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Per-Contact Iteration Method for Solving Contact
Dynamics

Jemin Hwangbo, Joonho Lee and Marco Hutter

Abstract—This paper introduces a new iterative method for
contact dynamics problems. The proposed method is based on
an efficient bisection method which iterates over each contact.
We compared our approach to two existing ones for the same
model and found that it is about twice as fast as the existing ones.
We also introduce four different robotic simulation experiments
and compare the proposed method to the most common contact
solver, the projected Gauss-Seidel (PGS) method. We show that,
while both methods are very efficient in solving simple problems,
the proposed method significantly outperforms the PGS method
in more complicated contact scenarios. Simulating one time
step of an 18-DOF quadruped robot with multiple contacts
took less than 20µs with a single core of a CPU. This is at
least an order of magnitude faster than many other simulators
which employ multiple relaxation methods to the major dynamic
principles in order to boost their computational speed. The
proposed simulation method is also stable at 50 Hz due to its strict
adherence to the dynamical principles. Although the accuracy
might be compromised at such a low update rate, this means
that we can simulate an 18-DOF robot more than thousand times
faster than the real time.

Index Terms—simulation, contact dynamics, legged robot

I. INTRODUCTION

THE objective of this work is to build a fast rigid-body
dynamics simulator that can be used to generate realistic

data for various robotic tasks. Generating realistic data can
be difficult for two reasons: our lack of understanding of the
true physics and our lack of abilities to solve what we believe
to be an accurate model of the true physics. The first reason
is critical in many dynamic simulations but we believe that
contacts between rigid bodies that do not manifest bouncing
behaviors can be fairly accurately simulated. Fortunately, this
is the case for many robotic tasks that we are interested in, e.g.
legged locomotion, manipulation of hard objects and building
construction.

Developing very accurate models is an active research
area [1], [2] but the focus of this paper is to develop a very
fast contact solver which uses less approximations than the
existing simulators. There are three fundamental principles that
are commonly used to model rigid body contacts: the Signorini
condition, the Coulomb’s friction cone constraint, and the
maximum dissipation principle. Most existing simulators relax
all of them in order to make the problem tractable. Although
these well-known principles are also approximations to the
true physics, we believe that they are better than the models
that are artificially modified just to make the problem easier.

*This work was funded by Swiss National Science Foundation (SNF)
through the National Centre of Competence in Research Robotics and Project
200021-166232.

all authors are associated with RSL, ETHZ

Figure 1: Rendering of ANYmal simulation.

A common approximation is a polytope approximation to
the friction cone which effectively transforms the Nonlinear
Complementarity Problem (NCP) to a Linear Complementar-
ity Problem (LCP) [3]. Such approximation usually compro-
mises the accuracy severely when simulating slipping condi-
tion and the solution is also highly affected by the polytope
approximation scheme. In addition, the LCP based contact
solvers are relatively slow and require a further approximation
which usually results in relaxation of the Signorini condition.
This results in even more unrealistic contact forces and the
physical realism is sometimes lost in complicated contact
scenarios.

Another common approximation that is employed in the
existing simulators is a relaxation to the complementarity
constraint. Chrono1 and MuJoCo [4] are probably the most
established simulators of this kind. The downside of this
method is that the objects can penetrate each other. Some of
the simulators are also unable to simulate different restitution
characteristics of materials. Consequently, the simulation re-
sults might appear to be unrealistic.

The most common way to solve unapproximated Coulomb’s
friction model is the over-relaxed projected Gauss-Seidel
method (PGS) [5], [6] which works very similarly to Gauss-
Seidel algorithm for linear systems. It is a main solver for
many of the aforementioned simulators. The idea is to exploit
the fact that the Delassus operator is generally diagonal dom-
inant. This is particularly true for granular physics simulation
where there are many spherical particles. However, it does
not hold true for articulated robotic models due to their

1https://projectchrono.org/
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many bilateral constraints. In such case, the PGS method
usually shows poor performance. This is due to the fact
that individually updating the contact force components might
negate the effect of the previous updates. Per-contact iteration
methods, which have been well-studied in [7], might be more
practical for robotic simulations. They solve a multi-contact
problem by iteratively solving single contact problems. This
leads to an algorithm that can fully account for the effect of
the off-diagonal elements of an inverse apparent mass matrix.

In this paper, we propose a new per-contact iteration method
for solving contact dynamics and evaluate it on robotic exam-
ples. We use a bisection method to find the optimal solution
for a single contact problem and a successive over-relaxation
to find the optimal solution to a multi-contact problem. We
compare it to the PGS method in robotic simulations and
analyze the computation costs of each algorithm.

II. BACKGROUND

We consider a case where a single robot with a floating
base making contacts with a static environment. The theory
here is not limited to such case, but this will lead to a more
concise description and be more relevant to the systems of our
interest. We use bold symbols for vector/matrix quantities for
clarity. The robot’s generalized coordinates q ∈ SO(3)×Rn−3
and generalized velocity u ∈ Rn are expressed by a minimal
set of coordinates. At each instance of time, the robot makes
N contacts with the environment. The resulting contact forces
acting on the robot are denoted as f ∈ R3N . The dynamics
of the robot can be written as

M(q)u̇ = τ − h(q,u) + JT (q)f , (1)

where M(q) is the mass matrix, τ is the actuation torque,
h(q,u) is the nonlinear forces and J(q) is the Jacobian
mapping the generalized velocity to the contact space velocity
v which is a concatenation of all contact velocities expressed
in each contact frame. The contact frames are defined such that
z-axes are always parallel to the respective normal vectors. The
directions of x- and y-axes can be arbitrary since we limit our
scope to isotropic friction. From here on, we abuse the notation
and omit function arguments for brevity.

It is well-known that simulating impacts with Coulomb’s
friction law in force-acceleration context is inconsistent and
results in no solution in some cases (i.e. Painlevé paradox).
To avoid this problem, we use a simple discretization scheme

M(u+ − u−) = ∆t(τ − h) + JTλ

Mu+ = Mu− + ∆t(τ − h) + JTλ

u+ = u− +M−1{∆t(τ − h) + JTλ},

where λ is the contact impulses and ∆t is the simulation time
step. The superscript + and − denote the next and the current
time-step respectively.

Here we only deal with contact impulses instead of forces.
It is implicitly assumed that the impacts occur over ∆t under
this discretization scheme. We convert the equation to express

it in each contact frame by multiplying J i, which is the three
rows of J related to ith contact, to both sides as

J iu
+ = J iu

− + J iM
−1{∆t(τ − h) +

N∑
k=0

JTk λk} (2)

v+i = τ ∗i + J iM
−1

N∑
k=0,k 6=i

JTk λk + J iM
−1JTi λi, (3)

where τ ∗ ≡ J iu
− + J iM

−1∆t(τ − h) is the sum of all
constant terms. The index i is for the contact of interest and
the index k is for all other contacts. Introducing a new symbol
M−1

i,k ≡ J iM
−1JTk , which describes the linear relationship

between kth contact impulse and ith contact velocity, we can
rewrite the equation as

v+i = τ ∗i +

N∑
k=0,k 6=i

M−1
i,kλk +M−1

i,i λi. (4)

When we are solving a single contact problem assuming that
all other contact impulses are constant, we can further simplify
Equ. (4) to

v+i = ci +M−1
i,i λi (5)

by combining the constant terms and the other contact impulse
terms to ci. As a result, we get the contact velocity as a affine
function of λi.

The contact impulse solution is based on the following
conditions and principles.
• Signorini condition:
λz ≥ 0, gi ≥ 0 and λzgi = 0

• Coulomb’s friction cone constraint:
λ2x + λ2y ≤ µ2λ2z or |λi,T | ≤ µλi,z

• the maximum dissipation principle
The symbol gi denotes a gap between ith contact bodies, and
the subscript i,T represents tangential components (i.e. x-y
components) of the ith contact. In this work, we make an
additional assumption of pure inelastic contact since elastic
contact behaviors are not common in robotics. However, it
can be easily extended to different values of coefficient of
restitution. We also express the Signorini condition in velocity
space for computational simplicity (i.e. λz ≥ 0, vi,N ≥ 0 and
λzvi,N = 0). To the best of our knowledge, this simplification
is employed in all major simulators. A drift in the position
level constraint is possible, but due to the accuracy of our
solvers, it was not visible at all in our simulation. The physical
realism of this simplification might be questionable in some
special cases and interested readers are referred to [8].

The most common friction model is Coulomb’s friction law
which can be expressed as

if |v+i,T | > 0 then λi,T = −µiλi,zv+i,T /|v
+
i,T |, (6)

which simply states that the tangential contact force always
opposes the tangential velocity. Many approaches were de-
veloped to solve the Coulomb’s friction problem, e.g. the
projected Gauss-Seidel method [5], bipotential method [9],
analytical solution [10], Newton type algorithms, etc. This
model is rather difficult to solve due to the non-convexity of
the problem [11]. A possible convexification was introduced
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by Anitescu et. al. [12] which relaxes the Signorini condition
as

λi = arg min
λi∈Fi

v+Ti M i,iv
+
i . (7)

where Fi is a set of points satisfying the friction cone con-
straint of the ith contact. By relaxing the Signorini condition,
the contact shows bouncing behavior.

A promising alternative to this model was recently in-
troduced in [7]. The idea is to separate the problem into
two cases. If the unconstrained motion results in an opening
contact, the contact force is trivially zero. If the contact is
closing, the author assumes

λi = arg min
λi∈Si

v+Ti M i,iv
+
i , (8)

where Si is the feasible set formed by the velocity space
Signorini condition and the Coulomb’s friction cone constraint
of the ith contact. This model assumes that the normal impulse
is also a part of the optimization variable that minimizes the
kinetic energy of the contact point. For a single contact, this
model leads to convex optimization with a unique solution,
under an assumption that the inverse apparent mass matrix
M−1

i,i is full rank2.
Equation (6) is generally the better accepted model. It was

reported that the results from Equ. (8) is very similar to
Equ. (6). in granular simulation [7]. As it will be shown in the
discussion section, the solutions of the two models are very
similar for a quadrupedal model as well. In this paper, We
evaluate both Equ. (6) and Equ. (8) with a different numerical
scheme.

III. BISECTION METHOD

We first go through how we can solve a single contact
problem described in the Equ. (8) and then extend it to a multi-
contact problem with nonlinear block Gauss-Seidel method.

A. Solving for a Contact

In this section, the index i is dropped since we only talk
about a single contact. There are three cases for a single
contact: an opening contact, a slip and a stick. In the case of
an opening contact, the optimal solution is λ = 03×1, where
03×1 is a 3×1 zero vector. In the case of a stick contact,
the optimal solution is λ = −Mc. Since these two cases are
trivial, we only discuss a slip case in details.

Assuming a slip on ith contact, we have an optimiza-
tion problem with the two equality constraints, h1(λ) =
M (r3)λ + cz = 0 and h2(λ) = λ2x + λ2y − µ2λ2z = 0, which
are the zero normal velocity constraint and the Coulomb’s
friction cone constraint. Note that the Signorini condition is
reduced to the zero normal velocity constraint given that a slip
occurs. The subscript (r3) means the third row of the matrix.
The gradients of the constraints are ∇h1(λ) = M (r3) and
∇h2(λ) = [2λx, 2λy,−2µ2λz].

2degenerate M−1 means that the point is locked in a certain direction.
For example, a contact between ground and a link which is connected to the
ground by a rotational joint.

Figure 2: Friction cone (green) and zero normal velocity
constraint (blue plane) are shown. The slip condition occurs
on the boundary of the intersection.

First order Karush-Kuhn-Tucker (KKT) condition states
that, if x is optimal respect to the cost function L, ∂L/∂x
lives only in the constrained space (i.e. span of ∇h’s). This
simply means that the gradient projected to the unconstrained
space is zero and can be mathematically written as

∂L

∂x
η = 0, (9)

where η represents a matrix whose columns are basis vectors
pointing to the unconstrained directions. In a single contact
dynamics, we have 3 variables with 2 constraints, so η
becomes a vector as shown in Fig 2. Using the orthogonality
to ∇h’s, η can be computed as

η =
∇h1(λ)×∇h2(λ)

|∇h1(λ)×∇h2(λ)|
. (10)

We assume that this problem has a unique solution since the
degenerate M−1 leads to a 1D or 2D problem where the
solution can be trivially obtained.

In some cases, there might be two vectors satisfying the
stationarity condition so it alone is not a sufficient condition
for optimality. Fortunately, [7] introduces a simple “line of
sight” check that guarantees the global optimality. If a min-
imum is in line of sight of the zero velocity solution, the
solution is globally minimal. Informal proof can be given as
following. Let’s denote the line connecting any feasible point
and the zero-velocity solution as l. If the point is out of sight,
it cannot be a global minimal since the intersection between l
and the boundary of Si has lower cost. In addition, due to the
strict convexity of both Si and the objective function, the line
of sight region is unimodal. So a local minimum in the line of
sight region must be a global minimum. A formal proof can
be found in [7].

Note that the plane and the boundary of the cone forms
a conic section which is the feasible set. Thus the contact
problem in Equ. (8) can be transformed into a problem of
finding the closest point on the conic section to a point with
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a constant metric tensor. We denote this conic section as C.
Then, we can rewrite the problem as

λ = arg min
λ∈C

1

2
(c+M−1λ)TM(c+M−1λ). (11)

We change the equation to a more intuitive form

λ = arg min
λ∈C

1

2
(Mc+ λ)TM−1(Mc+ λ)︸ ︷︷ ︸

E

. (12)

−Mc is the unconstrained optimum (i.e. zero velocity solu-
tion) which is denoted as λv=0 in Fig. 2. The minimization is
essentially finding the closest point to it in C with the given
metric tensor M−1.

Let’s denote the intersection between λz axis and the zero
velocity plane as λT=0. We define a projection EC(·), which
maps any point λ on the zero velocity plane to the intersection
between the conic section and the line connecting λT=0 and
λ. This mapping is illustrated in Fig. 2.

We use λ0 = EC(λv=0) as an initial guess of our numerical
solver. Note that the projected point is always dissipative since
it is closer to the zero velocity point than the center point
λT=0. Strict dissipativity of the center point can be proven by
substituting the center point into the energy formula (Mc +
λ)TM−1(Mc+ λ) but we do not show this here due to its
simplicity. This initial guess is globally optimal only in some
special cases (e.g. if M can be written in a form cI where c
is a positive real number and I is an identity matrix).

We work in polar coordinates for computational ben-
efits. The tangential impulse can be represented as
[rcos(θ), rsin(θ)]. Then the projection EC(λv=0) is reduced
to θ0 = atan2(λv=0

y , λv=0
x ).

The bisection method requires the sign of the gradient at
every mid point. We tested three different methods to compute
the sign of the gradient. The most naive way is computing
dE
dλη. It has the same sign as dE

dθ . Another way is changing
to polar coordinates and compute dE

dθ directly as described
in [7]. Although this method is probably the best way to find
the energy directly, it actually leads to more computation cost
than the following hybrid form.

The z-component of the impulse can be obtained from our
zero normal velocity constraint M−1

(r3)λ + c(z) = 0. After a
few algebraic manipulation, we get

λz =
−ci(z) −M−1(zx)rcos(θ)−M−1(zy)rsin(θ)

M−1(zz)

. (13)

Now we substitute the above equation to the slipping impulse
condition µλz =

√
λ2x + λ2y = r, we can express r as a

function of θ as,

r =
−c(z)

M−1
(zz)

µ +M−1(zx)cos(θ) +M−1(zy)sin(θ)

. (14)

In the bisection method, we only compute θ and r without
computing the full impulse. The sign of the gradient along η
can be computed only with the tangential impulse as

dE

dλ
η̆ = (M−1λ+ c)η̆ = (M̄

−1
λT + c̄)η̆, (15)

where η̆ any vector with the same direction as η. η̆ results
from skipping the normalization steps of η.

The hybrid properties M̄−1 ∈ R3×2 and c̄ ∈ R3 can be
found by substituting Equ. (13) to the above equation as

M̄
−1

= M−1
(c1,c2) −M

−1
(c3)

[M−1(zx)

M−1(zz)

,
M−1(zy)

M−1(zz)

]
c̄ = c−M−1

(c3)(c(z)/M
−1
(zz)).

(16)

We observed that this hybrid method is about 30 % more
efficient than computation of dE

dλη and about 10 % more
efficient than full polar coordinate formulation.

Starting from the initial guess, we perform the bisection
method, which finds a root of (9). The bisection method first
performs an incremental stepping which moves the estimated
minimum in the opposite direction of the projected gradient.
This is to find an interval in where the global minimum lies.
We always check the line of sight and positiveness of r to make
sure that the global minimum actually lies in that interval.

The bisection part of the algorithm is simple. We bisect the
angle and compute the projected gradient at the mid point. The
new interval is set such that the global minimum lies within
in. We stop when the desired precision is met.

The pseudocode is shown in Algorithm 1. For clarity,
it shows a simplified version of the contact solver. In the
actual solver, many normalization steps are skipped and the
aforementioned hybrid method of computing the gradient is
employed.

B. Expansion to multi-contact

Once the per-contact solution is obtained, it is easy
to expand to multi-contact cases. Inspired by the existing
contact solvers, we use nonlinear block Successive Over-
Relaxation (SOR) method [13] to handle a multi-contact
problem. Nonlinear block SOR method only takes a partial
step toward the solution in coupled problems so that the solver
converges more reliably. We use a successive relaxation of a
form X ← αX∗ + (1 − α)X , where X is the current esti-
mated solution, X∗ is the optimal solution assuming that the
other coupled variables are fixed and α is an over-relaxation
parameter. Algorithm 2 summarizes the overall algorithm. The
algorithm essentially 1) finds an optimal solution for a single
contact 2) update the current solution as a weighted average
of the current solution and the optimal solution and 3) decays
the relaxation factor.

Since we compute the numerically accurate solution for
every contact, we can compute how much the current solution
violates the physical constraints as well. Therefore, we can
have a reliable terminal condition.

IV. PROJECTED GAUSS-SEIDEL

The bisection method introduced in the previous section
iterates over contacts. Another possible scheme is an iteration
over each force component as in the PGS method [6]. The
PGS method for purely inelastic collisions can be written as,

λi,z ← proxz(λi,z − ri,zvi,z)
λi,T ← proxT (λi,T − ri,Tvi,T ).

(17)
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Algorithm 1 Bisection method for a single slip contact

1: Given hyperparameters β1, β2, β3 and γ
2: θ ← ∠λ0

T

3: Find r and λz as per Equ. (14) and (13)
4: λ← [rcos(θ), rsin(θ), λz]

T

5: D0 ← dE
dλη

6: α← −β1sgn(D0)
7: loop . Initial stepping
8: θp ← θ . Store old angle
9: λp ← λ

10: θ ← θ + α
11: Find r and λz as per Equ. (14) and (13)
12: λ← [rcos(θ), rsin(θ), λz]

T

13: if ∇h2(λ) · (λ− λv=0) < 0 or r < 0 then
14: α← β2α and θ ← θp . back to old param
15: else
16: Find dE

dλη as per Equ. (15)
17: if (dEdλ η)D0 > 0 then . Zero-crossing
18: α← β3α
19: else
20: break
21: end if
22: end if
23: end loop
24: repeat . Bisection
25: θ4 ← 1

2 (θ + θp) . Compute mid-point
26: Find r4 and λ4z as per Equ. (14) and (13)
27: λ4 ← [r4cos(θ4), r4sin(θ4), λ4z ]T

28: if (dEdλ |λ=λ4η
4)D0 > 0 then

29: θp ← θ4

30: else
31: θ ← θ4

32: end if
33: until |λp − λ| < γ

Algorithm 2 Solving multi-contact dynamics

1: while λ not converged do
2: for each active contacts do
3: if ci(z) > 0 then . if opening
4: λi ← (1− α)λi
5: else if µλv=0

i,z ≥ |λ
v=0
i,T | then . if sticking

6: λi ← αλv=0
i + (1− α)λi

7: else . if slipping
8: Compute λ∗i as per Algorithm 1
9: λi ← αλ∗i + (1− α)λi

10: end if
11: end for
12: α← αmin + γ(α− αmin)
13: end while

where proxz(·) is equivalent to max(0, ·) and proxT (·) is an
Euclidean projection onto the Coulomb’s friction disc given
the current estimate of λz . The constants rz and rT can be
tuned using the apparent inertia matrix as

ri,z =
α

M−1i,i(zz)
and ri,T =

α

max(M−1i,i(xx),M
−1
i,i(yy))

, (18)

Figure 3: ANYmal has 4 legs, 12 joints and 4 feet. The
schematic is simplified for clarity.

where the subscript (xx) represent the row and column in-
dices.

The PGS method has been proven to be effective in granular
matter simulations in where thousands or sometimes millions
of spherical objects interact with each other. We also believe
that the PGS method is the best option when we only deal
with spherical objects since their apparent inertia matrix is
diagonal assuming homogeneity of the density. However, the
focus of this paper is on robotic systems. Convergence of the
PGS method can be extremely slow when the off-diagonal
elements in the Delassus matrix become large [14].

V. NUMERICAL EXPERIMENTS

Here we present numerical experiments to demonstrate the
performance of the proposed bisection method.

A. Experimental Setup

Our interest lies in the field of robotics, especially in artic-
ulated robots. Therefore, we chose a model of ANYmal [15],
illustrated in Fig. 3, to validate the proposed bisection method
and compare it to the PGS method. ANYmal is a quadrupedal
robot weighing about 35 kg. The collision geometry is defined
only at the four feet and the torso for simplicity. The feet are
modeled as spheres and the torso is modeled as a box. We test
the following four scenarios:
• Trotting: The model of ANYmal runs forward at 1.5 m/s

with its legs moving in diagonal pairs. The maximum
possible number of contacts is 4.

• Hanging: The model of ANYmal is thrown in the air
with zero initial velocity and 1 m height. The unilateral
constraints keep only the feet (not the torso) above the
ground, emulating upside down hanging behavior. The
maximum possible number of contacts is 4.

• Drop: The model of ANYmal is thrown into the air with
1 m/s initial tangential velocity and 1 m initial height and
the unilateral constraints keep both the feet and the torso
above the ground. The simulation resets when there is
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Bisection Golden Section Analytical
Costs (µs) 0.58µs 1.2µs 1.6µs

Table I: Computation cost of a single contact optimization.

no significant motion observed. The maximum possible
number of contacts is 8.

• Random: The model of ANYmal is thrown into the air.
The joints are controlled by a PD controller and the
reference inputs are given randomly with 1 rad2 variance.
The simulation resets every 5 s. The maximum possible
number of contacts is 8. Note that this is a process
of collecting data for reinforcement learning, which is
implemented in RAI framework [16].

All experimental results are from a single framework and
only the relevant parts of the code are modified to implement
different algorithms. All numerical computations are based on
Eigen3 library [17] except symmetric positive definite matrix
inversion using Cholesky factorization. We used our custom
implementation which seems to be faster by about 30 %.
One core of Intel Xeon E5-1620 (3.6 GHz), which is not a
high-end cpu in today’s standard, is used for all experiments.
For time measurement, CLOCK_MONOTONIC of the posix-
timers under Linux was used. For computing articulated-body
dynamic properties, we use RBDL library3 which is based
on the algorithms described in [18]. We use ∆t =1 ms for
all experiments. For unactuated tasks, the simulation is stable
even when a very large time step (e.g. ∆t =20 ms) is employed
but the accuracy is highly compromised with such a large time
step.

B. Single-Contact Solver Performance

Preclik et. al. suggested two solvers of solving the same
contact model [7], [19], namely the golden section method
and the analytical method. We compare the proposed bisection
method against these two methods.

The golden section uses the values of a function whereas
the bisection method uses the sign of the gradient. Using the
hybrid gradient computation method described in Sec. III-A,
the computation of the sign of the gradient is just 10 % more
expensive than the value. For the analytical method, we tested
four free quartic solvers available online and picked the fastest
one. We further had to modify the code so that it is seamlessly
integrated to our code and inlined in the main solver loop. In
addition to the quartic solver, we also integrated coefficient
computation and all necessary checks described in [19].

We ran all four tasks and collected 100,000 samples from
each task. We terminated the optimization when the impulse
interval goes below 10−6 Ns for both the bisection and the
golden section method. The computation costs of each solver
is shown in Tab.I.

C. Multi-Contact Solver Performance

For the bisection method, we set a relaxation factor α = 1
with a decay factor γ = 0.99 and a minimum relaxation factor
αmin = 0.7. For the PGS method, we set α = 0.6 and keep it

3https://rbdl.bitbucket.io/

Trot Hang Drop Random
Bisection (s) 1.98 2.57 2.62 1.90

PGS (s) 1.81 5.92 4.35 2.88

Table II: Computation cost per 100k time steps

constant. The parameters here are fairly tuned to show good
performance in all tasks. We could not use the same relaxation
factor scheduling on the PGS method since recomputing rz
and rT resulted in a significant increase in the computation
cost without much performance gain.

The two algorithms have a different termination condition so
it is tricky to compare them fairly. The PGS method computes
the error by summing the magnitude of the impulse updates
and the norms of the penetration velocities. The bisection
method computes the error by adding the exact violations of
the physical constraints. Therefore, the termination condition
for the bisection method is much more strict and reliable.
We terminate when the error is below 1µNs or µm/s unless
otherwise specified.

The rendering of the simulation is shown in Fig. 1 to
aid understanding of the experiment. Fig. 5 and 4 show the
computation cost and the number of iterations taken by each
algorithm. Since all the code include logging, the total com-
putation time does not necessarily reflect the true computation
time taken by the simulation. We perform the same test without
logging, and the total computation time is shown in Table. II.
Since we do not have the ground truth, it is hard to measure the
validity of the simulation. However, we provide two statistics
here. First, we measure the difference between the two solvers.
While we simulate with the bisection method, we ran the PGS
solver as well and measure the relative difference as |λb−λp|

|λp| .
The histogram of the samples of the differences is shown in
Fig. 6. Here we set the termination threshold of PGS to 10−20

to make sure that we are measuring the correct difference.
Another meaningful measure of accuracy is the penetration

depth of the feet, which is shown in Fig. 7. We get the
meaningful penetration depth only in task 2 since the other
tasks are actuated and the feet often leaves the ground. In task
2, the robot still swings around due to the conservation of
energy but the feet stays on the ground all the time except the
first two second when the robot falls.
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Figure 5: Computational costs on 4 different tasks averaged
over 5 runs are shown.
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Figure 4: Number of iterations taken by the bisection method and the PGS method are shown. The bin edges increase by
a factor of two (log scale). The y-axis represents the percentage. In average, the bisection method takes significantly less
iterations to solve a contact problem.

Figure 6: Error between Coulomb’s friction model and the
maximum dissipation model.
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Figure 7: Average penetration depth of the feet in task 2 is
shown. PGS method is tested with two different termination
threshold levels.

VI. DISCUSSION

We found a significant performance improvement with the
proposed bisection method in a single contact problem. There
are a few reasons why it outperforms the golden section
method. First, the interval size decreases by 50 % for the
bisection and 38 % for the golden section method. Second, the
proposed bisection method starts with a good guess which is
a Euclidean projection of the zero-velocity condition, whereas
the golden section method proposed in [7] searches within
the two end points of the line-of-sight region. In most cases,
we found that the Euclidean projection to be near the optimal
solution and the bisection method converges in just two steps.
Lastly, following the method presented in [7], the golden
section method has an initial overhead to find the interval
which is quite significant. The proposed bisection method just
requires a single atan2 call for initialization.

The analytical method was the slowest. In addition to its
quartic solver, the computation of the coefficients and the

post checking processes combined took as much as the quartic
solver.

We observed that the inverse apparent inertia matrix at
the feet is almost always diagonal-dominant when ANYmal
is trotting. It is not very surprising to see the PGS method
performing the best in such cases since it only involves a few
elementary operations per iteration. Considering the computa-
tion cost of the solver only, the PGS was about twice faster.
However, the computation cost of the overall algorithm was
not significantly different since the total time was dominated
by the computation cost of the dynamic properties (updating
the Jacobians, the mass matrix and the non-linearities).

The performance of PGS algorithm quickly drops when the
kinematics is not favorable. It is outperformed by the bisection
method by a significant margin for hanging and drop tests. As
shown in Fig. 4, the iteration taken by the PGS method is about
a magnitude higher than that by the bisection method. We also
noticed that the PGS method becomes extremely slow at the
impacts. In the hang and drop task, the PGS took more than
20,000 iterations to solve the contact problem at the impact.
This was the main reason that the performance gap between
the two methods became very large in the two tasks.

In the random motion task, the bisection method again out-
performed the PGS method. Considering the solver time only,
the bisection method was about 4 times faster. Considering the
total simulation time, the bisection method took about 35 %
less time. We suspect that the big performance gap is due to
the frequent slippages at the feet which are not observed in
the trotting task.

In terms of the penetration depth, the bisection method
seems much more accurate than the PGS method at the same
termination threshold as shown in Fig 7. Even when the
threshold is lowered to 10−8, the PGS was outperformed
by the bisection method. The tighter termination condition
was translated to about 50 % increase in solver time for the
PGS. Note that since the system is nonlinear and discrete, the
penetration in unavoidable. Practically, this rate of penetration
can be adjusted by introducing a small spring term.

The difference between the two models is shown in Fig. 6.
More than 99.6 % of the time, the difference remained below
1 %. The resulting motions were visibly indistinguishable as
well. This shows that the two models are highly similar,
supporting the claims made in [19].
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We believe there is enough room to improve the computa-
tion of the dynamic properties and the Delassus matrix using
a faster implementation and vectorization. This will make the
performance gap between the two solvers more significant.
Although it is not within the scope of this paper, we found
that a proper implementation of Featherstone’s algorithms
outperforms the RBDL by a factor of 4.

It was unexpected that the computation cost of the Delassus
operator became significant. It was as expensive as the contact
solvers. In a four-contact case, computing the Delassus opera-
tor costs 6,480 double precision floating point multiplications
and a similar number of addition operations. The high number
of instructions is due to its quadratic relationship to both the
DOF (18) and the number of contacts.

We do not believe that it is easy to prove the convergence
of our method just like most of the methods that are based on
the nonlinear Gauss-Seidel method. The solver is extensively
tested (>100 years in simulation time) through our reinforce-
ment learning frameworks [16] with two different robotic
models, ANYmal and a humanoid model. No convergence
issue was observed yet. However, the robustness of the solver
has to be tested in more broad varieties of robotic systems in
the future.

The solution of the impulse might not be unique when
there can be a residual force. This is a well-known problem
in contact dynamics. In real life, the residual force is highly
dependent on the geometry and the rigidity of the material. The
proposed solver is just computing one of all feasible solutions.
However, the velocity solution is unique if the solver fully
converges.

VII. CONCLUSION

We introduced the bisection method for solving contact dy-
namics which accounts for the non-diagonal dominant nature
of the inverse apparent mass matrix. We found that it outper-
forms the two existing methods for a single contact problem
at least by a factor of two. In addition, we fairly compared
it against the PGS method on four robotic simulation tasks.
The proposed method showed fast and consistent performance
on all tasks whereas the PGS became significantly slow on
complicated tasks. Our result shows that the proposed method
can be a promising alternative to the existing contact solvers
which employ many relaxations of the physical principles.
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