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Abstract 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. 
Frequent manifestations of CVDs are ischemic heart disease, myocardial 
infarction and stroke. In ischemic heart disease, tissue viability of the heart 
muscle is compromised in response to reduced perfusion. Prolonged ischemia 
may lead to myocardial infarction and subsequent heart failure. Ischemic 
strokes, on the other hand, are the consequence of reduced perfusion in the 
brain. Strokes are likewise a major cause of death and disability.  

Beyond myocardial infarction and stroke, there is wide range of diseases which 
are associated with changes in tissue perfusion. For example, in cancerous 
tissue, perfusion is upregulated and hence perfusion measurements play an 
important role in determining malignancy, risk stratification and treatment 
control. Another field of application of perfusion measurements concerns the 
vascular subtype of dementia, a disease of increasing prevalence in the aging 
population.      

Magnetic resonance imaging (MRI) is the key non-invasive, radiation-free 
modality to diagnose and monitor a wide range of pathologies. Dedicated pulse 
sequences have been developed for cardiac magnetic resonance (CMR) 
perfusion measurements including dynamic contrast enhancement (DCE) 
imaging. The DCE method, however, requires the administration of an 
exogenous Gadolinium-based contrast agent. In patients, especially in 
individuals with renal insufficiency, adverse events such as nephrogenic 
systemic fibrosis (NSF) may occur upon contrast agent injection. Moreover, 
recent findings indicate cases of long-term deposition of Gadolinium contrast 
agents in the central nervous system. Therefore, alternative, contrast agent 
free methods to map perfusion are highly desired. 

The intravoxel incoherent motion (IVIM) model describes the modulation of the 
MRI signal in the presence of blood flow while diffusion encoding gradients are 
applied. The IVIM approach can be considered an extension of diffusion 
weighted imaging (DWI) or diffusion tensor imaging (DTI), where, instead of a 
single diffusion encoding point, multiple encodings per spatial axis are 
acquired. Accordingly, the signal modulation due to perfusion and water self-
diffusion can be disentangled.  

The objectives of the present thesis are to develop, assess and validate tissue 
perfusion encoding in the heart and brain using the IVIM principle. To this end, 
several challenges are addressed ranging from perfusion signal modeling, to 
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accelerated image acquisition and subsequent reconstruction to advanced data 
post-processing strategies. 

The first project of this thesis proposes an improved data acquisition strategy 
for IVIM imaging in the brain through data undersampling. Since IVIM in the 
brain requires sufficiently high coverage and resolution, long readouts result 
which in turn produce image artifacts. To overcome this limitation, an 
undersampled sheared grid data acquisition scheme was implemented with 
subsequent constrained image reconstruction. It is demonstrated, using retro- 
and prospectively undersampled data that the proposed method allows for 
artifact-free IVIM mapping up to an undersampling factor of six. Using data 
acquired on a clinical MRI system, a clear advantage of this novel approach over 
previous parallel imaging methods is shown. 

Given the data, IVIM parameter estimation suffers from a low signal-to-noise 
ratio (SNR) and the inherent non-linearity of the data fitting problem. 
Consequently, IVIM parameter maps may exhibit biases and uncertainty due to 
noise-dependent parameter estimation errors. In the second project of this 
thesis, this problem was addressed for IVIM imaging of the heart. To this end, 
the myocardial perfusion and diffusion properties were assumed to vary only 
moderately across the tissue of interest at a macroscopic scale. This prior 
knowledge was exploited in a hierarchical Bayesian approach to parameter 
estimation. A dedicated Markov chain Monte Carlo method was implemented 
and applied to simulated and in-vivo cardiac IVIM data. The method was found 
to compare favorably with standard least-squares (LSQ) methods both in 
simulations and in-vivo, improving accuracy, precision and reproducibility. 

In the third project, the influence of capillary blood flow onto the MRI signal 
under the presence of diffusion encoding gradients was investigated. Extensive 
modeling of the specific capillary structure of the myocardium and dedicated 
pulse sequences was performed. In simulations, it could be shown that the 
standard IVIM model is indeed insufficient to accurately capture signal 
modulations due to perfusion influence. Moreover, it could be shown that 
gradient moment compensation reduces the perfusion sensitivity in spin-echo 
sequences. In contrast, stimulated echo acquisition provided sufficient 
perfusion sensitivity. These simulations were validated by ex-vivo data acquired 
in perfused porcine hearts.  

To conclude, contrast agent free perfusion imaging using IVIM imaging has 
significantly been advanced in both the heart and brain with the present body 
of work. Several limitations and modeling issues have been addressed now 
fostering the utility of this perfusion imaging modality for clinical applications. 
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Zusammenfassung 

Herz-Kreislauf-Erkrankungen sind weltweit die häufigste Todesursache. 
Häufige Manifestationen von Herz-Kreislauf-Erkrankungen sind die 
ischämische Herzkrankheit, Herzinfarkt und Schlaganfall. Bei einer 
ischämischen Herzkrankheit wird die Viabilität des Herzmuskels als Reaktion 
auf eine verringerte Durchblutung beeinträchtigt. Anhaltende Ischämie kann zu 
Herzinfarkt und -insuffizienz führen. Im Gegensatz dazu sind ischämische 
Schlaganfälle die Folge einer verminderten Durchblutung des Gehirns. 
Schlaganfälle sind ebenfalls eine der Hauptursachen für Tod und Invalidität. 

Neben Herzinfarkt und Schlaganfall gibt es eine Vielzahl von Krankheiten, die 
mit Veränderungen der Gewebeperfusion zusammenhängen. In Krebsgewebe 
zum Beispiel wird die Perfusion hochreguliert, sodass Perfusionsmessungen 
eine wichtige Rolle bei der Bestimmung von Malignität, Risikostratifizierung 
und Behandlungskontrolle spielen. Ein weiteres Anwendungsgebiet von 
Perfusionsmessungen betrifft den vaskulären Subtyp der Demenz, eine 
Krankheit mit zunehmender Prävalenz in der alternden Bevölkerung. 

Die Magnetresonanztomographie (MRT) ist die wichtigste nichtinvasive, 
strahlungsfreie Modalität für die Diagnose und Überwachung einer Vielzahl von 
Pathologien. Dedizierte Pulssequenzen wurden für die Diagnose mittels der 
«cardiovascular magnetic resonance» (CMR) einschliesslich der «dynamic 
contrast enhancement» (DCE) Bildgebung entwickelt. Die DCE-Methode 
erfordert jedoch die Verabreichung eines exogenen Kontrastmittels auf 
Gadolinium-Basis. Bei Patienten, besonders solche mit Niereninsuffizienz 
können bei Kontrastmittelinjektion unerwünschte Nebenwirkungen wie 
nephrogene systemische Fibrose (NSF) auftreten. Neuere Erkenntnisse 
beschreiben zudem Fälle einer langfristigen Ablagerung von Gadolinium-
Kontrastmitteln im Zentralnervensystem. Daher sind alternative, 
kontrastmittelfreie Verfahren zur Bestimmung der Perfusion gesucht. 

Das «intravoxel incoherent motion» (IVIM) Modell beschreibt die Modulation 
des MRI-Signals verursacht durch Blutfluss unter dem Anlegen von 
Magnetfeldgradienten zur Diffusionsgewichtung. Der IVIM-Ansatz kann als 
Erweiterung von «diffusion weighted imaging» (DWI) oder des «diffusion 
tensor imaging» (DTI) Modells betrachtet werden, bei dem anstelle eines 
einzelnen diffusionskodierten Bildes mehrere Kodierungen pro Raumachse 
erfasst werden. Dementsprechend können die Signalmodulationen aufgrund 
von Perfusion und Selbstdiffusion von Wasser separat bestimmt werden. 
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Ziel der vorliegenden Arbeit ist es, Perfusionsgewichtung in Herz und Gehirn 
nach dem IVIM-Prinzip zu entwickeln, zu untersuchen und zu validieren. Zu 
diesem Zweck werden verschiedene Probleme bearbeitet, die von der 
Perfusionssignalmodellierung über die beschleunigte Bildgebung und 
zugehöriger -rekonstruktion bis hin zu fortgeschrittenen Methoden der 
Datenauswertung reichen. 

Das erste Projekt dieser Arbeit behandelt eine verbesserte Datenakquisition für 
die IVIM-Bildgebung im Gehirn durch Datenunterabtastung. Da IVIM im Gehirn 
eine hohe Abdeckung und Auflösung erfordert, resultieren lange Sequenzen 
zur Bilderzeugung, die wiederum Bildartefakte produzieren. Um diese 
Einschränkung zu überwinden, wurde ein unterabgetastetes 
Datenerfassungsschema mit periodisch verschobenem Abtastmuster und 
nachfolgender regularisierter Bildrekonstruktion implementiert. Es wird 
anhand retrospektiv und prospektiv unterabgetasteter Daten gezeigt, dass das 
vorgeschlagene Verfahren artefaktfreie IVIM-Parameterkarten mit sechsfacher 
Unterabtastung ermöglicht. Anhand von Daten, die mit einem klinischen MRI-
System erfasst wurden, wird ein klarer Fortschritt des neuen Ansatzes 
gegenüber bestehenden parallelen Bildgebungsverfahren demonstriert. 

Die IVIM-Parameterschätzung wird durch ein niedriges Signal-Rausch-
Verhältnis (SNR) und die inhärente Nichtlinearität des Regressionsproblems 
negativ beeinflusst. Folglich können IVIM-Parameterkarten aufgrund von 
Parameterschätzungsfehlern verursacht durch Rauschen systematische 
Abweichung und Streuung aufweisen. Im zweiten Projekt dieser Arbeit wurde 
dieses Problem für die IVIM-Bildgebung des Herzens bearbeitet. Zu diesem 
Zweck wurde die Annahme verwendet, dass die myokardialen Perfusions- und 
Diffusionseigenschaften in einem makroskopischen Massstab nur moderat im 
relevanten Gewebe variieren. Dieses Vorwissen wurde in einem hierarchischen 
Bayes'schen Ansatz zur Parameterschätzung genutzt. Ein spezielles Markov-
Ketten-Monte-Carlo-Verfahren wurde implementiert und auf simulierte und in-
vivo IVIM Herzdaten angewendet. Es wurde gezeigt, dass das Verfahren sowohl 
in Simulationen als auch in-vivo Vorteile gegenüber üblichen kleinste-Quadrate 
Verfahren besitzt, wodurch die Genauigkeit, Präzision und Reproduzierbarkeit 
verbessert werden. 

Im dritten Projekt wurde der Einfluss des Kapillarblutflusses auf das MRI-Signal 
beim Anliegen von Diffusionsgewichtungsgradienten untersucht. Es wurde eine 
umfangreiche Modellierung der spezifischen Kapillarstruktur des Myokards 
und dedizierter Pulssequenzen durchgeführt. In Simulationen konnte gezeigt 
werden, dass das Standard-IVIM-Modell tatsächlich nicht ausreichend ist, um 
Signalmodulationen aufgrund von Perfusion richtig zu erfassen. Darüber hinaus 
konnte gezeigt werden, dass die Kompensation von höheren 
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Gradientenmomenten die Perfusionsempfindlichkeit in der Spin-Echo-Sequenz 
reduziert. Im Gegensatz dazu lieferten stimulierte Echo Sequenzen eine 
ausreichende Perfusionsempfindlichkeit. Diese Simulationen wurden durch ex-
vivo-Daten validiert, die mit perfundierten Schweineherzen erhoben wurden. 

Zusammenfassend lässt sich festhalten, dass die kontrastmittelfreie 
Perfusionsbildgebung unter Verwendung des IVIM-Modells sowohl im Herzen 
als auch im Gehirn mit der vorliegenden Arbeit signifikante Fortschritte 
gemacht hat. Es wurden verschiedene Limitationen und Probleme der 
Modellierung bearbeitet, um die Anwendbarkeit dieser 
Perfusionsbildgebungsmodalität für klinische Anwendungen zu erhöhen. 
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Chapter 1  
Introduction 

Cardiovascular diseases (CVD) are a major cause of death and disability 
worldwide (Mendis et al. 2011). A number of CVD pathologies are associated 
with changes in the vasculature leading to compromised tissue perfusion 
through various mechanisms (Ross 1986). More precisely, hemodynamic 
conditions are modified through structural and functional changes including 
vessel wall stiffening, the formation of atherosclerotic plaques and other 
vascular pathologies. The consequence of vascular remodeling can be a 
reduction of vessel lumen and hence reduced blood flow through the vessel at 
a given pressure gradient. Persistent blood flow reduction leads to reduced 
tissue perfusion and, if not timely treated, may progress to myocardial ischemic 
infarction. Resulting myocardial scar tissue following infarction consists of 
fibrous tissue, which is no longer physiologically functioning and shows 
decreased perfusion (Gibson et al. 1983; Altehoefer et al. 1992). Besides these 
localized perfusion defects, also diffuse changes of perfusion in the 
myocardium are known. Microvascular obstruction and reduced and/or 
delayed perfusion of the myocardium occur in hypertrophic cardiomyopathy 
and diabetes (Fang et al. 2004; Ismail et al. 2014) for example. In the brain, a 
stroke often involves reduced or suspended perfusion in the corresponding 
tissue territory. Early interventions after strokes require estimates of the 
volume of tissue-at-risk. Such tissue at risk of cell death can potentially be 
rescued by reestablishing perfusion using suitable interventions (Jauch et al. 
2013).  

Imaging modalities to assess tissue perfusion are of critical importance to 
diagnose CVD pathologies, monitor and optimize therapies. Nuclear imaging 
methods have been used early on for such purposes (Gibson et al. 1983; 
Altehoefer et al. 1992). Due to the high specificity of radioactive tracers used in 
nuclear imaging and the wealth of clinical data available, they are considered 
as a gold standard. Issues of nuclear imaging relate to the radioactive radiation 
the patient receives, limited availability of suitable tracers and limitations in 
spatiotemporal resolution. 

Magnetic resonance imaging (MRI) allows the radiation-free assessment of 
tissue perfusion using   Gadolinium-based contrast agents (Wilke et al. 1997; 
Al-Saadi et al. 2000; Wissmann et al. 2015) While the method offers high 
spatiotemporal resolution (Manka et al. 2012; Schmidt et al. 2014), it is 
restricted in patients with renal dysfunction (Schieda et al. 2018). Moreover, 
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recent reports also indicate a risk of Gadolinium deposition in brain tissue 
under certain circumstances (Gulani et al. 2017). 

1.1 Motivation 
Intravoxel incoherent motion (IVIM) is a non-invasive, contrast agent free MRI 
method that allows quantifying tissue perfusion surrogates in-vivo (Le Bihan et 
al. 1986; Le Bihan 2008).  In IVIM, perfusion is encoded using diffusion 
weighting magnetic field gradients with varying strengths and directions. In the 
brain, several studies of IVIM have been presented including hypercapnia 
experiments (Federau et al. 2012), tumor investigation (Federau et al. 2017) 
and mapping of brain function (Federau et al. 2015). In contrast to IVIM in the 
brain, the application in the heart is considerably more challenging as it 
requires dedicated gradient shapes to compensate for myocardial strain effects 
(Frahm et al. 1985; von Deuster et al. 2016b; Stoeck et al. 2016). Using these 
dedicated motion-compensated diffusion sequences, IVIM can be applied to 
detect perfusion defects in hearts in an experimental setting (von Deuster et al. 
2015). Several modifications and extensions to the IVIM model have been 
proposed, considering spatial anisotropy of perfusion (Karampinos et al. 2010; 
Mozumder et al. 2018) and a generalization of the IVIM model for perfusion 
regimes which violate the assumptions of the IVIM model (Wetscherek et al. 
2015).. 

Despite the availability of IVIM imaging on clinical scanners, three main 
limitations exist for IVIM parameter mapping in brain and heart. First, in brain 
IVIM imaging, long image readouts are necessary to cover the whole brain with 
an adequate resolution. The latter is required to reduce partial voluming in 
order to accurately capture small structures and tissue alterations. Long 
readouts cause prolonged data acquisition time and potential signal loss, 
especially in single-shot sequences. The longer the readout, the more artefact 
accumulation occurs due to magnetic field inhomogeneities at e.g. air-tissue 
interfaces. Second, IVIM parameter mapping requires the estimation of 
variables of a non-linear model. Since diffusion-weighted data are noisy, error-
prone and biased parameter estimates of limited reproducibility may result. 
Third, in cardiac IVIM, the actual mechanisms of MRI signal modulation due to 
the unique capillary arrangement in the heart have not been fully understood 
in particular when using motion-compensated diffusion gradient waveforms. 

The objectives of the present thesis are to develop, assess and validate tissue 
perfusion encoding in the heart and brain using the IVIM principle. To this end, 
several challenges are addressed ranging from perfusion signal modeling to 
accelerated data acquisition and advanced data post-processing strategies. 
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1.2 Outline 
Chapter 2 introduces the basic principles of MR motion encoding, diffusion MRI 
and the IVIM model. Motion compensation strategies for cardiac diffusion-
weighted MRI data acquisition are summarized. 

In Chapter 3, MR image reconstruction principles are discussed and a review of 
parallel imaging and sheared-grid undersampling methods is provided. 

Chapter 4 presents background on parameter estimation problems and MR 
image reconstruction from the perspective of Bayesian statistics. 

Chapter 5 introduces an improved data acquisition strategy for IVIM imaging in 
the brain through sheared-grid data undersampling and subsequent 
constrained image reconstruction. 

In Chapter 6, the application of a hierarchical Bayesian method for IVIM 
parameter estimation in healthy human hearts in-vivo is demonstrated.  

Finally, Chapter 7 is concerned with a thorough investigation into the origin and 
nature of the IVIM effect in the heart for various diffusion weighting gradient 
shapes.  

1.3 Contribution of the thesis 
In this thesis, an undersampled Cartesian sheared-grid acquisition scheme with 
k-b PCA reconstruction is presented for brain IVIM imaging (Chapter 5). The 
proposed method allows for up to six-fold undersampling, well beyond the 
limits of parallel imaging which has been used so far. In terms of both image 
and IVIM parameter estimation error, the method compares favorably with 
existing parallel imaging applications. 

To improve the error-prone and non-linear IVIM parameter estimation 
problem, a Bayesian approach for cardiac IVIM is presented and shown to 
outperform standard least-squares methods (Chapter 6). A two-level prior is 
used for regularization composed of a Gauss distribution of the log/logit 
transformed parameters of the voxels in the myocardium and a non-
informative Jeffreys’ prior. Numerical Monte Carlo simulations show the 
improved precision and accuracy for relevant parameter ranges. Resulting IVIM 
parameter estimates are found to be virtually free of outliers and the IVIM 
parameter reproducibility is improved. 
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To rationalize MRI signal modulation due to tissue perfusion in the heart, a 
novel modeling approach of the IVIM effect in the myocardium in response to 
various diffusion encoding gradient waveforms is proposed (Chapter 7). 
Specifically, the model considers the particular anisotropy and structure of the 
capillary bed in the left ventricle of the myocardium. Numerical simulations 
show that the resulting signal is more complex than predicted by the standard 
IVIM model. Investigation of ex-vivo data further elucidates and confirms the 
proposed modelling framework.  
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Chapter 2  
Principles of motion encoding 

2.1 Diffusion imaging 
Diffusion imaging using MRI was described as early as 1965 by Stejskal and 
Tanner (Stejskal and Tanner 1965). Some ten years later, anisotropic diffusion 
was discovered (Cleveland et al. 1976) and a general framework of diffusion 
tensor MRI was described (Basser et al. 1994) about 30 years later. From then 
on, the field has flourished and diffusion MRI has become a ubiquitous MR 
method both in research as well as in clinical routine. 

2.1.1 Physical principles 
All biological tissues contain water and in many cases water is the major 
constituent with a predominant volume fraction. At temperatures above 
absolute zero, water self-diffusion is present due to thermal motion. 
Accordingly, water molecules are moving randomly and hence represent a 
“dynamic” equilibrium. 

In general, Fick’s laws of diffusion govern diffusion processes. Fick’s first law 
states: 

      , ,t D c tJ x x    (2.1) 

and the second law: 

 
 

    


   


,
, ,

c t
t D c t

t

x
J x x   (2.2) 

with molecular flux density  ,tJ x  at the location x  and time t , diffusion 

coefficient D  and molecular concentration  ,c tx .  

Einstein has shown that in the case of water self-diffusion, the Brownian motion 
of the water molecules satisfy Equation (2.2) and the solution is a Normal 

distribution if N particles start from the origin at 0 0t  along n dimensions 

(Einstein 1905): 

  


 
  

  

21
, exp

2 22 2

N
c t

n Dtn Dt

x
x   (2.3) 
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The expected squared displacement is proportional to the time and diffusion 
constant. Hence, a typical diffusion radius can be defined: 

   2 2diffr n DTx   (2.4) 

Typical diffusion encoding times t T  in MRI experiments are around 50 ms. 

Considering free-water, which has a diffusion coefficient of about 2.5·10-3 

mm2/s at room temperature, a diffusion displacement of about 27 μm results. 

Deviations from Equation (2.4) occur in cases where diffusion is restricted, e.g. 
where cell membranes form boundaries to the diffusion process. Possible 
solutions have to account for those boundaries conditions and can therefore 
lead to different dependencies. 

2.1.2 Diffusion weighted imaging 
The diffusion process described above has an influence on the MRI signal and 
can therefore be measured. In the classical MRI description of water self-
diffusion (Stejskal and Tanner 1965), the displacement of water molecules can 
be measured as follows: assume a short gradient pule with duration   after 

radio frequency (RF) excitation, the transverse magnetization accumulates 
phase according to 

 


     1 1

0

Gx dt G x   (2.5) 

with diffusion weighting gradient magnitude G  and 1x  the projection of the 

position 1x  onto the gradient direction. After a waiting time  , the water 

molecule has travelled to position 2x . If a second gradient with duration  is 

applied, the phase difference becomes: 

        2 1 2 1G x x   (2.6) 

Figure 2.1 illustrates two exemplary spins in such an experiment with total 
gradient/encoding duration T .  



19 

 

Figure 2.1: Illustration of phase evolution in a Stejskal-Tanner spin-echo 
diffusion experiment. The upper spin remains at a fixed position and hence 
acquires no net phase. In contrast, the lower spin undergoes a random 
walk, arrives at a different position when the second diffusion gradient is 
played out and hence acquires a net phase.  

In general, MRI provides information on voxel level, i.e. the resulting signal is 
the average of the excited spins in a voxel. Imaging voxels are typically on the 
order of a few cubic millimeter and hence the number of water molecules 
contained within is several times the Avogadro constant. The total signal in a 
voxel is therefore the weighted average of all spins with their respective density 
and phase.  If the spins undergo random walks, a net signal decay results due 
to phase dispersion. Consequently, the phases of the spins add up in the total 
signal and lead to a signal attenuation due to diffusion depending on the degree 
of dephasing, which can be stated as an expectation value: 

          




  exp expDF i i d   (2.7) 

 

Only one diffusion gradient strength and direction was used in the example 
above. Both can be varied however. The diffusion weighting strength is termed 
“b-value” (Le Bihan and Breton 1985) and is defined as follows: 



20 

  
 

   
 
 

2

2

0 0

T t

b t dt dtG   (2.8) 

with total diffusion encoding time T .  

The Bloch equations (Bloch 1946) which describe the magnetization 
undergoing relaxation effects were extended by Torrey (Torrey 1956) to 
account for the presence of diffusion. The Bloch-Torrey equations read:  

  

   
    

             
   

2

2

1 0 1

1 0 0 0

0 1 0 0

0 0 1

T

T D
t

T M T

M
M B M M   (2.9) 

with magnetization vector   , ,
T

x y zM M MM and steady state magnetization 

0M . The last term in Equation (2.9) captures the influence of diffusion and 

represents another relaxation term. 

It can be shown that the magnitude signal in a DWI MRI experiment reads 
(assuming isotropic diffusion which leads to a Gaussian phase distribution 

    within a voxel as used in Equation (2.7), see also Chapter 2.4): 

     0 expS b S bD   (2.10) 

In-vivo, however, diffusion is most often restricted by cell membranes, vessels 
or can be even facilitated through e.g. transporters in the cell membrane. 
Therefore, the apparent diffusion coefficient (ADC) is used to describe the 
measured diffusion coefficient. 

If the motion of water molecules is coherent and aligned along with the 
diffusion weighting gradient, a net phase instead of signal attenuation results. 
The individual spins within a voxel have a very similar non-vanishing phase in 
this case; see Chapter 2.4 for a more detailed description. 

DWI is routinely used for clinical diagnosis, such as edema detection and 
characterization. For example, stroke patients undergo rapid DWI exams with 
usually very few gradient directions and encoding strengths to assess the 
extension of edematous brain tissue (Warach et al. 1995). Example brain DWIs 
of a healthy volunteer with different gradient orientations are shown in Figure 
2.2. 
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Figure 2.2: Brain DWI. Magnitude images of a healthy volunteer encoded 
with six different diffusion gradient directions are displayed. Note the 
different contrast in the central region of the brain where the magnitude 
is varying under different gradient directions, indicating diffusion 
anisotropy. 

2.1.3 Diffusion tensor imaging 
In-vivo, diffusion is anisotropic in most tissues. Diffusion tensor imaging (DTI) is 
a model describing anisotropic Gaussian diffusion. In this model, the diffusion 
coefficient is no longer a scalar but a 3x3 tensor: 

 

 
 

  
 
 

xx xy xz

xy yy yz

xz yz zz

D D D

D D D D

D D D

  (2.11) 

The tensor in Equation (2.11) is symmetric positive definite and therefore 

diagonizable with three eigenvalues 1 , 2  and 3  and corresponding 

eigenvectors 1e , 2e  and 3e , see  Figure 2.3 for an illustration. 
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Figure 2.3: Illustration of diffusion tensor eigenvectors scaled with their 
respective eigenvalues. 

The magnitude signal is then dependent on the respective gradient direction 
and reads: 

   0( ) exp
i i

T
i i g gS S b Db e e   (2.12) 

with the i-th b-vector 
ig ibib e  where ib  is the i-th diffusion encoding strength 

as defined in Equation (2.8) and 
ig

e  is the unit vector in the direction of the i-

th diffusion weighting gradient. 

The mean diffusivity (MD) is defined as the mean of the eigenvalues: 

       1 2 3

1 1
MD tr( )

3 3
D   (2.13) 

The fractional anisotropy (FA) characterizes the deviation of the diffusion 
tensor from a sphere (FA=0) in the case of anisotropic diffusion: 

 

 















3
2

13
2 3

2

1

MD

FA
i

i

i
i

  (2.14) 
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Note that these measures are invariant under basis change, i.e. different 
gradient orientations. However, conditioning of the inference of the diffusion 
tensor can change by applying different sets of gradient directions. 

2.2 Diffusion weighting sequences 
For diffusion imaging in most organs, the classical Stejskal-Tanner sequence 
remains the workhorse. As long as the scanned subject does not move, bulk 
motion effects (see also Chapter 2.3.2) are negligible and hence diffusion 
encoding can be performed as described. However, diffusion imaging in the 
heart poses additional challenges due to myocardial motion and strain.  

2.2.1 Gradient moments 
In general, the phase accumulation of transverse magnetization during the 

application of a magnetic field gradient  tG  depending on the magnetization 

motion trajectory  tx  can be expressed as: 

        
0

T

T t t dtG x   (2.15) 

Using Taylor expansion of the motion about an expansion point t=0 leads to: 

    



 

 
    
0

0 0

1

!

n
n

nt
n t

t t t
nt

x x   (2.16) 

The accumulated phase can then be approximated as: 

         
  

 
    

 
  

2

0 0 0
0 0 0

1
...

2

T T T

t t t
T t dt t tdt t t dtG x G x G x   (2.17) 

From Equation (2.17) it can be noted that the accumulated phase depends on 

the original position of the spins and the gradient moments  n Tm , which are 

defined as follows: 
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  (2.18) 

As shown in the following paragraphs, standard bipolar diffusion encoding 
gradient waveforms are compensating the 0-th moment, but not higher 
moments. Hence, myocardial motion and strain add to the phase accumulation 
in these cases. 

2.2.2 Stejskal-Tanner sequence 
The Stejskal-Tanner scheme (Stejskal and Tanner 1965) has been widely used 
in conjunction with spin-echo (SE) sequences. Due to the compensation of only 
the 0th gradient moment, it is hence termed SE-M0. It can be seen in Figure 2.4 
that the first and second gradient moments are not vanishing at echo formation 
time which makes its application in the heart difficult given strain effects in-
vivo, see Chapter 2.2.4 for a detailed discussion. However, application in 
stationary organs such as the brain is feasible. 

 

Figure 2.4: Effective Stejskal-Tanner (SE-M0) diffusion weighting gradients 
and the first three moments. Gradient ramp times are neglected. All plots 
are scaled to their respective maximum. The first and second moments are 
non-vanishing during image readout. 

2.2.3 Stimulated echo acquisition mode 
The application of standard Stejskal-Tanner gradient shapes suffers from strain 
effects when applied to the beating heart. To address this issue, the stimulated 
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echo acquisition mode (STEAM) (Frahm et al. 1985) has successfully been 
applied in-vivo (Edelman et al. 1994; Stoeck et al. 2014; Nielles-Vallespin et al. 
2017). This technique distributes the two diffusion encoding gradient lobes 
across two consecutive heart beats while applying them in identical cardiac 
phases. Hence, STEAM takes advantage of the periodicity of myocardial motion. 
However, there are certain limitations such as lower SNR (Fischer et al. 1995; 
von Deuster et al. 2016b) relative to the SE sequence given that the stimulated 
echo has half the amplitude of a spin-echo and T1 decay occurs during the 
mixing time. Figure 2.5 illustrates a STEAM sequence, which essentially has the 
same diffusion gradient shape as the SE sequence shown in Figure 2.4, but 
different timings: relatively short gradient duration  but a long delay in-

between, see also Figure 2.1. 

 

Figure 2.5: Effective STEAM diffusion weighting gradients. Gradient ramp 
times are neglected. All plots are scaled to their respective maximum. The 
first and second moments are non-vanishing during image readout. The 
gradients are played out over two consecutive heart beats in the same 
cardiac phase of each beat. 

During the long diffusion time T  (the time between the gradient lobes is also 
called “mixing time”), water molecules can hit boundaries. The latter and the 
different encoding in SE yield a lower ADC compared to SE (von Deuster et al. 
2016b), see also Chapter 2.4.  

2.2.4 Motion compensation 
In order to address myocardial motion and strain in SE, higher-order gradient 
moments can be compensated. First moment compensation accounts for 
constant velocities of the spins and has improved cardiac SE diffusion imaging 
(Gamper et al. 2007). Such a gradient waveform is shown in Figure 2.6 and 
termed SE-M1, compensating both the 0th and 1st moment. 
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Figure 2.6: Effective SE-M1 diffusion weighting gradients and the first 
three moments. Gradient ramp times are neglected. All plots are scaled to 
their respective maximum. The first gradient moment vanishes during 
readout. 

The SE-M1 was further extended to also compensate the second moment. 
Successful application of SE-M2 DTI has been shown (Stoeck et al. 2016; von 
Deuster et al. 2016a) (Figure 2.7).  

 

Figure 2.7: Effective SE-M2 diffusion weighting gradients and the first 
three moments. Gradient ramp times are neglected. All plots are scaled to 
their respective maximum. All shown gradient moments vanish during 
readout. 

It should be noted that SE-M2 leaves higher order terms that are not 
compensated for. In addition, the additional gradient lobes prolong echo times 
and therefore reduce SNR. However, gradient waveform optimization can be 
performed numerically, in order to shorten echo time (Aliotta et al. 2017; 
Aliotta et al. 2018). In addition, a shortened version of the SE-M2 waveform 
exists and is presented in Chapter 7. 

2.3 Phase dispersion beyond diffusion 
From Equation (2.15) it is noted that any motion will lead to phase accrual in 
the presence of diffusion weighting gradients. Two relevant effects that often 
appear conjointly with water self-diffusion are presented in this section. 
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2.3.1 Intravoxel incoherent motion imaging 
Besides water self-diffusion, tissue perfusion takes place in-vivo. The 
corresponding influence on DWI was noted already about 30 years ago and was 
modeled with the intravoxel incoherent motion (IVIM) model (Le Bihan et al. 
1986; Le Bihan et al. 1988) in conjunction with the Stejskal-Tanner (SE-M0) 
diffusion weighting sequence. The IVIM model describes perfusion as a pseudo-
diffusion process in which the spatial orientation of capillary segments (which 
are idealized as straight paths with a certain length) is isotropic. The flowing 
spins are hence thought to undergo a stochastic process similar to water self-
diffusion as described in Chapter 2.1. It is hence assumed that spins change 
direction frequently enough by crossing several capillary segments during the 
encoding time. In the case where the moving spins mostly remain within one 
segment (e.g. short encoding time, slow flow and/or long segments), perfusion 
leads to sinc-like signal modulation depending on the flow velocity and applied 
first gradient moment. Figure 2.8 illustrates the two models. 

 

Figure 2.8: IVIM perfusion model. Capillaries (grey) are modeled as a chain 
of straight segments with a certain length. The spins (black) flow through 
them with a constant velocity: starting points are marked as dots; end 
points are denoted as arrows. Left: spins traverse several segments during 
the encoding time. Right: spins traverse only about half of the segment 
length in the given time. 

The IVIM model therefore represents an additional signal attenuation term 
depending on the applied gradient strength. Considering both perfusion and 
diffusion to be isotropic, the model reads: 
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               0 ; , 1 expPS b S f F b l v f bD   (2.19) 

with segment length l , velocity v  and attenuation term  ; ,PF b l v  due to 

perfusion. The other perfusion related parameter f  is called perfusion 

fraction. It is a number between zero and one, quantifying the relative weight 
of the perfusion compartment. Therefore, it is a measure of the volume within 
a voxel which undergoes perfusion. The diffusion term in Equation (2.19) is 
originally considered a scalar as in DWI described in Chapter 2.1.2. However, 
using a diffusion tensor as in DTI described in Chapter 2.1.3 can be a more 
accurate description in-vivo. 

The attenuation term due to perfusion is again depending on the amount of 
dephasing in the voxel and can be expressed in a way similar to Equation (2.7): 

          




  exp expPF i i d   (2.20) 

The individual phases and spin distributions depend on the applied diffusion 
encoding strength b  and the properties of the microcirculation and spatial 

distribution of the capillary bed.  

If the spins are traversing four or more (Le Bihan et al. 1988) segments, the 
pseudo-diffusion limit can be used to approximate the signal attenuation 
assuming validity of the Gaussian phase approximation (GPA) of intra-voxel 
phase distributions. The perfusion attenuation can then be described as 
another diffusion-like process: 

      *; , expPF b l v bD   (2.21) 

with the pseudo-diffusion coefficient * 2 6D v  and characteristic time scale 

  l v  . Note that, the additional diffusivity of the flowing blood itself also has 

to be considered in the pseudo-diffusion coefficient, but it is usually about one 
order of magnitude smaller than the pseudo-diffusivity of flowing blood (Funck 
et al. 2018). 

If, however, the spins are traversing fewer than four segments, another model 
containing the first gradient moment has been proposed (Le Bihan et al. 1988): 

 
  

 






1

1

sin ,

,
P

m T b v
F

m T b v
  (2.22) 

with    1 1, ,m T b T bm  and v v  as defined in Equation (2.18). 
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The IVIM model was extended to capture perfusion anisotropy by considering 
a von Mises distribution of the zenith angle around a main perfusion direction 
(Karampinos et al. 2010) or by fitting a perfusion tensor (Abdullah et al. 2016) 
similar to DTI as described in Chapter 2.1.3. The IVIM signal has also been 
studied for general cases where the pseudo-diffusion limit is not an applicable 
description, but perfusion isotropy was assumed (Wetscherek et al. 2015). 

Investigations of the exact nature of the perfusion signal in the myocardium 
considering different gradient waveforms, perfusion anisotropy and other 
cardiac-specific properties are presented in Chapter 7. 

2.3.2 Phase gradients 
Bulk motion due to patient movement and/or breathing is a frequent issue in 
MRI. This type of coherent motion during the application of gradients leads via 
Equation (2.15) to a net phase within a voxel. A total phase offset results if all 
of the tissue moves with the same speed. However, in reality velocity gradients 
occur, leading to phase gradients. Such phase “ramps” across voxels also lead 
to signal attenuation, similarly to diffusion or perfusion. It can be shown that 
the phase ramp   results in signal attenuation of the form 

  

 
   

 

1
sinc

2
resF x   (2.23) 

with image resolution resx . 

Besides bulk motion, also eddy currents can induce such undesired phase 
gradients. If the phase gradients are known, they can be corrected for 
retrospectively by using Equation (2.23). 

2.4 General motion encoding 
In addition to the incoherent motion mentioned in Chapter 2.3.1 above, 
coherent motion also influences the signal. This occurs for example in large 
vessels where the majority of spins are undergoing a rather deterministic 
laminar flow. Another example, which occurs frequently in MRI is bulk motion 
due to patient motion or breathing. In both cases, a net phase and in certain 
cases magnitude alterations result. Here the analysis is restricted to the motion 
which occurs during the application of the relatively strong diffusion (and 
perfusion) weighting gradients, neglecting the influence during application of 
the relatively weak image encoding gradients.  
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Consider laminar blood flow through (larger) vessels. The inflowing blood 
carries fully relaxed longitudinal magnetization and hence enhances the signal 
magnitude in a partial saturation scenario. This co-called “inflow effect” 
therefore leads to a local signal increase depending on imaging parameters 
such as repetition time TR, echo time TE and excitation angle as well as tissue 
relaxation parameters T1 and T2 and the velocity of the inflowing blood (Gao et 
al. 1996). Besides this amplitude contrast, flow is typically encoded into the 
signal phase. Various methods of coherent motion encoding hence utilize the 
resulting phase contrast (Moran 1982; Binter et al. 2013; Knobloch et al. 2014). 

Blood flow in vessels can exhibit both coherent and incoherent motion. The 
following section examines the various influences of coherent and incoherent 
motion during the application of diffusion-weighting gradients (Kiselev 2017). 

2.4.1 Displacement encoding 
First, consider a STEAM-like sequence as described in Chapter 2.2.3  with 

relatively short gradient pulse duration  T . The net influence 
 TF  on the 

signal can be expressed by using Equation (2.15) and the definition of the 0th 
gradient moment in Equation (2.18): 
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  (2.24) 

Here it is assumed that the spin movement during the gradient lobes is 
negligible compared to the one during the total diffusion encoding time 
(“narrow pulse limit”  T ).  Therefore, the accrued phase over the total 

encoding time is proportional to the absolute value of the 0th gradient moment 
and the spatial displacement   ( ) (0)Tx x x  in gradient direction. The 

expression in Equation (2.24) can be approximated by the Taylor expansion 

     21
2

exp 1 ...a a a  : 

              




 
      

 


2

0 0

1
1

2
TF i dm x m x   (2.25) 

The summands in Equation (2.25) can again be expressed as expectation 
values: 
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             
2

0 0

1
1

2
TF i m x m x   (2.26) 

It is noted from Equation (2.26) that the first non-constant term induces a 
phase modulation of the voxel signal. The phase encoding technique that uses 
this term is referred to as “displacement encoding with stimulated echoes” 
(DENSE (Aletras et al. 1999)). The second term in Equation (2.26) is proportional 
to the mean squared displacement and hence represents diffusion-related 
signal dephasing in a STEAM sequence, see also Chapter 2.1.1. Taking the 

logarithm of 
 TF , using the Taylor expansion      21

2
log 1 ...a a a  and 

taking advantage of   0x  in water-self diffusion, the following equation can 

be retrieved: 

          
2 22

0

1
log

2
TF m x   (2.27) 

The definition of the b-value in Equation (2.8) combined with the 0th gradient 

moment in Equation (2.18) yields   
22

0b Tm . Combining the latter with 

the expectation value of the squared displacement (see Equation (2.4)) of the 

Gaussian diffusion process in one dimension   
2

2DTx  and taking the 

exponential on both sides of Equation (2.27) leads to 

    expTF bD   (2.28) 

2.4.2 Velocity encoding 
In this section, gradient waveforms with relatively long gradient lobe duration 
( T ) such as the ones presented in Chapter 2.2.2 and 2.2.4 are considered. 

The narrow pulse limit as used in Chapter 2.4.1 is therefore not applicable. On 
the contrary, the applied gradients exert a constant influence onto the moving 
spins during the complete encoding period.   

The net influence 
TF  on the signal can be expressed by using Equation (2.15) 

and the definition of the 0th gradient moment in Equation (2.18): 

             






 
    

 
 

0

exp exp
T

TF i i t t dt dG x   (2.29) 

Considering all the relevant diffusion weighting sequences shown in Chapter 
2.2, it is noted that all of them compensate the 0th gradient moment and hence 
fulfill the “rephasing condition”, i.e.  
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     0

0

T

T t dtm G 0   (2.30) 

The individual spin trajectory expressed as       0

0

t

t dx x v , application of 

integration by parts together with the rephasing condition above in Equation 
(2.30) leads to a velocity weighting: 
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  (2.31) 

The expansion of the exponential function as Taylor series 

     21
2

exp 1 ...a a a  in Equation (2.31) yields a sum of expectation values: 
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 (2.32) 

The first non-constant term can be considered the phase contrast term as used 

in flow measurements with constant velocity    0tv v .  

The second term is the diffusion weighting term of a SE or STEAM sequence 
with short mixing time. A similar argument as for the derivation of Equation 
(2.28) holds with the expression of Equation (2.32) as  

  D  expTF b   (2.33) 

where the coherence      D  1 2 2 12t t t tv v  with Heaviside step function 

  was used. Note that the diffusion coefficient D  in this case is not the same 

as D in the narrow pulse limit in Equation (2.28). 

2.4.3 Diffusion spectrum imaging 
As it was shown in the previous Chapter 2.4.1, diffusion leads to signal 
modulation. Considering only one spatial direction and the narrow pulse limit 
 T , the acquired data can be expressed as (neglecting the phase 

modulating DENSE term) (Callaghan et al. 1979): 

            
221

2
, exp expT x q x qd i dk k x k x k x x   (2.34) 
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with spin density   and    0qk m . Hence, besides the image frequency 

spectrum, also the diffusion spectrum can be probed, which is referred to as 
diffusion spectrum imaging (DSI (Callaghan et al. 1979; Wedeen et al. 2005)). 
The acquisition with many different diffusion weighting gradients is also called 
“q-ball imaging” (Tuch 2004). Another terminology is high angular resolution 
diffusion imaging (HARDI) (Tuch et al. 2002). 

2.4.4 Fourier velocity imaging 
Also in the case of velocity encoding with  T  as shown in Chapter 2.4.2, the 

Fourier encoding during imaging is accompanied by phase and magnitude 
modulating terms. The imaging signal can be expressed as (Moran 1982): 

                
221

2
, exp exp expT x v x v vd i i d dk k x k x k v k v x v  

 (2.35) 

with   1v Tk m  and   v v v . Besides coherent flow and steady velocities, 

fluctuating velocities may be present which in turn lead to signal attenuation. 
The spectrum of the velocity distribution can hence be probed and this method 
is termed “Fourier velocity imaging” (Moran 1982). 

2.4.5 Implications for intravoxel incoherent motion imaging 
It is concluded that any coherent or incoherent motion of particles lead to 
signal modulation of phase and/or magnitude under the presence of gradients. 
The perfusion of organs is usually described as a pseudo-diffusion process in 
the IVIM model. However, if the assumptions of the IVIM model and the narrow 
pulse limit of encoding are violated, the approximate closed-form relations 
above might no longer hold. To this end, a detailed investigation of the 
perfusion induced signal modulation in the heart under various gradient 
waveforms is presented in Chapter 7. 
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Chapter 3  
Principles of image encoding 

In a single-coil MR imaging experiment, the Fourier transform of the object to 
be imaged is recorded. Various measurements are performed to populate the 
reciprocal Fourier space, called “k-space”. Assuming a uniform receiving 

sensitivity and ignoring relaxation effects, the signal  d k  measured at the  

 -th k-space point  
3k is hence given by: 

         exp ,d i dk x xk x   (3.1) 

where   x  is the spin density at position x .  

By approximating the continuous integral in Equation (3.1) by a discrete sum, 
the expression is rewritten as matrix equation with 𝐸 being the “encoding 

matrix” of the  -th k-space point:    exp .E ixk  If discretized noisy data 

 xyzn
d  is acquired in k-space and the corresponding discrete image  xyzn

i

is to be reconstructed as an estimation of   x , their relation can hence be 

considered a linear mixed effects model with noise terms  xyzn
η :  

  Ed i η    (3.2) 

In case of fully sampled data, a (discrete) Fourier transform relates the 
measured data and the corresponding image. If data is not fully sampled, this 
linear system of equations can become rank-deficient. A solution can still be 
found using the Moore-Penrose pseudoinverse or normal equation 

respectively ( H  denotes the Hermitian conjugate):  

 H HE E Ei d   (3.3) 

Iterative procedures can also be used to find solutions to this “data 
consistency” problem: 

  
2

2
Ei d   (3.4) 

where   is a small real number, e.g. on the order of the measured noise.  Such 

inverse problems are investigated in more detail from a statistics perspective 
in Chapter 4.1.2. Additional data from multiple receiver coils as explained below 
can improve the conditioning of the problem.  



35 

3.1 Coil combination 
Modern MRI scanners use multiple receiver coils for image acquisition. The 
reconstruction problem in Equation (3.2) becomes overdetermined if the data 
matrix is (almost) fully sampled. The encoding matrix of Equation (3.2) is no 
longer square but rectangular in this case. The encoding matrix E  hence 
contains the spatial sensitivity weighting S  of the various receiving coils beside 

the Fourier transform FT : 


   xyz xyz cn n n
E FT S  The Hermitian conjugate of 

the Fourier transform HFT is its inverse 1FT  because of the orthogonality of 
the Fourier transform. Therefore, the coil-combined image of fully sampled 
data is found by weighting with the sum-of-squares of the coil sensitivities: 

  



1H HS S Ei d   (3.5) 

3.1.1 Roemer combination 
The different receiving channels can exhibit noise coherence and/or different 
noise levels due to electromagnetic coupling and different distances from the 
object. The noise covariance   can be expressed in matrix form as: 

 

 

 

 

   
   
       
   
   
   

1 1

2 2

H

H

c c

η η   (3.6) 

The SNR optimal coil combined image of fully sampled data is then given by 
(Roemer et al. 1990): 

  


   
11 1H HE E Ei d   (3.7) 

The symmetric positive-definite noise matrix   can be decomposed using a 

Cholesky decomposition   HLL  (Pruessmann et al. 2001). The following lower 
triangular matrix L  can be inverted and multiplied with the encoding matrix 

 1E L E  and data vector  1Ld d . The incorporation of the noise matrix 

yields noise decorrelation of k-space data and coil sensitivities. The latter two 
quantities satisfy the normal equation as stated in Equation (3.3) and from now 
on, it is assumed that decorrelation has been performed beforehand and is no 
longer explicitly stated. 
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3.2 Parallel imaging 
Data from multiple receiver coils lead to an overdetermined system of 
equations and hence data redundancy. This can be exploited to skip parts of 
the k-space data acquisition in order to accelerate the imaging process. This 
undersampling approach can be formalized by multiplying a k-space sampling 
matrix U  to the encoding matrix E UE . If the data acquired by the various 

surface coils is linear independent, the achievable undersampling factor R
(ratio of acquired k-space to acquisition matrix size) scales with the number of 
coils. In reality however, attainable undersampling factors for a single 
undersampling direction are typically between 2 and 4, given inherent 
electrodynamic limitations (Wiesinger et al. 2004). 

3.2.1 SENSE 
In sensitivity encoding (SENSE) (Pruessmann et al. 1999), predetermined 
sensitivity maps S  of several surface coils are used for image reconstruction. 

In the case of regular Cartesian undersampling of k-space, i.e. lines in k-space 
are sampled with a constant distance larger than required by the Nyquist 
theorem 

   max2k k   (3.8) 

folding artefacts occur in a regular pattern along this sampling direction. The 

folded image fi  can be represented as  H
f FT UFTSi i  and hence the unfolded 

image i  can be found by left multiplying with the Moore-Penrose 

pseudoinverse (denoted † ) of   HS FT UFTS : 

  †
fSi i   (3.9) 

An exemplary in-vivo brain data set of a single slice illustrating the SENSE 
imaging can be found in Figure 3.1.  
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Figure 3.1: SENSE imaging. Regular two-fold Cartesian undersampling in 
k-space leads to Nyquist replicas in image space. Eight surface coils were 
used here, which contain additional information aiding the reconstruction 
process. 

In SENSE, two effects compromise image quality. First, SNR scales with 1 R . 

Second, the problem conditioning becomes worse and leads to noise 
amplification in the image estimate. The conditioning can be expressed as 
geometric factor (or “g-factor”) (Pruessmann et al. 1999) at voxel position 

 3p : 

    
     

  

1

,,

1H Hg S S S Sp p pp p

  (3.10) 

Considering both effects, the SNR at position p  of the reduced data acquisition 

with undersampling factor R  is 

 

full

R
SNR

SNR
Rg

p

p

p

  (3.11) 

where fullSNRp  is the SNR of the fully sampled acquisition. However, if the echo 

time TE is simultaneously reduced, signal can be partly regained according to 

  2exp TE T  in a SE experiment for example, where TE  is the echo time 

reduction due to SENSE and T2 the transversal relaxation constant.  
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For practical purposes an approximate calculation with relative error on the 

order of 1 / fullSNRp  is given in (Nordmeyer-Massner et al. 2009): 

  full HSNRp p pd d   (3.12) 

Note that pd  is the noise decorrelated complex vector containing the signal of 

all coils of the fully sampled acquisition.  

While a solution to the SENSE problem in Equation (3.9) can be found via direct 
inversion, this approach can be computationally expensive. As stated in 
(Pruessmann et al. 2001), iterative methods such as conjugate gradients (CG) 
yield a solution with considerable fewer operations relative to direct inversion. 
Moreover, in many cases where the problem is reasonably conditioned, fewer 
iterations than theoretically predicted yield sufficient results. An optimization 

problem can be formulated (by identifying the encoding matrix as  E UFTS ): 

  
2

2
argmin E

i

i d   (3.13) 

In poorly conditioned cases, further regularization  R i  such as Tikhonov 

regularization of the data or its variation in image space (“total variation”) can 
aid the reconstruction process: 

    
2

2
argmin E R

i

i d i   (3.14) 

Please also see Chapter 4.2 for a statistical view on this topic. 

Besides the SENSE approach to parallel imaging, alternative procedures exist 
including SMASH (Sodickson and Manning 1997) and autocalibration methods 
such as GRAPPA (Griswold et al. 2002), SPIRiT (Lustig and Pauly 2010) and 
ESPIRiT (Uecker et al. 2014). Note that autocalibration methods need a fully 
sampled k-space center, but are not affected by motion of the object relative 
to the acquired sensitivity maps as in SENSE. The ESPIRiT method provides 
estimates of the sensitivity maps, which can be used for a SENSE-like 
reconstruction. 

3.3 Partial Fourier imaging 
If an object is real-valued, its representation in the conjugate Fourier k-space 
possesses Hermitian symmetry, i.e. 

             expd i d dk x xk x k   (3.15) 
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Data acquisition of static organs such as the brain for example can hence be 
accelerated by skipping data acquisition of one half of the k-space in theory. If 
no spatial phase variation is present, direct conjugate replacement of the non-
acquired part of k-space is possible (Feinberg et al. 1986). In reality, however, 
additional phase variation is present caused by inhomogeneity of the main 
magnetic field, susceptibility induced field gradients and eddy currents due to 
gradient switching. If more than half of k-space is acquired, local phase 
variations can be accommodated. Therefore, only a part of the second half of 
k-space is skipped in typical MRI experiments. The remaining part of the second 
half of k-space together with the corresponding part in the other part of k-
space serves as low resolution phase estimation in the one-step homodyne 
filtering method (Noll et al. 1991) as illustrated in Figure 3.2 or in iterative 
methods (Haacke et al. 1991). 

 

Figure 3.2: 2D partial Fourier acquisition in y-direction. The white part in 
the 2D k-space above is not sampled, while samples are acquired in the 
dark gray area in the k-space center and in the light gray area. During 
homodyne reconstruction, the central part is weighted with a filter 
function H, which contains a linear ramp for the central part. The acquired 
outer k-space is weighted twice to compensate the missing signal power 
from the non-acquired part. 
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If only a part of k-space is sampled, SNR is decreased by 1 R  but the 

shortening of echo time can lead to a signal increase as described also for SENSE 
in Chapter 3.2.1.  

Note, however, that object movement translates to additional motion-induced 
phase via the Fourier shift theorem. Depending on the movement amplitude, 
partial Fourier acquisition can be applied with a low reduction factor only or 
might be unsuitable in fast moving organs such as the heart.  

3.4 Compressed Sensing 
Another approach to MR data undersampling is Compressed Sensing (Candes 
et al. 2006), where sparsity in a transform domain of the images is exploited. 
Incoherent (under-)sampling introduces noise-like artifacts into the images 
which are then reconstructed by non-linear denoising in the transform domain. 
This approach requires sufficient sparsity of the original object or a transformed 
representation thereof to retrieve the object signal. Image reconstruction for 
Compressed Sensing (Lustig et al. 2007) is formulated as an optimization 
problem which is solved iteratively: 

    
2

2 1
argmin E

i

i d i   (3.16) 

Here,   is a sparsifying transform such as Wavelets (Daubechies 1988) and   

is a regularization parameter. Non-linear solvers are required due to the L1-
norm regularization. A statistical motivation for this approach is given in 
Chapter 4.4. 

3.5 Reconstruction of sheared grid k-space 
data 
In many MRI data acquisition protocols, data is acquired along an additional 
dimension besides the spatial ones: time in dynamic imaging (cine, flow 
imaging, first-pass perfusion etc.) and diffusion weighting in DWI/DTI. The 
acquired images typically share many features and hence exhibit correlations 
among space and the additional dimension. These can be used for higher 
undersampling factors compared to parallel imaging alone. Data 
undersampling may either be performed in a regular fashion as explained 
further in the next sections or in an incoherent way. 
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3.5.1 Sheared grid k-t undersampling 
Regular undersampling as presented for SENSE reconstruction in Chapter 3.2.1 
can be modified by a shift of the sampling pattern from one frame to the other. 
This results in a “sheared grid”-like k-t sampling pattern with resultant aliases 
in image space. The aliases at the temporal band edge may be suppressed using 
a low-pass filter (Madore et al. 1999). More general, a Fourier transform along 
the additional dimension serves as a sparsifying transform. In addition, the 
Fourier transform leads to better separation of the undersampling aliases: the 
linear shift of the sampling pattern in k-space causes a phase offset in image 
space, which again leads to separation of the object aliases in the frequency 
spectrum space via the Fourier shift theorem.  

Shear grid or k-t undersampling (Tsao et al. 2003) was first applied for 
dynamic/temporal imaging. The resulting space of the acquired data after a 
Fourier transform along the image dimensions and the additional dimension is 
called x-f space. The point spread function (PSF) in the x-f space is hence not a 
column but a diagonal as shown in Figure 3.3. 

 

Figure 3.3: k-t undersampling. A sheared grid results if a regular grid is 
shifted along the additional temporal dimension (left). This translates into 
an additional phase   and hence a diagonal point spread function in x-f 

space (center). The aliases in image space are separated in x-f space 
(right). 
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3.5.2 k-t BLAST & k-t SENSE 
In k-t BLAST and k-t SENSE (Tsao et al. 2003) a few central lines which serve as 
low-resolution image information are acquired alongside the sheared-grid 
undersampled data. This “training data” is used as weights in the x-f space and 
allow unfolding of overlapping signal aliases in this domain. The first method 
(k-t BLAST) uses only one coil, while k-t SENSE uses additional information from 
multiple coils, as explained in Chapter 3.2.1. The encoding matrix contains a 

Fourier transform 
t fF  along the additional (e.g. temporal) dimension for the 

reasons explained above: 

 


  t fE E F   (3.17) 

Likewise, this can be considered a SENSE reconstruction as in Equation (3.14) 
with Tikhonov regularization. Similar to the normal equation of the image 
reconstruction problem in Equation (3.3), an equation for the imaging problem 
can be derived: 

  


    
  

2H x f HE E M Ei d   (3.18) 

with regularization parameter   and training matrix x fM , which represents 

prior knowledge from low resolution images, see also Chapter 4.2 for further 
statistical explanations. Note that as stated above, it is assumed that noise 
decorrelation as explained in Chapter 3.1.1 has been performed beforehand. A 
direct solution can be found if the matrices are invertible: 

  



    

  

12H x f HE E M Ei d   (3.19) 

As explained above, iterative solutions can often be faster to calculate 
compared to direct solutions. It is numerically favorable for the solver to 
operate in the x-t space compared to the x-f space because of the preference 
of similar finite differences and variations. Hence, an iterative solution to 
Equation (3.18) can be formulated in x-t space as follows: 

  





  

212

2
2

argmin x f
t fE M F

i

i d i   (3.20) 

Note that that the encoding matrix E  in Equation (3.20) is the same as for the 
SENSE problem in Equation (3.13) or the regularized version in Equation (3.14)
. 
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3.5.3 k-t PCA 
The aforementioned k-t methods are well suited for the reconstruction of 
periodic signals due to the used Fourier transform. However, if fast changes in-
between images occur, higher Fourier components become relevant and lead 
to a broadening and increased overlap of the signal aliases in x-f space. In order 
to further sparsify data, a principal component analysis (PCA) can be employed. 
This orthogonal linear transformation produces decorrelated data in the new 
basis (principal components). The procedure is optimal for Normal distributed 
input in terms of data compressibility, but does not pose a restriction on data 
distribution. The principal components need to be calculated for every data set 
and are ordered in descending order in terms of explained data variance. The 
basis functions of the PCA decomposition are determined using the low-
resolution training data. The amended version of k-t SENSE which takes 
advantage of a PCA transform is hence called k-t PCA (Pedersen et al. 2009). 
Unlike the former method, k-t PCA performs unfolding of undersampled images 
in the x-pc instead of x-f space. The encoding matrix reads: 

 


  f pcE E B   (3.21) 

with E  as defined in Equation (3.17). A direct solution to the k-t PCA 
reconstruction problem is available (Pedersen et al. 2009) besides the iterative 
procedure: 

  




 
  

212

2
2

argmin x pc
f pc t fE M B F

i

i d i   (3.22) 

Note that the training matrix x pcM  is now in x-pc space. Again, we assume 
prior noise decorrelation.  

3.5.4 Incoherent sampling and non-linear reconstruction 
All of the above-mentioned methods employ regular sampling and find an 
image estimate using Tikhonov regularization of the parallel imaging problem. 
Along the lines of Chapter 3.4, reconstruction with the usage of incoherent 
sampling, a sparsifying transform along the additional data dimension and a L1 
regularization is also possible as for example shown in k-t SPARSE (Lustig et al. 
2006) and k-t FOCUSS (Jung et al. 2009). These methods require non-linear 
solvers in contrast to the presented k-t methods, which are linear LSQ 
problems. 

 

 



44 

Chapter 4  
Applied Bayesian statistics for MRI 

4.1 Introduction to Bayesian statistics 
In probability theory, three axioms must hold for any probability measure 
according to Kolmogorov. They can be described in a collegial manner as: a 
probability is a number between zero and one, sure events have a probability 
of one and the probability of a countable number of pairwise disjoint events is 
the sum of their probabilities (“sigma-additivity”). These theoretical 
requirements leave room for interpretation of probability itself. Probably the 
most popular one is the so-called “frequentist” approach to statistics. There, it 
is assumed that the frequency of events corresponds to their probabilities. One 
of the most proliferate and widely known representative of this branch of 
statistics was Ronald Fisher. Another alternative approach is the so-called 
“Bayesian” interpretation where probability is considered as a quantification of 
personal belief and probabilities are therefore assigned to hypotheses. Pierre-
Simon Laplace and Thomas Bayes pioneered this approach. Both methods are 
widely used in all branches of science wherever empirical data is statistically 
analyzed. Typically, frequentist methods are fast to calculate and require 
(almost) no prior knowledge, but they can be unintuitive to interpret. In 
contrast, Bayesian methods often require computers, but they are well suited 
to take into account prior knowledge in a rigorous way and provide a 
framework for multi-hierarchical models. In this chapter, a Bayesian view on 
MRI reconstruction and IVIM parameter estimation is given.  

4.1.1 Bayes’ theorem 
Bayes’ theorem allows for the calculation of conditional probabilities, i.e. that 
one event A  occurs, given another event B : 

  
   

 




|
|

P B A P A
P A B

P B
  (4.1) 

with    0P B . This theorem is particularly useful to draw inference about 

 |P A B  where  |P B A  is given. Note that both frequentists and Bayesians 

make wide use of the theorem, albeit with slightly different interpretations.  
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4.1.2 Data likelihood 

The (data) likelihood function  |p y  contains the statistical model of the 

forward data generating process and is hence a function of the model 
parameters   and the given data y . The former can be for example IVIM 

parameters or MR image estimates, while the latter would be magnitude image 
data or k-space data, respectively. Here we interpret the likelihood from the 
Bayesian perspective, i.e. the likelihood function is considered the probability 
of the measured data conditioned on the model parameters.  

If several data points are available, the total likelihood is the product of the 
individual likelihoods if “exchangeability” of the samples is assumed 
(corresponds to independence and identical distribution of the samples in 
frequentist statistics). Typically, the error terms in MRI signals are assumed to 
be Gaussian. This is, however, only true in a strict way for the real and imaginary 
parts of the signal. Other quantities such as the magnitude follow a Rician 
distribution, but can adequately be described as Gaussian distributed for SNR 
factors larger than 2 (Gudbjartsson and Patz 1995), which is usually achieved in 
typical MRI experiments.  To conclude, in many MRI inversion problems, the 
data likelihood takes the following form: 

   
 

 


 
   

  


2

22
1

1
| , exp

22

N
n

n

y
p y θ   (4.2) 

with N data points concatenated in the data vector  Ny  , mean value   

and standard deviation   of the Gauss distribution. The last quantities are 

hence unknown parameters.  

4.1.3 Posterior distribution 
According to the Bayes’ theorem in Equation (4.1), we can identify a posterior 

distribution   |p y  which depends on the data likelihood  |p y , the prior 

distribution  p  (see Chapter 4.1.4) and the data normalization factor  p y  

in the following way: 

  
   

 

 
 

|
|

p y p
p y

p y
  (4.3) 

Parameter inference is typically performed via the posterior mean by 
calculating the expectation value: 



46 

  
 

                 
1ˆ | |p y d p y p d

p y
  (4.4) 

See Chapter 4.2 for more details on parameter inference. 

4.1.4 Prior distribution 

The prior distribution  p  describes the a-priori knowledge of the parameters 

to infer. In principle this could be any function with the only restriction that it 
should be integratable (or at least locally numerically tractable). An example for 
such a prior is for example Jeffreys’ prior (Jeffreys 1946) 

       detp I   (4.5) 

which uses the Fisher Information matrix  I . This prior belongs to the class 

of “reference priors” (Berger et al. 2009). With such priors, inferential 
statements depend only on the assumed statistical model and the data 
available and do not require parameter tuning. Jeffreys’ prior yields inference 
that is also invariant upon re-parametrization.  

Another popular class of priors are the “conjugate” priors. Such a prior is in the 
same probability distribution family as the posterior and hence leads to a 
closed-form expression of the product of prior and data likelihood. They 
depend on the parametrization of the shape and scale parameters of the 
distribution used in the data likelihood, see Chapter 4.5 for an example. Note 
that multi-hierarchical priors can be constructed: the distribution parameters 
(called hyperparameters) of a prior can follow another prior distribution. This 
allows the formalization of complex prior knowledge on multiple levels.  

From a theoretical perspective it is worthwhile to note that according to the 
Bernstein-von Mises theorem (van der Vaart 1998), the posterior distribution 
becomes asymptotically (i.e. if the amount of data points gathered approaches 
infinity) independent of the chosen prior under some weak conditions. This 
means that Bayesian estimates are asymptotically equal to the ones from 
frequentist inference. 

4.2 Bayesian inference 
In this section, the inference of model parameters is elucidated from a Bayesian 
perspective, various computational methods are presented together with 
technical details.  
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4.2.1 Analytic evaluation 
The posterior hyperparameters depend on both the likelihood parameters and 
prior hyperparameters. They can be expressed in closed-form for conjugate 
priors. 

Here, an example of MRI magnitude data is considered, which was acquired 

during an IVIM experiment. The measured IVIM magnitude signal iy  at the i-th 

datum contains a Gaussian error distribution with standard deviation  S  and 

mean 0 iS g . The first factor of the latter expression is the magnitude of images 

without diffusion weighting, the second factor describes the IVIM signal at the 

i-th b-value with IVIM parameters   *, ,D f Dθ . Therefore, the data likelihood 

is a Normal distribution: 

        






 
   
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p S y S gθ θy   (4.6) 

with magnitude data vector   1

T

Ny yy . Since the standard deviation 

(representing measured noise) and the normalization factor are of no interest, 
they are “nuisance” parameters which can be dealt with in a Bayesian fashion: 
their influence is retained, but their explicit dependence can be overcome by 
“marginalizing” them out. This means that conjugate priors for both 

parameters are chosen: a Normal prior for 0S  and an inverse-Gamma 

distribution for the variance  2
S . The product then reads: 

                  2 2 2 2
0 0 0, |0, | ,S S Sp S p S p N S IG   (4.7) 

The product of data likelihood and prior is then again a product of a Normal (N) 

and inverse-Gamma (IG) distribution (Murphy 2007) with mean  , standard 

deviation    and the inverse-Gamma shape   and scale parameters   : 
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with sample mean value y . By integrating over the nuisance parameters 
0S  

and  2
S , a marginal distribution without their explicit dependence can be 

found: in this case, a (scaled and shifted) Student’s t- distribution follows with 

mean  , 2  degrees of freedom and scale parameter 
  

 

  

 

2

2

1
. 

Inference of desired quantities such as mean, median, mode etc. can then be 
derived analytically from this marginal distribution. 

4.2.2 Maximum a-posteriori point estimator 
The maximum a-posteriori (MAP) estimator is a point estimator, which provides 
point estimates of model parameters via maximization of the posterior 
distribution. Hence, the method makes use of the mode of the posterior 
distribution. The approach is therefore similar to the frequentist maximum 
likelihood estimate (MLE), in which only the likelihood function is used without 
a prior. Problems that cannot be handled analytically as outlined in the section 
before can still be investigated. 

Here the reconstruction problem in Equation (3.2) is considered, which has a 
closed-form expression of the MLE. Gaussian error terms with covariance 
matrix   are considered in the data likelihood: 

       
     

 

11
| exp

2

H
p E Ed i d i d i   (4.9) 

Both for MLE and MAP estimation, the logarithm can be taken for a more 
convenient optimization of sums instead of products.  

First, consider the MLE of Equation (4.9) which can then be found via 
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The closed form solution if no noise correlation is present (  Id ) can be 

shown to be the ordinary least-squares (OLS) estimator by differentiating and 
setting to zero: 

  



1OLS H H

MLE E E Ei d   (4.11) 

 If the noise matrix is not the identity matrix, the MLE is the generalized least-
squares (GLS) estimator, which is also used in Chapter 3.1.1: 
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  


   
11 1GLS H H

MLE E E Ei d   (4.12) 

Second, the MAP is considered for the data likelihood of the reconstruction 
problem above together with a Gaussian prior with zero mean and covariance 
matrix  . The posterior therefore reads: 

          
         

   

1 11 1
| exp exp

2 2

H Hp E Ei d d i d i i i   (4.13) 

After taking the logarithm and neglecting some constants, the logarithm of the 

posterior is for this choice of prior covariance matrix    1Id  : 

            1log |
H Hp E Ei d d i d i i i   (4.14) 

The noise covariance matrix can be decomposed and multiplied with the 
encoding matrix and k-space data as described in Chapter 3.1.1. The logarithm 
of the posterior can then be expressed as: 

      
2 2

2 2
log |p Ei d d i i   (4.15) 

From Equation (4.15) it can be inferred that a Gaussian prior corresponds to a 
Tikhonov regularization. Furthermore, the right side of Equation  (4.15) can be 
minimized with respect to i  in order to find the MAP point estimate, which 
leads to an analytical solution in this case. The resulting regularized least-
squares (RLS) point estimator reads in closed form: 

  


     
11 1 1RLS H H

MAP E E Ei d   (4.16) 

This regression method is also called Ridge regression. Note that the matrix   
is not restricted to the presented (scaled) identity matrix. Numerical solutions 
are also available from iterative optimization procedures as discussed in 
Chapter 3.5.2. 

The MAP has certain drawbacks in general: first, it is not invariant under re-
parametrization. Second, in pathological datasets were the mode is not 
representing the actual data (e.g. an additional spike in the histogram), results 
can be confounded. The MAP is hence less robust compared to other estimates 
such as the posterior mean or median. 

4.2.3 Markov chain Monte Carlo  
To overcome the limitations of the MAP estimator, the posterior mean or 
median can be used for inference. This can be done analytically as shown in 
Chapter 4.2.1 in the case of conjugate distributions. In general, however, (high-
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dimensional) integrals of the product of likelihood and prior distribution are 
intractable analytically, especially in the case of multi-level hierarchical models. 
The Markov chain Monte Carlo (MCMC) method can still provide numerical 
results via sampling from a Markov chain, which contains the desired posterior 
as stationary distribution.  Desired quantities such as the expectation value of 
a variable can be easily inferred via a Monte Carlo approach of replacing the 

integral by an approximating sum of SN  samples, applying the law of large 

numbers: 

   


 
1

1ˆ
sN

j

jsN
  (4.17) 

This method hence provides samples from the posterior and not only a point 
estimate as the MAP. However, this comes at a computational cost, because 
typically tens of thousands or more samples need to be drawn.  

MCMC sampling techniques are a vast and active research field in the 
computational statistics community. Many software packages are available: 
BUGS variations (WinBUGS (Lunn et al. 2000) for Windows, the open-source 
cross-platform variant OpenBUGS (Lunn et al. 2009) and the C++ 
implementation JAGS (Plummer 2003)), STAN (Carpenter et al. 2017) and 
Google’s TensorFlow Probability (Dillon et al. 2017) for example.  

4.2.4 Variational Bayes methods 
Besides the MCMC approach, variational approaches are available (Bishop 
2006). The idea here is to find an analytic approximation to the posterior 
distribution, which for example minimizes the Kullback-Leibler divergence of 
the posterior from its approximation via calculus of variations. These methods 
are typically faster than MCMC but require the derivation of many equations 
for each problem. In addition, they do not yield asymptotically correct 
approximations in general, unlike MCMC. A software implementation of 
variational Bayes can be found for example in STAN (Carpenter et al. 2017) and 
Google’s TensorFlow Probability (Dillon et al. 2017). 

4.3 Gaussian prior & k-t methods 
Returning to MAP estimators, a statistical motivation for the k-t reconstruction 
problems as described in Chapter 3.5 is given in this section as an extension to 
Chapter 4.2.2. 

In the case of k-t BLAST/SENSE problems, the reconstruction operates in the x-
f space, which means that the encoding matrix also contains a Fourier 
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transform along the additional dimension as stated in Equation (3.17). 
Furthermore, the covariance matrix of the data in x-f space is no longer a scaled 
identity matrix but is instead estimated from training data: 

   x f x f x f H
train trainM i i . The prior is therefore a Normal distribution with 

zero mean and covariance matrix  . Typically, this prior is relaxed by 
multiplying the aforementioned covariance matrix with a regularization 
parameter, because the training data typically has a limited spatial resolution 
that can lead to loss in spatial details due to prior influence. In a similar fashion 
as outlined in Chapter 4.2.2, the logarithm of the posterior can be derived: 

     


  

   
212

2 2

log | x f x f x f
f tp EFi d d i i   (4.18) 

Setting     1 x fM  in order to control (usually dampen) the prior influence, 

it can be expressed as: 

     


  

  
212

2 2

log | x f x f x f
f tp EF Mi d d i i   (4.19) 

Using  

 x f
f tFi i , a solution in x-t space (instead of x-f space) can be found 

and the reconstruction functional in Equation (3.20) is retrieved. 

The reconstruction formula for k-t PCA in Equation (3.22) can be derived from 
this statistical perspective in an analogous way as described above. In addition 
to k-t BLAST/SENSE, a PCA decomposition is added such that the solution to the 

reconstruction problem is in x-pc space: 

  x pc
f t pc fF Bi i . Therefore, also the 

training data is in x-pc space. Equation (3.22) can be found if the solution is 
searched in x-t space. 

4.4 Laplace prior & Compressed Sensing 
A similar argument holds to derive Equation (3.16), which describes the 
Compressed Sensing problem. Here, the prior is chosen to be a Laplace 
distribution and reconstruction is performed in the sparse (e.g. Wavelet) 
domain. Applying the same procedure as above of taking the logarithm of the 
resulting posterior, differentiating and setting to zero, the L1-regularized 
problem in Equation (3.16) follows. This estimator corresponds to the so-called 
LASSO (least absolute shrinkage and selection operator) estimator (Tibshirani 
1996). 

It is worth noting that the Laplace distribution concentrates more weight 
around its mean compared to a Gauss distribution, hence the regularization is 



52 

more “aggressive” in weighting lower-order components of the new basis (e.g. 
Wavelets); see also Figure 4.1 for an illustration.  

 

Figure 4.1: Probability distribution functions (pdf) of both a univariate 
Gauss and Laplace distribution. Both distributions have a variance of one 
and zero mean. Note the relatively large probability weight of small x of 
the Laplace distribution. 

4.5 Hierarchical priors and curve fitting 
So far, only one-level priors were used in which the prior hyperparameters 
were set to a single value. However, as stated in the Chapter 4.1, multiple levels 
are possible, i.e. prior hyperparameters can follow other distributions 
themselves. Here, the statistical model used in Chapter 6 for IVIM parameter 
estimation (“curve fitting”) is presented in more detail. 

The marginalized data likelihood from Chapter 4.2.1 that contains the IVIM 
model and Gaussian noise is combined with a multivariate Normal distribution 
of all the N log/logit transformed IVIM parameter estimates considered in the 
ROI as prior. On top of this prior level, Jeffreys’ prior (see Chapter 4.1.4) is put 
on the prior hyperparameters of the multivariate Gaussian distribution, namely 
mean and covariance matrix. Figure 4.2 illustrates this multi-level hierarchical 
model in full detail. 
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Figure 4.2: Directed acyclic graph representing the Bayesian network used 
for IVIM parameter estimation. Circles are stochastic nodes, rectangles 
are constant values, stacked rectangles represent data vectors. Single 
arrows represent stochastic relations, double arrows represent analytic 
relations. If the distribution of a variable is given, it is noted as follows: 
N/N3 stands for uni-/tri-variate Normal distribution, IG for inverse-Gamma 
and JP for Jeffreys’ prior. A text arrow informally notes the limit that a 
variable is approaching. 
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Chapter 5  
Enhancing intravoxel incoherent 
motion parameter mapping in the 
brain using k-b PCA1 

5.1 Introduction 
In the brain, IVIM parameters have been shown to be increased during a 
hypercapnia challenge, a well-known method to increase cerebral perfusion 
(Federau et al. 2012) and to identify clinically relevant lesions (cysts, necrosis, 
tumors, ischemia (Federau et al. 2014)).  Moreover, the IVIM perfusion fraction 
was shown to be prognostic for survival of patients with glioblastomas (Puig et 
al. 2016; Federau et al. 2017). 

In spite of recent progress, IVIM imaging in the brain remains challenging. In-
plane spatial resolutions of 1x1 mm2 or better are desirable to reduce partial 
voluming, especially from cerebro-spinal fluid, which in turn requires large 
acquisition matrices and correspondingly long readouts. In the presence of B0-
induced inhomogeneities, signal dephasing and geometrical distortions occur 
(Farzaneh et al. 1990), which prompt for the use of techniques which reduce 
readout times. Although segmented methods such as SPLICE (Schick 1997) for 
example allow readout duration shortening per echo, they are not as time 
efficient as single-shot echo planar imaging (EPI). Moreover, spatial resolution 
and signal-to-noise ratio (SNR) is limited with SPLICE (Schick 1997). Since 
diffusion imaging in the brain requires time and SNR efficient image acquisition 
for full brain coverage and numerous diffusion-weighted images, parallel 
imaging in conjunction with single-shot EPI acquisition (Bammer et al. 2001) is 
preferred.  

So far, parallel imaging with undersampling factors of 2 has been applied to 
shorten readout durations (Federau et al. 2012; Federau et al. 2014; Federau 
et al. 2017). Parallel imaging, however, leads to spatially-dependent noise 
amplification, which increases exponentially beyond a critical g-factor limit 
(Ohliger et al. 2003; Wiesinger et al. 2004). The g-factor penalty and the low 
base SNR of diffusion-weighted imaging data at high b-values have hence 

                                                                 
1 Published in: Spinner GR, Schmidt JFM, von Deuster C, Federau C, Stoeck CT, Kozerke S (2018) Enhancing 
intravoxel incoherent motion parameter mapping in the brain using k-b PCA. NMR in Biomedicine  31(12):e4008. 
doi:10.1002/nbm.4008. 
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compromised the use of parallel imaging with undersampling factors greater 
than 2. 

Spatiotemporal regularization for MRI image reconstruction was presented 
with the k-t BLAST/k-t SENSE framework (Tsao et al. 2003) and treated more 
generally in (Liang 2007). The method presented in the first reference was later 
modified by employing a principal component analysis (PCA) (Pedersen et al. 
2009). The proposed k-t PCA approach was also applied for parameter mapping 
applications (Petzschner et al. 2011). Other acceleration approaches which 
employ Compressed Sensing (Huang et al. 2012) or low-rank and sparsity 
constraints (Zhang et al. 2015; Zhao et al. 2015) were presented for parameter 
mapping approaches more recently. Model-based methods for reconstruction 
of undersampled diffusion-weighted imaging data have been proposed (Zhu et 
al. 2012; Welsh et al. 2013), however excluding the IVIM model. 

The objective of the present work is to exploit signal correlations in space and 
along the diffusion encoding dimension jointly as part of a constrained image 
reconstruction approach. To this end, the k-t PCA framework (Pedersen et al. 
2009) is adopted. In-vivo brain images and IVIM parameter maps of apparent 
diffusion, perfusion fraction and pseudo-diffusion are compared relative to 
parallel imaging and to fully sampled data in the case of retrospectively 
undersampled data. In addition, reconstruction results and IVIM parameter 
estimates are presented from prospectively undersampled data. 

 

5.2 Methods 
5.2.1 k-b PCA 
In k-b PCA, the acquisition of a set of diffusion-weighted images is 
undersampled using a sheared grid in k-b space in analogy to k-t undersampling 
(Tsao et al. 2003; Pedersen et al. 2009) as illustrated in Figure 5.1: each k-space 
is acquired using a Cartesian grid with regular undersampling in phase encoding 
direction of the outer k-space and fully acquired “training data” profiles around 
the center of k-space. While the latter remain at the same position in k-space 
for all images, the outer profiles are shifted by a certain number of lines as a 
function of diffusion weighting index “b” (corresponding to a certain diffusion 
weighting strength and direction). As a result of the undersampling approach, 
a “sheared” grid in k-b space is prescribed. The resulting net undersampling 
factor R depends on the nominal undersampling factor Rnominal of the regularly 
undersampled outer k-space and the training matrix size. 
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During reconstruction, the image estimates are first Fourier transformed along 
the b-dimension into the Fourier reciprocal spatial-frequency (x-fb) space: 
together with the shift in k-space of the sheared grid, this results in separation 
of the object aliases. Then, principal component analysis (PCA) of the reciprocal 
x-fb space is performed to reduce data dimensionality by decomposing the 
signals into the product of spatially dependent weights and b-value dependent 
basis functions. The most relevant components which explain most of the data 
variance can then be retained, while additional ones which contain mainly noise 
can be attenuated as done here via a Tikhonov regularization (which 
corresponds to a Gaussian prior on the pc coefficients). 

Regularization of the inverse problem is based on low-resolution, fully sampled 
training data. Since k-b PCA is a least-squares problem, a closed form of the 
regularized ordinary least-squares estimator exists (Pedersen et al. 2009). Here 
the problem is rewritten as an optimization problem of a regularized system of 
linear equations as in (Schmidt et al. 2014): 

  




  
212

2
2

argmin
b b

x pc
f pc b fE M B F

i

i d i   (5.1) 

where E  is the forward encoding operator including coil sensitivities, spatial 
Fourier transform and k-space undersampling, i  is the image estimate and d
captures the measured data. Coil sensitivities are acquired prior to IVIM 
imaging using a standard vendor-specific gradient echo sequence using the 
body coil and surface coils. The L2 regularization uses the covariance matrix of 

the low-resolution training data in spatio-principal component space x pcM . 

The off-diagonal elements of x pcM  are set to zero for numerical stability and 
to prevent noise enhancement (Schmidt et al. 2014). Accordingly, the image 

estimate is first Fourier transformed along the b-dimension (  bb fF ), then 

undergoes a pc decomposition ( bf pcB ) along the same dimension before 

multiplying with the weighting matrix. All principal components were used for 
reconstruction. The regularization strength is controlled via the regularization 
parameter λ. Note that the LSQ ridge regression estimate corresponds to the 
maximum-a-posteriori estimate of a posterior distribution combining data 
likelihood with Gaussian error terms and a Gaussian prior using the low-
resolution training data.  
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Figure 5.1: k-b PCA reconstruction scheme.  Top row: outer k-space is 
sampled in a regularly undersampled Cartesian pattern. In addition, the 
sampling grid is shifted by some lines from one image to the next one. This 
results in a “sheared grid” along the b-dimension. After (inverse) Fourier 
transformation in k-space and along b-dimension a sheared point spread 
function (PSF) results. This leads to a separation of the object aliases of 
the undersampled data after Fourier transformation into the reciprocal 
spatio-frequential space: the DC peaks (marked as “0”) and the closest 
prominent positive and negative Fourier coefficients (marked as “+1” and 
“-1” respectively) are separated in the Fourier transform domain. The 
image reconstruction then uses principal component analysis (PCA) of the 
undersampled data for data dimensionality reduction. Bottom row: the 
central k-space profiles are acquired in every acquired image. This low-
resolution estimate of the image is then also transformed into the Fourier 
reciprocal space (note the non-aliased representation) and subsequently 
transformed using PCA into spatial-principal component space. The 
corresponding covariance (“Cov”) matrix is used as weighting matrix in 
the regularization of the reconstruction. The central training lines are also 
used in the data consistency part of the reconstruction. 

In k-b PCA, all acquired data including the diffusion encoding directions, b-
values and signal averages was concatenated in acquisition order to populate 
the “b” dimension. Following previous work (Schmidt et al. 2014),  k-b PCA was 
implemented using a diagonal pre-conditioner. The measured data was 
normalized by dividing data by the maximum magnitude of the image 
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magnitudes averaged along the b-dimension to allow for a fixed regularization 
parameter λ=10-4 across different acquired data sets. 

5.2.2 CG-SENSE 
For comparison, parallel imaging reconstruction as employed so far in IVIM 
parameter mapping (Federau et al. 2012; Federau et al. 2014; Federau et al. 
2017) is performed using the standard conjugate-gradient (CG) method 
(Pruessmann et al. 2001): 

 
2

2
argmin E

i

i d   (5.2) 

with encoding matrix E , acquired k-space data d  and image estimate i . For 

SENSE parallel imaging as in Equation (5.2), only the data consistency part of 
Equation (5.1) is used.  

Both methods (k-b PCA and CG-SENSE) were deployed in Matlab (Mathworks, 
Natick, USA). A fixed number of 60 iterations was used on standard PC 
hardware (2.9 GHz, 16 GB RAM). 

5.2.3 In-vivo measurements 
Fully sampled data from 11 healthy volunteers (3 males, 8 females, age: 27±4 
years) without prior history of neurological or vascular disorders was obtained 
using a 3T Philips Achieva scanner (Philips Healthcare, Best, the Netherlands) 
equipped with an 8-channel head coil. Written informed consent was obtained 
from all subjects prior to imaging. The study protocol was approved by the 
ethics committee of the Canton of Zurich. Consent included imaging as well as 
publication of anonymized data. Imaging parameters were: single-shot 2D EPI 
readout with 181 phase-encodes, field-of-view 218x180x65 mm3, partial 
Fourier factor 0.65, 9 slices, slice gap 2.5 mm, voxel size 1.2x1.2x5 mm3, echo 
time TE=81 ms, repetition time TR=4 s.  For diffusion weighting, a standard 
unipolar diffusion weighting sequence was used (Stejskal and Tanner 1965). 
Spectral pre-saturation with inversion recovery for fat suppression was 
employed. Diffusion encoding b-values were (Federau et al. 2012; Federau et 
al. 2014): 0, 10, 20, 40, 80, 110, 140, 170 and 200 to 900 in steps of 100 s/mm2. 
4 signal averages for each diffusion weighting strength and direction were 
acquired equally distributed across the measurement time. Total scan time was 
24 min 24 s for the fully sampled data. In order to estimate SNR in-vivo as 
presented in (Nordmeyer-Massner et al. 2009), noise samples were acquired 
by performing an additional scan without gradients and RF excitation. 
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Prospectively undersampled data (5 volunteers: 2 males, 3 females, age: 28±8 
years) was acquired with 33 phase encodes, field-of-view 235x180x65 mm3, no 
partial Fourier acquisition, echo time TE=61 ms, while the other parameters 
remained the same as for retrospective undersampling. The effective 
undersampling factor across all acquired images was 6.08, also using 9 training 
profiles. An additional IVIM dataset with the same geometry but partial Fourier 
acquisition (partial Fourier factor 0.62) of a fully sampled k-space with 199 
phase encodes and an echo time TE=74 ms was acquired for comparison.  

5.2.4 Data processing 
Pre-processing of the raw data was performed using MRecon (GyroTools, 
Winterthur, Switzerland) and encompassed a ringing filter, removal of 
oversampling and a homodyne filter to account for partial Fourier acquisition 
used in the fully sampled images. The same software was also used for the 
processing (reconstruction, smoothing and masking) of the sensitivity maps.   

Sheared grid undersampling in k-b space was applied onto data to extract 
undersampled data for net reduction factors R ranging between 2 and 6 
followed by k-b PCA and CG-SENSE reconstruction. The 9 central profiles were 
retained and served as training data in k-b PCA, while the outer k-space was 
undersampled 2- to 8-fold (Rnominal). The influence onto reconstruction accuracy 
was investigated by varying the regularization parameter, the number of 
training lines, the number of principal components and the number of signal 
averages, while the outer k-space was 8-fold undersampled. In the case of 
prospective data undersampling, gradient blips with varying strengths were 
used along phase encoding direction to acquire the k-space in the described 
sheared grid trajectory in a single-shot readout. Identical sampling patterns 
were used for both k-b PCA and CG-SENSE. Images were registered using a 
dedicated group-wise image registration method (Vishnevskiy et al. 2017) 
employing total variation displacement regularization and a PCA based image 
similarity metric (Huizinga et al. 2016) to correct for in-plane residual geometric 
inconsistencies due to volunteer motion and eddy current induced distortions 
either before reconstruction (retrospective undersampling) or thereafter 
(prospective undersampling). For error analysis, the brain was automatically 
segmented using active contours (Chan and Vese 2001). The ventricles, sulci 
and other CSF-rich areas were cut out from the region-of-interest (ROI) by 
performing an IVIM fit to the fully sampled reference or k-b PCA reconstructed 
images in the case of prospective undersampling. Voxels with D ≥2·10-3 mm2/s 
and f ≥30% were excluded as illustrated in Figure 5.2. 
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Figure 5.2: Post-processing workflow. After signal corrections (offset 
corrections, oversampling removal) and homodyne filtering (if fully 
sampled data using partial Fourier acquisition is processed), data is 
registered and passed on to the reconstruction algorithms together with 
sensitivities of the nc surface coils measured in an additional scan. 
Prospectively undersampled data was first reconstructed and then 
registered. Error analysis of the reconstruction is performed on the 
segmented brain. Segmentation is achieved using active contours and an 
IVIM fit with threshold parameters to segment the brain without CSF-rich 
areas such as the ventricles. 

5.2.5 Parameter mapping 
For IVIM parameter mapping, the two-compartment IVIM model (Le Bihan 
1988) was used: 

               
 

*
0 exp 1 expS b S f bD f bD , (5.3) 

where  S b  denotes the measured signal as a function of b-value, 0S  the 

signal without diffusion weighting (b=0 s/mm2), D  the diffusion constant, f  

the perfusion fraction and *D  the pseudo-diffusion constant. A segmented 
least-squares fitting approach (Notohamiprodjo et al. 2015; Spinner et al. 2017) 
was used assuming the contribution of the perfusion to reach a maximum of 

 1f f   at b=0 s/mm2 and to drop to negligible values for b-values b>>bSplit. 
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Accordingly, high b-values (b≥bSplit=300 s/mm2) were fitted to a mono-
exponential diffusion-only model according to: 

               0 int1 exp expS b S f bD S bD  (5.4) 

In the second step of the segmented regression, the perfusion related 

parameters f  and *D  were estimated using the predetermined diffusion 

coefficient D  and the mono-exponential intercept intS  while taking into 

account data from all b-values: by substituting   0 int 1S S f   in Equation 

(5.3), the signal model reads accordingly: 
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 (5.5) 

This approach avoids the usage of images without diffusion weighting (b=0 
s/mm2) which have a slightly different contrast due to spoiler gradients instead 
of diffusion gradients. The non-linear regression was implemented using a 
quasi-Newton (BFGS) algorithm in Matlab (Mathworks, Natick, MA) and 
constrained with box constraints as in (Orton et al. 2014; Spinner et al. 2017): 
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Start values for the optimization were found by considering the logarithm of 
the magnitude data in a two-step approach as above and solving the linearized 
problems with a proprietary linear solver in Matlab. 

5.2.6 Error estimation 
A voxel-wise normalized root-mean-square error (nRMSE) was considered for 
both the reconstructed data and IVIM parameter estimates ( x ): 

   
22

Ref RefnRMSE x x x x . The fully sampled data or the derived IVIM 

parameters served as reference ( Refx ). The median and interquartile ranges 

(difference between percentile 75 and 25; covering 50% of the data of a Normal 
distribution) were evaluated across all segmented voxels considering all 
acquired slices of all volunteers. These percentile-based measures are used as 
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descriptive statistics in the following because of their robustness against 
outliers.  

5.3 Results 
5.3.1 Reconstruction error 
Reconstructed magnitude images using CG-SENSE exhibit visible 
undersampling artifacts and noise amplification for R≥2.73, while k-b PCA 
shows no visible artifacts (Figure 5.3) as highlighted in the corresponding 
difference images. The influence of various settings onto the reconstruction 
error for the highest undersampling factor is displayed in Figure 5.4: the 
regularization parameter λ exhibits a local error minimum of 3.48±3.69% at 
λ=10-4; reduction of the  number of training profiles causes the error to increase 
moderately from 3.23±3.42% (13 profiles) to 4.75±4.99% (5 profiles); the error 
increases noticeably if the number of principle components (pc) is reduced 
below 16 from 4.70±5.41% to 18.68±26.84% (1 pc) and the error remains below 
5% if only the first signal average is used for reconstruction (4.25±4.83% error 
using the first average only; 3.68±3.89% error using all 4 averages). 

 

Figure 5.3: Retrospectively undersampled and reconstructed b=0 s/mm2 
magnitude images. Comparison of reconstruction results from 
retrospectively undersampled b=0 s/mm2 data for CG-SENSE and k-b PCA 
and corresponding difference maps (5-fold amplified) relative to the fully 
sampled reference. Undersampling artifacts are readily apparent for CG-
SENSE starting at R=2.73 (red arrows) and become more prominent with 
increasing undersampling factor. In contrast, in the proposed k-b PCA 
method artifacts are well attenuated up to the highest undersampling 
factor investigated, which is shown magnified on the right. 
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The nRMSE relative to the fully sampled references across all volunteers and 
slices is shown in Figure 5.4: 1.76±2.43% (R=1.91) up to 25.28±25.83% (R=5.93) 
for CG-SENSE and 2.45±2.52 (R=1.91) up to 3.48±3.69% (R=5.93) for k-b PCA.  

 

Figure 5.4: Reconstruction error. Reconstruction error (boxes/crosses: 
median, error bars: interquartile range) of retrospectively undersampled 
data across all segmented voxels as normalized root-mean-square error 
(nRMSE), relative to the fully sampled data. The top row shows the 
reconstruction error depending on various reconstruction settings at the 
highest undersampling factor investigated (8-fold undersampling of the 
outer k-space, corresponding to a net undersampling factor of 5.93 using 
9 training profiles). Irrespective of the chosen parameters, the error 
remains below or equal 5% as long as at least 16 principal components 
are used. The lower row shows the error versus net undersampling factor 
of the reconstructed data and the IVIM parameter estimates. The 
reconstruction error of CG-SENSE increases rapidly while the k-b PCA 
method remains below 5%. A similar performance is observed for the 

diffusion coefficient D . The perfusion parameters ( f  and *D ) show a 

higher error for undersampling factors R≥3 if CG-SENSE is used compared 
to k-b PCA, which yields errors remaining below or equal 15% even at the 
highest investigated undersampling factor. 

The average SNR across all acquired voxels of the 11 volunteers was 
24.45±15.74 for a single-shot image of the fully sampled data. 

5.3.2 IVIM parameter estimation error 
The IVIM parameter estimation errors versus net undersampling factor are 
provided in Figure 5.4. For undersampling factors R≤3, CG-SENSE yields lower 
or comparable errors relative to the proposed method (0.49±0.96/1.74±2.37% 
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for D , 3.80±9.92/9.42±15.39% for f  and 9.07±20.94/9.64±16.34 for *D  at 

R=1.91 for CG-SENSE/k-b PCA), but is outperformed at undersampling factors 
R>3. At the highest undersampling factor investigated (R=5.93) the 
corresponding nRMSEs of the IVIM parameters are: 14.21±20.44/2.71±3.60% 
for D , 96.56±67.44/15.14±26.13% for f  and 99.99±195.11/14.76±26.55% for 

*D  at R=5.93 for CG-SENSE/k-b PCA.  

The IVIM parameter estimates derived from CG-SENSE reconstruction in Figure 
5.5 show artifacts and noise amplification for R≥3.48 in all IVIM parameters, 
while k-b PCA derived parameters remain nearly artifact free up to R=5.93. 
With k-b PCA, parameters D  and f  do not exhibit visible artifacts up to the 

highest examined effective undersampling factor of R=5.93. Considering the 
perfusion fraction f , undersampling factors equal or greater than 3.48 exhibit 

increasing artifact and noise levels when using CG-SENSE. In contrast, with the 
proposed method, noise amplification is minimal even at the highest 

undersampling factor tested. The pseudo-diffusion coefficient *D  shows 
increasing artifacts and noise with CG-SENSE for R≥2.73, while the proposed 
method reduces the artifact levels to a noise-like level.  
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Figure 5.5: IVIM parameter maps. IVIM parameter maps for the fully 
sampled reference (Ref.) and all investigated net undersampling factors of 
CG-SENSE and k-b PCA using retrospectively undersampled data. Noise 
amplification of CG-SENSE is readily visible for R≥3.48 in all IVIM 
parameters (red arrows) with severe undersampling artifacts at the 
highest undersampling factor tested. The proposed reconstruction 
technique (k-b PCA) does not exhibit visible noise amplification or artifacts 
for the diffusion coefficient D  and perfusion fraction f . The pseudo-

diffusion coefficient *D  shows artifacts for the highest undersampling 
factor investigated. 

5.3.3 Prospectively undersampled data 
An example magnitude image of the prospectively 6-fold undersampled non 
diffusion-weighted (b=0 s/mm2) single-shot k-b PCA reconstructed image is 
shown together with a corresponding fully sampled acquisition in Figure 5.6. 
This particular axial brain slice geometry at the level of the basal ganglia exhibits 
typical B0-induced off-resonance effects due to air-tissue interfaces. The 
relatively long EPI readout of the fully sampled acquisition hence shows several 
visible geometric distortions and signal smearing. These artifacts are reduced 
in the k-b PCA acquisition due to the shorter readout. Additional reconstructed 
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b=0 s/mm2 single-shot magnitude images of prospectively 6-fold (net) 
undersampled data can be found in Figure 5.7 of the Appendix, displaying k-b 
PCA reconstructed results of all acquired slices in a volunteer.  

Example IVIM maps are qualitatively similar to the fully sampled reference data 
as demonstrated in Figure 5.6. 

 

Figure 5.6: Prospectively undersampled data. The magnitude image (b=0 
s/mm2) of the fully sampled (Ref., 199 phase encodes, TE=74 ms) 
acquisition (a) exhibits severe susceptibility artifacts due to a long EPI 
readout (red arrows), while the undersampled (net undersampling factor 
R=6.08, 33 phase encodes, TE=61 ms) and reconstructed magnitude using 
k-b PCA (b) shows drastically reduced artifacts (red arrows). The boxplot 
(red line=median, blue box=percentile 75 and 25, whiskers=1.5x 
interquartile range) shows the IVIM parameter ranges of the prospectively 
undersampled (R=6.08) data (c). Example IVIM parameter maps of the 
fully sampled reference (Ref.) and k-b PCA reconstructed images display 
the diffusion coefficient D  (d, e), the perfusion fraction f  (f, g) and 

pseudo-diffusion coefficient *D  (h, i). 

5.3.4 IVIM parameter estimates 
The averages across all acquired voxels of the IVIM parameters are: 
0.79±0.20/0.79±0.18·10-3 mm2/s for D , 8.46±10.16/7.35±7.27% for f  and 

6.90±6.53/7.11±2.39 for *D  of the fully sampled data (11 volunteers) 
/prospectively 6-fold undersampled and k-b PCA reconstructed data (additional 
5 volunteers). 
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IVIM parameter estimates of the fully sampled reference data (11 volunteers), 
CG-SENSE and k-b PCA reconstructed images can be found in Table 5.1 in the 
Appendix. For increasing undersampling factor, all IVIM parameter estimates 
are increasing, especially with CG-SENSE. 

5.4 Discussion 
In this study, k-b PCA was proposed and applied to IVIM data acquisition in the 
brain. It has been shown that reconstruction errors are reduced with the 
proposed method compared to CG-SENSE parallel imaging for R>3. Accordingly, 
IVIM parameter estimation was notably improved with the proposed technique 
permitting a maximum net undersampling factor of 6 and hence reduced image 
distortions in single-shot imaging. 

At R<3, the better performance of CG-SENSE relative to k-b PCA is attributed to 
the data-driven regularization used in k-b PCA. The regularization weight was 
kept constant for all undersampling factors tested in this work to simplify the 
approach and avoid data-specific tuning in practice. It is perceivable that a 
lower regularization weight at low undersampling factors would help to reduce 
errors, which, however, was not used here to keep the method simple. 
However, for higher undersampling factors R≥3, the regularization of the 
proposed approach can effectively reduce the variance of the image estimator 
and hence noise, leading to superior reconstruction relative to parallel imaging, 
i.e. CG-SENSE. 

The presented reconstruction technique operates in the spatio-principal 
component space and benefits from the sparsity of the data in this Fourier and 
PCA transformed data representation. This type of ridge regression therefore 
exploits similarities present in the data along the diffusion weighting 
dimension. In general, however, an optimal experiment design of the IVIM 
model with regard to the set of b-values and/or diffusion weighting directions 
to be acquired based on Monte Carlo simulation (Lemke et al. 2011) or Fisher 
Information (Purvis et al. 2015) does not necessarily coincide with a sampling 
pattern which yields minimal sparsity in a k-b approach and hence optimal 
reconstruction quality. 

The reference dataset for retrospective undersampling was generated with 
partial Fourier acquisition and a homodyne filter. This resulted in a Hermitian 
symmetric outer k-space where no data was acquired during readout, which is 
a limitation of the dataset used for prospective undersampling.   

Along the lines of the present study, which takes advantage of the similarity 
along the diffusion encoding dimension, other alternative approaches are 
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possible. To this end, Compressed Sensing (Lustig et al. 2008) based approaches 
(Lustig et al. 2006; Huang et al. 2012; Zhang et al. 2015; Zhao et al. 2015) may 
be used. While these methods do not require fully sampled training data, they 
also rely on sparse representations of the data. However, these LASSO type 
regression (Tibshirani 1996) methods are non-linear and hence optimization is 
more challenging. In addition, a potential risk exists with more “aggressive” 
priors/regularizations to over-smooth small features which are near the noise 
level if the undersampling factor is too high (Knoll et al. 2015): the  L1 

regularization in Compressed Sensing corresponds to a Laplace prior in a 
Bayesian framework. Compared to the Gaussian regularization employed in the 
proposed method, a Laplacian distribution promotes probability stronger 
around the center of the distribution and hence causes a stronger suppression 
of higher order components of the sparse basis, which can lead to over-
smoothing. 

 The proposed k-b PCA method requires a certain number of training profiles 
to capture the relevant object features using the basis transform. The usage of 
9 training profiles in this study did not result in any relevant loss of detail for 
the range of undersampling factors employed. If, however, acceleration factors 
beyond those reported in this work were used, the reconstructed images would 
start suffering from missing details. In this case, more training profiles are 
required to constrain the reconstruction problem further. Both aspects, the 
number of training profiles and the degree of k-space undersampling limit the 
proposed approach to about 10-fold nominal undersampling in dynamic 
imaging applications (Schmidt et al. 2014) and 8-fold nominal undersampling in 
parameter mapping (Petzschner et al. 2011) when using 9 to 11 training profiles 
typically. 

Another alternative reconstruction approach casts MR signal relations into the 
forward model as proposed for parameter mapping, also in diffusion MRI (Zhu 
et al. 2012; Welsh et al. 2013; Knoll et al. 2015). However, since the IVIM model 
describes signal magnitudes only, the image phase needs also to be estimated 
or acquired from a low-resolution training set. Such an approach is permissible 
if the object phase can be represented using low-order spatial harmonics. If, 
however, the object phase varies locally as in or near vessels, for example, 
optimization needs to employ separate magnitude and phase regularization 
(Zhao et al. 2012; Santelli et al. 2016). The proposed k-b PCA method is able to 
resolve local phase variations, as shown for k-t PCA accelerated flow 
measurements in the neck for example (Knobloch et al. 2014). Moreover, the 
optimization procedure in model-based approaches suffers from the intrinsic 
non-linearity of the problem, the non-vanishing covariance among the variables 
and their different scaling.  To this end, the linear quadratic approach 
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presented here provides robust optimization performance in an orthogonal 
principal component basis.  

In practice, IVIM parameter estimation is error-prone and has resulted in 
various regularized regression methods (Orton et al. 2014; Spinner et al. 2017). 
These latter methods rely on homogeneous tissue in terms of diffusion and 
perfusion properties. In the brain, however, different types are present, such a 
gray matter, white matter and CSF-rich areas. Moreover, IVIM applications in 
the brain have so far relied on a voxel-wise least-squares fit (Federau et al. 
2012; Federau et al. 2014; Federau et al. 2017) and hence this regression 
method is deemed applicable for the analysis of the presented image 
reconstruction method. The small deviation of the IVIM parameters of the 
prospectively undersampled data and the fully sampled reference can be 
attributed to the slightly different echo times. 

5.5 Conclusion 
Constrained reconstruction using k-b PCA improves IVIM parameter mapping 
from undersampled data when compared to CG-SENSE reconstruction. 
Accordingly, k-b PCA permits reduction of readout durations, associated EPI 
artifacts and echo time beyond the limits of parallel imaging. Alternatively, it 
potentially allows reducing partial voluming through increased spatial 
resolution in the brain. 

5.6 Appendix 

 

Figure 5.7: Magnitude images of all acquired slices. Single-shot b=0 s/mm2 
magnitude images reconstructed of prospectively undersampled (R=6.08) 
and k-b PCA reconstructed data, displaying all acquired slices in a 
volunteer. Note the relative absence of typical long readout EPI artifacts 
such as distortions, signal attenuation or build-up near air-tissue 
interfaces. 
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 Ref.  R=1.91 2.73 3.48 4.17 4.81 5.39 5.93 

D
 [

1
0

3
m

m
2
/s

] 

0.77±0.18 

CG-
SENSE 

0.77±0.18 0.77±0.18 0.78 ±0.19 0.77±0.19 0.78±0.19 0.78±0.20 0.81±0.31 

k-b PCA 0.77±0.16 0.77±0.16 0.78±0.16 0.78±0.16 0.78±0.16 0.78±0.16 0.78±0.16 

f 
 

[%
] 6.20±6.62 

CG-
SENSE 

6.12±6.87 6.37±6.77 6.17±8.66 7.26±8.70 7.14±9.45 8.14±9.29 8.96±16.26 

k-b PCA 6.18±7.04 6.22±7.06 6.28±7.15 6.29±7.16 6.32±7.17 6.36±7.20 6.50±7.36 

D
*

 

[1
0

-3
 m

m
2 /s

] 

6.96±1.98 

CG-
SENSE 

7.00±2.62 7.00±2.35 7.32±7.29 7.03±4.32 7.23±6.68 7.08±4.93 11.33±22.15 

k-b PCA 6.91±1.55 6.93±1.62 6.95±1.74 6.95±1.76 6.96±1.8 6.96±1.86 7.00±2.05 

Table 5.1: IVIM parameter estimates (median±interquartile range) of the 
fully sampled data from 11 volunteers together with IVIM estimates after 
reconstructing with CG-SENSE and k-b PCA for all investigated net 
undersampling factors 
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Chapter 6  
Bayesian intravoxel incoherent 
motion parameter mapping in the 
human heart2 

6.1 Background 
Cardiac IVIM may allow to delineate infarcted and ischemic areas showing good 
agreement with late-gadolinium enhanced imaging (Deux et al. 2011; Laissy et 
al. 2013). Moreover, IVIM may enable the assessment of chronic and acute 
ischemia (von Deuster et al. 2015) as well as conditions related to microvascular 
obstruction of the myocardium (Ismail et al. 2014). 

Despite recent progress, in-vivo cardiac diffusion weighted imaging still remains 
challenging due to cardiac and respiratory motion. Additionally, low signal-to-
noise ratio (SNR) and long scan times are major impediments to a wider 
acceptance in a clinical setting. Motion induced signal loss in spin-echo (SE) 
based cardiac diffusion weighted imaging has been addressed by first-order 
motion compensated diffusion gradient designs in conjunction with careful 
cardiac trigger delay selection (Gamper et al. 2007) and more recently by 
second-order motion compensation (Nguyen et al. 2014; Welsh et al. 2015; 
Stoeck et al. 2016). Initial results of the application of second-order motion 
compensation for IVIM acquisitions during systole have previously been 
presented in a porcine model (von Deuster et al. 2015). For diastolic imaging, 
time-shifted triggering and dedicated post processing using principal 
component analysis (PCA) filtering in combination with temporal maximum 
intensity projection (PCATMIP) has been proposed (Pai et al. 2011; Rapacchi et 
al. 2011; Delattre et al. 2012; Moulin et al. 2016).  

Experimentally, cardiac IVIM parameters were initially reported for the in-vivo 
canine heart (Callot et al. 2003). The measured diffusion weighted signal agreed 
well with the bi-exponential IVIM model with reduced signal decay in the 
absence of perfusion post-mortem (von Deuster et al. 2015).  

IVIM parameter maps of various organs such as brain or heart (Federau et al. 
2014; Moulin et al. 2016) are typically of noisy appearance. Due to the non-

                                                                 
2 Published in: Spinner GR, von Deuster C, Tezcan KC, Stoeck CT, Kozerke S (2017) Bayesian intravoxel incoherent 
motion parameter mapping in the human heart. Journal of Cardiovascular Magnetic Resonance 19(1):85. doi: 
10.1186/s12968-017-0391-1 
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linearity and bad conditioning of the regression problem, the perfusion related 
parameters are estimated with considerable error at typical SNR values as 
shown in (Federau et al. 2015; Wu et al. 2015). Besides modifying the data 
acquisition protocol to obtain higher SNR at the expense of lower spatial 
resolution and/or longer scan time, group analysis of longitudinal data of 
individuals incorporating both intra- and inter-subject variations (Huang et al. 
2016) or regional smoothing (Rheinheimer et al. 2012) have been proposed. 
These approaches are, however, limited by the necessity of repeated 
measurements across multiple independent subjects or loss of spatial 
resolution and increased partial voluming, respectively.  

To address the SNR limitation of IVIM analysis, a hierarchical Bayesian data 
analysis framework has been presented by Orton et al. (Orton et al. 2014) and 
demonstrated for liver application. Using this approach, information across the 
region-of-interest is taken into account for voxel-wise parameter inference. 
Parameter estimation is performed using a posterior distribution combining 
data likelihood and histogram prior. This combination enables effective 
denoising of parameter maps with reduced parameter estimation error.  

The objective of the present work was to implement and assess Bayesian 
shrinkage prior (BSP) inference for IVIM parameter mapping of the in-vivo 
human heart and compare its performance to segmented least-squares (LSQ) 
fitting. 

6.2 Theory 
6.2.1 Intravoxel incoherent motion 
The IVIM model (Le Bihan 1988) in Equation (6.1) describes signal magnitude 
of diffusion weighted images as bi-exponential decay. In addition to diffusion 
induced signal attenuation, a second compartment of perfusion induced 
pseudo-diffusion is taken into account: 

               
 

*
0 exp 1 expS b S F bD F bD  (6.1) 

where  S b  describes the measured signal as a function of b-value, 0S  the 

signal without diffusion weighting (b= 0 s/mm2), D  the diffusion constant, F  

the perfusion fraction and *D  the pseudo-diffusion constant. Note that capital 
F  is used for the perfusion fraction to be consistent with the notation in (Orton 
et al. 2014). 
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6.2.2 Least-squares fitting 
For least-squares fitting, a segmented approach (Notohamiprodjo et al. 2015) 
is implemented assuming the contribution of the perfusion to reach a 

maximum of  1F F  at b= 0 s/mm2 and to drop to negligible values for b-

values b>>bSplit. In practice, high b-values (b≥bSplit 200 s/mm2) are fitted to a 
mono-exponential diffusion-only model: 

               0 1 exp expintS b S F bD S bD  (6.2) 

If a non-diffusion weighted image 0S  is not available, the intercept intS  does 

not allow for a direct calculation of the perfusion fraction F  as described in 

(Notohamiprodjo et al. 2015), but   int 0 1S S f  enables to eliminate 0S  in 

the bi-exponential model. In the second step of the segmented regression, the 

perfusion related parameters F  and *D  are estimated using the 
predetermined diffusion coefficient D  and the mono-exponential intercept 

intS  while taking into account all considered b-values. By substituting 0S  in 

Equation (6.1), the signal model reads accordingly: 
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   
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      

*
0

*
int

exp (1 ) exp

exp exp
1

S b S F bD F bD

F
S bD bD

F

 (6.3) 

The non-linear regression is implemented using an interior-point algorithm in 
Matlab (Mathworks, Natick, MA) and constrained by an inequality together 
with box constraints as in (Orton et al. 2014): 
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 (6.4) 

6.2.3 Bayesian shrinkage prior inference 
For Bayesian inference as presented in (Orton et al. 2014), a marginalized data 
likelihood is used along with a multivariate Gaussian histogram prior combined 
with Jeffrey’s prior (Jeffreys 1946). The approach is implemented using a 
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Markov chain Monte Carlo (MCMC) method as described in the Appendix 1 
(Chapter 6.7).  

6.3 Methods 
6.3.1 Computer simulations 
IVIM parameter ranges were simulated according to values reported for the in-
vivo heart (von Deuster et al. 2015; Moulin et al. 2016). The diffusion coefficient 
was set to D =1.5·10-3 mm2/s, while three perfusion regimes (low, 

intermediate, high) were considered ( */F D =10/10, 15/15, 20/20 %/10-3 

mm2/s). The simulated SNRs ranged from 10 to 100 in steps of 10 and from 100 
to 200 in steps of 25. Gaussian distributed noise was added followed by 
magnitude detection to yield Rician distributed noise mimicking the noise 
distribution of MR magnitude images. A single Monte Carlo simulation run 
consisted of 1000 IVIM data sets with b-values as used in the in-vivo part of this 
study: 20 to 100 s/mm2 in steps of 20 s/mm2, 125 to 200 s/mm2 in steps of 25 

s/mm2, 250 and 300 s/mm2. Both bias  Ref Refp̂ p p  and variation  Ref
ˆ

p p  

with Dp , F  and *D , Refp  the simulated parameter, p̂  the mean estimate 

and ̂p  the standard deviation of the estimated parameters were calculated 

and are reported as relative errors. The simulation was repeated and resulting 
parameter estimation errors were averaged 100 times.  

6.3.2 In-vivo measurements 
Second-order motion compensated spine-echo (SE) diffusion weighted imaging 
(Welsh et al. 2015; Stoeck et al. 2016) was implemented on a 1.5T Philips 
Achieva System (Philips Healthcare, Best, The Netherlands), see  Figure 6.1. 
Signal was received with a 5 channel cardiac receiver array. Written informed 
consent was obtained from all subjects prior to imaging. The study protocol was 
approved by the ethics committee of the Canton of Zurich. Consent included 
imaging as well as publication of anonymized data. 

Data were acquired in eight healthy subjects without history of cardiac disease 
(6 female, 2 male, weight 64±8 kg, age 26±4 years, heart rate 64±9 beats/min, 
min/max heart rates: 51/81 beats/min) on two separate occasions.  Prior to 
diffusion imaging, cine data with a temporal resolution of 10 ms were acquired 
in two chamber and short axis view orientations. Using the cine images, systolic 
quiescent time points were determined visually on a per subject basis.  

Diffusion weighted imaging was performed during free-breathing in short-axis 
view orientation using single-shot EPI readout with the reduced field-of-view 
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(FOV) technique Local-Look (LoLo) (Feinberg et al. 1985). Slice tracking to 
account for breathing motion was controlled by a respiratory 1D navigator 
pencil beam placed on the right hemi diaphragm, accepting all data. A 1-3-3-1 
binomial spectral-spatial excitation pulse for fat suppression (Meyer et al. 
1990) was employed. Images were acquired with in-plane resolution: 2.4×2.4 
mm2, slice thickness: 10 mm, one mid-ventricular slice, field of view (FOV): 
230×105 mm2, acquired k-space lines: 43, TR/TE: 2 R-R/73 ms, flip angle: 81±1° 
(heart rate dependent Ernst angle (Ernst 1966)), 8 signal averages and 6 vendor 
gradient optimized diffusion encoding directions. The applied diffusion 
encoding strengths included the values described in the previous sections (20 
to 100 s/mm2 in steps of 20 s/mm2, 125 to 200 s/mm2 in steps of 25 s/mm2, 
250 and 300 s/mm2) together with 0 s/mm2. The trigger delay for the SE 
sequence was set to 25% peak systolic contraction (Stoeck et al. 2016) with a 
mean trigger delay of 78±3 ms. Acquisition of the 8 signal averages for each  
diffusion encoding strength and direction was equally distributed along the 
measurement. Total scan time was about 18 min at a heart rate of 60 beats per 
minute.  

In-vivo SNR measurements were performed in each volunteer. To measure 
noise, the scans were repeated with radio-frequency and gradient pulses 
switched off. Sufficient time (>10 s) was allowed between image and noise 
acquisition to ensure complete signal decay. SNR was determined for each 
voxel as described in (Nordmeyer-Massner et al. 2009). 

Imaging in each subject was repeated in consecutive sessions separated by one 
week to assess intra-subject reproducibility. 

In addition, diffusion data in an animal model of myocardial infarction was 
evaluated; see Appendix 2 for further details. 
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Figure 6.1: Sequence diagram. Spin-echo acquisition with second-order 
motion-compensated diffusion encoding gradients. Fat suppression is 
achieved by a 1–3–3-1 binomial spatial spectral excitation pulse. The 
excitation slab is tilted orthogonally with respect to the 180° pulse to allow 
for reduced field-of-view imaging. Prior to the diffusion weighting, a 1D–
navigator pencil beam is used for automatic slice tracking by shifting the 
excitation and echo pulses. Various b-values are achieved by keeping 
timing constant while varying gradient strengths (dotted gradient 
trapezoids) 

6.3.3 Data post-processing 
For in-vivo IVIM parameter mapping, images were first registered using a 
dedicated group-wise image registration method (Vishnevskiy et al. 2017) 
employing total variation displacement regularization and a PCA-based image 
similarity metric (Huizinga et al. 2016) to correct for in-plane residual geometric 
inconsistencies. Afterwards, complex averaging (Scott et al. 2016) of the signal 
averages was performed. The IVIM parameters of both regression methods 
(LSQ and BSP) and SNR were determined upon manual masking the left 
ventricular myocardium. The same segmentation was used for both regression 
methods (LSQ and BSP). To avoid partial volume effects, voxels at the epi- and 
endocardial borders were excluded during the segmentation process and all 
voxels within the segmented ROI were used for further analysis. The image 
magnitudes were corrected for heart rate variations using recorded R-R 
intervals and published T1 values of the myocardium (Messroghli et al. 2006). 
Figure 6.2 summarizes all post processing steps. IVIM analysis was performed 
on data with b≥20  s/mm2 to suppress artifacts from blood flow while mean 
SNR was determined on b=0 s/mm2 images. 
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Figure 6.2: Post-processing workflow. Acquired data consists of six 
diffusion encoding directions, twelve diffusion encoding strengths (b-
values) and eight averages. Example magnitudes are displayed at the top. 
The lower post-processing workflow diagram summarizes consecutive 
data handling steps in every volunteer. After image reconstruction, image 
registration is performed to compensate for residual geometric 
inconsistencies. Heart rate variations and hence signal fluctuations due to 
TR variations are compensated using recorded ECG signals. Trace data is 
generated after complex averaging. This data is used for IVIM parameter 
estimation employing both LSQ and BSP regression 

For BSP inference, the total number of MCMC samples was set to NS=20000. A 
“burn-in” period of 10000 (discarded) samples was used before actual 
sampling. The Markov chains were initialized with LSQ estimates of the IVIM 
parameters. Note that the Markov Chains can be started from arbitrary starting 
values, however a starting point close to the actual parameter estimates 
shortens the burn-in phase and hence saves computation time. Further details 
of the estimation method can be found in the Appendix of Orton et al. (Orton 
et al. 2014). A vectorized approach of the referenced procedure was 
implemented in Matlab (Mathworks, Natick) and run on standard PC hardware 
(2.9 GHz, 16 GB RAM). 
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6.3.4 Reproducibility analysis 
In order to assess reproducibility of two consecutive scans, Bland-Altman 
analysis was performed and the coefficient of variability was calculated for both 
scan sessions. 

6.4 Results 
6.4.1 Computer simulations 

In Figure 6.3, relative errors of D , F  and *D  for BSP versus LSQ as a function 
of SNR are reported for a Monte Carlo simulation. Both methods show overall 
decreasing errors for increasing SNR. 

 

Figure 6.3: Simulation. Accuracy (bias) and precision (variation) errors of 
LSQ and BSP are determined from SNR 10 to 200 on simulated data for 
three perfusion regimes. Dashed black lines indicate 20% error 

The bias of D  with both LSQ and BSP is reduced to below 20% for all perfusion 
scenarios at SNR≥20, with the bias of LSQ remaining between 3% and 10% even 
at high SNRs. The variation of D  with BSP is consistently lower over the entire 
SNR range compared to LSQ. It drops below 20% error at an SNR of approx. 90 
for LSQ, but remains below 20% already for the lowest simulated SNR of 10 for 
BSP. Estimation of the perfusion fraction F  yields lower bias with BSP relative 
to LSQ between an SNR of 20 to 90-150 depending on the perfusion regime 
tested. LSQ shows an increase in bias for SNR≥125-175. The variation of F  with 
BSP is consistently lower compared to LSQ over the entire SNR range and 
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perfusion regimes. The relative error is below 20% for SNR≥30 if BSP is used for 
inference. Depending on the perfusion regime simulated, the error using LSQ 
remains above that threshold except for the high perfusion regime at a 

SNR≥175. The SNR dependency of *D  shows consistently lower bias and 
variation for BSP relative to LSQ for SNR≥20. For LSQ, bias remains above 20% 

error for an SNR of 200 for all perfusion regimes. Variation of *D  with LSQ 
remains also above 20% even at an SNR of 200 for all perfusion regimes while 
bias and variation with BSP are bound to below 20% for SNR values above 40 
and 60, respectively. Based on the simulation, an overall minimum SNR of 30-
60 depending on the perfusion regime is identified for BSP to determine D , F  

and *D  within 20% bias and variation. The LSQ method exhibits errors above 
the mentioned threshold even at an SNR of 200. 

6.4.2 In-vivo measurements 
The in-vivo SNR measured without diffusion weighting was 19±3 for one signal 
average, resulting in an SNR of approximately 54 for averaged data. Figure 6.4 
shows example in-vivo magnitude images for a selection of b-values. The bright 
blood pool signal in the center of the image is dephased with increasing 
diffusion weighting. Example trace magnitude signals averaged across the 
region-of-interest are displayed. In addition, trace signals from all volunteers 
and repetitions are plotted.  
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Figure 6.4: In-vivo data. Example averaged co-registered magnitude trace 
dataset showing all recorded b-values (a), averaged magnitude signal 
across the region-of-interest (highlighted in the small inset) of the same 
volunteer with error bars showing variations among diffusion encoding 
directions together with a mono-exponential fit for b ≥ 200 mm2/s to 
distinguish the perfusion contribution (b). Mean magnitude signals across 
all volunteers and repetitions together with the mean over all 
measurements and corresponding mono-exponential fits (c). Deviations 
from a purely mono-exponential model are discernable for small b-values 
(b < 150 mm2/s) in b and c. Note that the plots b and c have logarithmic 
y-axes 

In Figure 6.5, example IVIM parameter maps computed with LSQ and BSP along 
with corresponding histograms are shown. While LSQ maps exhibit spatial noise 
and patch-like structures, BSP yields a more uniform distribution in the 

myocardium which is reflected in narrower distributions of D , F  and *D . Of 
note, LSQ resulted in a high number of voxels in which the estimated IVIM 
parameters reached or were close to the box constraints. 
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Figure 6.5: IVIM parameter maps with corresponding histograms. Spatial 
variation of the parameters is reduced for the Bayesian approach (BSP) 
relative to least-squares (LSQ). Histograms show corresponding narrower 
distributions for BSP versus LSQ. Note that local variations in F  are 
preserved with the BSP method. Outliers are greatly reduced with BSP for  

F   and *D . 

Figure 6.6 summarizes various parameter estimates together with regression 
quality measures (LSQ red boxes, BSP blue boxes) as in (Orton et al. 2014). The 
left column summarizes mean and median estimates across the corresponding 
regions-of-interests of all parameters. Both the LSQ mean and median 
estimates of D  tend to relatively high values compared to BSP, while the prior 
mean of BSP is within the range of previously reported values (von Deuster et 
al. 2016b; Moulin et al. 2016). Considering the parameter F , there are notable 
differences among the mean and median estimates, indicating the presence of 
fitting outliers. Again, the prior mean of BSP is in the range of previously 

reported values (Moulin et al. 2016). The mean estimates of *D  are strongly 
influenced by (high valued) outliers in the region-of-interest, explaining the 
difference in mean and median LSQ estimates. The BSP prior means take values 
close to the LSQ median values. The variability measures within the region-of-
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interest in the middle column show reduced variability for BSP versus LSQ in all 
parameters both considering standard deviation and percentile based 
measures. The fit quality in terms of median estimated standard deviation 

under the posterior (for example d ) is displayed in the right column. The BSP 

based deviations are consistently lower compared to the LSQ based values.  

 

Figure 6.6: Parameter regression Box-and-Whisker plots. Red boxes 
represent LSQ derived values; blue boxes represent BSP derived estimates 
across all measurements (volunteers and repetitions). Left column: BSP 

prior mean values ( p , p D , F  and *D ) and means/medians of LSQ 

pixel-wise (LSQmean and LSQmedian) and region-of interest averaged 
(LSQmean

ROI and LSQmedian
ROI)  magnitude derived estimates. Note the 

logarithmic y-scale of the *D estimates plot. Middle column: parameter 
estimate variability is displayed as 3.9×prior standard deviations from the 

BSP estimation ( 
1 23.9 pp , p D , F  and *D ), as width of the 95% 

interval of the LSQ estimates and 3.9×standard deviation over each 
region-of-interest of the LSQ estimates (scaled by 3.9 to approximate the 
95% interval assuming a Gaussian distribution). Right column: parameter 
uncertainty displayed as median of estimated standard deviation under 

the posterior distribution (p , p D , F  and *D ). 

For reproducibility analysis, medians across the left ventricular 
myocardium/region-of-interest were considered because of the large amount 
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of outliers for LSQ fitting. Figure 6.7 shows the Bland-Altman analysis of two 
consecutive scans within one session. Mean biases (LSQ/BSP) of +0.02/-
0.05·10-3 mm2/s for D , -0.58/+0.51% for F  and +26.28/-1.56 ·10-3 mm2/s for 

*D  were found. The Bland-Altman coefficients of repeatability are (LSQ/BSP): 
0.22/0.11·10-3 mm2/s for D , 5.74/5.54% for F  and 422.80/11.93·10-3 mm2/s 

for *D . 

 

Figure 6.7: Bland-Altman analysis. Bland-Altman plots showing intra-
subject reproducibility of the medians across the regions-of-interest of two 
consecutive scan sessions for both LSQ and BSP. Medians were chosen to 
reduce the influence of the high ratio of LSQ outliers. Note the different 

plot ranges of *D for LSQ and BSP 

Figure 6.8 shows a summary over all measurement estimates. The upper row 
displays medians across the regions-of-interests for both sessions. As in Figure 
6.6, the estimates of D  were found to be higher for LSQ compared to BSP. The 
medians of the LSQ/BSP estimates are covering ranges of 0.61/0.51·10-3 mm2/s 

for D , 14.79/10.27% for F , 763.37/27.42·10-3 mm2/s for *D . The lower row of 
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Figure 6.8 reports all measurements by displaying the means across all voxels 
within the region-of-interest and the corresponding standard deviations. The 
mean values of the IVIM parameters are (LSQ/BSP) 1.63±0.28/1.51±0.14·10-3 
mm2/s for D , 13.13±19.81/13.11±5.95% for F  and 

201.50±313.20/13.11±14.53·10-3 mm2/s for *D . The estimates for all IVIM 
parameters from the two inference procedures are significantly different 
(p<0.05) from each other using the Wilcoxon signed-rank test. Both mean D  

and F  are within 10% relative difference, but the mean estimates of *D  are 
one order of magnitude different from each other. This is again due to the high 
number of outliers produced by the LSQ method. The standard deviations of all 
three IVIM parameters are consistently lower for BSP compared to LSQ. 

 

Figure 6.8: Summary. Top row: medians across the regions-of-interest for 
the two sessions and scans (connected by dashed lines). The means of the 
medians of the two intra-session repetitions are connected by solid lines 
for the two sessions. The BSP estimates are clustered closer together and 
cover a smaller range compared to the LSQ derived estimates. Bottom 
row: means and standard deviations of all estimates across all volunteers 
and repetitions. The standard deviations are consistently smaller for BSP. 
The parameter estimates of the two methods are significantly different 

(*, p < 0.05). Note the logarithmic y-axes for *D . 

Potential scan time reduction was investigated by retrospectively skipping 
diffusion encoding gradient directions. The reduced SNR due to data 
subsampling leads to a mean absolute error across all voxels of all 
measurements of 0.25/0.14·10-3 mm2/s (D ), 11.38/4.67% ( F ) and 
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185.38/15.82·10-3 mm2/s ( *D ) for LSQ/BSP if only three instead of all six 
directions are used as shown in Figure 6.9. 

 

Figure 6.9: Data subsampling. Absolute pixel-wise parameter estimation 
error for both LSQ and BSP methods versus number of used diffusion 
encoding gradient directions. Boxes indicate mean values across all voxels 
of all measurements; error bars are displaying corresponding standard 
deviations 

The LSQ and BSP estimates were further compared by a regression analysis of 
the median estimates across the corresponding regions-of-interest as shown in 
Figure 6.10. The diffusion coefficient exhibits an approximately linear 
correlation between the two methods with LSQ tending to higher values. For 

the perfusion parameters there is no clear linear correlation. Especially *D  
exhibits outliers. The Kullback-Leibler divergences DKL(LSQ||BSP) of the BSP 
parameter estimates from the LSQ estimates are summarized for all 
measurements in Figure 6.10. The median divergences and standard deviations 

were: 15±11/16±11/14±10 bit for D / F / *D  respectively. 
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Figure 6.10: Regression lines & Kullback-Leibler divergences. The plots a, 
b and c display the medians across the corresponding regions-of-interest 
(ROI) of all measurements together with regression lines. Respective 
coefficients are shown in the legends. The plot d summarizes the Kullback-
Leibler divergences of the BSP estimates from the LSQ estimates of all 
measurements 

The infarcted septal region in an animal model exhibits reduced blood flow in a 
conventional contrast enhanced first pass perfusion scan as well as reduced 
IVIM perfusion parameters for both regression methods. The BSP derived maps 
do not contain outliers and hence allow a clearer delineation of the infarcted 
area compared to LSQ. Further details can be found in Appendix 2 (Chapter 
6.8). 
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6.5 Discussion 
In the present work, Bayesian shrinkage prior inference has been implemented 
and compared to segmented least-squares fitting for IVIM parameter mapping 
in the in-vivo human heart.  

Robust data acquisition was possible using a second-order motion-
compensated diffusion weighted spin-echo sequence (Stoeck et al. 2016) 
triggered to early systole. Using a trigger delay of 25% peak systole is 
advantageous because of increased coronary flow compared to peak 
contraction. Moreover, a large part of systole is potentially available for IVIM 
acquisitions as shown in (Stoeck et al. 2016): trigger delays in the range of 15-
77/79% peak systole at the apex/base allow for robust diffusion data 
acquisition. In addition, imaging in systole has the advantage of a relatively thick 
myocardium compared to the voxel size. 

Using motion-compensated diffusion gradients may lead to a reduced 
sensitivity to blood circulation and myocardial perfusion (Wetscherek et al. 
2015). However, deviations from a mono-exponential diffusion model at lower 
b-values due to perfusion were observed in all measurements indicating 
sufficient sensitivity to microcirculation and perfusion. Balancing motion-
induced signal loss due to cardiac bulk motion while achieving optimal 
sensitivity to perfusion is however a subject deserving further attention. 

 Computer simulations revealed minimum SNR thresholds of 30-60 for relative 
errors in terms of bias and variation of 20% each, depending on the perfusion 
regime for BSP while the LSQ method required a minimum SNR of at least 200. 
The increase in bias in F  for the SNR range of 125-175 using LSQ is suspected 
to be an artefact of the segmented fit, which leads to an error propagation of 
D  and intS  into the estimation of the perfusion parameters. Furthermore, we 

note that Federau and colleagues also reported a similar increase in bias in F  
in Figure 1 of (Federau et al. 2015) using a segmented approach; albeit in the 
SNR range of approx. 20-40 with simulated IVIM parameters which are 

commonly found in the brain (D =0.7·10-3 mm2s-1, F =4% and *D =17·10-3 

mm2s-1). Even though the relative bias in F  in the considered SNR range is 
below about 10%, the segmented fit might benefit from a joint parameter 
estimation (potentially using two regimes of mono- and bi-exponential decay) 
in this regard. While these simulation results are indicative, several factors 
confounding in-vivo measurements have not been taken into account in the 
simulations including residual motion artifacts and partial voluming with 
hyperintense blood signal and epicardial fat (While 2017). These effects would 
lead to a broadening of the parameter histograms. Accordingly, the width of 
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the prior is increased by the presence of a large number of affected voxels. The 
shrinking procedure in these cases is less effective. 

In-vivo, BSP analysis resulted in IVIM parameter maps with considerably smaller 
intra-myocardial standard deviations relative to LSQ. Both variability and 
estimation uncertainty in terms of standard deviation under the posterior were 
greatly reduced with BSP compared to LSQ (Figure 6.6), indicating the benefit 
of taking into account prior knowledge. The setting of arbitrary fit constraints 
was obsolete in the BSP procedure. In addition, BSP regression was aided by 
the prior which led to the elimination of outliers on or close to the fit 
boundaries.  

An effective spatial denoising of the parameters can be achieved because the 
prior in BSP is chosen to be a unimodal distribution. This prior assumes a 
population mean of the IVIM parameters for the whole region-of-interest and 
hence assumes the myocardium of the left ventricle to have a rather 
homogenous spatial tissue characteristic. If local pathologies such as 
myocardial infarcts (as for example presented in Appendix 2/Chapter 6.8) and 
corresponding fibrous tissue with reduced perfusion (von Deuster et al. 2015) 
are present, a different choice of priors such as a spatial homogeneous prior 
(Freiman et al. 2013) is deemed more appropriate (While 2017). Alternatively, 
multimodal priors can be applied to distinguish among different tissue types 
while still retaining spatial information. Methods using mixture models 
(Stoneking 2014) of multivariate Gaussians could also be implemented to 
address this limitation. In contrast to the LSQ approach, which allows data 
processing on a pixel-by-pixel basis, the BSP method requires pre-segmentation 
of the data, which renders automation in a post-processing workflow more 
challenging. 

Overall, the in-vivo IVIM parameters measured in this study are in good 
accordance with recent literature (Froeling et al. 2014; Moulin et al. 2016). The 
diffusion coefficients D  found in this study using LSQ and BSP were within the 
range of the values found in (Froeling et al. 2014; Moulin et al. 2016). A higher 
measured diffusivity is indicative of residual motion effects in the data (Stoeck 
et al. 2017). In addition, the mean diffusivity measured using spin-echo based 
Diffusion Tensor Imaging (DTI) during early systole (von Deuster et al. 2016b) 
was within 14% and 6% of the mean measured diffusion coefficient of the 
present study for LSQ and BSP, respectively. The measured perfusion fraction 
F  was found to be lower compared to data reported in (Froeling et al. 2014). 
The LSQ and BSP estimation of approx. 13% is close to the 12% found in (Moulin 

et al. 2016) during diastole. The pseudo-diffusion coefficients *D  of 
201.50±313.20·10-3 mm2/s (LSQ) and 13.11±14.53·10-3 mm2/s (BSP) as 
measured in the present study are different from previous data 
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(52.68±52.61·10-3 mm2/s (Froeling et al. 2014), 43.6±9.2·10-3 mm2/s (Moulin et 

al. 2016)). However, *D  usually contains the highest number of outliers and 
the mean across the region-of-interest is therefore prone to be heavily 
influenced by the choice of the actual value of the box-constraints. If the 
medians across the region-of-interest are considered, it is shown that the 
majority of the LSQ estimates gather in the range of 20 to 50·10-3 mm2/s.  

Moreover, data in Figure 6.6 indicates that mean estimates of *D  are 
considerably influenced by outliers with median parameter values close to the 
ones found using the BSP method.  

The IVIM perfusion parameters in an infarcted animal model (see also Appendix 
2) show good accordance with the perfusion defect visible in the contrast 
enhanced perfusion scan, especially considering the blood flow related 

(Federau et al. 2014; Federau et al. 2015) product  *F D  of the BSP derived 
estimates. However, the extension of the infarct indicated by IVIM appears 
smaller compared to the darkened area of the contrast enhanced perfusion 
scan. This might be due to residual motion and/or partial voluming which can 
yield elevated IVIM parameter estimates.  

All SNR measurements were obtained from a single signal average. Thereby 
confounding factors due to image registration and phase correction for 
averaging of complex data were avoided. The in-vivo SNR was above the 20% 
parameter error threshold found in simulations. The scan of ca. 18 min  for a 
heart rate of 60 bpm for this study was in-between previous scanning times of 
15 min (Froeling et al. 2014) and 20 min (Moulin et al. 2016). Optimizations of 
the experiment design in terms of b-value distribution (Lemke et al. 2011), 
higher static field strength and improved gradient performance to reduce echo 
times may allow to reduce parameter estimation error and scan time. 

By design, Bayesian approaches exploiting information across the region-of-
interest can be used to examine distributed rather than focal pathologies of the 
myocardium. Accordingly, potential applications relate to microvascular 
obstruction and educed and/or delayed perfusion of the myocardium in 
hypertrophic cardiomyopathy and diabetes (Fang et al. 2004; Ismail et al. 
2014).  

6.6 Conclusion 
Bayesian IVIM parameter mapping yields improved parameter maps relative to 
conventional segmented least-squares fitting in the human heart. In 
conjunction with motion compensated diffusion weighted spin-echo 
sequences, robust parameter estimation can be achieved providing a tissue 
perfusion surrogate without contrast agent application. Further in-vivo studies 
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are now warranted to assess the performance of the method in relevant 
patient populations. 

 

6.7 Appendix 1  
6.7.1 Hierarchical Bayesian modelling 
The Bayesian inference procedure (Orton et al. 2014) is summarized as follows. 
Using the IVIM model  
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where ny  is a data point measured at the n-th b-value bn with error term n  of 

Gaussian distribution with variance 2
S , the data likelihood reads: 
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where   1 2, ,
T

Ny y yy ,            *exp 1 expn n ng F b D F b D  and 

N=number of b-values. 

From a Bayesian perspective, nuisance parameters which are of no interest can 

be marginalized out. Here, the nuisance parameters 0S  and  2
S  are integrated 

out by using a conjugate Normal-Inverse-Gamma prior distribution  
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with    1 2, ,
T

Ng g gg and integration over the domain of definition:  
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The choice of prior allows for an analytic evaluation of Equation(6.8). The 
influence of the prior for the marginalization procedure is diminished by taking 
the limits of the variance of the Normal distribution    and shape and 

scale parameters of the Inverse Gamma distribution   , 0  which encodes 
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a complete lack of prior information. Ignoring proportionality constants which 
do not depend on the IVIM parameters and are hence not necessary for 
parameter inference, the marginalized likelihood becomes: 

      
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In order to take advantage of the histogram structure of IVIM parameters, a 
hierarchical prior structure is adopted. First, a multivariate Gaussian is applied 
to the transformed IVIM parameters. Those transformations are mapping the 
domain of definition to the field of real numbers: 

 

 

     

 



   

* *

  log

logit log log 1

log

d D

f F F F

d D

 (6.10) 

The multivariate Normal distribution considers heterogeneity across the 
region-of-interest and models correlations between the parameters via the 

covariance matrix μ : 
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The mean across the region-of-interest of the parameter   *, ,i i i id f dθ  of 

voxel i is     *, ,d f d
μ . Jeffreys’ prior (Jeffreys 1946) is used for the hyper-

parameters μ   andμ : 
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This prior describes a high probability for a large determinant of the Fisher 

Information  I μ  and hence in the considered case of a multivariate Normal 

distribution for a small determinant of the parameter covariance matrix μ  in 

the region-of-interest. Therefore, a “shrinking” of parameter estimates 
towards the mean of the distribution can typically be observed. The posterior 
is then given by 
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The total number of voxels considered here is M. The parameter independent 

data evidence  1:Mp y , is not required for the inference procedure. 

Expectation values under the posterior in Equation (6.13) are calculated for 
example as 
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and analogously for other parameters or quantities.  

In order to determine variance under the posterior as uncertainty measure for 
the LSQ method, a flat prior according to the box constraints in Equation (6.4) 
is chosen instead of the hierarchical prior structure (Orton et al. 2014).  

6.7.2 Markov chain Monte Carlo (MCMC) implementation 
The integration in Equation (6.14) cannot be performed analytically and 
therefore a MCMC-based numerical approach is implemented (Orton et al. 
2014). The expectation value of a parameter (for example d ) is approximated 

by using NS samples  
d
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i  from a Markov chain output: 
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6.8 Appendix 2 
6.8.1 Infarcted porcine heart 
Both LSQ and BSP approaches were compared in an animal model of acute 
myocardial infarction. Obtained diffusion weighted data from a single female 
pig (65 kg, heart rate 68 1/s) using second-order motion compensated diffusion 
gradients (Stoeck et al. 2016) were evaluated. The imaging parameters were: 
in-plane resolution: 2.4×2.4 mm2, slice thickness: 10 mm, one apical slice, field-
of-view (FOV): 230×120 mm2, acquired k-space lines: 49, TR/TE: 2 R-R/93 ms, 
trigger delay 50% peak systole, flip angle: 90°, 8 signal averages and 6 diffusion 
encoding directions (Jones et al. 1999). The 15 optimized diffusion encoding 
strengths were taken from (Lemke et al. 2011) with a maximum b-value of 740 
s/mm2. The apical myocardial infarct was induced by a permanent distal ligation 
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of the left anterior descending (LAD) coronary artery. The animal was 
anesthetized by a constant dose of Propofol (1.0 ml/kg/min) during surgery and 
the scan. The experiment was performed in adherence to the Swiss law of 
Animal Protection and approved by the Zurich cantonal veterinary office.  

The IVIM parameter maps are shown together with dynamic contrast enhanced 
(DCE) first pass perfusion images in Figure 6.11. The infarcted area can be 
delineated in the septal area (red arrow). The LSQ and BSP derived diffusion 
coefficients D  are similar across the whole LV. The perfusion fraction F  is 
reduced in the septal area for both methods, with outliers present for LSQ. The 

pseudo-diffusion coefficient *D  is also clearly reduced in this area for BSP but 
shows insensible high values for LSQ due to the optimization reaching the fit 
constraints. If the blood flow related (Federau et al. 2014; Federau et al. 2015) 

product of  *F D  is considered, the LSQ derived product does not allow to 
delineate the infarcted region due to many outliers. In contrast, the septal 
region in the BSP derived map shows reduced IVIM perfusion parameters. 

 

Figure 6.11: Infarcted porcine heart. Animal sub study: Dynamic contrast 
enhanced (DCE) first pass imaging shows a myocardial infarct in the septal 
area (red arrow). Corresponding IVIM parameter maps in the same slice 
position reveal a reduction in perfusion related parameters in the septal 
region. The LSQ approach suffers from many outliers, while the BSP 
approach shows low parameter variability (red arrows).    
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Chapter 7  
On probing intravoxel incoherent 
motion in the heart – spin-echo 
versus stimulated-echo diffusion-
weighted imaging3 

7.1 Introduction 
In the presence of diffusion encoding gradients, perfusion of tissue leads to a 
modulation of the MR signal. The influence of perfusion on the MR signal is 
commonly described by the Intravoxel Incoherent Motion (IVIM) concept (Le 
Bihan et al. 1986; Le Bihan 2008) which models perfusion as a pseudo-diffusion 
process on the macroscopic scale. To this end, an isotropic random orientation 
of the microvasculature of the capillary network is assumed (Le Bihan et al. 
1988; Le Bihan and Turner 1992) resulting in a Gaussian stochastic process. 
Similar to water self-diffusion, perfusion is described to cause a mono-
exponential MR signal decay with increasing diffusion weighting. Therefore, 
two diffusion compartments are assumed to model perfusion and diffusion. 
The perfusion fraction depends on the amount of vasculature in a given voxel 
relative to the water contained in the extravascular space. The pseudo-
diffusion coefficient describes blood flow through the capillaries as a diffusion-
like process and hence it relates to blood flow velocity, change of capillary 
direction and mean capillary segment length. Considering both diffusion and 
perfusion, the IVIM model results in a bi-exponential model of the image 
magnitude as a function of diffusion weighting. The model has frequently been 
used to fit data acquired in a variety of anatomical regions including abdomen 
(Yamada et al. 1999; Luciani et al. 2008; Lemke et al. 2009; Patel et al. 2010; 
Notohamiprodjo et al. 2015), heart (Froeling et al. 2014; von Deuster et al. 
2015; Moulin et al. 2016; Spinner et al. 2017) and  brain (Federau et al. 2012; 
Federau et al. 2014; Federau et al. 2017).  

Beyond the original IVIM model (Le Bihan et al. 1986), various extensions have 
been proposed. For example, anisotropy of Gaussian distributions may be 
modeled as a tensor as in diffusion tensor imaging (DTI) (Abdullah et al. 2016). 

                                                                 
3 Published in: Spinner GR, Stoeck CT, Mathez L, von Deuster C, Federau C, Kozerke S (2019) On Probing Intravoxel 
Incoherent Motion in the Heart – Spin-Echo versus Stimulated-Echo Diffusion-Weighted Imaging. Magnetic 
Resonance in Medicine (early view). doi: 10.1002/mrm.27777 
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Alternatively, anisotropy may be modelled using von Mises (also called Fisher-
axial) distributions to describe the spatial orientation of the vasculature around 
a main direction, i.e. the dispersion of the zenith angle of the capillary segments 
(Karampinos et al. 2010). Further, the stochastic process assumed in the IVIM 
model was shown to deviate from a Gaussian distribution within a voxel if only 
a few capillary segments are traversed (Wetscherek et al. 2015) and that the 
usage of gradient shapes which compensate higher-order moments leads to a 
reduced signal attenuation due to perfusion (Wetscherek et al. 2015; Moulin 
et al. 2019). 

Considering experimental data, both ex-vivo and in-vivo IVIM studies have been 
performed in the heart. Canine hearts were studied in-vivo, under adenosine 
administration and post mortem (Callot et al. 2003), using the stimulated echo 
acquisition mode (STEAM). It was shown that the measured perfusion 
parameters depend on the diffusion encoding gradient direction, they increase 
during adenosine administration and they approach noise levels post-mortem. 
Human hearts were studied (Delattre et al. 2012; Moulin et al. 2016) with spin-
echo (SE) sequences triggered to a range of diastolic time points with 
subsequent filtering and maximum intensity projection through time 
(PCATMIP) (Pai et al. 2011; Moulin et al. 2016). In-vivo human data was also 
obtained using second-order motion-compensated SE-DWI triggered to systole 
with consecutive hierarchical Bayesian IVIM parameter estimation (Spinner et 
al. 2017). Patient data were also reported using SE-DWI in diastole (Mou et al. 
2017) demonstrating differences of the pseudo-diffusion coefficient between 
patients and healthy volunteers. Infarcted pig hearts were studied in-vivo and 
post mortem (von Deuster et al. 2015) using second-order motion-
compensated SE-DWI in systole. Reduced perfusion parameters were detected 
in infarcted areas in-vivo. Finally, re-perfused guinea pig hearts were 
successfully studied using the aforementioned SE-DWI tensor approach 
(Abdullah et al. 2016).  

Despite all advances, reliable and reproducible IVIM data acquisition in the in-
vivo heart remains challenging due to the inherently small influence of 
perfusion onto the total signal as well as residual bulk motion and cardiac strain 
effects. While the original isotropic IVIM model (Le Bihan et al. 1986) has been 
used to fit in-vivo cardiac data, its validity in the heart has never been proven. 
The myocardium exhibits an anisotropic muscle fiber microstructure (Mekkaoui 
et al. 2017) with a significant fraction of capillaries being aligned with myofiber 
aggregates (Kaneko et al. 2011) and hence resultant perfusion anisotropy. In 
addition, diffusion encoding durations on the order of 100ms as used with in-
vivo SE-DWI may prompt concerns regarding sufficient signal attenuation being 
achieved while traversing only a few capillary segments (Le Bihan et al. 1988). 
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Finally, the IVIM model is a non-linear model of two diffusion compartments 
where the relative weight of the pseudo-diffusion compartment is about one 
tenth of the dominant diffusion compartment. Echocardiographic data has 
revealed a volume fraction of blood in myocardium of 12.6±1.8% healthy 
individuals at rest (Indermühle et al. 2006), which is confirmed by IVIM-derived 
perfusion fractions of 12.2±1.3% (Moulin et al. 2016) and 13.1±6.00% (Spinner 
et al. 2017). Accordingly, parameter fitting of low SNR data may lead to 
potential bias and variation (Spinner et al. 2017) because of the intrinsic model 
non-linearity and the relatively weak contribution of the perfusion 
compartment to total signal attenuation. 

The objective of the present work was to model the stochastic process of 
cardiac perfusion using realistic data of myocardium and to simulate the MR 
signal for SE and STEAM based diffusion-encoding gradient schemes as used for 
in-vivo cardiac DWI/DTI. Numeric simulations yield the IVIM encoding efficiency 
of the various schemes and reveal potential systematic biases due to fitting at 
different noise settings. Using perfused porcine hearts, the simulations are 
experimentally validated and the detection sensitivity of ischemia due to 
transient coronary occlusion is demonstrated. 

7.2 Theory 
7.2.1 IVIM model 
The IVIM model (Le Bihan et al. 1986) assumes tissue perfusion to attenuate 

the MR signal magnitude depending on the diffusion weighting vector  bgb e   

with unit vector ge  in gradient direction and diffusion encoding strength b : 

 
 

         
0

1P D

S
f F f F

S

b
b b   (7.1) 

with magnitude  S b , non-diffusion weighted magnitude 0S , perfusion 

fraction f , perfusion-related signal modulation  PF b  and diffusion-related 

signal modulation  DF b . In the classical IVIM model (Le Bihan et al. 1986), 

these modulations are mono-exponential decays with different scalar decay 

coefficients each:      *expPF bDb  and     expDF bDb . 
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7.2.2 Normalized phase distributions 

In general, the signal modulation due to perfusion  PF b  can be expressed as 

the following expectation value with spin phase  : 

          




  exp expPF i i d    (7.2) 

The intravoxel phase dispersion     due to perfusion as stated in Equation 

(7.2) is described in the following using normalized phases (Wetscherek et al. 
2015). They allow to derive phase distributions for various blood flow velocities, 
b-values and diffusion encoding times by scaling. Therefore, the number of 
computationally expensive simulation runs can be reduced. 

The phase accumulated by transverse magnetization moving along trajectory 

 tx  during encoding time T  with gradient waveform g  reads: 

          
 

      
 

  
0 0 0

T T t

t t dt t dt t dtx g g v   (7.3) 

The right-hand side of Equation (7.3) is calculated using integration by parts, 

      0 0

t

t t dtx x v  with ( ) ( )
d

t t
dt

v x  and by assuming a vanishing net area 

of the diffusion encoding waveform  tg  (“rephasing condition”).  

In order to circumvent separate simulation runs for each gradient setting (e.g. 
b-value), a normalized phase (Wetscherek et al. 2015) is derived after factoring 
out variables to allow scaling of (normalized) phase distributions. Introducing 

the gradient shape decomposition    t gh t Tgg e , gradient strength g , 

gradient unit direction ge  and normalized waveform  h t T  and using the 

definition of the b-value       
2

0 0

T t

b t dt dtg , one can find the relation 

 2 2 3 2b g T a . The normalized b-value   
1 2

00
a m s ds   contains the 

normalized 0th gradient moment      0 0

s

m s h s ds  with normalized time 

s t T . These quantities can be plugged into Equation (7.3) together with the 

assumption of straight capillary segments, such that an integral over time can 
be decomposed and written as sum over several integrals along the traversed 
segments: 
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where the definitions 
kk v xv e  (velocity unit directions of individual segments 

are denoted 
kxe ) and 0 0s  were used together with a maximum upper 

integral bound of one. A normalized phase   can then be defined from 

Equation (7.4) which depends only on the gradient shape, spatial orientation 
and length distribution of the simulated capillary segments: 

   v bT   (7.5) 

The perfusion-induced signal modulation PF  in Equation (7.2) can also be 

formulated in terms of the normalized phase   by using change-of-variable in 

the distribution function           and the corresponding substitution 

in the integral to arrive at: 

       




  expPF iv bT d   (7.6) 

From Equation (7.6), the magnitude PF  and phase  PF  can be derived.  

 

7.2.3 Gaussian phase approximation 
The signal attenuation can be approximated by the Gaussian phase 

approximation (GPA, (Wetscherek et al. 2015)) corrected for a net phase  : 

      
 

    
 

22 1
exp exp

2
PF iv bT bTv   (7.7) 

From Equation (7.7), an effective pseudo-diffusion coefficient 

   
2* 2 1

2
effD Tv  can be identified. This coefficient allows to 

approximate the perfusion-induced signal attenuation by a simple mono-
exponential decay, similar to the original IVIM model (Le Bihan et al. 1986). 
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7.3 Methods 
7.3.1 Cardiac capillary structure 

The original IVIM model assumes that the orientations of all M segments  
Mke  

are isotropically distributed. The capillaries in the heart are, however, largely 
aligned with the muscle fibers (Kaneko et al. 2011). Accordingly, we modeled 
the anisotropy using a von Mises distribution of the zenith angles of the 
capillary segments (Mathieu et al. 1983; Poole and Mathieu-Costello 1990) as 
follows: 

  
 

       
 

    
0

1
| , exp cos

2
p

I
  (7.8) 

with mean 
 , concentration parameter   (zero corresponds to a uniform 

distribution, i.e. isotropy, large values correspond to high anisotropy) and 

Bessel function of 0th order  0I . The azimuth angles k  were modeled with 

a uniform distribution between zero and 2π. These distributions have also been 
used to model the anisotropy in the intravoxel partially coherent motion model 
(Karampinos et al. 2010). 

The capillary segment length distribution was modelled using a Weibull 
distribution (Kaneko et al. 2011): 

  
     

     
     

1

| , exp
b b

b l l
p l a b

a a a
  (7.9) 

with shape and scale parameters a  and b .  

The starting point of individual spins on the initial segment was chosen to be a 
uniform distribution between zero and one. Figure 7.1 summarizes and 
illustrates the simulation approach. 
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Figure 7.1: Illustration of the perfusion simulation in the myocardium. The 
capillary segments (red) follow the myocytes (purple cylinders). The 
starting positions (black open circles, velocity vector indicates direction) 
are uniformly distributed on the initial segment, the segment length 
follows a Weibull distribution and the segment angulation is 
parameterized using the azimuth and zenith angles: the first follows a 
uniform distribution while the latter is described using a von Mises 
distribution. The endpoints on the last segment are denoted as black filled 
circles. The myocyte direction as derived from the diffusion measurement 

is indicated by the eigenvector De  as dark green arrow. The (arbitrarily 

chosen) encoding gradient direction (vector ge ) is indicated as light green 

arrow. 

7.3.2 Diffusion encoding gradients 
Four different diffusion encoding gradient waveforms were simulated: Stejskal-
Tanner SE-DWI (Stejskal and Tanner 1965) without motion compensation and 
referred to as M0; SE-DWI with first-order motion-compensated gradients (M1) 
(Gamper et al. 2007); SE-DWI with second-order motion compensated 
gradients (M2) (Stoeck et al. 2016); and STEAM-DWI (Edelman et al. 1994). 
Figure 7.2 displays all (normalized) gradient waveforms along with the 
respective 0th gradient moments and their integrals. In all cases, gradient 
slopes were idealized. 

The timing of the gradient waveforms for equal b-value were as follows: total 

encoding time T  105.30 ms ( SET ) for SE-DWI, 1363.64 ms ( STEAMT ) for STEAM, 

gradient lobe duration  =10.40/21.25/15.04/3.40 ms, gap duration 
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84.50/20.30/15.04/1360.20 ms for SE-M0/SE-M1/SE-M2/STEAM. Note that for 
SE-M2 the second lobe is twice as long as the first lobe and the gap duration is 
equal to the lobe duration. 

 

Figure 7.2: Gradient shapes, 0th moments and integrals of the 0th 
moment. Normalized effective gradient shapes of Stejskal-Tanner SE-DWI 
(M0, red), first-order motion-compensated SE-DWI (M1, green), second-
order motion-compensated SE-DWI (M2, blue) and STEAM-DWI (orange). 
The normalized time on the x-axis corresponds to the timing used in the 
simulations and ex-vivo studies. The bottom row shows the integral of the 
0th gradient moment (multiplied by the normalized b-value) which is used 
for generation of phase distributions. 

7.3.3 Simulations 
To efficiently sample from the distributions in Equations (7.8) and (7.9), 
numerical inverse transform sampling was performed i.e. the probability 
distribution functions (pdfs) were evaluated at 104 points, their respective 
cumulative distribution functions (cdfs) determined and linear interpolation 
was performed during sampling for values in between the evaluated data 
points. The Weibull distribution in Equation (7.9) is defined for all positive 
values. In order to enable efficient numerical sampling as explained above, the 
cdf was truncated at a probability of 0.999. Note that the zenith angle 
distribution, which is used for sampling, contains an additional sine factor given 
the use of spherical coordinates (Karampinos et al. 2010). The zenith angle 
concentration parameter was set to  =3.25 (Mathieu et al. 1983; Poole and 
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Mathieu-Costello 1990). The maximum zenith angle was  0.5240π to represent 
dominant forward flow with about 6% reverse flow given the relative frequency 
of the “hairpin” capillary type in myocardium (Kassab and Fung 1994).  Due to 
the rotational symmetry, the gradient azimuth angle was set to zero. Therefore, 
the enclosed angle of the gradient and main capillary direction (without loss of 
generality chosen to be along the z-axis, i.e. zenith and azimuth angle of zero) 
equals the gradient zenith angle. Mean/standard deviation of capillary segment 

lengths was set to  /l l =60/40 μm (Kaneko et al. 2011) and converted to 

Weibull shape and scale parameters using approximations (Justus et al. 1978). 
The capillary flow velocity was set to 0.5 mm/s (Fibich et al. 1993; Callot et al. 
2003) and the number of simulated spins was 105. 

The simulated parameters ranges were: l = 20, 40, 60, 80, 100 μm,  l =10, 

25, 40, 55, 70 μm; SET =21.06,  63.18, 105.30, 147.42, 189.54 ms, STEAMT

=272.73, 818.18, 1363.64, 1909.09, 2454.55 ms, v=0.1, 0.25, 0.5, 1, 2.5, 5 
mm/s,  =0, 0.5, 1, 2.5, 3.25, 5, 7.5, 10.  

7.3.4 Ex-vivo data acquisition  
A porcine heart was harvested from a female pig (6 months old, weight 60 kg) 
immediately after cardiac arrest. The animal was euthanized in deep anesthesia 
with a lethal dose of potassium chloride (100 mg/kg body weight). The heart 
was subsequently prepared by inserting plastic tubes through the coronary 
ostia of the aorta into the left and right coronary arteries. The tubes were 
fixated and sealed by winding rubber bands around the tissue surrounding the 
plastic tubes. The latter were attached to a connecting tube leading out of the 
scanner room to connect to a peristaltic pump. The trigger output of the pump 
was connected to the ECG device of the MRI scanner. The closed fluid circuit 
was filled with 0.9% NaCl solution. A reservoir was put beneath the heart, which 
itself was suspended above the fluid level using wire straps which were run 
through parts of the tissue on top of the heart (i.e. pulmonary artery) and 
fixated to a plastic container with duct tape. The box including the heart along 
with a two-channel phased array was placed inside a clinical 1.5T MR system 
(Philips Healthcare, Best, the Netherlands). Occlusion of the left circumflex 
(LCX) coronary artery was achieved by pushing the cannulating tube further 
into the left anterior descending (LAD) artery, thereby sealing the LCX coronary 
artery branch. 

Upon activation of the peristaltic pump (44 rpm, 340 ml/min flow), survey and 
coil calibration scans were obtained. All DWI acquisitions were acquired 
according to following schedule: pump activation + 5min waiting time, DWI 
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scan during perfusion, pump deactivation + 5min waiting time followed by a 
no-flow baseline scan.  

The 2D DWI scan parameters were: FOV=230x110 mm2, spatial 
resolution=2.5x2.5x10 mm3, 43 EPI lines acquired in a single-shot, Local-Look 
reduced FOV for single-slice acquisition (Buecker et al. 1998), TR=3x60/44 
s=4090.91 ms (corresponding to 3 revolutions of the peristaltic pump), 

TE=148.40/44.65 ms for SE/STEAM, total encoding time SET / STEAMT

=105.30/1363.64 ms, spectral pre-saturation with inversion recovery (SPIR) fat 
suppression and cardiac triggering, b-values=10, 25, 50, 100, 150, 200, 250, 
300, 400, 600, 800 and 1000 s/mm2. Six optimized (Jones et al. 1999) gradient 
directions were acquired in both parallel and anti-parallel direction. This 
allowed for the assessment of bulk flow via phase contrast in order to measure 
coherent flow in addition to incoherent flow and intermediate regimes. 
Complex division of the images acquired with inverted gradient waveforms and 
images obtained with non-inverted waveforms images yielded flow-related 
phase information while nulling unwanted background phase effects. 2 signal 
averages were collected, equally distributed across the measurement time. For 
the occlusion experiment, separate coil sensitivity maps and flow scans were 
acquired. The parameters were the same as above apart from: TR=1x60/44 
s=1363.64 ms (corresponding to 1 revolution of the peristaltic pump), 1 signal 
average. 

Data were reconstructed and processed using MRecon (GyroTools, Winterthur, 
Switzerland). SNR was calculated voxel-wise using noise samples from 
calibration pre-scans of each sequence (Nordmeyer-Massner et al. 2009).  

7.3.5 Parameter mapping 
For IVIM parameter mapping, the two-compartment IVIM tensor model was 
used (Abdullah et al. 2016). Both diffusion and perfusion are accordingly 
modeled as diffusion-like Gaussian processes with anisotropy expressed in 3x3 
tensors. The model can hence be understood as an extension to DTI and is 
applicable especially in the case of Normal phase distributions. In contrast to 
the original scalar IVIM model (Le Bihan et al. 1986), it allows to model 
anisotropy. Accordingly, diffusion and perfusion were modeled as mono-

exponential decays using the diffusion tensor D  and pseudo-diffusion tensor 
*D  : 

               
 

*
0, exp 1 expT TS b S f b D f b Dg g g g ge e e e e , (7.10) 
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where  ,S b ge  denotes the measured signal as a function of b-value and 

gradient direction ge , 0S  the signal without diffusion weighting (b=0 s/mm2) 

and f  the perfusion fraction. A segmented least-squares approach 

(Notohamiprodjo et al. 2015; Spinner et al. 2017) was used to fit the logarithm 
of the measured signal assuming the contribution of the perfusion to reach a 

maximum of   1f f  at b=0 s/mm2 while becoming negligible for b-values 

b>>bSplit. Accordingly, high b-values (b≥bSplit=600 s/mm2) were fitted to a mono-
exponential diffusion-only model according to: 

          intl o Sog , l g , log Di T
Diff

ffS b S b b Dg g g ge e e e  (7.11) 

In the second step of the segmented regression, the perfusion related 

parameters f  and *D  were estimated using b-values b<bSplit=600 s/mm2, the 

predetermined diffusion tensor D  and the mono-exponential intercept 

  int 0S 1Diff S f . The latter two quantities were used for diffusion signal 

prediction as stated in Equation (6.2) which was subtracted from the logarithm 

of the total signal  ,S b ge : 
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with int 0SPerf S f , yielding the perfusion fraction via   int int intS S SPerf Diff Perff . This 

approach avoids using images without diffusion weighting (b=0 s/mm2) which 
have different contrast due to the presence of spoiler gradients contributing to 
the diffusion and perfusion weighting, especially for STEAM imaging. All 
acquired directions (6 directions both parallel and anti-parallel, yielding 12 in 
total) were used for the tensor fit. The linear regression was implemented using 
the proprietary linear solver algorithm in Matlab (Mathworks, Natick, MA). Only 
positive data were used in the logarithm and subsequent fitting. Negative 
parameter estimates and the ones derived from a rank deficient system matrix 
were set to zero. A reduced subset of the ex-vivo occlusion data was analyzed 
by considering only 4 b-values (10, 200, 600 and 1000 s/mm2) and only 6 
directions without gradient inversion, in order to investigate clinical feasibility 
of a shortened acquisition protocol. 

Numerical simulations were performed based on 105 artificial datasets to 
investigate false-positive apparent perfusion due to noise in a diffusion-only 
setting. The gradient directions used were the same as used in the ex-vivo 
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experiments. SNR values ranged from 5 to 150 in steps of 10 and diffusion 

eigenvalues were 1 =1.25/1.5/2·10-3 mm2/s, 2 =1.25/1.25/1.25·10-3 mm2/s 

and 3 =1.25/1.00/0.50·10-3 mm2/s, corresponding to FA values of 

0.00/0.20/0.54 and an MD of 1.25·10-3 mm2/s. Estimates of the original scalar 
IVIM model (Le Bihan et al. 1986) were derived using the logarithm of the trace 
data, segmentation of the b-values and the same linear solver (Spinner et al. 
2018). 

7.4 Results 
7.4.1 Simulations 

In Figure 7.3, the phase distributions     of normalized phases   resulting 

from SE-DWI are seen to deviate from the zero-mean Gaussian distribution of 
the IVIM model. SE-M0-DWI results in asymmetric distributions around non-
vanishing mean values if the diffusion weighting gradients are not orthogonal 
to the main direction of the capillaries. SE-M1- and SE-M2-DWI do generate 
distributions centered at zero mean, but depart from Gaussian distributions. In 
contrast, STEAM-DWI yields Gaussian distributions, with means larger than 
zero if the gradients are not orthogonal to the main capillary direction. 

 

Figure 7.3: Normalized phase distributions. Three gradient (zenith) angles 
are simulated: parallel to the main capillary direction, at 45° and 
orthogonal to it. Both SE-M0 and STEAM-DWI sequences exhibit non-
vanishing net phases, which increase with decreasing enclosed angles. The 
motion compensated SE-M1- and SE-M2-DWI sequences yield a mean 
around zero for all settings. However, the distributions of SE-M1- and SE-
M2-DWI deviate from Gaussian distributions, rather approaching 
Laplacian distributions. In contrast, STEAM-DWI results in the expected 
Gaussian phases.   

The perfusion-induced signal modulations of PF  and phase  PF  derived from 

phase distributions     are displayed in Figure 7.4. It is seen that the GPA 
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overestimates signal modulation when using SE-DWI waveforms. In contrast, 
good GPA correspondence is found for STEAM-DWI. The gradient direction 
parallel to the main capillary direction yields lowest signal attenuation (all 
gradient shapes) but maximum phase (SE-M0 and STEAM only), whereas an 
orthogonal orientation yields maximum magnitude attenuation but no net 
phase. The magnitude at b=1000 s/mm2 decreases to 0.48/0.87/0.95/0.18 for 
SE-M0/SE-M1/SE-M2/STEAM in the case of orthogonal gradients. The 
maximum phase reached at this b-value is 1.44/0.00/0.00/5.31π for SE-M0/SE-
M1/SE-M2/STEAM in the case of parallel gradients. 

 

Figure 7.4: Perfusion-induced magnitude and phase modulation. The top 
row shows absolute values of the signal modulation due to perfusion for 
three gradient (zenith) angles: parallel to the main fiber direction, at 45° 
and orthogonal to it (straight lines). The dashed lines are values calculated 
from a Gaussian Phase Approximation (GPA). The latter is only close to the 
actual values in case of STEAM. The GPA overestimates the signal 
attenuation of SE-DWI sequences. The bottom row displays perfusion-
induced phase modulation. SE-M1 and SE-M2 do not exhibit relevant 
phase values across the investigated range of b-values. Both SE-M0 and 
STEAM produce values of 1.44/5.31π at 1000 s/mm2 if the diffusion 
weighting gradient is aligned with the main capillary direction. 

In Figure 7.5, perfusion-induced magnitude and phases modulations for 
parameter ranges are analyzed. It is readily seen that SE-M1 and SE-M2 require 
significantly higher velocities to achieve a desired magnitude signal attenuation 
when compared to SE-M0 and STEAM.  For the investigated SE encoding times 
of up to 189.54 ms, no SE gradient shape produced a signal attenuation of at 
least half the signal or more. In contrast, STEAM with the lowest encoding time 

STEAMT  of 272.73 ms (corresponds to a heart rate of about 220 bpm) yields 47% 

attenuation in one direction. If an isotropic capillary orientation is assumed by 
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setting the concentration parameter   to zero and sampling the zenith angle 
in the interval [0,2π], the magnitudes at b=500 s/mm2 are 0.11/0.76/0.91/0.02 
for SE-M0/SE-M1/SE-M2/STEAM. If the maximum zenith angle is reduced to 
0.5240π (corresponding to unidirectional flow with 6% backflow), the different 
gradient directions yield different attenuation factors larger or equal to the 
ones found for the isotropic scenario leading to equal or less signal attenuation. 
In addition, non-vanishing phase values are generated with SE-M0 and STEAM. 
These values are highest in case of parallel gradient directions and reach a 
plateau of about max. 1/4π for  ≥5 for SE-M0/STEAM.  

 

Figure 7.5: Perfusion-induced magnitude and phase modulation. The top 
row depicts the dependence of signal attenuation at b=500 s/mm2 as a 
function of capillary blood flow velocity v (top row). Velocities below 1 
mm/s yield a relatively low attenuation. Longer total encoding times lead 
to higher signal attenuation (second row). The attenuation decreases with 
increasing concentration parameter/anisotropy (third row). Both M0-SE 
and STEAM exhibit net phases if the gradients are non-orthogonal to the 
main capillary direction (fourth row). The outer left point, marked on the 
x-axis as “0 IVIM” corresponds to an isotropic capillary segment 
orientation as assumed in the standard IVIM model. 

Gradient lobe durations have a negligible influence on magnitude attenuation 
and phase generation as shown for SE-M0 and STEAM in Figure 7.10. Also, the 
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variation of the mean capillary length l
 and standard deviation  l

 has only a 

small influence on the magnitude attenuation (Figure 7.11). 

7.4.2 Parameter mapping simulations 
The MD of the diffusion tensor/scalar diffusion coefficient has a bias lower 10% 
for SNR≥15 and a variation lower 10% for SNR≥45 as shown in Figure 7.6. The 
scalar model shows similar performance in the isotropic case, but exhibits bias 
with increasing anisotropy. The bias at the highest investigated SNR of 145 is 
vanishing for the given precision of two digits in all cases apart from the scalar 
estimates in the anisotropic scenarios, which are 1.24/1.13·10-3 mm2/s for FA 
0.20/0.54. The variation at this SNR is 0.03·10-3 mm2/s for all FAs. 

 

Figure 7.6: Parameter fitting for a diffusion only simulation. Solid lines are 
estimates from scalar and tensor model fits, the dashed lines correspond 
to reference values of a diffusion-only scenario (MD of 1.25·10-3 mm2/s) 
with zero perfusion. Three FAs of 0.00/0.20/0.54 are simulated. A false-
positive non-vanishing apparent perfusion can be observed for low SNR 
(perfusion fraction) and in case of using a segmented model, especially a 
scalar model in a scenario of anisotropic diffusion (pseudo-diffusion 
coefficient). 

The false-positive detected perfusion fraction falls below 5% (absolute) for all 
FAs investigated if SNR is equal or larger 25 (tensor fit) or 65 (scalar fit). The 
SNR thresholds to reach a standard deviation below 5% (absolute) for all FAs 
investigated are 25 (tensor fit) and 55 (scalar fit). The scalar method exhibits a 
residual bias which remains present up to the highest SNR=145 investigated in 
the anisotropic case: the perfusion fraction remains at 5% for a FA of 0.54. 
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The erroneous non-vanishing MD of the pseudo-diffusion tensor remains 
virtually constant between 1.02-1.44·10-3 mm2/s within the interval of 
investigated SNRs, while the scalar estimates are at least 1.73·10-3 mm2/s in the 
isotropic case and reach a plateau of 5.64·10-3 mm2/s for FA=0.54. The standard 
deviations of the tensor estimates also remain virtually constant between 1.52-
1.84·10-3 mm2/s. The standard deviations of the scalar estimates are 3.84 to 
4.76·10-3 mm2/s. 

7.4.3 Ex-vivo data 
Figure 7.7 summarizes the results of the perfused porcine heart. Magnitude 
images with STEAM reveal noticeable differences between no-flow baseline 
and perfusion and hence exhibit observable perfusion sensitivity. In contrast, 
the SE scans show only minute differences between baseline and perfusion 
which are further decreased with increasing order of motion compensation. All 
scans show additional signal attenuation due to water self-diffusion, which is 
weakest in the STEAM baseline scenario. The superposition of the perfusion 
influence yields signal attenuations of the STEAM perfusion setting comparable 
to the SE scans. Interestingly, all scans - including no-flow baseline - show 
deviations from a purely mono-exponential decay. The influence of different 
Hamming filter strengths to account for Gibbs ringing especially of the fluid 
pool is demonstrated in supplemental Figure 7.12. Ringing-like artifacts are 
visible in the perfusion related maps of the myocardium, especially for 
unfiltered or weakly filtered images. The SNR values of the b=0 s/mm2 single-
shot images were 55.47±14.37/59.00±15.82/52.42±13.48/13.21±3.35 for SE-
M0/SE-M1/SE-M2/STEAM in the myocardium of the left ventricle. 
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Figure 7.7: Perfused heart experiment. The ROI-average image magnitude 
of all acquired diffusion encoding directions as function of b-value for SE-
M0/SE-M1/SE-M2 and STEAM for both perfused and no-flow states; the 
dashed lines represent the diffusion-only fits from high b-values (b≥600 
s/mm2) for each direction. Parallel and anti-parallel directions have been 
averaged. 

Figure 7.8 plots magnitude and phase differences between parallel and anti-
parallel gradient encoding directions to depict phase-contrast effects in larger 
vasculature such as epicardial vessels. Figure 7.8 also contains maps of MD and 

FA for D  and *D  along with a map of perfusion fraction f  for STEAM.  
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Figure 7.8: Perfused heart experiment using STEAM. Top row: magnitude 
images of all parallel (+) and anti-parallel (-) gradient directions at the 
highest investigated b-value (a).  Middle row: average phase derived from 
subtracting the anti-parallel from the parallel gradient direction as a 
function of b-value and as maps for b=1000 s/mm2 with arrows indicating 
two prominent arterial and venous vessels of the LCX branch (b). Bottom 

row: tensor metrics in terms of MD and FA maps for D  and *D  along with 

a map of perfusion fraction f  (c). 

Table 7.1 summarizes MDs of D  and *D  along with perfusion fraction f  for 

all sequence types. For all sequences, higher MDs of D  and *D  are detected 

for the perfused case versus no-flow baseline. The perfusion fraction for SE-
M0/SE-M1/SE-M2 is lower during perfusion compared to no-flow baseline. In 
contrast, the perfusion fraction in STEAM is about 50% (relative) higher during 
perfusion compared to baseline. The variation of the MD of the pseudo-
diffusion tensor for the two scenarios is within 6% for SE scans. Moreover, the 
MD of the pseudo-diffusion tensor is lower in the perfusion scans for both SE-
M1 and SE-M2. STEAM generates an increase of about 42% in MD of the 

pseudo-diffusion tensor and 129% in   *MDf D  during perfusion when 

compared to baseline. 
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Seq. Meas. 
MD(D) 

10-3 [mm2/s] 
FA(D) 

f 

[%] 

MD(D*) 

10-3 [mm2/s] 
FA(D*) 

f·MD(D*) 

[%]· 10-3 [mm2/s] 

SE-M0 
Baseline 1.24 ± 0.13 0.19 ± 0.08 10.78 ± 1.85 5.60 ± 0.55 0.13 ± 0.09 60.68 ± 12.53 

Perfusion 1.32 ± 0.11 0.19 ± 0.08 10.72 ± 2.83 5.70 ± 0.84 0.19 ± 0.14 62.30 ± 21.22 

SE-M1 
Baseline 1.27 ± 0.11 0.15 ± 0.07 10.97 ± 3.91 5.00 ± 1.55 0.22 ± 0.20 57.52 ± 26.79 

Perfusion 1.39 ± 0.10 0.13 ± 0.06 8.74 ± 3.66 4.73 ± 1.65 0.24 ± 0.21 43.79 ± 23.01 

SE-M2 
Baseline 1.36 ± 0.15 0.11 ± 0.05 11.81 ± 2.15 5.77 ± 0.67 0.11 ± 0.07 68.11 ± 14.18 

Perfusion 1.44 ± 0.11 0.13 ± 0.06 9.42 ± 1.83 5.52 ± 0.63 0.12 ± 0.09 52.31 ± 12.09 

STEAM 
Baseline 0.87 ± 0.14 0.26 ± 0.11 8.12 ± 3.73 4.45 ± 1.60 0.32 ± 0.23 38.80 ± 22.59 

Perfusion 1.21 ± 0.12 0.27 ± 0.12 13.60 ± 4.48 6.33 ± 1.47 0.29 ± 0.18 89.02 ± 37.35 

Table 7.1: Ex-vivo IVIM parameters as mean±standard deviation for the 
different DWI sequences (seq.) and measurements (meas.). 

In supplemental Figure 7.13, measurement reproducibility of the ex-vivo 
experiments is provided using Bland-Altman plots. The means and standard 
deviations of the difference of the two repetitions are -0.02/0.80/0.19 and 

0.02/2.72/0.83 for  MD D / f /  *MD D  given in 10-3mm2/s /% /10-3mm2/s.  

Figure 7.9 summarizes STEAM results of the coronary occlusion experiment. 

Reduced MDs of D  and *D  along with f  are seen corresponding to the LCX 

territory for both the full and a reduced dataset. Phase-contrast maps derived 
from STEAM reveal flow through larger epicardial vessels. Histograms of the 
IVIM parameters in the infarct and remote regions (manually segmented based 
on the perfusion fraction map derived from the full dataset) together with IVIM 
parameter maps from a reduced dataset are shown in supplemental Figure 
7.14. 
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Figure 7.9: Perfused heart experiment with occlusion of the left circumflex 

artery (LCX) using STEAM. Reduced  MD D , f  and  *MD D   are seen in 

the ischemic LCX territory (white arrows). Phase maps from phase-
contrast STEAM confirm no flow in the LCX but perfusion in 
interventricular vessels (green & red arrows). 

7.5 Discussion 
In the present work, computer simulations and experimental imaging have 
been used to assess and compare the IVIM encoding efficiency of SE and STEAM 
based cardiac DWI/DTI to investigate perfusion in the heart. For typical 
properties of the capillary network in the myocardium and typical scan settings 
with b-values below 1000 s/mm2, SE sequences exhibit a low perfusion 
sensitivity, which decreases further if motion-compensated diffusion gradients 
are employed. In contrast, STEAM provides sufficient magnitude contrast to 
detect changes in myocardial perfusion as demonstrated during experimental 
coronary occlusion of a perfused heart. It was shown that the diffusion 
encoding STEAM sequence allows for phase-contrast by using gradient 
reversal. Therefore, probing of the whole motion spectrum of blood flow is 
possible: incoherent intravoxel motion in the myocardial capillaries, largely 
coherent flow in epicardial vessels and intermediate regimes. The present 
study has also demonstrated that Gaussian phase approximation only holds for 
STEAM sequences, while careful considerations of the validity of the Gaussian 
assumptions are required with SE.  

Using simulations, the present study has shown that low SNR data yields 
parameter biases both with the original scalar IVIM model (Spinner et al. 2017; 
While 2017) and with the IVIM tensor model. To this end, elevated perfusion 
fractions (tensor & scalar fit) result even in a perfusion-free scenario. To 
prevent such false-positive findings, effective SNR should at least be 25 when 
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using the IVIM tensor model, which was achieved here given two signal 
averages and using both gradient signs. The SNR found in this study are in line 
with literature for SE/STEAM (von Deuster et al. 2016b), where STEAM was also 
found to be disadvantageous in this regard.  Furthermore, images are 
confounded by partial volume effects due to low spatial resolution and 
consequential signal leakage caused by Gibbs ringing. We attribute parts of the 
non-vanishing false positive perfusion estimates in the no-flow baseline data to 
this aspect. 

It should be emphasized that an anisotropic IVIM model is recommended in the 
heart given the anisotropic nature of the capillary networks (Kaneko et al. 2011) 
in accordance to the fiber aggregate architecture of the myocardium (Stoeck et 
al. 2014; Nguyen et al. 2014; Stoeck et al. 2016; Nielles-Vallespin et al. 2017; 
Scott et al. 2018). The tensor model presented here is applicable if sufficient 
encoding gradient directions and SNR as stated above are available. An 
alternative to the IVIM tensor model is the IVPCM model (Karampinos et al. 
2010), which parameterizes anisotropy with only one parameter 
(concentration of the von Mises distribution). Further investigations into IVIM 
can also consider the T1 and T2 relaxation effects to account for the different 
contributions of the compartments for different sequences and their 
respective timing parameters (Lemke et al. 2010; Moulin et al. 2016).  

An ex-vivo porcine heart was used as a substitute in order to control all relevant 
parameters. In general, cardiac studies in pigs translate well to humans because 
of the similar structure, shape and size of the organ. It should, however, be 
noted that ex-vivo tissue may suffer from degradation in the form of cell death 
and cessation of active transport, which can potentially alter the diffusive and 
perfusion properties. Here we nevertheless found good agreement between 
ex-vivo and in-vivo SE-M2 DTI (47), indicating largely unchanged diffusion 
properties. In addition, exchange between the intra-vascular and extra-vascular 
compartments take place in-vivo, which also affects the perfusion contribution 
of the signal. Cardiac STEAM encodes over two consecutive heart-beats and is 
therefore more affected by such effects compared to SE with a relatively short 
intra-heartbeat encoding time. Future studies may incorporate a kinetic model 
(Sourbron and Buckley 2012), in order to assess the effect of water exchange. 
STEAM has been successfully used for IVIM in an animal model (Callot et al. 
2003), indicating that perfusion detection is achievable despite the presence of 
exchange between compartments. The iso-osmolar saline solution used for 
perfusion in our studies differs from blood by its temperature, composition and 
different diffusion properties (46). The diffusion and perfusion parameters of 
an in-vivo measurement can therefore differ from the ex-vivo values found in 
this study.  
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In the ex-vivo measurements it was noted that the mean diffusivities increased 
by 2/10% (baseline) for first and second-order gradient moment compensation 
compared to SE-M0, which was also found in simulations of the SE-M0 and SE-
M2 gradient waveforms (Rose et al. 2019). Detailed data analysis revealed that 
this increase is primarily driven by increased measured diffusivity along the 
secondary and tertiary eigenvectors while diffusivity along the primary 
eigenvector agreed well. This observation may be explained by motional 
narrowing in the presence of diffusion boundaries orthogonal to the main 
capillary axes i.e. along the secondary and tertiary eigenvectors. 

The IVIM perfusion fraction MBV Wf f  represents the relative compartment 

weight of flowing blood with myocardial blood volume (MBV [ml/g]) and MR-

detectable water fraction ( Wf ). It therefore indicates the vessel density and 

size. The perfusion fraction was found to be elevated in the vicinity of the 
interventricular vessels in the ex-vivo perfusion experiment and was reduced 
to values close to zero in ischemic areas. The pseudo-diffusion coefficient or 

tensor respectively from Equation (7.12), which is * 6D l v  in the IVIM 

model (Le Bihan and Turner 1992) with mean capillary length l  and mean 

velocity v  depends on the number of capillary branches traversed. It was also 

found to be increased around the LV-RV intersections ex-vivo and reduced to 
values around zero in ischemic regions. Further relations of the IVIM 
parameters to physiological perfusion quantities such as mean transit time 

(MTT [s]) and myocardial blood flow (MBF [ml/min/g]) are:  *MTT 6L l D  

and   *MBF 6 wf L l fD  with total capillary length L (Le Bihan and Turner 

1992). These relations potentially allow to derive perfusion parameters from 
IVIM surrogates. Of note, the IVIM perfusion tensor/coefficients as introduced 
here also require correction for the diffusivity of the perfusion fluid (Funck et 
al. 2018) if true perfusion quantification is aimed at.  

The maximum investigated b-value of 1000 s/mm2 is difficult to achieve in-vivo. 
However, as it was shown in simulations and ex-vivo here, the perfusion-related 
signal of STEAM is still relevant for typical in-vivo b-values of about 500 s/mm2. 

In a segmented fit, this yielded elevated mean diffusivities that can influence 
the perfusion parameter estimates. This fit artifact can be addressed by a 
separation of the two compartments by acquiring several high b-value images 
where diffusion is dominant in conjunction with a non-segmented iterative 
non-linear fit procedure. Hence, by using non-linear iterative solvers instead of 
taking the logarithm of the data as used here, improvements of the parameter 
estimation procedure may be achieved – at the expense of longer computation 
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time. As stated above, parts of the residual biases seen in our study likely result 
from data segmentation, which could also be improved by a variable threshold 
(Wurnig et al. 2015). Moreover, a hierarchical Bayesian model (Orton et al. 
2014; Spinner et al. 2017) with a Gaussian mixture prior to account for the 
different tissue types present can potentially improve parameter estimation. 

In addition, phase values derived from data acquired with standard diffusion 
gradient and inverted gradient waveforms can be used to aid parameter 
estimation. The accuracy of phase estimates can potentially benefit from 
common phase-contrast background phase correction methods (Giese et al. 
2012; Busch et al. 2017).  

 

7.6 Conclusion 
Given the short diffusion encoding time of typical spin-echo based DWI/DTI 
sequences, a very limited sensitivity to myocardial perfusion is present. In 
combination with motion-compensated diffusion gradients as required for in-
vivo cardiac DWI/DTI, the low perfusion sensitivity decreases further. This 
renders the extraction of meaningful IVIM parameters by using cardiac spin-
echo DWI/DTI very challenging, especially under resting conditions. In contrast, 
stimulated-echo based DWI/DTI yields detectable differences between no-flow 
and perfused myocardium, potentially allowing to identify regional perfusion 
changes based on IVIM parameters in the in-vivo human heart. 

7.7 Appendix 

 

Figure 7.10: Magnitude attenuation vs. gradient lobe duration for SE-M0 
and STEAM. Three different gradient directions are shown: parallel to 
main fiber direction, 45° offset and orthogonal to it. The maximum shown 
gradient lobe duration of SE-M0 is the maximum value for the given total 
encoding time of 105.30 ms for SE-M0 (1363.64 ms for STEAM). 
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Figure 7.11: Magnitude attenuation vs. mean and standard deviation of 
the capillary segment length for SE-M0/SE-M1/SE-M2 and STEAM. Their 
dependence is negligible over the investigated intervals. 

 

Figure 7.12: Magnitude and IVIM parameter maps for different Gibbs 
ringing filter strengths. A Hamming filter strength of 0 means that no filter 
is applied while a strength of 1 reduces the values at the border of k-space 
to 0 (likewise 0.5 corresponds to 50% reduction). Ringing-like artifacts are 
visible in the perfusion fraction for filter strengths below 1 (white arrow). 
The ROI-average magnitudes (all gradient directions) versus b-value in the 
myocardium and fluid pool show the different diffusive behaviors, which 
can lead to falsely detected apparent perfusion if the two compartments 
are mixed. 
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Figure 7.13: Bland-Altman plots of ex-vivo repeat experiments. The solid 
lines display the mean of the two signal averages of all data points, the 
dashed lines represent the mean±1.96·standard deviation. 
Red/green/blue/orange markers indicate SE-M0/SE-M1/SE-M2/STEAM. 

 

Figure 7.14: Perfused heart experiment with occlusion of the left 
circumflex artery (LCX) using STEAM with full and reduced set of DWIs. 

Reduced  MD D , f  and  *MD D  are seen in the ischemic LCX territory 

(white arrows) for both the full (12 b-values, parallel & anti-parallel 
diffusion encoding directions) and the reduced dataset (4 b-values, 
parallel diffusion encoding direction only). The corresponding histograms 
(bar height equals counts divided by total number of voxels in respective 

region-of-interest) of  MD D , f  and  *MD D  for the full dataset confirm 

the observations of reduced IVIM parameters in the infarcted region 
compared to the remote part. 
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Chapter 8  
Summary 

IVIM imaging is a powerful non-invasive contrast agent free tool to estimate 
tissue perfusion and hence it has the potential to serve as an alternative to 
conventional contrast agent enhanced methods. Such a tool may find 
numerous applications in diagnosis and treatment monitoring in many of the 
most prevalent pathologies: CVDs, cancer and dementia to name a few.  

In this thesis, major limitations of IVIM imaging such as the long image 
readouts, parameter estimation uncertainty and questions concerning model 
foundations have been addressed. First, a method for accelerated IVIM imaging 
has been presented in the brain. Second, improved IVIM parameter estimation 
in the heart has been shown in simulations and in-vivo. Finally, an investigation 
of the IVIM model in the heart beyond its original assumptions has been 
proposed in theory, simulations and using ex-vivo cardiac data.  

8.1 Discussion 
The accelerated IVIM technique in Chapter 5 has demonstrated for the first 
time that undersampling beyond the limits of parallel imaging and successful 
IVIM parameter estimation from such data is possible. More specifically, an 
undersampling factor of 6 is achievable, where conventional methods allowed 
only up to about net 3-fold undersampling. This is particularly useful for brain 
IVIM scans, because of the large field-of-view and the required resolution. The 
proposed k-b PCA approach exploits signal correlations in space and along the 
many diffusion weighted images with different diffusion strengths and 
directions as needed for IVIM. As it has been shown, a few lines in the k-space 
center for the regularization of the optimization procedure are sufficient to 
regularize the image reconstruction task. Optimization was performed with 
linear LSQ methods where parameter tuning has not been found to be a critical 
issue. In addition, the amount of data provided in a standard IVIM acquisition 
is more than sufficient for reconstruction. The deployment of the method on a 
clinical 3T scanner demonstrated that typical single-shot EPI artifacts such as 
geometric deformations, signal smearing and build-up could be reduced to the 
level of standard morphological imaging. The resulting IVIM parameter maps 
were qualitatively similar to conventional fully sampled reference acquisitions.  

Conventionally, IVIM parameter estimation is performed without prior 
knowledge using a MLE, respectively LSQ procedure. The proposed Bayesian 
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hierarchical approach takes into consideration the relatively homogeneous 
perfusion properties of the myocardium. While still providing parameters on a 
voxel-wise basis, this approach regularizes parameter estimation with 
information from other voxels in the region-of-interest. While the approach 
results in smooth parameter maps without outliers, the detection of perfusion 
defects was still possible. Moreover, the Bayesian approach provides measures 
of estimation uncertainty depending on input data. Since this method no longer 
performs point estimation, conventional optimization methods are no longer 
adequate. To this end, the dedicated MCMC sampler has been optimized to 
handle vectorized data. 

In the third project, the origin and nature of perfusion-induced signal 
modulations in DWI experiments were studied. The specific structure of 
capillaries was addressed in Monte Carlo simulations. The full temporal 
evolution of commonly used diffusion weighted gradient waveforms as in 
cardiac DWI/DTI was considered. The simulations revealed that higher-order 
motion compensation of diffusion encoding gradient waveforms reduces 
perfusion sensitivity. On the other hand, long encoding times as present with 
STEAM allow for sufficient perfusion sensitivity. The capillary anisotropy 
translates to both magnitude and phase variation depending on gradient 
orientation and strength. Ex-vivo data from a porcine heart confirmed these 
findings. Hence, deviations from the standard IVIM model need to be 
addressed. In addition, diffusion weighting gradient waveforms exhibit 
different perfusion sensitivities. These results indicate that assumptions of the 
IVIM model can be violated with standard DWI/DTI approaches. Hence, the 
model simplifications might be inadequate to capture the complex interaction 
of motion encoding gradients and flowing blood in the microvasculature in 
particular IVIM imaging settings and a more complex signal model is required.  

8.2 Outlook 
Beyond the data shown in this work, scan acceleration using the proposed k-b 
PCA method can be used to address EPI artifacts in particular at very high 
magnetic field strengths, which hold potential for a wide range of neurological 
imaging applications. On the other hand, k-b PCA could also be used to obtain 
finer resolution. This would be of great benefit for acute stroke patients for 
example. They routinely undergo DWI to determine the extension of the edema 
besides perfusion measurement. The determination of the volume of the 
tissue-at-risk (also called “penumbra”) is of great importance, because volume 
thresholds in guidelines determine the decision to treat via an early 
intervention. Therefore, IVIM could provide both DWI and perfusion estimation 
to determine the volume of the tissue which can be salvaged. In addition, 
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diagnosis of other neurological pathologies, such as cancer for example, would 
benefit from an increased resolution.  

The requirement of fully sampled training data in k-b PCA limits scan 
acceleration, but also provides valuable information for autocalibration of 
parallel imaging. This can be beneficial if the method is translated to the in-vivo 
heart. Residual motion of the heart often occurs even after applying various 
motion compensation strategies to tackle breathing and contractile motion. 
This poses a problem for SENSE reconstructions, because the previously 
acquired coil sensitivity maps might be misaligned relative to the acquired data. 
Autocalibration methods derive such maps from the k-space center of every 
image. Moreover, such fully sampled low-resolution data provides valuable 
phase and magnitude information, which can be used in subsequent 
registration procedures, which are required once the method is translated to 
the heart. Using k-b PCA in the heart together with reduced field-of-view 
techniques, the ambitious goal of a single-shot 3D whole heart acquisition 
might become feasible. 

The Bayesian approach to parameter estimation in Chapter 6 proves that prior 
knowledge can greatly improve parameter estimation of difficult inversion 
problems. From a technical point of view, MCMC sampling could be deployed 
in dedicated statistics software such as BUGS-like programs, JAGS or STAN or 
Google’s TensorFlow Probability. This allows to harvest the progresses made in 
the field of statistical computing. Faster parameter fitting and enhanced 
Markov chain monitoring would result. Such software also allows for relatively 
easy modifications or implementation of other models. In this thesis, a mono-
modal Gaussian prior was used for a rather homogeneous region-of-interest. A 
double- or multi-modal prior in the form of a Gaussian mixture model for 
example could potentially better handle other relevant data: large myocardial 
infarcts for example exhibit severely reduced or suspended perfusion, which 
propagates into the measured IVIM perfusion surrogates. Hence, the sum of 
two Gaussians could be considered, with one mode at zero perfusion. Likewise, 
a tri-modal prior in the brain can be proposed due to the presence of white 
matter, gray matter and CSF areas. In general, the number of components of a 
mixture model can be considered a random variable itself. Hence, a prior such 
as a Dirichlet distribution for example could be used for the number of 
components in the mixture to allow for automatic clustering during parameter 
estimation. Another potential use for complex multi-hierarchical and 
multivariate models is the combined processing of multimodal data (IVIM, T1 
mapping, T2 mapping etc.) to enhance diagnostic certainty. Bayesian methods 
can handle such tasks in a natural manner. If speed is of utmost importance, 
for example in real-time applications, variational Bayes methods are an 



122 

alternative to MCMC, albeit at the cost of lengthy derivations of the necessary 
equations. 

The investigation into the IVIM model itself in Chapter 7 has shown that its 
assumptions and idealizations are not justifiable in all imaging situations. Even 
though SE-based diffusion-weighted imaging has proven to be a reliable, robust 
and successful tool to probe the cardiac microstructure via DTI, its usability for 
IVIM is limited. While higher-order motion compensation reduces the 
sensitivity towards myocardial strain it also reduces the perfusion sensitivity. 
The classical Stejskal-Tanner sequence without higher order motion 
compensation but with dedicated post-processing has been successfully used 
for IVIM in diastole. Systolic imaging on the other hand is prohibited with this 
sequence because of the rapid cardiac contraction. Still, the achievable echo 
times are around or below 100 ms in diastole, which allows only for very few 
directional changes of the flowing blood. In addition, such long echo times are 
accompanied with considerable signal loss due to transversal relaxation. 
STEAM on the other hand provides suitable diffusion/mixing times, which is 
sufficient even for elevated heart rates. Signal loss because of longitudinal 
relaxation is not as severe as with long echo times in a SE experiment. However, 
STEAM requires breath holding and gating of breathing motion to achieve 
reproducible motion states of the heart between two consecutive heartbeats 
which in turn results in reduced scan efficiency compared to SE. Nevertheless, 
STEAM is preferred over SE for cardiac IVIM to achieve sufficient perfusion 
sensitivity. Next to appropriate data acquisition, the capillary anisotropy should 
be considered in the interpretation of cardiac IVIM data. Hence, besides 
magnitude information, also phase should be taken into account. The 
presented results also indicate that any IVIM parameter depends on the 
sequence used and its timing, which challenges comparability of different 
measurements with divergent settings. Furthermore, it is conceivable, that 
IVIM imaging of other organs also need further investigation in terms of the 
validity of the IVIM model. This has already been studied for pancreas and liver 
for example. However, IVIM imaging has also been performed in many other 
organs such as the brain, kidneys, prostate etc. Besides the issues of short 
diffusion time and velocity encoding versus displacement encoding, the 
microvasculature in many organs is known to be anisotropic. 
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