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ARTICLE

Distinct G protein-coupled receptor
phosphorylation motifs modulate arrestin affinity
and activation and global conformation
Daniel Mayer1,2,10, Fred F. Damberger 2, Mamidi Samarasimhareddy3, Miki Feldmueller 1,2, Ziva Vuckovic1,2,

Tilman Flock 1,2,4, Brian Bauer5, Eshita Mutt 1, Franziska Zosel 6, Frédéric H.T. Allain2, Jörg Standfuss1,

Gebhard F.X. Schertler 1,2, Xavier Deupi 1,7, Martha E. Sommer5, Mattan Hurevich 3, Assaf Friedler3 &

Dmitry B. Veprintsev 1,2,8,9

Cellular functions of arrestins are determined in part by the pattern of phosphorylation on the

G protein-coupled receptors (GPCRs) to which arrestins bind. Despite high-resolution

structural data of arrestins bound to phosphorylated receptor C-termini, the functional role of

each phosphorylation site remains obscure. Here, we employ a library of synthetic phos-

phopeptide analogues of the GPCR rhodopsin C-terminus and determine the ability of these

peptides to bind and activate arrestins using a variety of biochemical and biophysical

methods. We further characterize how these peptides modulate the conformation of arrestin-

1 by nuclear magnetic resonance (NMR). Our results indicate different functional classes of

phosphorylation sites: ‘key sites’ required for arrestin binding and activation, an ‘inhibitory

site’ that abrogates arrestin binding, and ‘modulator sites’ that influence the global con-

formation of arrestin. These functional motifs allow a better understanding of how different

GPCR phosphorylation patterns might control how arrestin functions in the cell.
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G-protein-coupled receptors (GPCRs) detect and translate
extracellular events such as changes in hormone or neu-
rotransmitter concentration into intracellular responses

by activating signaling effector proteins such as G proteins1. To
control this signaling process, cells have developed a regulated
system of GPCR desensitization beginning with their phosphor-
ylation through specialized GPCR kinases (GRKs), which results
in the subsequent recruitment and binding of arrestins2,3.
Arrestins inhibit G-protein activation, mediate GPCR inter-
nalization, and possibly stimulate G-protein-independent signal-
ing4–9. Phosphorylation of multiple sites within the C-terminus
and/or intracellular loops of GPCRs is essential for the recruit-
ment of arrestins2,3,10. The binding of arrestin-1 to rhodopsin has
been reported to be controlled simply by the number of phos-
phorylated sites10–12. Other studies have suggested that different
phosphorylation patterns on the intracellular C-terminal tail (the
“phosphorylation barcode”) of GPCRs can induce con-
formationally distinct active states of arrestins that result in a
variety of cellular outcomes13–24. Recently, a common phos-
phorylation motif required for arrestin recruitment was proposed
by Zhou et al. based on the crystal structure of a rhodopsin-
arrestin-1 complex25. However, the proposed code is based on
limited structural data (only two out of six potential phosphor-
ylation sites were observed in the structure) and it does not
account for the significant mass of published data indicating the
functional importance of the other phosphorylation sites within
the rhodopsin C-terminus12,26–30. The lack of consensus in the
literature regarding the relative importance of the seven potential
phosphorylation sites and the pattern of phosphorylation for the
recruitment and activation of arrestin-1 motivated the current
study.

Here, we systematically evaluate how the pattern of phos-
phorylation in the GPCR rhodopsin modulates affinity for
arrestin, arrestin activation, and influences the global conforma-
tion of arrestin. Our approach was based on a library of synthetic
phosphopeptides mimicking different phosphorylation states of
the C-terminus of rhodopsin, and we measure arrestin affinity,
activation and conformational modulation using a variety of
biochemical and biophysical methods. Based on this analysis, we
assign distinct functional roles to the individual phosphorylation
sites, within a wider motif than described by Zhou et al.25.

Our results help explain two outstanding questions in the field:
(1) Why do some GPCRs interact transiently with arrestins while
others form stable long-lived complexes, the so-called class “A”
and class “B” receptors31, and (2) Why do arrestin-2 and arrestin-
3 have different preferences for these two receptor classes? The
functional motifs we define here provide a molecular-level
description of how GPCR phosphorylation patterns potentially
control the cellular functions of arrestins16,17 as well as a fra-
mework for interpreting the role of specific phosphorylation
events in signaling outcomes.

Results
Phosphorylation sites that contribute to arrestin affinity.
Phosphorylation of at least two sites in the C-terminus of rho-
dopsin was reported to be necessary for arrestin recruitment, and
three for arrestin activation10. Therefore, we first probed a pep-
tide microarray of the rhodopsin C-terminus containing all
possible combinatorial phosphorylation patterns from mono- to
tri-phosphorylated peptides with a purified mCherry-arrestin-1
fusion protein (Fig. 1a). In total, there were 64 different peptides,
including 7 with one, 21 with two and 35 with three phos-
phorylated serine and/or threonine amino acids. The data were
analyzed with a linear regression model using feature selection to
estimate the relative importance of individual phosphorylation

sites. The results suggested that phosphorylation of sites pT335,
pS338, pT340, and pS343 had a significantly higher contribution
to the interaction with arrestin-1 in comparison to pS334, pT336,
and pT342 (Fig. 1b). Based on these findings, we designed a series
of multiply phosphorylated peptides aimed at delineating the role
of each site and the importance of the phosphorylation pattern in
controlling arrestin affinity and activation (Table 1). The phos-
phopeptides were produced by a synthesis strategy that allowed
us to synthesize peptides with several phosphorylation sites in
very close proximity32.

We next determined the affinities of these different phospho-
peptides for arrestin-1 using fluorescence anisotropy. All peptides
that showed tight binding (Kd < 250 µM), namely peptides 7P, 6P,
4P, 3Pa, 3Pb, 3Pc, and 3Pd, contained pT340 and pS343 (Fig. 2,
Table 2). Lack of phosphorylation at one or both of these sites
resulted in a significant loss of affinity (peptides 5P, 3Pe, 3Pg,
3Ph, 3Pi, 3Pj, 3Pk), indicating that affinity depends not on the
extent of phosphorylation but on the presence of pT340 and
pS343, which we hereby term “key sites”. Interestingly, a
significant loss of arrestin-1 affinity was observed when pT342
was present in addition to the two key sites pT340 and pS343
(peptide 3Pf), suggesting the phosphate group at pT342 is an
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Fig. 1 High-throughput screening of potential phosphorylation sites.
a Schematic representation of the peptide array and the binding
measurement using the mCherry-arrestin-1 fusion construct. Binding of the
mCherry-Arrestin-1 fusion to each phosphopeptide was determined by the
fluorescence at each spot on the array (barplot). b The fluorescence
intensities of the acquired dataset were fitted to a linear model to
determine the contribution of each position to arrestin binding. An all-
subset model selection using the Akaike information criterion was used to
identify the relative importance of each phosphorylation site to arrestin
binding (see Methods). The plot shows the importance (fitting coefficients)
of each phosphorylation site for the top 20 models (y-axis) in grayscale.
The strength of the coefficient for a site in a model is indicated by the
darkness of the boxes. White denotes that the coefficient was set to zero.
The darker and longer columns indicate phosphorylation sites important for
a tight interaction with arrestin-1. Interception represents the “non-specific”
binding component
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Table 1 List of all chemically synthesized peptides used in this study

The amino acid sequence of each peptide was identical (CDDEASTTVSKTETSQVAPA), and the peptides differed only regarding which serine and threonine residues were phosphorylated. The peptide
sequence was derived from the bovine rhodopsin C-terminus with an N-terminal cysteine introduced to allow fluorescent labeling of the peptides. The fully phosphorylated C-terminus of V2 vasopressin
receptor (V2Rpp, sequence indicated in black box) was included to have an additional reference in the trypsin digest assay and the fluorescence anisotropy experiments. For fluorescence anisotropy
experiments, the V2Rpp was fluorescently labeled during the chemical synthesis at the N-terminus of the peptide
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Fig. 2 Different phosphorylation patterns have varying abilities to bind arrestins. a Sequence of the bovine rhodopsin C-terminus and schematic illustration
of the phosphorylation and charge pattern. In the sequence, potential phosphorylation sites are yellow, and negatively charged acidic residues are blue. In
the schematic, the negatively charged patch is blue, nonphosphorylated sites are white, and phosphorylated sites are red. The shapes of the
phosphorylation sites indicate their different functions, which were assigned in this study. b Peptides that did not show specific binding or very weak
binding to any tested arrestin isoform. c Kd values of all specific binders determined by fluorescence anisotropy for arrestin-1, -2, and -3. Statistical analysis
was performed by ANOVA analysis and these values are reported in Supplementary Information Tables 1, 2 and 3. d Fluorescence anisotropy arrestin-1
binding curves of nonphosphorylated peptide 0P (different shades of blue) and the tri-phosphorylated peptide 3Pd (different shades of green). Each
titration was repeated three or four times. Fits of the individual binding curves were used to obtain error bars shown in part (c) and Table 2 (Source data
are provided as a Source Data file.)
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“inhibitory site” that can interfere with the interaction of pT340
and/or pS343 with arrestin-1.

We also evaluated the binding of the phosphopeptides to
nonvisual arrestin-2 and -3, which also interact with phosphory-
lated rhodopsin33. Phosphopeptide binding affinity to arrestin-2
generally increased with the degree of phosphorylation, and in
contrast to arrestin-1, arrestin-2 bound well to peptide 5P
(lacking key site pS343) and 3Pf (containing inhibitory site
pT342) (Fig. 2c, Table 2). This behavior can be explained by
increased mobility and displacement of the C-terminal tail
(C-tail) of arrestin-2 (see below). For arrestin-2 binding to tri-
phosphorylated peptides, the key sites pT340 and pS343 were
required for tight binding, similar to arrestin-1. Significantly
weaker binding to arrestin-3 was observed for all phosphopep-
tides in comparison to arrestin-1 and arrestin-2, which is
consistent with previous in vivo measurements31,34. Despite this
weaker binding, arrestin-3 was similar to arrestin-1 regarding
which phosphorylation patterns were preferred, showing higher
affinity for 7P, 6P and 4P peptides (containing key sites pT340
and pS343) compared to 5P (lacking pS343), and abrogated
binding when inhibitory site pT342 was present (Fig. 2c, Table 2).
All tested arrestin isoforms showed high affinity for a
phosphopeptide analog of the fully phosphorylated C-terminus
of the V2 vasopressin receptor (V2Rpp) (Fig. 2c), a “class B”
GPCR that has been reported to robustly interact with arrestin-1,
-2 and -3 31.

Key sites are required for conformational change in arrestin.
Limited trypsin digestion has been used previously to detect
conformational changes in arrestins that are induced by phos-
phorylated peptides derived from different GPCRs23,24,35. The
digestion of arrestin-1 in the presence of nonphosphorylated
peptide resulted in three major bands, whereas in the presence of
the fully phosphorylated peptide 7P two major bands were
observed (Fig. 3a). This change in the digest pattern has been

linked to C-tail displacement in arrestin-1 36. Importantly, only
peptides that contained both the key sites pT340 and pS343 were
able to influence the digest pattern of arrestin-1 with the notable
exception of 3Pf containing the inhibitory site pT342 (Fig. 3,
Table 2).

In the case of arrestin-2, the application of limited amounts of
trypsin resulted in relatively fast and efficient digestion, and the
pattern of digested protein bands was not significantly changed
by the presence of phosphopeptide (Fig. 3a). This difference in
protease sensitivity likely reflects an increased mobility and
spontaneous displacement of the C-tail in arrestin-2. This
increased C-tail flexibility allows arrestin-2 to bind phosphopep-
tides with higher affinity than arrestin-1 and arrestin-3 (Fig. 2c,
Table 2), since C-tail displacement exposes the putative
phosphopeptide binding site37. This mechanism underlies the
significantly enhanced affinity of C-terminally truncated arrestin-
1 (p44) for the phosphorylated C-terminus of rhodopsin38,39.
Note that digestion of arrestin-2 was accelerated in the presence
of 7P, 6P, and 4P peptides, but not in the presence of the other
binding peptides, including 5P (Table 2, Supplementary Figure 1).
Considering that all peptides containing phosphorylation at both
key sites—as well as peptide 5P—bound arrestin-2 with similar
high affinity (Table 2), these differences in trypsin sensitivity do
not reflect different levels of phosphopeptide association with
arrestin-2 but rather differences in the arrestin-2 structure
induced by the different peptides.

Limited trypsin digestion of arrestin-3 yielded very similar
results as for arrestin-1, including the requirement of the key sites
pT340 and pS343 to stimulate C-tail displacement (Fig. 3a,
Table 2). Hence, the key sites are important not only for high-
affinity binding but also for inducing conformational changes in
arrestin-1, -2 and -3.

Key sites activate arrestin for receptor binding. Since some
phosphopeptides were able to displace the C-tail of arrestin, and

Table 2 Summary of determined affinities and trypsin digestion results

Affinities of differently phosphorylated peptides to arrestin-1, -2 and -3 (see Fig. 2) are listed on the left side of the table, and the summary of limited trypsin digest results for arrestin-1, -2 and -3 (see
Fig. 3 and Supplementary Figure 1) is listed on the right side of the table. All affinity measurements were performed in triplicate. The determined dissociation constants (Kd) are listed. The Kd values of
noninteracting or weakly interacting phosphopeptides that could not be determined because they were below the detectable range of the assay are indicated as “>250”. Phosphopeptides that induced a
change in the digest pattern of arrestin-1 and arrestin-3 from three to two bands are indicated by “+”, and those that failed to induce a change are indicated by “−”. In our hands, trypsin digestion of
arrestin-2 always resulted in two bands, and the presence of certain phosphopeptides increased the rate of digestion. Increased rate of digestion is indicated by “Faster”, and no change in rate is indicated
by “Normal” (Source data are provided as a Source Data file.)
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this is an essential step to activate arrestin for binding to the
activated receptor, we reasoned that these phosphopeptides
would facilitate binding of arrestin to activated nonpho-
sphorylated receptor (as has previously been demonstrated using
the fully phosphorylated C-terminal peptide derived from rho-
dopsin40). We therefore employed site-specific fluorescently
labeled mutants of arrestin-1 to evaluate the potential of the
different phosphopeptides to induce arrestin activation and
receptor binding. Specifically, we quantified ternary complexes of
fluorescently labeled arrestin-1 mutants, nonphosphorylated
rhodopsin in native rod outer segment (ROS) membranes, and
differently phosphorylated peptides (Fig. 4a). We measured
fluorescence changes of arrestin-1 mutants I72B and F197NBD
(incorporating bimane and NBD fluorescent labels respectively at
positions I72 and F197; see Methods and Fig. 4b−d). I72B is
located in the finger loop that engages the transmembrane core of
rhodopsin41,42. F197NBD is located at the C-edge of the
C-terminal domain that is known as the membrane anchor, a
binding element that is distinct from the receptor43. These
fluorescently labeled arrestins have been shown to report arrestin-
1 engagement of the active receptor core and membrane,
respectively43,44. Binding of the two fluorescently labeled arrestin-
1 mutants was measured in parallel using a centrifugal pull-down
assay (Supplementary Figure 2). The pull-down results mirrored
the results obtained by fluorescence for both I72B and F197NBD
arrestin mutants; hence, the observed fluorescence changes
represent arrestin activation and tight binding to the active
receptor. One exception was the ternary complex formed with the
7P peptide and arrestin-1 I72B, likely due to quenching of the
bimane on the finger loop by electron-rich groups on the phos-
phopeptide. No quenching effects were observed for arrestin-1
F197NBD, in which the NBD fluorophore is located far from the
putative phosphopeptide binding site25,37. We observed that
different phosphopeptides had varying abilities to induce ternary
complex formation, and the same trend was observed for both
fluorescently labeled arrestin-1 mutants (Fig. 4e). Efficient ternary
complex formation was detected for all peptides containing the
two key sites pT340 and pS343 (7P, 6P, 4P, 3Pa, 3Pb, 3Pc, 3Pd)
except for 3Pf with the inhibitory site pT342. Lack of one of these

two key sites, such as in peptide 5P, resulted in significant
reduction of ternary complex formation. Tri-phosphorylated
peptides clustered into three groups: those with both key sites that
showed robust ternary complex formation (3Pa, 3Pb, 3Pc, 3Pd),
others lacking one or both key sites that induced very little
arrestin binding (3Pe, 3Ph, 3Pj, 3Pk), and two lacking one of the
key sites but containing both pT335 and pS338 that showed
moderate ternary complex formation (3Pg, 3Pi, marked with red
arrows in Fig. 4e). Interestingly, these sites showed a higher
contribution to arrestin-1 interaction than pS334, pT336 and
pT342 in the peptide array experiment (Fig. 1b). Hence, we
conclude that pT335 and pS338 serve as secondary sites that
enhance arrestin affinity and activation in the absence of phos-
phorylation at one of the key sites. A noteworthy outlier in this
grouping of tri-phosphorylated peptides is the 3Pf peptide, which
stimulated less ternary complex formation because of the pre-
sence of the inhibitory site pT342, despite having both key sites
pT340 and pS343.

Notably, the relative levels of ternary complex formation are
highly consistent with the other data presented in this study.
These data further show that the phosphopeptides that bind
arrestin-1 with high affinity and stimulate C-tail release also
activate arrestin for receptor core binding. This finding supports
the recently described allosteric activation mechanism for arrestin
by Latorraca et al.45, where engagement of the binding site for the
phosphorylated receptor C-terminus stabilizes an active con-
formation of arrestin that can couple to the active receptor core.

Global conformation modulation of arrestin-1. We used
[15N,1H]TROSY NMR spectroscopy to characterize the location of
conformational changes in arrestin-1 induced by differently phos-
phorylated phosphopeptides. Chemical shift changes of the detected
amide signals report changes in the local environment of investi-
gated amino acids, such as changes in polypeptide backbone geo-
metry, H-bonding or polar interactions or changes in its position
with respect to other amino that influences the magnetic field of the
studied nuclei. A representative example of such an NMR experi-
ment to monitor phosphopeptide 7P binding to arrestin-1 is shown
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Fig. 3 Conformational change of arrestins depend on phosphorylation pattern. a Limited trypsin digest of arrestin-1, -2 and -3 in presence of non- (0P) and
fully phosphorylated (7P) phosphopeptide analogs of the rhodopsin C-terminus. The presence of fully phosphorylated peptide resulted in a change of the
digestion pattern from three to two bands in comparison to nonphosphorylated peptide for arrestin-1 and -3. The digestion of arrestin-2 always resulted in
two bands with similar molecular weight as arrestin-1/-3 independent of which peptide was present. However, digestion was accelerated in the presence of
fully phosphorylated peptide as compared to nonphosphorylated peptide. b Limited trypsin digestion of arrestin-1 in the presence of different tri-
phosphorylated peptides. Peptide-induced conformational changes in arrestin-1 are indicated by a change in the digest pattern (green boxes) (Source data
are provided as a Source Data file.)
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in Supplementary Information Fig. 3. We based our assignments of
the signals on a previous study46 and used triple resonance
experiments to confirm slight changes in the signal positions of
some residues in our different buffer system. Each titration was
performed in a stepwise manner up to a peptide:protein ratio of
10:1 (see spectra expansion in Fig. 5). Based on the measured Kd

values (Table 2), this final ratio corresponded to a peptide satura-
tion of 88–93% for all samples except the 5P peptide which had a
slightly lower occupancy of approximately 79%.

All titrated peptides resulted in numerous peaks with reduced
intensity or shifted position with gradually decreasing intensity
with the noteworthy exception of peptide 5P (Supplementary
Figure 4). A number of peaks appeared at new positions
suggesting the reappearance of intermediate exchange broadened
signals at close to their final positions due to a change in either
the populations or the timescale of averaging between multiple
conformational states for the residues in question (Figs. 5, 6,
Supplementary Figure 5, Supplementary Information Table 4). In
some cases we detected multiple nearby peaks suggesting the
presence of several states in slow conformational exchange on
the NMR timescale (Fig. 5a, b), as reflected by the splitting of the
peak at high concentration of the phosphorylated peptide. The
majority of chemical shift changes were detected in the N-domain
of arrestin-1, and the largest changes were observed at sites near
the putative binding site of the phosphorylated receptor
C-tail25,37, including the so-called three-element interaction and
polar core (interaction networks that stabilize the basal
conformation of arrestin47) (Figs. 5, 6, 7, Supplementary Figures 3,
4 and 5, Supplementary Information Table 4). The chemical shift

changes of eight representative residues located in different
regions of arrestin-1 are shown in Fig. 7. We observed that
peptides containing the two key sites, pT340 and pS343, induced
some of the largest chemical shift changes in the vicinity of the
polar core (E39, L172, G389), suggesting that these phosphoryla-
tion sites disrupt the central stabilizing element of the basal
arrestin conformation. The magnitude of the chemical shift
changes of G389 was very similar for all strongly binding
peptides, which likely reflects their common ability to induce
C-tail displacement (Figs. 3, 7 and Table 2). The 5P peptide,
lacking one of the key sites (pS343), caused minimal chemical
shift changes, which is consistent with its inability to induce
conformational changes in arrestin as measured by trypsin
digestion (Table 2). Surprisingly, this weakly interacting peptide
could still stimulate ternary complex formation (Fig. 4e). This
ability may arise because the active receptor increases the
apparent affinity of the 5P peptide for arrestin-1 by an allosteric
activation of arrestin via the receptor−core interface45.

Interestingly, the magnitude of chemical shift changes
depended on which phosphopeptide was bound to arrestin-1, in
particular for the finger loop (G76), the beta sandwich of the
C-domain (L240 & E262), and the long inter-domain loop
between β-strands 17 and 18 (I312). The chemical shift changes
observed at sites far away from the putative phosphopeptide
binding site might be due to inter-domain twisting that affects
solvent accessibility or changes in H-bond length at the β-strand
interfaces (Fig. 7). Inter-domain twisting is a hallmark of arrestin-
1 activation39,42 and has been observed in the crystal structure
of arrestin-2 bound to a vasopressin V2 receptor-derived
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phosphopeptide37. These changes may also reflect the dynamic
sampling of different conformational states which is consistent
with the differential line broadening (as reflected by the reduction
of the peak intensity) observed for sites distal to the peptide
binding site during titration of strong binders (Fig. 5c, f).
Significantly, these results suggest that the global conformation
and dynamics of arrestin-1 depends on the phosphorylation
pattern. Line broadening observed at the putative peptide binding
interface (Figs. 5b, e, 6, 7, Supplementary Figure 3 and 5) can be
interpreted as due to a mixture of several peptide-bound
conformational states. This finding is anticipated given the large
number of basic residues in the N-domain of arrestin that could
accommodate different phosphopeptide binding modes and the
flexibility of phosphopeptide-bound arrestin in the absence of the
active receptor–core interface17.

Discussion
The principal findings of this study are summarized in Fig. 8a. The
“key sites” we define here (pT340 and pS343 in rhodopsin) are
essential for the formation of a high-affinity complex between
arrestin and a GPCR. The crystal structure of arrestin-2 bound to
V2Rpp37 indicates how the key sites both perturb the polar core
and interact with a critical phosphorylation sensor near the three-
element interaction site48,49. These two interactions thereby sta-
bilize the active conformation of arrestin-2 as illustrated in Fig. 8b.
Upstream of the key sites, pS350 on V2Rpp, forms hydrogen bond
contacts with the finger and middle loops of arrestin-2, which
might activate them for receptor binding41,50. In rhodopsin, this
structural requirement for arrestin-1 activation could be provided
by a negatively charged patch consisting of D330 and D331, which
we term the “negatively charged region”. The four phosphoryla-
tion sites between the negatively charged region and the activator
sites (pS334, pT335, pT336, and pT338) we designate “modulator
sites” (Fig. 8a), since both the biochemical data and the NMR data
show that the global conformation and flexibility of arrestin-1
depends on which of these sites are phosphorylated. To sum-
marize, the GPCR phosphorylation motifs we identify here control
not only the overall conformation of arrestin, but its activation
state, its ability to couple to the active receptor core, and the
relative stability and expected lifetime of the arrestin-GPCR
complex. Such knowledge is ultimately necessary to understand
the molecular mechanism by which different receptor phosphor-
ylation patterns determine how arrestin interacts with different
GPCRs and influences cellular functions of arrestin (e.g. receptor
desensitization and endocytosis).

Two previous in situ studies have suggested that phosphory-
lated threonines may be more important for arrestin recruitment
to rhodopsin than phosphorylated serines12,29. However, these
studies cannot be directly compared to ours, since the exact levels
of phosphorylation could not be controlled. Potential sites of
phosphorylation were removed genetically, and phosphorylation
of the remaining sites depended on the native rhodopsin kinase
(GRK1) in the rod cells. Notably, rhodopsin containing only
threonines was not effectively phosphorylated (>50% not phos-
phorylated at all), and its deactivation in the rod cell was
apparently independent of GRK1 and arrestin-1 29. These results
suggest that other, arrestin-1-independent mechanisms might
exist in the rod cell to deactivate this mutant rhodopsin.

In addition we discovered that site T342, which lies between the
two key sites, plays a complex inhibitory role. When this site is
phosphorylated along with the two key sites, the affinity of the
peptide for arrestin-1 and -3 is significantly reduced as compared
to other tri-phosphorylated peptides with the key sites phos-
phorylated. However, phosphorylation of T342 did not affect
arrestin-1 or -3 affinity in the case of more highly phosphorylated
peptides (e.g. 7P, 6P and 4P). How might phosphorylation
between the two key sites be either inhibitory or neutral,
depending on the overall phosphorylation level? In the crystal
structure of arrestin-2 bound to V2Rpp37, the key phosphoryla-
tion sites pT360 and pS363 (analogous to pT340 and pS343 in
rhodopsin) interact with multiple “phosphosensors” near the polar
core and three-element interaction on arrestin-2, while the inhi-
bitory site pS362 (analogous to pT342) is more solvent exposed
(Fig. 8b). The phosphate group at site pS362 appears to form a
hydrogen bond to R7 in arrestin-2. However, we do not believe R7
to be important in phosphorylation recognition, since it is not
conserved in arrestin-1 and has never been shown to be a critical
phosphosensor in arrestin-2 or arrestin-3 (as far as we are aware).
The overall placement of the V2Rpp on arrestin-2 is determined
by multiple contacts involving many phosphate groups along the
length of the peptide. If the phosphate groups upstream of the key
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sites were absent, the peptide would be free to shift register and
sample multiple binding modes. The phosphate at the inhibitory
site could then compete with the key sites for binding to their
arrestin binding sites and thereby prevent the simultaneous
engagement of arrestin near the three-element interaction and the
polar core. The spacing between the inhibitory site and either key
site is too short to engage both arrestin elements. Thus the
modulator phosphorylation sites we identified upstream of the key
sites might serve as important anchor points for the phosphory-
lated receptor C-terminus, to ensure proper placement of the key
phosphorylation sites within the arrestin N-domain. This
hypothesis would explain why at least two phosphates are neces-
sary for arrestin-1 to bind rhodopsin (the key sites), but three are
required for maximal affinity (key sites plus one upstream anchor)
10. A recent crystal structure of activated arrestin-3 with two
molecules of inositol-6-phosphate bound in the N-domain shows
that the minimal requirements for arrestin activation, including
engagement of the three-element interaction, gate loop and
“upstream sites” near the finger loop, could also be fulfilled by
polyanions other than phosphopeptide51.

In the case of arrestin-2 no similar inhibitory effect of site
pT342 was observed. The increased propensity of C-tail dis-
placement in this arrestin isoform might allow the active con-
formation to be stabilized by a few specific interactions with
phosphate groups on the peptide. Alternatively, R7 in arrestin-2
could stabilize pT342 (see above) and thereby negate its inhibi-
tory effect. Notably, the inhibitor site is present in the C-termini
of many GPCRs (Fig. 8c), which raises the intriguing possibility
that arrestin dissociation from the GPCR could be controlled
by additional phosphorylation events rather than depho-
sphorylation by phosphatases. The functional consequences of
this possibility for the cellular functions of arrestin have yet to be
explored.

Given the high sequence and structure homology of arrestin
isoforms, similarities in activation mechanism by different
GPCRs are expected. Both the receptor transmembrane helical
core and phosphorylated receptor C-terminus contribute to
arrestin activation45,52. However, our data suggest that the rela-
tive contributions of these two receptor components to activation
are different for arrestin-2 and arrestin-3. For arrestin-2, the
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Fig. 6 Chemical shift perturbations measured by NMR titration series. a Color code indicating the magnitude of chemical shift perturbations, which are
plotted on structural models of basal arrestin-1 (PDB accession 1CF1, molecule D) in (b) and (c). The rainbow spectrum represents the range of chemical
shift perturbations: nonsignificant (blue), minor (green), moderate (yellow), large (orange), and very large (red). Black marks residues whose signals
showed strong line broadening which prevented the final position to be determined, indicating significant changes in mobility of the residue or its
surroundings bring them to the µm-ms range. b Chemical shift perturbations measured for phosphopeptide 7P. c Chemical shift perturbations measured for
phosphopeptide 5P. Note that the full-length C-terminus shown in these figures, which is not resolved in the structure, was modeled (see Methods)
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C-tail tends to be spontaneously displaced more frequently in the
basal state (Fig. 3 and Supplementary Figure 1), which allows
arrestin-2 to robustly bind phosphorylated receptor C-termini as
long as the key phosphorylation sites are present (Fig. 2c and
Table 2). This attribute would explain why arrestin-2 is a rela-
tively poor binder of class A GPCRs31, whose C-termini generally
lack the proper spacing between phosphorylation sites to fulfill
the requirement to include both the key sites and negatively
charged region53 (Fig. 8c). Class A GPCRs contain many phos-
phorylation sites that could potentially fulfill the role of the sec-
ondary recruiter sites (pT335 and pS338 in rhodopsin), which
could underlie the transient nature of class A interactions31.
Arrestin-3 binds class A GPCRs better than arrestin-2 31, and
arrestin-3 can even bind GPCRs lacking C-termini22,54. These
observations indicate that receptor phosphorylation plays a less
significant role as compared to the active receptor core in
arrestin-3 activation and binding. In contrast to class A GPCRs,
the C-termini of class B receptors fulfill the requirements for the
key sites and negatively charged motif (Fig. 8c). This combined
feature allows these receptors to form tight complexes with
arrestin-2 and -3. These differences may be at the root of the
distinct signaling profiles of arrestin-2 and -316,17,55,56.

The phosphorylation motif we propose here expands upon that
which was recently proposed by Zhou et al. based on the crystal
structure of the rhodopsin-arrestin-1 complex25. Note that spe-
cies differences do not account for the differences in our proposed
motifs, since the bovine (this study) and mouse (Zhou et al.)
sequence differ only at site 335 (phosphorylatable threonine in
bovine, alanine in mouse). We found that the modulatory site
T335 is not critical for arrestin affinity and activation, and it is
likely redundant to S334 and T336. The analysis by Zhou et al.
was limited to pT336, pS338 and E341, which were resolved on

the C-terminus of the receptor interacting with positively charged
pockets on arrestin-1. Despite the insight the structural context
affords for this one example of a phosphorylation motif, only a
systematic analysis of the effects of different phosphorylation
patterns can reveal the regulatory effects of each site on arrestin
function. Among the phosphopeptides we analyzed, all but two of
the nonbinders (3Pf and 3Ph) contained the barcode motif Zhou
et al. proposed on the basis of their structure to be necessary for
binding, whereas three of the binders (4P, 3Pa, and 3Pb) did not.
The wider phosphorylation motifs we describe here expand not
only the size of the coding region but go further in assigning
distinct functions to the different regions within the receptor
C-terminus. That being said, the current study was (for practical
reasons) limited to rhodopsin-derived peptides, and future
experiments using peptides derived from other GPCRs will be
required to validate the universality of the proposed motifs and to
reveal other receptor-specific arrestin binding determinants. For
example, in the crystal structure of the rhodopsin-arrestin-1
complex25, E341, which is positioned between the two key sites, is
observed to interact with functionally important charged residues,
namely the phosphosensor K15 48. This interaction could con-
tribute to the specificity of rhodopsin for arrestin-1 binding33.

Our proposed phosphorylation motifs are consistent with the
multiple and physically extended interactions seen in the crystal
structure of arrestin-2 bound to V2Rpp37, as well as studies
showing that arrestin activation and cellular functions are con-
trolled by multiple phosphorylation moieties spread over a large
coding region in the GPCR C-terminus16,17,50. In summary, the
phosphorylation motifs we identify here, which control affinity,
activation, inhibition and modulation of global conformation,
would support complex regulation mechanisms for the structu-
rally flexible and functionally versatile arrestins.
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Methods
Peptide synthesis. Peptides were synthesized using combinatorial Fmoc Solid
Phase Synthesis strategy. The coupling methods applied were specific for each
amino acid and were determined based on the phosphorylation pattern as
described by Samarasimhareddy et al.32.

Constructs. Synthesized cDNAs of bovine arrestin-1, human arrestin-2 and
human arrestin-3 were ordered from Genewiz, amplified by PCR and cloned
(Supplementary Information Table 5) into the pET-15b vector (Novagen), using
the Gibson Assembly protocol57. The constructs contained an N-terminal hexa
histidine tag linked by a linker that contained a Tobacco Etch Virus cleavage site
(TEV; ENLYFQGGS). PCR was used to introduce the monomerizing arrestin-1
mutations (F85A, F197A)58. Note that this mutant was employed for fluorescence
anisotropy, trypsin digestion, and NMR experiments. Wild-type arrestin-2 and -3
were used for fluorescence anisotropy and trypsin digestion experiments. For the
peptide array experiment, an N-terminal mCherry-arrestin-1 fusion construct was
cloned that had a six residue linker (GSGGGS) between the two proteins. The
arrestin-1 in this construct had the wild-type sequence. Note that this construct
differs slightly from that previously published59,60 and was optimized for pur-
ification. We verified the functionality of this fusion construct using the standard
centrifugal pull-down assay using phosphorylated rhodopsin in native ROS
membranes44.

Arrestin expression. NiCo (DE3) cells (New England Biolabs) were transformed
with plasmid containing the arrestin gene and plated on selective medium. A
single colony was used to inoculate 500 ml of lysogenic broth medium, and cells

were grown at 30 °C/160 rpm overnight. Forty milliliter of starting culture was
used to inoculate 500 ml of terrific broth media containing 50 µg/ml carbenicillin
in a 2 l baffled flask (12×). The culture was incubated in a shaker at 37 °C/160
rpm for 3–4 h until an OD600 above 2.0 was reached. The temperature was then
reduced to 20 °C and overexpression of arrestins was induced by the addition of
30 μM Isopropyl-β-D-thiogalactopyranosid after 1 h. The cells were harvested on
the next day, approx. 20–24 h post induction by centrifugation (3000 × g for
20 min). Pellets were resuspended in 180 ml solubilization buffer (50 mM Bis-
Tris propane pH 7.0, 500 mM NaCl and 10% (v/v) glycerol), frozen and stored at
−20 °C.

For the expression of 2H, 15N, 13C-Arrestin-1 the cells were harvested after
reaching an OD600 of 2.0 by centrifugation (2000 × g for 20 min). The pellets were
resuspended immediately afterwards in 2 l M9 media (50mM Na2HPO4*2xH2O,
25 mM KH2PO4, 10mM NaCl, 2.5 g/l D-Glucose-13C6,1,2,3,4,5,6,6-d7, 1 g/l
15NH4Cl, 2 mM MgSO4, 50 µM FeSO4, 2.50 µM CaCl2*2xH20, 2.07 µM H3BO3,
150 nM CoCl2*6xH2O, 50 nM CuCl2*2xH2O, 5 µM ZnCl2, 5 µM Na2MoO4*2xH2O,
400 nM MnCl2*4xH2O, 200 nM Thiamin-hydrochloride, 409 nM D-Biotin, 716 nM
choline chloride, 227 nM folic acid, 819 nM niacinamide, 456 nM D-pantothenic
acid, 27 nM riboflavin) containing 50 µg/ml carbenicillin. The solution consisting of
cells and M9 media was divided into four 2 l baffled flask. They were cultured in the
new media for 1 h at 37 °C before they were cooled down to 20 °C. The
induction and harvesting was carried out as described for the expression of
unlabeled arrestins.

For the expression of the mCherry-arrestin-1 fusion, 1000 μM IPTG was added
for induction at 37 °C. The cells were harvested after 2 h post induction by
centrifugation (3000 × g for 20 min). Pellets were resuspended in 60 ml
solubilization buffer frozen and stored at −20 °C.
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Arrestin purification. Cell pellets from 6 l of culture were thawed and topped up
to a total volume of 240 ml with solubilization buffer. Two tablets of EDTA-free
protease inhibitor (Complete-Roche), a small spatula of DNAse (Sigma) and 8 mM
2‑mercaptoethanol were freshly added before the cells were lysed by sonication
(3 × 5 min, 1 s pulse/0.5 s pause). Ultracentrifugation was performed to remove the
insoluble fraction (185,677 × g, 1 h, 4 °C). The supernatant was filtered through
3−4 syringe filters (0.45 μm), and imidazole (30 mM) was added before the lysate
was loaded onto a 5 ml Ni-NTA FF crude column (GE Healthcare). The column
was washed with ten column volumes of buffer A (20 mM Bis-Tris propane pH 7.0,
500 mM NaCl, 40 mM imidazole, 10% (v/v) glycerol, 8 mM 2‑mercaptoethanol). A
step elution with IMAC B buffer (same as A but with 500 mM imidazole) was
performed. The eluted-fractions were pooled and dialyzed against SQ120 (20 mM
Bis-Tris propane pH 7.0, 120 mM NaCl, 10% (v/v) glycerol and 14.3 mM 2‑mer-
captoethanol) overnight in the presence of TEV (10:1 molar ratio of protein to
TEV). The dialyzed solution was slowly diluted with SQ0-buffer (0 mM NaCl) to a
concentration of 40 mM NaCl. The protein was loaded directly after the dilution
onto the SQ column (15 ml resin). The column was washed until the baseline
stabilized before switching to the elution buffer (SQ120 containing 120 mM NaCl
for arrestin-1 or SQ200 containing 200 mM NaCl for arrestin‑2/‑3). Ten-milliliter
fractions were collected and protein-containing fractions were pooled. The NaCl
concentration was increased to 300 mM before the protein was concentrated
with a Vivaspin concentrator (Sartorius, 30 kDa cutoff) to approximately 3 mg/ml.
The concentrated protein was flash frozen in 200 µl aliquots and stored at −80 °C.

Purification of mCherry-Arrestin-1 fusion constructs was carried out as
described above, except that the volume of the solubilization buffer was reduced to
80 ml and no SQ column purification step was performed.

ROS preparation. ROS membranes were prepared from frozen bovine retina
obtained from W.L. Lawson Company (USA) or from bovine eyes obtained from a
slaughterhouse near Berlin. The American bovine tissue was obtained from animals
slaughtered under guidelines set forth by the Humane Slaughter Act (US Public
Law 85–765), and all retinal tissue regardless of origin was approved for laboratory
use by the State Office for Health and Social Affairs (LAGeSo Berlin). ROS isolation
was carried out as previously described43,61. Rhodopsin phosphorylation by the
native rhodopsin kinase (GRK1) present in ROS was achieved by adding ATP and
MgCl2 and illuminating the ROS with light as described previously43. Nonpho-
sphorylated ROS membranes were treated identically except that no ATP was
added. After illumination 50 mM hydroxylamine was added to the bleached ROS
membranes to yield retinal-free opsin. Rhodopsin was regenerated by adding a
threefold molar excess of 11-cis-retinal, which was prepared from commercially
available all-trans-retinal and purified by HPLC62. Regeneration was terminated by
the addition of 20 mM o-tert-butyl-hydroxylamine63. Rhodopsin concentration
was determined by absorbance difference spectrum (extinction coefficient at
500 nm: 40,800/M/cm) after bleaching the rhodopsin in the presence of
hydroxylamine.

Peptide array. The 384-peptide microarray containing all possible combinatorial
phosphorylation patterns from mono- to tri-phosphorylated peptides derived from
the rhodopsin C-terminus was ordered from Intavis (Germany). The peptide array
was rehydrated by dropwise addition of 96% ethanol to the surface, followed by
extensive washing of the surface with deionized water. The blocking of the peptide
array was performed with 3% (w/v) bovine serum albumin (BSA) in incubation
buffer, which consisted of 20 mM Bis-Tris propane pH 7.0, 250 mM NaCl and 10%
(v/v) glycerol. The peptide array was washed twice for 5 min after 1 h of blocking.
The peptide array was then incubated with the 5–10 μM mCherry-arrestin-1 at RT
for 4 h. The peptide array was then rinsed twice with buffer before the bound
protein was detected by mCherry fluorescence with automated exposure time
setting (Amersham Imager 600). The analysis was performed using the open source
software ImageJ and its plugin Protein Array Analyzer, Microsoft Excel and R
(www.r-project.org). All peptides were present in duplicate on the array, and two
independently synthesized arrays were used; hence, the average signals from four
measurements per peptide were used for data analysis. In order to identify the
contribution of each phosphorylation site to arrestin-1 binding, two different
approaches were used: (1) All peptides were ordered by their fluorescence intensity
(binding to arrestin-1) and plotted in a binary heatmap that showed whether a site
was phosphorylated or not. (2) A linear regression with an exhaustive, bidirec-
tional, stepwise subset approach (all-model selection) was applied, with the Akaike
information criterion to evaluate fits, using the MASS and leaps packages in R. The
following fitting function was used, whereby each phosphorylation site was
represented by an individual term in the linear regression:

y ¼ θ1P334þ θ2P335þ θ3P336þ θ4P338þ θ5P340þ θ6P342þ θ7P343: ð1Þ
As some peptides can show low fluorescence signals, the same approach was

repeated using varying thresholds to filter low signal peptides and check the
robustness of the most important positions.

Fluorescent labeling of N-terminal peptide cysteine. 0.1–0.2 mg of lyophilized
peptide was dissolved in 50 µl of 50 mM phosphate-buffered saline (PBS) buffer at

pH 7.0, and then two molar equivalents of fluorescein-5-maleimide dye stock
dissolved in dimethylsulfoxid was added. The reaction was carried out at RT in the
dark. After 1 h the reaction was topped up with 1 ml of ice-cold 100% acetone and
stored until the next day at −20 °C. The precipitated peptide was centrifuged
(13,000 × g) for 10 min. The labeled and precipitated peptide was sedimented, and
the supernatant was removed. The peptide was resuspended again in ice-cold
acetone, stored for 1 h at −20 °C and centrifuged (13,000 × g) for 10 min. This
procedure was repeated until the supernatant did not contain any color when it was
diluted with 50 mM PBS buffer, pH 7.0. The precipitated peptide was dried at RT
in the dark. It was dissolved in 50 µl of 20 mM Bis-Tris propane pH 7.0 and
150 mM NaCl and its concentration was determined by absorbance. A molar
extinction coefficient of 70,000/M/cm at pH 7.0 was assumed for calculating the
concentration of the labeled peptide stock.

Fluorescence anisotropy. An 11-step serial dilution series of arrestin in 20 mM
Bis-Tris propane pH 7.0, 150 mM NaCl, 8 mM 2‑mercaptoethanol, 2% (w/w) BSA,
0.02% (v/v) Tween-20 was prepared and transferred to a black high-bottom 384-
well plate (Greiner). As control for free peptide, a position with only buffer was
included. The peptide was added at a final concentration of 20 nM to each well.
The plate was closed by a clear cover and vortexed for 15 s. Afterwards it was
centrifuged (800 × g) for 2 min and stored at RT for 20 min. The reading was
performed by default settings of PHERAstar plate-reader (BMG Labtech) and
excitation‑/emission-wavelengths of 485 nm (12 nm bandpass)/520 nm (30 nm
bandpass) were used. The analysis was performed using Origin2016 (Microcal Inc)
software by fitting the data to a one-to-one binding model:

r ¼ R0 þ4R � P
Kd þ P

� �
; ð2Þ

where r stands for anisotropy, R0 stands for anisotropy of the ligand, ΔR stands for
anisotropy of the complex minus anisotropy of the ligand, P stands for the con-
centration of protein, and Kd stands for the dissociation constant of the ligand.

Limited trypsin digestion of arrestin. Arrestin (60 µg) was mixed at a 1 to 1.2
molar ratio with peptide and preincubated at RT for 5 min before 1 μl of 0.15 mg/
ml trypsin stock was added. The enzymatic digestion was carried out at 35 °C
(20 mM Bis-Tris propane pH 7.0, 150 mM NaCl, 10 mM 2‑Mercaptoethanol and
2 mM EDTA). At certain time points (5, 15, 30, 60, 90 min), 5 μl aliquots were
quenched with heat incubation in the presence of 20 μl SDS loading buffer (95 °C,
5 min) and then subjected to SDS PAGE. Bands were visualized with InstantBlue
(Expedeon).

Site-directed fluorescence and pull-down experiments. Recombinant bovine
arrestin-1 cloned into the pET15b vector was expressed and purified as described43.
The basic construct was a modified wild-type sequence that contained no native
cysteines (C63A, C128S and C143A) nor tryptophans (W194F). Single cysteine
residues were introduced by PCR at sites 72 or 197 as previously described43. The
I72C mutant was labeled with monobromobimane (Thermo Fisher) and is referred
to as I72B. The F197C mutant was labeled with N,N′-Dimethyl-N-(Iodoacetyl)-N′
-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Ethylenediamine (IANBD amide, Thermo
Fisher) and is referred to as F197NBD. Labeling was carried out as previously
described43,61. Both labeled mutants were assessed to be functionally similar to
wild-type arrestin-1 using the Extra Meta II assay, which determines the ability of
arrestin-1 to bind and stabilize the active Meta II form of rhodopsin64.

Under dim-red light, samples were prepared that contained nonphosphorylated
rhodopsin (10 µM) in ROS membranes, 1 µM arrestin-1 I72B or F197NBD,
±100 µM peptide in 50 mM HEPES, 130 mM NaCl, pH 7 (150 or 200 µl sample
volume). One hundred microliters of the sample was used for fluorescence
measurements, and the remainder was used for the centrifugal pull-down assay
(50 µl per assay). Steady-state fluorescence measurements were performed using a
SPEX Fluorolog (1680) instrument in front-face mode. Bimane fluorescence was
recorded using an excitation wavelength of 400 nm and emission 424–600 nm, and
NBD fluorescence was recorded using an excitation wavelength of 500 nm and
emission 524–660 (2 nm step size, 0.5 s integration per point). Excitation slits were
narrowed to 0.1−0.2 nm to minimize light-activation of rhodopsin, and emission
slits were set at 4 nm. Pull-down analysis was performed by centrifuging samples at
16,000 × g for 10 min at 20 °C. Selected samples were light activated (>495 nm) for
15 s prior to centrifugation (appr. 60 s delay time). Following centrifugation, the
supernatants were removed, and the pellets were solubilized in loading buffer
containing 2% SDS and subjected to SDS PAGE. Bands were visualized using
Coomassie Brilliant Blue.

Statistical analysis. The statistical analysis of the affinity measurements, the site-
directed fluorescence spectroscopy experiments and pull-down experiments were
performed in Prism6 using ANOVA analysis. The significance between two
values is given either by “ns”= no statistical significance, *P ≤ 0.05, **P ≤ 0.01,
***P ≤ 0.001 and ****P ≤ 0.0001 or ‘−’ if no calculation was possible due to no
measurable Kd value in case of fluorescence anisotropy phosphopeptide binding
assays.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09204-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1261 | https://doi.org/10.1038/s41467-019-09204-y | www.nature.com/naturecommunications 11

http://www.r-project.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


NMR sample preparation. 2H,15N,13C-labeled arrestin-1 aliquots were thawed
quickly under running water, transferred to 30 kDa-cutoff Vivaspin (0.5 ml, Sar-
torius) centrifugal spin concentrators, and concentrated to approximately 600 μM.
The concentrator was immediately transferred into a beaker filled with 400 ml of
NMR buffer 1 or 2 (see below) carried by a floatation device. The dialysis was
performed at 4 °C overnight. On the next day the concentration was determined by
UV absorbance at 280 nm (molar extinction coefficient 26,360/mol/cm). Lyophi-
lized peptides were dissolved in NMR buffer 2 and dialyzed with a self-made
dialyzing device consisting of the top of a 1.5 ml Eppendorf tube and a dialysis
membrane (100–500 Da cutoff, Biotech CE Tubing, Spectrum LABS). The dialysis
was performed at 4 °C overnight, and the peptide concentration was determined by
its absorbance at 205 nm (molar extinction coefficient: 54,310/mol/cm). The NMR
sample was mixed and 5% D2O was added. Afterwards it was transferred to a 3 mm
Shigemi tube using a plastic syringe connected to a piece of Teflon high perfor-
mance chromatography tubing using a luer lock (Pharmacia) and sealed with a
piece of Parafilm M. NMR buffer 1: 25 mM Bis-Tris propane pH 7.0, 150 mM
NaCl, 10 mM DTT and 0.02% NaN3; NMR buffer 2: 350 mMMOPS (adjusted with
Bis-Tris propane) pH 7.0, 5 mM NaH2PO4, 14.3 mM 2‑mercaptoethanol and
0.02% NaN3. Buffer 2 was necessary for titrations experiments to avoid systematic
changes in pH due to addition of phosphopeptides.

NMR measurements and data analysis. NMR measurements were performed
on Bruker Avance III-HD 600 or 900 MHz spectrometer using a CTCI cryo-
cooled probehead. At the beginning of all experimental series the temperature
was calibrated to 298 K using a sample of 99.8% methanol-d4 (Bruker) in a 5 mm
NMR tube. Pulse lengths were calibrated for 1H manually and for 13C/15N using
an in-house automated procedure. pH was monitored using the position of the
phosphate signal in NMR buffer 2 as an internal reference and varied by no more
than 0.03 pH units during peptide titration experiments. [15N,1H]TROSY
experiments were recorded with internal ETH pulse sequences, whereas 3D
triple resonance TROSY experiments were recorded using the manufacturer’s
pulse sequences. Spectra were processed in TopSpin 3.2 (Bruker) and calibrated
using external 4,4-dimethyl-4-silapentane-1-sulfonic acid in the NMR buffer. All
further data analysis was performed in CARA65 (www.nmr.ch), Excel and
Origin.

NMR resonance assignments. The previously published assignments of arrestin-
166 were used as basis for the assignments in this work. Minor differences in peak
positions were observed due to the use of a different buffer composition, but for
most resonances only slight shifts in peak positions were observed. Assignments
were confirmed using triple resonance spectra measured with samples with protein
concentration of 350–600 μM. The backbone amide resonance assignment had a
completeness of approximately 40%.

NMR titrations. The concentration of arrestin-1 was held constant at 100 µM and
the peptide was added at stoichiometric arrestin-1:peptide ratios of 1:0 (protein
alone), 1:1, 1:4 and 1:10. Each titration series consisted of four [15N,1H]TROSY
experiments, where the sample from the previous step of the titration series was
recycled and topped up with a peptide stock (5 mM) as well as arrestin-1 to reach
the next aimed stoichiometric ratio at a constant arrestin concentration. As a
control, a [15N,1H]TROSY spectrum containing arrestin-1 and nonphosphorylated
C-terminal peptide (0P) at a 1:10 molar ratio was measured, which showed some
minor changes in peak intensity for a small set of signals when compared to the
corresponding spectrum obtained with protein alone. These changes in intensity
may be caused by weak interactions mediated by four acidic residues (two aspar-
tates and two glutamates) in the peptide sequence. The position of signals was
followed from their starting point at 0:1 peptide:arrestin-1 ratio up to the endpoint
at 10:1 ratio. TROSYs were measured for 18−48 h each on a 600MHz
spectrometer.

NMR data analysis. The chemical shift perturbation of each 1H-15N signal
between the [15N,1H]TROSY spectra obtained with a given peptide:protein ratio
and the spectrum of the reference protein alone was calculated using the formula:

Δδ ¼ ½ð0:2 ´ ðδpeptideþ protein
N � δproteinN ÞÞ2 þ ðδpeptideþ protein

H � δproteinH Þ2�1=2; ð3Þ

where δNprotein is the chemical shift of the amide 15N signal for the protein alone,
δHprotein is the corresponding chemical shift for the 1H signal, and the corre-
sponding values for the protein in the presence of peptide are indicated by the same
symbols with superscript peptide+ protein.

Modeling of full-length arrestin-1. The program MODELLER9.14 was used to
create a full-length representation of arrestin-1 (C-terminal sequence taken from
Uniport:P08168). A total of 100 models were created and subjected to 300 itera-
tions each. One of the top scoring models using a discrete optimized protein energy
potential was selected by eye and equilibrated using the Implicit solvent modeler
GBSW with the CHARM-Gui and NAMD2.10.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file. The source data underlying Figs. 2c, d, 3, 4c, d and
Supplementary Figures 1 are provided as a Source Data file.
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