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ABSTRACT
In this demo abstract we present a custom-built low-power geo-
phone sensor node which features on-device mountaineer classi-
fication using a convolutional neural network. The execution of
such a processing-heavy algorithm on an embedded platform is
enabled by optimizing the memory requirement of the neural net-
work through advanced quantization and pipelining techniques. As
a result, real-time classification with low energy consumption can
be achieved.

CCS CONCEPTS
• Information systems → Clustering and classification; • Com-
puting methodologies → Neural networks; • Hardware →
Sensor applications and deployments; Sensor devices and platforms; •
Networks →Wireless mesh networks; Sensor networks.

KEYWORDS
Natural Hazard Warning System, Wireless Sensing Platform, Em-
bedded Convolutional Neural Network, Machine Learning, On-
device Classification

1 INTRODUCTION
Intelligent sensors necessitate application specific data processing
capabilities to be integrated as close to the data source as possible.
This allows to trade off storage and bandwidth requirements with
local processing that performs data transformations based on signal
processing and decision making techniques. We have developed
an event-triggered microseismic sensor that allows to capture geo-
physical signals precisely when it matters most, i.e. the input signal
exceeds a pre-defined threshold and consequentially not wasting
precious resources when nothing can be observed. The application
of such sensors are passive monitoring of natural hazard sites, e.g.
rockfall or their precursory signals [1]. By leveraging the theoretical
concept of co-detection [1] on a large set of sensors we can com-
press the data obtained from many geophone sensors and transfer
the detected events efficiently over a low-power wireless sensor net-
work without the performance impairments of previous work [6].
However such a simple threshold triggering technique is not able
to distinguish actual rockfall signals from noise sources. The data
obtained contains true events as well as natural and anthropogenic
noise. We therefore utilize machine-learning-based classification

of the signals to actively identify humans walking through an in-
strumented hazard zone and remove these false positive warnings
from the data. In this demo abstract we focus on the fact that the
knowledge about mountaineer activity can additionally be used
for information purposes (e.g. informing emergency services about
path utilization as illustrated in Figure 1). In our work, running
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Figure 1: Illustration of an application scenario. Geophone
sensor nodes are deployed in a high-alpine environment to
surveil a hiking or climbing path. The timely information
about path utilization is beneficial for emergency services
as well as tourism statistics.

a convolutional neural network (CNN) on an embedded device is
made possible by quantizing and pipelining the neural network
inference resulting in a substantially reduced computing time and
memory requirement. In this way, convolutional neural networks
that would not run unmodified on a memory constrained device can
be executed in real-time and at scale on low-power, off-the-shelf
embedded devices. A field study with our system is running on the
rockfall scarp of the Matterhorn Hörnligrat at 3500 m a.s.l. since
08/2018.

Complementary material related to this paper, such as code, is
provided online [2].

2 MOUNTAINEER CLASSIFIER
The training of the convolutional neural network is performed
offline using an openly available dataset [4, 5] resulting in a top
error rate of 0.0240 and a top F1 score of 0.9779.

The implementation on the embedded device is subdivided into
four steps which are data acquisition, pre-processing, classification
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with CNN and transmission. After data acquisition a pre-processing
step is executed calculating a log-compressed time-frequency rep-
resentation which is used as input to the convolutional neural
network. In order to run the CNN-classifier on a low-power em-
bedded device the algorithm’s memory footprint must be reduced,
which is performed by combining two strategies: (i) quantization of
the neural network to allow parameters being stored in SRAM and
(ii) distributing the computations into multiple computation cycles
to enable SRAM only processing and to provide a low latency. The
first strategy is performed using incremental network quantization
[7] and reduces the size of the network’s parameters by a factor
of 4. The latter strategy is performed by using a novel method we
coined time distributed processing [3]. Time distributed processing
pipelines the inference by using a depth-first computation of the
convolutional neural network and by exploiting the temporal char-
acteristics of microseismic data. Effectively, the classification of a
long input signal begins as soon as a short chunk is recorded. The
convolutional neural network can be partially computed for this
short chunk with reduced memory requirements while buffering
intermediate results. Consecutive short chunks are processed until
classification of the long signal can be established based on the
precomputed intermediate results. As a result, the inference time
and the inference memory requirement can be reduced and can be
kept constant regardless of the temporal size of the convolutional
neural network input.

Figure 2: Image of the battery-powered geophone sensor
node. The node is a custom-designed realization of the dual
processor platform2 and includes a geophone sensor, an ana-
log low-power threshold-based wake-up circuit, an ARM-
Cortex M4 application processor and a CC430-based com-
munication board. This demo only utilizes the application
processor.

2See IPSN 2019 demo abstract about the dual processor platform by J. Beutel et al.

3 DEMONSTRATION SETUP
The capabilities of the on-device mountaineer classifier are demon-
strated using pre-recorded data from the Matterhorn field-site de-
ployment and one geophone sensor node (Figure 2). The microseis-
mic stream accompanied by time-lapse images are visualized in
real-time on a screen. The microseismic stream will be pre-selected
to contain a representative distribution of silent periods and periods
of mountaineer activity over the course of a day. Since we cannot
replicate the field-site scenario, only a digital signal is used and
the sensor node’s analog frontend (geophone sensor and analog
triggering circuit) is bypassed. The laptop is used to emulate the
analog triggering circuit and to segregate the microseismic stream
into threshold-triggered events which are sent to the geophone
sensor node to be further classified by the previously presented
on-device mountaineer classifier. The classification result (moun-
taineer yes/no) is illustrated by LEDs on the geophone sensor node
and displayed on the screen. The event length and inference time
with/without time distributed processing will be highlighted given
the microseismic stream visualization. The audience is able to ver-
ify the classification accuracy by checking the time-lapse images
for mountaineer presence. Furthermore, statistics about the path
utilization since demo start are displayed on the screen.
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