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1 Introduction

The prediction of new heavy quarks is a common feature of many theories of physics beyond

the standard model (SM). In composite Higgs models [1–3], heavy partners of the SM top

quark solve the hierarchy problem caused by quadratic divergences in the quantum-loop

corrections to the Higgs boson mass by providing contributions that offset those due to the

SM top quark. Often in such models, new color-triplet partners are predicted, with one of

them having an exotic electric charge of 5/3 times the charge of the positron, referred to

as X5/3. In partially composite scenarios [4], these exotically charged fermions need not

contribute to the gluon-gluon fusion production mode of the Higgs boson [5] and hence such

measurements set no constraints on the mass of the X5/3 particle. This paper describes
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Figure 1. Leading order Feynman diagrams showing pair production and decays of X5/3 particles

via QCD processes.

a search for such a fermionic top quark partner, using proton-proton (pp) collision data

collected during 2016 at a center-of-mass energy of 13 TeV with the CMS experiment at

the CERN LHC, corresponding to an integrated luminosity of 35.9 fb−1.

The dominant mechanism for X5/3 production, shown in figure 1, is via quantum

chromodynamics (QCD) processes, which yield particle-antiparticle pairs, since the X5/3

carries color charge. The X5/3 particle can also be singly produced via electroweak pro-

cesses, but that production mode is model dependent and is not considered here. Since

the pair production involves exclusively the SM QCD coupling, the tree-level cross section

is independent of the X5/3 properties, other than its mass. The X5/3 particle is assumed

to decay into a top quark and a W boson with a branching fraction of 100%, since this is

the dominant decay mode in many models [6]. The decay can occur through either right-

handed (RH) or left-handed (LH) couplings to W bosons, and this search presents results

for either fully RH or fully LH decays. Thus we have not restricted the interpretation of

the results to the case of vector-like quarks, whose left-handed and right-handed chiral-

ity states have the same transformation properties under the weak isospin SU(2) gauge

group, although limits obtained with this assumption would be very similar to those set

for pure-LH or pure-RH couplings.

This search focuses on two different final states consisting of either exactly one lepton

or multiple leptons with the requirement that there be a pair of same-sign leptons. In

both cases, additional hadronic activity in the event is required. Throughout the paper,

the word lepton refers to an electron or a muon. Although leptonic tau decays are not

specifically targeted in this analysis, their contribution to the signal efficiency is taken into

account. The same-sign dilepton final state relies on its relatively clean signature and the

large amount of jet activity from the other X5/3 particle in the event to discriminate against

background processes. The single-lepton channel exploits the shape of the distribution of

the visible mass of the top quark reconstructed in the detector to discriminate against

background events.

Previously, CMS conducted a search for the X5/3 particle using data collected at a

center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.5 fb−1, in
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the same-sign dilepton channel only, setting a lower limit on the X5/3 mass of 800 GeV at

95% confidence level (CL) [7]. CMS has recently carried out another search [8] for X5/3 in a

combination of the same-sign dilepton and single-lepton final states using data collected in

2015 at
√
s = 13 TeV, corresponding to an integrated luminosity of 2.3 fb−1, setting a lower

limit on the X5/3 mass of 1.02 (0.99) TeV for an RH (LH) coupling. Searches have also been

performed by the ATLAS experiment at center-of-mass energies of 8 and 13 TeV [9–14].

The results based on
√
s = 13 TeV with 36.1 fb−1 of data set a lower limit of 1.37 TeV on

the mass of the X5/3 particle.

The present search follows closely the strategy of ref. [8] and benefits from an order

of magnitude increase in the integrated luminosity. This paper is organized as follows:

section 2 briefly describes the CMS detector; section 3 discusses the simulated signal and

background samples; in section 4, trigger details are given; section 5 contains a descrip-

tion of the event reconstruction; the analyses of the same-sign dilepton and single-lepton

final states are detailed in sections 6–7; and the systematic uncertainties are discussed in

section 8. Finally, sections 9–10 give the results and a summary.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel

and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass

and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap

sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the

barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in

the steel flux-return yoke outside the solenoid. Events of interest are selected using a two-

tiered trigger system [15]. The first level, composed of custom hardware processors, uses

information from the calorimeters and muon detectors to select events at a rate of around

100 kHz within a time interval of less than 4 µs. The second level, known as the high-level

trigger, consists of a farm of processors running a version of the full event reconstruction

software optimized for fast processing, and reduces the event rate to less than 1 kHz before

data storage.

A more detailed description of the CMS detector, together with a definition of the

coordinate system used and the relevant kinematic variables, can be found in ref. [16].

3 Simulation

The X5/3 signal processes are generated using a combination of MadGraph5 amc@nlo

2.2.2 [17] and MadSpin [18] for two coupling scenarios: allowing only RH or only LH

X5/3 coupling to W bosons. The MadGraph5 amc@nlo event generator is used both

to produce X5/3 events and to decay each X5/3 to a top quark and a W boson, while the

decays of the top quarks and W bosons are simulated with MadSpin. The signal events

are simulated at leading order (LO) for X5/3 masses from 800 to 1500 GeV, in 100 GeV

steps, separately for each coupling scenario. The signal samples are then normalized to the
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next-to-next-to-leading order cross sections using the Top++2.0 generator [19–24], with

resummation of soft gluon corrections at the next-to-next-to-leading logarithmic accuracy.

A variety of event generators are used for the Monte Carlo (MC) simulation of the

background processes. The powheg 2.0 [25–28] event generator is used to simulate tt,

single top quark events in the t-channel and tW channel, ttH, WZ, and ZZ events to next-

to-leading order (NLO) precision. The MadGraph5 amc@nlo event generator is used

to simulate Z+jets, W+jets, single top quark process in the s-channel, ttZ, ttW, and tttt

processes, events with a combination of three W or Z bosons, and QCD multijet events.

The Z+jets, W+jets, WW, and QCD multijet processes are generated at LO using the

MLM matching scheme [29]. The FxFx matching scheme [30] is used for ttZ, ttW, tttt,

triboson, and single top quark process in the s-channel, which are generated at NLO.

Additional pp interactions in the same or neighboring bunch crossings (pileup) are

modeled by superimposing simulated minimum-bias interactions onto the simulated events

for all processes. Simulated events are reweighted so that the number of pileup interactions

matches the distribution observed in data.

Parton showering, hadronization, and the underlying event are simulated with pythia

8.212 [31], using NNPDF 3.0 [32] parton distribution functions (PDFs) and the CUETP8M1

tune [33, 34] for all MC processes, except for the tt sample, which is produced with the

CUETP8M2T4 tune [35]. Finally, for all MC samples, generated events are processed

through the full Geant4-based simulation of the CMS detector [36] and then reconstructed

using the same procedure as the data.

The transverse momentum (pT) spectrum of the top quarks in tt events is known to

be mismodeled in simulation [37] and, therefore, corrections are applied to simulated tt

events as a function of the top quark pT.

Many of the SM background processes in this search are similar and are therefore

grouped together in the discussion that follows. The same-sign dilepton final state groups

SM processes according to their similarity to the signal topology and classifies them as

“tt+X”, containing ttW, ttZ, ttH, and tttt, which are those processes most similar to the

signal, and “multiboson”, comprising all processes mentioned above where two or three

electroweak bosons are directly produced. For the single-lepton final state, the background

processes are grouped into three categories. The first category is referred to as “TOP”,

which is dominated by tt events, but also includes any process having at least one top

quark. The second category is referred to as “EWK”, which is dominated by W+jets

events, but includes all processes that contain electroweak bosons and no top quark. The

third category is referred to as “QCD” and is the QCD multijet background.

4 Trigger and event selection

For the same-sign dilepton final state, candidate events are required to have passed triggers

based on two electrons, two muons, or electron-muon combinations. For the first half of

the data set, symmetric trigger pT thresholds were used for the dielectron and electron-

muon triggers, corresponding to a pT requirement of 33 (30) GeV for the former (latter).

During the data-taking period, the instantaneous luminosity of the LHC steadily increased.
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Therefore, for the second half of the data set, to keep the trigger rate at an acceptable

level, these triggers were replaced with new ones that had asymmetric pT requirements,

with the higher pT (leading) lepton requirement of 37 GeV and the lower pT (subleading)

lepton threshold of 27 GeV, for both the dielectron and electron-muon triggers. Throughout

the entire data taking period, the same dimuon trigger, which had pT requirements of 30

(11) GeV for the leading (subleading) muon, was used.

In the single-lepton final state, events are required to pass either single-electron or

single-muon triggers. For the single-electron triggers, either an electron isolated from

nearby particles with pT > 32 GeV, or a very loosely isolated electron with pT > 15 GeV

together with HT > 350 GeV is required, where HT is the scalar pT sum of all jets at the

trigger level with pT > 30 GeV and |η| < 3.0. The single-muon triggers require either a

muon with pT > 50 GeV with no isolation requirement or a very loosely isolated muon with

pT > 15 GeV together with HT > 350 GeV.

5 Object reconstruction

This search makes use of electrons, muons, jets, and missing transverse momentum. The

reconstruction of these objects is based on a particle-flow (PF) algorithm [38], which recon-

structs and identifies particles using an optimized combination of subdetector information.

The candidate events are required to have at least one reconstructed vertex passing

basic quality criteria. In the case that there are multiple reconstructed vertices, the one

with the largest value of summed physics-object p2T is taken to be the primary pp interaction

vertex. Here, the physics objects are the jets, clustered using the jet finding algorithm [39,

40] with the tracks assigned to the vertex as inputs, and the associated missing transverse

momentum, taken as the negative vector pT sum of those jets.

Electron candidates are reconstructed from a collection of electromagnetic clusters that

are matched to reconstructed tracks in the tracker [41]. As in ref. [8], the identification

criteria for electrons are based on a multivariate analysis (MVA), which makes use of shower

shape variables, track quality requirements, variables measuring compatibility between the

track and matched electromagnetic clusters, distance from the track to the primary vertex,

and the probability that the electron candidate arises from a photon conversion.

In the same-sign dilepton final state, a consistency requirement is placed on the three

measurements of the electron charge that result from three different methods. Two of these

charge assignment methods are based solely on tracker information, where the charge of

the track is determined by the standard CMS track reconstruction [42] or the Gaussian

Sum Filter algorithm [43]. A third method is based on the difference in azimuthal angle (φ)

between the ECAL cluster center of gravity and pixel detector seeds used to reconstruct

the electron track. Because the third method has been found to be unreliable at high pT,

only the results from the first two charge determination methods are required to agree

for electrons with pT above 100 GeV. Relaxing the requirement on this method recovers

5–10% of signal efficiency, depending on the mass of the X5/3. For electrons with pT below

100 GeV, all three charge measurements are required to agree.

– 5 –



J
H
E
P
0
3
(
2
0
1
9
)
0
8
2

Muons are reconstructed using a global track fit of hits in the muon chambers and

hits in the silicon tracker. The identification criteria are based on the number of hits used

in the fit, the track quality, and the distance of the track to the primary vertex. For the

same-sign dilepton final state in the dimuon channel, the two muons should not be both

within |η| > 1.2, unless they are in opposite sides of the detector in η or are well separated

in φ (∆φ > 1.25 rad.). This last requirement is imposed because of a misconfiguration

of part of the trigger system, in the first part of the data-taking period, affecting nearby

muons in the endcap detectors and has no effect on signal efficiency.

We select charged leptons that are isolated from other activity in the detector. The

isolation variable (I) for both electrons and muons is defined as the scalar pT sum of all

PF candidates within a cone of varying size around the particle, divided by its pT. The

radius used for the isolation cone (R) is defined as:

R =
10 GeV

min(max(pT, 50 GeV), 200 GeV)
, (5.1)

where the lepton pT is measured in GeV. Corrections are applied to the computation of

the lepton isolation in order to account for the effect of pileup using the effective area

method [44]. Two categories of leptons are defined, a “tight” lepton, which has I < 0.1

and also passes the relevant identification criteria above, and a “loose” lepton, which has

I < 0.4. In addition, the definition of “loose” electrons includes a relaxed requirement

on the MVA discriminant, and “loose” muons have relaxed requirements on several of the

aforementioned identification requirements. The signal efficiencies for “tight” and “loose”

electrons (muons) are ≈88% (≈97%) and ≈95% (≈100%) for |η| < 2.5 (2.4), respectively,

excluding the barrel-endcap transition region (1.44 < |η| < 1.57) for electrons.

Data-to-simulation scale factors to correct for imperfect detector simulation are ob-

tained using the “tag-and-probe” method [45] for lepton trigger, identification, and isola-

tion, as functions of the lepton pT and η.

Jets are clustered from the reconstructed PF candidates using the anti-kT algo-

rithm [39] implemented in the FastJet package [40, 44, 46] with a distance parameter

of 0.4 (AK4) and are required to satisfy pT > 30 GeV and |η| < 2.4. Additional selection

criteria are applied to remove spurious energy deposits originating from isolated noise pat-

terns in certain HCAL regions and from anomalous signals caused by particles depositing

energy in the silicon avalanche photodiodes used in the ECAL barrel region [47]. Jets that

overlap with leptons have the four-momentum of any shared lepton subtracted from the jet

four-momentum. Jet energy corrections are applied for residual nonuniformity, nonlinearity

of the detector response, and the level of pileup in the event [48, 49].

In the single-lepton final state analysis, jets are tagged as originating from the decay

of a bottom quark using a combined secondary vertex (CSVv2) algorithm [50], which

classifies jets based on the distance between their vertex and the primary vertex, along with

observables such as track impact parameter. At the working point chosen, the efficiency

for correctly tagging jets from bottom quark decays is between 40–65%, depending on the

jet pT. The efficiency of tagging charm hadron jets is approximately 12%, averaged over

jet pT, while the probability of mistagging light-flavor jets is roughly 1%.
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Large-radius jets are also reconstructed using the anti-kT algorithm, with a distance

parameter of 0.8 (AK8), and are used to tag hadronic decays of Lorentz-boosted top quarks

or W bosons in the single-lepton final state analysis. Two variables are used to classify AK8

jets as originating from merged top quark decays (t tagging): the jet mass after grooming

with the soft-drop algorithm [51] and the ratio of N -subjettiness variables τ3/τ2 [52], a

variable that provides strong discrimination between AK8 jets with two and three subjets.

For an AK8 jet to be labeled as t tagged, it must have pT > 400 GeV, soft-drop mass

between 105 and 220 GeV, and the ratio τ3/τ2 less than 0.81. This set of t tagging require-

ments yields an efficiency of roughly 60% and a mistag rate of roughly 3% for the pT range

considered. Data-to-simulation scale factors [47] are applied to events containing t-tagged

jets in order to match the performance in the simulation to that seen in data.

If an AK8 jet fails the top quark identification criteria, it is considered for classification

as a merged hadronic W boson decay (W tagging). An AK8 jet is labeled as W tagged if

it has pT > 200 GeV, pruned mass between 65 and 105 GeV, and a ratio of N -subjettiness

variables τ2/τ1 smaller than 0.6, where the pruned mass is the mass of the jet after removing

the soft and wide-angle radiated partons [53]. This set of requirements used to select W-

tagged jets yields a signal efficiency of 60–80% and a mistag rate of 20–5%, depending

on the pT of the AK8 jet. The pruned mass scale is found to be consistent between data

and simulation, but the mass resolution is found to be better in simulation and hence it

is smeared in simulated events to match the resolution seen in data. Data-to-simulation

scale factors [47] are also applied in order to match the performance of the W tagging in

simulation to that seen in data.

The missing transverse momentum (~pmiss
T ) is defined as the negative of the vector pT

sum of all reconstructed PF candidates in an event and its magnitude is denoted as pmiss
T .

Energy scale corrections applied to jets are also propagated to pmiss
T .

6 Same-sign dilepton final state

The search in the same-sign dilepton final state takes advantage of the rare signature of

same-sign leptons, as well as the significant number of other high-pT leptons and jets from

the decay of the other X5/3 particle in the event.

The background contributions associated with this channel fall into three main cat-

egories: same-sign prompt leptons (SSP), opposite-sign prompt leptons (ChargeMisID),

and same-sign nonprompt dilepton (Nonprompt). The SSP background consists of SM

processes that give prompt, same-sign dilepton signatures, where a prompt lepton is de-

fined as one originating from the direct decay of either a W or Z boson. The contribution of

these processes to the signal region is estimated using simulation. The ChargeMisID back-

ground is composed of events that contain two opposite-sign leptons, but have the charge of

one lepton mismeasured. This contribution is estimated from data. The Nonprompt back-

ground consists of events that contain at least one nonprompt lepton passing the lepton

selection criteria. Such events arise from jets misidentified as leptons, nonprompt leptons

from heavy-flavor decays or conversions in the detector material, etc. This contribution is

also estimated using control samples in data.
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Channel RH X5/3 (1 TeV) SSP MC Nonprompt ChargeMisID Total bkg. Data

Dielectron 11.6± 0.8 3.9± 0.3 4.6± 1.7 2.4± 0.7 10.9± 1.9 10

Dimuon 16.1± 1.2 5.7± 0.5 5.5± 1.9 — 11.2± 2.0 12

Electron-muon 26.9± 1.9 10.3± 0.8 11.3± 3.6 1.7± 0.5 23.2± 3.7 26

Table 1. Summary of yields from simulated prompt same-sign dilepton (SSP MC), same-sign non-

prompt (Nonprompt), and opposite-sign prompt (ChargeMisID) backgrounds after the full analysis

selection. Also shown are the number of expected events for an RH X5/3 particle with a mass of

1 TeV. The uncertainties include both statistical and all systematic components (as described in

section 8). The number of events and uncertainties correspond to the background-only fit to data

for the background, while for the signal they are based on the yields before the fit to data.

We first require two same-sign leptons that pass the tight definition given in section 5.

The same-sign lepton pair that maximizes the scalar pT sum of its constituents is taken

as the signal pair. Because the same-sign dilepton final state sample was collected in two

different triggering eras, different pT requirements are placed on the pair according to

the triggering era in order to ensure that the trigger has reached full efficiency. For the

early (late) triggering era, the leading lepton is required to have pT > 40 (40) GeV while

the subleading lepton is required to have pT > 35 (30) GeV.

A set of preselection requirements is defined as follows. First, the invariant mass of

the same-sign lepton pair is required to be greater than 20 GeV (quarkonia veto) and the

event is required to contain at least two AK4 jets passing the requirements outlined above.

Second, events containing a Z boson are removed by vetoing any event with an opposite-

sign, same-flavor pair of leptons having an invariant mass within 15 GeV of the mass of the

Z boson. For the dielectron channel, this requirement is extended to the pair of same-sign

electrons as well, in order to veto ChargeMisID background events. This eliminates the

majority of Drell-Yan (DY) events, which would otherwise be a major contributor to the

ChargeMisID background, without adversely affecting our signal efficiency.

After the preselection, two analysis-specific variables are defined as follows. The num-

ber of constituents (Nconst) is the number of AK4 jets in the event together with the

number of additional (i.e. not in the same-sign pair) leptons passing the tight definition.

The H lep
T variable is the scalar pT sum of all constituents including the same-sign pair.

The criteria on these two variables are optimized for expected signal significance and

the final requirements are Nconst ≥ 5 and H lep
T > 1200 GeV. Figure 2 shows the H lep

T

distributions at the preselection level; the distributions of the Nconst variable (not shown)

were also confirmed to be well described.

6.1 Background modeling

In this section, we summarize the background modeling used in the same-sign dilepton

search. The estimated contribution for all backgrounds is presented in table 1. For addi-

tional details see ref. [8].

6.1.1 Same-sign prompt lepton background

The SSP background consists of processes with multiple W or Z bosons decaying to leptons,

the bosons themselves either being created directly or through the decay of a top quark.
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Figure 2. The H lep
T distributions after the same-sign dilepton requirement, Z boson and quarkonia

lepton invariant mass vetoes, and the requirement of at least two AK4 jets in the event, for dielectron

(upper left), dimuon (upper right), electron-muon (lower left) final states, and their combination

(lower right). The hatched area shows the combined systematic and statistical uncertainty in the

background prediction for each bin. The last bin includes overflow events. The lower panel in each

plot shows the difference between the observed and the predicted numbers of events divided by the

total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical

uncertainty in the observed measurement and the uncertainty in the background, including both

statistical and systematic components. Also shown are the expected signal distributions for a 1 TeV

X5/3 with LH (solid line) and RH (dashed line) couplings.
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The contributions from these processes are estimated using the simulation as described in

section 3. The systematic uncertainties included for the SSP background are discussed in

section 8.

6.1.2 Opposite-sign prompt lepton background

Background events in the ChargeMisID category arise from a pair of opposite-sign prompt

leptons where the charge of one lepton is mismeasured, yielding a pair of same-sign leptons.

The charge misidentification probability for muons is much smaller and hence is considered

negligible [54]. For electrons, the probability of charge misidentification is measured using

observed DY events by requiring a pair of electrons with an invariant mass (driven by

ECAL information) between 81 and 111 GeV. The charge misidentification probability is

binned by |η| of the electron, and split into three different pT regions: below 100 GeV,

between 100 and 200 GeV, and above 200 GeV. These regions capture the effects of the

differences in charge consistency requirements for low- and high-pT electrons, as well as any

remaining inherent dependence of the charge misidentification probability on the electron

pT. Values of the charge misidentification probability range from 10−4 for low-pT electrons

in the central part of the detector to a few percent for high-pT electrons in the forward

region of the detector.

To estimate the contribution of the ChargeMisID background, opposite-sign dilepton

events that satisfy all signal region kinematic requirements are weighted by the relevant

probability of charge misidentification according to the kinematics of the electron(s) in the

opposite-sign pair.

To account for the differences seen in the overall charge misidentification rate between

DY and tt events in simulation (roughly 25% higher in DY), and some small residual

kinematic disagreements (pT dependent variation of roughly 5% or less), a 30% systematic

uncertainty is assigned to the estimate of the number of ChargeMisID background events.

6.1.3 Same-sign nonprompt background

The Nonprompt background arises from events where a nonprompt lepton (such as a lepton

from a heavy-flavor decay, photon conversion, or a misidentified jet) passes the tight lepton

identification requirements. Contributions from these types of events are estimated using

the “Tight-Loose” method as described in ref. [55]. This method relies on collecting a

sample of dilepton events where the leptons are allowed to pass the loose definition described

previously, and then scaling those events by weights involving the probability of a loose

prompt lepton to pass the tight definition (“prompt rate”) and the probability of a loose

nonprompt lepton to pass the tight definition (“misidentification rate”).

The prompt rate is determined using the “tag-and-probe” technique with DY-enriched

dilepton data where the invariant mass of the leptons is within 10 GeV of the Z boson mass.

For muons, the prompt rate is found to be flat to within a few percent as functions of η

and pT and hence the average of 0.94 is taken. The prompt rate for electrons is found to

be flat versus η, but has a pT dependence, which is taken into account and gives values for

the prompt rate ranging from 0.80 to 0.95.
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The misidentification rate is determined using a sample enriched in QCD multijet

events. The selection of this sample follows the approach described in ref. [8] and requires

exactly one loose lepton, at least one jet, low pmiss
T , and low MT , where MT is the transverse

mass of the lepton and pmiss
T . We also reject events if the invariant mass of the lepton and

any jet is within 10 GeV of the Z boson mass.

Because of the significantly larger integrated luminosity used in this analysis, binning

of the variation in the misidentification rate as a function of lepton η is possible; the

values obtained range from 0.16 to 0.25 (0.34) for electrons (muons), with the lower values

corresponding to leptons in the central part of the detector.

The uncertainty in the estimation of the Nonprompt background is derived by com-

paring the variation between the misidentification rates measured from different types of

nonprompt lepton candidates, categorized by the generator-level origin of the nonprompt

lepton; the variation in kinematic dependence of these misidentification rates with respect

to pT and η; and the overall level of closure seen in the method. The above checks are all

performed using tt MC events. To ensure that all effects are covered, a 50% uncertainty is

assigned to the estimate of the Nonprompt background.

6.2 Event yields

Summing over the three dilepton final states, between 1.8 (2.4) and 3.4 (4.1)% of the pro-

duced X5/3 pairs are expected to pass the full selection criteria for an LH (RH) signal,

depending on the X5/3 mass. The number of observed events, along with the expected

number of background events broken down by category, is shown in table 1. The back-

ground predictions in the table are derived after a “background-only” fit to the data as

described in section 9, where the signal strength is assumed to be zero. The fit increases

the predicted Nonprompt background by less than its originally assigned uncertainty, and

reduces the uncertainty associated with this background by about 30%. Also shown is the

number of expected signal events for an RH X5/3 with mass 1 TeV. The observed number

of events in the signal region categories are compatible with the background predictions.

7 Single-lepton final state

The single-lepton final state targets events where one of the four W bosons in the event

decays leptonically and the others decay hadronically (including hadronic tau decays).

Events are required to have exactly one tight lepton with pT > 80 GeV. An event is

discarded if it contains another lepton that passes the loose identification criteria and has

pT > 10 GeV. In order to limit the background contributions from QCD multijet events,

selected events are required to have pmiss
T > 100 GeV and the AK4 jet that is closest to the

lepton is either required to be separated by ∆R > 0.4, where ∆R =
√

(∆η)2 + (∆φ)2, or

the magnitude of the lepton momentum that is transverse to the jet axis is required to be

greater than 40 GeV.

Since the signal topology includes significant levels of hadronic activity, events are also

required to have at least four AK4 jets, and the leading and subleading jets are required
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Figure 3. Distributions of min[M(`, b)] (left) and ∆R(`, j2) (right) in data and simulation for

events with at least three AK4 jets, including a leading (subleading) jet with pT > 250 (150) GeV,

after combining the electron and muon channels. Example signal distributions are also shown,

scaled by a factor of 120 (70) in the min[M(`, b)] (∆R(`, j2)) distribution. The last bin includes

overflow events. The lower panel in each plot shows the difference between the observed and the

predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is

calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and

the statistical and systematic uncertainties in the background.

to have a pT greater than 450 and 150 GeV, respectively. At least one of the four AK4 jets

is required to pass the b tagging requirement.

Two observables are found to provide strong discrimination between signal and back-

ground events as in ref. [8]: ∆R(`, j2), the angular separation between the lepton and sub-

leading AK4 jet, and min[M(`, b)], the minimum mass reconstructed using the lepton and

any AK4 jet in the event passing the b tagging requirement. Signal regions for this search

are constructed from events with ∆R(`, j2) > 1.0, with the distribution of min[M(`, b)]

used for signal extraction. Figure 3 shows the distributions for ∆R(`, j2) and min[M(`, b)]

in events with at least three AK4 jets, including a leading (subleading) jet with pT > 250

(150) GeV prior to the fit to data. The distribution of min[M(`, b)] for the background,

dominated by tt events, features a sharp drop around 150 GeV, since, for such events, this

variable represents the visible mass of the top quark in the detector. The ∆R(`, j2) variable

shows that the subleading jets populate both the same and opposite hemisphere relative

to the lepton in the background events, whereas in the X5/3 signal events, the subleading

jet is usually opposite to the lepton.

7.1 Background modeling

All of the background processes in the single-lepton analysis are modeled using the sim-

ulation. In order to confirm that this modeling is correct, the agreement between simu-

lation and data is checked for the dominant (tt) and subdominant (W+jets) background
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Sample ≥0 t, ≥0 W, 1 b ≥0 t, ≥0 W, ≥2 b ≥0 t, 0 W, 0 b ≥0 t, ≥1 W, 0 b

LH X5/3 (0.9 TeV) 13.15± 0.61 10.90± 0.58 1.46± 0.27 3.60± 0.36

RH X5/3 (1.2 TeV) 3.02± 0.13 2.34± 0.12 0.32± 0.06 1.00± 0.08

TOP 953± 97 668± 72 274± 30 134± 14

EWK 200± 16 29.5± 3.1 789± 57 204± 15

QCD 12.9± 5.4 1.05± 0.55 14.5± 4.6 7.2± 3.9

Total bkg. 1170± 100 699± 72 1077± 70 345± 23

Data 1152 710 1062 335

Table 2. Expected (observed) numbers of background (data) events passing the final selection re-

quirements, in the tt and W+jets control region (0.4 < ∆R(`, j2) < 1.0) categories, after combining

the single-electron and single-muon channels. The numbers of events expected from two example

signals are also shown. The event yields and their uncertainties correspond to the background-only

fit to data for the background, while for the signal they are based on the values before the fit

to data.

processes using background-enriched control regions. The control regions have the same

conditions as the signal region, with the requirement on ∆R(`, j2) inverted such that

0.4 < ∆R(`, j2) < 1.0. The W+jets enriched control region also requires that no jet

passes the b tagging requirements, and is split into categories of either zero or at least one

W-tagged jet. The tt enriched control region uses the b tagging requirements of the signal

region and is split into either 1 or ≥2 b-tagged jet categories. With the lack of b-tagged

jets in the W+jets control region, the reconstructed mass of interest is modified to be the

minimum mass of the lepton and any AK4 jet in the event (min[M(`, j)]).

The agreement between the data and the SM prediction from simulation is checked

in all control region categories and is found to be within the uncertainties in the predic-

tion, which are detailed in section 8. Figure 4 shows the distributions of min[M(`, b)] and

min[M(`, j)] for the tt and W+jets enriched control regions, while table 2 shows the pre-

dicted and observed numbers of events in each control region after the full analysis selection.

The background predictions in figure 4 and table 2 are given after the background-only fit

to data using all categories in both final states, including both signal and control regions.

7.2 Event yields and template distributions

In the single-lepton signal region, the LH (RH) signal efficiencies range between 4.1 (5.0)

and 13.1 (14.7)%. Events in the signal region are separated into 16 categories based on the

flavor of the lepton (e, µ), the number of b-tagged jets (1, ≥2), the number of W-tagged jets

(0, ≥1), and the number of t-tagged jets (0, ≥1). Event yields for each analysis category

are given in table 3 after a background-only fit to data with the contribution from the

electron and muon channels combined. Figure 5 shows the distribution for min[M(`, b)]

for events with zero t-tagged jets, while figure 6 shows the min[M(`, b)] distribution for

events with at least one t-tagged jet, both of which are shown after a background-only fit

to data. The distributions are separated for each analysis category, but again the electron

and muon channels are combined. No significant discrepancy is seen between the observed

and predicted min[M(`, b)] distributions.
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Figure 4. Distributions of min[M(`, b)] in the tt control region, for 1 b-tagged jet (upper left)

and ≥2 b-tagged jets (upper right) categories, and of min[M(`, j)] in the W+jets control region,

for 0 W-tagged jets (lower left) and ≥1 W-tagged jets (lower right) categories. Example signal

distributions are also shown. The background distributions correspond to background-only fit to

data while signal distributions are before the fit to data. Electron and muon event samples are

combined. The last bin includes overflow events and its content is divided by the bin width. The

distributions in each category have variable-size bins, chosen so that the statistical uncertainty

in the total background in each bin is less than 30%. The lower panel in each plot shows the

difference between the observed and the predicted numbers of events in that bin divided by the

total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical

uncertainty in the observed measurement and the statistical and systematic uncertainties in the

background-only fit to data.
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Figure 5. Distributions of min[M(`, b)] in events with 0 t-tagged jets, 0 (upper) or ≥1 (lower)

W-tagged jets, and 1 (left) or ≥2 (right) b-tagged jets for the combined electron and muon samples

in the signal region. Example signal distributions are also shown. The background distributions

correspond to the background-only fit to data, while signal distributions are before the fit to data.

The last bin includes overflow events and its content is divided by the bin width. The distributions

in each category have variable-size bins, chosen so that the statistical uncertainty in the total

background in each bin is less than 30%. The lower panel in each plot shows the difference between

the observed and the predicted numbers of events in that bin divided by the total uncertainty.

The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the

observed measurement and the statistical and systematic uncertainties in the background-only fit

to data.
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Figure 6. Distributions of min[M(`, b)] in events with ≥1 t-tagged jets, 0 (upper) or ≥1 (lower)

W-tagged jets, and 1 (left) or ≥2 (right) b-tagged jets for the combined electron and muon samples

in the signal region. Example signal distributions are also shown. The background distributions

correspond to the background-only fit to data, while signal distributions are before the fit to data.

The last bin includes overflow events and its content is divided by the bin width. The distributions

in each category have variable-size bins, chosen so that the statistical uncertainty in the total

background in each bin is less than 30%. The lower panel in each plot shows the difference between

the observed and the predicted numbers of events in that bin divided by the total uncertainty.

The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the

observed measurement and the statistical and systematic uncertainties in the background-only fit

to data.
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Sample 0 t, 0 W, 1 b 0 t, 0 W, ≥2 b 0 t, ≥1 W, 1 b 0 t, ≥1 W, ≥2 b

LH X5/3 (0.9 TeV) 5.6± 1.3 4.9± 1.2 43.6± 2.3 36.5± 2.3

RH X5/3 (1.2 TeV) 1.13± 0.30 0.85± 0.24 10.44± 0.66 7.67± 0.56

TOP 545± 49 334± 32 462± 44 306± 30

EWK 366± 27 54.0± 4.7 108.5± 9.3 19.7± 2.7

QCD 24.6± 7.6 7.9± 3.7 7.6± 4.4 0.65± 0.71
0.65

Total bkg. 935± 62 396± 33 578± 47 327± 30

Data 984 416 577 321

Sample ≥1 t, 0 W, 1 b ≥1 t, 0 W, ≥2 b ≥1 t, ≥1 W, 1 b ≥1 t, ≥1 W, ≥2 b

LH X5/3 (0.9 TeV) 17.6± 1.6 15.5± 1.5 39.7± 2.3 34.5± 2.2

RH X5/3 (1.2 TeV) 4.16± 0.52 3.40± 0.49 13.82± 0.84 11.83± 0.82

TOP 367± 41 267± 31 139± 16 108± 13

EWK 108.7± 9.0 19.3± 1.8 22.6± 3.6 2.69± 0.31

QCD 6.6± 2.4 1.41± 0.65 1.36± 0.66 0.47± 0.32

Total bkg. 482± 44 287± 31 163± 17 111± 13

Data 465 285 135 123

Table 3. Expected (observed) numbers of background (data) events passing the final selection

requirements, in the signal region (∆R(`, j2) > 1.0) categories, after combining the single-electron

and single-muon channels. The numbers of events expected from two example signals are also

shown. The event yields and their uncertainties correspond to the background-only fit to data for

the background, while for the signal they are based on the values before the fit to data.

8 Systematic uncertainties

The uncertainties in the lepton reconstruction, identification, and isolation efficiencies are

derived from the uncertainties in the data-to-simulation scale factors and range from 1 to

3%. These uncertainties are applied per lepton. A 2.5% uncertainty is assigned to the

integrated luminosity measurement [56] used to scale the simulated signal and background

processes. The above uncertainties only affect the normalization of the simulated processes

and not their shape.

Both final states have uncertainties in their simulation-based predictions from the

uncertainties in the lepton triggering efficiency, the jet energy scale (JES), the jet energy

resolution (JER), the pileup modeling, the cross section normalization, and the choice of

PDFs. For the same-sign dilepton final state, the uncertainty in the lepton triggering

efficiency is 3% while for the single-lepton final state it ranges between 2 and 5%. In

both final states, this uncertainty is applied per event. The JES and JER uncertainties

are estimated by varying the relevant parameters up and down by one standard deviation

(s.d.) and repeating the analysis selections. The pileup uncertainty is assessed by varying

the total inelastic cross section (σinel.) used in the pileup reweighting by ±4.6% [57]. The

uncertainty in the theoretical cross section from renormalization and factorization energy

scales is estimated by independently varying the scales up and down by a factor of two

and taking the maximum variation as the uncertainty. The uncertainty associated with the
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Process JES JER Pileup Normalization

ttW 3 2 4 19

ttZ 3 2 4 12

ttH 3 2 4 30

tttt 2 2 4 50

WZ 9 2 4 24

ZZ 4 2 4 10

WW 9 2 4 50

WWZ 9 2 4 50

WZZ 9 2 4 50

ZZZ 9 2 4 50

X5/3 3 1 1 —

Table 4. Systematic uncertainties in percentage (%) in the same-sign dilepton final state, associated

with the simulated processes. The “Normalization” column refers to the uncertainties from the cross

section normalization and the choice of PDF set.

PDFs used for the MC generation is evaluated from the set of NNPDF3.0 fitted replicas,

following the standard procedure [32].

The single-lepton final state considers the shape variations in the signal distributions

that come from varying the renormalization and factorization scales and the choice of

PDF set. For the same-sign dilepton final state, only their effect on the signal acceptance

is considered, since a “cut-and-count” analysis is used in this case. The normalization

changes due to the variations in the signal acceptance are found to be negligible in the

single-lepton final state. The details of the systematic uncertainties are shown in table 4

for the same-sign dilepton final state and in table 5 for the single-lepton final state.

In the single-lepton final state, uncertainties are also applied for the corrections on the

b tagging, light quark mistagging, W tagging, and t tagging scale factors. The W tagging

uncertainties have different components, which are treated as uncorrelated: corrections to

the groomed mass scale and smearing, τ2/τ1 selection efficiency, and its pT dependence.

For the top quark pT reweighting, the difference between the weighted and unweighted

distributions is added as a one-sided systematic uncertainty.

Lastly, in the same-sign dilepton final state, there are uncertainties in the predictions

of background processes whose estimates are made using control samples in data. As

stated above, a 30% uncertainty is assigned to the predicted yield of background events

from charge misidentification, and a 50% uncertainty is assigned to the predicted yield of

background events from processes with nonprompt leptons.

Systematic uncertainties that have the same source for the two different final states

(e.g. the uncertainty in the lepton identification) are treated as fully correlated between

the two final states.

9 Results

No significant excess of events is observed above the SM prediction. Upper limits at

95% CL are set on the production cross sections pp → X5/3X5/3 for both couplings and
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Source Uncertainty range

Trigger efficiency 2–5

Jet energy scale 0.5–52

Jet energy resolution 0–3

b/c tagging 0–5

udsg mistagging 0–4

W tagging: mass resolution 0–13

W tagging: mass scale 0–21

W tagging: τ2/τ1 0–2

W tagging: τ2/τ1 extrapolation 0–2

t tagging 0–4

Top pT 0–19

Pileup 0–4

PDF 2–9

QCD renorm./fact. scale 12–36

Table 5. Summary of systematic uncertainties in the single-lepton final state. These uncertainties

are included in both signal and all background processes, except for the top pT systematic uncer-

tainty, which is included only in tt. The range of uncertainty values in percentage (%) corresponds

to the effect on the yields before the fit to data and is given across the relevant background processes

and channels for each systematic uncertainty.

for the different final states, as well as for their combination. Bayesian statistics [58,

59] are used to calculate observed and expected limits with a flat prior taken for the

signal cross section. The same-sign dilepton final state limits are based on a counting

experiment, while in the single-lepton final state, a binned likelihood fit on the distributions

of min[M(`, b)] is performed simultaneously in the signal and control regions. Systematic

uncertainties are treated as nuisance parameters with normalization uncertainties having

a log-normal prior and shape uncertainties a Gaussian prior. The fit does not change

any nuisance parameter by a significant amount compared to its pre-fit value. After the

full analysis selection described above, lower observed (expected) limits of 1.16 (1.20) and

1.10 (1.16) TeV are placed on the mass of the X5/3 particle with RH and LH couplings to

W bosons, respectively, using the same-sign dilepton final state. In the single-lepton final

state, observed (expected) limits of 1.32 (1.23) and 1.30 (1.23) TeV are placed on the mass of

the X5/3 particle with RH and LH couplings to W bosons, respectively. Combining the two

final states yields a lower observed (expected) limit on the X5/3 mass of 1.33 (1.30) TeV for

an X5/3 particle with RH couplings to W bosons and 1.30 (1.28) TeV for an X5/3 particle

with LH couplings to W bosons. Figure 7 shows the limits for the individual final states,

while figure 8 shows the limits obtained by combining the two final states.

10 Summary

A search has been performed for a heavy top quark partner with an exotic 5/3 charge

(X5/3) using proton-proton collision data collected by the CMS experiment in 2016 at a
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Figure 7. Expected and observed limits at 95% CL for an LH (left) and RH (right) X5/3 after

combining all categories for the same-sign dilepton (upper row) and the single-lepton (lower row)

final states. The theoretical uncertainty in the signal cross section is shown as a narrow band

around the theoretical prediction.

center-of-mass energy of 13 TeV and corresponding to 35.9 fb−1. The X5/3 quark is assumed

always to decay into a top quark and a W boson. Two different final states, same-sign

dilepton and single-lepton, are analyzed separately and then combined. No significant

excess over the expected standard model backgrounds is seen in data. Lower limits are

set on the mass of the X5/3 particle. The observed (expected) limit is 1.33 (1.30) TeV for

an X5/3 particle with right-handed couplings to W bosons and 1.30 (1.28) TeV for an X5/3

particle with left-handed couplings to W bosons in a combination of the same-sign dilepton

and single-lepton final states.
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Figure 8. Expected and observed limits at 95% CL for an LH (left) and RH (right) X5/3 after

combining the same-sign dilepton and single-lepton final states. The theoretical uncertainty in the

signal cross section is shown as a narrow band around the theoretical prediction.
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Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia

Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, I. Topsis-

Giotis

National and Kapodistrian University of Athens, Athens, Greece

G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou,

E. Tziaferi, K. Vellidis

National Technical University of Athens, Athens, Greece

K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos,

I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis
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INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di
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S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, F. Vazzolera,b,

A. Zanettia

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,

D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles,

Kwangju, Korea

H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea

J. Goh29, T.J. Kim

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim,

S.K. Park, Y. Roh

Sejong University, Seoul, Korea

H.S. Kim

Seoul National University, Seoul, Korea

J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith,

S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea

D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

– 33 –



J
H
E
P
0
3
(
2
0
1
9
)
0
8
2

Sungkyunkwan University, Suwon, Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur,

Malaysia

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali30, F. Mohamad Idris31, W.A.T. Wan Abdullah,

M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico

A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz32,

R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, M. Ramirez-Garcia,

G. Ramirez-Sanchez, R Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potośı, San Luis Potośı, Mexico
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nandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo,

L. Romero, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero,
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J. Salfeld-Nebgen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, U.S.A.

S. Malik, S. Norberg

Purdue University, West Lafayette, U.S.A.

A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Ma-

hakud, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang,

R. Xiao, W. Xie

Purdue University Northwest, Hammond, U.S.A.

T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, U.S.A.

Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B. Michlin,

B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, U.S.A.

A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel,

M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan,

R. Taus, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, U.S.A.

A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl,
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