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Abstract: A search for a heavy W′ resonance decaying to one B or T vector-like quark and

a top or bottom quark, respectively, is presented. The search uses proton-proton collision

data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated

luminosity of 35.9 fb−1 at
√
s = 13 TeV. Both decay channels result in a final state with

a top quark, a Higgs boson, and a b quark, each produced with significant energy. The

all-hadronic decays of both the Higgs boson and the top quark are considered. The final-

state jets, some of which correspond to merged decay products of a boosted top quark

and a Higgs boson, are selected using jet substructure techniques, which help to suppress

standard model backgrounds. A W′ boson signal would appear as a narrow peak in the

invariant mass distribution of these jets. No significant deviation in data with respect to

the standard model background predictions is observed. Cross section upper limits on W′

boson production in the top quark, Higgs boson, and b quark decay mode are set as a

function of the W′ mass, for several vector-like quark mass hypotheses. These are the first

limits for W′ boson production in this decay channel, and cover a range of 0.01 to 0.43 pb

in the W′ mass range between 1.5 and 4.0 TeV.
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1 Introduction

Many extensions of the standard model (SM) predict new massive charged gauge bosons [1–

3]. The W′ boson is a hypothetical heavy partner of the SM W gauge boson that could

be produced in proton-proton (pp) collisions at the CERN LHC. Searches for W′ bosons

have been most recently performed at a center-of-mass energy of 13 TeV by the CMS and

ATLAS Collaborations in the lepton-neutrino [4, 5], diboson [6, 7], and diquark [8, 9] final

states. Vector-like quarks (VLQs) are hypothetical heavy partners of SM quarks for which

the left- and right-handed chiralities transform the same way under SM gauge groups.

Searches for VLQs have been performed by the CMS and ATLAS Collaborations in both

the single [10–13] and pair production [14–16] channels. The decay of the W′ boson to

a heavy B or T VLQ and a top or b quark, respectively, is predicted, e.g., in composite

Higgs boson models with custodial symmetry protection [17–19]. These models stabilize

the quantum corrections to the Higgs mass and preserve naturalness. The W′ branching

fraction to a quark and a VLQ depends on the VLQ mass, with a maximum of 50% in the

high VLQ mass range at the threshold of custodian production (see ref. [20]).

A search for a W′ boson in this decay mode is presented for the first time. The analysis

considers the decay channel where the B or T VLQ decays into a Higgs boson and a b or
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Figure 1. The W′ boson production and decays considered in the analysis. The analysis assumes

equal branching fractions for W′ boson to tB and bT and 50% for each VLQ to qH.

top quark, respectively, in the all-jets final state. Both the B and T VLQ-mediated decays

result in the same signature, as can be seen in figure 1. Because of the high W′ and VLQ

masses considered in this analysis, the decay products are highly Lorentz boosted. These

boosted decay products are reconstructed as single jets with distinct substructure, which

is used in the analysis to distinguish them from SM multijet production. An inclusive

search for a W′ boson decaying to a top quark, a Higgs boson, and a b quark is performed.

The SM background is dominated by events comprised of jets produced via the strong

interaction, referred to as quantum chromodynamics (QCD) multijet events, and top quark

pair production (tt) events. These backgrounds are modeled by a combination of Monte

Carlo (MC) simulation and control regions in data. The invariant mass distribution of

the three-jet system, mtHb, is used to set the first limits on the W′ boson production

cross section in the decay channel to a B or T VLQ. The data sample used in the analysis

corresponds to an integrated luminosity of 35.9 fb−1 [21] of pp collision data at
√
s = 13 TeV,

recorded in 2016.

The theoretical framework followed in the analysis is described in ref. [20]. In this

model the top and W′ are superpositions of elementary and composite modes, with the top

degree of compositeness given by sL, and the mixing angle of the elementary and composite

W′ states given by θ2. The W′ boson production cross section is inversely proportional

to cot2(θ2), but low cot(θ2) values tend to be dominated by the leptonic W′ boson decay

mode. High values of the sL parameter increase the relative phase space for the decay into

two VLQs, whereas low sL values enhance the W′ diboson decays. The analysis assumes

this theoretical framework as evaluated at sL = 0.5 and cot(θ2) = 3, which is chosen for

the purposes of sensitivity in the W′ decay channel to a single VLQ. The expected signal

cross sections in the analysis are evaluated at 13 TeV using the framework of ref. [20] for

W′ masses in the range 1.5 to 4.0 TeV with the assumptions that the W′ →VLQ branching

fraction is equally distributed between the tB and bT final states. As a benchmark for

the analysis, the VLQ branching fractions for each of the decays B →bH and T →tH are

assumed to be 50%, consistent with the benchmark used in other recent searches.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
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a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two

endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the

barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded

in the steel flux-return yoke outside the solenoid. A more detailed description of the

CMS detector, together with a definition of the coordinate system used and the relevant

kinematic variables, can be found in ref. [22].

The particle-flow algorithm [23] aims to reconstruct and identify each individual par-

ticle with an optimized combination of information from the various elements of the CMS

detector. The energy of each photon is obtained from the ECAL measurement. The en-

ergy of each electron is determined from a combination of the electron momentum at the

primary interaction vertex as determined by the tracker, the energy of the corresponding

ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible

with originating from the electron track. The energy of each muon is obtained from the

momentum, which is measured by the curvature of the corresponding track. The energy of

each charged hadron is determined from a combination of their momentum measured in the

tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression

effects and for the response function of the calorimeters to hadronic showers. Finally, the

energy of each neutral hadron is obtained from the corresponding corrected ECAL and

HCAL energies that are not associated with a charged hadron track.

Jets are clustered with the anti-kT [24] algorithm in the FastJet 3.0 [25] software

package. Jet momentum is determined as the vectorial sum of all particle momenta in the

jet, and is found from simulation to be within 5 to 10% of the true momentum over the

whole pT spectrum and detector acceptance. Additional pp interactions within the same or

nearby bunch crossings (pileup) can contribute additional tracks and calorimetric energy

depositions to the jet momentum. To mitigate this effect, charged particles originating from

sub-leading pp collision vertices within the same or adjacent bunch crossings are discarded

in the jet clustering procedure, where the primary collision vertex is defined as the vertex

largest quadrature-summed pT of all reconstructed particles. To account for the neutral

pileup component, the pileup per particle identification (PUPPI) algorithm [26] is used,

which applies weights that rescale the jet transverse momentum based on the per-particle

probability of originating from the primary vertex prior to jet clustering. Jet energy cor-

rections are derived from simulation studies so that the average measured response of jets

becomes identical to that of particle level jets. In situ measurements of the momentum

balance in dijet, photon+jet, Z+jet, and multijet events are used to determine any resid-

ual differences between the jet energy scale in data and in simulation, and appropriate

corrections are made [27]. Additional selection criteria are applied to each jet to remove

jets potentially dominated by instrumental effects or reconstruction failures. The jet en-

ergy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to

be compared to about 40, 12, and 5% obtained when the calorimeters alone are used for

jet clustering.

Events of interest are selected using a two-tiered trigger system [28]. The first level

(L1), composed of custom hardware processors, uses information from the calorimeters and

muon detectors to select events at a rate of around 100 kHz within a time interval of less
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than 4µs. The second level, known as the high-level trigger (HLT), consists of a farm of

processors running a version of the full event reconstruction software optimized for fast

processing, and reduces the event rate to around 1 kHz before data storage.

3 Simulated samples

The tt production background is estimated from simulation, and is generated with

powheg 2.0 [29–32]. The signal samples are generated at leading order using Mad-

Graph5 amc@nlo 2.3.3 [33, 34] with the NNPDF3.0 leading order parton distribution

function (PDF) set, in the mass range from 1.5 to 4.0 TeV in 0.5 TeV increments. The anal-

ysis uses a QCD multijet sample as a cross check for the background estimate, which is also

generated at LO with MadGraph5 amc@nlo. Parton showering and hadronization are

simulated with pythia8.212 [35] using either the CUETP8M2T4 [36] or CUETP8M1 [37]

underlying event tunes. For each W′ boson mass point, three VLQ mass points are gener-

ated with the VLQ mass range from 0.8 to 3.0 TeV. The generated VLQ masses are scaled

to the W′ boson mass (mW′) such that there is a low (≈ 1/2mW′), medium (≈ 2/3mW′),

and high (≈ 3/4mW′) mass sample for each W′ boson mass point in order to explore the

sensitive phase space of the boosted W′ boson decay products. The generated W′ boson

and VLQ widths are narrow as compared with the detector and reconstruction resolutions

which is in accord with theoretical predictions for most of the analyzed phase space. The

simulation of the CMS detector uses Geant4 [38]. All MC samples include pileup simula-

tion and are weighted such that the distribution of the number of interactions per bunch

crossing agrees with that observed in data.

4 Event reconstruction

The W′ → T/B → tHb channel is characterized by three high-pT jets. The jets from

the top quark (top jet) and Higgs boson (Higgs jet) decays tend to be wide and massive,

whereas the jet from the b quark (b jet) will tend to be narrow and have a lower mass.

Therefore, one jet clustered with the anti-kT algorithm with a distance parameter of 0.8

(AK8 jet) with pT > 300 GeV is required for the Higgs boson candidate jet. One AK8

jet with pT > 400 GeV is required for the top quark candidate jet. One anti-kT jet with

a distance parameter of 0.4 (AK4 jet) with pT > 200 GeV is required for the b candidate

jet. The separation ∆R (
√

(∆φ)2 + (∆η)2) between the two AK8 jets is required to be at

least 1.8 in order to reduce the correlation of jet shapes arising from the abutting of jet

boundaries, which can bias the background estimate. The AK8 jets are then selected as

being consistent with a top quark or a Higgs boson decay using the tagging procedures

defined below. The collection of jets considered for the b quark candidate is then populated

by AK4 jets with ∆R of at least 1.2 from the tagged AK8 jets. In the case of multiple

jets with the same tag, the tagged candidate is chosen randomly. Jet identification criteria

are used for these three jets in order to reduce the impact of spurious jets from detector

noise [39]. All jets in the analysis are required to be within |η| < 2.4.
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Figure 2. Trigger efficiency as a function of HT. Events are required to have HT > 1 TeV as is

indicated by the red dashed line. The HT distributions of two W′ signal hypotheses are shown for

comparison, normalized to unit area.

Because the signal of interest is a high mass resonance decaying to multiple high-pT
jets, data events are triggered by HT > 800 or 900 GeV, where HT is defined as the sum

of all AK4 jet pT in the event, or a AK8 jet pT > 450 GeV. The signal of interest usually

fulfills the high HT trigger requirement, and the AK8 jet pT trigger is included to overcome

an issue in the trigger HT calculation that impacts about 24% of the analyzed data.

The efficiency of the trigger selection is studied using a sample of events that have

at least one muon of pT > 24 GeV. The fraction of these events that pass the full trigger

selection is defined as the trigger efficiency and is shown in figure 2 as a function of HT.

The offline event selection requires that HT be larger than 1 TeV which ensures that the

trigger efficiency is larger than 93% near the threshold and is nearly 100% over most of

the signal region. Although there is little inefficiency due to the trigger, this is taken into

account as an event weight when processing MC samples.

4.1 Top jet tagging

For top quarks with pT > 400 GeV, the decay products, one b quark and two light quarks,

can merge into a single AK8 jet. Top quark jets are identified using a set of three quantities

defined below.

The N-subjettiness [40] algorithm defines the τN variable, which quantifies how consis-

tent the jet energy pattern is with N or fewer hard partons, with the low τN values being

more consistent with N or fewer partons. In the case of a top quark hadronic decay, the

ratio of τ3 to τ2 is used.

The merged top jet can also be discriminated from background by using the large top

quark mass. The modified mass drop tagger algorithm [41], also known as the “soft drop”
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algorithm [42] with β = 0 and z = 0.1 is used to calculate this mass variable, mt
SD. This

algorithm declusters the jet, and removes soft radiations, thus allowing a clearer separation

between the merged top jet and background.

Finally, as the top jet contains a b quark, additional discrimination power can be

achieved by using subjet b tagging with the combined secondary vertex version 2 (CSVv2)

b tagging algorithm (SJcsvmax) [43]. We use a b tagging operating point defined by a 10%

misidentification probability with approximately an 80% efficiency.

The MC to data correction (scale factor) for the top tagging operating point in table 1

is measured to be 1.07+0.11
−0.04 in a sample enriched in semileptonic tt production, using the

same procedure as outlined in ref. [39].

4.2 Higgs jet tagging

In the case of a highly boosted Higgs boson in the bb decay mode, the decay products tend

to merge into a jet that has a mass consistent with a Higgs boson and that contains two b

hadrons clustered into the jet. Once again, the soft drop algorithm is used to provide the

variable mH
SD as a measure of the Higgs boson jet mass, but in this case the jet is scaled

using a simulation-derived correction suitable for resonances below the top jet tagging mass

window [44], which is pT and η dependent but results in a 5-10% mass amplification in

both data and MC. Scale factors are used for the jet mass scale and resolution, which

are derived from a fit to the distribution of the W boson jet mH
SD spectrum in a sample

enriched in semileptonic tt production using the technique outlined in ref. [39].

To identify the two b quarks clustered into the merged Higgs jet, a dedicated double-b

tagging algorithm (Dbtag) is used at an operating point with a misidentification probability

of approximately 3% and an efficiency of 50%. Data samples enriched in QCD produced

bb and tt events are used to establish scale factors for this tagger for the cases of signal

and mistagged top quarks, respectively [43].

Figure 3 shows the variable distributions that are used for top and Higgs candidate

jet tagging in tt, QCD, and signal MC simulation. The selections for these distributions

includes all other top and Higgs candidate jet selections in order to preserve variable cor-

relations.

In the rare occurrence that a jet passes both the Higgs and top jet tags, the ambiguity

is resolved by giving the Higgs jet tag priority.

4.3 b jet tagging

The b quark from the VLQ or W′ decay is reconstructed as an AK4 jet that is required

to pass the CSVv2 b tagging algorithm [43] at the same operating point as is used for the

subjets of the merged top jet. A MC to data scale factor for the b tagging requirement is

used in order to improve the agreement of data and simulation.

4.4 Event selection

Event selection details can be found in table 1. The signal region used for setting cross

section upper limits is required to contain a top, a Higgs boson, and a b tagged jet.
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Label Discriminator selections

Htag Dbtag > 0.8 and 105 < mH
SD < 135 GeV

ttag SJcsvmax > 0.5426 and τ3/τ2 < 0.8 and 105 < mt
SD < 210 GeV

btag CSVv2 > 0.5426

Hantitag mH
SD < 30 GeV

tantitag SJcsvmax > 0.5426 and τ3/τ2 > 0.65 and 30 < mt
SD < 105 GeV

bantitag CSVv2 < 0.5426

Signal region

Region Top jet Higgs jet b jet

SR ttag Htag btag

Background estimation

Region Top jet Higgs jet b jet

CR1 tantitag Hantitag btag

CR2 tantitag Htag btag

CR3 ttag Hantitag btag

Validation region

Region Top jet Higgs jet b jet

VR ttag Htag bantitag

Validation background estimation

Region Top jet Higgs jet b jet

CR4 tantitag Hantitag bantitag

CR5 tantitag Htag bantitag

CR6 ttag Hantitag bantitag

Table 1. Selection regions used in the analysis. Tagging discriminator selections and regions

described in the text are explicitly defined here. The signal region (SR) is used to set cross sec-

tion upper limits, the control regions (CRN) are used to estimate the QCD background, and the

validation region (VR) is used to validate the background estimation procedure.

mW′(GeV)

mVLQ(GeV) 1500 2000 2500 3000 3500 4000

800 0.70 ± 0.13

1000 0.91 ± 0.18 2.3 ± 0.4

1300 0.48 ± 0.09 2.6 ± 0.4 3.7 ± 0.6

1500 2.1 ± 0.4 3.7 ± 0.6 4.2 ± 0.7

1800 3.2 ± 0.5 4.1 ± 0.7 4.4 ± 0.7

2100 3.7 ± 0.6 4.2 ± 0.7 4.4 ± 0.7

2500 3.8 ± 0.6 4.0 ± 0.7

3000 3.4 ± 0.6

Table 2. The selection efficiency (%) for each signal mass point in the analysis.

The sensitivity of the selections used in the analysis have been studied both in the

context of the expected limit and the W′ discovery potential. After identifying the top,

Higgs, and b candidate jets, the W′ candidate mass is analyzed as the invariant mass of

the three jets. Table 2 shows the signal efficiency for all samples considered in the analysis.
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Figure 3. Normalized distributions of the discriminating variables in tt, QCD, and signal MC

simulation. The distributions shown, from upper left to lower right, are of the variables: the

maximum subjet b tag, τ3/τ2, and mt
SD, all used for top quark discrimination, and the double-b

tag discriminant and mH
SD used for tagging candidate Higgs boson jets. The QCD distributions

are extracted from events with the generator-level HT > 1 TeV. Each variable distribution in this

set of figures requires an event that passes the selection on all other variables in order to preserve

possible correlations.

5 Background estimation

The primary background in this analysis is QCD multijet production, the contribution of

which is derived from data using control regions that are selected with kinematic criteria

that are similar to those used for the signal region but with a reduced signal efficiency. This

is achieved by inverting top substructure selections and extracting the Higgs jet pass to fail

ratio for QCD jets. This ratio is then used as an event weight for events that pass the top

jet selection but fail the Higgs boson jet selection. The resulting distribution is used as the

background estimate for the signal region. The primary assumption for the background

estimate method is that the top jet substructure selection can be inverted without largely

biasing the Higgs jet substructure selection.
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A set of control regions are defined by requiring the Higgs jet candidate mH
SD to be less

than 30 GeV with no double-b tagging selection. Table 1 defines various selection regions

used in the analysis. A transfer function F (pT, η) is extracted from data by inverting the

top jet candidate mt
SD selection to be between 30 and 105 GeV and τ3/τ2 > 0.65. In this

region, F (pT, η) is defined as the ratio of the jet pT spectrum of the tagged Higgs candidate

in two η regions (central, |η| < 1.0, and forward, |η| > 1.0) for the full Higgs jet selection

(CR2) to the inverted selection (CR1) and is shown in figure 4. The F (pT, η) distribution

is used to transform the normalization and shape of distributions from the Hantitag region

to the Htag selection region, and is measured with low signal contamination.

The F (pT, η) function is then used to predict the background in the signal region. This

is accomplished by defining a control region in data with identical top and b jet candidate

selections as in the signal region, but with the inverted Higgs jet selection (CR3). In this

region, the mtHb template is created using F (pT, η) as an event weight in a given Higgs

candidate jet pT, η bin. This weighted template is used as the QCD background estimate

in the signal region.

In the F (pT, η) extraction procedure, the tt production component is subtracted from

data in all distributions used for creating F (pT, η) in order to ensure that F (pT, η) refers

only to the QCD component. The fraction of tt simulation subtracted from the numerator

and denominator is low, 7.3 and 0.4% of the total distribution, respectively. Additionally,

the tt contamination of the QCD background estimate in the signal region must to be

subtracted. This is performed by applying the QCD background estimation procedure to

simulated tt events using the same F (pT, η) as is used when extracting the QCD estimate

from data. The estimated contribution accounts for 2.6% of the total QCD estimate in

the signal region, which is then subtracted when forming the background estimate. The

tt contamination has only a small effect on the QCD background estimation, so the sys-

tematic uncertainty due to the tt subtraction procedure is conservatively taken as the

difference between the QCD background estimate extracted with and without the full tt

subtraction procedure.

In order to test the applicability and versatility of the background estimate in data,

a validation region, VR as defined in table 1, is defined based on inverting the b tagging

criterion on the b candidate jet, with the corresponding control regions for background

estimation (CR4–CR6). The transfer function in this validation region Fv(pT, η) is esti-

mated from the ratio of CR5 to CR4 using the same parameterization as F (pT, η). The

mtHb background validation test in this region can be seen in figure 5. This region validates

the background estimate analog with a χ2/ndf of 0.3 with systematic uncertainties taken

into account, where ndf is the number of degrees of freedom. The tt component in this

validation region is removed using the same procedure that is used in the signal region

background estimate. The agreement in the mtHb distribution background validation test

demonstrates that the top jet selection can be inverted without biasing the Higgs jet se-

lection. The Higgs jet candidate 4-vector mass for the SR background estimate is set to

the mean of the distribution extracted from the VR in order to correct the small kinematic

bias from the mass selection when forming the mtHb invariant mass. This correction has

only a small effect on the resulting distribution because of the fact that the jet pT is large
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Figure 4. Transfer function F (pT, η) used for estimation of the QCD background in the signal

region, shown in the central (left) and forward (right) η regions. The error bars represent the

statistical uncertainty in F (pT, η) only.

compared to the mass, and a systematic uncertainty is evaluated as the root mean square

of the distribution in the VR.

Additionally, the background validation can be studied with simulated QCD events.

Figure 6 shows the level of background agreement where the SR selection and QCD back-

ground are evaluated using only simulated QCD events with the same method as was

previously described for data. A χ2/ndf of 1.4 is observed, and an additional systematic

uncertainty is included when evaluating the QCD background estimate in collision data.

This correction is extracted from the ratio of the SR to QCD background in the QCD MC

validation test, and is applied using an interpolation of the ratio in order to decrease the

effect of statistical fluctuations but to still keep the increased uncertainty at low mtHb.

The tt component is estimated by using simulation with an additional event weight

to correct the generator top jet pT distribution [45]. This generator correction is used in

order to improve the agreement of MC with data with respect to a known generator level

mismodelling and is cross checked in the VR region.

6 Systematic uncertainties

This analysis considers a wide range of systematic uncertainties that are organized into

those that impact only the event yields, which are assumed to follow a log-normal distribu-

tion [46], and those that affect the mtHb distribution shape as well. All of the systematic

uncertainties considered in the analysis are summarized in table 3.

6.1 Normalization uncertainties

The uncertainty in the integrated luminosity is taken as 2.5% for the data set used in the

analysis [21].

The uncertainty in the correction to the efficiency of top jet tagging algorithm is

between −4 and +10% of the nominal value.
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Figure 5. Reconstructed W′ mass distributions (mtHb) in the b candidate inverted validation

region (VR) shown for data and background contributions. Several signal hypotheses are shown

to demonstrate the low signal contamination. The background uncertainty includes all systematic

and statistical uncertainties.
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Figure 6. Reconstructed W′ mass distributions (mtHb) for the simulated QCD events in the

signal region for the purposes of validation. The agreement given the systematic uncertainties is at

the 1 standard deviation level. The background uncertainty takes into account all systematic and

statistical uncertainties.
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The theoretical uncertainty in the tt production cross section is taken into account as

an asymmetric uncertainty between −5.5 and +4.8% that is calculated as the quadrature

sum of the scale and PDF uncertainties on the overall cross section.

6.2 Shape uncertainties

The uncertainty in the jet energy scale is taken into account by scaling the four-vectors used

in reconstructing the mtHb distribution by the ±1σ jet energy scale uncertainty, which is

approximately 2% for jets in the analysis. The jet energy scale variation impacts the mtHb

distribution shape through a horizontal shift but can also cause a normalization difference

in the case that the jet falls above or below the kinematic threshold. The uncertainty

in the jet energy resolution is also taken into account by the ±1σ uncertainty in the jet

energy resolution correction used for simulated samples. This uncertainty is applied to all

simulated samples used in the analysis, and has only a small impact.

The uncertainty in the jet mass scale and resolution is measured in a highly enriched

sample of tt containing one final state lepton. In this sample, a fit is performed to the W

boson jet mass peak in the corresponding AK8 jet PUPPI mH
SD distribution, in which the

mean and width of the PUPPI mH
SD spectrum is extracted. The mass scale uncertainty is

estimated from the shift of the W mass peak to be 0.94%. The uncertainty in the mass

resolution is estimated from the W boson mass peak width to be 20%. These uncertainties

are applied to the signal estimate used in the analysis, and result in approximately 4 and 6%

variations in the overall yield for the scale and resolution uncertainties, respectively. The

differences in the W and Higgs boson tagging efficiencies are estimated from a comparison

of parton showering methods and are found to be between 4–5%, so an additional 5%

uncertainty is included for the signal simulated samples used in the analysis.

The uncertainty used for the b tagging requirement on the AK4 jet is evaluated by

varying the b tagging and b mistagging scale factor within their ±1σ uncertainty and are

considered uncorrelated with each other. Given the kinematic selection on the AK4 jet,

this uncertainty is evaluated in four pT regions from 200–1000 GeV. For jets with a pT
outside of this region, the uncertainty is evaluated as twice the uncertainty at 1000 GeV.

This uncertainty is applied to all simulated samples used in the analysis, and results in

approximately a 2% effect.

The double-b tagging uncertainty used for the Higgs jet tagging [43] selection is evalu-

ated by varying the double-b tagging scale factor by the ±1σ uncertainty. The scale factor

is parameterized using three regions in pT. Similar to the AK4 b tagging uncertainty,

outside of the kinematic range of the scale factor, the uncertainty is evaluated at twice the

maximum range. The double-b tagging scale factor uncertainty results in approximately a

5% effect. Also evaluated is the mistag scale factor in the case of a Higgs boson mistagged

as a top quark, as explained in section 4. The uncertainties in both the Higgs jet tagging

efficiency and the mistag rate are applied to all simulated samples used in the analysis,

and are treated as uncorrelated with each other during limit setting.

The events used by the analysis are largely collected where the trigger efficiency is

near 100%, however the small inefficiency is evaluated using the trigger efficiency extracted

from data as parameterized in HT (see figure 2), and the uncertainty is evaluated as half of
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this inefficiency. This uncertainty is small (<1%), and is applied to all simulated samples

used in the analysis.

As mentioned in section 3, the simulated pileup distribution is reweighted to match

data using an effective total inelastic cross section of 69.2 mb. The uncertainty in this proce-

dure is evaluated by varying the total inelastic cross section by ±4.6% [47]. This uncertainty

is applied to all simulated samples used in the analysis, and has only a small impact.

The mtHb distribution from the tt simulation is reweighted to correct for known differ-

ences in the generator pT spectrum [45]. The ±1σ shape uncertainty in this procedure is

estimated from the difference with the unweighted distribution. This uncertainty is applied

to the tt simulated sample used in the analysis, and results in approximately a 21% effect.

The PDF uncertainty is evaluated using the NNPDF3.0 set [48]. The NNPDF set uses

MC replicas, from which the uncertainty is evaluated as the RMS of the distribution of the

associated weights, and is then added in quadrature with the αs uncertainty. In the case

of signal, the shapes are then normalized to the nominal distribution, as to only preserve

the shape of the PDF uncertainty. The normalization component of the PDF uncertainty

is considered an uncertainty in the signal cross section.

The renormalization and factorization (µR and µF) scale uncertainty is evaluated using

event weights provided for varying the µR or µF scales up and down by a factor of two.

There are six total weights that represent the independent and simultaneous variation of

µR and µF. Per event, all weights are considered and the envelope is then used as the ±1σ

uncertainty band. This uncertainty is applied to the tt MC sample used in the analysis, and

results in an approximately 30% effect. Similar to the PDF uncertainty, the normalization

component of this uncertainty is taken as the signal cross section theoretical uncertainty,

and the shape component alone is used for limit setting.

The analysis considers five sources of uncertainty in the shape of the QCD background

estimate derived from data. The statistical uncertainty in F (pT, η) is propagated to the

mtHb spectrum by evaluating the F (pT, η) weight at ±1σ in a given (pT, η) bin. The

uncertainty from each F (pT, η) bin is added in quadrature to form the full uncertainty in the

mtHb template. The up and down uncertainty variation in the tt subtraction procedure is

taken as the unsubtracted mtHb distribution and the resulting mtHb distribution given twice

the subtraction. The uncertainty in the four vector Higgs jet candidate mass modification

is taken as ±30 GeV. The “nonclosure” uncertainty in the QCD background estimate is

evaluated as the difference between the full selection and background prediction from the

QCD MC closure test using the interpolated ratio, and is the leading source of uncertainty

in the QCD background estimate of approximately 20%.

The MC statistical uncertainty is taken into account using the “Barlow-Beeston lite”

method [49] during limit setting.

7 Results

The final mtHb distribution is shown in figure 7, with a χ2/ndf of 1.3 for the agreement

of data and background. Table 4 shows the yield for data, QCD and tt backgrounds, for

various selection regions including the full selection.
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Source Variation Process

Integrated luminosity ±2.5% signal, tt

Top jet tagging +10.0%, −4% signal, tt

tt cross section +4.8%, −5.5% tt

Top quark pT reweighting +1σ(pT(gen)) tt

Matrix element µR/µF scales ±1σ(µR/µF) signal, tt

Jet energy scale ±1σ(pT, η) signal, tt

Jet energy resolution ±1σ(pT, η) signal, tt

Jet mass scale ±1σ(mH
SD) signal, tt

Jet mass resolution ±1σ(mH
SD) signal, tt

b tagging ±1σ(pT) signal, tt

b mistagging ±1σ(pT) signal, tt

Double-b tagging ±1σ(pT) signal, tt

Double-b mistagging ±1σ(pT) signal, tt

Higgs jet tagging ±5% signal

Pileup ±1σ (σmb) signal, tt

PDF ±1σ(Q2, x) signal, tt

HT trigger ±1σ(HT) signal, tt

tt contamination ±1σ(pT) QCD

F (pT, η) ±1σ(pT, η) QCD

Higgs jet mass modification ±1σ(mH) QCD

Nonclosure ±1σ(mtHb) QCD

Table 3. Sources of systematic uncertainty affecting the mtHb distribution. Sources that list the

systematic variation as ±1σ depend on the distribution of the variable given in the parentheses,

while those that list the variation in percent are rate uncertainties.

Region Data QCD tt

CR1 79 104 — 332

CR2 398 — 25

CR3 45 646 — 1365

CR4 288 926 — 543

CR5 1 330 — 76

CR6 154 608 — 1991

VR 844± 30 659± 150 236± 83

SR 284± 17 208± 49 71± 28

Table 4. Event yield table after various selections. The definition of each region is given in table 1.

The uncertainties shown here for the validation region and the signal region are pre fit; the posteriori

uncertainties for tt and QCD are constrained down by 40 and 14%, respectively.

– 14 –



J
H
E
P
0
3
(
2
0
1
9
)
1
2
7

1000 2000 3000 4000 5000 6000

E
v
e
n
ts

 /
 b

in

1−10

1

10

210

3
10

410

5
10

Data

QCD estimate

 MCtt

 VLQ (1000 GeV)→W' (1500 GeV) 

 VLQ (1300 GeV)→W' (2000 GeV) 

 VLQ (1500 GeV)→W' (2500 GeV) 

 VLQ (1800 GeV)→W' (3000 GeV) 

 background uncertaintyσ1 

 (13 TeV)-135.9 fb

CMS

 (GeV)
tHb

m
1000 2000 3000 4000 5000 6000

e
x
p

σ
(D

a
ta

-B
k
g

)/

2−

1−

0
1
2

Figure 7. Reconstructed W′ mass distributions (mtHb) in the signal region, compared with the

distributions of estimated backgrounds, and several benchmarks models. The signal distributions

include the contributions from W′ decays to both the T and B assuming equal branching fractions.

The uncertainties shown in the hatched region contain both statistical and systematic uncertainties

of all background components.

Using a Bayesian approach with a flat prior for the signal cross section, upper limits

are obtained on the product of the W′ boson production cross section in the sL = 0.5

and cot(θ2) = 3 hypothesis, and the benchmark W′ → T/B → tHb branching fraction. A

binned likelihood is used to calculate 95% confidence level (CL) upper limits, in a process

where all systematic uncertainties listed in section 6 that affect the shape of the mtHb

distribution are included as nuisance parameters that modify the shape using template

interpolation, and those that affect the normalization are included as nuisance parameters

with lognormal priors. For the signal template, the sum of reconstructed mtHb distribution

from the tB and bT decay channels is used.

Pseudo-experiments are used to derive the ±1σ deviations in the expected limit. The

systematic uncertainties described above are accounted for as nuisance parameters and the

posterior probability is refitted for each pseudo-experiment. Cross section upper limits are

shown in figure 8. The highest signal significance is at MW′ = 2 TeV from the high VLQ

mass hypothesis at a value of 0.85 standard deviations. Although no signal mass points are

excluded by solely analyzing the all hadronic W′ → T/B → tHb decay in the democratic

bT and tB decay hypothesis, a W′ with a mass below 1.6 TeV is excluded at 95% CL in

the case of a 100% bT branching fraction hypothesis.
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Figure 8. The W′ boson 95% CL production cross section limits. The expected limits (dashed)

and observed limits (solid), as well as the W′ boson theoretical cross section and the PDF and scale

normalization uncertainties are shown. The bands around the expected limit represent the ±1 and

±2σexp uncertainties in the expected limit. The limits for low- (upper left), medium- (upper right),

and high- (lower) mass VLQ mass ranges, defined in table 2, are shown.

8 Summary

A search for a heavy W′ boson decaying to a B or T vector-like quark and a top or b

quark, respectively, has been presented. The data correspond to an integrated luminosity

of 35.9 fb−1 collected in 2016 with the CMS detector at the LHC. The signature considered

for both decay modes is a top quark and a Higgs boson, both decaying hadronically, and

a b quark jet. Boosted heavy-resonance identification techniques are used to exploit the

event signature of three energetic jets and to suppress standard model backgrounds. No

significant deviation from the standard model background prediction has been observed.

Cross section upper limits on W′ boson production in the top quark, Higgs boson, and b

quark decay mode are set as a function of the W′ mass, for several vector-like quark mass

hypotheses. These are the first limits for W′ boson production in this decay channel, and

cover a range of 0.01 to 0.43 pb in the W′ mass range between 1.5 and 4.0 TeV.
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de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse,

H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde,

I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, S. Perries, A. Popov14, V. Sordini,

G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia

T. Toriashvili15

Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze8

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch,

C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth,

T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer,

A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, A. Schmidt,

D. Teyssier, S. Thüer
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University, Budapest, Hungary
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Italy

S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa,

G. Galatia, A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,16, P. Paoluccia,16,

C. Sciaccaa,b, E. Voevodinaa,b
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nandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo,

L. Romero, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero,
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48: Also at Universität Zürich, Zurich, Switzerland

49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria

50: Also at Gaziosmanpasa University, Tokat, Turkey

51: Also at Adiyaman University, Adiyaman, Turkey

52: Also at Istanbul Aydin University, Istanbul, Turkey

53: Also at Mersin University, Mersin, Turkey

54: Also at Piri Reis University, Istanbul, Turkey

55: Also at Ozyegin University, Istanbul, Turkey

56: Also at Izmir Institute of Technology, Izmir, Turkey

57: Also at Marmara University, Istanbul, Turkey

58: Also at Kafkas University, Kars, Turkey

59: Also at Istanbul University, Faculty of Science, Istanbul, Turkey

60: Also at Istanbul Bilgi University, Istanbul, Turkey

61: Also at Hacettepe University, Ankara, Turkey

62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United

Kingdom

64: Also at Monash University, Faculty of Science, Clayton, Australia

65: Also at Bethel University, St. Paul, USA
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