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Abstract A search is presented for a heavy spin-1 reso-
nance Z′ decaying to a top quark and a vector-like top quark
partner T in the lepton + jets final state. The search is per-
formed using a data set of pp collisions at a centre-of-mass
energy of 13 TeV corresponding to an integrated luminos-
ity of 35.9 fb−1 as recorded by the CMS experiment at the
CERN LHC in the year 2016. The analysis is optimised for
final states arising from the T decay modes to a top quark
and a Higgs or Z boson (T → Ht, Zt). The event selection
makes use of resolved and merged top quark decay prod-
ucts, as well as decays of boosted Higgs bosons and Z and
W bosons using jet substructure techniques. No significant
deviation from the standard model background expectation
is observed. Exclusion limits on the product of the cross sec-
tion and branching fraction for Z′ → tT, T → Ht, Zt, Wb
are presented for various combinations of the Z′ resonance
mass and the vector-like T quark mass. These results rep-
resent the most stringent limits to date for the decay mode
Z′ → tT → tHt. In a benchmark model with extra dimen-
sions, invoking a heavy spin-1 resonance G∗, masses of the
G∗ between 1.5 and 2.3 TeV and between 2.0 and 2.4 TeV are
excluded for T masses of 1.2 and 1.5 TeV, respectively.

1 Introduction

Many extensions of the standard model (SM) predict the
existence of heavy bosonic resonances, such as the com-
posite spin-1 resonances found in the ρ0 model [1], or the
lightest Kaluza–Klein excitation of the gluon [2] in Randall–
Sundrum models [3,4]. In models that invoke such states to
address the hierarchy problem, these resonances are required
to cancel top quark loop contributions to the radiative cor-
rections that would otherwise drive the Higgs boson mass
up to the Planck scale. As a consequence, these resonances
typically feature an enhanced coupling to third-generation
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SM quarks, resulting in decays predominantly to SM top
quarks. The ATLAS and CMS Collaborations have per-
formed searches for such resonances in their proton–proton
(pp) collision data sets at centre-of-mass energies

√
s = 8

[5–7] and 13 TeV [8–10], leading to stringent exclusion limits
on the product of the resonance cross section and branching
fraction, and therefore also on the resonance masses when
interpreted in the context of specific models. However, in
some models describing physics beyond the standard model
(BSM) the new heavy resonance state is accompanied by an
additional fermionic sector realised as a non-chiral (or vector-
like) fourth generation of quarks. Vector-like quarks (VLQs)
are fermions whose left- and right-handed components trans-
form in the same way under the electroweak symmetry group.
For this reason, direct mass terms for VLQs are not forbid-
den in the BSM Lagrangian. Furthermore, unlike sequential
fourth-generation chiral quarks, the existence of VLQs is not
yet excluded by recent Higgs boson measurements [11].

Examples of BSM models with these additional particles
are models with a heavy gluon [2], a composite Higgs boson
[12–15], or extra spatial dimensions [3,16]. In these models,
decays of the heavy resonance into final states with VLQs are
allowed. The analysis presented in this paper searches for evi-
dence of the production of a heavy spin-1 resonance, denoted
as Z′, with decays to an SM top quark and a vector-like top
quark partner T, Z′ → tT. This decay mode is dominant for
the intermediate Z′ mass region in which the decay is kine-
matically allowed (Mt + MT < MZ′ ) and the decay to two
VLQ top quark partners (Z′ → TT) is kinematically forbid-
den (MZ′ < 2MT). The VLQ T considered in this analysis
has three decay channels: to a Higgs boson and a top quark
(T → Ht), to a Z boson and a top quark (T → Zt), and to a
W boson and a bottom quark (T → Wb). The leading-order
Feynman diagram showing the production mode of the Z′
boson and its subsequent decay, including the decay of the
VLQ, is shown in Fig. 1.

A first search for the production of a heavy Z′ resonance
decaying to tT was performed by the CMS Collaboration
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Fig. 1 Leading order Feynman diagram for the production of a spin-
1 resonance Z′ and its decay, along with the possible decays of the
vector-like quark T

[17] using a data set corresponding to an integrated lumi-
nosity of 2.6 fb−1, recorded at a centre-of-mass energy of√
s = 13TeV. The analysis was optimised for the decay

mode T → Wb and made use of the all-hadronic final state,
where both the top quark and W boson are highly Lorentz-
boosted, resulting in a three-jet event topology. No deviation
from the SM expectation was observed and upper limits on
the cross section were obtained, ranging from 0.13 to 10 pb
depending on the masses of the Z′ and T. A search for the sin-
gle production of a vector-like quark T decaying to a Z boson
and a top quark in the dilepton + jets final state has also been
performed, with an interpretation of the results in the context
of a Z′ decaying into tT [18]. Upper limits on the cross section
ranging from 0.06 to 0.13 pb were obtained, for the produc-
tion of a Z′ with the subsequent decays to tT and T → Zt.
Searches for T pair production have been performed by the
ATLAS [19–24] and CMS [25,26] Collaborations, placing a
lower bound of ≈ 1.3 TeV on the VLQ mass.

The analysis presented here is optimised for Z′ → tT with
the T decay modes T → Zt and T → Ht, in the monolepton
+ jets final state. The search is performed in a data set of pp
collisions at

√
s = 13 TeV corresponding to 35.9 fb−1 [27]

as recorded by the CMS experiment during the year 2016.
The two decay channels (Z′ → tT → tHt, Z′ → tT →

tZt) each produce two top quarks accompanied by one boson.
The event selection in the single lepton + jets final state relies
on the leptonic decay of one of these top quarks. The H or Z
boson from the T decay is expected to receive a large Lorentz
boost because of the large mass difference between the T
and the boson. The resultant hadronic decay products will be
merged and are thus reconstructed as a single broad jet. Jet
substructure techniques are used for the boson identification
[28] and in the event categorisation. Additional categories for
both resolved and merged decays of the other hadronically
decaying top quark are considered to ensure a high sensitivity
over a broad range of the Z′ mass. In all categories, the Z′
mass is reconstructed by considering various combinations of

reconstructed objects, with the final combination determined
by a χ2 metric.

Limits at 95% confidence level (CL) are derived for all
three T decay channels (T → Ht, T → Zt, T → Wb) using
a template-based statistical evaluation of the reconstructed
mass spectra of the Z′ boson from all categories. A mass
range of the Z′ from 1.5 to 4.0 TeV and of the T from 0.7 to
3.0 TeV is considered. The rate of the dominant SM back-
ground processes (tt and W+jets) predicted by simulation
is constrained using the mass spectra in dedicated control
regions that enhance these background processes, and are fit
simultaneously with the signal regions.

The search is performed in a model-independent manner
by scanning over a large range of possible masses of the Z′
and T and couplings of the T to various final states. The results
are then interpreted in the context of two theory benchmark
models.

In the G∗ model [2], ten new VLQs (T, B, T̃, B̃, T5/3,
T2/3, T′, B′, B−1/3, B−4/3) are predicted with well-defined
relationships between their masses. In this analysis, the T
mass is varied, whilst other masses are related by MT5/3 =
MT2/3 = MT cos φL. The mixing angle cos φL governs the
degree of compositeness of the left-handed quark doublet
(tL, bL), and hence the relative coupling of the lightest spin-1
Kaluza–Klein excitation of the gluon, G∗, to third-generation
quarks compared to the other two generations of quarks. A
benchmark scenario with parameters tan θ = 0.44, sin φtR =
0.6, and Y∗ = 3 is used in this analysis, leading to cos φL =
0.84. A description of the benchmark and its parameters can
be found in Ref. [2]. In this model the branching fractions
(B) of the T decay to Wb, Ht, and Zt are chosen to be 0.5,
0.25, and 0.25, respectively.

The ρ0 model [1] predicts a heavy spin-1 resonance, ρ,
along with a multiplet of four new vector-like quarks, with
two of the vector-like quarks (T, B) representing the heavy
partners of the top and b quarks, respectively. Other exotic
vector-like quarks are also predicted: X2/3 with a charge of
2 e/3, and X5/3 with a charge of 5 e/3, where e is the mag-
nitude of the charge of the electron. A benchmark scenario
with parameters yL = c2 = c3 = 1 and gρL = 3 is used in
this analysis, where a description of the benchmark and its
parameters can be found in Ref. [1]. In this model the branch-
ing fractions of the T decay to Wb, Ht, and Zt are chosen to
be 0, 0.5, and 0.5, respectively.

After a short description of the CMS experiment (Sect. 2),
the reconstruction of events is discussed in Sect. 3, and the
data sets and the simulated samples are introduced in Sect. 4.
The event selection, the categorisation, and the procedures for
the mass reconstruction are discussed in Sect. 5. In Sect. 6 the
background estimation procedure is explained, and Sect. 7
gives an overview of the systematic uncertainties. Finally,
the search results and the interpretation in the benchmark
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models are presented in Sect. 8. This paper concludes with a
summary in Sect. 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Contained within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal elec-
tromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a bar-
rel and two endcap sections. Muons are detected in gas-
ionization chambers embedded in the steel flux-return yoke
outside the solenoid. Extensive forward calorimetry com-
plements the pseudorapidity (η) coverage provided by the
barrel and endcap detectors. Events of interest are selected
using a two-tiered trigger system [29]. The first level, com-
posed of custom hardware processors, uses information from
the calorimeters and muon detectors to select events at a rate
of around 100 kHz within a time interval of less than 4µs.
The second level, known as the high-level trigger, consists
of a farm of processors running a version of the full event
reconstruction software optimised for fast processing, and
reduces the event rate to around 1 kHz before data storage. A
more detailed description of the CMS detector, together with
a definition of the coordinate system used and the relevant
kinematic variables, can be found in Ref. [30].

3 Event reconstruction

The particle-flow (PF) algorithm [31] deployed by the CMS
Collaboration aims to reconstruct and identify each individ-
ual particle in an event, with an optimised combination of
information from the various elements of the CMS detector.
The energy of photons is obtained from the ECAL measure-
ment. The energy of electrons is determined from a com-
bination of the electron momentum at the primary inter-
action vertex as determined by the tracker, the energy of
the corresponding ECAL cluster, and the energy sum of all
bremsstrahlung photons spatially compatible with originat-
ing from the electron track. The energy of muons is obtained
from the curvature of the corresponding track. The energy of
charged hadrons is determined from a combination of their
momentum measured in the tracker and the matching ECAL
and HCAL energy deposits, corrected for zero-suppression
effects and for the response function of the calorimeters to
hadronic showers. Finally, the energy of neutral hadrons is
obtained from the corresponding corrected ECAL and HCAL
energies.

The primary pp interaction vertex is taken to be the recon-
structed vertex with the largest value of summed physics-

object p2
T, where pT is the transverse momentum. Here the

physics objects are the objects returned by a jet finding algo-
rithm [32,33] applied to all tracks associated with the vertex,
plus the negative vector sum of the pT of those jets.

Muons are reconstructed through a fit to hits in both the
inner tracking system and the muon spectrometer [34,35].
Muons must satisfy identification and reconstruction require-
ments on the impact parameters of the track, the number of
hits reconstructed in both the silicon tracker and the muon
detectors, and the uncertainty in the pT. These quality cri-
teria ensure a precise measurement of the four-momentum,
and rejection of badly reconstructed muons.

Electron candidates are required to have a match between
the energy deposited in the ECAL and the momentum deter-
mined from the reconstructed track [36]. To suppress the
multijet background, electron candidates must pass stringent
identification criteria. These include requirements on the geo-
metrical matching between ECAL deposits and position of
reconstructed tracks, the ratio of the energies deposited in the
HCAL and ECAL, the spatial distribution of the ECAL depo-
sitions, the impact parameters of the track, and the number
of reconstructed hits in the silicon tracker.

In the Z′ signal targeted by this analysis, the lepton is emit-
ted in the decay chain of a top quark (t → b�ν�) at high pT.
Because of the Lorentz boost of the top quark, the lepton is
expected to be in angular proximity to a b quark, and therefore
conventional lepton isolation criteria would lead to a loss in
signal efficiency. Instead, a dedicated two-dimensional cri-
terion is used to reduce the background of leptons arising
from heavy-flavour quark decays in multijet events produced
through the strong interaction. This criterion is discussed in
Sect. 5.1.

In this analysis hadronic jets are reconstructed from PF
candidates using the anti-kT algorithm [32] as implemented
in the FastJet software package [33]. Since the analysis tar-
gets both resolved and merged top quark decays, jets are clus-
tered with two values of the distance parameter R; R = 0.4
(AK4 jets) for the reconstruction of resolved top quark decay
products, and R = 0.8 (AK8 jets) for the reconstruction of
merged W, Z, and Higgs boson decay products as well as
merged top quark decays. In the jet clustering procedure,
charged PF candidates associated with non-primary vertices
are excluded. The jet momentum is determined as the vecto-
rial sum of all particle momenta in the jet, and is found from
simulation to be within 5–10% of the true momentum over
the whole pT spectrum and detector acceptance. A correction
based on the area of the jet, projected on the front face of the
calorimeter, is used to correct for the extra energy clustered
in jets due to additional inelastic proton–proton interactions
within the same or adjacent bunch crossings (pileup) [33].
Jet energy corrections are derived from simulation in order
to bring the measured response of jets to that of particle level
jets on average. Dijet, multijet, photon + jet, and leptonically-
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decaying Z + jet events are used to perform in situ measure-
ments of the momentum balance to derive corrections for
residual differences in jet energy scale in data and simulation
[37]. Additional selection criteria are applied to each event
to remove spurious jet-like features originating from isolated
noise patterns in certain HCAL regions [38]. The clustered
jets also contain leptons. To avoid double counting of the
lepton momentum in an event, the lepton used for the recon-
struction of the W boson from the leptonic top quark decay
is removed from an AK4 jet if the lepton overlaps with the
jet within the jet’s radius parameter, ΔR(�, j) < 0.4, where

ΔR(�, j) =
√

[Δη(�, j)]2 + [Δφ(�, j)]2, and Δη(�, j) and
Δφ(�, j) are the separations in pseudorapidity and azimuthal
angle, respectively, between the lepton and jet. The momen-
tum of the lepton is subtracted from that of the jet before jet
energy corrections are applied. Larger radius AK8 jets that
overlap with the lepton within ΔR(�, j) < 0.8 are not con-
sidered in this analysis. Jets that are produced by the decay
of b quarks can be identified using the combined secondary
vertex discriminator [39]. An AK4 jet is denoted as being b
tagged if it fulfils the medium working point of the discrimi-
nator, which has an efficiency of 63% for correctly identify-
ing a b quark jet, with a 1% probability of misidentifying a
light-flavour jet as b tagged (a mistag).

The boosted bosons and merged top quark decays are iden-
tified by applying so-called taggers to AK8 jets. Each tag-
ger requires the jet mass to be within a certain range, along
with additional criteria on substructure variables such as N-
subjettiness [40] or subjet b tagging [39]. The jet mass is com-
puted after applying a modified mass-drop algorithm [41,42],
known as the soft drop algorithm [43], which eliminates soft,
large-angle radiation resulting from SM quantum chromody-
namics (QCD) processes. This improves the jet mass resolu-
tion for the reconstructed boson and top quark. It also reduces
the mass of jets initiated by single quarks or gluons, thereby
improving discrimination between jets from true boson or
top quark decays, and those from background QCD multi-
jet events. Furthermore, it helps mitigate the effect of pileup
[28]. The N-subjettiness variable τN quantifies the compati-
bility of the jet clustering with the hypothesis that exactly
N subjets are present, with small values of τN indicating
greater compatibility. The N-subjettiness ratios τ21 = τ2/τ1

and τ32 = τ3/τ2 are calculated prior to the application of the
soft drop algorithm, and are used to reject background jets
arising from the hadronization of single quarks or gluons.
Jets from hadronic Z/W boson decays in signal events are
characterized by smaller values of τ21 in comparison to jets
from QCD multijet background processes, and similarly jets
from merged hadronic top quark decays have smaller values
of τ32 than background jets. For each AK8 jet, two subjets
are obtained from the soft drop algorithm. An AK8 jet can
have up to two subjet b tags depending on how many subjets

fulfil the loose working point of the b tagging discriminator.
In contrast to the medium working point applied to AK4 jets,
the loose working point has a larger b tagging efficiency of
83%, at the expense of a larger mistag probability of 9%.

The missing transverse momentum pmiss
T is defined as the

magnitude of the vector sum of the transverse momenta of
the reconstructed PF objects, �pmiss

T . The value of pmiss
T is

modified to account for corrections to the energy scale of the
reconstructed AK4 jets in the event.

4 Data and simulated samples

The analysis is based on the data set of pp collisions recorded
by the CMS detector during the year 2016. Events target-
ing the decay of a top quark to a final state including a
muon are selected with a high-level single-muon trigger that
requires the presence of at least one muon candidate with
pT > 50 GeV and |η| < 2.4. For events targeting a final
state with an electron, the high-level trigger requires the pres-
ence of at least one electron candidate with pT > 115 GeV
and |η| < 2.5, or at least one photon with pT > 175 GeV
and |η| < 2.5. The latter requirement ensures events con-
taining electrons with a high pT are efficiently selected, as
the requirements on ECAL shower shapes are less strin-
gent for photons than for electrons. Given the highly boosted
topology of the final-state objects, no isolation requirements
are applied to the lepton candidates at the trigger level.
The electron trigger threshold is significantly larger than the
muon trigger threshold, since the non-isolated electron trig-
ger selects a large number of hadrons incorrectly identified as
electrons. Both recorded data sets correspond to an integrated
luminosity of 35.9 fb−1 [27] .

The spin-1 resonance signal samples are generated with
the leading-order (LO) mode of MadGraph5_amc@nlo

2.2.2 [44] as a high mass resonance with SM-like couplings
using the G∗ model [2]. The pythia 8.212 [45] event gen-
erator with the CUETP8M1 underlying event tune [46,47]
is used to model the parton showering and underlying event.
Separate samples for the different decay channels of the T
are produced, so that each sample has a branching fraction of
100% to the chosen decay channel. Throughout this paper,
a generic spin-1 heavy resonance will be referred to as Z′,
whilst interpretations within a given model will refer to their
specific resonance names.

We consider only Z′ and T masses that result in a sig-
nificant branching fraction of the Z′ to tT. Scenarios where
the mass of the Z′ is smaller than the sum of the top quark
mass and the T mass are not considered, since the Z′ would
then decay to SM quark pairs, and such scenarios have been
largely excluded by previous searches [5,9]. Masses of the
Z′ larger than twice the T mass are also not considered, as in
such cases the Z′ decays predominantly to T pairs, resulting
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in a large Z′ width. Such large masses are better targeted by
direct searches for T pair production.

Two values of the Z′ width are considered, correspond-
ing to 1% or 30% of its mass. The T width is set to 1% of
its mass. For the Z′ and T mass parameter space considered
in this analysis the total Z′ decay width in the two consid-
ered theoretical models is always less than 20% of its mass.
Since the experimental resolution is approximately 15%, the
samples with the Z′ width set to 1% are dominated by the
experimental resolution, and are thus used in the interpre-
tation of the results. The samples generated with the width
of 30% are used as cross-checks and help to confirm that
the conclusions do not change for scenarios with Z′ widths
somewhat larger than the experimental resolution for high
masses of the Z′. Furthermore, it was checked that scenarios
with T widths of up to 30%, with a Z′ width equal to or larger
than that of the T, do not significantly affect the resolution of
the Z′ mass, and therefore the experimental limits obtained
with the T width set to 1% are also valid for larger T width
scenarios.

The G∗ model considers only left-handed T quarks. Theρ0

model also allows for a right-handed ρR coupling to T quarks.
For the T → Ht decay mode the kinematic distributions in the
G∗ model and ρ0 model are the same. While for the T → Zt
and T → Wb decay modes the Z/W boson pT spectra are
similar for the left-handed ρL and the G∗, the ratio of the
distributions for left- and right-handed scenarios in the ρ0

model deviates from unity by up to 30%. In this analysis
only the decays of the left-handed ρL are considered.

Simulated event samples for the SM background pro-
cesses Drell–Yan (DY) + jets, also referred to as Z+jets, and
W+jets are computed at next-to-leading-order (NLO) pre-
cision in QCD with MadGraph5_amc@nlo. The parton
showering is calculated using pythia 8 following the FxFx
merging scheme [48]. Background events from QCD multijet
processes are simulated using pythia 8. For the simulation of
the underlying event, the tune CUETP8M1 is used in pythia

8 for the W+jets, Z+jets, and QCD multijets samples.
The simulation of SM tt and single top quark (ST) back-

ground events is performed with the powheg event generator
[49–57], using powheg v1.0 for the simulation of tW events,
whilst powheg v2.0 was used for the simulation of tt and all
other single top quark processes. The pythia 8 generator
was used for the showering in both versions of powheg. An
observed discrepancy between simulation and data in the top
quark pT spectrum is corrected with a reweighting proce-
dure based on measurements of the top quark pT spectrum
[58,59]. The underlying event tune CUETP8M2T4 [60] is
used in pythia 8 for the tt and single top quark samples.

All events are generated with the NNPDF 3.0 parton distri-
bution functions (PDFs) [61]. The detector response is sim-
ulated with the Geant4 package [62]. Simulated events are
processed through the same software chain as used for colli-

sion data. All simulated event samples include the simulation
of pileup, and are reweighted to match the observed distri-
bution of the number of pileup interactions in data.

5 Event selection, categorisation, and mass
reconstruction

5.1 Event selection

All events are required to contain at least one reconstructed
interaction vertex within a volume 24 cm in length and 2 cm
in radius, centred on the mean pp collision point [63].

Since there are differences in the way the electrons and
muons from top quark decays are treated, the analysis consid-
ers the e+jets and μ+jets channels separately. In the μ+jets
channel exactly one reconstructed muon with pT > 53 GeV
and |η| < 2.4 is required. In the e+jets channel exactly one
electron with pT > 125 GeV and |η| < 2.5 is required.
Events with an electron candidate located inside the transi-
tion region between the ECAL barrel and endcaps (1.44 <

|η| < 1.57) are rejected. In the e+jets channel, an additional
requirement of pmiss

T > 90 GeV from the associated neutrino
is introduced to reduce the background of hadrons falsely
identified as electrons in QCD multijet events.

Because of the boosted nature of the signal, conventional
lepton isolation criteria are not applicable. Instead, in both
the e+jets and μ+jets channels, events are required to pass
a two-dimensional selection of either ΔR(�, j) > 0.4 or
pT,rel(�, j) > 40 GeV, where j is the AK4 jet with minimal
angular separation ΔR from the lepton � (electron or muon),
and pT,rel(�, j) is the component of the lepton momentum
orthogonal to the axis of jet j. Only AK4 jets with pT >

15 GeV are considered in this criterion. The chosen working
point has an efficiency of ≈30% for a lepton with pT =
100 GeV, increasing with pT and reaching a plateau of ≈90%
at pT = 400 GeV. The background rejection rate is 99.5% at
pT = 100 GeV, decreasing to ≈94% at pT = 400 GeV.

In order to reconstruct the boosted H/Z/W boson or
merged top quark decays, events are required to contain at
least one AK8 jet with pT > 250 GeV and a soft drop jet
mass MSD

AK8 > 30 GeV.

5.2 Event categorisation

After the event selection, different taggers are used for the
identification of hadronic decays of boosted Z/W bosons,
Higgs bosons, and top quarks, called in the following Z/W
tagger, H tagger, and t tagger, respectively. These taggers
make use of the soft drop mass of AK8 jets, whose distribu-
tion after the event selection is shown in Fig. 2 for data, a sim-
ulated signal for each T decay mode, and the simulated SM
backgrounds. No corrections to the SM backgrounds from
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Fig. 2 Distribution of the soft drop mass of jets as reconstructed with
the anti-kT jet algorithm with R = 0.8 after the event selection. Events
are shown in the combined lepton + jets channel, with contributions
from data, simulated signal samples, and the simulated SM backgrounds
without corrections from the fit to data (explained in Sect. 6). The
expected signal distribution from various T decay modes is shown for
the example mass configuration MZ′ = 1.5 TeV and MT = 1.3 TeV
with a nominal cross section σ(Z′ → tT) of 1 pb. The lower panel
shows the ratio of data to predicted background. Here the darker grey
band indicates the statistical uncertainty, whilst the lighter grey band
shows the combined statistical and systematic uncertainty

the fit to data (explained in Sect. 6) are applied in this figure.
The selection criteria of the different taggers are:

– Z/W tagger: AK8 jets are denoted Z/W-tagged if their
soft drop jet mass is in the range 60 < MSD

AK8 < 115 GeV
and their N-subjettiness ratio fulfils τ21 < 0.5.

– H tagger: two different H taggers are used:

– H2b tagger: AK8 jets are denoted H2b-tagged if their
soft drop jet mass is in the range 100 < MSD

AK8 <

150 GeV and two subjet b tags are found. This more
stringent selection is used to reduce backgrounds in
regions with significant background contributions.

– H1b tagger: AK8 jets are denoted H1b-tagged if their
soft drop jet mass is in the range 100 < MSD

AK8 <

150 GeV and exactly one subjet b tag is found. This
less stringent selection is used in regions with low
background contributions.

– t tagger: AK8 jets are denoted t-tagged if their soft drop
jet mass is in the range 150 < MSD

AK8 < 220 GeV and
their N-subjettiness ratio fulfils τ32 < 0.57.

Events are required to contain at least one H2b-tagged
jet, one H1b-tagged jet, or one Z/W-tagged jet. Because of
the overlapping mass windows in the tagger definitions, an

Table 1 Signal selection efficiency for the three T decay modes in
each category for a signal with MZ′ = 2.5 TeV and MT = 1.3 TeV,
taking into account branching fractions B(tHt → �+jets) = 0.294,
B(tZt → �+jets) = 0.317, and B(tWb → �+jets) = 0.255 [64], where
�+jets is a final state with exactly one electron or muon originating from
the decay of one of the top quarks, including electrons and muons from
tau lepton decays. The last row of the table shows the total selection
efficiency summed over all six categories. The efficiencies are shown
after all selection requirements, including those on the reconstructed tt
system as detailed in Sect. 5.3

Category T → Ht
(%)

T → Zt
(%)

T → Wb
(%)

H2b tag + t tag 0.35 <0.1 <0.1

H2b tag + no t tag 1.7 0.15 <0.1

H1b tag + t tag 0.93 0.12 <0.1

H1b tag + no t tag 5.5 1.9 0.93

Z/W tag + t tag 0.33 0.15 <0.1

Z/W tag + no t tag 2.8 7.5 5.4

Sum 11.5 11.2 6.6

AK8 jet may be tagged by several taggers. In this case, the
priority is given in the following order to ensure the best
signal sensitivity: H2b, then H1b, and finally Z/W, such that
events can be categorised into three exclusive event cate-
gories based on the presence of H2b-, H1b-, and Z/W-tagged
jets. To maintain sensitivity to both merged and resolved top
quark decays, each of these three categories is further split
into two subcategories, containing events with and without
a t-tagged AK8 jet, respectively. The resulting six exclusive
event categories are listed in the first column of Table 1, which
shows the selection efficiency for each decay channel of the
T in each event category for a signal with MZ′ = 2.5 TeV
and MT = 1.3 TeV. The selection requirements include all
aforementioned requirements, along with requirements on
the reconstructed tt system, detailed in the following sec-
tion. The four H tag categories feature a higher selection
efficiency for the decay T → Ht, while the decays T → Zt
and T → Wb are selected in the two Z/W tag categories
for both the resolved and boosted top quark scenarios. These
decays channels are also selected by the H tag categories,
as they are prioritised over the Z/W tag categories. Signal
events with the tHt final state are reconstructed in the two
Z/W tag categories if the b tag criteria for the subjets are
not fulfilled, but the Z/W tagging requirements are met. The
selection efficiency is lower in categories requiring a t tag,
since any top quark produced by this chosen signal will not
be significantly boosted, and therefore will not be efficiently
identified by the t tagger.

5.3 Mass reconstruction

The reconstructed Z′ mass M rec
Z′ is used as the discriminating

observable between background and signal in this analysis.
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In addition to the Z/W or Higgs boson, the signature also
requires a tt pair. The reconstruction of a fully resolved tt
system is performed by defining top quark candidates, built
from the four-momenta of the reconstructed objects. One can-
didate is constructed for the hadronic decay of the (anti)top
quark (denoted the hadronic top quark candidate), and one for
the leptonic decay of the (anti)top quark (denoted the leptonic
top quark candidate). Objects that are used in the reconstruc-
tion are the �pmiss

T , leptons, AK4 jets, and a t-tagged AK8 jet, if
present. Only AK4 jets with pT > 30 GeV and |η| < 2.4 are
considered. The b tag information of the AK4 jets is not used
in the reconstruction of the tt system, since it was found that
applying it did not improve the assignment of jets to the top
quark candidates. To ensure that there is no overlap between
the two jet collections, AK4 jets that overlap with the Z/W- or
H-tagged jet within ΔR(tagged AK8 jet, AK4 jet) < 1.2 are
removed from the event. If an event has a t-tagged jet, AK4
jets with ΔR(t-tagged AK8 jet, AK4 jet) < 1.2 are removed
from the analysis. Each possible possibility for assigning
these objects to the tt system is considered a hypothesis. The
best hypothesis is chosen by a χ2 discriminator that is a mea-
sure of the quality of the reconstruction, combining informa-
tion from both the hadronic and leptonic reconstructed top
quark candidates. The procedure of building the hypotheses
and calculating χ2 is described in detail below.

The reconstruction of the leptonic top quark candidate
requires a neutrino. Since neutrinos are not measurable in
the detector, �pmiss

T is used to infer the four-momentum of
the neutrino. It is assumed that neutrinos are the only source
that contributes to �pmiss

T , and thus the x and y components of
the neutrino’s four-momentum are taken directly from �pmiss

T .
Assuming an on-shell W boson, the z component of the neu-
trino can be calculated by solving the quadratic equation
relating the four-momenta of the W and its decay products:

p2
W = M2

W = (p� + pν)
2. (1)

This quadratic equation can have zero, one, or two real solu-
tions. In the case of zero real solutions only the real part of the
complex solution is taken. Candidates are built for each of
the neutrino solutions. In addition to the estimated neutrino
momentum, the lepton momentum is assigned to the leptonic
top quark candidate.

If an event has a t-tagged jet, at least one additional AK4
jet is required. Since the hadronic top quark candidate is
already determined, all remaining AK4 jets in the event are
assigned either to the leptonic top quark or are not assigned
to a candidate at all. If an event has no t-tagged jet, at least
two additional AK4 jets are required. All AK4 jets in the
event are assigned either to the leptonic top quark candidate,
the hadronic top quark candidate, or neither candidate, con-
structing all possible candidates. The four-momenta of the
leptonically and hadronically decaying top quarks are then
calculated by summing the four-momenta of the correspond-

ing objects (lepton, pmiss
T , AK4 jets, and t-tagged AK8 jet, if

present).
Out of all possible tt hypotheses only one is chosen, based

on the smallest value of χ2, defined as

χ2 =
[
Mlep − M lep

σMlep

]2

+
[
Mhad − Mhad

σMhad

]2

, (2)

where Mlep/had is the invariant mass of the reconstructed lep-
tonic/hadronic top quark, and M lep/had and σMlep/had are the
average mass and resolution, respectively, of reconstructed
top quark candidates in simulation. The quantities M lep/had

and σMlep/had are determined from tt simulation by fitting each
of the reconstructed top quark mass distributions with a Gaus-
sian distribution. The b quark of the leptonic top quark decay
from simulation is required to match the assigned recon-
structed jet within ΔR(b, j) < 0.4, whilst the jets used to
reconstruct the hadronic top quark are required to match with
the quarks from the hadronic top quark decay from simula-
tion within ΔR(q, j) < 0.4. The distribution of the small-
est χ2 discriminator in each event is shown in Fig. 3. The
χ2 discriminator tends to zero for well-reconstructed tt sys-
tems, and to higher values for poor quality reconstructions
and background events. In events where only one top quark
is well-reconstructed, the χ2 peaks at values of χ2 ≈ 120.
From optimisation studies, it was found that requiring events
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Fig. 3 Distribution of the smallest χ2 discriminator in each event
for the combination of both top tag and no top tag categories, after
the tt reconstruction, combining both lepton channels. The simulated
SM backgrounds are shown without corrections from the fit to data
(explained in Sect. 6). The expected signal distribution is shown for var-
ious MZ′ masses for a fixed mass MT = 1.3 TeV in the T → Ht decay
channel, each with a nominal cross section σ(Z′ → tT) of 1 pb. The
lower panel shows the ratio of data to predicted background. Here the
darker grey band indicates the statistical uncertainty, whilst the lighter
grey band shows the combined statistical and systematic uncertainty
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Table 2 Signal selection efficiency after each step in the selection
requirements for a signal with MZ′ = 2.5 TeV and MT = 1.3 TeV,
taking into account branching fractions B(tHt → �+jets) = 0.294,
B(tZt → �+jets) = 0.317, and B(tWb → �+jets) = 0.255 [64], where

�+jets is a final state with exactly one electron or muon originating from
the decay of one of the top quarks, including electrons and muons from
tau lepton decays

Selection requirement T → Ht (%) T → Zt (%) T → Wb (%)
μ e μ e μ e

Trigger and exactly 1 muon (electron)
with pT > 50 (125) GeV and |η| < 2.4

57 14 45 14 66 30

≥ 1 AK8 jet with pT > 250 GeV 52 13 39 13 56 25

pT,rel(�, j) > 40 GeV or ΔR(�, j) > 0.4 25 9.6 21 9.3 34 21

≥ 1 H or Z/W tag 14 5.3 13 5.6 15 8.2

≥ 1 AK4 jet (top tag cat.) or 2 AK4 jets (no top tag cat.) 13 5.0 12 5.0 12 6.2

χ2 < 50 8.5 3.0 8.2 3.0 4.6 2.0

in the signal region to have χ2 < 50 ensured the best sensi-
tivity.

Finally, M rec
Z′ is calculated by summing all four momenta

of the chosen tt hypothesis along with that of the tagged Z/W
or Higgs boson.

The impact of each stage of the selection requirements on
the signal selection efficiency for each decay channel of the
T is shown in Table 2 for a signal with MZ′ = 2.5 TeV and
MT = 1.3 TeV. The lower efficiency in the T → Wb decay
channel is primarily due to the requirement placed on χ2,
since there is only one t quark emitted in the decay chain for
this channel.

6 Background estimation

A multistep procedure is performed to ensure that the Monte
Carlo (MC) simulation (Sect. 4), used to estimate the back-
grounds, accurately describes the data.

We apply scale factors to the simulation to account for
the measured differences between simulation and data in
the mistag rates and tagging efficiencies for the Z/W, H,
and t taggers. The mistag rates are measured both in data
and in simulation using a QCD multijet-enriched region,
while the tagging efficiencies are measured in a tt-enriched
region. Finally, in the statistical analysis simulations are con-
strained using control regions in data. These are fit simultane-
ously with the signal regions, constraining the normalizations
and shapes of the background distributions while efficiently
searching for a signal.

The mistag rate is determined from a QCD multijet-
enriched data sample where the contribution from real Z,
W, or Higgs bosons is negligible. The mistag rate is defined
as the number of AK8 jets after the tagger is applied,
divided by the number of AK8 jets before the tagger is
applied. The data are selected with a trigger requiring the
scalar pT sum of the jets in the event, defined as HT, to be
HT > 900 GeV. The selected data events are then required

to have HT > 1000 GeV to ensure that events are selected
in a region of phase space where the trigger is fully effi-
cient. The AK8 jets must have |η| < 2.5, pT > 200 GeV,
and MSD

AK8 > 30 GeV. The uncertainties in the mistag rate
scale factors receive contributions from statistical uncertain-
ties, and from effects associated with differences in the quark
and gluon compositions and in the kinematic distributions
between the QCD multijet and Z/W + jets samples. The
mistag rate for the Z/W tagger is measured both in data and
in simulation, resulting in a scale factor of 1.05±0.08 that is
applied to simulation in the signal regions. The scale factor is
only applied to jets that are Z/W tagged and are not matched
to a Z/W boson at generator level, where a jet is considered
matched if both quarks of the hadronic boson decay are within
ΔR(q, tagged AK8 jet) < 0.8. The mistag rate scale factors
for the H2b and H1b taggers are 1.15 ± 0.18 and 1.22 ± 0.05,
respectively, and are applied to all MC samples (except tt)
that do not contain real Higgs bosons. Since the fraction of
jets initiated by a b quark is significantly higher in the tt back-
ground than in the W+jets and QCD multijet backgrounds,
a dedicated scale factor is calculated for the mistag rate of
the H2b and H1b taggers in a sample of tt events with back-
to-back topology in the �+jets final state. These mistag rate
scale factors are measured to be 1.01 ± 0.18 and 0.99 ± 0.03
for the H2b and H1b taggers, respectively. The mistag rate
scale factor for the t tagger is measured to be 0.95 ± 0.02.
The scale factor is only applied to jets that are t tagged and
do not match to a top quark at generator level, where a match
requires the three quarks from the hadronic top quark decay
to have ΔR(q, tagged AK8 jet) < 0.8.

The efficiency scale factor for the t tagger is measured
using the procedure described in Ref. [28] and is found to be
1.06+0.07

−0.04.
The efficiency of the Z/W tagger is measured in a tt-

enriched region with a back-to-back topology. One of the top
quarks is required to decay leptonically into a b quark and a
W boson, with the W boson decaying into a lepton and a neu-
trino, whilst the other top quark decays hadronically, result-
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Fig. 4 Distribution of the reconstructed Z′ boson mass in the μ+jets
channel (upper row) and e+jets channel (lower row) for the tt-enriched
control region (left) and for the W+jets-enriched region (right). The
expected signal distribution is shown for various MZ′ masses for a fixed
mass MT = 1.3 TeV in the T → Ht decay channel, each with a nominal

cross section σ(Z′ → tT) of 1 pb. The lower panel shows the ratio of
data to predicted background. Here the darker grey band indicates the
statistical uncertainty, whilst the lighter grey band shows the combined
statistical and systematic uncertainty

ing in a b quark reconstructed as an AK4 jet and a W boson
reconstructed as an AK8 jet. This AK8 jet is used to mea-
sure the efficiency of the Z/W tagger. The sample is selected
following the same procedure as in Sect. 5.1, additionally
requiring at least two AK4 jets, where each jet must have
pT > 30 GeV, |η| < 2.4, must pass the medium working
point of the b tagging discriminator, and not overlap with the
AK8 jet. It is required that the angular separationΔR between
the leptonic top quark and the hadronic top quark is greater
than π/2 in order to reconstruct W bosons well-separated
from nearby b quark jets. The Z/W tagger efficiency scale
factor is then estimated with a procedure similar to that used
for the t tagger, and is found to be 0.91 ± 0.08 for events in

the signal region. The systematic uncertainty for the depen-
dence of the scale factor on the choice of the fit model used
to extract the boosted W contribution from the combinatorial
tt background is estimated to be 1%. A direct measurement
of the tagger efficiency scale factor using data is only possi-
ble for jet pT � 200 GeV. For larger jet pT, the difference
between tt samples simulated with two different shower and
hadronization models (pythia 8 and herwig++ 2.7.1 [65])
contributes an additional uncertainty to the pT dependence
of the scale factor parameterised as 4.1%× ln(pT/200 GeV).

For the H2b and H1b taggers, the efficiency scale factor
of the Z/W tagger is used, taking into account its associated
uncertainty. Since the H taggers do not utilise a requirement
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on τ21, they are not assigned a corresponding pT-dependent
uncertainty. In addition, two further uncertainties are con-
sidered. Firstly, the uncertainty in the extrapolation of the
scale factor from the Z/W selection to the H2b and H1b selec-
tions is estimated from the difference between the two shower
and hadronization models (pythia 8 and herwig++). Sec-
ondly, uncertainties in the subjet b tagging efficiencies are
also included, as described in Ref. [39].

The main background processes that contribute to this
analysis are tt and W+jets. Two control regions, each cho-
sen to enhance a background process, are used to constrain
the production rate of these processes and reduce potential
mismodelling of the event kinematic variables. The control
regions are also used to verify the agreement of the simula-
tion with data. They are based on the selection described in
Sect. 5.1. In addition to this selection, we require χ2 < 50,
and the mass of the H2b-/H1b-/Z/W-tagged AK8 jet to be
either MSD

AK8 < 60 GeV or MSD
AK8 > 150 GeV. This last

requirement ensures events in the control regions are not
also found in the signal regions. The first control region is
designed to be enriched in tt events, and is obtained by requir-
ing at least one additional b-tagged AK4 jet. The second con-
trol region is designed to be enriched in W+jets events, and
is obtained by requiring no additional b-tagged AK4 jets.

Figure 4 shows the M rec
Z′ distribution in the control regions

for the muon and electron channels, after fitting the tt and
W+jets backgrounds simultaneously in both control and sig-
nal regions. It can be seen that there is good agreement
between data and simulation. Similar agreement is found
in kinematic distributions of the objects used to reconstruct
the Z′ resonance mass. Both control regions are included in
the maximum-likelihood based fit described in Sect. 8. The
fit estimates the size of a possible signal, whilst simulta-
neously constraining the background simulation normaliza-
tions using the data in the control regions.

7 Systematic uncertainties

Systematic uncertainties can affect both the normalization
and the shape of the M rec

Z′ distributions. The uncertainties
considered in this analysis are explained in the following
and listed in Table 3.

For each AK8 jet, the combined statistical and systematic
uncertainty in the Z/W, H2b/1b and t tagger efficiency scale
factors and misidentification rate scale factors for the Z/W,
H2b/1b, and t taggers, are propagated to variations of signal
and background distributions.

Table 3 List of systematic
uncertainties considered in the
statistical analysis, with the size
of their impact, the type(s) of
effect they have, and the
categories they affect. The
impact size of each uncertainty
is based on a signal sample with
MZ′ = 1.5 TeV and
MT = 1.3 TeV. All uncertainties
affect the normalizations of the
M rec

Z′ distributions. The ones
also affecting the shapes are
indicated by a tick mark.
Uncertainties that affect control
regions are denoted by CR,
whilst those that affect signal
regions are denoted by SR

Source Uncertainty [%] Shape Categories

Z/W tagging efficiency 8 ⊕ 4.1 × ln(pT/200 GeV) Z/W tag

Z/W mistag rate ± 5.6−7.9 � Z/W tag

H2b/H1b tagging efficiency 9 H2b/H1b tag

H2b mistag rate ± 14−18 � H2b tag

H1b mistag rate ± 3.2−4.6 � H1b tag

H2b mistag rate (only tt) 18 H2b tag

H1b mistag rate (only tt) 3 H1b tag

t tagging efficiency +7/−4 top tag

t mistag rate 1.8 � top tag

Jet energy scale ± 0.1−5.5 � CR + SR

Jet energy resolution < 0.01 � CR + SR

b tagging AK4 ± 1.8−3.0 � CR

b tagging AK8 ± 2.7−7.3 � H2b/H1b tag

Muon ID ± 0.1−2.6 � CR + SR

Muon trigger ± 0.4−2.2 � CR + SR

Muon tracker ± 0.5−1.8 � CR + SR

Electron ID ± 0.3−3.1 � CR + SR

Electron trigger ± 0.4−0.5 � CR + SR

Electron reconstruction ± 0.1−3.0 � CR + SR

Luminosity 2.5 CR + SR

Pileup reweighting ± 0.1−3.3 � CR + SR

μF and μR scales 6 variations � CR + SR

PDF 100 samples � CR + SR
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Fig. 5 Distribution of the reconstructed Z′ resonance mass after the
full selection in the μ+jets channel for the data, the expected SM back-
ground, and for the signal with different Z′ masses for a fixed T mass of
1.3 TeV. In the left (right) column the results in the top tag (no top tag)
category are shown. Different rows display the distributions of events
accepted by different taggers as well as the signal for the respective T
decays: H2b tagger and T → Ht decay (upper), H1b tagger and T → Ht

decay (middle), and Z/W tagger and T → Zt decay (lower). The sig-
nal histograms correspond to a nominal cross section σ(Z′ → tT) of
1 pb. The lower panel shows the ratio of data to predicted background.
Here the darker grey band indicates the statistical uncertainty, whilst
the lighter grey band shows the combined statistical and systematic
uncertainty
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Fig. 6 Distribution of the reconstructed Z′ resonance mass after the
full selection in the e+jets channel for the data, the expected SM back-
ground, and for the signal with different Z′ masses for a fixed T mass of
1.3 TeV. In the left (right) column the results in the top tag (no top tag)
category are shown. Different rows display the distributions of events
accepted by different taggers as well as the signal for the respective T
decays: H2b tagger and T → Ht decay (upper), H1b tagger and T → Ht

decay (middle), and Z/W tagger and T → Zt decay (lower). The sig-
nal histograms correspond to a nominal cross section σ(Z′ → tT) of
1 pb. The lower panel shows the ratio of data to predicted background.
Here the darker grey band indicates the statistical uncertainty, whilst
the lighter grey band shows the combined statistical and systematic
uncertainty
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Fig. 7 Observed exclusion limits at 95% CL on the production cross
section for various (MZ′ , MT) combinations for the decay channels
T → Ht (upper left), T → Zt (upper right), and T → Wb (lower). The
hatched area in the upper left indicates the region where the Z′ → tT

decay is kinematically forbidden, while in the lower right Z′ → tT
is suppressed by the preferred Z′ → TT mode. White areas indicate
regions where signal samples have not been generated

Uncertainties in the jet energy scale [37] have been mea-
sured as a function of pT and η. The jet energy scale is varied
within ±1 standard deviation for AK8 and AK4 jets simulta-
neously. The jet energy scale uncertainty is also propagated
to pmiss

T .
The uncertainty in the jet energy resolution has been mea-

sured in different η bins [37]. This uncertainty is applied
to AK4 and AK8 jets simultaneously, assessing the impact
of varying their resolutions by ±1 standard deviation. The
variation is also propagated to pmiss

T .

The b tagging efficiencies are measured in a sample
enriched with heavy-flavour jets, whilst the probability to tag
a jet originating from a different flavour as a b quark jet (a
mistag) is measured in a sample enriched with light-flavour
jets. These are applied to jets in signal and background events
[39]. The uncertainties in these measurements are propagated
to variations of signal and background normalizations and
shapes.

Data-to-simulation scale factors for muon and electron
identification and trigger efficiencies are applied as a func-
tion of pT and η. The effect of varying each scale factor by
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Fig. 8 Exclusion limits at 95% CL on the product of the cross sec-
tion and branching fraction for three T masses of 1.2 TeV (upper row),
1.5 TeV (lower left), and 2.1 TeV (lower right), as a function of the
resonance mass. The branching fraction is defined as B = B(T →

Wb) + B(T → Ht) + B(T → Zt). Observed and expected limits are
compared to the predictions from two different theory benchmark mod-
els: the G∗ model (upper left and lower row), and the left-handed ρL in
the ρ0 model (upper right)

±1 standard deviation is studied to estimate uncertainties in
the normalizations and shapes of the signal and background
distributions.

The uncertainty in the integrated luminosity of the 2016
data set is 2.5% [27]. The effect of pileup is studied by com-
paring simulated samples where the distribution of pileup
interactions is varied according to its uncertainty.

The uncertainties in the factorisation and renormalization
scales μF and μR are taken into account for W+jets, Z+jets,
tt, and single top quark backgrounds, as well as for the signal.
The uncertainty related to the choice of μF and μR scales is
evaluated following the proposal in Refs. [66,67] by varying
the default choice of scales by the following six combina-
tions of factors, (μF, μR) × (1/2, 1/2), (1/2, 1), (1, 1/2),
(2, 2), (2, 1), and (1, 2). The maximum and minimum of the
six variations are computed for each bin of the M rec

Z′ distribu-

tion, producing an uncertainty “envelope” that affects both
normalization and shape.

For samples generated at LO and NLO, uncertainties
based on the NNPDF 3.0 PDF sets [61] and PDF4LHC15
(NLO 100) [68,69], respectively, have been evaluated using
the PDF4LHC procedure [68], where the root-mean-square
of 100 pseudo-experiments provided by the PDF sets repre-
sent the uncertainty envelope. For the W+jets, Z+jets, tt, and
single top quark background processes, the full uncertainty
in normalization and shape due to the variations in cross sec-
tion is evaluated. For signal samples, only the uncertainty in
normalization and shape due to the variations in event selec-
tion and reconstruction efficiency is taken into account, and
overall uncertainties in the inclusive cross section due to PDF
variations are only displayed as error bands on benchmark
theory model predictions.
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8 Results

The final reconstructed Z′ invariant mass distribution is
shown in each of the various categories in Fig. 5 for the
muon channel, and in Fig. 6 for the electron channel. The
smaller number of events in the electron channel is due to
the higher electron trigger threshold in comparison to the
muon trigger threshold. The binning in the figures is chosen
such that the statistical uncertainty of the background MC
simulation in each bin does not exceed 30%, leading to some
categories represented by a single bin only. As a consequence
of the higher electron trigger threshold, the categories “Z/W
with top tag” and “H2b with no top tag” contain significantly
fewer events than the corresponding categories in the muon
channel, and are thus only represented by a single bin as well.

A binned likelihood combining the reconstructed Z′
invariant mass distributions in all categories and channels
is constructed to compare the signal and SM background
hypotheses. A Poisson probability is calculated in each bin
of the mass distribution for each category in each channel.
The uncertainty due to the limited number of events in the
templates is taken into account using a simplified Barlow–
Beeston method that defines one additional nuisance parame-
ter with a Gaussian distribution for each bin [70]. The system-
atic uncertainties are taken into account as nuisance param-
eters in the likelihood. For each systematic uncertainty that
affects the shape of the reconstructed Z′ mass, an interpola-
tion between the nominal template and the shifted template
with a Gaussian prior is performed. Systematic uncertainties
that affect only the normalization are taken into account as
nuisance parameters with log-normal priors. The likelihood
is maximized with respect to these parameters. The param-
eters representing the Poisson means of the signal strength
and the background processes are determined in a maximum
likelihood fit to the data, using a flat prior for the signal
strength.

No significant excess of events in the data over the expec-
tation from SM backgrounds was found for the ranges of Z′
and T masses considered. A Bayesian calculation with priors
known to yield good frequentist properties [64,71,72] is used
to derive 95% CL upper limits on the product of the cross
section and branching fraction, σ(pp → Z′ → tT)B(T →
Ht, Zt, Wb), for a heavy resonance Z′ decaying into a top
quark and a vector-like quark T. The calculation is imple-
mented in the Theta software package [73]. The median of
the distribution of the upper limits at 95% CL in the pseudo-
experiments and the central 68% (95%) interval define the
expected upper limit and the 1 (2) standard deviation band,
respectively.

Figure 7 shows observed limits as a function of Z′ mass, T
mass, and T decay mode. The limits are obtained using only
decays to the indicated decay mode. Limits are shown for
combinations of Z′ and T masses where the decay Z′ → tT

is kinematically allowed and the decay Z′ → TT is kinemat-
ically forbidden.

Figure 8 shows limits on the product of the cross sec-
tions and branching fractions B = B(T → Wb) + B(T →
Ht)+B(T → Zt), for fixed ratios of the individual branching
fractions. The upper row in Fig. 8 shows the limit as a func-
tion of the Z′ mass for a fixed T mass of 1.2 TeV. The upper
left plot compares the limit with a prediction from the G∗
model, showing that G∗ masses between 1.5 and 2.3 TeV are
excluded by this search, for a T mass of 1.2 TeV. The decrease
in the predicted G∗ cross section at a mass of approximately
2 TeV is due to the custodian VLQ T5/3 with a mass of 1 TeV,
such that the G∗ → T5/3T5/3 decay mode then becomes
kinematically viable. At a mass of 2.4 TeV there is another
decrease in the predicted cross section due to the availabil-
ity of the G∗ → T T decay. This has the effect of drastically
increasing the width of the G∗, and also lowering the branch-
ing ratio (and hence predicted cross section) for the decay
mode G∗ → tT. In the upper right plot of Fig. 8, the limit
is compared with a prediction for the left-handed ρL from
the ρ0 model, showing that this search is not sensitive to this
model. The lower row of plots in Fig. 8 shows the observed
and expected limits in the context of the G∗ model for two
other T masses. For a T mass of 1.5 TeV (lower left), G∗
masses between 2.0 and 2.4 TeV are excluded by this search,
whilst for a T mass of 2.1 TeV (lower right) this analysis is
not able to exclude the model scenario.

Finally, Fig. 9 shows the observed limits on the product
of the cross section and branching fraction as a function of
the branching fractions B(T → Ht) and B(T → Zt) for a Z′
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Fig. 9 Model-independent observed exclusion limits at 95% CL on
the product of the cross section and branching fraction B = B(T →
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of MZ′ = 1.5 TeV and MT = 1.3 TeV as a function of the branching
fractions B(T → Ht) and B(T → Zt)
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mass of 1.5 TeV and a T mass of 1.3 TeV, demonstrating the
dependence of the limit on both branching fractions.

The expected and observed limits are 30% weaker for a Z′
width of 30% when compared to a width of 1% for the mass
range 1.5 < MZ′ < 2.5 TeV. However for MZ′ > 3 TeV
there is no significant difference between the limits obtained
with each of the widths.

9 Summary

A search for a heavy spin-1 resonance Z′ decaying to a stan-
dard model top quark and a vector-like quark partner T has
been presented. The data used in this search were recorded
with the CMS detector at the LHC at

√
s = 13 TeV and corre-

spond to an integrated luminosity of 35.9 fb−1. The analysis
is primarily optimised to study the decay modes of the vector-
like quark to a Higgs boson and a top quark (T → Ht), and to
a Z boson and a top quark (T → Zt), although the decay to a
W boson and a bottom quark (T → Wb) is also considered.
This is the first direct search for the decay Z′ → tT → tHt.
No significant excess of events over the expectation from
standard model backgrounds is found. Limits on the produc-
tion cross section are presented for a narrow Z′ resonance in
the mass range from 1.5 to 4.0 TeV and a narrow T resonance
in the mass range from 0.7 to 3.0 TeV. Interpretation of these
limits within the context of the G∗ benchmark model results
in the exclusion of G∗ resonance masses in the range from
1.5 to 2.3 TeV and from 2.0 to 2.4 TeV, for a T mass of 1.2
and 1.5 TeV, respectively. The presented limits are the most
stringent to date for the decay mode Z′ → tT → tHt.
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