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Resilience in social-ecological systems: identifying stable and unstable
equilibria with agent-based models
Maarten J. van Strien 1, Sibyl H. Huber 1,2, John M. Anderies 3 and Adrienne Grêt-Regamey 1

ABSTRACT. To determine the resilience of complex social-ecological systems (SESs) it is necessary to have a thorough understanding
of the system behavior under changing political, economic, and environmental conditions (i.e., external system stressors). Such behavior
can be predicted if  one knows the stable and unstable equilibrium states in a system and how these equilibria react to changes in the
system stressors. The state of the system rapidly or gradually changes either toward (i.e., stable equilibrium) or away from (i.e., unstable
equilibrium) an equilibrium. However, the equilibrium states in a SES are often unknown and difficult to identify in real systems. In
contrast, agent-based SES models can potentially be used to determine equilibria states, but are rarely used for this purpose. We
developed a generic approach to identify stable and unstable equilibria states with agent-based SES models. We used an agent-based
SES model to simulate land-use change in an alpine mountain region in the Canton of Valais, Switzerland. By iteratively running this
model for different input settings, we were able to identify equilibria in intensive and extensive agriculture. We also assessed the sensitivity
of these equilibria to changes in external system stressors. With support-vector machine classifications, we created bifurcation diagrams
in which the stable and unstable equilibria as a function of the values of a system stressor were depicted. The external stressors had a
strong influence on the equilibrium states. We also found that a minimum amount of direct payments was necessary for agricultural
extensification to take place. Our approach does not only provide valuable insights into the resilience of our case-study region to
changing conditions, but can also be applied to other (agent-based) SES models to present important model results in a condensed
and understandable format.

Key Words: agricultural land use; bifurcation diagram; land-use change; regime shift

INTRODUCTION
Changing environmental, ecological, political, and socioeconomic
conditions can have far-reaching consequences for the
functioning of ecological, social, and coupled social-ecological
systems (SESs; Walker et al. 2004, Folke 2006). Empirical studies
on ecosystems have shown that slowly changing conditions can
cause quite abrupt changes in the functioning of a system (i.e.,
regime shifts; Scheffer and Carpenter 2003), and also in SESs such
shifts have been observed (Walker and Meyers 2004). Such shifts
do not necessarily cause equally abrupt changes in the state of
the system, but can gradually alter the system state over long
periods of time (Walker and Meyers 2004, Biggs et al. 2018). The
resilience of a SES strongly depends on how it reacts to gradual
or sudden changes (Walker et al. 2004), but also on the functioning
of the system after it has undergone a transformation (i.e.,
transformability; Folke et al. 2010). Predicting how a SES will
behave under changing conditions and what the system may look
like after periods of change requires a thorough understanding
of the system. However, due to numerous complex interactions
and feedbacks in many SESs, such system understanding is
usually difficult to obtain.  

It has long been known that the direction and rate of change in
many complex systems are not random, but determined by stable
and unstable equilibria in the system (Holling 1973, Scheffer et
al. 2001). We clarify this statement with a simple example of a
wild fishery from which fish are harvested (Fig. 1). Only when the
harvest rate is equal to the natural growth rate is the fish stock
size constant over time; i.e., the system is in an equilibrium state.
In all nonequilibrium states, the stock will increase or decrease,

depending on whether there is a growth or a harvest surplus,
respectively. Depending on the system’s internal functions (e.g.,
growth and harvest functions; Hannesson 1983), the emerging
equilibria can be either stable (e.g., Fig, 1A) or unstable (e.g., Fig.
1B), meaning that change in fish stock size is either toward or
away from the equilibrium, respectively. When systems are driven
by more complex functions, it is also possible that multiple stable
equilibria arise (e.g., Fig. 1C), which is particularly the case in
systems with positive feedbacks (Angeli et al. 2004). Stable
equilibria have also been referred to as “attractors” (Scheffer et
al. 2012, Bitterman and Bennett 2016). The state space in which
system change is in the direction of a stable equilibrium is
commonly termed a “basin of attraction” (Holling 1973) or a
“valley” in a stability landscape (Scheffer et al. 2001). Unstable
equilibria are also known as “hills” in stability landscapes
(Scheffer et al. 2001), or “separatrix” when located between two
stable equilibria (e.g., Fig. 1C; Dasgupta and Mäler 2003).  

System internal functions are influenced by external system
stressors (e.g., climate or economic change), which in turn can
affect equilibria. To assess a system’s resilience under changing
conditions, it is thus important to identify the stable and unstable
equilibria for multiple values of a system stressor. For instance,
in systems with multiple stable equilibria, a small change in a
system stressor can cause a regime shift, i.e., a transition from one
basin of attraction into another (Scheffer et al. 2001, Biggs et al.
2018). Such transitions can strongly affect the functioning of SESs
(Lade et al. 2013) and predicting the conditions under which they
occur has become a widely studied topic (Scheffer et al. 2009,
2012, Polhill et al. 2016). The stressor thresholds at which regime
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Fig. 1. Example plots of annual harvest and growth rates for varying fish stock sizes in a wild fishery. In each
plot, the harvest rates are defined by different production functions. For the plots (A) and (B), we assume that
the growth rate is 5 fish for every 10 fish in the fish stock. In (A), the harvest rate increases exponentially with
fish stock size. There is an equilibrium at a fish stock size of 600 (i.e., harvest rate = growth rate). In this case,
regardless of the fish stock size the direction of movement (black arrows) is always toward the equilibrium (i.e.,
stable equilibrium; green dot). In (B), we assume a constant harvest rate of 300 fish/year. Again, the fish stock
size will remain constant if  the size is exactly 600, but in this case, any deviation from this equilibrium will result
in a fish stock trend away from this equilibrium (i.e., unstable equilibrium; red dot). In (C), there is a linear
production function and natural growth follows a sigmoidal function, which leads to a situation with two stable
equilibria and one unstable equilibrium (green and red dots, respectively).

shifts take place can be derived by plotting bifurcation diagrams
(i.e., plots of equilibria states against various values of a system
stressor; e.g., Scheffer et al. 2001, Dasgupta and Mäler 2003).
Another indicator of system resilience is how long it takes for a
system to recover from sudden changes in stressors or in the
system state (i.e., shocks; Folke 2006). This recovery time will also
largely depend on the postshock state of the system in relation to
its stable or unstable equilibrium (Veraart et al. 2012). System
resilience may also be quantified by the magnitude of shocks that
it can absorb (Walker et al. 2004). For such an analysis, the size
of a basin of attraction has been proposed as an indicator (Holling
1973). Other resilience studies focus on the behavior of SES that
are approaching equilibrium (i.e., transient dynamics; e.g.,
Fletcher and Hilbert 2007). For such studies, it is also important
to know the equilibrium conditions of the system. Thus, from
several perspectives, the assessment of the resilience of SESs
depends on knowledge of equilibria and their behavior under
changes in system stressors.  

Despite their importance, equilibria in SESs are usually difficult
to identify. If  the internal system functions are well known, as in
the fisheries example above, it may be possible to determine
equilibria analytically. However, in many complex SESs these
system functions are either unknown or too numerous for an
analytical approach. Furthermore, gaining such system
knowledge from real SESs is usually hampered by the lack of
appropriate and sufficient data (but see Walker and Meyers 2004,
Biggs et al. 2018). Models of SESs are capable of capturing the
complexities found in real systems (Schlüter et al. 2012) and, in
contrast to real systems, can easily be run with a range of input
parameters. Agent-based SES models are ideally suited to study
the complex system dynamics that emerges from the interactions
between different actors and their environment (Schulze et al.
2017). However, studies in which agent-based SES models are

presented, often focus on the model development, rather than on
what can be learned from the models (Lee et al. 2015, Schulze et
al. 2017). The analysis performed with agent-based SES models
is generally rather limited: usually only few scenarios are tested
(Filatova et al. 2016) and proper sensitivity analyses are rarely
performed (Schulze et al. 2017). A notable exception is the study
by Bitterman and Bennett (2016), who successfully identified
stable equilibria with an agent-based land-use model. These
authors repeatedly ran their model for many combinations of
input parameters until, after approximately 20 time steps, an
equilibrium was reached. However, depending on the type of
external stressor, in many SESs transitions toward an equilibrium
are much slower (Walker and Meyers 2004). For such systems, it
would become too time consuming to perform many simulations
over long time periods until an equilibrium state is reached.  

In this study, we present an alternative approach to identify and
quantify stable and unstable equilibria with agent-based SES
models. Our approach does not require a model to reach an
equilibrium state, but rather identifies equilibria from many short-
term runs. With our approach, we aim to add to the suite of
methods that can be used to analyze output of agent-based models
(Lee et al. 2015) and bridge the gap between SES modelling and
resilience theory.  

We demonstrate the approach using the agent-based land-use
model ALUAM-AB, which simulates land-use changes in
mountain landscapes based on land-use decisions of individual
farmers under a range of socioeconomic, political, and ecological
constraints (Brändle et al. 2015). With this model, we measured
the direction of land-use change under different combinations of
initial system states and levels of market, policy, and
environmental stressors. The system state was expressed as the
areas of intensive and extensive agriculture in the study region
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because these are important indicators for the ecological quality
of an agricultural area. With direction-field plots and
reconstructed stability landscapes (Peterson et al. 1998, Scheffer
et al. 2001), we visually identified equilibria in both the areas of
intensive and extensive agriculture. The equilibria were
quantitatively analyzed with support-vector machine classifications
(Shmilovici 2010) with which we plotted bifurcation diagrams.
With these diagrams, we were able to capture the main behavior
of our complex system in a simple metamodel. Finally, we discuss
what the identified equilibria reveal about the functioning of the
system and its resilience. The presented approach is generic and
can be applied to other agent-based SES models. We emphasize
that knowledge on equilibria can be used for regime-shift analysis,
which is a central focus of SES modeling studies (Polhill et al.
2016), but also has a broader applicability in SES science (e.g.,
the existence of one stable equilibrium can help understand
system dynamics).

METHODS

Case study region
The case study region (443.3 km²) is located in the central part of
the Canton of Valais in Switzerland, which is a drought-sensitive,
continental, inner-alpine mountain region. Unproductive
ground, including rocks and glaciers, accounts for 62% of the
area, while 20% is covered by forest, 16% by agriculture, and 2%
by settlement. Small-scale farming practices, including seasonal
alpine grazing, maintain a diverse and patchy landscape. On
average, individual farmers cultivate only eight ha of agricultural
land and keep around seven livestock units of which many are
sheep. Agriculture is highly subsidized and federal
reimbursements make up more than half  of farmers’ agricultural
incomes. Over 90% of the farmers work part-time with additional
jobs in tourism or industry (Brunner et al. 2016). Because the
region is among the driest of the Swiss Alps, future changes in
temperature and precipitation are predicted to increase vegetation
and agricultural yields (Briner et al. 2012). These socioeconomic,
political, and ecological boundary conditions make the region
susceptible to changes in external stressors, such as prices for
agricultural produce, subsidy policies, or climate (Grêt-Regamey
et al. 2019). Therefore, we focussed on these three stressors in
subsequent analyses.

Agent-based alpine land use allocation model (ALUAM-AB)
The land-use decisions taken by the farmers in our case study
region were simulated with ALUAM-AB (Brändle et al. 2015). A
description of ALUAM-AB following the overview, design
concepts, and details (ODD) protocol (Grimm et al. 2006) is given
in Appendix 1. In short, the model has been designed to simulate
land-use change in mountain SESs considering the combined
effects of climate, market, and policy changes and the behavior
of farmers. Each agent in the model represents a group of farmers
that has the same decision-making mechanisms for managing
farm resources. The agents can practice both extensive and
intensive farming depending on the conditions. The initial state
of each agent is characterized by several parameters (e.g., land
endowment and livestock capacity), which are updated after each
yearly simulation period following the decisions of farmers. The
farmers allocate their available resources to maximize their
income, considering parcel characteristics (e.g., slope, elevation,
or soil suitability), farm level, and individual constraints as well

as external socioeconomic and political conditions. Once an
optimal land-use allocation is reached, farm capacities, livestock,
and age of the farmers are updated, and the next annual time step
is initialized. Interaction between agents is simulated with an
exchange of land units. The model identifies parcels that are no
longer cultivated and either assigns them to other farmers, who
can generate profit from the parcel and are willing to expand, or
defines them as abandoned in which case they are subject to forest
growth. Interaction between agents and the environment is
simulated via a linkage with the “LandClim” model, which is a
spatially explicit process-based model that simulates forest
dynamics and yields on meadows given different management
regimes and external conditions (Schumacher and Bugmann
2006).  

In our study, ALUAM-AB was run with an initial regional
community of 250 farmers (in 2001, there were 251 farmers in the
study area), assigned to 1 of 14 agents/farmer types. The agent
typologies were derived from interviews with 15 local farmers, a
farm survey (n = 111) as well as an analysis of agricultural census
data. Unproductive land was not considered in the modeling
because the extreme topographic conditions make future
management of these lands very unlikely. Each hectare of land
was considered a parcel and the simulation included 12,163 of
such parcels. The spatially explicit data for each parcel was
obtained from a variety of sources (i.e., Swisstopo 2005, FOAG
2008, SFSO 2009).

ALUAM-AB simulations
For our analysis, we ran ALUAM-AB repeatedly for different
combinations of initial system states and external stressors. To
investigate effects of economic stressors, we varied market prices
for agricultural commodities (e.g., prices for meat, milk, hay, and
fodder). Changes in subsidy policies (i.e., policy stressor) were
simulated by varying agricultural direct payments (e.g., payments
for biodiversity, animal-friendly farming practices, and summer
pastures). The influence of climate change (i.e., environmental
stressor) was assessed by changing the yield of the parcels for
different agricultural land uses. For each stressor, we created 350
input settings by making random combinations of initial system
states and levels of the respective stressor, while keeping the other
stressors fixed at their 2001 levels (i.e., baseline values calculated
for ALUAM-AB). Stressor levels were varied by multiplying the
baseline values of all variables belonging to a certain type of
stressor with a randomly chosen multiplication factor ranging
between 0.1 and 2.0. The area of extensive and intensive
agriculture (i.e., our system states) are an emergent property of
the model. Therefore, the initial land-use configuration was varied
by randomly choosing shares of forest and summer pastures
ranging between 5 and 95%, while the remaining parcels were all
assigned to agricultural land (without specifying whether it was
intensive or extensive). Proportionate to these shares, the three
land-uses were randomly assigned to parcels. We used a Monte-
carlo simulation with a uniform probability distribution to create
our input settings because this produced a fairly continuous
distribution of input settings throughout the state space. To make
our results as generic as possible and not dependent on specific
system settings, each farmer in each run was randomly assigned
a farmer type, an age, and a number of parcels. Pre- and
postprocessing of ALUAM-AB input and output was performed
in R (R Development Core Team 2018).  

https://www.ecologyandsociety.org/vol24/iss2/art8/
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For each of the 1050 input settings, we ran ALUAM-AB over a
10-year period (2001-2010). To speed up this process, we created
an R-script that automatically initialized a new run upon
completion of the previous run and that was able to run ALUAM-
AB in parallel on multiple computer cores. Some of the parcels
to which the land-uses forest, summer pasture, and agriculture
were randomly assigned, were not suitable for the assigned land-
use because of topographic constraints. Therefore, in the first
simulation year, most model runs showed significant fluctuations
in the land uses after which the land-use configuration stabilized.
We therefore discarded the results from the first simulation year.
In the second simulation year (i.e., 2002), we calculated the area
of extensive and intensive agriculture, which determined our
initial system states in subsequent analyses. With a linear
regression analysis, we then determined the direction and rate of
change in the area of extensive or intensive agriculture over a nine-
year period (i.e., 2002-2010). The obtained regression coefficients
indicated how much the area of intensive or extensive agriculture
had increased or decreased per year. A nonsignificant coefficient
(p > 0.05) was regarded as no change.

Direction-field plots
From the output of the ALUAM-AB runs, we created “direction-
field plots” that depict changes in the area of intensive or extensive
agriculture as a function of the value of a system stressor. The
plots consist of arrows of which the coordinates of the starting
point are the multiplication factor of the stressor (i.e., x-axis of
the plot) and the area of extensive or intensive agriculture in 2002
(i.e., y-axis of the plot). The endpoint of the arrows along the y-
axis represents the expected change in area of extensive or
intensive agriculture over a 10-year period obtained by
multiplying the regression coefficients by 10. Because the stressor
levels were kept constant throughout a 10-year simulation, the
start- and endpoint along the x-axis are equal (i.e., vertical line).
These direction-field plots are similar to well-known vector-field
plots (Boker and McArdle 2005), although in the latter the
variables on both the x- and y-axis can vary over time. In direction-
field plots, the equilibria are located in those areas where there is
a change in the predominant direction of the arrows. When arrows
surrounding such areas are pointing away from the equilibrium,
it is unstable. Alternatively, when arrows are pointing toward such
areas, it is indicative of a stable equilibrium. We created separate
direction-field plots for extensive and intensive agriculture as well
as for each of the different stressor types. The R-code used to
create the direction-field plots is supplied in Appendix 2.

Reconstructing stability landscapes
A stability landscape is a multidimensional state space in which
stable equilibria are portrayed as valley bottoms and unstable
equilibria as hill ridges. Over the past two decades, stability
landscapes have frequently been used in resilience theory to
exemplify the effects of changing equilibria and regime shifts (e.
g., Peterson et al. 1998, Scheffer et al. 2001, Walker et al. 2004,
Bitterman and Bennett 2016). In this study, we reconstructed the
stability landscapes from the results of the ALUAM-AB runs. In
a first step, we created a two-dimensional grid (25 x 25 cells) of
the state space used for the direction-field plots. We then
interpolated the regression coefficients with a moving window
analysis (Gaussian weighting kernel), so that each grid cell
contained a coefficient value. Subsequently, we calculated the
cumulative sum of the interpolated regression coefficients in each

column in the grid (i.e., along the y-axis) and rescaled the values
per column between zero and one. These rescaled values
represented the z-axis in the stability landscape. We used the R-
package plotly (Sievert et al. 2017) to create 3D interactive plots
of the stability landscapes (R-code in Appendix 2).

Bifurcation diagrams with support-vector machine classifications
In addition to the visual analysis of equilibria with direction-field
plots and stability landscapes, we also performed a quantitative
analysis with support-vector machines (SVMs). Over the past two
decades, SVMs have become a popular statistical learning method
for supervised classification (Shmilovici 2010). In the same state
spaces as the direction-field plots, we used SVMs to define the
separator line that best divides the data points into regions with
positive and negative growth of intensive or extensive agriculture.
This separator line is a quantitative representation of equilibrium
states. To find this best separator line, we performed a cross-
validated grid-search of hyperparameters for the SVM classifier
(gamma-values were varied between 0.01 and 1.0 and cost-values
were varied between 0.01 and 2.0). As performance measure of
the classifier, we used the classification error (i.e., proportion of
falsely classified points). Because we were interested in regions of
positive or negative growth, the few simulations without any
growth were not considered in this analysis. We colored the
separator line by hand to indicate stable and unstable equilibria.
For the SVM analysis, we made use of the R-package e1071
(Meyer et al. 2017; R-code in Appendix 2).

RESULTS
Performing all 1050 runs with ALUAM-AB took approximately
2 weeks on 2 4-core desktop computers. Because the direction-
field plots showed comparable results for the three stressor types,
we only show the results for the changes in agricultural direct
payments (Fig. 2) and included the plots for the other stressor
types in Appendix 3. The results table of model runs in which
direct payments were varied is included in Appendix 4. For
intensive agriculture, the direction-field plot shows an unstable
equilibrium: with relatively small areas of intensive agriculture,
the growth tends to be negative, while with relatively large areas,
the predominant growth is positive (Fig. 2A). This result implies
that there are probably two stable equilibria for the area of
intensive agriculture on either side of the unstable equilibrium,
but the location of these equilibria is not so apparent from the
direction-field plot (Fig. 2A). An opposite pattern can be seen for
extensive agriculture, in which there is a negative growth with
relatively large areas of extensive agriculture and a positive growth
with small areas of extensive agriculture (Fig. 2B). Thus, for
extensive agriculture a stable equilibrium emerges. For both
intensive and extensive agriculture, the unstable and stable
equilibrium state increases with increasing direct payments (Fig.
2) as well as with increasing market prices (Appendix 3, Fig. A3.1).
Only with increasing yields (i.e., environmental stressor), did we
find that the equilibrium states for both intensive and extensive
agriculture decreased (Appendix 3, Fig. A3.1). The same patterns
of equilibria can also be seen in the top-down views of the
reconstructed stability landscapes (Fig. 3A, B). The side-
perspectives of the interactive stability landscapes (Fig. 3C, D)
allow for an easier identification of the hills and valleys.

https://www.ecologyandsociety.org/vol24/iss2/art8/
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Fig. 2. Direction-field plots of the direction and magnitude of
change in the area of intensive or extensive agriculture under
different levels of direct payments. Each arrow originates from
the point that represents the initial area of intensive (A) or
extensive (B) agriculture and the multiplication factor with
which the direct payments were multiplied (baseline = 1). The
arrow represents the 10-year trend of change in agricultural
area. The arrows can indicate a positive (green), negative (red),
or no (white) trend. The intensity of the red and green colors
increases with an increasing magnitude of change.

The SVM classification (Fig. 4) had an average classification error
of 18.1% for all stressor and agriculture types (Table 1). From the
bifurcation diagrams, we observed that the relationship between
the equilibrium states and the level of system stressor is not linear
(Fig. 4). The general trends from the direction-field plots can also
be observed in the bifurcation diagrams. However, the latter
suggests that both intensive and extensive agriculture contain
“limit points,” which are points on the separator line where the
tangent is vertical and the equilibria switches from stable to
unstable, or vice versa (e.g., Qi et al. 2015; Fig. 4). For instance,
with intensive agriculture and a multiplication factor for direct
payments of 0.5, there is a stable and an unstable equilibrium
(Fig. 4A). Furthermore, for relatively low levels of direct
payments, irrespective of the initial area of intensive or extensive
agriculture, the growth direction is predominantly positive or
negative, respectively (Fig. 4). Only when the direct payments
surpass a certain threshold (i.e., multiplication factor > 0.4 for
intensive agriculture and > 0.2 for extensive agriculture), do the
equilibria emerge (Fig. 4). Such a threshold was not observed for
market prices nor for yields (Appendix 3, Fig. A3.2). The shapes
of the separator lines in the bifurcation diagrams of intensive
(Fig. 3A) and extensive agriculture (Fig. 3B) correspond to the
hill ridge (Fig. 4A) and valley bottom (Fig. 4B), respectively, in
the stability landscapes.

DISCUSSION
In this study, we demonstrated how stable and unstable equilibria
can be identified in the output of agent-based models of SESs
with direction-field plots and bifurcation diagrams. The produced
stability landscapes are handy visual aids to convey the results of
our analyses. Knowledge on equilibria states and on their reaction
to changes in external system stressors are vital to understand the
resilience of SESs. For example, from our results we can learn
that an increase in direct payments can cause the area of intensive

Fig. 3. Three-dimensional stability landscapes reconstructed
from development trends of the area of intensive (A, C) or
extensive (B, D) agriculture under different levels of direct
payments. The x- and y-axes are the same as in Figure 2. The z-
axis is unitless and ranges between zero and one. To reconstruct
the landscapes, the detected trends (Fig. 2) were interpolated
with a moving window analysis over the complete state space.
In (A) and (B), there is a top-down perspective on the
landscapes and it can be seen that the hill ridge (A) or valley
bottom (B) correspond to the identified equilibria (Fig. 4). In
(C) and (D), a side-perspective of the landscapes is shown and
the hill (C; i.e., unstable equilibrium) and valley (D; i.e., stable
equilibrium) can clearly be identified. These perspectives are
screenshots from 3D interactive plots produced with Plotly
(Plotly Technologies Inc., Montréal, Canada).

agriculture to switch from a situation of growth to one of
shrinkage (i.e., regime shift). The separator line in the bifurcation
diagram can be used to estimate the value of direct payments that
will cause a system with a certain area of intensive agriculture to
exhibit such a regime shift (Fig. 3A). The detected limit points
can also help understand complex system behavior. For example,
if  the system state of intensive agriculture is below the limit point
(< approx. 1300 ha; Fig. 4A) and the multiplication factor of
direct payments is above it (> approx. 0.4; Fig 4A), increasing the
direct payments will always lead to a reduction of the intensive
agriculture. Only if  one increases the area of intensive agriculture
to above the unstable equilibrium, will an increase in direct
payments lead to a growth in intensive agriculture. We also
discovered that a minimum level of direct payments is necessary
to maintain or increase extensive agriculture in our study area.
With low levels of direct payments, the area of extensive
agriculture is always decreasing whereas the area of intensive
agriculture is increasing.
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Ecology and Society 24(2): 8
https://www.ecologyandsociety.org/vol24/iss2/art8/

Table 1. Results of the support-vector machine (SVM)
classification of areas of positive and negative growth in extensive
or intensive agriculture. The various external system stressors
were varied together with the initial landscape composition to
create a state space. For each model run, we assessed the direction
of growth for the area of intensive and extensive agriculture. The
classification error indicates the proportions of wrongly classified
model runs (i.e., falsely classified data points) in the best
performing model. The latter was determined with a 10-fold cross-
validation grid search of the hyperparameters cost and gamma
(those belonging to the best model are listed).
 
External system
stressor

Agriculture
type

Classification
error

Cost Gamma

Direct payments Extensive 0.182 2.000 1.000
Direct payments Intensive 0.182 0.863 1.000
Price Extensive 0.162 1.431 0.151
Price Intensive 0.227 1.147 0.010
Yield Extensive 0.147 2.000 0.151
Yield Intensive 0.186 0.579 0.293

Fig. 4. Bifurcation diagrams created from support-vector
machine (SVM) classifications of areas of positive and negative
growth of intensive (A) or extensive (B) agriculture. The points
in the plots are the same as the starting points of the arrows in
Figure 2. The growth trend in each model run was assigned to
either of three classes: positive (green dot), negative (red dot),
or flat (grey dot). The positive and negative trends were used to
train SVMs to find the equilibria (i.e., separator line) between
areas of positive (green area) and negative (red areas) growth.
We colored the separator line by hand to indicate stable (blue
line) or unstable (orange line) equilibria.

By comparing our results to expected outcomes, our results can
uncover unexpected system behavior, but also serve as a validation
of the agent-based model. For example, in Swiss mountain areas,
agriculture in general is dependent on direct payments, and this
is especially the case for extensive agriculture (Flury et al. 2005).
Therefore, it is not surprising that the area of extensive agriculture
is likely to decrease with very low direct payments. The fact that
we found a clear unstable equilibrium for intensive agriculture
and a stable equilibrium for extensive agriculture, suggests that
these two agricultural practices are in trade-off  (i.e., an increase
of extensive agriculture goes together with a decrease in intensive
agriculture, and vice versa). Although the existence of such a
trade-off  makes sense given the limited area of arable land in the

study region, a situation in which all arable land is abandoned
and overgrown with forest may have also been plausible given the
dependency of both intensive and extensive agriculture on direct
payments. The latter apparently does not happen even at low levels
of direct payments. However, we have not experimented with
direct payments below 10% of current levels.  

The approach we presented is generic and in principle can be
applied to any agent-based model. One advantage of our
approach is that it does not require models to be run until
equilibrium states have been reached. This makes the approach
applicable to large models with long simulation times, which is a
characteristic of many agent-based SES models. In our study, we
chose to run ALUAM-AB for 10 time-steps (i.e., 10-year periods),
so that we could perform enough simulations within an acceptable
time. An alternative approach would be to run fewer simulations
for longer time periods until stable equilibria have been reached,
as was, for instance, done by Bitterman and Bennett (2016).
However, in some models it can take many time-steps until
equilibria states are reached and a single simulation would become
too time consuming. Nonetheless, with our approach it remains
unclear whether the equilibria that are identified from simulations
over a limited number of time-steps are also the equilibria that
would finally be achieved after simulating many time-steps. In
fact, the comparison of short-term equilibria (e.g., with the
approach presented here) and long-term equilibria (e.g., with the
approach from Bitterman and Bennett 2016) can provide valuable
information of the temporal stability of equilibrium states. As we
show in our results, external system stressors can considerably
affect the equilibrium states in our SES. However, system-internal
interactions and feedbacks could also cause changes to the
equilibrium states over time. The existence of such temporal
changes in equilibrium states can be assessed by making
bifurcation diagrams for different time lags during the
simulation.  

Stochasticity in the output of agent-based models often
complicates the analysis and interpretation of the results (Lee et
al. 2015). Despite the fact that every model run was initialized
with randomized input settings, equilibria were still clearly
identifiable from the direction-field plots and bifurcation
diagrams. This suggests that the results from ALUAM-AB are
not very stochastic, which has also been observed in other studies
using this model (Brändle et al. 2015). In highly stochastic
systems, there will not be a single direction of change, but a range
of outcomes. Nevertheless, “even if  stochasticity is large, systems
will more often be found close to attractors than far away from
them” (Scheffer et al. 2012:346). To detect such attractors in highly
stochastic agent-based SES models, it is necessary to perform
repeated model runs for each set of input settings. For each input
setting, the statistical moments of the change in system state (i.
e., mean, variance, and skewedness of the change) can then be
calculated. In a direction-field plot, instead of plotting a single
arrow for each model run, one could plot multiple arrows from
which the predominant direction of change can also be inferred.
In models of highly stochastic systems with multiple basins of
attraction, repeated model runs can be drawn toward different
attractors; a phenomenon known as “flickering” (Scheffer et al.
2009). If  such flickering is observed it can be an indication of an
unstable equilibrium state.  
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In the SVM classification of model runs leading to positive or
negative growth (Fig. 4), we found that the classification was not
perfect and that on average 18% of the data points were wrongly
classified. On the one hand, this classification error could be due
to stochasiticity in our model results, which we expect is not so
high (see above). On the other hand, the wrongly classified points
could be due to certain (emergent) system properties that cause
the atypical growth trends. In the latter case, discovering these
system properties could provide information on how the growth
trend in SESs can be changed to steer the system in a desired
direction.  

Recently, several authors have expressed their concerns about the
lack of guidelines for the analysis and description of output of
agent-based SES models (Angus and Hassani-Mahmooei 2015,
Lee et al. 2015, Filatova et al. 2016, O’Sullivan et al. 2016, Schulze
et al. 2017). The lack of such guidelines hinders the transferability
of knowledge and results between models (Schulze et al. 2017)
and can lead to the situation in which each agent-based model is
so case-specific that it becomes hard to compare models and draw
general inferences from output of several models (O’Sullivan et
al. 2016). The complexity of many agent-based models and the
large amount of model output makes it difficult to distil and
present the most important results in an understandable way (Lee
et al. 2015). The approach presented here allows the summarizing
of important model results (i.e., equilibria states and their
reactions to changing conditions) in a condensed and
understandable format. Given that the approach is generic, it can
be applied to the output to multiple agent-based and nonagent-
based SES models, which will facilitate the transferability of
model results. An important tool to evaluate agent-based models
are sensitivity analyses, which involve assessing the effect of model
output on changes in input parameters (O’Sullivan et al. 2016,
Schulze et al. 2017). With few minor adaptations, our approach
can thus be easily incorporated into traditional sensitivity
analyses. Finally, because unstable and stable equilibria play an
essential role in the resilience of SESs, the presented plots (i.e.,
direction-field plots, bifurcation diagrams, and stability
landscapes) can be used to convey information about system
resilience and bridge the gap between SES models and resilience
theory. We anticipate that a stronger focus on the identification
of equilibria in agent-based SES models and their comparison
between models can avoid what O’Sullivan et al. (2016) referred
to as the YAAWN syndrome (“Yet another agent-based model...
whatever...nevermind...”).

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/10899
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Appendix 1. ODD protocol (Grimm et al. 2006) of ALUAM-AB 

Purpose. The purpose of the Agent-Based Alpine Land Use Allocation Model (ALUAM-AB) 
is to simulate the effect of socio-economic, climatic and political pressures on farm structure 
and emerging land-use changes in mountain landscapes.   

State variables. Agents represent groups of farmers. An agent has (1) its own state (i.e., land 
endowment, stable capacity, etc.) which is updated after each yearly simulation period and (2) 
its own decision-making mechanisms for managing farm resources in form of constraints to an 
income optimization approach. Agent typologies were derived from interviews with and a 
survey among local farmers and from an analysis of agricultural census data. Fourteen agent 
types were derived from the farm survey using a PCA with a quartimax rotation and subsequent 
k-means clustering on 19 farmers’ characteristics, which included the opportunity costs of 
labor, additional workforce hired, a threshold for minimum income, farm size, the intention to 
increase farm size or livestock housing capacity (details are given in Brändle et al. 2015). The 
median characteristics for each agent were then fed into the model (Table A1). 

Scale. The smallest landscape unit is one hectare. The size of the study is 44 330 ha, of which 
12 163 ha were used in the simulations. The model was run between 2001 and 2010.  

Process overview and scheduling. ALUAM-AB proceeds in annual time steps. The agents 
allocate their available resources to maximize their income. Thereby they consider spatially-
explicit natural, farm level and individual constraints as well as incentives and regulations from 
the market and policy instruments, which are annual input data to the model. Investments in 
production capacity made in previous years are considered as sunk costs representing path 
dependencies of the individual agents. Structural change is modeled using a land market 
module (Lauber 2006; Huber et al. 2013). The module identifies land units that are no longer 
cultivated under the existing farm structure due to negative land rents, because an agent does 
not reach the minimum wage level or if farmers retire without successor. The land market 
module randomly assigns the land units to one of the other agents and then checks whether the 
shadow price for the land unit is positive. This procedure is repeated until all land units are 
assigned to an agent or until no more agents are willing to take the land units left on the market. 
In that latter case, they are regarded as abandoned land and subject to natural vegetation 
dynamics. When land-use allocation is optimal, farm capacities and livestock, as well as the 
age of the agents are updated and the next annual time step is initialized. 

Emergence. Changes in the activities of agents emerge from changes in prices, policies and the 
climate (see below scenarios) and depend on the decision-making type. In addition, land-use 
patterns emerge from structural changes at the agent level and from spatially explicit climate-
induced changes of yield quantities.  

Adaptation. Agents respond to external pressures by adjusting their production activities, 
applying new production technologies (e.g. irrigation), increasing (or reducing) land size and 
adjusting land-use intensities. In addition, agents exit the sector if their income falls below a 
minimum threshold.  

Prediction. The model follows an income optimization approach assuming rational economic 
behavior with no direct learning pattern. However, the consideration of individual constraints, 
such as opportunity costs, minimum income wage and limited time resources, includes non-
economic goals in the decision-making process. 
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Interaction. The interaction between agents is based on the land market described above. 
Interaction between agents and the environment is based on the model linkage with a sub-
model LandClim, which is a spatially-explicit process-based model that simulates forest 
dynamics and yields on meadows given different management regimes (Schumacher and 
Bugmann 2006).  

Initialization. Initial attributes for agents were chosen randomly. This includes the age structure 
of each agent, the number of farmers in each agent and the allocation of land units to agents.  

Input. Spatially-explicit data were derived from national data sets (Swisstopo 2005; FOAG 
2008; SFSO 2009) or simulated with LandClim. In the baseline setting, policy and socio-
economic parameters were chosen to represent the local conditions in 2001 (Briner et al. 2012; 
Huber et al. 2014).  

Calibration and validation. ALUAM-AB was validated against observed livestock and land-
use data between 2001 and 2013. Overall and unequal variation errors of model performance 
were small (on average 6.5%), thus, the model satisfactorily captured the mean and trends of 
the observed data (Brändle et al. 2015). 

Software requirements. ALUAM-AB runs on Linear Programing Language (LPL) from Virtual 
Optima and requires ILOG CPLEX Optimization Studio from IBM. LPL academic license is 
available for purchase at http://www.virtual-optima.com/en/index.html, and CPLEX academic 
license is available free of change at https://www.ibm.com/software/.  
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Table A1. Agent types in ALUAM-AB. Farm sizes, age of the farmers and number of farms 
in each agent were randomized. 

Agent  Opportunity 
costs  

Available 
work 

Min. 
income 

Farm 
growth 

Succession rate Sheep Dairy 
cows  

Beef 
cattle  

Suckler 
cows  

 x 10 CHF/h % of 2800h CHF  in % Number in the year 2000 

1 0.2 1 25000 Yes 0.75  237 215   

2 0.2 0.6 25000 Yes 0.75 376     

3 0.5 0.6 25000 Yes 0.75   86 43 

4 0.2 0.5 10000  No 0.55  156 123   

5 0.2 0.5 10000  No 0.55  93 93   

6 0.2 0.8 10000  No 0.45 44 41 208   

7 0.2 0.5 100000  No 0.45 870     

8 0.2 0.8 10000  No 0.45 26 27 146   

9 0.5 0.5 0  No 0.45 208     

10 0.5 0.5 0  No 0.45 222     

11 1.25 0.3 0 Yes 0.55 558     

12 1 0.5 10000 Yes 0.55  38 27   

13 1 0.3 10000  No 0.55      

14 0.2 0.3 0  No 0.45 932       
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Appendix 2. R-codes for post-processing the outputs of ALUAM-AB 

With the code below, Fig. 2, 3 and 4 from the paper were created. The input table for the 
codes below is “appendix4.csv”, which is also supplied in the supplementary materials as an 
example. This table contains input variables and results from the ALUAM-AB simulations in 
which direct payments were varied. Some additional processing of the ALUAM-AB output 
was necessary to create the columns that are based on the linear regression between the time 
steps and the area of intensive or extensive agriculture (i.e. the columns sigBetaIntensive, 
sigBetaExtensive, areaIntensiveC10Y, areaExtensiveC10Y, betaIntensive and betaExtensive). 
However, since the output of every agent-based model is formatted differently, it is not 
possible to provide a generic R-script for these analysis steps. Below is a short description of 
the different columns in appendix4.csv: 

Factor: The multiplication factor with which the direct payments were multiplied relative to 
the level of direct payments in 2001. 

areaIntensive2002: The area of intensive agriculture in 2002 (ha) 
areaExtensive2002: The area of extensive agriculture in 2002 (ha) 
sigBetaIntensive: The p-value of the regression coefficient of the years regressed against the 

area of intensive agriculture. 
sigBetaExtensive: The p-value of the regression coefficient of the years regressed against the 

area of extensive agriculture. 
areaIntensiveC10Y: The change of the area of intensive agriculture over a 10-year period (ha; 

betaIntensive * 10). 
areaExtensiveC10Y: The change of the area of extensive agriculture over a 10-year period 

(ha; betaExtensive * 10). 
betaIntensive: The regression coefficient of the years regressed against the area of intensive 

agriculture (ha*year-1). 
betaExtensive: The regression coefficient of the years regressed against the area of extensive 

agriculture (ha*year-1). 
 
Direction field plots 
######################################## 
#### INPUT SETTINGS                 #### 
######################################## 
 
# Specify the file in which the results of the ABM simulations are stored. 
ResultsFile = “...\\appendix4.csv" 
# Specify the folder in which the output figures should be stored 
outputLoc = "D:\\..." 
 
######################################## 
#### CODE BODY                      #### 
######################################## 
 
# Load libraries 
library(ggplot2) 
library(scales) 
 
######################################## 
#### Load function                  #### 
######################################## 
 
# Define Multiple plot function 
# From: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/ 
# 
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects) 
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# - cols:   Number of columns in layout 
# - layout: A matrix specifying the layout. If present, 'cols' is ignored. 
# 
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), 
# then plot 1 will go in the upper left, 2 will go in the upper right, and 
# 3 will go all the way across the bottom. 
# 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  library(grid) 
   
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
   
  numPlots = length(plots) 
   
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                     ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
   
  if (numPlots==1) { 
    print(plots[[1]]) 
     
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
     
    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
       
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 
 
#Read the results file 
scenarioTabSel = read.csv(ResultsFile) 
 
#Plot the direction field plots for intensive agriculture 
intensivePlot = ggplot(data=scenarioTabSel, aes(x=Factor, y=areaIntensive2002, colour = 
areaIntensiveC10Y))+ 
  geom_segment(aes(xend=Factor, yend=areaIntensive2002+areaIntensiveC10Y), arrow = 
arrow(length = unit(0.3,"cm"), type = "closed"), size = 1.0)+ 
  xlab("Multiplication factor direct payments")+ 
  ylab("Area intensive agriculture (ha)")+ 
  scale_colour_gradientn(colours=c("Green","Light green","white","pink","red"), guide = 
FALSE,values=rescale(c(max(scenarioTabSel$areaIntensiveC10Y),5,0,-
5,min(scenarioTabSel$areaIntensiveC10Y))))+ 
  theme_dark()+ 
  theme(legend.position='none',text=element_text(size=25)) 
 
#Plot the direction field plots for extensive agriculture 
extensivePlot = ggplot(data=scenarioTabSel, aes(x=Factor, y=areaExtensive2002, colour = 
areaExtensiveC10Y))+ 
  geom_segment(aes(xend=Factor, yend=areaExtensive2002+areaExtensiveC10Y), arrow = 
arrow(length = unit(0.3,"cm"), type = "closed"), size = 1.0)+ 
  xlab("Multiplication factor direct payments")+ 
  ylab("Area extensive agriculture (ha)")+ 
  scale_colour_gradientn(colours=c("Green","Light green","white","pink","red"), guide = FALSE, 
values=rescale(c(max(scenarioTabSel$areaExtensiveC10Y),5,0,-
5,min(scenarioTabSel$areaExtensiveC10Y))))+ 
  theme_dark()+ 
  theme(text=element_text(size=25)) 
 
#Save the plots 
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setwd(outputLoc)  #Set the workspace 
pdf("DirectionFieldPlot.pdf",width=20,height=10) 
multiplot(intensivePlot,extensivePlot, cols = 2) 
dev.off() 
 
#Save the plots 
setwd(outputLoc)  #Set the workspace 
jpeg("DirectionFieldPlot.jpg",width=40,height=20,units = "cm",res=300) 
multiplot(intensivePlot,extensivePlot, cols = 2) 
dev.off() 
 
 

Stability landscapes 
######################################## 
#### INPUT SETTINGS                 #### 
######################################## 
 
# Specify the file in which the results of the ABM simulations are stored. 
ResultsFile = “...\\appendix4.csv" 
# Specify the folder in which the output figures should be stored 
outputLoc = "D:\\..." 
 
# Open an online plotly account. Follow the instructions from here: https://plot.ly/r/getting-
started/ 
Sys.setenv("plotly_username"="XXXXXXXXXXX") #Enter plotly user-name 
Sys.setenv("plotly_api_key"="XXXXXXXXXX") #Enter plotly password 
 
######################################## 
#### CODE BODY                      #### 
######################################## 
 
# Load libraries 
library(raster) 
library(plotly) 
library(mmand) 
 
######################################## 
#### Load functions                 #### 
######################################## 
 
# Define the function to create the stability landscapes 
# Requires: 
#   x: vector with the values for the x-axis variable (i.e. system stressor) 
#   y: vector with the values for the y-axis variable (i.e. system state) 
#   beta: vector with the regression coefficient values (i.e. positive or negative growth) 
#   size_raster: (optional) the numbers of rows and columns in the grid covering the state 
space 
#   MWsigma: (optional) the sigma parameters used to define the Gaussian weighting kernel 
#   xlab: (optional) the label for the x-axis in the 3D stability landscape 
#   ylab: (optional) the label for the y-axis in the 3D stability landscape 
stabilityLS = function(x,y,beta,size_raster=c(25,25),MWsigma=c(1.5,1.5),xlab="x",ylab="y") 
{ 
  # set up an 'empty' raster via an extent object 
  e <- extent(c(min(x),max(x),min(y),max(y))) 
  r <- raster(e, ncol=size_raster[1], nrow=size_raster[2]) 
   
  # Convert the beta values to a raster by taking the mean value. This raster will have holes 
in it. 
  x <- rasterize(data.frame(x,y),r,beta,fun = mean) 
   
  # Create a Gaussian kernel with sigma = c(1.5,1.5) to use for the focal function below 
  weights = gaussianKernel(sigma = MWsigma) 
   
  # Apply focal statistics with a window of size_window x size_window and apply the mean of 
this moving window. 
  x_focal = focal(x, w=weights, fun = mean, pad = TRUE, padValue = NA, na.rm=TRUE) 
   
  # Transform the output of the focal to a matrix 
  z = as.matrix(x_focal) 
   
  # Per column calcualte the cumulative sum of the column. 
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  cs = apply(z, 2, cumsum) 
   
  # Define a function to rescale each column with a score range transformation. 
  sr = function(x){ 
    return((x-min(x))/(max(x)-min(x))) 
  } 
   
  #Apply the sr function to the columns in cs. 
  st_cs = apply(cs,2,sr) 
   
  #Copy the values of the rescaled variables to a raster. 
  dem = x_focal 
  values(dem) = st_cs 
   
  # Transform the coordinates of the raster to a dataframe and the z values to a matrix. 
  xyz = as.data.frame(rasterToPoints(dem)) 
  z = matrix(xyz$layer, nrow = size_raster[1],byrow = TRUE) 
   
  # Set a vector of colours to create the surface plot. 
  cols2 <- c("#a6bddb","#feb24c","#f03b20") 
   
  # Make a plot of the surface plot. 
  p <- plot_ly(x = sort(unique(xyz$x)), y = sort(unique(xyz$y),decreasing = TRUE), z = ~z) %>% 
    add_surface(colors = cols2, showscale=FALSE) %>% 
    layout(scene = list( 
      xaxis = list(title = xlab), 
      yaxis = list(title = ylab), 
      zaxis = list(title = "", zeroline = TRUE, showline = FALSE, showticklabels = 
FALSE,showgrid = TRUE) 
    )) 
  return(p) 
} 
 
#Read the results file 
scenarioTabSel = read.csv(ResultsFile) 
 
# Make the stability landscape for intensive agriculture 
plotInt = stabilityLS(x = scenarioTabSel$Factor, 
                      y=scenarioTabSel$areaIntensive2002, 
                      beta=scenarioTabSel$betaIntensive, 
                      size_raster=c(25,25), 
                      MWsigma=c(2,2), 
                      xlab="", 
                      ylab="") 
 
# Plotly interactive plot 
plotInt 
 
# Make the stability landscape for extensive agriculture 
plotExt = stabilityLS(x = scenarioTabSel$Factor, 
                      y=scenarioTabSel$areaExtensive2002, 
                      beta=scenarioTabSel$betaExtensive, 
                      size_raster=c(25,25), 
                      MWsigma=c(2,2), 
                      xlab="", 
                      ylab="") 
 
# Plotly interactive plot 
plotExt 

 

Support vector machine classifications and bifurcation diagrams 
######################################## 
#### INPUT SETTINGS                 #### 
######################################## 
 
# Specify the file in which the results of the ABM simulations are stored. 
ResultsFile = “...\\appendix4.csv" 
# Specify the folder in which the output figures should be stored 
outputLoc = "D:\\..." 
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######################################## 
#### CODE BODY                      #### 
######################################## 
 
# Load libraries 
library(e1071) 
library(ggplot2) 
 
######################################## 
#### Load functions                 #### 
######################################## 
 
# Define Multiple plot function 
# From: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/ 
# 
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects) 
# - cols:   Number of columns in layout 
# - layout: A matrix specifying the layout. If present, 'cols' is ignored. 
# 
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), 
# then plot 1 will go in the upper left, 2 will go in the upper right, and 
# 3 will go all the way across the bottom. 
# 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  library(grid) 
   
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
   
  numPlots = length(plots) 
   
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                     ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
   
  if (numPlots==1) { 
    print(plots[[1]]) 
     
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
     
    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
       
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 
 
# Define the function to perform the Support Vector Machine tuning 
# Requires: 
#   x: Name of the x-axis variable in data (i.e. system stressor) 
#   y: Name of the y-axis variable in data (i.e. system state) 
#   beta: Name of the variable in data that contains the regression coefficients (i.e. 
positive or negative growth) 
#   data: Dataframe with the x, y and beta variables 
#   res: Number of increments along the x- and y-axis for which predictions should be made. 
SVMmod = function(x,y,beta,data,res=100) 
{ 
  # Add a column with positive or negative correlations 
  data$PosNeg = -1 
  data$PosNeg[data[beta]>0] = 1 
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  data$PosNeg[data[beta]==0] = 0 
  data$PosNeg = as.factor(data$PosNeg) 
   
  # Only select those observations with a positive or negative growth 
  svm_inputDF = data[data$PosNeg!=0,c("PosNeg",x,y)] 
   
  # Tune the SVM with a 10-fold crossvalidated grid-search for the hyperparameters gamma and 
cost. 
  obj <- tune(svm, as.formula(paste("PosNeg ~", x,"+",y)), data=svm_inputDF,  
              ranges = list(gamma = seq(0.01,1,length.out = 8), cost = seq(0.01,2,length.out = 
8)), 
              tunecontrol = tune.control(sampling = "cross", cross = 10) 
  ) 
   
  # Make predictions for each area in the state space. 
  x_range = seq(min(data[x]),max(data[x]),length.out = res) 
  y_range = seq(min(data[y]),max(data[y]),length.out = res) 
  xy_grid = expand.grid(x_range,y_range) 
  names(xy_grid) = c(x,y) 
  xy_grid$xy_pred = predict(obj$best.model, xy_grid) 
   
  # Put the output in a list-object 
  output = list(obj,data,xy_grid) 
  return(output) 
} 
 
#Read the results file 
scenarioTabSel = read.csv(ResultsFile) 
 
# Define the colours for the points in the SVM-plots 
colPoints = c("#e6550d","#31a354","#636363") 
names(colPoints) = c(-1,1,0) 
 
# Define the colours for the polygons in the SVM-plots 
colPoly = c("#e6550d","#31a354") 
names(colPoly) = c(-1,1) 
 
# Run the SVM classifications for extensive agriculture 
ExtMod = SVMmod(x = "Factor", 
                y = "areaExtensive2002", 
                beta = "betaExtensive", 
                data = scenarioTabSel, 
                res = 100) 
print(ExtMod[[1]]) 
 
# Make a plot of the SVM results 
ExtPlot = ggplot()+ 
  geom_point(data = ExtMod[[2]], aes(x = Factor, y = areaExtensive2002, colour = PosNeg), 
show.legend = FALSE)+ 
  scale_color_manual(values = colPoints)+ 
  geom_raster(data = ExtMod[[3]], aes(x = Factor, y = areaExtensive2002,fill = 
xy_pred),alpha=0.1, show.legend = FALSE)+ 
  scale_fill_manual(values = colPoly)+ 
  stat_contour(data = ExtMod[[3]], aes(x = Factor, y = areaExtensive2002, z = 
as.numeric(xy_pred)), bins = 1, size = 2, color = "black")+ 
  xlab("Multiplication factor direct payments")+ 
  ylab("Initial area extensive agriculture (ha)")+ 
  theme(text = element_text(size=25)) 
 
# Run the SVM classifications for intensive agriculture 
IntMod = SVMmod(x = "Factor", 
                y = "areaIntensive2002", 
                beta = "betaIntensive", 
                data = scenarioTabSel, 
                res = 100) 
print(IntMod[[1]]) 
 
# Make a plot of the SVM results 
IntPlot = ggplot()+ 
  geom_point(data = IntMod[[2]], aes(x = Factor, y = areaIntensive2002, colour = PosNeg), 
show.legend = FALSE)+ 
  scale_color_manual(values = colPoints)+ 
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  geom_raster(data = IntMod[[3]], aes(x = Factor, y = areaIntensive2002,fill = 
xy_pred),alpha=0.1, show.legend = FALSE)+ 
  scale_fill_manual(values = colPoly)+ 
  stat_contour(data = IntMod[[3]], aes(x = Factor, y = areaIntensive2002, z = 
as.numeric(xy_pred)), bins = 1, size = 2, color = "black")+ 
  xlab("Multiplication factor direct payments")+ 
  ylab("Initial area intensive agriculture (ha)")+ 
  theme(text = element_text(size=25)) 
 
#Save the plots 
setwd(outputLoc)  #Set the workspace 
pdf("SVMplot.pdf",width=20,height=10) 
multiplot(IntPlot,ExtPlot, cols = 2) 
dev.off() 
 
#Save the plots 
setwd(outputLoc)  #Set the workspace 
jpeg("SVMplot.jpg",width=40,height=20,units = "cm",res=300) 
multiplot(IntPlot,ExtPlot, cols = 2) 
dev.off() 
 
#Print the SVM-classification results for extensive agriculture 
print(paste("The best cost hyperparameter for extensive agriculture was:", 
ExtMod[[1]]$best.parameters$cost, sep = " ")) 
print(paste("The best gamma hyperparameter for extensive agriculture was:", 
ExtMod[[1]]$best.parameters$gamma, sep = " ")) 
print(paste("The lowest classification error for extensive agriculture was:", 
ExtMod[[1]]$best.performance, sep = " ")) 
 
#Print the SVM-classification results for intensive agriculture 
print(paste("The best cost hyperparameter for extensive agriculture was:", 
IntMod[[1]]$best.parameters$cost, sep = " ")) 
print(paste("The best gamma hyperparameter for extensive agriculture was:", 
IntMod[[1]]$best.parameters$gamma, sep = " ")) 
print(paste("The lowest classification error for extensive agriculture was:", 
IntMod[[1]]$best.performance, sep = " ")) 
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Appendix 3. Additional plots 

 

 
Figure A3.1. Vector-field plots of the direction and magnitude of development of the area of intensive 
or extensive agriculture under different prices for agricultural commodities (A, B) and different 
agricultural yields (C, D). Each arrow (or vector) originates from the point that represents the initial 
area of intensive (A, C) or extensive (B, D) agriculture and the multiplication factor with which the 
prices or yields were multiplied (baseline = 1). The arrow represents the 10-year trend for the 
development of agricultural area. The arrows can indicate a positive (green), negative (red) or no 
(white) trend. The intensity of the red and green colours increases with an increasing magnitude of 
change. 

A B 

C D 
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Figure A3.2. Decision surfaces of the support-vector machine classification of areas of positive and 
negative growth of intensive (A, C) or extensive (B, D) agriculture for different prices for agricultural 
commodities (A, B) and different agricultural yields (C, D). The points in the plots are the same as the 
starting points of the arrows in Fig. A3.1. The growth trend in each model run was assigned to either 
of three classes: positive (green dot), negative (red dot) or flat (grey dot). The positive and negative 
trends were used to train support-vector machines to find the equilibria (i.e. separator line) between 
areas of positive (green area) and negative (red areas) growth. In (A, C), the identified equilibrium is 
unstable, while in (B, D) the equilibrium is stable. 

A B 

D C 



Appendix 4. An example input table for the R-codes in Appendix 2. This table contains input variables and results from the
ALUAM-AB simulations in which direct payments were varied. Below is a short description of the different columns in appendix4.
csv: Factor: The multiplication factor with which the direct payments were multiplied relative to the level of direct payments in 2001.
areaIntensive2002: The area of intensive agriculture in 2002 (ha) areaExtensive2002: The area of extensive agriculture in 2002 (ha)
sigBetaIntensive: The p-value of the regression coefficient of the years regressed against the area of intensive agriculture.
sigBetaExtensive: The p-value of the regression coefficient of the years regressed against the area of extensive agriculture.
areaIntensiveC10Y: The change of the area of intensive agriculture over a 10-year period (ha; betaIntensive * 10).
areaExtensiveC10Y: The change of the area of extensive agriculture over a 10-year period (ha; betaExtensive * 10). betaIntensive:
The regression coefficient of the years regressed against the area of intensive agriculture (ha*year-1). betaExtensive: The regression
coefficient of the years regressed against the area of extensive agriculture (ha*year-1).

Please click here to download file ‘appendix4.csv’.

https://www.ecologyandsociety.org/10899/appendix4.csv
https://www.ecologyandsociety.org/10899/appendix4.csv

