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A chemically modified antibody mediates complete eradication
of tumours by selective disruption of tumour blood vessels
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BACKGROUND: The possibility of eradicating cancer by selective destruction of tumour blood vessels may represent an attractive
therapeutic avenue, but most pharmaceutical agents investigated so far did not achieve complete cures and are not completely
specific. Antibody conjugates now allow us to evaluate the impact of selective vascular shutdown on tumour viability and to study
mechanisms of action.
METHODS: We synthesised a novel porphyrin-based photosensitiser suitable for conjugation to antibodies and assessed anticancer
properties of its conjugate with L19, a clinical-stage human monoclonal antibody specific to the alternatively spliced EDB domain of
fibronectin, a marker of tumour angiogenesis.
RESULTS: Here we show in two mouse model of cancer (F9 and A431) that L19 is capable of highly selective in vivo localisation around
tumour blood vessels and that its conjugate with a photosensitiser allows selective disruption of tumour vasculature upon irradiation,
leading to complete and long-lasting cancer eradication. Furthermore, depletion experiments revealed that natural killer cells are
essential for the induction of long-lasting complete responses.
CONCLUSIONS: These results reinforce the concept that vascular shutdown can induce a curative avalanche of tumour cell death.
Immuno-photodynamic therapy may be particularly indicated for squamous cell carcinoma of the skin, which we show to be strongly
positive for markers of angiogenesis.
British Journal of Cancer (2011) 104, 1106–1115. doi:10.1038/bjc.2011.78 www.bjcancer.com
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Aggressive solid tumours (Folkman, 2006) and haematological
malignancies, such as lymphomas (Li et al, 2008; Sauer et al, 2009;
Schliemann et al, 2009a, b), myelomas (Atkins et al, 2008) and
nests of leukaemia blasts in the bone marrow (Padro et al, 2000),
depend on new blood vessels for their florid growth and
dissemination. As angiogenesis is a rare event in the healthy adult
(Carmeliet, 2003; Folkman, 2006), mainly confined to the female
reproductive cycle, therapeutic strategies have been devised that
aim at inhibiting the formation of new tumour blood vessels
(inhibition of angiogenesis) or at destroying the pre-formed
tumour neovasculature (vascular targeting).
Inhibition of key mediators of tumour angiogenesis has

culminated in the clinical application of Avastin, a humanised
monoclonal antibody binding soluble VEGF-A, thus stopping
interaction with its receptors (Ferrara et al, 2004; Hurwitz et al,
2004). However, although Avastin confers a survival benefit to

patients with colon, lung and kidney cancer when used in
combination with chemotherapy (Hurwitz et al, 2004), this agent
is rarely curative, as tumours often secrete multiple mediators of
angiogenesis that compensate for the loss of VEGF-A activity.
In principle, strategies aimed at selective destruction of existing

tumour blood vessels (rather than at inhibition of angiogenesis)
could have a more profound impact on the disease, causing an
avalanche of tumour cell death as a result of oxygen and nutrient
deprivation (Neri and Bicknell, 2005). Indeed, the antibody-based
targeted delivery of toxins or mild pro-coagulant factors to tumour
blood vessels can lead to tumour infarction in mouse models of
cancer. In some cases, complete tumour eradication was observed
(Thorpe et al, 1985; Huang et al, 1997; Nilsson et al, 2001).
Recently, tumour-targeting derivatives of a truncated form of
tissue factor have been moved to mechanistic clinical trials in
patients with cancer (Bieker et al, 2009).
Therapeutic strategies based on selective occlusion of tumour

vasculature are marked with an inherent paradox. Although, it is
clear that the collapse of tumour vasculature can lead to massive
tumour cell death, it is less obvious that all tumour cells (including
those at the periphery of the neoplastic lesion neighbouring on
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healthy and well-oxygenated tissues) should die as a result of a
vascular insult. In fact, when solid tumours are treated with
combretastatins (small organic molecules that interfere with
tubulin polymerisation in endothelial cells causing a transient
occlusion of tumour blood vessels (Chaplin et al, 2006)), extensive
necrosis is observed only in the tumour core, whereas a rim
of neoplastic cells survives at the periphery of the lesion and leads
to progression of the disease (Chaplin et al, 2006; Heath and
Bicknell, 2009).
In the study presented here, to investigate whether and how

solid tumours can be completely eradicated solely as a result of a
vascular shutdown, we experimentally disrupted tumour blood
vessels by means of antibody–photosensitiser (PS) conjugates,
which selectively localise to the tumour neovasculature in vivo. We
had previously reported that new blood vessels induced in the
cornea of rabbits could be completely ablated, following intrave-
nous injection of suitable antibody–PS conjugates and irradiation
with red light (Birchler et al, 1999). Moreover, we had
observed that similar conjugates can trigger rapid intraluminal
blood coagulation in small superficial tumours in mice (Fabbrini
et al, 2006).
Photodynamic therapy (PDT) is a localised, non-invasive

treatment modality for superficial malignancies that relies on the
combination of non-toxic PSs and visible light in the presence of
oxygen to generate cytotoxic reactive oxygen species. Photo-
dynamic therapy causes localised cell death directly by induction
of apoptosis and/or necrosis as well as indirectly by destruction of
tumour vasculature and delayed stimulation of an immune
response against the malignancy subjected to PDT (Castano
et al, 2006).
Photosensitisers are small organic molecules (typically

o1000 kDa) that absorb light and that may display a toxic action
in their immediate surroundings either by generation of short-
lived reactive oxygen species (such as singlet oxygen) (Josefsen
and Boyle, 2008) or by localised heat generation (Chen et al, 1996).
To facilitate immuno-PDT studies, we developed porphyrin-based
PSs that absorb in the red light spectrum (approx. 630 nm) and
that can be coupled to recombinant antibodies without compro-
mising their immunoreactivity and solubility. As vascular tumour
targeting agent, we used the human monoclonal antibody L19
specific to the alternatively spliced EDB domain of fibronectin, a
marker of angiogenesis (Zardi et al, 1987). Extra domain B has
identical sequence in mouse and man, which facilitates tumour
targeting studies in syngeneic animal models (Tarli et al, 1999;
Borsi et al, 2002; Berndorff et al, 2005). The small immune protein
(SIP) format was chosen for the antibody, which exclusively
localises to blood vessels within the tumour mass, as revealed by
microautoradiographic studies (Borsi et al, 2002). Several biodis-
tribution studies performed in tumour-bearing mice had pre-
viously indicated that the pharmacokinetic properties of
antibodies in SIP format are intermediate between the ones of
fast-clearing scFv fragments and those of IgG, and thus ideally
suited for in vivo vascular tumour targeting applications (Borsi
et al, 2002; Berndorff et al, 2005; Tijink et al, 2006). Indeed,
SIP(L19) labelled with the radionuclide iodine-131 has recently
shown its ability to preferentially localise to tumours in
clinical trials and to induce complete responses in patients with
radiosensitive lymphomas (Sauer et al, 2009). The L19 antibody
has also been fused with many cytokines (Carnemolla et al,
2002; Halin et al, 2002, 2003; Gafner et al, 2006; Kaspar et al,
2007) and two of these derivatives (L19-TNF (Halin et al, 2003)
and L19-IL2 (Carnemolla et al, 2002)) are currently being
studied in various phase I and phase II clinical trials in patients
with cancer.
The results presented in this study show that aggressive

tumours, implanted in the skin of nude mice, can be completely
eradicated as a result of vascular damage mediated by immuno-
PDT using SIP(L19)–PS conjugates. Interestingly, complete

tumour ablation required the presence of natural killer (NK) cells,
as only partial inhibition of tumour growth could be observed
following NK cell depletion with a monoclonal antibody specific to
asialo-GM1.
These findings reinforce the concept that the selective ablation

of tumour neovasculature can lead to long-lasting tumour
eradication and may be of clinical significance for the treatment
of squamous cell carcinoma (SCC).
Non-melanoma skin cancers such as basal cell carcinoma and

SCC, as well as in situ forms of SCC, represent the most frequent
type of cancer in the fair-skinned population. Their incidence is
increasing world wide, with immunocompromised patients being
particularly affected (Hofbauer et al, 2010). At present, SCC and
related malignancies are either removed by excision or treated with
non-surgical options such as radiotherapy and PDT.

MATERIALS AND METHODS

Chemistry

The PS used for conjugation to SIP(L19) was 5-[4-(succinimide-
N-oxycarbonyl)phenyl]-10,15,20-tris-(4-N-methylpyridimiumyl)-
porphyrin trichloride and was synthesised from commercially
available materials and is described in detail in the Supplementary
Online Materials.

Animals and cell lines

WI-38 VA-13 fibroblasts (ATCC number CCL-75.1), F9 murine
teratocarcinoma cells (ATCC number CRL-1720) and A431 human
epidermoid carcinoma cells (ATCC number CRL-1555) were
maintained in exponential growth in DMEM medium adjusted to
contain 4mM L-glutamine, 4.5 g l�1 glucose, 10% foetal bovine
serum, 100Uml�1 penicillin and 100 mgml�1 streptomycin (Gibco-
Invitrogen, Basel, Switzerland). Six- to eight-week-old female
Balb/c Nude CAnN.Cg-Foxn1nu/Crl mice were obtained from
Charles River Laboratories (Sulzfeld, Germany). All animal
experiments were performed under a project license granted by
the Veterinäramt des Kantons Zürich (169/2008).

Antibodies

The cloning, expression and purification of SIP(L19), SIP(F8) and
SIP(F16) antibodies have been described previously (Borsi et al,
2002; Brack et al, 2006; Zuberbuhler et al, 2009). Briefly, SIP
cDNA was cloned into the pCDNA 3.1 vector (Invitrogen, Basel,
Switzerland). The construct was transfected in CHO-S cells,
and selected stable high-expressing clones were grown in Power-
CHO-Cd 2 medium (Lonza, Belgium) and used to produce the
antibodies, which were purified directly from the supernatant by
protein A affinity chromatography.

Preparation of photoimmunoconjugates

Small immune protein–PS (SIP–PS) conjugates were prepared as
follows: B20-fold molar excess of amine-reactive porphyrin (PS
10mgml�1 in DMSO) was added to purified SIP antibody
(1mgml�1, in PBS pH 7.4) and incubated for 4 h at 301C, gently
shaking, avoiding light exposure. Small immune protein–PS
conjugates were then purified from free reagent over a PD-10
column (GE Healthcare, Glattburg, Switzerland) and dialyzed
overnight against PBS pH 7.4 at 41C.
Small immune protein–PS conjugates were analysed by SDS–

PAGE under reducing and non-reducing conditions using the
Invitrogen PAGE system following the manufacturer’s instructions.
The gels were first imaged under a Cy5 filter lamp and then stained
with Coomassie brilliant blue. The labelling ratio was estimated
spectroscopically by measuring the absorbance at 280 nm for the

NKs required for tumour ablation by vascular damage

A Palumbo et al

1107

British Journal of Cancer (2011) 104(7), 1106 – 1115& 2011 Cancer Research UK

T
ra
n
sl
a
ti
o
n
a
l
T
h
e
ra
p
e
u
ti
c
s



SIP (assuming that a 1mgml�1 of SIP solution gives absorption of
1.4U at 280 nm) and at 422 nm for the PS (e¼ 159 100M�1 cm�1).
In addition, mass spectrometric analysis was used to assess the
labelling ratio. For MALDI-TOF/TOF MS analysis, the conjugates
were mixed with a sinapinic matrix (10mgml�1 in 50% CAN and
0.05% TFA) at a 1:4 dilution and spotted onto a MALDI target
plate. Analysis of samples was performed on a freshly calibrated
AB4800 MALDI-TOF/TOF mass spectrometer (Applied Bio-
systems, Carlsbad, CA, USA). For data analysis, the Data Explorer
software (version 4.8) of Applied Biosystems was used. A Superdex
200 size-exclusion column (GE Healthcare) was used to analyse the
gel filtration profile of the antibodies before and after PS
conjugation under native conditions using fast protein liquid
chromatography (GE Healthcare).

Photokilling assay

For the in vitro photocytotoxicity assay WI-38 VA-13 fibroblasts
were used by seeding 30 000 cells per well in a 96-well plate and
incubating overnight at 371C in 5% CO2. The next day medium was
removed and cells were incubated with 50ml of SIP or SIP–
porphyrin conjugate in the appropriate dilutions (in PBS) for
1 h at 371C. Cells were subsequently washed with PBS twice to

remove unbound antibodies, and cells were covered with 50 ml of
PBS. The cells were then irradiated using a KL 1500 electronic
tungsten halogen lamp (Zeiss, Jena, Germany) equipped with a
620/60 filter (Chroma, Bellows Falls, VT, USA) for a total light dose
of 60 J cm�2. After light treatment, PBS was removed and 100 ml of
fresh medium were added. The cells were then incubated at 371C,
5% CO2 atmosphere over night. Controls include SIP–porphyrin
conjugate without irradiation, PBS only with irradiation, unmo-
dified SIP with irradiation and medium only without irradiation.
The following day, cell viability was measured using the Cell Titer
96Aqueous One Solution Cell Proliferation Assay (Promega,
Dübendorf, Germany), following the manufacturer’s instructions.
The percentage of cell growth was calculated as a ratio of the
counts between treated cells over the relative control (cells treated
with SIP–porphyrin conjugate without light exposure).

Mouse model and PDT protocols

(A) F9 murine teratocarcinoma cells (3� 106) were injected
subcutaneously into the flank of Balb/c nude mice. When tumours
were established and clearly palpable (B50mm3), mice were
randomly distributed among the groups (4 animals per group) and
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Figure 1 Synthetic route to the photosensitiser 5-[4-(succinimide-N-oxycarbonyl)phenyl]-10,15,20-tris-(4-N-methylpyridimiumyl)porphyrin trichloride.
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irradiated with a laser (Ceralas PDT diode laser 635±3 nm cw 2W,
light dose of 60 J cm�2) 24 and 48 h after intravenous injection in
the tail lateral vein of 150mg of SIP(L19)–PS. In addition to

SIP(L19)–PS, control groups included mice receiving SIP(L19)–PS
in the absence of light, mice treated with an irrelevant antibody–
PS conjugate (SIP(F16)-PS) and mice treated with saline. For
depletion of NK cells (Habu et al, 1981), mice were treated with
0.3mg of anti-asialo GM1 antibody (Wako, Osaka, Japan) by
intraperitoneal injection every 5 days. Mice were anesthetised with
ketamine (40mg kg�1)/xylazine (6mg kg�1) before light irradia-
tion. Differences between different groups were compared using
Student’s t-test. (B) A431cells (3� 106) were injected subcuta-
neously into the flank of Balb/c nude mice. When tumours were
established and clearly palpable (50–100mm3), mice were
irradiated once with a laser (Ceralas PDT diode laser 635±3 nm
cw 2W, total light dose of 60 J cm�2) 24 h after a single intravenous
injection in the tail lateral vein of 150mg of SIP(L19)–PS
conjugate. Mice were monitored daily and tumour growth was
measured three times per week with a digital caliper using the
following formula: volume¼ length�width�width� 0.5. Mice
were killed when the tumour reached a volume 42000mm3. In
addition, mice were photographed using a digital reflex camera
(Nikon D90).
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Detailed procedures used for the analysis of tissues (HC,
IHC/IHF, infiltration study) are reported in the Supplementary
Online Materials.

RESULTS

Synthesis of conjugatable PS derivatives

5-(4-Carboxyphenyl)-10,15,20-tri-(4-pyridyl)porphyrin was used
as starting material to introduce an activated ester that allows
the conjugation of this PS to amino residues on proteins.
To transform the carboxylic acid into the N-hydroxysuccinimide

ester, it was first converted to the corresponding acyl chloride by
reaction with thionyl chloride (Figure 1). The resulting acid
chloride was then reacted with N-hydroxysuccinimide. The final
step of the reaction sequence involved quaternisation with methyl
iodide to give the tricationic porphyrin. Iodide counter-ions were
exchanged for chlorides to increase water solubility as described
previously (Sutton et al, 2002).

Preparation and in vitro characterisation of antibody–PS
conjugates

Figure 2A presents the schematic structure of an antibody in SIP
format, where certain lysine residues have been covalently
modified with an amine-reactive PS moiety. Figure 2B shows the
results of SDS–PAGE analysis of SIP(L19) covalently modified
with PS, using Coomassie blue staining and fluorescence detection
methods. Complete formation of a disulphide-linked covalent
homodimer can be observed, which is disrupted when the sample
is run in reducing conditions. No free PS is detectable in the
sample. Figures 2C and D present size-exclusion chromatography
and mass spectrometric analysis of SIP(L19) before and after
conjugation with PS, indicating that the majority of the antibody
conjugate elutes with the retention expected for a covalent
homodimer, while exhibiting a Poisson distribution of molecular
masses in the fine MS analysis, reflecting a statistical labelling of
primary amino groups. At the average stoichiometric ratio of
monomeric SIP(L19)/PS¼ 1:3 (Figure 2D), the conjugate exhibited
490% retention of immunoreactivity, as revealed by affinity
chromatography on antigen resin.
Small immune protein(L19)–PS is a non-internalising antibody

conjugate. In line with previous observations (Birchler et al, 1999;
Fabbrini et al, 2006), this conjugate is able to kill cells when it
accumulates in their proximity given the presence of red light.
Figure 3 presents the results of a photokilling experiment
performed with WI38VA-transformed fibroblasts, which secrete
EDB-containing fibronectin (Carnemolla et al, 1996). When
irradiated with 150 J cm�2 of red light, the target cells could be
completely killed in the presence of 100 nM SIP(L19)–PS conjugate
(LD50¼ 3 nM), whereas no detectable cell killing was observed
without irradiation.

In vivo characterisation of antibody–PS conjugates

Small immune protein(L19) exclusively stains blood vessels in
frozen sections of F9 tumours, as revealed by immunofluorescence
analysis. By contrast, SIP(F16) does not recognise any antigen in
the mouse (Brack et al, 2006), did not stain mouse F9 tumours in
our experiment (Figure 4A) and therefore was chosen as negative
control for therapy experiments. To confirm that SIP(L19)–PS
retains the vascular tumour targeting properties of the unmodified
antibody, we injected nude mice bearing F9 tumours with this
conjugate and detected its in vivo localisation by immunofluor-
escence analysis of tissue sections from animals killed 24 h after
intravenous injection of the conjugate. Exclusive localisation to
tumours could be observed, with high selectivity for the tumour
neovasculature (Figure 4B).

Complete eradication of tumours by selective disruption
of tumour blood vessels

One molecule of homodimeric SIP(L19) was coupled to an average
of six PS molecules (Figure 2), resulting in a dose of PS
administered to the mice equal to 0.6mg kg�1. This is an order
of magnitude less than doses typically required to cure tumours in
mice using PDT based on similar PSs (Korbelik and Dougherty,
1999).
To evaluate the in vivo therapeutic activity of SIP(L19)–PS, we

injected this conjugate in tumour-bearing mice (150 mg per mouse)
and irradiated tumours with red light (two doses of 60 J cm�2).
Mice treated with SIP(L19)–PS exhibited a strong anticancer
response, with three out of four complete eradications that were
long lasting (Supplementary Figure S1 and Figure 5A). In contrast,
mice receiving saline or SIP(F16)–PS displayed rapid tumour
growth despite irradiation. Similarly, mice treated with SIP(L19)–
PS in the absence of light did not exhibit any inhibition of tumour
growth (Figure 5A). The therapeutic action of SIP(L19)–PS was
due to the rapid photodynamic disruption of tumour blood
vessels, leading to extensive haemorrhage and oedema throughout
the tumour mass (Figure 6), as well as to widespread pyknosis and
karyorrhexis presaging massive tumour cell death.
We further tested SIP(L19)–PS in mice bearing A431 tumours as

a model of SCC of the skin. To mimic a clinical procedure for the
treatment of SCC patients, we injected the antibody–PS conjugate
in mice bearing subcutaneous A431 tumours in a single dose
(150mg), followed by 3min irradiation (60 J cm�2) 24 h later.
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Although tumours in saline-injected mice were not affected by
irradiation, A431 lesions in mice receiving SIP(L19)–PS were
rapidly converted into black scabs (Figure 7A) as a result of
selective disruption of the tumour vasculature. The lesions healed
completely and with excellent cosmetic outcome within 2 weeks of
their immuno-photodynamic ablation (Figure 7A) and did not
grow back for the subsequent 100 days after treatment.

Essential role of NK cells in complete tumour eradication

The complete tumour eradication observed as a result of selective
vascular damage is counter-intuitive, as one would expect tumour
cells at the periphery (i.e., adjacent to normal, well-perfused tissue)

to survive and re-grow (Chaplin et al, 2006; Heath and Bicknell,
2009). To investigate whether NK cells could contribute to tumour
eradication following vascular disruption, immuno-PDT with
SIP(L19)–PS was performed in the presence or absence of NK
cell depletion (Figure 5B). As in the previous experiment, complete
tumour eradication (four out of four mice) was observed in
animals treated with SIP(L19)–PS. By contrast, tumours continued
to grow in mice that had received saline treatment. Interestingly,
removal of NK cells (mediated by an anti-asialo GM1 antibody)
before and during immuno-photodynamic treatment with
SIP(L19)–PS abrogated the therapeutic effect, resulting only in
transient tumour growth retardation followed by progression
(Figure 5B).

S
IP

(L
19

)–
P

S
S

al
in

e
S

IP
(L

19
)–

P
S

S
al

in
e

Figure 6 Effect of PDT with SIP(L19) –PS on tumour histology. Sections of F9 tumours excised 1 h after irradiation, stained with haematoxylin/eosin,
photographed at � 2.5 (B), � 5 (A, left panel), � 10 (A, middle panel) and � 40 (A, right panel) magnification.
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Natural killer cells efficiently infiltrated tumours within 6 h
after immuno-PDT treatment (Figure 8). In contrast, tumours of
mice injected with saline or depleted of NK cells before therapy
were virtually devoid of NK cells. The levels of macrophages were
similar in tumours of mice treated with SIP(L19)–PS or saline.
However, infiltration of tumours by macrophages increased
substantially in immuno-PDT experiments where NK cells were
depleted before therapy (Figure 8), possibly attempting to
compensate for the missing population of NK cells.

Immunofluorescence analysis of human specimens of SCC

To investigate whether immuno-PDT strategies based on vascular
targeting antibodies could be used for the ablation of skin lesions
of SCC, we first performed an analysis by immunofluorescence

samples of human SCCs and normal skin, using in addition to L19,
the F8 and F16 human antibodies, specific to the alternatively
spliced EDA and the A1 domain of tenascin-C, respectively
(Schliemann et al, 2009b). Like the EDB, these extra-domains are
virtually undetectable in normal adult tissues (Neri and Bicknell,
2005), but are often abundantly expressed around tumour blood
vessels in primary tumours and in metastases (Neri and Bicknell,
2005). Figure 7B shows the immunofluorescence analysis of
SCC lesions obtained from a small cohort of patients, in which a
selective staining of vascular and stromal structures could be
observed for the L19, F8 and F16 antibodies. Furthermore,
these antibodies are able to strongly stain frozen sections of an
SCC-like mouse tumour based on the A431 epidermoid carcinoma
cells, xenografted subcutaneously in nude mice (Supplementary
Figure S2).
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Figure 7 Immunophotodynamic application for skin lesions. (A) Subcutaneous xenografts of human A431 epidermoid carcinoma in nude mice are
ablated and heal upon a single dose of immuno-PDT with SIP(L19)–PS. Tumour-bearing nude mice injected with SIP(L19)–PS conjugate, photographed at
several points in time after a single dose of irradiation with light. (B) Sections of skin tissue (SCC or normal skin) from human patients stained for nuclei
(DAPI, blue), relevant target antigens (detected with SIPs F8, F16 and L19, respectively; red) and vascular endothelial cells (outlined by anti-von Willebrand
factor antibody, green). Scale bars, 100 mm.
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DISCUSSION

In this article, we have shown that an antibody–PS conjugate
specific to the alternatively spliced EDB domain of fibronectin, a
marker of angiogenesis, has the ability to localise selectively
around tumour blood vessels in vivo. This allows selectively
damaging the tumour vasculature by irradiation with red light,
leading to massive tumour cell death and to lasting cures.
Depletion experiments indicated that the action of NK cells is
essential for the induction of complete cancer eradication, killing
cells neighbouring on normal tissue at the periphery of the
tumour.
In the past, selective damaging of tumour neovasculature has

been studied with antibody–toxin and antibody–tissue factor
conjugates (Thorpe et al, 1985; Ran et al, 1998), as well as with
pharmacological agents (e.g., combretastatins (Hinnen and Eskens,
2007), ASA404 (Head and Jameson, 2010)) capable of preferential
interaction with tumour endothelial cells (Chaplin et al, 2006;
Martinelli et al, 2007; Siemann et al, 2009). Indeed, this latter class
of vasculature-disrupting agents has been investigated in clinical
trials in patients with cancer, revealing that combretastatin-A4 can
lead to enhanced tumour responses when combined with radio-
therapy or anticancer drugs (i.e., carboplatin, paclitaxel) (Siemann
et al, 2009) and that the flavonoid ASA-404 potentiates the action
of taxane-based chemotherapeutic regimens in patients with
non-small-cell lung cancer (Head and Jameson, 2010).

In principle, vasculature-disrupting agents like combretastatins,
while having a clear impact on vascular structures of tumours
(Heath and Bicknell, 2009), could act in part also on other cells of
tumours and stroma (Heath and Bicknell, 2009). Furthermore,
when used as single agents, combretastatins induce only a
transient shutdown of tumour blood vessels and do not cure
cancer (Heath and Bicknell, 2009). By contrast, the use of
vascular targeting antibody derivatives (Neri and Bicknell, 2005)
allows to confirm experimentally the selective localisation of the
therapeutic agent on the tumour neovasculature by a variety of
experimental techniques, including ex vivo fluorescence micro-
scopy (Figure 4B) or microautoradiographic analysis (Borsi et al,
2002; Villa et al, 2008). The use of PSs as bioactive payloads
ensures that therapy starts precisely when tumours are
irradiated, that is, at a point in time when the concentration of
antibody conjugate on non-vascular tumour cells and in
normal tissue is negligibly low. Indeed, anti-EDB antibodies
localise to the subendothelial extracellular matrix around
tumour blood vessels (Borsi et al, 2002; Niesner et al, 2002), and
antibody-delivered PSs mediate the disruption of adjacent
tumour vasculature by acting on proximal endothelial cells
through diffusible reactive oxygen species (Josefsen and Boyle,
2008) or through local generation of heat (Chen et al, 1996;
Yu et al, 2010).
At present, approved clinical applications of PDT are mainly

limited to localised skin cancers (such as basal cell carcinoma and
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Figure 8 Lymphocyte infiltration of tumours following PDT with SIP(L19)–PS. Microscopic immunofluorescence analysis of F9 tumour sections revealing
the degree of infiltration by NK cells and macrophages, respectively, 6 h after PDT based on saline or SIP(L19)–PS without or with previous depletion of
NK cells. Magnification: � 10.
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in situ SCC), actinic keratosis, head and neck carcinomas and the
premalignant condition Barrett’s oesophagus. Light penetration of
tissues reaches a maximum of only several millimetres at
wavelengths around 750–800 nm (Wan et al, 1981), thus
limiting practical applications to superficial cancer or endoscopi-
cally accessible lesions. However, the additional selectivity
associated with the antibody-based delivery of PSs promises to
extend the applicability of this methodology, while limiting side
effects.
Our results show that human SCC of the skin can be selectively

targeted by SIPs and that human skin tumours implanted in nude
mice can be ablated in a curative manner by one single dose of
immuno-PDT based on a vascular targeting antibody–PS con-
jugate. Complete responses were achieved at a dramatically
reduced dose of PS compared with conventional (non-targeted)
PDT regimens. These findings suggest that the therapeutic efficacy
of PDT in the clinical treatment of human skin cancers may be
greatly enhanced by the selective delivery of PSs conjugated to
vascular tumour-targeting antibodies. At the same time, we
envisage a significant reduction of curative PS doses and of side
effects in such targeted immuno-PDT regimens.
Clinical trials are now needed to elucidate whether the

promising results obtained with SIP(L19)–PS in the A431 tumour
model are confirmed in patients with cutaneous SCC or other EDB-
positive skin lesions. If so, then antibody–PS conjugates such as
SIP(L19)–PS may greatly extend the applicability of immuno-PDT
in the clinic, sparing many skin cancer patients the more invasive
treatment modalities of surgery and radiotherapy.
Independently of any practical application of immuno-PDT

(Kuimova et al, 2007), the data presented in this study
unequivocally confirm that a selective damage of the tumour
neovasculature leads to an avalanche of tumour cell deaths and is
sufficient for complete and long-lasting eradication of tumours
that are not cured by conventional chemotherapy (Ebbinghaus
et al, 2005).

Natural killer cells play a crucial role in the mechanism of action
of anticancer therapeutic antibodies (e.g., rituximab, trastuzu-
mab), engaging the Fc portion of the antibody with Fc-g receptor
3a (FCGR3A, CD16), leading to degranulation (Cartron et al, 2002).
High-affinity variants in the FCGR3A polymorphism have been
associated with better response to therapeutic antibodies (Cartron
et al, 2002). Furthermore, protein engineering strategies that
increase the binding affinity of antibodies to the cognate Fc
receptor may dramatically potentiate the anticancer activity of
therapeutic antibodies (Umana et al, 1999; Presta et al, 2002;
Nimmerjahn and Ravetch, 2005). The activity of NK cells can be
boosted by the targeted delivery of certain pro-inflammatory
cytokines by means of vascular targeting antibodies (Carnemolla
et al, 2002; Halin et al, 2002, 2003; Borsi et al, 2003; Schliemann
et al, 2009a). Our discovery of the important role played by NK
cells in the eradication of cancer following selective disruption of
tumour blood vessels may provide a strong rationale for the
combination of vascular disrupting agents with immunostimula-
tory drugs (e.g., immunocytokines) in cancer therapy.
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