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We test the principles of classical modal logic in fully quantum settings. Modal logic models our
reasoning in multi-agent problems, and allows us to solve puzzles like the muddy children paradox.
The Frauchiger-Renner thought experiment highlighted fundamental problems in applying classical
reasoning when quantum agents are involved; we take it as a guiding example to test the axioms of
classical modal logic. In doing so, we find a problem in the original formulation of the Frauchiger-
Renner theorem: a missing assumption about unitarity of evolution is necessary to derive a con-
tradiction and prove the theorem. Adding this assumption clarifies how different interpretations of
quantum theory fit in, i.e., which properties they violate. Finally, we show how most of the axioms
of classical modal logic break down in quantum settings, and attempt to generalize them. Namely,
we introduce constructions of trust and context, which highlight the importance of an exact structure
of trust relations between agents. We propose a challenge to the community: to find conditions for
the validity of trust relations, strong enough to exorcise the paradox and weak enough to still recover
classical logic.

Draco said out loud, “I notice that I am confused.”
Your strength as a rationalist is your ability to be more confused by fiction than by reality...
Draco was confused.
Therefore, something he believed was fiction.

Eliezer Yudkowsky, Harry Potter and the Methods of Rationality

1 Introduction

When we talk of paradoxes in science and maths, we can usually boil the discussion down to an arising
contradiction between two or more statements. These statements are necessarily associated with the
agents that deduce them, who could either be an external reader or explicit participants in the setup of
the paradox. Such agents start from shared and private prior knowledge of some facts, and along the
course of the experiment apply rules to combine these facts with what they experience, and thus arrive to
a contradiction. In other words, the agents have to apply a certain logic to conduct their reasoning. This
type of classical argumentation is illustrated in various logical puzzles — see Example 1.

Example 1 (Classical hat puzzle.) Three wise people stand in a line. A hat is put on each of their heads.
They are told that each of these hats was selected from a group of five hats: two black hats and three
white hats. Arren, standing at the front of the line, can’t see either of the people behind him or their hats.
Tehanu, in the middle, can see only Arren and his hat. Ged can see both Arren and Tehanu and their hats.

http://dx.doi.org/10.4204/EPTCS.287.16
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://www.lesserwrong.com/hpmor
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Figure 1: The Frauchiger-Renner thought experiment. The setup of the experiment [20]. Alice
measures a qubit R and, depending on the outcome, prepares a qubit S and sends it to Bob, who measures
the spin; Alice and Bob’s labs are measured by Ursula and Wigner respectively.

None of the people can see the hat on their own heads. They are then asked to deduce the colour of their
own hat: they are allowed to make an announcement every time a bell rings. The first time this happens,
no one makes an announcement. At the second bell ring, there is again no announcement. Finally, at the
third bell ring, Arren makes an announcement, and correctly guesses the colour of his own hat. What
colour is his hat, and how did he come to the right conclusion? A solution using classical modal logic
can be found in Appendix A. This formulation is adapted from [1].

Classical modal logic is one such system of axioms that allow us to successfully model the reasoning
of agents in classical settings [34, 35, 15, 28, 32]. However, as we show here, it cannot be applied to
more general settings where quantum experiments are conducted. We highlight the need for more explicit
specification of axioms and rules which agents are allowed to use in quantum setups, and draw parallels
between the assumptions made in the Frauchiger-Renner thought experiment and the assumptions of
classical modal logic.

1.1 The Frauchiger-Renner experiment

We focus on settings where agents are equipped with quantum memories, and must argue explicitly about
the outcomes of measurements performed by themselves and other agents on such memories. A good
testing ground is given by Daniela Frauchiger and Renato Renner’s extension of the Wigner’s friend
thought experiment [20]. The experiment is schematically shown in Figure 1.
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Example 2 (Frauchiger-Renner thought experiment [20].) This example consists of four participants,
Alice, Bob, Ursula and Wigner. Each experimenter is equipped with a quantum memory (A,B,U and W,
respectively). In addition, there are two other systems, R and S, which are qubits (Figure 1).

Initial setting. The initial state of the R is
√

1
3 |0〉R +

√
2
3 |1〉R. The initial state of S is |0〉S. The initial

state of the relevant subsystems of the agents’ memories is |0〉A, |0〉B, |0〉U and |0〉W .

Proceeding. The agents proceed as follows:

t = 1. Alice measures system R in basis {|0〉R, |1〉R}. She records the result in her memory A, and
prepares S accordingly: if she obtains outcome a = 0 she keeps her memory in state |0〉A and S in
state |0〉S; if she obtains outcome a = 1 she changes her memory to |1〉A and S to 1√

2
(|0〉S + |1〉S).

Finally, she gives system S to Bob.

t = 2. Bob measures system S in basis {|0〉S, |1〉S} and records the outcome b in his memory B, similarly
to Alice.

t = 3. Ursula measures Alice’s lab (consisting of R and the memory A) in basis {|ok〉RA, | f ail〉RA}, where

|ok〉RA =

√
1
2
(|0〉R|0〉A−|1〉R|1〉A)

| f ail〉RA =

√
1
2
(|0〉R|0〉A + |1〉R|1〉A).

t = 4. Wigner measures Bob’s lab (consisting of S and the memory B) in basis {|ok〉SB, | f ail〉SB}, where

|ok〉SB =

√
1
2
(|0〉S|0〉B−|1〉S|1〉B)

| f ail〉SB =

√
1
2
(|0〉S|0〉B + |1〉S|1〉B).

t = 5. Ursula and Wigner compare the outcomes of their measurements. If they were both “ok”, they
halt the experiment. Otherwise, they reset the timer and all systems to the initial conditions, and
repeat the experiment.

Does the experiment ever halt? In that case, what can Wigner conclude about the reasoning of all
the other agents?

It can be shown that if we follow the Born rule, this experiment will at some point halt, as the overlap
of the global state at time t = 2.5 with |ok〉RA|ok〉SB gives us a probability of 1/12. If one applies the
intuitive rules of classical reasoning to all agents, then we reach a contradiction: Wigner deduces that
whenever the experiment halts, Alice, at time t = 1, had predicted with certainty that it would not. Let
us see how.

Intuition behind the paradox. Here we sketch of the reasoning of agents leading to the paradox in the
Frauchiger-Renner thought experiment. For now we will use standard quantum theory, as seen from the
outside, and naive logical inference; the formalisation and criticisms to this approach will come later.
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t = 1. After Alice measures R and records the result, the joint state of R and her memory A becomes
entangled, (√

1
3
|0〉R +

√
2
3
|1〉R

)
|0〉A −→

√
1
3
|0〉R|0〉A +

√
2
3
|1〉R|1〉A.

When Alice prepares S, it too becomes entangled with R and A,√
1
3
|0〉R|0〉A|0〉S +

√
2
3
|1〉R|1〉A

1√
2
(|0〉S + |1〉S).

t = 2. When Bob measures S and writes the result in his memory, the global state becomes

|ψ〉RASB =
1√
3
(|0〉R|0〉A|0〉S|0〉B + |1〉R|1〉A|0〉S|0〉B + |1〉R|1〉A|1〉S|1〉B) .

Crucially, this is a Hardy state [29], and its terms can be rearranged into two convenient forms,
which will be used later,

|ψ〉RASB =

√
2
3

1√
2
(|0〉R|0〉A + |1〉R|1〉A)︸ ︷︷ ︸

| f ail〉RA

|0〉S|0〉B +
1√
3
|1〉R|1〉A|1〉S|1〉B

=
1√
3
|0〉R|0〉A|0〉S|0〉B +

√
2
3
|1〉R|1〉A

1√
2
(|0〉S|0〉B + |1〉S|1〉B)︸ ︷︷ ︸

| f ail〉SB

.

t = 3. Now Ursula and Wigner measure Alice’s and Bob’s labs in their bases listed above; the possibility
of them both getting the outcome “ok” is non-zero:

P[u = w = ok] = |(〈ok|RA〈ok|SB)|ψ〉RASB|2 =
1
12

.

From now on, we post-select on this event. At time t = 3, Ursula reasons about the outcome that
Bob observed at t = 2. Since

|ψ〉RASB =

√
2
3
| f ail〉RA|0〉S|0〉B +

1√
3
|1〉R|1〉A|1〉S|1〉B,

she concludes that the only possibility with non-zero overlap with her observation of |ok〉RA is that
Bob measured |1〉S. We can write this as “u = ok =⇒ b = 1”. She can further reason about what
Bob, at time t = 2 thought about Alice’s outcome at time t = 1. Whenever Bob observes |1〉S,
he can use the same form of |ψ〉RASB to conclude that Alice must have measured |1〉R. We can
write this as “b = 1 =⇒ a = 1”. Finally, we can think about Alice’s deduction about Wigner’s
outcome. Using the form

|ψ〉RASB =
1√
3
|0〉R|0〉A|0〉S|0〉B +

√
2
3
|1〉R|1〉A| f ail〉SB,

we see that Alice reasons that, whenever she finds R in state |1〉R, then Wigner will obtain outcome
“fail” when he measures Bob’s lab. That is, “a = 1 =⇒ w = f ail”.
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Thus, chaining together the statements (the same reasoning that allowed the reader to solve the three
hats problem), we reach an apparent contradiction:

w = u = ok =⇒ b = 1 =⇒ a = 1 =⇒ w = f ail.

That is, when the experiments stops with u = w = ok, the agents can make deterministic statements about
each other’s reasoning and measurement results, concluding that Alice had predicted w = f ail.

We notice that we are confused. It follows that some of the assumptions that we implicitly used to
derive the contradiction must be inadequate in this setting — or simply incompatible with each other. In
the next section we will first review the original attempt at listing these assumptions, and then we will
show that it was still incomplete.

2 Analysis of assumptions in the Frauchiger-Renner result

In their original article, Frauchiger and Renner [20] use the above thought experiment to formulate a
no-go theorem under three assumptions. These assumptions correspond in spirit to: compatibility with
the Born rule of quantum theory Q, logical consistency among agents C, and experimenters having the
subjective experience of only seeing one outcome S. The paradox is formulated in terms of statements
different agents make using the assumptions. It is assumed that all agents employ the same theory T
for reasoning, and the assumptions capture the essence of this theory. We present them here as stated in
[20].1

The first assumption encapsulates the idea of the observers in the experiment “using quantum theory”;
to be precise, they are using not the “full version” of quantum mechanics, but rather a weak version of
the Born rule applicable only to deterministic situations.

Assumption 1 (Q [20]) A theory T that satisfies Q allows any agent Alice to reason as follows. Let S be
an arbitrary system around Alice, ψ a unit vector of its Hilbert space, and {πH

x }x∈X a family of positive
operators on this space such that ∑x πH

x = id, and 〈ψ|πH
ξ
|ψ〉 = 1 for some ξ ∈ X. Suppose that Alice

has established the statements “System S is in state ψ at time t0.” and “The value x is obtained by a
measurement of S w.r.t. the family {πH

x } (in the Heisenberg picture, relative to time t0). The measurement
is complete at time t.” Then Alice can conclude “I am certain at time t0 that x = ξ at time t.”

The second assumption governs how agents reason from the viewpoint of each other.

Assumption 2 (C [20]) A theory T that satisfies C allows any agent Alice to reason as follows. If Alice
has established “I am certain at time t0 that agent B, upon reasoning using T , is certain that x = ξ at
time t” where x is a value that can be observed at time t > t0, then Alice can conclude “I am certain at
time t0 that x = ξ at time t.”

The third assumption captures the idea of each agent experiencing only single outcome of a mea-
surement. For example, if Alice is going to measure R, she is not allowed to state both “I am certain
that I will observe outcome 0” and “I am certain that I will observe outcome 1.” In the language of the
many-worlds interpretation, this corresponds to associating the agent’s experience with a single “branch”
of the global wave function (in the measurement basis), and not with the superposition of the different
branches.

1The exact formalization of the assumptions is not too important for the conceptual discussion of this work, and it suffices
for the reader to understand the intuition behind them.
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Assumption 3 (S [20]) A theory T satisfies S if it disallows any agent Alice to make both the statements
“I am certain at time t0 that x = ξ at time t.” and “I am certain at time t0 that x 6= ξ at time t” where x
is a value that can be observed at time t > t0.

The claim by Frauchiger and Renner is then that the three assumptions are incompatible, and the
proposed proof goes via an analysis of the thought-experiment.

Claim 1 (Frauchiger-Renner [20]) No physical theory T can simultaneously satisfy the assumptions
Q, C and S.

In this work, we note that there is an additional implicit assumption used in the proof [20]: all
agents are considering the evolution of another agents in their labs unitary. In other words, the observers,
when reasoning about statements other observers make, do it according to an assumption of a specific
type of evolution happening in the labs. This assumption cannot, to the best of our knowledge, be
derived from the other three. Indeed, the proof in the original paper uses the fact that agents describe
the evolution of each other’s labs after local measurements through isometries. For example, unitarity
is necessary for Ursula to derive even the first implication “u = ok =⇒ b = 1,” as well as for Alice to
derive “a = 1 =⇒ w = f ail.” We will illustrate this with a counter-example, but before we proceed,
allow us to lay out the missing assumption.

Assumption 4 (U) A theory T that satisfies U allows any agent A to model measurements performed by
any other agent B as reversible evolutions in B’s lab — for example, a unitary evolution UBS of the joint
state of B’s memory and the system S measured.

The exact formalisation of U is not important for now; let us instead see why we need it. Suppose
for example that Alice obtains the outcome a = 1 and describes the measurement process in Bob’s lab as
completely positive trace-preserving map. She could model the global state before Bob’s measurement
as

|1〉R|1〉A
1√
2
(|0〉S + |1〉S)|0〉B,

and after Bob’s measurement, as a density matrix

ρRASB = |1〉〈1|R⊗|1〉〈1|A⊗
(

1
2
|0〉〈0|S⊗|0〉〈0|B +

1
2
|1〉〈1|S⊗|1〉〈1|B

)
= |1〉〈1|R⊗|1〉〈1|A⊗

(
1
2
|ok〉〈ok|SB +

1
2
| f ail〉〈 f ail|SB

)
Consequently, the probability of Wigner getting the outcome “w = ok” would be, from Alice’s perspec-
tive,

P[w = ok|a = 1] = tr[ρSB |ok〉〈ok|SB] =
1
2
.

Thus, in this case the same reasoning used in the proof of the original article is not applicable, which
highlights the importance of the implicit assumption of a specific type of evolution happening in the labs.
We may now complete the initial claim of contradiction as follows. The proof of the original paper [20]
applies.

Claim 2 (Reformulating the Frauchiger-Renner theorem) No physical theory T can govern the rea-
soning of all agents while simultaneously satisfying the assumptions Q, C, S and U.
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One way to contradict assumption U is by saying that unitary quantum mechanics does not apply in
the regime of large bodies; this is the case of fundamental collapse theories [26, 25, 5], for example. As
these theories give different predictions to quantum mechanics, they are falsifiable. Alternatively, one
could postulate that the evolution of large systems is unitary, but that there is fundamentally no way to
measure them — which is in principle falsifiable as the precision of mesoscopic experiments improves.
We will see further ways around U later on. Unashamedly pedantic researchers such as the authors could
point out other assumptions that are implicitly included in the common knowledge of all agents involved,
for example:

P. It is possible for agents to prepare systems in pure states, and to measure them according to perfect
projectors. It is also possible to perform these measurements in isolation.

If we drop this assumption, and claim that realistically, agents can only prepare approximate states
and perform noisy measurements, we don’t obtain a deterministic contradiction. Nevertheless, we
would still obtain a discrepancy in the predictions made by the different agents in this thought
experiment. That is, we would still obtain a conceptual problem, even if it were not as neatly
formalized as in the Frauchiger-Renner theorem. In order to formalize the contradiction, we would
have to relax the version of the Born rule used here to cover frequentist or probabilistic cases.
We could also consider explicit reference frames for the measurements; again, the conceptual
contradiction doesn’t disappear.

M. Agent’s memories are ultimately physical systems. In particular, they are quantum systems, and
different classical statements are encoded as orthogonal quantum states. (For example, Alice’s
statements “I saw outcome 0” and “I saw outcome 1” can be stored in her memory A as states |0〉A
and |1〉A respectively, with 〈0|1〉A = 0.) It is in principle possible to perform quantum measure-
ments on these memories.

This is the approach of physicalism (“mind is matter”, most eloquently described in this talk);
alternatively we could imagine an interpretation of quantum theory that demands that agents’
thoughts cannot be encoded in physical systems, thus preventing us from meaningfully measuring
observers.2 Even with such a theory, the unitarity assumption U may suffice to derive a contra-
diction (after adjusting the definition of subsystems A and B measured by Ursula and Wigner), so
physicalism may not be necessary to find the contradiction. It may be interesting to investigate
whether U implies a weak version of physicalism.

A. Each agent considers the perspective of other agents as valid as their own.

In fact, to derive the contradiction it is not strictly needed that agents in the Frauchiger-Renner
experiment think of all the other agents as capable of reasoning. For example, Ursula may see Alice
as simply a quantum system that she measures. She will however take Bob seriously as an agent,
and therefore trust his reasoning. Ursula further knows that Bob sees Alice as an agent. Since Bob
trusts Alice’s reasoning, he will draw conclusions from it (“b = 1 =⇒ a = 1 =⇒ w = f ail”).
Ursula then only needs to trust Bob’s conclusion, regardless of his source (“u = ok =⇒ b =
1 =⇒ w = f ail”). In that sense, agents don’t need to directly assign agency to those whom they
are measuring.

This weaker version of A roughly corresponds to the consistency assumption C. One could debate
whether it is this specific assumption that is violated by agent-centric approaches to quantum
theory such as QBism [16, 23, 22].

2If the reader finds this a satisfactory way out, we have different tastes and further discussion would not be productive.

https://youtu.be/_9Rs61l8MyY?t=35m55s
https://en.wikipedia.org/wiki/Ghost_in_the_machine
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X. There are no extraordinary interventions on an experimental setting such as the one used in the
proof (once all agents agree on it).

This assumption is certainly needed in order to derive the paradox (otherwise the agents could not
even describe the setting). However, given that most interpretations of quantum mechanics do not
forbid X, it is not a very helpful assumption to help us categorize different versions of quantum
theory. The same holds for assumption P above.

2.1 Interpretations and reactions

Having identified the missing assumption needed to derive a contradiction, it is possible to classify
theories and interpretations of quantum mechanics in terms of which assumptions they violate. This
allows us to clarify some of the analysis of the original paper [20], in particular for the case of theories
that violate U.

Before we proceed, we note that just because we found four assumptions that allow us to derive a
contradiction, it does not mean that this is a useful partition of properties of physical and logical theories.
That is, some theories and interpretations will not fit neatly into the boxes we drew for them — we may
find for example that they violate more than one assumption. As an analogy, there are many ways to
split a large system into subsystems, and some will be more operational than others. Similarly, there
are several ways to split the contradiction into modular assumptions, and while the current classification
may appear intuitive, it is not necessarily the best in the long run.

The list of theories discussed here is not exhaustive, and we focus on reactions to the original pa-
per. For the interested reader, the theories below are introduced in more detail in Appendix C. Further
interpretations are discussed in [20].

Bohmian theory. In [42] Anthony Sudbery applies Bohmian theory to the Frauchiger-Renner exper-
iment. The author points out that the theory satisfies Q, C and S. He then argues that the analysis of
the experiment according to the proof of Frauchiger and Renner assumes a particular type of evolution
that does not reflect Bohmian theory. In Bohmian theory we associate nature with two states: (1) the
pilot vector |Ψ(t)〉, which corresponds roughly to the global quantum state as seen from the outside, and
which evolves unitarily (for example, |Ψ(t)〉 = 1√

2
(|0〉R|0〉A + |1〉R|1〉A)); and (2) the real state vector

|Φ(t)〉, which corresponds to the “collapsed” state after a measurement outcome, and to the experiences
of the agents considered (for example |Φ(t)〉= |1〉R|1〉A). Crucially, the real state need not evolve unitar-
ily: |Φ(t)〉 can be picked at every time instant from the pilot |Ψ(t)〉, more independently from |Φ(t−1)〉
than in collapse theories (for consistency rules between the real vectors over time see [42]). Even if
Alice sees outcome 1, corresponding to the real state |Φ(t = 1)〉= |1〉R|1〉A 1√

2
(|0〉S + |1〉S)|0〉B, she also

keeps track of the global pilot state, and evolves the latter. From the pilot |Ψ(t = 4)〉 she can extract
all the possible compatible real states, of which one, |Φ(t = 4)〉, allows her to see a = 1 while Ursula
and Wigner both get ok; therefore, Alice would not make the prediction “a = 1 =⇒ w = f ail” (for the
calculation, see [42]). Note that if Alice had only evolved the real state without consideration for the
pilot, or if she had imposed more consistency over time for the real vector, she would not be able to see
this. We conclude that Bohmian mechanics violates assumption U, and this example can help us work
out a precise formalization for U. Incidentally, this analysis suggests that pre- and post-selection have
little consequence in Bohmian theory, and it would be interesting to investigate the consequences of this.
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Copenhagen interpretations. Jeffrey Bub, in his recent work Why Bohr was (mostly) right [14], gives
an interesting insight on the paradox based on Bohr’s work. He operates with a notion of a Boolean
frame, which is simply a classical frame, determined by the position of the Heisenberg cut. He states:

Once you decide what counts as the ultimate measuring instrument in a given scenario, the
cut is no longer movable. If you move it, you are “subdividing the phenomenon,” as Bohr
puts it, and the two analyses will be incompatible — in general they won’t both fit into one
Boolean frame. In effect, a phenomenon is an episode from the perspective of a Boolean
frame.

Bub then argues that only the single-observer perspective is useful in quantum mechanics, and if
one takes a point of view of a certain observer in the Frauchiger-Renner experiment, the measurement
outcome events for all other observers are neglected; thus, no contradiction arises, as assumption C is
not satisfied. In other words, since agents move the cut individually, one has to choose and fix a single
observer in the experiment, who makes the ultimate decision about the cut, and whose perspective is the
only valid one. This is an example of reducing the scope of a theory until there are no mathematical
contradictions left.3

QBism. QBism [16, 23, 22] also restricts itself to a single-agent theory; it deals with experiences and
actions of one specific agent, and thus it is not clear if the thought experiment can be analyzed within
QBism without further generalizing the theory. For the further discussion we refer to the Frauchiger-
Renner paper [20].

Unitary theories: many-worlds and relative state. In many-worlds interpretations [17, 45], assump-
tion U is a part of the theory (as the state of the universe evolves unitarily), while assumptions S and
C can be questioned. If the theory is formulated in a way that models agents to be able to experience
more than one outcome at once, then the assumption S is violated. Additionally, if the agents do not
have reliable memories, then the consistency assumption C might not hold. While applying assumption
C, agents put their trust in the results of other agents; this may not hold, for example, in versions of
many-worlds where the observer is not associated with a particular branch.

In the article On formalisms and interpretations [6], Veronika Baumann and Stefan Wolf already
point out that different models for the global evolution lead to different predictions in experiments where
agents are measured. The authors provide an extension of the Born rule within a unitary “relative-state
formalism,” to compute probabilities of outcomes in settings with multiple agents (summary in Ap-
pendix C). Finally, they show that if agents model the evolution of each other through collapse theories,
the contradiction does not arise.

3 Classical modal logic

In this section we review classical modal logic, which allows us to model and solve complex scenarios
where several agents think about each other’s reasoning (such as the three hats puzzle). We then discuss
which axioms of classical modal logic can be applied to fully quantum settings, and how they relate
to the assumptions in the Frauchiger-Renner result. For conciseness, we stick to the bare bones of the
modal logic framework here [34, 35, 15, 28, 32, 18]. For more details on motivation, development and
related work, see Appendix A. Note: the branch of modal logic applied to reasoning about knowledge is

3As physicists, we would rather explore apparent inconsistencies, and enrich the scope of the theory.



276 Inadequacy of Modal Logic in Quantum Settings

sometimes called epistemic logic, and modal logic in multiple agent settings is sometimes called multi-
modal logic.

Modal logic syntax. Modal logic uses a number of standard logical operators (also known as connec-
tives), such as ¬ for ‘not’,⇒ for ‘if...then’, ∧ for ‘and’, ∨ for ‘or’ and⇔ for ‘equivalent.’ So how do we
apply this syntax to the statements that agents make? Suppose we have a group of n agents (1,2, ...,n),
who are able to describe the world in terms of primitive propositions φ1,φ2, ... belonging to a set Φ. The
primitive propositions are simple facts about the world, for example, φ1 =“The dragon lives under the
Lonely Mountain” or φ2 = “Minas Tirith is white.” Then to express the statement like “Bilbo knows
the dragon lives under the Lonely Mountain,” we introduce modal operators K1,K2, ...,Kn, one for each
agent; in that case, Kiφ corresponds to “Agent i knows φ .” Thus, the statements produced by the agents,
including those concerning the other agents’ views, can be written in a compact way. This is espe-
cially convenient when the statements are linguistically complex: for example, the statement “Aragorn
knows that Bilbo doesn’t know that Elrond knows that the dragon lives under the Lonely Mountain” can
compressed into KA¬KBKEφ1.

Possible worlds semantics and Kripke structures. In modal logic, a set Σ of possible worlds is intro-
duced. The truth value of a proposition φ is then assigned depending on the possible world in Σ, and can
differ from one possible world to another. We will first provide a structure which serves as a complete
picture of the setup the agents are in, and then discuss the elements of the structure.

Definition 3 (Kripke structure) A Kripke structure M for n agents over a set of statements Φ is a tuple
〈Σ,π,K1, ...,Kn〉 where Σ is a non-empty set of states, or possible worlds, π is an interpretation, and Ki

is a binary relation on Σ.
The interpretation π is a map π : Σ×Φ→ {true, false}, which defines a truth value of a statement

φ ∈Φ in a possible world s ∈ Σ.
Ki is a binary equivalence relation on a set of states Σ, where (s, t) ∈Ki if agent i considers world t

possible given his information in the world s.

The truth assignment tells us if the proposition φ ∈ Φ is true or false in a possible world s ∈ Σ; for
example, if φ = “Minas Tirith is white,” and s is a world where the Middle-earth is real and Minas Tirith
still stands, then π(s,φ) = true. The truth value of a statement in a given structure M might vary from
one possible world to another; we will denote that φ is true in world s of a structure M by (M,s) |= φ ,
and |= φ will mean that φ is true in any world s of a structure M.

Agents do not possess the complete information about a possible world they are in, and may consider
other possible worlds possible; for example, if the agent doesn’t know if it is raining in the Shire, she
can consider both the world where it is indeed raining in Shire, and the world where it doesn’t, possible.
This situation is captured by binary relations Ki. Formally, we say that agent i “knows” φ in a world s,
that is (M,s) |= Kiφ , if and only if for all possible worlds t such that (s, t) ∈Ki (that is, all the worlds
admitted by the agent given their knowledge), it holds that (M, t) |= φ .

Axioms of knowledge. In order to operate the statements agents produce, we have to establish certain
rules which are used to compress or judge the statements. These are the axioms of knowledge [24]. They
might seem trivial in the light of our everyday reasoning, yet given our awareness of the quantum case,
we will treat them carefully.
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Axiom 1 (Distribution axiom.) If an agent is aware of a fact φ and that a fact ψ follows from φ , then
the agent can conclude that ψ holds:

(M,s) |= (Kiφ ∧Ki(φ ⇒ ψ))⇒ (M,s) |= Kiψ.

Remark: A reasonable implication of the distribution axiom would be that if an agent is aware that a fact
φ follows from χ and ψ follows from φ , then he can conclude that ψ follows from χ:

(M,s) |= (Ki(χ ⇒ φ)∧Ki(φ ⇒ ψ))⇒ (M,s) |= Ki(χ ⇒ ψ).

Note that this is weaker than saying that agents know all logical consequences of their knowledge. For
example, it follows from the axiom that “if Bilbo knows that it is raining in the Shire, and he knows that
grass grows when it rains, then he knows that grass is growing in Shire.” An agent less versed in botany
would not be able to reach the same conclusion.

Axiom 2 (Knowledge generalization rule.) All agents know all the propositions that are valid in a
structure:

if (M,s) |= φ ∀s then |= Kiφ ∀i.

An example would be “if it always rains in the Shire, then all agents know that it rains in the Shire.”
The above appears to be a rather strong assumption, but it can be seen as a condition on what is common
knowledge in a given Kripke structure. That is, if we do not want “rainy Shire” to be common knowledge
among a set of agents, we just need to add one possibly world s where it is sunny in the Shire to the Kripke
structure that models the agents and their knowledge. Examples of facts usually included as common
knowledge in typical Kripke structures are physical laws, like “objects fall” or “one day follows the
other.” We will see that this can include “quantum theory holds.” This axiom is sometimes called the
necessitation rule.

Axiom 3 (Truth axiom.) If an agent knows a fact then the fact is true,

(M,s) |= Kiφ ⇒ (M,s) |= φ .

The truth axiom is taken by many philosophers to be the major property distinguishing knowledge from
belief. It follows from the previous two axioms together that if an agents knows φ to hold in all possible
worlds, then all agents know φ to be true. Not surprisingly, this will be problematic in quantum settings,
where measurement outcomes and conclusions can be subjective. We will discuss this in the next section.

Axiom 4 (Positive and negative introspection axioms.) Agents can perform introspection regarding their
knowledge:

(M,s) |= Kiφ ⇒ (M,s) |= KiKiφ (Positive Introspection),
(M,s) |= ¬Kiφ ⇒ (M,s) |= Ki¬Kiφ (Negative Introspection).

In other words, agents are aware of the limitations of their own knowledge. If I know φ , then I know that
I know φ ; if I don’t know φ , I am aware of not knowing φ . This uncompromising rationality is lacking
in many agents in the real world: take for example φ =“god exists”, “this policy has good long-term
effects” or “my friend is trustworthy.” In the quantum case, it will be tricky for different reasons.

3.1 Problems in quantum settings

Let us now try to apply the semantics of Kripke structures to fully quantum settings, and discuss the
problems that arise.
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Scope of “agent.” The largest problem that affects the consistency of the logic axioms in quantum
settings is the very definition of an agent, which is taken as an abstract primitive in classical modal
logic. Quantum theory forces us to associate agents with a physical (and therefore quantum) memory,
as opposed to an abstract “perspective” and reasoning independent of a physical substrate. Then, for
example (in a unitary version of quantum theory), after Alice measures R, do we associate her with her
subjective experience of a single outcome, or with her quantum memory A, which is entangled with R
and cannot be mapped to a single outcome? More generally, what are the constraints that we can impose
on the evolution of that memory in order to say that they are the same agent? For example, most people
would agree that their physical brains and bodies form their perception of self, and if their memory was
completely erased and reprogrammed, they would not be the same person. In our thought experiment,
after Ursula measures Alice, thus significantly altering the state of her memory A, is it fair to say that
pre-measurement Alice is the same agent as post-measurement Alice? We treat this issue in Section 3.3.

Possible worlds semantics. In classical Kripke structures, we have possible worlds or states, in which
the truth value of propositions can be evaluated. It is ambiguous how to adapt this semantics of “possible
worlds” to settings of multiple quantum agents, and unclear if one can do it at all without running into
contradictions. One naive approach (which we use at the end of this section to reproduce the Frauchiger-
Renner paradox) is to associate each possible world with one set of outcomes of the final measurements
of an experiment, that is those outcomes that can be considered “classical” for practical purposes, be-
cause the memories in which they are recorded will not be further modified. In our example, this will
correspond to a possible world for each pair of outcomes (u,w) of Ursula and Wigner. This set of pos-
sible worlds will allow us to assess the truth value of the propositions needed for the paradox, but it
does not let us determine the truth of arbitrary statements, like “if Alice measured in a different basis,
she would obtain outcome 0.” These statements may indeed be undefined in the Kripke structure that
describes the experiment. Our intuition is that the very notions of possible worlds and truth assignments
are too classical in nature, and that this is where we need to start to change the modal logic framework
in order to generalize it to quantum settings.

Common knowledge and physical laws. As we saw, the knowledge generalization rule is a constraint
on what is common knowledge, and therefore should apply to the general statements that all agents can
make about the setup and the course of the experiment. In the Frauchiger-Renner setting, this axiom
covers the assumptions Q and U, which are taken as physical laws accepted by all agents. Note however
that if two agents use different versions of quantum theory (for example Alice uses an interpretation with
fundamental collapse whereas Bob follows unitary quantum theory), then assumptions like U may not
be common knowledge, and may therefore not be always true in the Kripke structure modelling those
agents.

Introspection, single outcome and context. The introspection axioms are not directly applied in the
Frauchiger-Renner setting, but they do resemble assumption S: if an agent can only perceive one outcome
of a measurement, she is able to give a certain answer when asked about the outcome, which essentially
means that she is sure about what she knows, “I know (at some time t ′) that I observed outcome a = 1 at
time t = 1, and I know (at t ′) that I did not observe a = 0 at time t = 1.” Indeed, in modal logic S can be
written as

Ki,t ′Ki,t(xi = x′) =⇒ Ki,t ′Ki,t ¬(xi 6= x′), ∀ t ′
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whenever xi is the outcome of a quantum measurement performed by agent i at time t. But if we consider
an agent who applies unitary quantum theory to the whole lab, including herself, then her introspection
depends on whether she wants to talk about her “local” perspective of the state in the lab after experi-
encing a given outcome, or the “global ” state of the lab as seen from the outside. Alice, for example,
may measure R and then say “locally I observed outcome a = 1, but I know that globally what happened
is that my experience of the outcome became entangled with R, that is my memory and R are in the

joint state
√

1
3 |0〉R|0〉A +

√
2
3 |1〉R|1〉A.” Thus, Alice could first choose a context (local to her perspective

or global), appropriate to the situation in which she is making a statement, and only then produce the
statement. If Alice keeps the global perspective, she will be able to predict that Wigner may obtain the
outcome w = ok even when she subjectively experiences a = 1, thus avoiding the paradox. In general, in
order to keep consistency, propositions must be qualified with adequate contexts. However, we should
note that keeping track of the context quickly becomes unpractical in settings with several agents and
measurements, as it requires agents to keep a record in their memory that is exponentially large on the
number of measurements. We formalize context in Section 3.3.

Truth and trust. The Frauchiger-Renner assumption C is reflected in the distribution and truth axioms
of modal logic. The distribution axiom (agents can chain their reasoning) generalizes C, which corre-
sponds to the special case of consistency of the statements of the agents. The truth axiom says that if
a fact φ is always true for one agent, then it must be true for all agents. It allows agents to simplify
their reasoning, e.g. Bob simplifies “I know that Alice knows φ” to “I know φ”, and it implies trust
in the universality of agents experiences. Thought experiments like Wigner’s friend and Frauchiger-
Renner suggest that this is not the case for quantum agents, and that a fully quantum generalization of
modal logic must drop the truth axiom. This can be easily seen in the Wigner’s friend scenario, where
a statement about a definite outcome can be true for an observer inside the lab, but its truth value is not
well-defined for Wigner himself. We return to trust in Section 3.3.

3.2 Reformulating the Frauchiger-Renner paradox

We can see how the combined assumptions of classical modal logic correspond roughly to the Frauchiger-
Renner assumptions, and lead to the same contradiction.

Theorem 4 (Kripke structures in unitary quantum theory are not sound) It is possible to find a con-
tradiction in Kripke structures equipped with the axioms of knowledge satisfying the following:

1. Agents are allowed to perform measurements on quantum systems. Each agent’s memory be mod-
elled by other agents as a quantum system that may itself be measured.

2. The measurement statistics satisfy the Born rule, or at least the weak version of the Born rule as
in assumption Q. In particular, the truth assignments satisfy this.

3. When an agent performs a measurement, this is modelled by the other agents as a reversible
evolution on their lab (assumption U).

4. Possible worlds can be parametrized by outcomes of quantum measurements. In particular, when
an agent performs a measurement, they may perform positive and negative introspection on the
observed outcome (similarly to assumption S).

5. Agents are allowed to know the setting of an experiment beforehand.
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All of the above should be included in the common knowledge that determines the Kripke structure
in order to find a contradiction.

Specifically, we find that there exists a possible world in the Kripke structure where its axioms are
not sound (Appendix A).

Proof: We take M to be the Kripke structure describing the setting of the Frauchiger-Renner experiment
and all agents involved: it includes Q, U and the protocol of the experiment as part of the common
knowledge. The proof follows the exposition of the contradiction in the first part of this paper, except
that now we apply the axioms of knowledge.

1. Using S, we can say that in all worlds where Alice sees outcome a = 1 she can predict w = f ail,
since in this setting the agents always make the same measurements, and, due to assumptions Q
and U, the conclusion is always valid for these measurements. That is,

(M,s) |= KA(a = 1 =⇒ w = f ail), ∀ s.

2. It follows from the truth axiom that

(M,s) |= (a = 1 =⇒ w = f ail), ∀ s,

which removes one layer of reasoning from the statement.

3. Since the above holds for all worlds s, we can apply the knowledge generalization rule to obtain
that for all agents i, |= Ki(a = 1 =⇒ w = f ail),∀ i.

4. Applying the same reasoning to the other statements, we obtain

|= Ki(u = ok =⇒ b = 1),

|= Ki(b = 1 =⇒ a = 1),

|= Ki(a = 1 =⇒ w = f ail), ∀i.

5. Using the distribution axiom, we obtain the common knowledge

|= Ki(u = ok =⇒ w = f ail),∀i.

6. Plugging in the fact that the experiment halts in a particular world s where Wigner knows that the
final outcomes are w = ok,u = ok, we obtain

(s,M) |= KW [u = ok∧w = ok∧ (u = ok =⇒ w = f ail)].

7. Now we use the distribution axiom to simplify this to

(s,M) |= KW [u = ok∧w = ok∧ (u = ok =⇒ w = f ail)]

⇔ (s,M) |= KW [u = ok∧ (u = ok =⇒ w = f ail)∧w = ok]

⇔ (s,M) |= KW [w = f ail∧w = ok].

8. Using again the truth axiom, we obtain

(s,M) |= [w = ok∧w = f ail].

9. Using S, “(w = f ail) =⇒ not(w = ok),” we obtain a logical contradiction.
�



N. Nurgalieva & L. del Rio 281

3.3 Suggestions to generalize modal logic

We may now attempt to implement the suggestions introduced in Section 3.1 to relax the axioms of
classical epistemic modal logic, and test them in the Frauchiger-Renner setting. As a first step, we
will replace the truth axiom with a subjective notion of trust between agents. We will see that, while
necessary, this does not suffice — we still obtain a contradiction. We also explore possible ways to
implement the idea of contexts.

3.3.1 Replacing truth with trust.

The truth axiom says that if an agent “knows” something, it is objectively true. As we saw, in quantum
theory this does not always hold.

Definition 5 (Trust) We say that an agent i trusts an agent j (and denote it by j i ) if and only if

(M,s) |= Ki K j φ =⇒ Ki φ ,

for all φ ,s.

Trust is not transitive. We may equip a Kripke structure with trust relations. These are not necessarily
symmetric, or transitive.4 To see this, consider the case A B C, that is Alice trusts Bob who trusts
Charlie. If KAKCφ (Alice knows that Charlie knows φ ), it does not necessarily follow that KAφ , as
Alice could think that Charlie is wrong or that their experience is not transferable, as in the case of
observing outcomes of quantum measurements; for this we would need the intermediate agent Bob,
as KAKBKCφ =⇒ KAKBφ =⇒ KAφ . However, if there was no way for Bob to be sure that Charlie
indeed knows φ , then the trust chain would not reach Alice. If this situation seems far-fetched, think
of the following closer-to-life instantiation of the example: Alice is a newspaper editor, Bob one of
her journalists, and Charlie one of Bob’s secret sources inside a criminal organization. The key here is
that Alice trusts everything that Bob knows, independently of how he reached that knowledge (and in
particular if he learned φ through Charlie, it suffices for Alice to know that Bob knows φ ). On the other
hand, if Charlie went directly to Alice with some information, Alice, who doesn’t know that Charlie is
Bob’s trusted source, would have no reason to trust it; indeed if we apply the trust condition in a different
order, KAKB(KCφ) =⇒ KAKCφ , we cannot reach the final conclusion KAφ .

Trust relations in the Frauchiger-Renner experiment. In the Frauchiger-Renner setting, we can
specify for each agent who they trust, and at what point in the experiment. We have the following trust
structure:

At=0,1,2 Bt=2 Ut=3 Wt=4 At=0,1,2. (1)

Note that for example, Ursula at time t = 3 may think of Alice as simply a quantum system to be
measured and not an agent full capable of reasoning. However, Alice’s reasoning about the outcomes of
the experiment will reach Ursula via Bob. We can have additional trust relations, for example At=1  
Wt=1,2. However, they are not necessary to derive the contradiction.

4In particular, the trust structure is not necessarily a pre-order in the set of agents.
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Trust is necessary for descriptions of quantum measurements. In the Frauchiger-Renner setup,
Ursula trusts Bob but not Alice. In particular, Ursula may model Alice’s memory as a quantum system
A, and Alice’s measurement of a quantum system R, as unitary evolution on the joint system R⊗A,
without referring to Alice’s experience of observing an outcome a. We can formalize the statement
“Alice obtained the outcome a = 0 at time t = 1, as KAt=1(a = 0), where At=1 represents agent Alice
at that time: that is, at time t = 1, Alice knows that she observed outcome a = 0. We do not require
that Ursula make such statements, for example, as she may want to avoid any proposition of the sort
“this quantum system A ‘knows’ something." Instead, she will get information that she can relate to via
trusted agents, as we will see. Indeed, we will model the whole experiment such that agents only need
to make statements of the form Kiφ about trusted agents — Ursula will never have to model Alice’s
measurement outcome directly. Bob’s statement “If I observe b = 1 I know that Alice must have a = 1"
can be formalized as

|= KBt=0,1,2 [KBt=2(b = 1) =⇒ KAt=1,2(a = 1)],

where the time stamps refer to all the times at which agents may have this knowledge.

Analysis of the Frauchiger-Renner experiment. Theorem 6 below tells us that while replacing truth
with trust is necessary to treat quantum settings, it is not sufficient to give us a sound logic system —
at least not with the trust structure (1) and with assumption S. This was to be expected, as the original
Frauchiger-Renner consistency assumption C is closer to the trust condition than to the truth axiom. One
way out is to say that (1) is not a valid trust structure, which should be carefully justified: we’d need
criteria that allow us to reject (1) and still keep natural trust structures of more classical situations, all
the while considering that all agents are physical, and ultimately quantum, systems. Another possible
solution is to reject S; here the challenge is to do it in a way that still lets us make non-trivial statements
based on subjective observations. Formalizing context, in the next section, is a first step in that direction.

Theorem 6 (Subjective trust in the Frauchiger-Renner setting) In the setting of Theorem 4, if we re-
place the truth axiom with the trust structure (1) for the Frauchiger-Renner thought experiment, we
obtain a contradiction.

The proof can be found in Appendix B.

Trust and persistence of agents. We can use trust relations to characterize the persistence of agent’s
memories over time — which is particularly relevant in quantum settings. In our analysis above, for
example, we had the trust relation At=1 At=2, but not necessarily At=2 At=3. This is because Alice’s
memory is tampered with at time t = 3, so agent “Alice at time t = 3” does not necessarily trust agent
“Alice at time t = 2.”

3.4 Context

A classic way to incorporate time stamps and other context in the logic is connected to the notion of
two-dimensional semantics (see [41] for a review). It is a variant of possible world semantics that uses
two (or more) kinds of parameters in the truth evaluation, rather than possible worlds alone. The motiva-
tion for the introduction of additional parameter in order to determine a truth value is the fact that every
proposition is true or false given a specific, often implicit context [32]. An example would be a proposi-
tion φ = “Hobbits live in the Shire”; if by “the Shire” the speaker meant an area, say, in England, then
the statement would be false. However, if we were talking about the Shire on Middle-Earth, in the third
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age, the statement may be valid. The notion of context can include time, place, topic of when or how
the statement was produced — we can see it as a fine-graining of the proposition, which for modularity
purposes is registered in another space. If in a given proposition one of the parameters is not specified,
then we assume that the proposition refers to all possible values of this parameter.

For simplicity, we will assume that in our case the parameters of the context are (1) the agent who
produces the proposition, and (2) whether she produces it in the local or global context (recall the dis-
cussion from Section 3.1).

Definition 7 (Context in Kripke structures) The context space C is formed by elements of the form

c =

A1,e1
A2,e2

...

 ,

where A1,A2, ... are agents, and e1,e2, ... ∈ {`,g} specify whether the proposition φ made by a corre-
sponding agent was meant locally or globally.5 Propositions φ ∈ Φ can themselves be associated with
contexts, in bundles of the form (c,φ) ∈ C ×Φ, about which agents can make statements.

A truth interpretation is now a function π : Σ×Φ×C →{true, false}, which defines a truth assign-
ment for a proposition φ ∈Φ in a possible world s ∈ Σ, given a context c ∈C.

To model agents’ knowledge, we must also take the context into account explicitly. First, we note
that the binary equivalence relation K e

A is now parametrized by the context c = (A,e). Therefore the
statement ‘an agent A “knows” φ in a world s’ is generalized to

(M,s) |= Ke
A (c,φ), where c =

A1,e1
...

An,en

 ⇐⇒
(s, t) ∈K e

A =⇒ π(t,φ ,


A1,e1

...
An,en

A,e

) = true

 .
This way, the relation between the knowledge operators and context is simple: every time we would
(in traditional modal logic, using the truth axiom) remove one of the operators Kei

i , here we cautiously
append it to the context:

(M,s) |= KeC
C KeB

B

(A1,en
...

An,e2

 , φ

)
=⇒ (M,s) |= KeC

C

(
A1,e1

...
An,en

B,eB

 , φ

)
,

for all choices of φ ,s and eB. Thus, every time the number of Kei
i operators in a proposition is reduced, the

dimension of the context vector is increased. This operation does not reflect any trust relations between
different agents; on the opposite, it simply relays the fact that a proposition carries along a context of
how and by whom it was produced.

In order to apply the distribution axiom, the appropriate contexts must match: we reformulate the
axiom as

(M,s) |= (Ke
A(c,φ)∧Ke

A[(c,φ) =⇒ (c′,ψ)]) =⇒ (M,s) |= Ke
A(c
′,ψ).

5This choice of context space is specific to our setting.
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For example, consider the three statements:

1. (
(
At2 , `

)
, a = 1),

2. (
(
At2 ,g

)
, |ψ〉RA =

1√
3
|00〉RA +

√
2
3
|11〉RA),

3. (

(
At2 , `
Bt3 , `

)
, a = 1).

The first corresponds to the statement “a = 1”, produced locally by Alice at time t = 2. The second is her

statement at the same time t = 2 “My lab is in a global state 1√
3
|00〉RA +

√
2
3 |11〉RA,” which is meant in a

global context, independently of her local observation of a = 1. Finally, the third example is the chained
statement made by Bob at time t = 3 that “A at time t = 2 could say ‘a = 1’,” locally:

(M,s) |= K`
Bt3

K`
At2
(a = 1) =⇒ |= K`

Bt3
(
(
At2 , `

)
, a = 1)

=⇒ |= (

(
At2 , `
Bt3 , `

)
, a = 1).

Due to the new restriction on the distribution axiom, the proofs of Theorems 4 and 6 do not go
through, and as a result, the agents do not reach a contradiction. We give an intuition of why we cannot
reach the contradiction in Appendix B.

Claim 8 (Context in the Frauchiger-Renner setting) When taking context into account, we do not
reach a logical contradiction in the Frauchiger-Renner setting.

The main problem with introducing context is the rigidity of the constraints to combine statements;
it seems to perplex even the simplest situations. For example, take a classical setting where Alice asks
Bob to tell her the color of a hat she’s wearing. Let’s suppose Bob tells her that it is red; in that case, the
statement available to Alice is not “My hat is red”, but rather “My hat is red, by Bob’s account”. For all
Alice knows, Bob might be slightly colorblind, so she is always keeping in mind that this point of view
is his and his only. Subsequently, that does not allow her to make a definitive conclusion about the color
of her hat.

There are ways for the constraint to be weakened, for example, by introducing trust in a similar
fashion as we did above, and allowing it to reduce the dimension of context vectors. This approach is
in practice identical to what we’ve seen in section 3.3.1, and, in the Frauchiger-Renner setting, with the
trust relation introduced there, it leads to a paradox. In summary: at the moment there seems to be no
middle ground between obtaining a paradox and not being able to perform even simple modal operations
in classical settings. One possible way out is to say “well, in the classical example above, the trust
relation Bob Alice is natural and valid, while in the Frauchiger-Renner setting there is a fundamental
reason why that chain of trust is invalid.” This frames the main problem as finding conditions for validity
of trust relations. Incidentally, another price to pay for logical consistency is complexity: agents need to
keep track of the context, which increases in size at every application of modal operators.

4 Conclusions

The take-home message of this paper is that we do not have a sound logic system to analyze agents’
reasoning when quantum measurements are involved. The most successful classical logical system,
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modal logic, fails to generalize at the level of each individual axiom, and candidate workarounds, like
keeping track of the context of each statement, are unpractical, requiring exponentially large memories.
A next step in this research is to work out conditions for when and how contexts can be combined, in
order to recover the usual modal logic in classical settings. In the following, we review the contributions
of this work in more detail.

Completing the paradox. The first contribution of this work was to amend the Frauchiger-Renner
result [20]. We identified one missing assumption, used in the proof of but not stated in the theorem.
This assumption has to do with the type of evolution happening in an agent’s lab, as seen by other
agents. We showed that without it the original proof does not hold, by taking the example of a collapse
theory that satisfies the original assumptions Q, S and C but does not lead to a contradiction. Making
the missing assumption explicit fixes the theorem, and helps classify how different interpretations of
quantum theory fit into the paradox.

Analysis of classical logic. In the Frauchiger-Renner setup, agents construct statements by implement-
ing a certain logic system. These logical rules and axioms can be to some extent correlated with known
classical axioms of knowledge; however, in the quantum case these rules must be weakened or extended.
In the second part of this paper, we reviewed classical modal logic, which is successfully used in classi-
cal multi-agent settings to reason about knowledge. We compared its axioms to the Frauchiger-Renner
assumptions and saw why the classical axioms do not generalize to the fully quantum case. We formal-
ized this by applying modal logic to the Frauchiger-Renner and rederiving a paradox, which tells us that
the resulting structure is not sound. That is, the semantics of modal logic, when combined with axioms
of quantum theory Q and U, leads to a contradiction. While modal logic is a powerful tool to process
multi-agent settings, it is also a subject to strict requirements on the rationality of the agents. As we have
seen, in the quantum case the agents cannot even in principle be considered reliable. We also do not have
sufficient criteria for the type of setups in which it is suitable to use classical logic.

Proposal to generalize modal logic. We showed that even if we drop the truth axiom and replace it
with weaker, subjective trust relations among agents, we still obtain a contradiction in the Frauchiger-
Renner experiment (with the trust relation of Eq. 1). One could argue that it is that particular trust relation
that is not valid, and the task then becomes to identify criteria for valid trust relations: intuitive criteria
that would include trust in traditional classical settings but rule out relations that lead to contradictions in
quantum setups. One way to formalize this is to keep track of the context in which statements are taken,
apply all logical steps possible, and only then then use valid trust relations to combine and compress
statements and contexts. Without trust relations, context-tracking gives us logical consistence at a high
price in complexity: we lose the compressing power of modal logic, and the ability to combine most
statements; in addition, agents need memories that grow exponentially on the number of statements
considered.

Relation to other work. The general search for a structure which would adequately embed the propo-
sitions made in a quantum mechanical context, was started by von Neumann [46, 9]. He aimed it to
‘resemble the usual calculus of propositions with respect to and, or, and not’ [9]. In motivating the
need for quantum logic systems, Putman [40] highlights that the emerging framework should recover the
strength of classical logic in the adequate limit (we should still be able to use it to solve puzzles such
as Example 1), and that in addition it should explain the counter-intuitive aspects of quantum theory:
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settings that result in paradoxes when analyzed through classical logic (such as the Frauchiger-Renner
experiment) should not lead to contradictions through the lens of quantum logic [40]. Current proposals
for quantum logic systems [47, 7, 8, 46, 9, 3, 4, 2] fall short of these two goals. Indeed, according to the
review of the quantum logic field, carried out by Bacciagaluppi in 2009 [2], current proposals at quantum
logic can replace classical logic for particular experiments involving quantum systems; however, it is still
unclear whether they could replace classical logic on a global scale, and most importantly, they are not
powerful enough to solve quantum mechanical paradoxes. This is because most attempts at quantum
logic to date are primarily focused on stripping down the Boolean structure of classical logic, and as far
as we are aware they do not concern settings with multiple agents’ perspectives, in the way that modal
logic does.

For example, in A quantum computational semantics for epistemic logical operators by Beltrametti
et al [7, 8], truth values are not represented as bits but as qubits, and truth perspectives of individual
agents are identified with a change of basis, while logical connectives are associated with quantum gates.
However, such interpretation of truth values of propositions deprives them of their deterministic and
binary nature, which we would like to keep when arguing about agents’ reasoning.

Alternatively, one can use dynamic epistemic logic [3], which considers the consequences of public
and private announcements that define the dynamics of the Kripke structure. Some work has been made
in this direction [4]; however, it does not encompass situations where agents think about other agents’
outcomes, and thus the application of the model is not quite clear.

One can adapt another types of logic to this situation, for example, paraconsistent logic [39], which
draws an inspiration in a dialetheistic view [38]. This view supports the idea of the existence of true
contradictions; thus, paraconsistent logic denies the principle of explosion which allows proof of any
proposition via its negation. Nesting the contradictions right in the theory might give rise to substantial
development of how logic would work for paradoxes similar to the one in Frauchiger-Renner’s setup.
Research on applications of paraconsistent logic to quantum settings is still embryonic.

Pedagogical contributions. As a bonus contribution to the community, this article presented a more
pedagogical introduction to the Frauchiger-Renner experiment and to classical modal logic than we could
find elsewhere in the literature. Finally, to settle one of the most common questions that the paper has
raised in the last two years: the ch in Frauchiger is pronounced as in Loch Ness.
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APPENDIX

A Modal logic in more detail

A.1 Application of modal logic to a classical setting

Here we provide a solution to the puzzle in Example 1. Let us follow the inference of Arren. First, he
considers what Ged thinks of this whole setting. Ged sees both Tehanu and Arren, and there are four
possibilities: Tehanu wears black and Arren wears white, Tehanu wears white and Arren wears black,
they both wear white or, finally, they both wear black. However, in the latter case, Ged would have all
the reasons to announce that his hat is white; as he didn’t do that, both Arren and Tehanu can conclude
that it is not the case. Second, Arren considers Tehanu’s thinking; if Arren wears black then Tehanu can
only wear a white hat, and thus announce that fact. However, he does not, and so Arren concludes that
he wears a white hat.

One could attempt to formalize Arren’s thinking. Let us denote the state of the system as a set (∗,∗,∗)
where the first element corresponds to Ged’s state, second - to Tehanu’s state, and third - to Arren’s state.
A black hat will be marked as 1, and a white hat as 0.

Initially, Arren has no information about his or Ged or Tehanu’s state, so it is reasonable for him to
assume all possible combinations - there are 7 in total, namely, (0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),
(1,0,1),(1,1,0). His mind can be represented as a table which consists of three columns: first one
portraying his assumption of what the situation is, and two last ones corresponding to what would Tehanu
and Ged think in that case.

In the beginning of the puzzle Arren’s table looks like this:

The initial state (t = 0), according to Arren
State What Tehanu thinks What Ged thinks
(0,0,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,0,0),(1,0,0)
(0,0,1) (0,0,1),(1,0,1),(0,1,1) (0,0,1),(1,0,1)
(0,1,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,1,0),(1,1,0)
(1,0,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,0,0),(1,0,0)
(0,1,1) (0,0,1),(1,0,1),(0,1,1) (0,1,1)
(1,0,1) (0,0,1),(1,0,1),(0,1,1) (0,0,1),(1,0,1)
(1,1,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,1,0),(1,1,0)

It can be clearly seen here that Ged can make an announcement only if the state is (0,1,1); in all other
cases he can wear both white and black hat from his point of view (last column). After he does not say
anything, we have to exclude (0,1,1) from everywhere in the table, given that Arren supposes Tehanu to
use the same reasoning. That is, we have KAKT KG ¬(0,1,1), and by the truth and distribution axioms,
KA ¬(0,1,1). The table then transforms into:

The state as Ged remains silent (t = 1), according to Arren
State What Tehanu thinks What Ged thinks
(0,0,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,0,0),(1,0,0)
(0,0,1) (0,0,1),(1,0,1) (0,0,1),(1,0,1)
(0,1,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,1,0),(1,1,0)
(1,0,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,0,0),(1,0,0)
(1,0,1) (0,0,1),(1,0,1) (0,0,1),(1,0,1)
(1,1,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,1,0),(1,1,0)
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Now Arren can turn his attention to Tehanu’s column; if the state of the system is (0,0,1) or (1,0,1)
then Tehanu can announce that she is wearing a white hat; however, she does not, thus we can eliminate
these possibilities. That is, we have KAKT ¬(x,0,1), ∀ x.

The state as Ged and Tehanu remain silent (t = 2), according to Arren
State What Tehanu thinks What Ged thinks
(0,0,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,0,0),(1,0,0)
(0,1,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,1,0),(1,1,0)
(1,0,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,0,0),(1,0,0)
(1,1,0) (0,0,0),(1,0,0),(0,1,0),(1,1,0) (0,1,0),(1,1,0)

In all remaining scenarios, Arren wears a white hat, so he can safely announce it at t = 3.
Thus, here a thinking agent considers all possible worlds that can happen, and step by step, he

eliminates them from the picture, and finally narrow their variety down, being able to make a definite
conclusion.

A.2 Principles, development and other logic systems

Soundness and completeness. The aim of any logic system is to distinguish between valid and invalid
statements; the whole set of axioms and rules is designed in order to prove whether a given statement
is true or false. The main challenges faced by the logician developing such a system are to make sure
that the said system is sound and complete [24]. When we say that the system is sound, we mean that
any statement that is wrong cannot be proven right, or, in other words, there are no false positives;
completeness means that all statements that are claimed to be valid can be in principle proven in the
system. We have to emphasize here that not all statements in the set of propositions can be validated;
one can connect it to the Gödel’s first incompleteness theorem, which states that any consistent formal
system is incomplete in a sense that there exist statements which cannot be proven right or false [27].

Development and related logic systems. If we want to describe an agent who is able to make pre-
dictions about the outcomes of an experiment, we have to, first of all, have the means to model the
knowledge the agent possesses. It is one of the central concepts that can be used to describe the experi-
ments similar to the Wigner’s friend experiment and its extended version, where the agents are actively
using the information they have to draw certain conclusions. In other words, we can say that they store
statements and combine them according to the rules established before the start of the experiment. In
general, the observers performing the experiment operate and communicate using the statements of the
type “it is certain that” or “it is possible that”, in other words, these expressions qualify the truth of a
statement. This idea resembles the concept of possible worlds, introduced by Leibniz [33], and followed
by the development of modal logic [34, 35, 15, 28, 32]. The language of the modal logic allows for
the formal analysis of the occasionally complex linguistic constructions, and epistemic logic, which is a
special type of modal logic, deals with agents discussing possible worlds of the structure. Alternatively,
as the agents express their subjective beliefs and predictions in their arguments, the subjective logic is
introduced by [31], which assigns to propositions a level of belief, of disbelief and of uncertainty, and
establishes update rules, as well as the interaction of agents and trust networks. Another approach, called
Dempster-Shafer theory, is based on two ideas: obtaining degrees of belief for one question from sub-
jective probabilities for a related question, and Dempster’s rule for combining such degrees of belief
when they are based on independent items of evidence. In essence, the degree of belief in a proposition
depends primarily upon the number of answers (to the related questions) containing the proposition, and
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the subjective probability of each answer. The theory assigns a degree of belief and of plausibility for
each statement, which serve as two bounds for belief in the statement, and describes update rules for
collecting and forgetting information [48, 21]. Finally, fuzzy logic, a form of many-valued logic, also
allows for appointing fuzzy truth values between 0 and 1 [36, 49, 50]. It is connected to the concept of
partial truth, where the truth value can range between being absolutely true or absolutely untrue.

B Proofs

In this appendix you may find the proofs of some of the results in the main text.

Theorem 6 (Subjective trust in the Frauchiger-Renner setting) In the setting of Theorem 4, if we re-
place the truth axiom with the trust structure (1) for the Frauchiger-Renner thought experiment, we
obtain a contradiction.

Proof: Even before the experiment starts, we can make the following statements, reflecting what coun-
terfactual reasoning of the different agents about future measurements:

|= KAt<3 [KAt=1(a = 1) =⇒ KWt=4(w = f ail)],

|= KBt<4 [KBt=2(b = 1) =⇒ KAt=1,2(a = 1)],

|= KUt<5 [KUt=3(u = ok) =⇒ KBt=2,3(b = 1)].

If we add in the compatible assumption that agents can talk to each other before the experiment begins,
we obtain in particular

|= KBt=2KAt=1 [KAt=1(a = 1) =⇒ KWt=4(w = f ail)],

|= KUt=3KBt=2 [KBt=2(b = 1) =⇒ KAt=1,2(a = 1)],

|= KWt=4KUt=3 [KUt=3(u = ok) =⇒ KBt=2,3(b = 1)],

and so on, up to third- and fourth-order statements like

|= KUt=3KBt=2KAt=1 [KAt=1(a = 1) =⇒ KWt=4(w = f ail)],

|= KWt=4KUt=3KBt=2KAt=1 [KAt=1(a = 1) =⇒ KWt=4(w = f ail)],

|= KWt=4KUt=3KBt=2 [KBt=2(b = 1) =⇒ KAt=1,2(a = 1)].

There are many ways to apply the trust relations and distribution axiom in order to combine the above
statements. For now, we would prefer for each agent’s direct statements to be about the knowledge
of trusted agents: for example, we want to avoid statements of the form KU KAφ , but rather go the route
KU KBKAφ →KU KBφ →KU φ . To do so, let us take all the statements that start with Wigner’s knowledge,

|= KWt=4KUt=3 [KUt=3(u = ok) =⇒ KBt=2(b = 1)],

|= KWt=4KUt=3KBt=2 [KBt=2(b = 1) =⇒ KAt=1(a = 1)],

|= KWt=4KUt=3KBt=2KAt=1 [KAt=1(a = 1) =⇒ KWt=4(w = f ail)].

First we combine the bottom two statements,

|= KWt=4KUt=3KBt=2

( [
KBt=2(b = 1) =⇒ KAt=1(a = 1)

]
∧
[
KAt=1 [KAt=1(a = 1) =⇒ KWt=4(w = f ail)]

])
,
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And now we apply the trust condition At=1 Bt=2,

|= KWt=4KUt=3KBt=2

( [
KBt=2(b = 1) =⇒ KAt=1(a = 1)

]
∧
[
KAt=1(a = 1) =⇒ KWt=4(w = f ail)

])
,

followed by the distribution axiom for Bob,

|= KWt=4KUt=3KBt=2 [KBt=2(b = 1) =⇒ KWt=4(w = f ail)].

Now we combine this with the remaining statement about Wigner’s knowledge,

|= KWt=4KUt=3

( [
KUt=3(u = ok) =⇒ KBt=2(b = 1)

]
∧
[
KBt=2 [KBt=2(b = 1) =⇒ KWt=4(w = f ail)]

])
.

Again, we apply the trust condition Bt=2 Ut=3, followed by the distribution axiom for Ursula, obtaining

|= KWt=4KUt=3 [KUt=3(u = ok) =⇒ KWt=4(w = f ail)]. (2)

Note that the above holds for all possible worlds, and that Wigner and Ursula can reach the conclusion
KUt=3(u = ok) =⇒ KWt=4(w = f ail) before the experiment even starts. Additionally, at the end of the
experiment, Ursula and Wigner learn of each other’s outcomes, in particular

∀ s : (M,s) |= KUt=3(u = ok) =⇒ (M,s) |= KWt=4KUt=3,4(u = ok).

Now we run the experiment and analyse the case u = w = ok, that is

∃ s : (M,s) |= KUt=3,4(u = ok)∧KWt=4(w = ok).

Given the above, we also have

∃ s : (M,s) |= KWt=4 [KUt=3,4(u = ok)∧KWt=4(w = ok)].

Now we can combine this with (2), obtaining

∃ s : (M,s) |= KWt=4

( [
KUt=3(u = ok)∧KWt=4(w = ok)

]
∧KUt=3

[
KUt=3(u = ok) =⇒ KWt=4(w = f ail)

])
,

and applying the trust relation Ut=3 Wt=4, and the distribution axiom again, we get

∃ s : (M,s) |= KWt=4 [KWt=4(w = ok)∧KWt=4(w = f ail)].

Finally, we can apply the trivial trust relation Wt=4 Wt=4 to obtain

∃ s : (M,s) |= KWt=4 [w = ok∧w = f ail].

To obtain the contradiction, we use S, that is

“(w = f ail) =⇒ not(w = ok).”

�

Claim 8 (Context in the Frauchiger-Renner setting) When taking context into account, we do not
reach a logical contradiction in the Frauchiger-Renner setting.

We do not prove this claim directly; we only give an intuition of why we cannot reach the contradic-
tion.
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Proof sketch.
We start from the point of the proof of Theorem 6 where we combine two statements about Wigner’s

knowledge,

|= K`
Wt=4

K`
Ut=3

K`
Bt=2

( [
K`

Bt=2
(b = 1) =⇒ K`

At=1
(a = 1)

]
∧
[
K`

At=1
[K`

At=1
(a = 1) =⇒ K`

Wt=4
(w = f ail)]

])
.

Then we compress this expression in a way that has been referred to in the Definition 7, in order to
obtain explicit structure of the context of statements concerning Wigner’s knowledge,

|=
(Bt=2, `

Ut=3, `
Wt=4, `

 , [K`
Bt=2

(b = 1) =⇒ K`
At=1

(a = 1)]
)

∧
(

At=1, `
Bt=2, `
Ut=3, `
Wt=4, `

 , [K`
At=1

(a = 1) =⇒ K`
Wt=4

(w = f ail)]
)

At this point we can no longer apply the distribution axiom, due to the extra context element on the
second term. Thus, here the contradiction cannot be reached.

C Interpretations in more detail

Here we give short introductions to each of the interpretations discussed in Section 2.1.

Copenhagen interpretation. Quantum theory keeps the core of classical physics as assigning certain
mathematical structures to points in time and space; however, the behavior of said structure is different,
as well as its meaning; it no longer represents a material, but rather an informational structure. This can
be summarized in the famous words by Heisenberg [30]:

In consequence, we are finally led to believe that the laws of nature which we formulate
mathematically in quantum theory deal no longer with the particles themselves but with
our knowledge of the elementary particles. The question of whether these particles exist
in space and time “in themselves" can thus no longer be posed in this form. We can only
talk about the processes that occur when, through the interaction of the particle with some
other physical system such as a measuring instrument, the behavior of the particle is to
be disclosed. The conception of the objective reality of the elementary particles has thus
evaporated in a curious way, not into the fog of some new, obscure, or not yet understood
reality concept, but into the transparent clarity of a mathematics that represents no longer
the behavior of the elementary particles but rather our knowledge of this behavior.

In order to deal with technical difficulties that arise within the framework where physical states of
the material world are substituted by actions of obtaining knowledge, a new philosophy was created by
Heisenberg, Pauli, Born and Bohr: the Copenhagen interpretation.

The essence of the Copenhagen interpretation, as described by Bohr [12, 13], is:
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In our description of nature the purpose is not to disclose the real essence of phenomena
but only to track down as far as possible relations between the multifold aspects of our
experience. [1934]

the appropriate physical interpretation of the symbolic quantum-mechanical formalism amounts
only to predictions, of determinate or statistical character, pertaining to individual phenom-
ena appearing under conditions defined by classical physical concepts. [1958] (...)

In his work Bohr also points out that the essential part of scientists’ goal is to communicate the details of
the setup they have used in experiment and the contents of the obtained outcomes, which they are bound
to express in concepts of classical physics [13]:

As the goal of science is to augment and order our experience, every analysis of the con-
ditions of human knowledge must rest on considerations of the character and scope of our
means of communication. [...] In this connection, it is imperative to realize that in every
account of physical experience one must describe both experimental conditions and obser-
vations by the same means of communication as one used in classical physics.

Bohr does not imply in this article that there is an objective reality that corresponds to the laws of classical
physics.

The Copenhagen solution to the inconsistency present between classical and quantum physics is
as follows: for the practical purpose of reasoning about experiments, we split the modelling of nature
into two parts. The first part would be the observing system, which includes the minds and bodies of
the humans acquiring knowledge via the experiment, and also the measuring devices; the measurement
setup and the following outcome experiences are described in ordinary language of classical physics.
The agent (observer) thus should be able to say, for example, “I switched on the device and ten minutes
later I saw the pointer turn to the left”. The second part of nature is the observed system, which would
be described in the language of quantum mechanics.

Such separation between two parts of nature is called the Heisenberg cut. Above the cut one uses
classical descriptions, while below the cut one uses a quantum mechanical description. This cut can be
moved, for example, from below the measuring device to above it, thus including the device into the
quantum part of the system. In principle, one can even move the cut above a given observer, for example
in multi-agent settings, as discussed here.

The observing system is left with a choice of an appropriate question to ask — the mathematical
description of the theory does not specify the question. The Copenhagen interpretation approaches this
by postulating conscious observers in a physical universe (able to communicate and having an interest in
acquisition of knowledge), who are essentially free to make the choice of the question [13]:

The freedom of experimentation, presupposed in classical physics, is of course retained
and corresponds to the free choice of experimental arrangement for which the mathematical
structure of the quantum mechanical formalism offers the appropriate latitude.

To give an example of how the Heisenberg cut can be moved, consider John von Neumann’s under-
standing of quantum mechanics. Von Neumann named the physical posing of the question as Processes
of type 1, while so-called Processes of type 2 correspond to the subsequent evolution of the quantum
state [46]. A process of type 1 (choosing to perform a Z measurement on a spin, for example) may have
a part that is not physically modelled (the decision that takes place in the abstract “mind” of the agent),
and a part that is physically modelled (the brain processes associated with that decision, the pressing of a
button corresponding to the Z measurement). The latter then affects the course of processes of type 2 (the
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physical interaction of the measurement apparatus with the spin). This allows us to move the Heisenberg
cut above the observer’s experience of the outcome, leaving only the abstract “choice of measurement”
in the classical realm.

Bohmian theory. The pilot-wave approach of Bohm [10] assumes that both things exist at once: the
state of the physical universe specified by quantum theory (superposition of all possible configurations)
and the classical world (a certain configuration that is there even when unobserved) which determines
the contents of our consciousness. The quantum state evolves continuously according to von Neumann’s
processes of type 2, and the real classical world is enveloped in the quantum world in a way which makes
all predictions of quantum theory correct. It is a deterministic hidden variable theory which is also non-
local: for example, in some multi-particle settings the velocities of each single particle depends on the
positions of all other particles.

The theory is based on the following postulates: first, there is a configuration of the universe, de-
scribed by coordinates, which is an element of the configuration space. Its dynamics is governed by the
guiding equation. Entities like electrons act like actual particles, their velocities at any moment fully
determined by the pilot wave, which in turn depends on the wave function. In this view, each electron
is like a surfer: it occupies a particular place at every specific moment in time, yet its motion is dic-
tated by the motion of a spread-out wave [19]. Second, the configuration is distributed according to
the usual probability density (square modulus of the wave function, which is, in its turn, governed by
Schrödinger’s equation) at all times. This state (called quantum equilibrium) agrees with the results of
the standard theory in the usual regime of single observers.

In his later works [11] Bohm makes an effort to explain consciousness of the observer in terms of
his theory. The problem this approach faces is somehow similar to the problem of the many-worlds: if
the universe is governed by von Neumann’s Process of type 2 alone, then the physical states of devices
and brains are not partitioned, thus failing to produce distinct experiences depending on outcomes of
experiments. For a short summary of the theory, see [42].

Relative-state formalism. Stefan Wolf and Veronika Baumann in their article “On Formalisms and
Interpretations” [6] draw a comparison between textbook, collapse quantum mechanics and what they
call “the relative-state formalism” (adapted from [17]). They stress that the universal and unitary quan-
tum theory, postulated by the relative-state formalism, calls for a formulation of alternative version of
the Born rule, and, subsequently, provides another type of formalism, different from what the standard
quantum mechanical model has to offer.

The relative-state formalism reproduces the same probabilities as standard quantum mechanics for
measurements on the same system, but is inequivalent to it in case of observers observing another ob-
servers, or, in other words, in case of a Wigner friend’s-like scenario. Here we will briefly outline two
formalisms presented in the paper, and then apply them to the Wigner’s friend experiment.

According to the standard quantum mechanics, the Born rule, which gives the probability of a mea-
surement result for a quantum state |φ〉 and an observable A = ∑a a|a〉〈a|, looks like:

pφ (a) = Tr(|a〉〈a|φ〉〈φ |) = |〈a|φ〉|2.

Now consider two observers O1 and O2 consecutively measuring a quantum system in the initial state
φ ; their measurements are given by families of projectors {|a〉〈a|} and {|b〉〈b|} respectively. Then the
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conditional probability of result b given a is:

pφ (b|a) =
pφ (a,b)
pφ (a)

= |〈b|a〉|2,where pφ (a,b) is the joint probability of a and b.

According to the relative-state formalism, measurements can be represented as isometries, correlating
the state of the observer with the state of the observed system. For an observer O (with an orthogonal set
{|Aa〉} recording the result) measuring a state φ of a system S with respect to a projector family {|a〉〈a|S}
the isometry is

VO : HS→HS⊗HO, |a〉S 7→ |a〉S⊗|Aa〉O.

The authors then introduce two postulates for the case of the relative-state formalism:

1. The probability of observing a is given by
qφ (a) = Tr(1S⊗|Aa〉〈Aa|O ·VO|φ〉〈φ |V †

O).

2. The joint probability of states is given by the trace of the tensor product of the projectors onto
those states acting on the overall state.

If we again consider two observers O1 and O2 consecutively measuring a quantum system in the initial
state φ , then according to the postulates, the conditional probability for the measurement result b given
a is:

qφ (b|a) =
qφ (a,b)
qφ (a)

=
Tr(|Aa〉〈Aa|⊗ |Bb〉〈Bb|VO2VO1 |φ〉〈φ |V

†
O2

V †
O1
)

∑b Tr(|Aa〉〈Aa|⊗ |Bb〉〈Bb|VO2VO1 |φ〉〈φ |V
†
O2

V †
O1
)
.

It is then shown that the conditional probabilities for two observers consecutively measuring the same
quantum system are same for standard quantum mechanics and relative-state formalism. However, if we
consider additionally a superobserver SO measuring the joint system with {|b〉〈b|S,O} these two cases
are proven to be inequivalent.

Three different scenarios can be distinguished in this situation: first, when both the observer and the
superobserver use the standard quantum mechanics measurement-update rule (authors call it objective
collapse model); second, all agents can use the relative-state formalism (no-collapse model); and, finally,
third, when the friend uses the standard quantum mechanics and Wigner (to whom the lab and the friend
evolve unitarily) applies the relative-state formalism (subjective collapse model). In the last case, if the
friend calculates the conditional probabilities with a collapse model, while Wigner uses the relative-
state formalism, they will give contradicting answers to the same question regardless of the friend’s
measurement result (for a detailed discussion see [6]).

Many-worlds. This interpretation assumes that the quantum state of the universe exists (and evolves
under the rules of Process of type 2); the fact that we obtain specific outcomes is considered merely a
subjective illusion, as the collapse events of the Copenhagen interpretation are no longer occurring. The
conscious experiences of an outcome are side products of this continuous physical evolution; the state of
the the universe splits, forming so-called “branches” in the original formulation of Everett [17].

However, the many-worlds interpretation faces various problems, including the problem of appro-
priate basis choice and branching events; as summarized by Zurek in the comparison he draws between
many-worlds and Copenhagen [51]:
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The similarity between the difficulties faced by these two viewpoints becomes apparent,
nevertheless, when we ask the obvious question, “Why do I, the observer, perceive only one
of the outcomes?” Quantum theory, with its freedom to rotate bases in Hilbert space, does
not even clearly define which states of the Universe correspond to the “branches”. Yet, our
perception of a reality with alternatives — not a coherent superposition of alternatives —
demands an explanation of when, where, and how it is decided what the observer actually
records. Considered in this context, the Many Worlds Interpretation in its original version
does not really abolish the border but pushes it all the way to the boundary between the
physical Universe and consciousness.

Thus, the question of why the experimenter perceives only one outcome is this picture still remains.
Additionally, quantum mechanical description nowhere implies that the state of mind cannot be a super-
position of states; thus it is not paradoxical [37].

The attempts to interpret probabilities in the many-worlds scenario have been made, for example,
by Lev Vaidman. He postulates that, while the wave function of a world specifies what we “feel” in the
world, the absolute value of the coefficient behind it specifies the illusion of probability: all possible
outcomes still take place, yet there is no difference between our experience and the experience of an
agent with genuine probability [43, 44].

QBism. QBism is an interpretation of quantum mechanics which puts the agent performing the mea-
surement in the spotlight of the theory. It was developed by Carlton Caves, Christopher Fuchs and
Rüdiger Schack [16, 23, 22]. QBism argues that a quantum state represents not the physical, but the
epistemic state of the observer who assigns it according to her view on her future experiences. The
probabilities of different outcomes the agent can get are then simply viewed as that agent’s degrees of
belief in each of a variety of these outcomes. QBism does not consider the quantum state to possess
the complete information about the system; on the contrary, QBist observers each model their own state
of the system, based on the knowledge available, and these states can, in principle, be different. This
makes QBism a single-user theory, and thus the way of performing the analysis of the Wigner’s friend-
type scenarios, where agents have to compare their experiences (purely subjective in the case of QBism),
becomes unclear.
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