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Abstract 

Precision farming enables agricultural management decisions to be tailored spatially and 

temporally. Site-specific sensing, sampling, and managing allow farmers to treat a field as a 

heterogeneous entity. Through targeted use of inputs, precision farming reduces waste, thereby 

cutting both private variable costs and the environmental costs such as those of agrichemical 

residuals. At present, large farms in developed countries are the main adopters of precision 

farming. But its potential environmental benefits can justify greater public and private sector 

incentives to encourage adoption, including in small-scale farming systems in developing 

countries. Technological developments and big data advances continue to make precision 

farming tools more connected, accurate, efficient, and widely applicable. Improvements in the 

technical infrastructure and the legal framework can expand access to precision farming and 

thereby its overall societal benefits. 

JEL: Q1; Q2, Q5, O3, D2 

 

Keywords: precision agriculture, smart farming, digitalization, variable rate technology, big 

data, site-specific management, sustainable intensification, technology adoption 



 3 

1. INTRODUCTION 

With the large-scale mechanization of the agricultural sector in the twentieth century, labor was 

increasingly replaced by machinery, land productivity increased, and economies of scales were 

achieved (Martín-Retortillo & Pinilla 2015). The switch from labor- to capital-intensive farming 

enabled farmers to manage larger fields and farms. From the mid-twentieth century on, the Green 

Revolution brought productivity gains via genetically improved varieties, synthetic chemical 

fertilizers, and pesticides that reduced crop losses. These innovations favored the development of 

larger and more uniformly managed fields in many parts of the world. In contrast, before 

agricultural mechanization, farmers could adjust their within-field management to account for 

variabilities in yield potentials, topography, soil characteristics, nutrient demands and both 

abiotic (e.g., weather) and biotic (e.g., pests and weed infestation) stresses in mainly manual 

practices (Zhang et al. 2002). But in gaining the economies of scale from mechanization and 

moving to uniform practices, farmers sacrificed the ability to manage efficiently the spatial and 

temporal heterogeneity of farm fields. 

The new and ongoing agricultural revolution in information technology, called precision 

farming (PF), began to be developed in the 1980s. PF technologies became commercially 

available beginning in the early 1990s. PF addresses the challenge of tailoring management to 

site, crop, and environmental traits (Swinton & Lowenberg-DeBoer 1998, Lowenberg-DeBoer 

2015) and promotes the use of new technologies and data to address heterogeneities of a field 

(e.g., Zhang et al. 2002). Thus, PF comprises standardized approaches to reduce the unknowns 

related to the knowledge base for farm management decisions (Liaghat & Balasundram 2010) 

and enables temporal and site-specific farm management even for agricultural systems that 

became mechanized and large scale. In short, PF enables big farms to tailor management as 

small farms do (Swinton & Lowenberg-DeBoer 1998, Lowenberg-DeBoer 2015). It represents a 

paradigm shift, as the field is treated as a heterogeneous entity that allows for selective treatment 

and management (Aubert et al. 2012). PF is not exclusive to specific farms but could be 

applicable and beneficial for all farms, ranging from small to large, organic to conventional, as 

well as from developed to developing country farms. Besides PF, precision livestock farming is 

also an important and emerging field (e.g., Wathes et al. 2008, Berckmans 2014, Busse et al. 

2015), but beyond the scope of this review. 
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Adoption of PF technologies to date varies both geographically and by type of technology. 

Although various components of PF became mature technologies in developed countries (e.g., 

georeferencing technologies and guidance systems), the overall picture is that PF has not yet 

been taken up widely in the agricultural sector at large (e.g., Bramley 2009, Tey & Brindal 2012, 

Tamirat et al. 2018). This is especially the case for more complex applications like sensor-driven 

variable rate application of inputs. 

However, the ongoing evolution of many PF technologies is lowering costs and expanding 

applications in ways that bode broader adoption. Developments in information technology allow 

an increasingly finer degree of precision than previously possible (Aubert et al. 2012) and the 

costs for sensor technologies are declining rapidly. Technological developments related to the 

digitalization of the agricultural sector are currently complemented by advances in data 

processing and robotics (e.g., Walter et al. 2017, Wolfert et al. 2017, Weersink et al. 2018). 

These developments have led some to argue that PF will advance the sustainability of agriculture 

(e.g., Walter et al. 2017). 

The question remains whether, where, and how technological developments can be 

transformed into benefits in the agricultural sector. Policy makers became increasingly interested 

in PF recently because of its potential to address current challenges of the agricultural sector 

(Kritikos 2017). These challenges comprise the need for high quantity and quality of food 

produced but also the reduction of negative external effects of agricultural production such as 

environmental pollution, loss of biodiversity, and the substantial contribution of agriculture to 

greenhouse gas emissions (e.g., Tilman et al. 2002, 2011). These challenges are accelerated due 

to climate change, globally changing dietary patterns, and changing societal demands for 

ecosystem services (Schröter et al. 2005, Swinton et al. 2007, Zhang et al. 2007, Power 2010, 

Vermeulen et al. 2012, Wheeler & von Braun 2013). In response, agri-environmental policies are 

becoming stricter, motivated by the urgent need for solutions reducing the environmental and 

human health implications of agricultural production. These steps, however, shall not jeopardize 

food production and the economic viability of the sector (Zhang & Wen 2008, Osteen & 

Fernandez‐Cornejo 2013, Finger 2018). Sustainable development of the agricultural sector 

requires addressing this nexus of productivity, environmental problems and economic viability of 

agricultural activities. 



 5 

This review argues that PF here is not a panacea, but it has a high potential to contribute to a 

more sustainable development of the agricultural sector. Because PF is fundamentally a set of 

information technologies used for decision support, the change it promises will vary with the 

pre-PF farming practices and degree of information use. The goal of this article is to 

investigate and assess developments of precision farming from the perspective of both farmers 

and policy makers.  The article examines the mechanisms,  use, trends, and future prospects of 

PF. Based on foundations from agronomic and technical perspectives, we review the economics 

of PF, adoption and diffusion, barriers to success, and environmental impacts. Moreover, 

policy aspects of PF are investigated, and the interrelation with other agricultural and 

environmental policies is analyzed. 

2. PRECISION FARMING 

PF aims to tailor management in a coherent and holistic manner (Lowenberg-DeBoer 2015), 

especially exploiting high spatial and temporal variability of crop and environmental traits (e.g., 

Zhang et al. 2002, Lowenberg-DeBoer 2015). Variabilities in yield potentials, topography, soil 

characteristics, nutrient demands, and abiotic (e.g., weather) and biotic stressors (e.g., pest and 

weed infestation) are addressed (Zhang et al. 2002). Pierce & Nowak (1999, p. 4) summarize PF 

as a technology that allows a farmer to “…do the right thing, in the right place, in the right time 

and in the right way.” To this end, farmers can use different (combinations of) technologies. We 

especially distinguish diagnostic (collecting or generating information) and applicative (implying 

adjusted management actions) tools in PF technologies.1 Collecting and structuring data are the 

foundation of PF, but ultimately, the high potential of PF results from the combination of 

different technologies applied to derive management practices from the collected data. 

Georeferencing technologies, such as the global positioning system (GPS) and mapping via 

geographical information systems (GIS), are key elements of many PF applications. These 

technologies allow the use of guidance systems and controlled traffic during field operations 

such as tillage, harvesting, and application of inputs such as nitrogen, seeds, and pesticides. 

Because no further skills or new machinery are needed to make use of georeferencing 

technologies, Weersink et al. (2018) refer to them as embodied-knowledge technologies. 

 
1Barnes et al. (2019) use the terms recording technologies and reacting technologies instead. 
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However, georeferencing information is especially powerful in reaching efficiency gains if used 

in conjunction with other sensors to provide georeferenced maps of yield, salinity, or other 

measurable environmental traits, but also by simply reducing overlap during field operations. 

Diagnostic tools gather information using sensing or sampling techniques along various scales 

(e.g., Wang et al. 2006, Zhang & Kovacs 2012, Mulla 2013). The most important sensing tools 

use spectral indices that are taken from images and provide information on the coloration of the 

observed vegetation. Frequently, sensors and scanners mounted on tractors are  used to provide 

information on nutrient status (e.g., Li et al. 2010). Initial sensing approaches have established 

the normalized difference vegetation index (NDVI) as a measure for soil covered with functional 

leaf tissue. NDVI has been calculated from data in the near-infrared and in the red wavelength 

range since the 1970s. In the meantime, many more spectral indices have been used in PF to 

derive proxies for canopy cover, organic carbon content of the soil, soil moisture, leaf area index, 

or plant biomass (Mulla 2013). Images taken from satellites have been used since the 1970s to 

extract relevant agricultural information (Bauer & Cipra 1973, Mulla 2013). The first of those 

satellites, Landsat 1, collected information in four spectral bands (red, green, and two infrared 

bands) at a spatial resolution of 80 m and at a return frequency of 18 days. In the meantime, 

satellites such as QuickBird and RapidEye that are equipped with more sophisticated sensor 

technology can provide revisit times between one and three days, spatial pixel resolutions of less 

than 1 m, and higher numbers of spectral bands. Data from these satellites are not easy to process 

and are costly. Since 2017, data from Sentinel 2 is publicly available, with a spatial resolution of 

10 m in ten possibly relevant spectral bands, leading to cheaper and more precise options for the 

diagnosis of vegetation and nutrient status than previously possible (Lilienthal et al. 2018). 

Moreover, near-remote sensing is based on unmanned aerial vehicles (UAVs) such as drones. 

Within a small field, UAVs have increasingly been used to provide images with resolutions in 

the centimeter range (Candiago et al. 2015, Agili et al. 2018) and allow for the detection of a 

high number of relevant traits (Walter et al. 2015, Hunt & Daughtry 2018) such as crop biomass, 

developmental stage, photosynthetic efficiency, nitrogen nutrition status (Gnyp et al. 2016), or 

soil properties without the nuisance of clouds possibly covering the information, as is often the 

case for satellites. Moreover, scouting for weeds, for example, can be facilitated using UAVs 

(Lottes et al. 2017, Walter et al. 2018). To monitor crop traits and certain other environmental 

conditions, other sensing [e.g., thermal imaging, electrical conductivity of the soil (Corwin & 
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Lesch 2005)] and sampling techniques (e.g., GPS-based soil sampling regarding available 

nutrients, pH level, soil moisture, etc.) are frequently used. Furthermore, in situ sensors capable 

of real-time monitoring of soil nitrogen can improve fertilizer management, seeding rates, and 

use of growth regulators exploiting the spatial variation of soil nitrogen (e.g., Shaw et al. 2016). 

Finally, also handheld devices are used to measure the nutritional status of plants.  

Diagnostic tools are not only focused on measurement during the growing period, but they 

are also applied at harvest. Based on sensors on grain and bulk crop harvesters, yield monitors 

record crop yield, especially to document within-field variability. These monitors are available 

for most grain and bulk crop harvesters. This allows a precise and highly localized performance 

measurement within the field. Yield monitoring also plays an important role in different 

horticultural crops ranging from vegetables to fruits and from mechanically harvested to 

handpicked systems (see Zude-Sasse et al. 2016 for an overview). Beyond crop quantity, quality 

is also monitored. For cereals, quality traits such as protein and moisture content are measured in 

yield-monitoring combines using near-infrared spectroscopy. In addition, forage quality traits 

such as moisture, protein or fiber are frequently monitored at harvest. Yield quality monitoring is 

of special relevance for high-value horticultural crops (e.g., Aggelopoulou et al. 2011). 

Next to the use of high technology sensor solutions, low-cost, low-technology tools are also 

used as diagnostic tools, especially in developing countries. For example, Mondal & Basu (2009) 

report that portable diagnostic tools such as chlorophyll meters and leaf color charts for in situ 

measurement of the crop nitrogen are used in various Asian countries. 

Applicative tools enable management response to spatially and temporally precise diagnostic 

information. This can be done in using manually operated systems, e.g., for the variable rate 

application of fertilizer (Robertson et al. 2012). In theory, however, the full capacity of PF is 

utilized when applications are performed with automated treatment technology, such as shown 

for highly site-specific nitrogen fertilization (Fulton et al. 2005, Kim et al. 2008, Diacono et al. 

2013), tree spraying (Jeon & Zhu 2012), or site-specific center-pivot-irrigation (Evans et al. 

2013) or. These variable rate technologies (VRTs) also comprise precision soil preparation or 

variable rate seeding. For the latter, adjustments in spacing and depth according to environmental 

conditions such as soil moisture and soil organic matter content are made. Yet, in practice, a 

frequently applied concept for site-specific application of inputs is that of management zones 

(Khosla et al. 2002, Seelan et al. 2003, Nawar et al. 2017): Highly-resolved prescription maps 



 8 

are translated to maps that show a small number of regions, for which differing intensities of 

fertilizer, irrigation, or other input are applied using available, often conventional machinery. 

These management zones are based on a number of monitored input parameters, and the number 

of zones can be chosen with respect to the given task (e.g., a high,  medium, or low rate of 

fertilizer applied). Nawar et al. (2017) showed that an optimal number and outline of these 

management zones are important prerequisites for profitable application of PF. Delineation of 

site-specific management zones today is performed with methods of machine learning 

(Chlingaryan et al. 2018). Yet, machinery is also increasingly used that allows even further 

refined precision application of inputs, e.g., specific precision fertilization or spraying 

equipment. 

VRTs also increasingly involve new types of equipment and machinery. For example, UAVs 

can be used to apply inputs such as pesticides (Xiongkui et al. 2017). The use of autonomous 

machinery and robots is another area of increasing development along the line of PF 

technologies. Here, positioning information and multiple sensors are combined with machines 

allowing autonomous activities such as seeding or weed control (e.g., Slaughter et al. 2008, van 

Evert et al. 2011, Naik et al. 2016, Walter et al. 2018). Greenhouse-based production is also 

highly suitable for automation and use of robots (e.g., Roldán et al. 2018), e.g., by measuring and 

adjusting the use of inputs such as water and fertilizer but also heating, CO2 injections, and 

ventilation (Roldán et al. 2018). 

Overall, VRTs facilitate the application of inputs in a computer-based controlled way using 

prescription maps. Higher spatial and temporal precision in input application is used to meet crop 

quantity and quality targets. As an example of the latter, nitrogen is decisive for the quality of 

various crops such as cereals, oil seed crops, potatoes, or sugar beets. Precise application of 

nitrogen can allow a farmer to adequately balance trade-offs, e.g., between protein levels and oil 

concentration for oil seed crops, and to determine marketing channels (e.g., for potatoes) (see 

Blumenthal et al. 2008). Precise application of inputs also has the potential to reduce costs and 

effluents, i.e., residual inputs lost to environmental systems. It is an open question whether and to 

what extent these benefits are achieved in real-world agricultural systems. Land allocation 

decisions can also be improved using information obtained from sensors. For instance, high-

productivity zones can be identified in the field based on yield monitors to prioritize land-use 

decisions. The identification of low-productivity zones in the field can be used to assign set-



 9 

asides (Muth 2014, Brandes et al. 2016). Due to increasing computing power and better tools to 

process and analyze data, more data can be fed into decision support tools (e.g., on-tractor 

dashboards or apps) allowing for real-time adjustments in management decisions. 

3. ECONOMIC FRAMEWORK 

To help conceptualize the adoption of PF technologies, we build upon the model of Norton & 

Swinton (2001). Developed in the early days of PF, that model focused on how PF affects 

variable input use. We expand that model to accommodate PF technologies that (a) enhance the 

yield (y); (b) reduce undesirable effluents (e) from residual nutrients to water (e.g., NO3, 

pesticides) or to air (e.g., N2O); and (c) reduce the overuse of other environmentally relevant 

inputs such as fuel and irrigation water. We also allow PF to increase the quality (Q) of marketed 

goods. Product quality as influenced by inputs can take the form of intrinsic and/or extrinsic 

quality. Intrinsic quality comprises, for example, color, appearance, protein, starch, or sugar 

content as well as pesticide residue content. Extrinsic quality is associated with production 

practices, origin, or related aspects of the production process. 

 

We distinguish between PF technologies that manage a limited set versus a wide set of 

inputs. From the standpoint of a farmer as decision maker, we frame the problem as a dynamic 

investment model. The decision maker choses a stream of capital and variable inputs—

differentiated between information technologies and conventional ones—to maximize discounted 

net revenue over the farm’s planning horizon. Annual capital investments may take the form of 

information technologies, kI, or conventional technologies, kx. Annual variable inputs may take 

the form of custom PF services, sI, conventional inputs, x, or a mixture of both. 

In deriving behavioral expectations from this model, we work from the assumption that the 

farmer had already optimized for spatially average conditions, * | 0ix s = . So the inferences of 

interest involve how the presence of PF services (sI > 0) causes accumulated wealth to change 

and which particular PF services have the greatest effect under what conditions. 

0

( )dt

, , ,

T
t

t
t

I I x

Max E

k s k x

δ π
=
∫  , 1. 
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subject to 
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I IQ Q x K s =     3. 

e x yθ= −   4. 

( )1 1

1

0 0 0

( , , dt, , , , ,
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t nf
j j jt f t jt

jt jt jt

I x

k k K L WK Y credit K i A j I x

K K k
K K K

δ π− −

−

 = ∀ = 
= +

= =

∫
 5. 

where Ε(•) is the expectations operator, δ is a discount factor, and πt is net revenue in period t, 

with integration covering all periods up to the farmer’s time horizon T. In the constraint set, the 

time subscript is suppressed for simplicity. Annual net revenue πt depends on revenue, variable 

costs, and capital costs (kj, FC). The revenue function, which is the first expression on the right-

hand side of Equation 2, is the product of product price p, land operated A, and yield y. Product 

price is assumed to be increasing in quality (Q), which can be enhanced via information-based 

management of conventional inputs x, as shown in Equation 3. Note that price increases due to 

increases in intrinsic and especially extrinsic quality require that this quality information can be 

reliably transported to downstream actors. Yield depends on x (including seed, fertilizers, 

pesticides, hired labor), information services for inputs x
Is  (including nutrient and pest maps, 

variable rate applicators), information services for management control mc
Is , (e.g., yield maps, 

sensors, yield traceability, guidance systems), and conditioning factors z (such as human capital, 

management ability, and land quality). Variable costs, which appear in the second term on the 

right-hand side of Equation 2, depend on input levels and unit input prices wx for conventional 

input x and wI for information custom services, sI.2 The adoption of PF is capital intensive and 

leads to greater expenditures on machinery and equipment as well as for access to information, 

 
2The demand for custom services will depend on both the level of existing farm investment in 

information technologies, KI, and the existing set of custom services available in the local 

economy, CSI. We omit these details for parsimony. 
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e.g., such as georeferencing services (Schimmelpfennig 2016). Effluent costs, cee, appear as the 

third term in Equation 2. Effluents are defined as the residual of inputs, x, that remain in the 

environment after share θy of x is removed by crop yield, per Equation 4 (Khanna et al. 2000). 

The remaining terms are the annual capital costs of owning information technologies (kI) and 

conventional technologies (kx), along with other fixed costs, FC. As indicated in Equation 5, 

annual investment costs of either technology kj depend on prior capital stocks Kjt-1, the 

availability of family labor (Lf), expected future net revenues from changes in capital level (the 

second term), and the availability of working capital WK. WK, in turn, depends on nonfarm 

income Ynf and credit, which is a function of current ownership of capital (Kjt-1), interest rate (i), 

and land (A). The final two constraint equations specify the dynamics of motion and the initial 

conditions. 

Creating a hamiltonian from Equations 1 and 2 and differentiating with respect to kI or sI 

leads to a reduced form of input demand functions that highlight the expected determinants of 

adoption for PF technologies: 

/

0( , , , , , , , , )nf
I I I x Ik k p w w i K Y CS A z

++ − + − + + − +

=   6. 

( , , ,  , , , )I I I x It Is s p w w K CS A z
+ − + − + +

= .  7. 

Equation 6 suggests that apart from input and output prices, PF technology investment depends 

on the farm’s access to investment capital, be it from an initial endowment, off-farm income, or 

land. Equation 7 shows that custom-hired PF services depend on relative prices and land area in 

the same fashion as do PF investments, but the effect of PF capital equipment is to reduce 

custom hired services, whereas the effect of local agribusiness infrastructure (CSI) is to increase 

them. Jointly, Equations 6 and 7 address the use of PF technologies, whether through own capital 

(kI) or custom-hired services (sI). 

This model of wealth-maximizing decisions by a representative farmer creates a framework 

for developing expectations about PF technology adoption. First, because PF information 

technologies can enhance land productivity and because they require access to investment 

capital, farms with more land will be more likely to adopt PF for the revenue contribution and for 

access to capital embodied in land value. Hence, larger farms are expected to be early adopters of 

new technologies such as PF that exhibit increasing returns to scale (Bowman & Zilberman 
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2013). Second, in areas with higher spatial variability of field conditions, PF is more likely to be 

profitable and adopted because, for example, variable rate applications have higher economic 

benefits (e.g., Bullock et al. 2002, Isik & Khanna 2002, Liu et al. 2006). Third, farms whose 

product quality is responsive to PF management will be more likely to adopt PF due to the 

potential to gain quality premiums. This can comprise products where intrinsic quality is highly 

price relevant (e.g., horticultural crops) and products where prices are driven by extrinsic quality 

(e.g., products under specific brands or labels). Fourth, because they provide general 

management planning and control information, the PF diagnostic tools for management control (
mc
Is ) are likely to be adopted earlier than the applicative PF technologies. The reason is that 

diagnostic tools, such as remote sensing of crop health or yield monitoring, can add value 

through informing management decisions on multiple inputs (e.g., nutrients, water, pesticides), 

while the specific applicative PF technologies tend to be limited to one or few inputs. Moreover, 

applicative technologies require diagnostic tools and additional investments. Fifth, embedded in 

the z variable are management quality elements, including human capital, suggesting that PF will 

be adopted more rapidly where education levels are higher. Sixth, the presence of an agribusiness 

infrastructure, CSI,, will be especially important for adoption of custom-hired PF services that 

enable adoption of PF with much reduced investment in PF hardware, software, and learning. 

Along these lines, the availability of information technology infrastructure—including high-

speed internet access, georeferencing services, platforms for data collection and sharing, decision 

support tools, and advisory service—will be a precondition for the adoption and diffusion of PF 

technology. 

Apart from expectations about farmer adoption, the annual production part of the model in 

Equations 2–4, suggests two additional expectations about the effect of PF adoption on farming 

systems. The first of these is a cautionary note: Although PF is often characterized as input-

saving and/or yield-enhancing, neither is necessarily true. In both cases, the effect of PF depends 

on the prior level of management. Indeed, if (contrary to model assumptions) the farmer was not 

optimizing input use for spatially average conditions (e.g., if the information was not available 

before), PF adoption may bring extra yield gains or agrichemical savings that could have been 

had simply by good management for average conditions. Second, PF is expected to reduce 

emissions by increasing the efficiency of field operations and reducing wasted agrochemical 

inputs that miss their targets and become effluents. Where there is a nonzero effluent cost (ce), as 
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in the presence of Pigouvian taxes, we would expect an even stronger effect of PF on reducing 

effluents. 

The conceptual model presented here provides a starting point for a critical assessment of PF 

technology adoption. By extending the model, added adoption determinants can enter. For 

example, other benefits of PF beyond changes in (expected) profits, are decreasing risk exposure 

[e.g., reduce temporal yield variability (Lowenberg-DeBoer 1999)], reductions of labor 

requirements (e.g., for autonomous field operations), or improved quality of working conditions 

(e.g., higher work safety, reduced exposure to pesticides, reduction of physically demanding 

manual labor, auto-steer systems) (e.g., Gebbers & Adamchuk 2010). The goal function depicted 

in Equation 1 reveals that investment costs for equipment (e.g., Reichardt & Jürgens 2009) 

and/or learning costs due to complexities of PF production systems (e.g., Kutter et al. 2011) can 

represent adoption hurdles. This framework can be extended to also incorporate the role of risk 

and risk preferences for investment decisions (see also Sunding & Zilberman 2001). For 

example, uncertainties regarding possible benefits of PF reduce adoption incentives (e.g., 

Khanna et al. 2000, Tozer 2009). Technology risks are especially crucial for the adoption of PF 

by farmers because innovation can take place rapidly: “in the world of precision agriculture, each 

new growing season seems to bring a fresh batch of brand-new technologies.”3 This is expected 

to delay PF investment (Watcharaanantapong et al. 2014), especially if framing investment 

decisions in a real option theory framework (e.g., Tozer 2009). 

4. EMPIRICAL EVIDENCE 

The empirical evidence on the uptake of PF and its potential for environmental benefits is 

consistent with the expectations from the economic model and also shows that uptake of PF is 

highly heterogeneous across time, space, and technology. While there exists no global database 

of PF adoption patterns, there are many examples of the application of PF across various 

cropping systems and countries (e.g., Bramley 2009, Pierpaoli et al. 2013, Tey & Brindal 2012). 

4.1. Adoption of Precision Farming 

 
3https://www.country-guide.ca/2018/01/23/the-precise-in-precision-agriculture/52423/.  
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Consistent with expectations from the economic model, PF diagnostic technologies are becoming 

more widely adopted compared to the PF applicative technologies. The number of agricultural 

devices for gathering data worldwide was estimated at 30 million in 2015 and is expected to rise 

to 75 million by 2020 (Chi et al. 2017, Weersink et al. 2018). Guidance systems, GPS, and GIS 

mapping are common in new machinery in many countries (e.g., Winstead et al. 2010, Suprem et 

al. 2013, Mulla 2013, Schimmelpfennig & Ebel 2016, Zhou et al. 2017). For example, Griffin et 

al. (2018) report adoption rates in Kansas to be above 80%. Yield monitoring systems are also 

widely used and incorporated into most new, large-scale combine harvesters in North America 

(Griffin et al. 2018). Suprem et al. (2013) report that 46% of corn, 36% of soybeans, and 15% of 

wheat in the United States are harvested by a combine that allows yield monitoring. However, 

the share of farms that also uses GIS mapping software to store, manage, and analyze the data 

from site-specific technologies was found to be lower than the share equipped with yield 

monitors (Winstead et al. 2010). 

Remote sensing (e.g., satellite imagery) or proximate plant sensing approaches are less 

widely adopted than in-field diagnostic technologies. For example, Castle et al. (2015) report that 

25% of Nebraska farms use satellite imagery compared to an 80% uptake of yield monitors and 

GPS guidance systems. 

PF diagnostic tools are adopted outside of the United States at lower rates, but they follow 

similar uptake patterns in regions such as Australia (e.g., Bramley 2009) and Europe (e.g., 

Reichardt & Jürgens 2009, Tamirat et al. 2018). For example, the general uptake of PF 

technologies in German agriculture is estimated to be between 10% and 30% (Reichardt & 

Jürgens 2009, Kutter et al. 2011, Paustian & Theuvsen 2017). While the overall PF adoption in 

developing countries is low, selected uptake has been reported in Argentina, Brazil, Chile, China, 

India, and Malaysia (Mondal & Basu 2009). The uptake of diagnostic tools, including remote 

sensing, was found to be highest among large-scale farming operations (e.g., Silva et al. 2011 for 

sugarcane in Brazil). More generally, adoption is increasing with farm size, consistent with the 

capital requirements and economies of scale for such tools highlighted in the previous section 

(e.g., Norton & Swinton 2002, Schimmelpfennig 2016). 

Applicative technologies such as VRT have been adopted to a much smaller extent than 

diagnostic tools. Griffin et al. (2018) report that the share of Kansas farms using VRT fertilizer 

application is above 25% and VRT seeding at approximately 20%. More generally, 
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Schimmelpfennig & Ebel (2016) report that VRT in US crop production is used on about 19% of 

farms (see also Winstead et al. 2010, Zhou et al. 2017). Along these lines, Reichardt & Jürgens 

(2009) show for German farms during 2001–2006 that approximately one out of five PF adopters 

used VRT. Barnes et al. (2019) surveyed farmers on adoption of PF in Belgium, Germany, 

Greece, the Netherlands, and the United Kingdom. In summary, their findings reveal that PF 

technologies also play a vital role in European agriculture, but a large share of adoption is due to 

the use of machine guidance, whereas VRTs play a minor role. Among Brazilian sugarcane 

producers in São Paulo state, fewer used VRT (29%) than used diagnostic technologies (e.g., 

39% used GPS, 76% satellite images) (Silva et al. 2011). Yet, information on within-field 

variability does not necessarily need to be addressed using sophisticated VRTs. For example, 

Robertson et al. (2012) show that farmers in Australia use a pragmatic approach, applying 

fertilizer, lime, gypsum, and seed by management zones based on soil testing and yield maps, but 

without necessarily using prescription maps and variable rate controllers. 

The uptake of VRT is high for horticultural crops, due to both high input costs and consumer 

appreciation of extrinsic quality traits (Zude-Sasse et al. 2016). For example, targeted spraying in 

orchards aims pesticides at individual trees (Zude-Sasse et al. 2016). Given the large number of 

pesticide applications to many horticultural crops, the cost savings due to PF here can be large 

and can create intrinsic quality attributes. Targeted pesticide applications can also augment 

extrinsic quality by reducing environmental effluents. 

There is an increasing use of UAVs for precision pest control on horticultural crops but also 

on arable crops. Xiongkui et al. (2017) show high uptake rates of UAV pest control in South 

Korea and Japan, especially for arable crops. UAV-based application of pesticides is in an early 

market phase in other parts of the world. For example, in Switzerland, three companies now offer 

UAV application of pesticides in vineyards where in a first step, helicopter application of 

pesticides should be replaced. In comparison to these helicopter applications, UAVs are less 

noisy, more accurate, less polluting (due to greater accuracy), and finally cheaper (Anken et al. 

2018). Technical, economic, and regulatory hurdles remain for UAV use, but it has potential as a 

cost-effective applicative technology in a wide range of crops and cropping systems. Giles 

(2016) provides an overview on the use of remotely piloted aircraft for pesticide applications. 

The use of autonomous robots for weed control, seeding, and other field operations is in the 

initial phase of market entry. 
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For grassland, PF has seen less uptake than in arable crops (e.g., Schellberg et al. 2008). In 

part, this is due to lower values of produced output but is also because the mixed species of 

grasslands complicate management recommendations (Schellberg et al. 2008). However, new PF 

technologies are also being introduced on grasslands. Besides yield monitoring, precision 

fertilization and weed detection, site-specific overseeding is a new application of PF for 

grasslands. In this application, seeding is focused on parts of the field with low plant density as 

identified with cameras. However, machines for grassland restoration, including site-specific 

overseeding of degraded grasslands, currently available on the market are not suitable for all 

types of soil and grassland conditions (Golka et al. 2016), requiring further developments (e.g., 

Loghin et al. 2011). 

4.2. Environmental Effects of Precision Farming 
PF has been widely expected to show environmental benefits. More targeted application of 

inputs with fewer losses of fertilizer and pesticides to the environment, reduced water 

consumption, and reduced greenhouse gas emissions provide a wide spectrum of environmental 

benefits (e.g., Zhang et al. 2002, Balafoutis et al. 2017). However, the magnitude of these effects 

is often not well known or is highly variable (e.g., Balafoutis et al. 2017). Moreover, most 

studies do not report observed impacts, but rather possible impacts based on experimental data or 

model predictions. Only a few studies show causal inference on environmental performance of 

PF in real-world agricultural applications. With these caveats, we synthesize some key areas of 

environmental benefits arising from PF based on the available studies. 

Overall, PF reduces greenhouse gas emissions. First, machine guidance and controlled traffic 

farming reduce fuel consumption due to less overlap in farm operations. Guidance systems have 

been found to cause a 6% reduction of fuel use (Shockley et al. 2011), and Jensen et al. (2012) 

report a 25% reduction of fuel expenditures. These reductions are larger for large-scale fields, 

and they come with several cobenefits, including reductions in soil compaction, runoff, and 

erosion (Balafoutis et al. 2017). Second, the reduction of effluents implies, for example, reduced 

nitrogen losses as ammonia and nitrogen oxides (e.g., Balafoutis et al. 2017). In a case study on 

maize production in Germany, VRT nitrogen application resulted in nitrous oxide (N2O) 

emission reductions of 34% (Sehy et al. 2003). For locations in Southern India, the Philippines, 

and southern Vietnam, Pampolino et al. (2007) showed the potential of site-specific nutrient 

management to obtain higher yields with increased nitrogen fertilizer use while maintaining low 



 17 

N2O emissions. Third, the indirect energy consumption footprint from inputs such as fertilizer, 

seeds, and pesticides (e.g., Böcker et al. 2019) can be reduced if inputs are applied more 

efficiently. 

By increasing application efficiency, losses of critical inputs to the environment are generally 

reduced. For example, for Texas citrus production, Du et al. (2008) compare airborne 

multispectral analysis with human inspection to identify tree health problems and to guide 

pesticide application. The airborne multispectral technique combined with VRT led to reductions 

in the use of pesticides by more than 90%. Along these lines, Balafoutis et al. (2017) show that 

across several studies, herbicide use could be reduced between 11% and 90% by precision 

application in different arable crops. At an experimental site in Germany, Dammer & Adamek 

(2012) show that sensor-based precision control of aphids, compared to uniform spraying, could 

reduce insecticide use in wheat production by more than 13%. Kempenaar et al. (2018) show 

possible savings on pesticide (and nitrogen) based on VRT of on average about 25%. Variable 

rate irrigation was found to increase water use efficiency and potentially imply water savings of 

up to 20–25% (e.g., Sadler et al. 2005, Evans et al. 2013). However, the findings on the use of 

PF in irrigation vary widely (e.g., depending on the reference technology and soil and weather 

conditions) (e.g., Balafoutis et al. 2017). 

Overall, effluents from agricultural systems to water bodies are reduced under adoption of 

VRT (e.g., Balafoutis et al. 2017, Tey & Brindal 2012). However, at present, the magnitudes of 

these effects are largely uncertain and case dependent. For example, Harmel et al. (2004) show in 

an experiment on corn in Texas that, compared to uniform application, VRT nitrogen application 

decreased total nitrogen applied by 4–7%, but the runoff water quality was similar for VRT and 

uniform nitrogen application regimes. For case studies of potato production in the Netherlands 

and olive production in Greece, van Evert et al. (2017) show even larger reductions of fertilizer 

application due to VRT adoption. VRT is not the only way to reduce unnecessary input use. 

Using a modeling approach for corn–soybean rotations in Illinois, Rejesus & Hornbaker (1999) 

show that nitrate pollution can be reduced not only by VRT, but also by improved timing of 

fertilizer application. In summary, the literature suggests that PF has positive environmental 

effects, but there is some uncertainty with respect to the magnitude of these effects. Additional 

research into the environmental effects of PF is thus required to further justify private and public 

support. 
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5. POLICY ISSUES 

Agricultural policies can play a vital role in determining whether and how PF enters agriculture. 

In this section, we address these policy aspects from three different perspectives: (a) promotion 

of PF adoption, (b) provision of infrastructure and legal frameworks, and (c) the possible use of 

information generated in PF for agricultural policies. 

5.1. Promotion of Precision Farming Adoption 
There is a rationale for support or intervention because PF provides means to ensure a 

sustainable intensification of the agricultural sector by reducing environmental footprints of 

agricultural production (e.g., Garnett et al. 2013). PF technologies have the potential to reduce 

environmental footprints of agricultural production without jeopardizing food production and the 

economic viability of the sector. Along these lines, policy incentives to reduce agricultural 

effluents are likely to encourage the use of PF technologies. For example, taxes on inputs such as 

fertilizer, pesticides, and gasoline can internalize external costs of these inputs and provide 

incentives for farmers to adopt PF for both input targeting and efficient equipment guidance. 

Taxes on pesticides and fertilizer are used in some European countries (Nam et al. 2007, Böcker 

& Finger 2016). Subsidies for adoption of environmental stewardship technologies are another 

price-related incentive. For example, Switzerland offers resource efficiency payments to support 

adoption of conservation technologies (Mann & Lanz 2013). The combination of taxation and 

subsidization can be especially powerful if tax revenues are used to finance better technologies 

(e.g., Finger et al. 2017). However, note that resolving the uncertainty regarding the magnitude 

of case-specific environmental effects of PF as outlined in the previous section is critical to 

rationalize and quantify governmental support. Input quantity quotas could also be a highly 

suited policy instrument, especially in an environment with significant technological change 

(e.g., Schieffer & Dillon 2015). 

Agricultural conservation set-aside programs could be adapted to use PF information. For 

example, the US Conservation Reserve Program (CRP) pays farmers to set aside 

environmentally sensitive land. Brandes et al. (2016) show how yield mapping can be used to 

identify less profitable zones within fields as candidates for CRP set-aside. One can imagine 

extending the CRP to support precision conservation if mapping were extended beyond 
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profitability to environmental benefits (e.g., habitat configurations to optimize biodiversity) 

(Landis et al. 2000, Muth 2014). 

Other pathways can also be used to promote the adoption of PF. New research shows that the 

environmental outcomes of farming practices can be improved by behavioral nudges (e.g., Peth 

et al. 2018). One approach is to make available site-specific environmental models that enable 

farmers to run scenarios to see the environmental effects of alternative farming practices. Now 

available on mobile devices, simplified, field-specific programs like the Soil and Water 

Assessment Tool have been used in Michigan to inform farmers about the water quality 

consequences of phosphorus fertilizer rates and related cropping practices (Fales et al. 2016). PF 

offers to provide not only these feedbacks but also specific options for implementation (e.g., 

input application). That knowledge has the potential to nudge decisions, though more evidence is 

needed. Along these lines, environmental and economic benchmarking can be powerful, 

especially if combined with PF technologies to reduce learning costs (e.g., Foster & Rosenzweig 

2010). Benchmarking is defined as the comparison of one’s own farm performance, e.g. focusing 

on quantitative economic and environmental indicators; with the performance of others engaged 

in a similar activity. This enables to learn from others and to identify actions that can improve 

performance (Eur. Comm. 2017). PF has the potential to transfer insights from other fields and 

farms at high quality and low costs and thus can facilitate such benchmarking. This could lead to 

increased productivity and reduced negative externalities from agricultural production. To enable 

such benchmarking, appropriate and affordable tools and platforms must be available for 

farmers, and farmers must be willing to share their data. Here, policy can support these 

developments. 

5.2. Provision of Infrastructure and Legal Frameworks for Precision Farming 
 Along these lines, realizing the potential social benefits from wider PF adoption calls for public 

and private investments in data, models, tools, and hardware infrastructure. Data platforms 

aggregating data, enabling data exchange between systems, and providing decision support tools 

provide a backbone for the adoption of PF and use of decision support systems (Weersink et al. 

2018). In many countries, initiatives are ongoing to create agricultural data platforms that collect 

and aggregate the data needed for PF decision support tools. These platforms are often created by 

private companies or public-private partnerships. Among the former, Monsanto took over the 

hardware and software company Precision Planting in 2012 and the weather data and modeling 



 20 

technology company The Climate Corporation in 2013 (Carolan 2017). The Climate Corporation 

established the Climate FieldView platform to aggregate data of different sources in one place 

and provide diagnostic and applicative tools to farmers. DuPont, John Deere, and DTN provide 

wireless data transfer systems and market and weather information, and John Deere took over 

Precision Planting from Monsanto and bought Blue River Technology later on (Lev-Ram 2017). 

Several nations are building public-private partnerships to advance the use of sophisticated data 

in agriculture. One example is the Dutch web-based platform Akkerweb (www.akkerweb.eu) 

that aggregates data on weather, parcel boundaries, and satellite and farm management into a 

Farm Management Information System to provide farmers decision support and 

recommendations via prescription maps that can be downloaded to tractor terminals (van Evert et 

al. 2018). Another example is the platform Barto (www.barto.ch) in Switzerland. As stock 

company, Barto brings together public and private actors to build up a smart-farming-platform 

that also aims to reduce the administrative burden of farmers by automatizing reporting tasks. 

Sufficient infrastructure is central for companies and governmental agencies to develop web-

based and data-based decision support tools and to allow farmers to take full advantage of PF 

technologies available on the market. Public policy can be decisive in realizing this 

infrastructure. First and most fundamentally, high-speed internet access must be available to 

farmers. Yet in many regions—including remote regions of wealthy nations—the required 

telecommunications infrastructure is not yet in place. Second, data facilitating PF use can be 

provided to farmers. For example, several German states provide free access to satellite data 

useful for high-precision GIS-based applications.4 Third, connectivity to devices and regulatory 

regimes for ensuring effective data ownership are needed. For instance, to manage and control 

the payments to farmers fulfilling the production requirements of the European Common 

Agricultural Policy, the Integrated Administration and Control System (IACS) was introduced 

across all EU member states. This system includes the Land Parcel Identification System 

recording all agricultural parcels that are considered eligible for annual payments of the subsidies 

(Kritikos 2017). Fourth, public investments in information, training, education, and extension can 

support PF adoption. Several studies on the determinants of adoption of PF reveal that lack of 

 
4The satellite-based position service is provided by the German states (e.g., Riecken & 

Kurtenbacher 2017; https://www.sapos.de). 

https://aecp.sp.ethz.ch/PF/Shared%20Documents/Riecken%20and%20Kurtenbacher%202017
https://aecp.sp.ethz.ch/PF/Shared%20Documents/Riecken%20and%20Kurtenbacher%202017
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education and knowledge gaps are determinants for nonadoption of PF (e.g., Tey & Brindal 

2012, Pierpaoli et al. 2013). Along these lines, investments in knowledge and tools can be made. 

For example, public investment in the next generation of crop and livestock management 

simulation models could facilitate providing predictions on environmental outcomes from 

integrated systems to farmers (Antle et al. 2017, Jones et al. 2017). 

Fortifying PF data and decision support platforms requires not only technical infrastructure 

but also legal rules related to the question on confidentiality of data and data ownership. 

Confidentiality of data is a huge concern of farmers, and legal frameworks must apply to both 

the unauthorized use of data and the disclosure of information delivered by farmers. Thus, for all 

applications, platforms and decision support tools based on farm-level and personal data, 

confidentiality requirements must be met. Legal rules for use and disclosure must be found not 

only at the country level but also at the international level, as service providers of such tools and 

platforms are predominantly internationally operating private companies. 

Along these lines, public-private partnerships and related data standards are needed that 

enable public sector research on privacy-protected detailed data (Antle et al. 2017). Data security 

will be crucial when establishing reliable interfaces to databases used or generated by public 

authorities (e.g., Wirtz & Weyerer 2017). Up to now, no specific regulatory regimes for PF 

technologies exist (Basu et al. 2018), so new regulations and standards will be needed to fully 

take advantage of PF technologies. To avoid heavy-handed regulations and establish a common 

understanding between the different agrifood chain actors, several initiatives have started in 

countries all over the globe. For instance, the US and New Zealand agricultural sectors have 

introduced voluntary industry standards to clarify data use and ownership issues (Keogh & 

Henry 2016). Another example is the INSPIRE directive, a pan-European initiative aiming for 

standardization and harmonization of georeferenced field-level data needed for the management 

and control of the Common Agricultural Policy (Kritikos 2017). Finally, also removing existing 

regulatory hurdles and legal gaps for the implementation of PF technologies will facilitate the 

adoption of PF. For example, this comprises the lack of legal rules with regard to issues of 

technological control, human safety, civil liability and privacy (Kritikos 2017, Basu et al. 2018). 

5.3. Possible Use of Information Generated in Precision Farming for Agricultural Policies 
PF data management creates new opportunities for data to inform agricultural policy. More 

effective and more efficient agricultural policy schemes could be developed if recording input 
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applications and other field operations reduces information asymmetries between farmers and 

policy makers. This especially applies to agricultural policies that are characterized by (a) direct 

payments linked to cross-compliance criteria that farmers must fulfill and (b) action-based 

criteria for agri-environmental programs. Using data as recorded from PF technologies for 

administrative purposes would increase the effectiveness and efficiency of monitoring of farming 

practices such as input use. Under such a scenario, farmers could be required to provide PF data 

(e.g., on input and land use) to receive certain environmental payments or as part of cross-

compliance obligations in the future (e.g., Möckel 2015). Yet, a high accuracy of such 

information is required for such step. Moreover, such data requirements would be feasible 

probably only in nations that have a history of very active government involvement in 

agricultural management, e.g. in Europe. 

6. DISCUSSION AND OUTLOOK 

The current uptake of PF is moderate and mostly taking place at larger, highly capitalized farms 

in developed countries. Adoption and diffusion rates predicted in earlier literature have not been 

met at the expected pace (e.g., Griffin et al. 2018), especially for applicative tools like variable 

rate input application. Thus, the full potential of PF in terms of economic and environmental 

benefits is far from being exploited. 

A higher relevance of PF in the future will depend on the coevolution of technological, 

economic, and policy-related aspects: Farmers need to be provided with affordable tools 

allowing them to meet clear management decisions to tap potentially large economic and 

environmental benefits. New PF-based systems might lead to further paradigm shifts in farming 

systems. In the future, farmers may not need to care about the precision of their activities any 

longer, since precision will be handled automatically. Instead, they can focus more on strategic 

decisions that allow them to minimize their entrepreneurial risk in a landscape of clear policies 

but uncertain progression of climate and markets. 

Ongoing technological developments and big data advances (e.g., Walter et al. 2017, Wolfert 

et al. 2017) continue to make PF technologies (a) more accurate, (b) more widely applicable, and 

(c) more efficient. Weersink et al. (2018, p. 21) go so far as to say that, “Ultimately, these 

technologies may even allow farmers to manage the needs of individual animals or plants in real 

time.” This vision is supported by recent developments in such areas as multispectral sensing of 
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plant and soil traits from UAVs (Aasen et al. 2018), remote characterization of plant diseases 

(Bouroubi et al. 2018, Mahlein et al. 2018), and weed detection via machine learning algorithms 

(Lottes et al. 2017, Bouroubi et al. 2018, Walter et al. 2018). In research projects, site-specific 

weed treatment has been partly realized using autonomous, robotic ground vehicles (Roldán et 

al. 2018, Walter et al. 2018). Given the costs of precision weed management, future prospects for 

adoption depend on continued technologically driven cost reductions, paired with finding ways 

to either attract environmental stewardship payments (Swinton 2005) or adapt precision 

herbicide management to address the rapidly expanding problem of herbicide resistant weeds 

(Swinton & VanDeynze 2017). The potential to save herbicides or even avoid them completely 

(e.g., via mechanical treatment) is enormous. Yet, whether these are widely used will depend on 

the costs and benefits from these technologies (Böcker et al., 2019). 

A crucial aspect needed for the increasing uptake of PF is the improvement of decision 

support systems and of software solutions that assist farmers in most efficiently administrating 

their purchases, planning requirements, and cost calculations. The overall vision is to come from 

precision to decision farming. The advent of machine learning and deep learning possibilities has 

begun increasing the power and reliability of such decision support systems in fields such as 

side-dressing of nitrogen or in timed and targeted spraying of pesticides. The future of such 

integrated PF decision support systems will depend heavily on market and policy incentives, the 

evolving legal framework, and the reliability of decision support systems. In the near future, 

augmented reality tools that merge graphical depictions of decision support with real status of 

crop fields might play an important role to elaborate whether or not decision support measures 

seem appropriate for farmers. 

However, further sophisticated technologies will likely increase the capital intensity of PF. 

This in turn could mean that only few farms can afford such technologies (see Walter et al. 2017, 

Weersink et al. 2018). As a result, this may favor a concentration and increasing inequality in the 

agricultural sector. To avoid such outcomes, diverse technologies need to be available for a 

diverse set of agricultural systems, ranging from small to large scale farms as well as from crop, 

horticulture, and livestock production (Walter et al. 2017). Moreover, different forms of 

cooperation and PF technology sharing can enable many farms to benefit from new technologies. 

Especially in developing countries, improvements in education, and information distribution 

seem to be the most crucial fields to expand the potential power of PF. This could also imply that 
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smallholder farming practices in many tropical countries or semiarid regions of the world could 

profit from PF technologies and considerations. This might comprise spatial and temporal 

aspects of input application in small-scale, labor-intensive, diverse cropping systems but can also 

comprise the support for long-term production decisions (Aune et al. 2017). 

Here, cheap(er) PF technologies can play a vital role to promote widespread benefits of PF. 

There are currently multiple services that provide site-specific advice on crop management and 

livestock treatment via mobile phones to farmers. For example, the Kenyan company 

UjuziKilimo (https://www.ujuzikilimo.com) promotes the use of simple ground sensory 

technology as combined with a database that provides recommendations on input use to farmers 

via text messaging. Likewise, the Virtual Irrigation Academy (https://via.farm) promotes tools to 

measure soil water and improve irrigation decisions for farmers in Africa. An example of 

technology sharing is the Nigerian technology platform Hello Tractor 

(https://www.hellotractor.com) that connects farmers with tractor services via apps and text 

messaging, enabling mechanization and technology diffusion. With these examples in mind, we 

believe that PF technologies have a place in small-scale developing country agriculture. 

PF is paving the way for big data in agriculture (Griffin et al. 2018), and new applications 

based on big data might in turn make PF technologies more attractive. Beyond the field level, PF 

technologies have the potential to decrease transaction costs for reporting of land and input use. 

Such information may meet governmental requirements associated with cross-compliance 

obligations or certification of specific environmental stewardship practices. Similarly, such 

information may enable private sector certification of environmental performance to satisfy 

value-added labels. One private-sector example is the 4R Nutrient Stewardship program 

(https://www.nutrientstewardship.com/4rs/) that certifies agribusinesses as following the 

principles of applying inputs from the right source, at the right rate, at the right time, in the right 

place (Vollmer-Sanders et al. 2016). The 4R program creates an incentive for agricultural input 

suppliers to shift their revenue model from one based on agrichemical product sales to one based 

on precision management services. Similar programs exist in other countries, for example, in 

Switzerland (e.g., IP Suisse) and France (e.g., Zéro résidu de pesticides). Clear documentation of 

such practices based on PF technologies, possibly as combined with other technologies such as 

blockchain will reinforce the role of these certifications. This can play a major role in 

conventional but also organic farming. Furthermore, insurance products could become more 
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efficient if information asymmetries can be reduced when providing information on yields, input 

use, and environmental conditions to insurance companies (e.g., Lowenberg-DeBoer 1999; 

Woodard 2016a,b; Weersink et al. 2018). 

Another new opportunity providing additional incentives for adoption is that PF can be 

instrumental in developing fully transparent agri-food systems, thereby ensuring traceability 

from consumables to produced raw materials (e.g., Gebbers & Adamchuk 2010, Ruiz-Garcia et 

al. 2010). One currently discussed possibility for full food traceability is the blockchain 

technology that allows tracking and sharing all transactions or digital events among participating 

parties that can be verified at any time in the future (Galvez et al. 2018). Blockchain technology 

has the potential to ensure food traceability along the agri-food supply chain. In one high payoff 

domain—E. coli outbreaks caused by contaminated salad greens that forced destruction of 

supermarket inventories—Walmart and Microsoft announced a partnership in September 2018 to 

introduce blockchain traceability in the United States in 2019 (Corkery & Popper 2018). In that 

way, intrinsic and extrinsic quality characteristics could be efficiently and reliably transported 

along the value chain. One example for a blockchain technology application in the agri-food 

domain is the US start-up ripe.io that tracks tomato ripeness, color, and flavor (Massa 2017). 

Yet, blockchain applications for the agri-food sector are currently mainly focused on pilots (Tian 

2016, Ge et al. 2017, Lin et al. 2017, Casado-Vara et al. 2018). Along these lines, Poppe et al. 

(2013) show that information and communication technology has the potential to innovate data 

exchange and increase transparency between actors in agri-food chains and thus alleviate many 

of the current sustainability and food safety issues. 

The increased interlinkage of agricultural production with up- and downstream industries 

based on PF technologies might also create incentives for stronger vertical integration in the agri-

food sector. For example, the required integrated data systems might be realized more efficiently 

by highly integrated firms (e.g., Weersink et al. 2018). Moreover, the increasing transparency of 

farming practices and increasing need to both disclose these practices and also adjust them to 

consumer needs might lead to stronger incentives for backward vertical integration. 

7. CONCLUSION 

PF has a high potential to increase farmers’ income, increase extrinsic and intrinsic quality of 

agricultural production, and decrease negative environmental effects of agricultural production, 
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all at the same time. PF will not be a panacea, but it has the potential to contribute to more 

sustainable agriculture. Currently, potential benefits are utilized only to a small extent. PF 

adoption is currently mostly limited to large farms in developed countries. Variable rate 

applicative technologies have been adopted mostly in higher-value crops. However, PF 

technologies need to be widely adopted to utilize their full potential. For PF to spread to small-

scale and diversified farming systems (including those in the developing world) and for VRTs to 

expand into lower-value crops, a broad range of technologies and business models will be 

needed, going beyond the currently dominant focus on input cost savings. 

The potential for environmental benefits from PF (e.g., fewer losses of inputs such as 

pesticides and fertilizer to the environment and the reduction of greenhouse gas emissions) 

constitutes an important rationale for new incentives to adopt, for both private and public 

institutions. For example, investments in technical infrastructure (e.g., access to high-speed 

internet, satellite images) and data platforms can be essential first steps. Establishing a legal 

framework prescribing terms for data ownership and sharing is a second key step. Governments 

can also tailor agri-environmental policy instruments so that taxes, quotas, and subsidies target 

defined levels of agrichemical inputs or polluting residuals. Such policies would indirectly 

strengthen incentives for increased adoption of PF. Private firms in the agri-food system that 

seek reduced environmental footprints for their products can require farm suppliers to certify 

responsible agrichemical input levels, facilitated by PF. Moreover, PF also allows the creation of 

intrinsic and extrinsic quality traits and the transfer of this information along the agri-food value 

chain. 

Although PF has great potential for economic welfare and environmental good, its 

distributional effects should be observed and analyzed carefully. Many PF technologies appear to 

exhibit economies of scale and scope. Thus, PF technologies may lead to further concentrations 

in the agri-food sector, and benefits of PF technologies may be unequally distributed. These 

private sector distributional effects demand greater study, not only at the farm level, but also 

along the agri-food value chain. 

Our analysis reveals that technological developments and big data advances continue to make 

PF tools more connected, accurate, efficient, and widely applicable. Improvements in the 

technical infrastructure and the legal framework can expand access to PF technologies and 

thereby expand their overall societal benefits. 



 27 

DISCLOSURE STATEMENT 

The authors are not aware of any affiliations, memberships, funding, or financial holdings that 

might be perceived as affecting the objectivity of this review. 

ACKNOWLEDGMENTS 

R.F. and A.W. thank the Swiss National Science Foundation for support of the InnoFarm project 

within the framework of the National Research Programme 73 (“Sustainable Economy”). S.M.S. 

thanks Michigan State University AgBioResearch and the US National Institute of Food and 

Agriculture, as well as the National Science Foundation’s Long-Term Ecological Research 

Program (DEB 1027253) at the Kellogg Biological Station. N.EB thanks the Swiss Federal 

Office for Agriculture for supporting the project “Adoption and Diffusion of New Technologies in 

Agriculture”. We thank the editorial board member Matin Qaim as well as Melf-Hinrich Ehlers 

for helpful feedback on earlier versions of this paper and thank Reto Sager and Vivienne Oggier 

for support. 

LITERATURE CITED 

Aasen H, Honkavaara E, Lucieer A, Zarco-Tejada P. 2018. Quantitative remote sensing at ultra-

high resolution with UAV spectroscopy: a review of sensor technology, measurement 

procedures, and data correction workflows. Remote Sensing 10(7):1091 

Agili H, Chokmani K, Cambouris A, Perron I, Poulin J. 2018. Site-specific management zones 

delineation using drone-based hyperspectral imagery. Paper presented at the 14th 

International Conference on Precision Agriculture, Monticello, IL.  

Aggelopoulou AD, Bochtis D, Fountas S, Swain KC, Gemtos TA, Nanos GD. 2011. Yield 

prediction in apple orchards based on image processing. Precision Agric. 12(3):448–56 

Anken T, Dubuis PH, Lebrun M. 2018. Drohnen: kaum Abdrift, kaum Lärm. Landfreund, Aug. 

22. https://www.landfreund.ch/pflanzenbau/Drohnen-kaum-Abdrift-kaum-Laerm-

9614983.html 

Antle JM, Basso B, Conant RT, Godfray HCJ, Jones JW, et al. 2017. Towards a new generation 

of agricultural system data, models and knowledge products: design and improvement. Agric. 

Syst. 155:255–68 



 28 

Aubert BA, Schroeder A, Grimaudo J. 2012. IT as enabler of sustainable farming: an empirical 

analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support 

Syst. 54(1):510–20 

Aune JB, Coulibaly A, Giller KE. 2017. Precision farming for increased land and labour 

productivity in semi-arid West Africa. A review. Agron. Sustain. Dev. 37(3):16 

Balafoutis A, Beck B, Fountas S, Vangeyte J, Wal TVD, et al. 2017. Precision agriculture 

technologies positively contributing to GHG emissions mitigation, farm productivity and 

economics. Sustainability 9(8):1339 

Barnes AP, Soto I, Eory V, Beck B, Balafoutis A, et al. 2019. Exploring the adoption of 

precision agricultural technologies: a cross regional study of EU farmers. Land Use Policy 

80:163–74 

Basu S, Omotubora A, Beeson M, Fox C. 2018. Legal framework for small autonomous 

agricultural robots. AI Soc. https://doi.org/10.1007/s00146-018-0846-4 

Berckmans D. 2014. Precision livestock farming technologies for welfare management in 

intensive livestock systems. Sci. Tech. Rev. Off. Int. Epizoot. 33(1):189–96 

Bauer ME, Cipra JE. 1973. Identification of agricultural crops by computer processing of ERTS 

MSS data. LARS Tech. Rep. 20, Purdue Univ.  

Blumenthal JM, Baltensperger DD, Cassman KG, Mason SC, Pavlista AD. 2008. Importance 

and effect of nitrogen on crop quality and health. In Nitrogen in the Environment: Sources, 

Problems, and Management, ed. JL Hatfield, RF Follett, pp. 51–70. Amsterdam: Elsevier. 

2nd ed. 

Böcker T, Finger R. 2016. European pesticide tax schemes in comparison: an analysis of 

experiences and developments. Sustainability 8(4):378 

Böcker T, Britz W, Möhring N, Finger R. 2019. An economic and environmental assessment of a 

glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ. In Press. 

https://doi.org/10.1093/erae/jby050 

Bouroubi Y, Bugnet P, Nguyen-Xuan T, Gosselin C, Bélec C, et al. 2018. Pest detection on UAV 

imagery using a deep convolutional neural network. Paper presented at the 14th International 

Conference on Precision Agriculture, Monticello, IL. 

Bowman MS, Zilberman D. 2013. Economic factors affecting diversified farming systems. Ecol. 

Soc. 18(1):33 

https://doi.org/10.1093/erae/jby050


 29 

Bramley RGV. 2009. Lessons from nearly 20 years of Precision Agriculture research, 

development, and adoption as a guide to its appropriate application. Crop. Pasture Sci. 

60(3):197–217 

Brandes E, McNunn GS, Schulte LA, Bonner IJ, Muth DJ, et al. 2016. Subfield profitability 

analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 

11(1):014009 

Bullock DS, Lowenberg-DeBoer J, Swinton SM. 2002. Adding value to spatially managed inputs 

by understanding site‐specific yield response. Agric. Econ. 27(3):233–45 

Busse M, Schwerdtner W, Siebert R, Doernberg A, Kuntosch A, et al. 2015. Analysis of animal 

monitoring technologies in Germany from an innovation system perspective. Agric. Syst. 

138:55–65 

Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M. 2015. Evaluating multispectral 

images and vegetation indices for precision farming applications from UAV images. Remote 

Sensing 7(4):4026–47 

Carolan, M. (2017). Publicising food: big data, precision agriculture, and co‐experimental 

techniques of addition. Sociologia Ruralis, 57(2), 135-154. 

 

Casado-Vara R, Prieto J, De la Prieta F, Corchado JM. 2018. How blockchain improves the 

supply chain: case study alimentary supply chain. Proc. Comput. Sci. 134:393–98 

Castle M, Lubben BD, Luck J. 2015. Precision agriculture usage and big agriculture data. 

Cornhusker Economics, May 27. https://digitalcommons.unl.edu/agecon_cornhusker/725/ 

Corwin DL, Lesch SM. 2005. Apparent soil electrical conductivity measurements in agriculture. 

Comput. Electron. Agric. 46(1–3):11–43 

Chi H, Welch S, Vasserman E, Kalaimannan E. 2017. A framework of cybersecurity approaches 

in precision agriculture. In Proceedings of the ICMLG2017 5th International Conference on 

Management Leadership and Governance, pp. 90–95. Reading, UK: Acad. Conf. Publ. Int. 

Chlingaryan A, Sukkarieh S, Whelan B. 2018. Machine learning approaches for crop yield 

prediction and nitrogen status estimation in precision agriculture: a review. Comput. 

Electron. Agric. 151:61–69 



 30 

Corkery M, Popper N. 2018. From farm to blockchain: Walmart tracks its lettuce. New York 

Times, Sep. 24. https://www.nytimes.com/2018/09/24/business/walmart-blockchain-

lettuce.html 

Dammer KH, Adamek R. 2012. Sensor-based insecticide spraying to control cereal aphids and 

preserve lady beetles. Agronomy J. 104(6):1694–701 

Diacono M, Rubino P, Montemurro F. 2013. Precision nitrogen management of wheat. A review. 

Agron. Sustain. Dev. 33(1):219–41 

Du Q, Chang NB, Yang C, Srilakshmi KR. 2008. Combination of multispectral remote sensing, 

variable rate technology and environmental modeling for citrus pest management. J. Environ. 

Manag. 86(1):14–26 

Eur. Comm. 2017. Benchmarking of farm productivity and sustainability performance. EIP-

AGRI Focus Group Final Rep., Jan. 10. https://ec.europa.eu/eip/agriculture/sites/agri-

eip/files/eip-agri_fg_benchmarking_final_report_2016_en.pdf 

Evans RG, LaRue J, Stone KC, King BA. 2013. Adoption of site-specific variable rate sprinkler 

irrigation systems. Irrigation Sci. 31(4):871–87 

Fales M, Dell R, Herbert ME, Sowa SP, Asher J, et al. 2016. Making the leap from science to 

implementation: strategic agricultural conservation in Michigan’s Saginaw Bay watershed. J. 

Great Lakes Res. 42(6):1372–85 

Finger R. 2018. Take a holistic view when making pesticide policies stricter. Nature 

556(7700):174 

Finger R, Möhring N, Dalhaus T, Böcker T. 2017. Revisiting pesticide taxation schemes. Ecol. 

Econ. 134:263–66 

Foster AD, Rosenzweig MR. 2010. Microeconomics of technology adoption. Annu. Rev. Econ. 

2:395–424 

Fulton JP, Shearer SA, Higgins SF, Hancock DW, Stombaugh TS. 2005. Distribution pattern 

variability of granular VRT applicator. Trans. ASAE 48(6):2053–64 

Galvez JF, Mejuto JC, Simal-Gandara J. 2018. Future challenges on the use of blockchain for 

food traceability analysis. Trends Anal. Chem. 107:222–32 

Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, et al. 2013. Sustainable 

intensification in agriculture: premises and policies. Science 341(6141):33–34 



 31 

Ge L, Brewster C, Spek J, Smeenk A, Top J, et al. 2017. Blockchain for agriculture and food. 

Report 2017–112, Wageningen Econ. Res., Wageningen, Neth. 

https://library.wur.nl/WebQuery/wurpubs/fulltext/426747 

Gebbers R, Adamchuk VI. 2010. Precision agriculture and food security. Science 

327(5967):828–31 

Giles DK. 2016. Use of remotely piloted aircraft for pesticide applications: issues and outlook. 

Outlooks Pest Manag. 27(5):213–16 

Gnyp ML, Panitzki M, Reusch S, Jasper J, Bolten A, Bareth G. 2016. Comparison between 

tractor-based and UAV-based spectrometer measurements in winter wheat. Paper presented 

at the 13th International Conference on Precision Agriculture, St. Louis, MO 

Golka W, Żurek G, Kamiński JR. 2016. Permanent grassland restoration techniques—an 

overview. Agric. Eng. 20(4):51–58 

Griffin TW, Shockley JM, Mark TB. 2018. Economics of precision farming. In Precision 

Agriculture Basics, ed DK Shannon, DE Clay, NR Kitchen, pp. 221–30. Madison, WI: Am. 

Soc. Agron. 

Harmel RD, Kenimer AL, Searcy SW, Torbert HA. 2004. Runoff water quality impact of 

variable rate sidedress nitrogen application. Precis. Agric. 5(3):247–61 

Hunt ER Jr., Daughtry CS. 2018. What good are unmanned aircraft systems for agricultural 

remote sensing and precision agriculture? Int. J. Remote Sens. 39(15–16):5345–76 

Isik M, Khanna M. 2002. Variable-rate nitrogen application under uncertainty: implications for 

profitability and nitrogen use. J. Agric. Resour. Econ. 27(1):61–76 

Jensen HG, Jacobsen LB, Pedersen SM, Tavella E. 2012. Socioeconomic impact of widespread 

adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 

13(6):661–77 

Jeon HY, Zhu H. 2012. Development of a variable-rate sprayer for nursery liner applications. 

Trans. ASABE 55(1):303–12 

Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, et al. 2017. Toward a new generation of 

agricultural system data, models, and knowledge products: state of agricultural systems 

science. Agric. Syst. 155:269–88 



 32 

Kempenaar C, Been T, Booij J, van Evert F, Michielsen JM, Kocks C. 2018. Advances in 

variable rate technology application in potato in the Netherlands. Potato Res. 60(3–4):295–

305 

Keogh M, Henry M. 2016. The Implications of Digital Agriculture and Big Data for Australian 

Agriculture. Sydney, Aust.: Aust. Farm Inst. 

Khanna M, Isik M, Winter‐Nelson A. 2000. Investment in site‐specific crop management under 

uncertainty: implications for nitrogen pollution control and environmental policy. Agric. 

Econ. 24(1):9–12 

Khosla R, Fleming K, Delgado JA, Shaver TM, Westfall DG. 2002. Use of site-specific 

management zones to improve nitrogen management for precision agriculture. J. Soil Water 

Conserv. 57(6):513–18 

Kim YJ, Kim HJ, Ryu KH, Rhee JY. 2008. Fertiliser application performance of a variable-rate 

pneumatic granular applicator for rice production. Biosyst. Eng. 100(4):498–510 

Kritikos M. 2017. Precision Agriculture in Europe: Legal, Social and Ethical Considerations. 

Brussels: Eur. Union. 

http://www.europarl.europa.eu/RegData/etudes/STUD/2017/603207/EPRS_STU(2017)6032

07_EN.pdf 

Kutter T, Tiemann S, Siebert R, Fountas S. 2011. The role of communication and co-operation in 

the adoption of precision farming. Precision Agric. 12(1):2–17 

Landis DA, Wratten SD, Gurr GM. 2000. Habitat management to conserve natural enemies of 

arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201 

Li Y, Chen D, Walker CN, Angus JF. 2010. Estimating the nitrogen status of crops using a 

digital camera. Field Crops Res. 118(3):221–27 

Liaghat S, Balasundram SK. 2010. A review: the role of remote sensing in precision agriculture. 

Am. J. Agric. Biol. Sci. 5(1):50–55 

Lilienthal H, Gerighausen H, Schnug E. 2018. Agricultural remote sensing information for 

farmers in Germany. Paper presented at the 14th International Conference on Precision 

Agriculture, Monticello, IL 

Lin YP, Petway JR, Anthony J, Mukhtar H, Liao SW, et al. 2017. Blockchain: the evolutionary 

next step for ICT e-agriculture. Environments 4(3):50 



 33 

Liu, Y, Swinton SM, Miller NR. 2006. Is site-specific yield response consistent over time? Does 

it pay? Amer. J. Agric. Econ. 88(2):471-483 

Loghin F, Popescu S, Rus F. 2011. Dynamic modeling of working sections of grassland 

oversowing machine MSPD-2.5. Eng. Rural Dev. 2011:480–85 

Lottes P, Khanna R, Pfeifer J, Siegwart R, Stachniss C. 2017. UAV-based crop and weed 

classification for smart farming. In IEEE International Conference on Robotics and 

Automation (ICRA) 2017, pp. 3024–31. New York: IEEE 

Lowenberg-DeBoer J. 1999. Risk management potential of precision farming technologies. J. 

Agric. Appl. Econ. 31(2):275–85 

Lowenberg-DeBoer J. 2015. The precision agriculture revolution: making the modern farmer. 

Foreign Aff. 94(3):105–12 

Mahlein AK, Kuska MT, Behmann J, Polder G, Walter A. 2018. Hyperspectral sensors and 

imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 56:535–58 

Mann S, Lanz S. 2013. Happy Tinbergen: Switzerland’s new direct payment system. 

EuroChoices 12(3):24–28 

Martín-Retortillo M, Pinilla V. 2015. On the causes of economic growth in Europe: Why did 

agricultural labour productivity not converge between 1950 and 2005? Cliometrica 9(3):359–

96 

Massa A. 2017. Someone figured out how to put tomatoes on a blockchain. Bloomberg 

Technology, Nov. 9. https://www.bloomberg.com/news/articles/2017-11-09/the-internet-of-

tomatoes-is-coming-starting-with-boston-salads 

Möckel S. 2015. ‘Best available techniques’ as a mandatory basic standard for more sustainable 

agricultural land use in Europe? Land Use Policy 47:342–51 

Mondal P, Basu M. 2009. Adoption of precision agriculture technologies in India and in some 

developing countries: Scope, present status and strategies. Prog. Nat. Sci. 19(6):659–66 

Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: key advances and 

remaining knowledge gaps. Biosyst. Eng. 114(4):358–71 

Muth D. 2014. Profitability versus environmental performance: Are they competing? J. Soil 

Water Conserv. 69(6):203A–6A 



 34 

Naik NS, Shete VV, Danve SR. 2016. Precision agriculture robot for seeding function. Paper 

presented at the International Conference on Inventive Computation Technologies, 

Coimbatore, Ind.  

Nam CW, Parsche R, Radulescu DM, Schöpe M. 2007. Taxation of fertilizers, pesticides and 

energy use for agricultural production in selected EU countries. Eur. Environ. 17(4):267–84 

Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen AM. 2017. Delineation of soil management 

zones for variable-rate fertilization: a review. Adv. Agron. 143:175–245 

Norton GW, Swinton SM. 2001. Precision agriculture: global prospects and environmental 

implications. In Tomorrow’s Agriculture: Incentives, Institutions, Infrastructure and 

Innovations, ed GH Peters, P Pingali, pp. 269–86. New York: Routledge 

Osteen CD, Fernandez‐Cornejo J. 2013. Economic and policy issues of US agricultural pesticide 

use trends. Pest Manag. Sci. 69(9):1001–25 

Pampolino MF, Manguiat IJ, Ramanathan S, Gines HC, Tan PS, et al. 2007. Environmental 

impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice 

systems. Agric. Syst. 93(1–3):1–24 

Paustian M, Theuvsen L. 2017. Adoption of precision agriculture technologies by German crop 

farmers. Precision Agric. 18(5):701–16 

Peth D, Mußhoff O, Funke K, Hirschauer N. 2018. Nudging farmers to comply with water 

protection rules—experimental evidence from Germany. Ecol. Econ. 152:310–21 

Pierpaoli E, Carli G, Pignatti E, Canavari M. 2013. Drivers of precision agriculture technologies 

adoption: a literature review. Proc. Technol. 8:61–69 

Pierce FJ, Nowak P. 1999. Aspects of precision agriculture. Adv. Agron. 67:1–85 

Poppe KJ, Wolfert S, Verdouw C, Verwaart T. 2013. Information and communication 

technology as a driver for change in agri‐food chains. EuroChoices 12(1):60–65 

Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. 

Soc. B 365(1554):2959–71 

Reichardt M, Jürgens C. 2009. Adoption and future perspective of precision farming in 

Germany: results of several surveys among different agricultural target groups. Precis. Agric. 

10(1):73–94 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7811903
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7811903


 35 

Rejesus RM, Hornbaker RH. 1999. Economic and environmental evaluation of alternative 

pollution-reducing nitrogen management practices in central Illinois. Agric. Ecosyst. 

Environ. 75(1–2):41–53 

Riecken J, Kurtenbach E. 2017. Der Satellitenpositionierungsdienst der deutschen 

Landesvermessung—SAPOS®. Z. Geod. Geoinform. Landmanag. 5:293–300  

Robertson MJ, Llewellyn RS, Mandel R, Lawes R, Bramley RGV, et al. 2012. Adoption of 

variable rate fertiliser application in the Australian grains industry: status, issues and 

prospects. Precis. Agric. 13(2):181–99 

Roldán JJ, del Cerro J, Garzón‐Ramos D, Garcia‐Aunon P, Garzón M, et al. 2018. Robots in 

agriculture: state of art and practical experiences. In Service Robots, ed. AJR Neves. 

InTechOpen. https://doi.org/10.5772/intechopen.69874  

Ruiz-Garcia L, Steinberger G, Rothmund M. 2010. A model and prototype implementation for 

tracking and tracing agricultural batch products along the food chain. Food Control 

21(2):112–21 

Sadler EJ, Evans R, Stone KC, Camp CR. 2005. Opportunities for conservation with precision 

irrigation. J. Soil Water Conserv. 60(6):371–78 

Schellberg J, Hill MJ, Gerhards R, Rothmund M, Braun M. 2008. Precision agriculture on 

grassland: applications, perspectives and constraints. Eur. J. Agron. 29(2–3):59–71 

Schieffer J, Dillon C. 2015. The economic and environmental impacts of precision agriculture 

and interactions with agro-environmental policy. Precision Agric. 16(1):46–61 

Schimmelpfennig D. 2016. Farm profits and adoption of precision agriculture. Rep. 249773,  

Econ. Res. Serv., US Dep. Agric., Washington, DC  

Schimmelpfennig D, Ebel R. 2016. Sequential adoption and cost savings from precision 

agriculture. J. Agric. Resour. Econ. 41(1):97–115 

Schröter D, Cramer W, Leemans R, Prentice CI, Araújo MB, et al. 2005. Ecosystem service 

supply and vulnerability to global change in Europe. Science 310:1333–37 

Seelan SK, Laguette S, Casady GM, Seielstad GA. 2003. Remote sensing applications for 

precision agriculture: a learning community approach. Remote Sensing Environ. 88(1–

2):157–69 

Sehy U, Ruser R, Munch JC. 2003. Nitrous oxide fluxes from maize fields: relationship to yield, 

site-specific fertilization, and soil conditions. Agric. Ecosyst. Environ. 99(1–3):97–111 



 36 

Shaw R, Lark RM, Williams AP, Chadwick DR, Jones DL. 2016. Characterising the within-field 

scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ 

nitrogen sensor networks for precision agriculture. Agric. Ecosyst. Environ. 230:294–306 

Shockley JM, Dillon CR, Stombaugh TS. 2011. A whole farm analysis of the influence of auto-

steer navigation on net returns, risk, and production practices. J. Agric. Appl. Econ. 43(1):57–

75 

Silva CB, de Moraes MAFD, Molin JP. 2011. Adoption and use of precision agriculture 

technologies in the sugarcane industry of São Paulo state, Brazil. Precis. Agric. 12(1):67–81 

Slaughter DC, Giles DK, Downey D. 2008. Autonomous robotic weed control systems: a review. 

Comput. Electron. Agric. 61(1):63–78 

Suprem A, Mahalik N, Kim K. 2013. A review on application of technology systems, standards 

and interfaces for agriculture and food sector. Comp. Standards Interfaces 35(4):355–64 

Swinton SM. 2005. Economics of site-specific weed management. Weed Sci. 53(2):259–63 

Swinton SM, Lowenberg-DeBoer J. 1998. Evaluating the profitability of site-specific farming. J. 

Prod. Agric. 11(4):439–46 

Swinton SM, Lupi F, Robertson GP, Hamilton SK. 2007. Ecosystem services and agriculture: 

cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64(2):245–52 

Swinton SM, Van Deynze B. 2017. Hoes to herbicides: economics of evolving weed 

management in the United States. Eur. J. Development Research 29:560-574. 

Sunding D, Zilberman D. 2001. The agricultural innovation process: research and technology 

adoption in a changing agricultural sector. Handb. Agric. Econ. 1:207–61 

Tamirat TW, Pedersen SM, Lind KM. 2018. Farm and operator characteristics affecting adoption 

of precision agriculture in Denmark and Germany. Acta Agric. Scand. Sect. B Soil Plant Sci. 

68(4):349–57 

Tey YS, Brindal M. 2012. Factors influencing the adoption of precision agricultural 

technologies: a review for policy implications. Precis. Agric. 13(6):713–30 

Tian F. 2016. An agri-food supply chain traceability system for China based on RFID & 

blockchain technology. Paper presented at the 13th International Conference on Service 

Systems and Service Management, Kunming, China 

Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable 

intensification of agriculture. PNAS 108(50):20260–64 



 37 

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 2002. Agricultural sustainability and 

intensive production practices. Nature 418(6898):671–77 

Tozer PR. 2009. Uncertainty and investment in precision agriculture—is it worth the money? 

Agric. Syst. 100(1–3):80–87 

Van Evert FK, Been T, Booij AJ, Kempenaar C, Kessel JG, Molendijk PL. 2018. Akkerweb: a 

platform for precision farming data, science, and practice. Paper presented at the 14th 

International Conference on Precision Agriculture, Montreal 

Van Evert FK, Gaitán-Cremaschi D, Fountas S, Kempenaar C. 2017. Can precision agriculture 

increase the profitability and sustainability of the production of potatoes and olives? 

Sustainability 9(10):1863 

Van Evert FK, Samsom J, Polder G, Vijn M, Dooren HJV, et al. 2011. A robot to detect and 

control broad‐leaved dock (Rumex obtusifolius L.) in grassland. J. Field Robot. 28(2):264–77 

Vermeulen SJ, Campbell BM, Ingram JS. 2012. Climate change and food systems. Annu. Rev. 

Environ. Resour. 37:195–222 

Vollmer-Sanders C, Allman A, Busdeker D, Moody LB, Stanley WG. 2016. Building 

partnerships to scale up conservation: 4R Nutrient Stewardship Certification Program in the 

Lake Erie watershed. J. Great Lakes Res. 42(6):1395–402 

Walter A, Finger R, Huber R, Buchmann N. 2017. Opinion: smart farming is key to developing 

sustainable agriculture. PNAS 114(24):6148–50 

Walter A, Khanna R, Lottes P, Stachniss C, Siegwart R, Nieto J, Liebisch F. 2018. Flourish: a 

robotic approach for automation in crop management. Paper presented at the 14th 

International Conference on Precision Agriculture, Montreal 

Walter A, Liebisch F, Hund A. 2015. Plant phenotyping: from bean weighing to image analysis. 

Plant Methods 11(1):14 

Wang N, Zhang N, Wang M. 2006. Wireless sensors in agriculture and food industry—recent 

development and future perspective. Comput. Electron. Agric. 50(1):1–14 

Watcharaanantapong P, Roberts RK, Lambert DM, Larson JA, Velandia M, et al. 2014. Timing 

of precision agriculture technology adoption in US cotton production. Precis. Agric. 

15(4):427–46 



 38 

Wathes CM, Kristensen HH, Aerts JM, Berckmans D. 2008. Is precision livestock farming an 

engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or 

pitfall? Comput. Electron. Agric. 64(1):2–10 

Weersink A, Fraser E, Pannell D, Duncan E, Rotz S. 2018. Opportunities and challenges for Big 

Data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10:19–37 

Wheeler T, Von Braun J. 2013. Climate change impacts on global food security. Science 

341(6145):508–13 

Winstead AT, Norwood SH, Griffin TW, Runge M, Adrian AM, et al. 2010. Adoption and use of 

precision agriculture technologies by practitioners. Paper presented at the 10th International 

Conference on Precision Agriculture, Denver, CO 

Wirtz BW, Weyerer JC. 2017. Cyberterrorism and cyber attacks in the public sector: how public 

administration copes with digital threats. Int. J. Public Adm. 40(13):1085–100 

Wolfert S, Ge L, Verdouw C, Bogaardt MJ. 2017. Big data in smart farming—a review. Agric. 

Syst. 153:69–80 

Woodard J. 2016a. Big data and Ag-Analytics: an open source, open data platform for 

agricultural & environmental finance, insurance, and risk. Agric. Finance Rev. 76(1):15–26 

Woodard JD. 2016b. Data science and management for large scale empirical applications in 

agricultural and applied economics research. Appl. Econ. Perspect. Policy 38(3):373–88 

Xiongkui H, Bonds J, Herbst A, Langenakens J. 2017. Recent development of unmanned aerial 

vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 10(3):18–30 

Zhang C, Kovacs JM. 2012. The application of small unmanned aerial systems for precision 

agriculture: a review. Precis. Agric. 13(6):693–712 

Zhang N, Wang M, Wang N. 2002. Precision agriculture—a worldwide overview. Comput. 

Electron. Agric. 36(2–3):113–32 

Zhang KM, Wen ZG. 2008. Review and challenges of policies of environmental protection and 

sustainable development in China. J. Environ. Manag. 88(4):1249–61 

Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM. 2007. Ecosystem services and dis-

services to agriculture. Ecol. Econ. 64(2):253–60 

Zhou XV, English BC, Larson JA, Lambert DM, Roberts RK, et al. 2017. Precision farming 

adoption trends in the southern US. J. Cotton Sci. 21(2):143–55 



 39 

Zude-Sasse M, Fountas S, Gemtos TA, Abu-Khalaf N. 2016. Applications of precision 

agriculture in horticultural crops. Eur. J. Hortic. Sci. 81(2):78–90 

 

 

 


