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Abstract

Adaptive learning under constant-gain allows persistent deviations of be-
liefs from equilibrium so as to more realistically reflect agents’ attempt of
tracking the continuous evolution of the economy. A characterization of
these beliefs is therefore paramount to a proper understanding of the role
of expectations in the determination of macroeconomic outcomes. In this
paper we propose a simple approximation of the first two moments (mean
and variance) of the asymptotic distribution of learning estimates for a gen-
eral class of dynamic macroeconomic models under constant-gain learning.
Our approximation provides renewed convergence conditions that depend
on the learning gain and the model’s structural parameters. We validate
the accuracy of our approximation with numerical simulations of a Cobweb
model, a standard New-Keynesian model, and a model including a lagged
endogenous variable. The relevance of our results is further evidenced by an
analysis of learning stability and the effects of alternative specifications of
interest rate policy rules on the distribution of agents’ beliefs.
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1 Introduction
The modeling of expectations is a central issue of dynamic macroeconomics.
Adaptive learning proposes that agents form expectations as econometricians,
replacing the assumption of an instantaneous adjustment of beliefs towards the
model’s implied rational expectations equilibrium (REE) by a more realistic re-
cursive learning mechanism. According to such a learning algorithm, agents up-
date their beliefs about the economy they inhabit as new information becomes
available in real-time. These potentially out-of-equilibrium beliefs are then used
by agents to make their economic decisions, generating a feedback loop in the de-
termination of expectations and actual outcomes. One key question in this context
is under which conditions this process would eventually converge to an equilib-
rium, and a considerable literature has been devoted to provide an answer to this
question.

Importantly, the type of convergence of this learning process crucially de-
pends on how agents are assumed to adjust their beliefs over time, a behavior
that is regulated by the specification of a sequence of learning gains. In short,
the learning gain determines how quickly a given information is incorporated into
agents’ beliefs. Whereas convergence to a non-stochastic equilibrium is possi-
ble when learning is assumed to cease in the long run, a situation reflected in the
traditional assumption of decreasing-gains, such a scenario has restricted value
for applied purposes. Realistically, adaptive learning should be allowed to persist
over time so as to reflect agents’ capability of tracking the continuous evolution
of their economic environment. However, analysis of convergence in this latter
situation poses a much more intricate challenge than in the former. Namely, un-
der constant-gain learning beliefs never converge to a fixed equilibrium point, but
may, instead, converge to a limiting probability distribution. In spite of its im-
portance, few attempts have been made in the literature to provide ready-to-use
analytical expressions describing this distribution of learning estimates, and we
attempt to fill this gap in this paper.

Our main contribution is to propose a simple approximation of the first two
moments of the asymptotic distribution of learning estimates for a general class
of dynamic macroeconomic models under constant-gain learning. Particularly,
we derive analytical expressions for the mean and the variance of such a distribu-
tion based entirely on standard time series statistics. Our approach is in contrast
with the stochastic approximation approach of Benveniste et al. (1990), which
has already been used by Evans and Honkapohja (2001, Section 7.4) to provide a
characterization of the distribution of learning estimates under the assumption of
a “small” gain; as we will show in an application, the restriction on the magnitude
of the learning gain seems to harm the accuracy of their approximation. More-
over, our approximation provides renewed conditions for the convergence of the
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learning process, and we show that these conditions are more stringent than the
usual E-stability conditions derived under assumptions of arbitrarily small or de-
creasing gains. Importantly, our convergence conditions depend on the interaction
between the learning gain and the model’s structural parameters.

Our approximation relies on a simplifying assumption that reduces substan-
tially the complexity of statistical interactions in the recursive learning expres-
sions. In spite of being an approximation, we argue that the benefits of having
such analytical expressions outweigh the drawbacks of their potential inaccura-
cies, which we show to be small with three numerical applications, namely: a
Cobweb model of prices, a forward-looking New-Keynesian (NK) model of ag-
gregate inflation and output, and a univariate model with a lagged endogenous
variable. Overall, we find that our analytical expressions provide close approxi-
mations to the mean and the dispersion of simulated learning estimates. We also
evaluate the relevance of our results for policy design by considering two alterna-
tive Taylor rules under the NK model: one responding to contemporaneous data,
and the other responding to expectations. We find that the stability of the second,
in spite of being more realistic, is more sensitive to the learning gain than the data-
based rule. Our analysis of constant-gain learning stability parallels that of Evans
and Honkapohja (2009), who derived similar stability conditions focusing on the
case of steady-state learning, i.e., when the REE takes the form of a stochastic
steady state value. Here, our approximation of the variance of the learning esti-
mates provides additional insights on the long run dynamics of this model under
persistent learning. Particularly, we find that the dispersion of the learning es-
timates is affected by the specification of the policy rules, providing an implicit
learning channel through which policy can affect perceived uncertainty about the
economy.

However, the accuracy of our approximation tends to deteriorate as the model’s
parameter values draw closer to the threshold values determining stability of the
learning process, a result that can be associated to the stochastic nature inherent
to the deterministically approximated learning process. Besides, in contrast to
the more general stochastic approximation approach, our method is geared solely
towards asymptotic analysis, hence disregarding the transient dynamic effects of
learning over finite stretches of time, which, in turn, can lead to other interest-
ing types of dynamics, such as escapes (see, e.g., Cho et al., 2002; Williams,
2018). Another important limitation of this paper is that our framework precludes
non-linearities between agents’ expectations, a feature commonly emerging in
forward-looking macroeconomic models that assume a simultaneous determina-
tion of expectation and equilibrium variables (see Woodford, 2003, Chapter 3 for
a discussion in the context New Keynesian models). Models with multiple equi-
libria are also ruled out in such a linear expectations framework.
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Our results are relevant to other applied strands of the literature too. Partic-
ularly, the estimation of models with adaptive learning requires an a priori defi-
nition of a range of possible gain values; that is the case for both Bayesian (e.g.,
Milani, 2007) and classical (e.g., Chevillon et al., 2010) estimation approaches.
Besides, the stability of the model depends on the interaction between the learn-
ing gain and other structural and policy parameter estimates. In that context our
analytical expressions can improve the robustness of estimation to learning in-
stabilities by conditioning the learning gain upper bound on the model’s struc-
tural parameters. Similarly, recent approaches proposing the use of time-varying
gains (e.g., Milani, 2014; Berardi and Galimberti, 2017) can benefit with our
convergence-based upper bounds on the learning gain.

The remainder of this paper proceeds as follows. In section §2 we outline the
general model under which we derive our approximation, presented in section §3.
We then proceed with numerical applications in section §4, and conclude with
some remarks in section §5. Details about derivations and supplementary statistics
are provided in the Appendix.

2 Dynamic modeling framework

2.1 General environment
Let the model’s actual law of motion (ALM), i.e., the equation(s) describing the
determination of the model’s endogenous variable(s), be given by

yt = z′t (A + Φt−1B) + u′tC, (1)

where: yt = [y1,t, . . . , yn,t] contains the endogenous variables; zt = [z1,t, . . . , zp,t]
′

contains the predetermined variables, assumed to be stationary, and which may in-
clude lags of the endogenous variables (this is further discussed in Remark 10 be-
low); Φt =

[
φ1,t, . . . ,φp,t

]′ contains the coefficients estimates that form agents’
perceived law of motion (PLM) of the variables for which expectations are re-
quired; ut = [u1,t, . . . , un,t]

′ contains i.i.d. zero mean random disturbances with
variance given byE [utu

′
t] = σ2

uI(n); and, A(p×n), B(n×n) and C(n×n) are matrices
of conformable sizes containing model parameters.

Agents are assumed to form expectations according to a PLM of the form

yt = z′tΦt−1 + e′t, (2)

where et = [e1,t, . . . , en,t]
′ contains agents’ forecasting errors.

We illustrate the usefulness of this framework with two standard economic
models.
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Example 1 (Cobweb model). The Cobweb model is a partial equilibrium model
of demand and supply in which production is assumed to have a time lag. Hence,
producers have to form expectations of next period’s price in order to optimize
their current period’s production decisions. The demand and supply equations are
usually formulated as

dt = m1 −m2pt + υ1t,

st = r1 + r2p
e
t + r3ωt−1 + υ2t,

respectively, where m2, r2 > 0, υ1t and υ2t are unobserved white noise shocks,
and supply may also be affected by an observable shock, ωt−1, e.g., an input price.
Assuming market clearing, dt = st, we obtain the reduced form

pt = µ+ αpet + δωt−1 + ηt,

where µ = (m1 − r1) /m2, α = −r2/m2 < 0, δ = −r3/m2, and ηt = (υ1t − υ2t) /m2.
Assuming agents condition their expectations on a model containing a constant
plus the observable exogenous shock, the PLM is given by

pet = φ1,t−1 + φ2,t−1ωt−1,

and the corresponding ALM is given by equation (1) with yt = pt, zt = [1, ωt−1]
′,

Φt =
[
φ1,t,φ2,t

]′, ut = u1,t with σ2
u = 1, and A = [µ, δ]′, B = α, C = ση.

Remark 1. Notice that autocorrelated shocks can be easily incorporated in this
framework by augmenting the vectors of endogenous variables and random dis-
turbances together with the appropriate adjustments to the matrices of parameters.
For example, in the context of the Cobweb model above, if input prices are as-
sumed to follow a first-order autocorrelated process given by

ωt = $ + ρωt−1 + εt,

then the ALM would be given by equation (1) with yt = [pt, ωt], zt = [1, ωt−1]
′,

Φt =

[
φ1,t 0
φ2,t 0

]
, ut = [u1,t, u2,t]

′, and A =

[
µ $
δ ρ

]
, B =

[
α 0
0 0

]
, C =[

ση 0
0 σε

]
.

Example 2 (New-Keynesian model). A standard New-Keynesian macroeconomic
model can be derived from a simple intertemporal general equilibrium model with
sticky prices (see Woodford, 2003), which in log-linearized reduced form is given
by

xt = −ϕ
(
it − πet+1

)
+ xet+1 + gt, (3)

πt = λxt + βπet+1 + ut, (4)
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where xt stands for the output gap, πt for the inflation rate, it for the nominal in-
terest rate, all expressed in deviations from the steady state equilibrium; gt and ut
are exogenous disturbances which can be interpreted as autonomous expenditures
changes and a cost-push shock, respectively; (3) and (4) are commonly referred
as the economy’s intertemporal IS (investment/saving) and AS (aggregate supply)
equations, respectively, where the parameters are related to primitive structural
features: β ∈ (0, 1) and ϕ−1 > 0 reflect the representative household’s discount
factor and elasticity of intertemporal substitution, respectively; and λ > 0 is re-
lated to the degree of price stickiness in firms’ price setting behavior.
The model is closed with the definition of central bank’s behavior, i.e., an in-
terest rate setting rule, often referred as the Taylor rule. Different formulations
have been advocated for that purpose and the analysis of determinacy and stabil-
ity of such rules has attracted great interest in the literature (see Bullard and Mitra,
2002; Evans and Honkapohja, 2003). Two of the most common specifications are:
(i) a data-based policy rule, as given by equation (5), where the central bank is
assumed to observe and react to current observations of inflation and the output
gap; and, (ii) an expectations-based policy rule, as given by equation (6), where
the central bank responds instead to current expectations, formed under the same
informational restrictions as those determining dynamics in the economy.

it =χππt + χxxt, (5)
it =χ

′
ππ

e
t + χ′xx

e
t , (6)

Solving the model for these alternative policy rules we obtain two different model
specifications determining the dynamics of inflation and output gap as a function
of forward looking expectations and unobserved disturbances. Hence, both poli-
cies imply a PLM where agents need to learn constants, which are equal to zero
by the definition of the variables as deviations from the model’s steady state equi-
librium. More specifically, letting the superscripts (i) and (ii) denote the models
resulting from the incorporation of the policy rules (5) and (6), respectively, into
the reduced form equations (3)-(4), the New-Keynesian model can be translated
into our general formulation given by equation (1) by setting: yt =

[
xt πt

]
,

z
(i)
t = z

(ii)
t = 1, ut =

[
gt ut

]′, also adjusting the matrix of learning coefficients
accordingly, i.e., Φ�

t =
[
φ�
x,t φ�

π,t

]
with � = {(i), (ii)}; finally, the matrices of

model parameters are given by

A(i) = A(ii) =
[
0 0

]
,

B(i) = ψ

[
1 λ

ϕ (1− βχπ) β + λϕ (1− βχπ)

]
,

B(ii) =

[
1− ϕχ′x λ (1− ϕχ′x)
ϕ (1− χ′π) β + λϕ (1− χ′π)

]
,
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C(i) =

[
ψ λψ

−ϕχπψ 1− λϕχπψ

]
, C(ii) =

[
1 λ
0 1

]
,

where ψ = (1 + ϕ (χx + χπλ))
−1.

Remark 2. Although non-linearities between structural parameters can be clearly
incorporated into the matrices of model parameters, the framework of equation (1)
explicitly precludes non-linearities between agents’ PLM estimates in the deter-
mination of the endogenous variables; particularly, models with contemporaneous
expectations, where equilibrium values of the endogenous variables and expecta-
tions are determined simultaneously (see Evans and Honkapohja, 2001, section
10.3), are difficult to fit in the ALM representation of equation (1). Such non-
linearities can also emerge in models with informational gaps longer than one
period, i.e., when the lag-lead difference between the period of information on
which expectations are based and the period for which the expectations are made
is greater than one.

2.2 Expectations and learning
The implied dynamics of an economy represented by equation (1) is clearly in-
fluenced by the assumption of how expectations are determined. Under RE the
PLM’s coefficients are assumed to be constant and determined so as to make ex-
pectations consistent with observed actuals, i.e.,

ΦRE = A
(
I(n) −B

)−1 (7)

and e′t ∼ u′tC, where
(
I(n) −B

)
is assumed to be invertible. Hence, under RE the

evolution of the endogenous variables is entirely determined by the model param-
eters and the behavior of the forcing variables and disturbance shocks included in
the definitions of zt and ut, respectively.

Under adaptive learning, in contrast, agents’ perceptions about the economy’s
law of motion may deviate from the model’s implied self-referential equilibrium,
and these deviations will also matter in the determination of the endogenous vari-
ables. More specifically, agents are assumed to hold estimates of their PLM’s
coefficients and to update these estimates using a learning algorithm. The most
common choice for that purpose (see, e.g., Berardi and Galimberti, 2014, on mer-
its and alternatives), is given by a Least Squares algorithm of the following form:

Algorithm 1 (LS). For a PLM given by equation (2), the Least Squares estimates
Φt, conditional on observations up to time t, are given by

Φt = Φt−1 + γR−1t zt (yt − z′tΦt−1) , (8)
Rt = Rt−1 + γ (ztz

′
t −Rt−1) , (9)
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where γ is the learning gain parameter, here assumed to be constant, and Rt

stands for an estimate of the regressors matrix of second moments.

One major question in the literature of adaptive learning is whether the learn-
ing estimates will converge to the model’s corresponding REE, and the conditions
required for that convergence to take place have long been established for the case
of decreasing gains (see, e.g., Marcet and Sargent, 1989). The LS recursions, to-
gether with equation (1), constitute a self-referential system, where the evolution
of yt both determines and is determined by the evolution of agents’ beliefs accord-
ing to their estimates of Φt. This feedback mechanism constitutes the basis for
the definition of the E-stability principle, which states that the stability of equi-
libria under (decreasing-gain) LS learning is governed by the mapping between
the PLM and the ALM (see Evans and Honkapohja, 2001). In our context, such
mapping is given by

T (Φ) = A + ΦB, (10)

and E-stability requires that all eigenvalues of the Jacobian of T (i.e., B) have real
parts less than one.

In order to derive model predictions under learning one has to characterize the
dynamics of the learning estimates in the self-referential context described above.
Under the assumption of constant-gain learning, nevertheless, convergence to a
non-stochastic point, such as the REE, can be promptly ruled out: in a stochastic
environment, random shocks will recurrently disturb the convergence of agents’
beliefs to a fixed point. Yet, the model’s asymptotic dynamics can still be useful if
the learning estimates converge to a limiting probability distribution1. More for-
mally, we are interested in the notion of convergence in distribution, also known
as weak convergence, i.e., letting Ft and F stand for the time t and the invariant
distribution functions of the learning estimates, respectively, convergence is ob-
tained if limt→∞Ft (Φ) = F (Φ). In fact, Evans and Honkapohja (2001, section
7.4) show that, under certain conditions, the asymptotic distribution of the learn-
ing estimates converges to a normal distribution, which has the attractive property
of being fully characterized by a (vector of) mean(s) and a (co)variance (matrix,
in case of PLMs with more than one coefficient). Nevertheless, although we are
mostly concerned with models satisfying the conditions for asymptotic normality,
it is important to note that constant gain learning models often violate these condi-
tions, leading to the emergence of features such as escapes and fat tails (see, e.g.,
Cho et al., 2002). Hence, we proceed by attempting to characterize the asymp-
totic behavior of Φt, particularly focusing on its first and the second moments,

1The focus on asymptotic dynamics can also be motivated by the fact that at any point in time,
apart from periods following a structural break, learning can be thought as an ongoing process
that has already settled in its long run operative state, i.e., a state where recursive updates are still
responsive to perturbations but remaining in the vicinities of an equilibrium.
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i.e.,
−→
E [Φt] and

−→
E [ΦtΦ

′
t], where we let

−→
E [•] stand for limt→∞E [•], and E [•]

stands for the unconditional expected value in the stochastic process sense of that
operator of averaging across multiple realizations of sequences of learning esti-
mates.

3 Approximating the distribution of learning esti-
mates

3.1 Preliminaries
In order to characterize the first and second moments of the implied distribution
of the learning estimates in our dynamic self-referential framework we introduce
the ALM of (1) in equation (8) and solve it recursively. For that purpose, it is
convenient to define θt = vec (Φt), in which case we have that (see Appendix
A.1)

θt = Ft (t)θ0 + γ
t−1∑
i=0

Ft (i) (Pt−ivec (A) + Qt−ivec (C)) , (11)

where

Ft (k) =

{∏k−1
j=0 Ht−j, for k > 0,

I(np), otherwise.
(12)

Ht = I(np) − γ
(
I(n) −B′

)
⊗
(
R−1t ztz

′
t

)
, (13)

Pt = I(n) ⊗
(
R−1t ztz

′
t

)
, (14)

Qt = I(n) ⊗
(
R−1t ztu

′
t

)
. (15)

As motivated above we are interested in expressions for the asymptotic first
and second moments of the learning estimates. Before moving to our proposed
approximation we illustrate how to obtain such expressions solely on the basis of
time series statistics for the simplest case of a “guess-the-average” model, where
an approximation is in fact unnecessary.

Example 3 (Guess-the-average model). Let the current value of a variable of in-
terest, yt, depend on a constant, α, plus a fraction, β, of the average value expected
for that variable in the next period, yet+1, plus a mean zero random shock, ut, i.e.,

yt = α + βyet+1 + ut.

Assuming agents condition their forecasts on a constant, φt−1, estimated using a
constant-gain LS algorithm using past observations of yt, this model’s ALM is
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easily translated into the form of equation (1) by setting yt = yt, zt = 1, Φt = φt,
ut = ut, and A = α, B = β, C = 1. Letting |δ| = |1− γ (1− β)| < 1, in the
form of equation (11) we then have that

φt = δtφ0 + γ
t−1∑
i=0

δi (α + ut−i) ,

for which the asymptotic mean and variance can be easily evaluated as:
−→
E [φt] =

α/ (1− β), which is also equal to this model’s REE; and,
−−→
V ar [φt] = γσ2

u/ (1− β) (1 + δ).

Unfortunately, for most other cases of interest, such as multivariate models and
models where the PLM includes one or more variable regressors, a straightforward
analytical solution is not available. Hence, an approximation is required.

3.2 An approximation
The main difficulty in evaluating the expected values of the learning estimates
relates to the expansion of the geometric factor represented by Ft (k) in equa-
tion (11)2. In the context of stochastic difference equations, this factor directly
affects the transition function of the learning estimates, and has also been the fo-
cus of the stochastic approximation approach previously proposed in the literature.
Namely, Evans and Honkapohja (2001, Section 7.4) approximate the distribution
of the learning estimates by establishing the conditions under which the transi-
tions of a corresponding continuous-time process imply convergence to a station-
ary distribution; one such a condition is that the learning gain must be arbitrarily
small3.

Here, in contrast, we propose to obtain an approximation of the learning in-
variant distribution by following a time series statistical approach, as illustrated in
example 3, yet also adding a simplifying assumption regarding the expected be-
havior of Ft (k) in order to cover the general case of multivariate models that can
be translated into the ALM of equation (1). Particularly, we notice that, assum-
ing zt is stationary, the first moment of Rt converges asymptotically to E [ztz

′
t]

(see Appendix A.2). Hence, the only time-varying component of Ft (k), namely,
R−1t ztz

′
t, can be seen to converge asymptotically, in expectation, to a constant

matrix. That observation lead us to propose the following approximation.

2Also notice that this complication is particular to the case of constant-gain learning: under the
traditional assumption of a decreasing gain, where γt → 0 as t→∞, Ft (k) becomes asymptoti-
cally irrelevant, as Ht

∞→ I.
3Specifically, convergence in continuous-time requires that γ → 0, where the continuous-time

approximation of the learning estimates is also tied to the gain by letting τγt = tγ, and defining
θ (τ) = θt if τγt ≤ τ < τγt+1.
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Assumption 1. The expected value of Ft (k) can be asymptotically approximated
as

F̃ (k) =
−→
E [Ft (k)] =

(
I(np) − γ

(
I(n) −B′

)
⊗K

)k
= H̃k, (16)

where K is a p× p positive semi-definite matrix.

Remark 3. Underlying the approximation proposed in equation (16) are the as-
sumptions that

−→
E
[
R−1t ztz

′
t

]
=
−→
E
[
R−1t ztz

′
tR
−1
t−lzt−lz

′
t−l
]
= K , ∀t, l. Under the

stationarity conditions guaranteeing the convergence of Rt, it is quite clear that,
indeed, these quantities converge to constants. To see that take, for instance, the
first assumption for an univariate PLM; from the definition of covariances we have
that −→

E
[
R−1t z2t

]
=
−→
E
[
R−1t

]−→
E
[
z2t
]
+ Cov

(
R−1t , z2t

)
,

where both terms on the right hand side of this equality are constants. It is impor-
tant to note, however, that the stationarity of zt and the convergence of Rt can be
interdependent for the case where lagged endogeneous variables are included in
agents’ PLM; see Remark 10 below for further discussion about this case.

Remark 4. More importantly, the accuracy of the approximation depends on the
accuracy of K, and an expression for the latter is not readily available. For applied
purposes we argue that the identify matrix can be used as a first estimate of K,
although we notice that this estimate will tend to lose accuracy the higher the
learning gain. Particularly, in the context of the univariate example above, notice
that whereas Jensen’s inequality implies that

−→
E
[
R−1t

]−→
E [z2t ] ≥ 1, irrespective

of the learning gain, the covariance between the inverse of Rt and z2t is negative
and scaled by γ (see equation (27), in the Appendix, expanding the summation),
attenuating the positive effect that convexity of the inverse has on the value of the
first term.

Proposition 1. Assuming the approximation given by equation (16), and provided
that all eigenvalues of H̃ =

−→
E [Ht] lie inside the unit circle, the mean and the

(co)variance of the adaptive learning estimates associated to agents’ expectations
in the model given by equation (1), and updated according to the LS algorithm
given by equations (8) and (9), converge asymptotically to

−→
E [Φt] = A

(
I(n) −B

)−1
, (17)

and
V ar (vec (Φt)) = γ2B, (18)

respectively, where

vec (B) = σ2
u

(
I(n2p2) − H̃⊗ H̃

)−1
vec
(
(C′C)⊗

−→
E
[
R−1t

])
. (19)

11



Proof. The proof follows directly from the derivation of the first and second mo-
ments under the referred assumptions, which are detailed in the Appendices A.2
and A.3.

Remark 5. Notice that
−→
E [Φt] = ΦRE , i.e., convergence to RE under constant-

gain LS learning in this model requires that the eigenvalues of H̃ lie inside the unit
circle, a condition different than the usual E-stability criterion for the case of a
decreasing gain LS (see equation (10)). In fact, it is possible to show that whereas
E-stability does not imply convergence under constant-gain learning, convergence
according to proposition 1 requires E-stability.

Corollary 1. E-stability conditions are necessary but not sufficient conditions for
convergence under constant-gain learning.

Proof. Letting {λ} stand for the set of np eigenvalues of H̃, we have that

{λ} = eigs
(
I(np) − γ

(
I(n) −B′

)
⊗K

)
,

= γeigs
((

B′ − I(n)
)
⊗K

)
+ 1.

Furthermore, let {βi}ni=1 and {κj}pj=1 stand for the eigenvalues of B and K, re-
spectively. From proposition 1, convergence under constant-gain learning requires
that |{λ}| < 1, which is equivalent to 1 − 2/γκj < βi < 1, ∀i, j. Notice the lat-
ter inequality is the same as that required for E-stability (necessity) whereas the
former adds a lower bound restriction on the set of stable solutions (E-stability
insufficiency).

Remark 6. Notice that as γ → 0, H̃ → I(np) and B → 0, thence V ar (θt) → 0,
which is consistent with the implied convergence of learning under decreasing
gains.

Remark 7. Although there is some resemblance between our approximation and
the generalized stochastic gradient learning rule proposed by Evans et al. (2010),
these are not equal. Particularly, Evans et al. (2010) show that replacing R−1t
by a constant matrix in equation (8) renders an asymptotic approximation of the
Kalman filter associated with a model with time-varying parameters. Our approx-
imation, in contrast, is equivalent to replacing R−1t by a time-varying matrix that,
on average, yields a constant matrix after being post-multiplied by the second
moment of the regressors, ztz

′
t.

Remark 8. An estimate of
−→
E
[
R−1t

]
is required to calculate the (co)variance ap-

proximation. In principle, such statistic could be calculated using established
convergence results for the Kalman filter specification corresponding to the LS
algorithm (see Hamilton, 1994, section 13.5, for the convergence results, and
Berardi and Galimberti, 2013, for the correspondence with the LS algorithm).
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However, that approach quickly turns impracticable for non-trivial models. As a
simpler alternative we suggest using

−→
E [ztz

′
t]
−1 as an approximation; in fact, no-

tice that, again under a univariate setup for simplicity, Jensen’s inequality implies
that
−→
E
[
R−1t

]
≥
−→
E [Rt]

−1 =
−→
E [z2t ]

−1, i.e., this approximation provides a lower
bound to the calculation of the (co)variance of the invariant distribution of the
learning estimates.

Remark 9. The notion of stability implied by proposition 1 can be interpreted
similarly as that obtained with the analysis of “mean dynamics” employed in the
stochastic approximation approach (see, e.g., Williams, 2018). Namely, whereas
the stability condition implies sure convergence in the deterministic approxima-
tion, it may often be the case that some stochastic realizations of the process,
even though satisfying the stability conditions, will diverge. In the context of our
proposition, this can be more clearly illustrated by considering a case where the
eigenvalues of H̃ are smaller but close to unity, while the actual realizations of
Ht are still affected by stochastic variation from the state variables (a numeric
example is given in the next remark below). Hence, the occurrence of unstable
dynamics can increase as the model parameters are drawn closer to the determin-
istic stability threshold, a result we in fact observe in our numerical simulations in
the next section.

Remark 10. The inclusion of lagged endogenous variables in zt may pose an-
other challenge to the use of the approximation (16) for the analysis of learning
stability. Particularly, the accuracy of the approximation can deteriorate because
the stationarity of zt, which is required for the convergence of Rt, would then be
affected by the learning estimates. To see that consider the example of a simple
univariate model given by

yt = βyet + λyt−1 + ut, (20)

which can be easily translated into the framework of the paper by assuming agents
form their expectations according to a first-order autoregression and by setting
yt = yt, zt = yt−1, Φt = φt, ut = ut, A = λ, B = β, C = σu; notice this im-
plies that Ht = 1− γ (1− β)

(
R−1t y2t−1

)
. According to proposition 1, and assum-

ing K = 1 for simplicity, the learning estimates would converge to a distribution
around the REE mean, given by λ/ (1− β), as long as H̃ = 1 − γ (1− β) < 1,
which is satisfied for γ > 0 and β < 1. Notice, however, that the learning esti-
mates also determine the stationarity of the endogenous variable, which, by being
included in the agents PLM with a lag, will also affect the validity of approxima-
tion (16). For example, say β = 0.5 and λ = 0.495, implying that

−→
E [φt] = 0.99;

for a learning gain of γ = 0.02, proposition 1 implies that the learning estimates
will have a standard deviation equal to 0.02 (also assuming σu = 1), already
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implying these estimates may spend some time outside the stationarity region,
|φt| < 1. Hence, additional boundedness restrictions are required in order to guar-
antee the validity of the approximation. One alternative that has been proposed in
the earlier literature (e.g., Marcet and Sargent, 1989) comes with the introduction
of a projection facility, which is a mechanism that is coupled to the learning al-
gorithm in order to prevent the estimates from escaping a compact region of the
parameter space surrounding the equilibrium point. Another alternative is the im-
position of further primitive assumptions on the dynamics of the state variables,
particularly constraining the support of ut and the (implied) transition of zt to be
linear (see, e.g., assumptions B.1-B.3 in Evans and Honkapohja, 1998).

4 Numerical applications
We now validate the approximation proposed above with the numerical simulation
of some economic models.

4.1 Cobweb model
The Cobweb model has been extensively analyzed in the literature. As described
in example 1 on page 5, in this model prices are determined according to

pt = µ+ αpet + δωt−1 + ηt, (21)

with varying assumptions about the data generating process of ωt. Particularly
of our interest, Evans and Honkapohja (2001, section 14.2) derive an approxima-
tion to the invariant distribution of the learning estimates under the special case
where ωt is an iid process and the intercept in equation (21) is assumed to be
zero. Whereas the cases with an intercept and more relaxed assumptions about
the exogenous shock could be easily accommodated in our framework, for com-
parative purposes, we focus our numerical analysis on that simpler case too, i.e.,
with µ = 0 and ωt ∼ N (0, σ2

ω).
Under these conditions proposition 1 implies expectations converge to an equi-

librium in this model if: (i) α < 1 (E-stability condition); and, (ii) γ < 2/ (1− α);
in which case

−→
E [φt] =

δ

1− α
= φRE, (22)

and

V ar (φt) = γ
σ2
η

σ2
ω

1

(1− α) (2− γ (1− α))
, (23)

where we assume
−→
E
[
R−1t

]
can be approximated as

−→
E [Rt]

−1 =
−→
E [ω2

t ]
−1

= σ−2ω
and K = 1. Using a different approximation approach, Evans and Honkapohja
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(2001, section 14.2) derive analytical expressions similar to ours, except for two
main differences: (i) besides the E-stability condition, their convergence results
require the learning gain to be “small”, whilst ours is less arbitrary in that respect;
and, (ii) their approximation to the variance of the learning estimates is given by

V ar (φt)
EH = γ

σ2
η

σ2
ω

1

(1− α) 2
, (24)

which will always imply a narrower distribution of the learning estimates than
our approximation. This is easy to see by evaluating the ratio between these ex-
pressions, i.e., V ar (φt)

EH /V ar (φt) = 1 − γ (1− α) /2 < 1 for γ > 0 and
α < 1; also notice that as γ increases, the difference between the approximations
increases, while it decreases as α increases. Another difference between these
approximations is the expected effect of α on the dispersion of the learning esti-
mates: whereas equation (24) implies a monotone positive relationship, according
to our approximation the variance of the learning estimates can only be expected
to increase with α if γ < (1− α)−1, but decrease otherwise.

We now validate these approximations numerically by simulating the model.
For that purpose we draw 10,000 random samples of {ωt, ηt}1,000t=1 from the stan-
dard normal distribution, i.e., assuming σ2

ω = σ2
η = 1 and σωη = 0, and use the

model’s ALM to construct Cobweb’s artificial price time series under a constant-
gain LS learning mechanism. For the model’s parameters we fix δ = 1 and con-
duct two main exercises with respect to α and γ: first, fixing γ = 0.10, we vary
α from 0.5 to -18.5 (in -0.5 steps); and, second, fixing α = −2, we vary γ from
0.025 to 0.65 (in 0.025 steps).

The mean and variance of the invariant distributions of the learning estimates
obtained for these experiments are depicted in figure 1, where we take the 1, 000th

observation as representative of the long run. In some simulations, particularly
as the combinations of parameter values draw closer to the stability threshold,
we observe that the convergence of the learning estimates is compromised (see
Remark 9 for an explanation). In order to attenuate the effect of such “outliers”
on the averaged evaluation of the accuracy of the approximations, we also cal-
culate trimmed statistics of the simulated distributions of learning estimates by
discarding estimates that deviate by more than ±5 standard deviations from the
REE-implied mean. For most cases the fraction of discarded estimates remained
well below 10% of the simulations, only rising above that figure for α values
smaller than −11; see Appendix A.5 for more trimming statistics.

Overall, we find that our proposition provides a closer approximation to the
invariant distribution of the learning estimates than that proposed by Evans and
Honkapohja (2001, section 14.2), particularly for higher learning gains and lower
α’s. Interestingly, we observe that, as α decreases, the dispersion of the learning
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estimates start to increase after a threshold α∗. This is consistent with our approx-
imation, though the threshold predicted by proposition 1 is still not accurate: from
equation (23) we obtain α∗ = 1 − 1/γ = −9, while in our simulation we find a
threshold around −3.35.

Another important difference in our approximation is that it implies that E-
stability conditions are not restrictive enough to rule out learning instabilities. To
evaluate this corollary in the context of the Cobweb model we construct the Mean
Squared Deviation (MSD) learning curves associated to different combinations of
parameters. The MSD learning curves are obtained by averaging the squared dif-
ference between the learning coefficients and the corresponding REE value across
simulations of the model4. The results are presented in figure 2, varying α for
a fixed γ in panel (a), and varying γ for a fixed α in panel (b); importantly, the
E-stability condition, α < 1, is satisfied in all cases. We observe that convergence
is indeed governed by an additional restriction on the values of α and γ; particu-
larly, notice the area surrounding our approximation’s restriction, corresponding
to γ < 2/ (1− α) and plotted as a thicker black line: the further α and γ pass be-
yond their implied threshold, the likelier the occurrence of learning instabilities.

4.2 New-Keynesian model
In order to illustrate the generality of our results we now evaluate our approxi-
mation in the context of the standard New-Keynesian macroeconomic model de-
scribed in example 2 on page 5. This model has served as the workhorse of an
extensive literature on issues related with the design of monetary policy. Partic-
ularly of our interest is the analysis of Evans and Honkapohja (2009), who show
that the connection between determinacy and E-stability of REE may not be robust
under constant-gain learning. We reconsider this issue using our approximation
and focusing on the two standard Taylor rule specifications described in equations
(5) and (6). However, due to the interactions between the structural parameters in-
troduced by these policy feedback rules, the expressions provided by proposition
1 become quite complicated. Hence, we proceed with a numerical analysis by fix-
ing the model parameters according to standard calibrations in the literature (see
Evans and Honkapohja, 2009, p.151): β = 0.99, ϕ−1 = 0.157, and λ = 0.024.
That allows us to focus on the effects of the different policy assumptions and the
learning gain on the dynamics of learning in this model.

4Notice that, in contrast to the decreasing gain case, convergence under constant gain does not
imply a zero MSD; in fact, when the constant gain learning estimates converge to a distribution
around the REE, the mean deviation of these estimates in relation to the REE will tend to stabilize
around a positive value that corresponds to the variance of the learning estimates.
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Figure 1: Mean and variance of long run learning estimates in the Cobweb model.

(a) Varying α, fixing γ = 0.10.
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(b) Varying γ, fixing α = −2.
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Notes: The plots are based on the period t = 1, 000 distribution of learning coefficients
obtained from 10, 000 simulations of the Cobweb model with different parame-
ter combinations: in (a) we fix γ = 0.10 and vary α from 0.5 to −18.5 (in −0.5
steps); in (b) we fix α = −2 and vary γ from 0.025 to 0.65 (in 0.025 steps); these
are indicated in the horizontal axis of each plot. The trimmed simulated statis-
tics are obtained by discarding estimates that deviate by more than ±5 standard
deviations (using the variance implied by proposition 1) from the REE-implied
mean; see Appendix A.5 for trimming statistics. The approximations (solid and
dashed lines) are calculated according to equations (23) and (24).
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Figure 2: Learning curves in the Cobweb model.

(a) Varying α, fixing γ = 0.10.
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(b) Varying γ, fixing α = −2.
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Notes: The learning curves are constructed by averaging the squared difference between
the learning coefficients and the corresponding REE value across 10, 000 simu-
lations of the Cobweb model with different parameter combinations: in (a) we
fix γ = 0.10 and vary α from 0.5 to −25 (in −0.5 steps); in (b) we fix α = −2
and vary γ from 0.025 to 1 (in 0.025 steps); these are indicated in the colorbars
next to each plot. The thicker black line refers to the learning curve obtained
with α = 1 − 2/γ, derived from proposition 1’s convergence condition: in (a)
this is given by α = −19; in (b) it corresponds to γ = 2/3.

18



Figure 3: Learning stability in the New-Keynesian model.

(a) Data-based policy rule. (b) Expectations-based policy rule.

Notes: The three-dimensional regions represent the combinations of the parameters γ,
χπ, and χx, for which the learning estimates converge to the corresponding REE
values, according to proposition 1, assuming the other model parameters are
fixed as: β = 0.99, ϕ−1 = 0.157, and λ = 0.024.

The conditions for stability of the learning process under the two alternative
policy rules are presented in figure 3. Interestingly, we observe that the learn-
ing gain is less relevant under the data-based rule: for any value of γ below 2,
learnability is determined mainly by the intensity of the policymaker’s response
to contemporaneous inflation and output gap; also, adjusting the interest rate by
more than one-to-one changes in the inflation rate (Taylor principle) guarantees
stability for any intensity of response to output gap changes. A different result
is obtained under the more realistic expectations-based rule, where learning gains
closer to the range of plausible values (between 0.01 and 0.20, see Berardi and
Galimberti, 2017) can cause instabilities; that is particularly the case as the pol-
icymaker becomes more sensitive to output gap variations, i.e., the upper bound
on γ decreases as χx increases. Although these results are qualitatively consistent
with Evans and Honkapohja (2009, p. 151), our approximation results in looser
constraints on the learning gain; for example, when χπ = 1.5 those authors cal-
culate that the equilibrium would be unstable under learning for χx > 1.57 and
γ ≥ 0.10, whereas our approximation points to a stability threshold of χx > 3.13
for a γ ≥ 0.10, or a γ > 0.20 if one fixes χx = 1.57.
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Furthermore, we evaluate the accuracy of our approximation by simulating
the New-Keynesian model in an approach similar to our analysis of the Cobweb
model above. Boxplots of the learning estimates are presented in figure 4, where
the two different policies are distinguished by color: black for the data-based rule,
gray for the expectations-based rule. Across the panels we also check the distribu-
tion of the learning estimates for varying values of the policy parameters and the
learning gain. Our main conclusion is that our approximation captures the disper-
sion of the learning estimates pretty well, as evidenced by the tight connections
between the approximation bands and the endpoints of the boxplots’ whiskers.
Also, the learning gain, in spite of its relevance for stability conditions as shown
above, seems to have a similar effect on the dispersion of the learning estimates
across the policy rules (see panels (a) and (d) in figure 4).

These results also show the effects that different policy settings can have on
agents’ perceived uncertainty about the economy. I.e., assuming a higher dis-
persion of learning estimates can be associated with a higher uncertainty about
the underlying point estimates agents use to form their expectations, we observe
that: (i) a policy reacting to contemporaneous data leads to higher (relative to the
expectations-based policy) perceived uncertainty about the output gap if the poli-
cymaker is not reacting strongly to inflation (see the first two boxplots in panel (b)
of figure 4), but (ii) a lower relative uncertainty on both inflation and output gap
expectations if the policymaker is not reacting strongly to output gap (see the first
two boxplots in panels (c) and (f) of figure 4); (iii) for both rules, the higher the
reaction to inflation relative to the reaction to output gap, the lower (higher) the
perceived uncertainty about inflation (output gap), and vice versa (this is evident
by the narrowing/broadening of the dispersion bands in panels (c) and (e)/(b) and
(f) of figure 4 as the policy reaction parameters increase).

4.3 Model with a lagged endogenous variable
Finally, we validate the accuracy of our approximation under a model including
a lagged endogenous variable. As discussed in Remark 10, although our general
framework can cope with this situation, the implied interdependence between the
learning estimates and the stationarity of the state variables can affect the validity
of our approximation for parameter values near the stability threshold. Focusing
on the simple univariate model given by equation (20), and assuming agents form
expectations according to a first-order autoregression, the ALM is given by

yt = (βφt−1 + λ) yt−1 + ut. (25)

Using our approximation, and assuming K = 1, learning stability requires that
β < 1,which is also the E-stability condition for this model. Besides, notice that
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Figure 4: Boxplots of long run learning estimates in the New-Keynesian model.

(a) Output gap PLM, varying γ.
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(c) Output gap PLM, varying χx.
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(d) Inflation PLM, varying γ.
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(f) Inflation PLM, varying χx.
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Notes:
The boxplots are based on the period t = 1, 000 distribution of learning co-
efficients obtained from 10, 000 simulations of the New-Keynesian model with
the data-based policy rule (black) and the expectations-based policy rule (gray),
and with different parameter combinations: in (a) and (d) we fix χπ = 1.5 and
χx = 0.125, and vary γ from 0.05 to 0.85 (in 0.20 steps); in (b) and (e) we fix
γ = 0.10 and χx = 0.125, and vary χπ from 1.0 to 3.0 (in 0.5 steps); in (c) and
(f) we fix γ = 0.10 and χπ = 1.5, and vary χx from 0.0 to 2.0 (in 0.5 steps); the
other model parameters are fixed as: β = 0.99, ϕ−1 = 0.157, and λ = 0.024.
The whiskers are constructed so as to correspond to 2 standard deviations from the
mean. The approximated dispersions (black and gray lines) also refer to 2 standard
deviations around the REE mean.
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Figure 5: Variance of long run learning estimates in a model with a lagged en-
dogenous variable.

(a) Varying β.
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(b) Varying λ.
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Notes:
The plots are based on the period t = 1, 000 distribution of learning coefficients
obtained from 10, 000 simulations of model (25) with different parameter combi-
nations: in (a) we fix λ = 0.25, γ = 0.10, and vary β from −1.5 to 0.7 (in 0.1

steps); in (b) we fix β = 0.5, γ = 0.10, and vary λ from −0.45 to 0.45 (in 0.05

steps); in (c) we fix β = 0.5, λ = 0.25, and vary γ from 0.025 to 0.5 (in 0.025

steps); these are indicated in the horizontal axis of each plot.

stationarity of yt requires that |βφt−1 + λ| < 1; although guaranteeing this condi-
tion under learning would require the imposition of further bounding assumptions,
we adopt the implied REE in order to restrict the set of parameters for simulation,
i.e., under REE this model is stationary if |λ/ (1− β)| < 1.

We simulate this model following a similar approach to that adopted in the
previous examples, i.e., by drawing random samples of the stochastic disturbance
and using the model’s ALM together with a LS learning algorithm to obtain the
implied learning estimates. Figure 5 presents the variances of the invariant distri-
butions of these learning estimates for different parameter combinations, together
with their approximated variances as implied by our proposition5. Interestingly, in
spite of all reservations, our approximation is capturing the main effects of varying
this model’s parameters on the dispersion of the learning estimates, namely: (a)
the increase of dispersion with β up to a critical value near the stationarity thresh-
old, and decreasing dispersion beyond that point; (b) the concavity of dispersion
with respect to λ; and, (c) the standard effect of the learning gain in increasing the
dispersion of the learning estimates.

5One difference in using (19) for the case with a lagged endogenous variable is that
−→
E
[
R−1t

]
will depend on the learning estimates; here we take the REE implied value of

−→
E [ztz

′
t]
−1 as an

approximation (see also Remark 8).
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5 Concluding remarks
In this paper we proposed a simple approximation of the first two moments of the
long run distribution of learning estimates for a general class of dynamic macroe-
conomic models under constant-gain learning. This approximation provides ana-
lytical expressions for the mean and the variance of the distribution of estimates
that a constant-gain learning process, taking place within a self-referential model,
converges in the long run. The simplicity of our approximation lies in a time series
simplifying assumption that greatly reduces the complexity of statistical interac-
tions in the recursive expressions. As a byproduct of this approximation, we also
obtained new conditions for the convergence of the learning process, and showed
that these conditions are more stringent than the usual E-stability conditions de-
rived under assumptions of arbitrarily small or decreasing gains.

We showed the usefulness and evaluated the accuracy of our approximation
numerically in the context of two standard economic models, namely, a Cobweb
model of prices and a New-Keynesian (NK) model of aggregate inflation and out-
put; we also considered the case of a model including a lagged endogenous vari-
able. Overall, we found evidence in support of our approach. In the NK model,
we also show how monetary policy settings can affect the dispersion of learning
estimates and the implicit perceptions of uncertainty about the economy. In that
context, we believe our analytical expressions can prove useful for further analysis
of the role of learning and uncertainty for policy design.

A Appendix

A.1 Recursive solution
Defining θt = vec (Φt), we find that the learning algorithm recursion from equa-
tion (8) is equivalent to

θt =
(
I(np) − γ

(
I(n) ⊗R−1t ztz

′
t

))
θt−1 + γ

(
I(n) ⊗R−1t zt

)
vec (yt) .

Similarly, the ALM, from equation (1), implies that

vec (yt) =
(
I(n) ⊗ z′t

)
vec (A) + (B′ ⊗ z′t)θt−1 +

(
I(n) ⊗ u′t

)
vec (C) ,
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hence

θt =
(
I(np) − γ

(
I(n) ⊗R−1t ztz

′
t

)
+ γ

(
I(n) ⊗R−1t zt

)
(B′ ⊗ z′t)

)
θt−1

+γ
(
I(n) ⊗R−1t zt

) ((
I(n) ⊗ z′t

)
vec (A) +

(
I(n) ⊗ u′t

)
vec (C)

)
,

=
(
I(np) − γ

(
I(n) −B′

)
⊗
(
R−1t ztz

′
t

))
θt−1

+γI(n) ⊗
(
R−1t ztz

′
t

)
vec (A) + γI(n) ⊗

(
R−1t ztu

′
t

)
vec (C) ,

θt = Htθt−1 + γPtvec (A) + γQtvec (C) , (26)

where Ht, Pt, and Qt are defined in the main text in equations (13), (14), and
(15), respectively. Solving equation (26) recursively we obtain

θt =
t−1∏
j=0

Ht−jθ0 + γ
t−1∑
i=0

i−1∏
j=0

Ht−j (Pt−ivec (A) + Qt−ivec (C)) ,

which is equivalent to equation (11) after defining Ft (k) according to equation (12).

A.2 Convergence of LS estimates of regressors’ second mo-
ments

From equation (9) we have that

Rt = (1− γ)Rt−1 + γztz
′
t,

which solved recursively is equivalent to

Rt = (1− γ)t R0 + γ
t−1∑
i=0

(1− γ)i zt−iz′t−i. (27)

Assuming zt is stationary, i.e., E [ztz
′
t] = E [ziz

′
i] ∀t, i, the expected value of

equation (27) is given by

E [Rt] = (1− γ)t R0 + E [ztz
′
t]
(
1− (1− γ)t

)
,

which in the long run simplifies to

−→
E [Rt] = E [ztz

′
t] ,

for 0 < γ < 2.
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A.3 First moment of learning estimates
To obtain the first moment of the distribution of learning estimates we use the
approximation in equation (16) to evaluate the expectation of equation (11) as

E [θt] = F̃ (t)θ0 + γ

t−1∑
i=0

F̃ (i)
(
I(n) ⊗K

)
vec (A) ,

= H̃tθ0 +
((

I(n) −B′
)
⊗K

)−1 (
I(np) − H̃t

) (
I(n) ⊗K

)
vec (A) ,

where the solution of the summation only requires invertibility of
(
I(n) −B′

)
,

which is equivalent to the RE solution requirement, and invertibility of K. To
obtain the long run expectation we evaluate this expression in the asymptotic limit,
t → ∞, for which case convergence is obtained if all the eigenvalues of H̃ lie
inside the unit circle, resulting in

−→
E [θt] =

((
I(n) −B′

)−1 ⊗ I(p)

)
vec (A) ,

which, after re-arranging the coefficients back into their original form, is equiva-
lent to equation (17).

A.4 Second moment of learning estimates
For the second moment we focus directly on the invariant distribution, i.e., drop-
ping the terms that vanish in the limit we have

−→
E [θtθ

′
t] =γ

2−→E

[
t−1∑
i=0

Ft (i)Pt−ivec (A)
t−1∑
i=0

vec (A)′P′t−iFt (i)
′

]
︸ ︷︷ ︸

A

+ γ2
−→
E

[
t−1∑
i=0

Ft (i)Qt−ivec (C)
t−1∑
i=0

vec (C)′Q′t−iFt (i)
′

]
︸ ︷︷ ︸

B

. (28)

Expanding the summations, one can find that whereas the first is related to
−→
E [θt]

−→
E [θ′t],

i.e.,

A = γ−2
((

I(n) −B′
)−1 ⊗ I(p)

)
vec (A) vec (A)′

((
I(n) −B

)−1 ⊗ I(p)

)
, (29)
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Figure 6: Trimming statistics.

(a) Cobweb model, varying α, fixing γ = 0.10.
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(b) Cobweb model, varying γ, fixing α = −2.
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the second simplifies to the matrix equivalent of the sum of a geometric progres-
sion containing only even powers, namely,

B =σ2
u

t−1∑
i=0

H̃k
(
(C′C)⊗R−1

)
H̃′k,

vec (B) =σ2
u

(
I(n2p2) − H̃⊗ H̃

)−1
vec
(
(C′C)⊗R−1

)
. (30)

where R−1 stands for E
[
R−1t

]
, which can be approximated as the inverse of

E [ztz
′
t].

Finally, notice that the variance of this invariant distribution is determined by
B,

V ar (θt) =
−→
E
[(

θt −
−→
E [θt]

)(
θ′t −

−→
E [θ′t]

)]
,

=
−→
E [θtθ

′
t]−
−→
E [θt]

−→
E [θ′t] ,

= γ2 (A+ B)− γ2A,
= γ2B, (31)

and that as γ → 0, B → 0, thence V ar (θt) → 0, which is consistent with the
implied convergence of learning under decreasing gains.

A.5 Trimming statistics
In order to reduce the effect of outliers in the numerical evaluation of the accu-
racy of the proposed approximations, the statistics reported in Figure 1 are based
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on a trimmed sample of simulated learning estimates. The trimming is calculated
on the basis of the approximation’s implied variance, discarding estimates that
deviate by more than ±5 standard deviations from the REE-implied mean. The num-
ber of simulations discarded depended on the combination of parameters and are
presented in Figure 6.
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