of the symbolic execution.

For our example contract mentioned above, we are able to prove that ∀a ∈
R. abs(a) ≥ 0 using symbolic execution. To do so, we will symbolically
execute the program and provide it with a symbolic input argument a.

The algorithm to symbolically execute a program and check a post-condition
is shown in Algorithm 1.
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Algorithm 1: Symbolic Execution
Input: entryBlock, args, acct, env, post-condition

1 foreach argkey, arg in zip(entryBlock.args, args) do
2 initStore [argkey]← arg;
3 end
4 initFrame← [entryBlock, initStore ];
5 initStack.push(initFrame);
6 pc = True;
7 initState← [pc, acct, env, stack];
8 availableStates.add(initState);
9 while ∃s ∈ availableStates do

10 newStates, newFinalStates← executeBasicBlock(s);
11 availableStates.add (newStates);
12 foreach fs in newFinalStates do
13 check(fs, post-condition);
14 end
15 end

After this short introduction to symbolic execution we will explore the sym-
bolic state.

5.2 Symbolic State

Most imperative languages are stateful. When executing a program written
in a stateful language the executing environment needs to keep track of the
program state. symbolic execution is no exception although the state will
look different. Our symbolic state is defined as

state :=


path constraint,
account,
environment,
stack

First is the PC that accumulates constraint along a walked execution path.
Next are the account and the environment that hold information about a
contract and a transaction. These are exclusive to the analysis of smart
contracts. Finally our state contains a stack containing the symbolic store.

We will now explore each of the components in more detail.
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a : a
pc : >1

a : a
pc : >∧ (a < 0)2

a : a
pc : >∧ ¬(a < 0)3

a : −a
pc : >∧ (a < 0)4

Figure 5.2: The symbolic tree of the contract abs function with symbolic input a.

5.2.1 Path Constraint

The PC contains information about the path previously traversed to arrive
at the current state. We start with an unconstrained PC pcstart = >. Each
time the symbolic execution engine encounters a branch it splits into two
distinct states, each associated to one of the branches. The PC of each new
state will be the old PC intersected with some information about the branch.
In IRSRI each branching has an associated condition. Thus the PCs of the
branches will be pctrue = pc ∧ condition for the path in which the condition
is true and pc f alse = pc ∧ ¬condition for the path in which the condition is
false.

In our code example in Listing 5.1 we encounter a branching statement in
line 3. The statement if (a < 0) splits the execution path in two. We show
the symbolic tree of the execution in Figure 5.1. We start at 1 , a with a value
of a and pc = >. After the branch we have two states: 2 and 3 . As one
can see, both PCs have accumulated the corresponding constraint.

After having seen how the PC works we will now turn our attention to
two special concepts in the scope of smart contracts: the Account and the
Environment.

5.2.2 Account and Environment

As we have seen in our introduction to Ethereum, smart contracts are one of
two types of accounts in Ethereum and are controlled by their contract code.
During execution, a smart contract can access the address and the balance
of the contract account. Additionally each contract has a storage where state
variables and mappings are stored. The address, the balance and the storage
build the account state.

In addition to the account state that persists beyond a transaction, there are
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...

Function abs

1

...

IF TRUE

2

...

CONTINUATION

Function neg

3

...

CONTINUATION

4

...

IF JOIN

5

...

6

Figure 5.3: Basic blocks in symbolic stack during the execution of the code in Listing
5.1

also properties pertaining to single transactions. These include the sender
of the transaction, the recipient, the value in Wei to be transferred to the
recipient, the gas price and the gas limit. These make up the environment
state.

A symbolic engine will need to create the account state together with the
deployment of the contract as well as generating an environment state for
each transaction.

5.2.3 Stack, Frames and the Symbolic Store
We proceed to the last component of the symbolic state, the stack. Each
stack frame consists of a symbolic store, mapping an IR node to a z3 object,
and a Block, the next basic block to be executed in that state

f rame :=

{
symbolic store,
Block

We will first describe the general use of the stack before going into more
detail about the symbolic store.

The Stack Grows and Shrinks

Similarly to regular program execution we use a call stack to store informa-
tion about the execution flow. The head of the stack points to the currently
executed Block and its symbolic store. Whenever we transfer to another
function we change the Block in the current frame to the continuation Block.
We then copy the symbolic store and associate it to the jump destination in
a new frame. Finally the new frame is pushed on the stack.

In Figure 5.3 we show the state of the symbolic stack during the execution
of the abs function when the condition is true. When starting the execution
we interpret the entry block Function abs which is the Block on top of the
stack 1 . After the transfer the stack looks like 2 . Because we encounter a
Jump the symbolic execution engine changes the block in the current frame
to the continuation before pushing the new frame containing the destination
3 . A Return will trigger the engine to pop the current frame from the stack

and store the return values at the arguments in the symbolic store of the new
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Solidity Type z3 Object

address Int
address payable Int
bool Bool
string String
mapping Array
array Array
uint Int
uintN BitVec [N bits]
int Int
intN BitVec [N bits]
byte BitVec [8 bits]
bytesN BitVec [8N bits]
bytes Array

Table 5.1: Solidity to z3 type mapping

head of stack 4 . After the CONTINUATION the current Block in the frame will
be replaced by the next Block, IF JOIN 5 . Finally the Return will trigger
the engine to pop the last frame before finishing the execution 6 .

Having now seen the general principle of the stack we want to understand
the symbolic store in a bit more detail.

Symbolic Store

The symbolic store maps a node from the IR to its corresponding symbolic
representation.

We use two different types of mappings. The first is used in the account
state as storage of state variables. It uses the variable name as key, since
state variable names are unique and cannot be shadowed.

The second is stored on the execution stack. It takes an Expression as key
and has the corresponding symbolic expression as value.

Since we use the z3 satisfiability modulo theories (SMT) solver, any IRSRI
object will be mapped to a corresponding z3 expression. An important
consideration when translating from IRSRI to z3 are data types. For each
Solidity type we need to find a corresponding z3 type. Our mapping is
shown in Table 5.1. Some of the mappings are straightforward, e.g. bool→
Bool. However certain Solidity types could be represented by several differ-
ent types in z3. uint and int in Solidity are syntactic sugar for uint256 and
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int256 and are bit vectors of size 256 internally. We did however choose to
represent uint and int as Int since z3 performs much worse when using
BitVec with quantifiers1.

Once the basic objects are mapped to z3 we can start building more compli-
cated expressions. Due to our use of three-address code (3AC) in IRSRI we
can simply go through each Statement of a Block, evaluate the Expression
and store it in the symbolic store using the node as key. Whenever the
Expression is used we retrieve the current z3 expression from the symbolic
store using the reference as key.

There are several important details to mention. The first concerns the scope
of the symbolic store; it reaches over a single basic block. It is only when
a Jump or Call is encountered that we create a new symbolic store for the
new stack frame. The store is then initialised with the values of the block
arguments. Whenever a Return is encountered, the current frame is popped
and values of the continuation arguments are set in the symbolic store of the
new head.

The second detail concerns Branch instances. At each Branch instance the
symbolic execution engine must create two new symbolic stores such that
each path has access to the previous state but changes in one of the paths
do not influence the symbolic store of the other path.

This concludes the section about the details of our case study. We will end
this chapter by showing how we can use symbolic execution to check if a
post-condition is valid.

5.3 Post-Condition Checking with Symbolic Execution
When trying to prove that a certain Post-Condition A holds for a program
independently of input values we are trying to show that A holds for each
final state of the program assuming that execution starts from an arbitrary
state. Let S be the set of final states of a program and pcs be the PC of a
state s, then we want to show

∀s ∈ S . pcs =⇒ A

In general, SMT-solvers solve existentially quantified formulas. Therefore
we transform the formula to the negation of an existential formula, and
then try to solve that existential formula

¬∃s ∈ S . pcs ∧ ¬A
1It is still possible to test for over- and underflows by adding assertions such as Int <

2256. If we can find an interpretation where the assertion fails it is a possible source of
overflows.
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5. Case study: Symbolic execution using IRSRI

If we are unable to find an interpretation that satisfies pcs ∧ ¬A we have
shown that pcs =⇒ A holds and, if we have tested all possible paths
through a program, A holds for the program.

Returning to our example function in Listing 5.1, we are trying to prove the
post-condition abs(a) ≥ 0 for any a. The two final states of the program are
3 and 4 in Figure 5.2. We will now go through both states and try to find

an interpretation satisfying pc ∧ ¬(abs(a) ≥ 0).

Let abs(a) = a and pc = >∧ ¬(a < 0). Then

>∧ ¬(a < 0) ∧ ¬(a ≥ 0)

=⇒ (a ≥ 0) ∧ (a < 0)

=⇒ ⊥

For the second final state let abs(a) = −a and pc = >∧ (a < 0). Then

>∧ (a < 0) ∧ ¬(−a ≥ 0)

=⇒ (a < 0) ∧ (−a < 0)

=⇒ ⊥

Since pc ∧ ¬(abs(a) ≥ 0) leads ad absurdum for each state we have shown
that our post-condition abs(a) ≥ 0 is valid.

5.4 Conclusion
We have found the general design of our IR to be powerful enough to repre-
sent complex contracts whilst remaining simple enough to perform different
analyses with the IR as basis. The IR contains much high-level information
important for any type of analysis. The use of arguments and transfers al-
lows to handle features like multiple return values without any additional
effort.

Another major aspect of our IR that has proven to be a good choice concerns
the use of IR objects as temporary variables. Both static single assignment
(SSA) and 3AC require the creation of temporary variables to hold a new
binding in the case of SSA and a temporary result in 3AC. By using the
same type of objects, IR nodes, as temporary variables in both cases allows
us to reuse them as key to the corresponding symbolic representation with-
out additional effort. This allows us to have a simpler and cleaner translator
since we get a one-to-one mapping between the IR and the symbolic repre-
sentation.
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5.4. Conclusion

In general our IR has lent itself nicely as basis for symbolic execution and
static analysis (see [29]). By using 3AC and having similar structures we
were able to translate most nodes to z3 with very little effort. Once a map-
ping from Solidity to z3 types was defined, the remaining translation was
quite trivial.

This concludes our case study. Next to introducing several concepts of sym-
bolic execution as the symbolic state, the path constraint and the symbolic
store, we have shown how to perform symbolic execution of IRSRI using z3
as SMT solver. This brings us to the last part of this report, where we will
give an outlook of future steps in this domain.
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Chapter 6

Outlook

There are several conceivable future steps. The first ones concern the transla-
tion from Solidity to the IR. Several features of Solidity including modifiers,
inline assembly and libraries are not fully functional yet. In addition, testing
the correctness of a translation is currently done by comparing the original
code with the produced IR manually. The development of automated means
for testing the correctness of a translation could greatly improve future de-
velopment speed.

Other steps would improve the reach of analysis tools built on top of IRSRI.
By developing the grammatical rules for other high-level languages, our at-
tribute grammar evaluation framework could translate code written in those
languages to IRSRI. This would allow to use any analysis tool based on IRSRI
to be used on code written in those languages. Additionally IRSRI could be
integrated with further tools to enhance the analysis possibilities. One such
example is Securify1 which will start using IRSRI as basis for its analysis
tools.

We believe that an IR based on a combination of static single assignment
and continuation-passing style is a promising basis for many kinds of appli-
cations.

1https://securify.ch/
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