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Abstract

Analysis of hemodynamics shows great potential to provide indications for the risk of cardiac
malformations and is essential for diagnostic purposes in clinical applications. Although med-
ical imaging techniques such as phase-contrast magnetic resonance imaging (also known as 4D
flow MRI) deliver useful information about the flow patterns in the lumen of large arteries,
they cannot provide sufficient information at near-wall regions especially due to the noise in
the observed signals, coarse resolution and partial volume effects.
As an alternative providing noise-free solution, computational fluid dynamics (CFD) has

been established as a valuable tool for the detailed characterization of volumetric blood flow
and its effects on the arterial wall. However, CFD requires awareness of boundary conditions
and initial flow, which is usually not known beforehand. Besides, the flow is heavily influ-
enced by the dynamic nature of the heart beat, which results in unsteady and periodic flow
phenomena. This work aims to combine the superiority of CFD with the advantages of 4D
flow MRI by introducing a novel approach for variational data assimilation and at the same
time taking into account the dynamic nature of the heart beat.
Phase-contrast MRI is utilized for the prescription of the initial flow and boundary condi-

tions. Due to the noisy nature of these observations, the velocity components are controlled
at the boundaries through a mathematical optimization of flow patterns at the inlets. The
adjustment is supported by the more reliable flow measurements in the middle of the lumen,
where a least-squares flow-matching is considered. The norm of the control and the control
surface gradient are augmented by Tikhonov regularization terms, which result (along with
the flow-matching term) in the final objective function.
The minimization is performed under the constraint that the Navier-Stokes equations are

satisfied. In addition, the time-periodic heart beat is captured by a set of harmonically bal-
anced equations. The latter is achieved by a temporal discretization using a Fourier-spectral
collocation approach, where the collocation points are aligned with 4D flow MRI measure-
ments. Compared to the raw measurements, the proposed approach significantly improves
the reconstructed flow field at the aortic root, which is one of the most important clinically
relevant locations where flow disturbances can easily lead to pathological modifications of
the arterial wall. Thus the new method has a great potential for revealing clinically relevant
hemodynamic phenomena.
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Zusammenfassung

Die Untersuchung der Hämodynamik könnte wichtige Hinweise über das Risiko des Entstehens
von Herzfehlbildungen liefern. Gleichzeitig spielt es für diagnostische Zwecke eine wesentliche
Rolle in klinischen Anwendungen. Medizinische Bildgebungstechniken wie die Phasenkontrast-
Kernspintomographie (auch bekannt als 4D-Fluss-MRI) liefern nützliche Informationen über
die Flussmuster im Lumen der Hauptschlagader. Aufgrund des Rauschens der beobachteten
Signale, der groben Auflösung und der Teilvolumeneffekte, können die Bildgebungsverfahren
jedoch keine ausreichende Informationen in wandnahen Bereichen bereitstellen.

Als Alternative für eine geräuschfreie Lösung hat sich die numerische Strömungsmecha-
nik (english Computational Fluid Dynamics, CFD) als eine wertvolle Technik etabiliert, die
für die detaillierte Charakterisierung des volumetrischen Blutflusses und seiner Auswirkungen
auf die Arterienwand eine wichtige Rolle spielt. Jedoch erfordert CFD das Wissen über die
Randbedingungen und des anfänglichen Volumenstroms, die in den meisten Fällen nicht vor-
handen sind. Desweiteren wird der Fluss stark durch die dynamische Natur des Herzschlags
beeinflusst, was zu instationären und periodischen Flussphänomenen führt. Das Ziel dieser
Arbeit besteht darin, die Überlegenheit von CFD mit den Vorteilen der 4D-Fluss-MRT zu
kombinieren, indem ein neuer Ansatz für die Anpassung von Variationsdaten vorgestellt und
gleichzeitig die dynamische Natur des Herzschlags berücksichtigt wird.

Die Phasenkontrast-Kernspintomographie Bilder werden verwendet um die Anfangsströ-
mung und die Randbedingungen vorzuschreiben. Aufgrund dessen, dass diese Beobachtungen
verrauscht sind, werden die Geschwindigkeitskomponenten an den Einlässen so angepasst, dass
die Strömungsmuster gesteuert und mathematisch optimiert werden. Die Assimilierung wird
durch zuverlässigere Flussmessungen in der Mitte des Lumens unterstützt, wobei eine Flussan-
passung unter der Berücksichtigung der kleinsten Quadrate angestrebt wird. Die Norm der
Kontrolle und der Kontrolloberflächengradient werden durch Tikhonov-Regularisierungsterme
ergänzt, welche (zusammen mit dem Flussanpassungsterm) die endgültige Zielfunktion liefern.

Die Minimierung wird unter der Nebenbedingung durchgeführt, dass die Navier-Stokes-
Gleichungen erfüllt sind. Zusätzlich wird der zeitlich-periodische Herzschlag von einer Reihe
harmonisch ausgeglichener Gleichungen erfasst. Letzteres wird durch eine zeitliche Diskreti-
sierung unter Verwendung eines Fourier-Spektral-Kollokationsansatzes erreicht, bei dem die
Kollokationspunkte mit 4D-Fluss-MRI-Messungen registriert sind. Verglichen mit den Roh-
messungen, wird durch den vorgeschlagenen Ansatz eine erhebliche Verbesserung des rekon-
strukturierten Flussfeldes an der Aortenwurzel erreicht. Dies ist einer der wichtigsten klinisch
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Zusammenfassung

relevanten Stellen, an denen Flussstörungen leicht zu pathologischen Veränderungen der Arte-
rienwand führen können. Somit bietet die neue Methode ein mächtiges Potenzial, um klinisch
relevante hämodynamische Phänomene aufzudecken.
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1 Clinical Motivation

1.1 Impact of Cardiovascular Flow on Endothelium

The cardiovascular system, consisting of the heart connected with a network of blood vessels,
is a mechanism which circulates the blood in the network. The heart is made of a specific
tissue, which allows it to act like a pump and triggers the circulation of blood flow in the
network of vessels. The main purpose of this mechanism is to provide necessary nutrients to
the cells and organs of the body by delivering the oxygenated blood. In addition, unnecessary
waste materials are carried away during the circulation process.

The arterial walls of the blood vessels are made up of three layers of tissue denoted as
tunica intima, tunica media and tunica externa. The innermost layer, tunica intima, consists
of endothelial cells and internal elastic membrane. The endothelial cells form an interior
surface to the blood vessels, which is referred to as the endothelium, and have several critical
functions [Mic03]. The endothelium imitates a barrier interface between the circulating blood
in the lumen and the soft muscle tissue in the middle layer of the arterial walls. The endothelial
cells control the exchange of substances into and out of the blood flow.

The heart periodically pumps blood into the aorta with a high velocity and the blood flow
induces frictional forces at the arterial walls. The endothelial cells are constantly exposed
to these frictional forces, which cause internal stresses on the endothelium. These internal
stresses are conventionally known as the wall shear stresses (WSSs). Over time, the frictional
forces experience alterations which might be caused by many factors. The build-up of fatty
material due to high cholesterol levels, the presence of toxic substances related to smoking,
hyperglycemia caused by the lack of physical activity or an underlying condition and hyper-
tension caused by stress or another underlying condition just to name a few of these important
factors, which lead to such potential alterations. As a result of this, the endothelial surface
undergoes unusual deformations, either in the direction of blood flow or in any direction, de-
pending on the severity of the present conditions and on the alterations in the frictional forces.
This causes alterations of endothelial cell functions potentially resulting in endothelial dys-
function. The latter is an indication for vascular diseases such as atherosclerosis, thrombosis,
hypertension, inflammatory diseases and aneurysm.

1



Clinical Motivation

1.2 Importance of Wall Shear Stresses

WSSs in arterial vessels have long been hypothesised to play a major role in the onset and
progress of endothelial disorders. The dependence of endothelial cell function under different
flow conditions and the impact of WSSs in the development of atherosclerosis have been
described in earlier studies [Tex65; Ku85; Zar87; Zan91; Wal93; Mal99]. A brief review of
the underlying hypotheses for hemodynamic theories of atherogenesis was given by Gessner
[Ges73]. More recent studies have explored the processes at the molecular, cellular and vascular
levels, and supported the role of low WSSs in the generation of coronary atherosclerosis and
vascular remodelling [Cha07; Chi11]. The effects of hemodynamic forces were discussed by
Yoshida et al. [Yos90] considering the differences in the biological fine structures of arterial
walls in the human aorta and the endothelial morphology at bifurcations in rabbit aorta.
Moreover, characterization of blood flow near the aortic wall plays an important role in the
diagnosis of aortic aneurysms and their risk of rupture [Vor96; Vor05].

1.3 Imaging Modalities for Assesment of Wall Shear Stresses

Due to the reasons provided in the previous sections, the evaluation of shear stresses over
the arterial wall has attracted increasing interest in the cardiovascular research field. For
this purpose, different computational strategies have been developed to either simulate or
reconstruct blood flow. A basic approach to this problem consists of using anatomical data
extracted from medical images to construct patient-specific vascular models and to perform
computational fluid dynamic (CFD) simulations of blood flow in these geometric models. The
major drawback in such approaches lies in the lack of flow data to correctly set up boundary
conditions (BCs) for the isolated arterial districts of interest. Rapidly, the patient-specificity
is lost when using generic criteria to prescribe such BCs in CFD simulations.
A further step relies on using advanced image acquisition techniques in an attempt to re-

trieve flow field measurements and merge them into the CFD simulations, thus providing more
accurate patient-specific predictions. In this context, different methods exist to reconstruct
the velocity field in a certain region of interest. Several works have been reported that ad-
dress this problem using particle image velocimetry (PIV), ultrasound and 4-D phase-contrast
magnetic resonance imaging (4-D flow MRI). A comprehensive review of several methods for
flow reconstruction and the assessment of WSSs is presented by Katritsis et al. [Kat07].
The use of PIV is known to be limited to in-vitro studies and cannot be applied to the

study of blood flow in in-vivo conditions [Hoc04]. On the other hand, ultrasound imaging
allows the extraction of 2-D information, thus requiring a 3-D flow reconstruction process,
which is prone to inaccuracy in view of the incomplete nature of the data. Another limitation
of ultrasound is that the WSSs can only be estimated with acceptable accuracy in relatively
straight arteries [Ren06]. Conversely, 4-D flow MRI offers the advantage of three-directional
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blood flow quantification with three-dimensional spatial encoding. Image reconstruction from
the MRI data acquisition yields 3-D CINE (time-resolved) magnitude images representing
the anatomical data and three phase difference images representing the velocity data corres-
ponding to the components of the 3-D velocity field. Moreover, MRI can be used in in-vivo
scenarios noninvasively. Recent advances in MRI have revealed great diagnostic potential in
hemodynamics applications [Mar12; Kol16]. Nevertheless, 4-D flow MRI also suffers from im-
portant limitations for the accurate quantification of blood flow in regions close to the arterial
walls (near-wall regions), which is of the utmost importance for patient-specific estimation of
the WSS field. Due to the limited image resolution, the acquired signals within the voxels at
boundaries are obtained partially by the moving spins in the flowing blood and partially by
the steady behavior of the arterial tissue. This artifact is known as the partial-volume-effect
[Tha95; Sha00; Bou18].

1.4 Motivation and Summary of Present Research Work

Oscillatory behaviour or elevated levels of wall shear stresses are factors of great significance
in the onset and development of a range of cardiovascular diseases. Unphysiological WSSs
are inconsistent or not compatible with normal functioning of the endothelial cells and trigger
serious diseases such as inflammation or atherosclerosis. This finally threatens the integrity
of the elastic lamina, which is responsible for maintaining the stability of the vessel wall. One
of the aftereffects is vessel dilatation, potentially followed by rupture with fatal consequences.
In the presence of ascending aortic aneurysms, decisions for a potential surgery are made

depending on the aortic dimensions and diameter of the aneurysm. However, catastrophic
events such as aortic dissection or rupture can actually occur at any stage of the diameter.
Hence, in the interest of improving early diagnosis and the accuracy of interventional decision
making, additional factors (other than the diameter alone) need to be determined. For this
purpose, it is extremely important to understand the fluid dynamics andWSSs in the ascending
aorta and at the aortic root. Apart from the laboratory markers, diagnostic imaging tools have
become essential for probing local changes of morphology and function during all stages of the
disease. While a number of important parameters can be quantified using these techniques, a
range of key parameters including WSSs are difficult to assess based on the spatial resolution
that can be obtained in a clinical setting. Owing to such limitations, it has been necessary to
investigate alternative approaches such as computational methods of fluid dynamics.
When performing CFD simulations of blood flow, correct definition of the flow problem

requires knowledge of the initial conditions and BCs, as well as the flow properties, i.e. blood
density and blood viscosity. However, due to the limitations of the aforementioned imaging
techniques, in particular the BCs are usually not available or cannot be measured accurately.
Especially, the problem of a correct assessment of the BCs for such inadequate and crude
data has been the point of attention for a long time. Several studies have been reported on

3
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the effects of idealised versus measured inflow BCs for patient-specific simulations of carotid
bifurcation or human aorta [Cam12; Mor13]. Additionally, a sensitivity analysis with respect
to different BCs was reported by Cito et al. [Cit14]. Furthermore, a recent report provided
by Pirola et al. [Pir17] discussed the importance of the choice of BCs on the final results.

As a result of the aforementioned advantages and limitations of current imaging technologies,
4-D flow MRI procedures have been frequently considered (and mostly preferred) towards
the improvement of patient-specific CFD simulations. Classical CFD methods (supported
by MRI) usually apply fixed BCs at the inlet of the arterial domain based on the noisy
measurements extracted from the 4-D flow MRI data [Har13; Pir17]. This is why recent
studies have concentrated on optimal control strategies to alter BCs in such a way that the
flow in the lumen matches the observations according to certain criteria. Optimal control
supported by observations has been referred to as data assimilation (DA). Such studies were
first and mainly applied in meteorology, physical oceanography and atmospheric flows [Cou91;
Ide97]. Due to the shortcomings in the classical CFD approach (employing noisy data as BCs),
DA has received increased attention in the cardiovascular research field over the last decade.

Optimal control studies rely on adjoint equations for efficiently computing the state gradi-
ent with respect to the control. The adjoint equations are differential equations requiring
the availability of state variables from the original (direct) problem. This makes it to a chal-
lenge, especially for time-dependent problems. In such a case, the adjoint equations posses a
backward-in-time nature, thus, they usually need to be solved following a path starting from
the last time and ending at the initial time of the considered problem. At the same time,
solutions of the direct state variables at each infinitesimal time step are required. Hence, in
order to solve for the adjoint state variables, all the trajectories of the direct state variables
must be solved and stored in the memory. This process also needs to be repeated as many
times as the number of iterations required by the optimisation algorithm to arrive at the op-
timum state. Hence, due to enormous memory requirements and the excessive computational
burden in the case of large convection dominated flow problems, conventional DA studies are
currently limited to steady-state cases.

In the present work, a novel approach is proposed for transient data assimilation in compu-
tational hemodynamics following the variational formulation. In contrast to currently existing
DA studies, the proposed method relies on a harmonic balance strategy by employing Fourier-
spectral collocation method to perform dynamic data assimilation. This work enables accurate
characterisation of the dynamic flow field in quite feasible wall clock times, which are oth-
erwise difficult or impossible to achieve using currently available DA strategies relying on
traditional time-stepping schemes. In addition, the work addresses the limited resolution of
MR velocity encoding in shear layers and aims to interlace 4D flow MRI with CFD to enable
accurate quantification of WSSs. Compared to the raw measurements, the proposed approach
significantly improves the reconstructed flow field at the aortic root, which is one of the most
important clinically relevant locations where flow disturbances can easily lead to pathological
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modifications of the arterial wall. Thus the new method has a great potential for revealing
clinically relevant hemodynamic phenomena.
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2 Boundary Control in Computational
Hemodynamics

Parts of this chapter have been published in the Journal of Fluid Mechanics (2018) by
Koltukluoğlu and Blanco [Kol18].

Abstract

In this work, an adjoint-based variational data assimilation method is proposed following an
optimise-then-discretise approach, and is applied in the context of computational hemody-
namics. The methodology aims to make use of phase-contrast magnetic resonance imaging
to perform optimal flow control in computational fluid dynamic simulations. Flow matching
between observations and model predictions is performed in luminal regions, excluding near-
wall areas, improving the near-wall flow reconstruction to enhance the estimation of related
quantities such as wall shear stresses. The proposed approach significantly improves the flow
field at the aortic root and reveals a great potential for predicting clinically relevant hemo-
dynamic phenomenology. This work presents model validation against an analytical solution
using the standard 3-D Hagen-Poiseuille flow, and validation with real data involving the flow
control problem in a glass replica of a human aorta imaged with a 3T magnetic resonance scan-
ner. In vitro experiments consist of both a numerically generated reference flow solution, which
is considered as the ground truth, as well as real flow MRI data obtained from phase-contrast
flow acquisitions. The validation against the in vitro flow MRI experiments is performed for
different flow regimes and model parameters including different mesh refinements.

2.1 Introduction

Data assimilation procedures in hemodynamics were anticipated a decade ago for the pre-
scription of flow rates in rigid and compliant domains [For08; For10]. Additional preliminary
results of DA in tubular structures were reported by D’Elia et al. [DEl10b] based on 2-D
Stokes flow simulations. The convergence rate and noise sensitivity were investigated based
on artificially generated noisy data. In D’Elia et al. [DEl10a], their work was extended to the
Oseen problem. This strategy was employed in combination with a fixed point method to solve
the Navier-Stokes equations and to perform flow matching in synthetically generated datasets
using different mesh refinements. In a further study, these authors extended their tests to

7
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an axis-symmetric cylinder and a 2-D geometry resembling a carotid artery [DEl12b]. These
studies were based on a discretise-then-optimise (DO) approach, where the equations are first
discretised and the optimisation is performed thereafter. Numerical results were mostly based
on 2-D simplified geometries or on problems with rotational symmetry. These works were
some of the first attempts to perform DA in blood flow simulations. However, real flow MRI
measurements were not available in these studies.

In a recent work, DA was performed using more realistic vascular geometries [Tia16]. First,
a comparison between Dirichlet and Neumann boundary control was reported with the val-
idation based on an idealised 2-D geometry with known solution. Second, numerical results
were presented using a realistic 3-D geometry of a saccular brain aneurysm. The applica-
tion of velocity control (Dirichlet BC) was claimed to recover the flow field better than the
application of pressure control (Neumann BC). However, the flow data were synthetic and
experiments with real 4-D flow MRI measurements were not available. Furthermore, they
also applied the DO approach as a solution strategy. In Collis et al. [Col02], however, the
authors concluded that the optimise-then-discretise (OD) approach (where the mathematical
optimisation is first performed at the continuum level and the resulting set of equations are
then discretised thereafter) has better asymptotic convergence properties and leads to better
adjoint approximations.

In general, data assimilation methods can be divided into two categories being the sequential
methods and the variational formulations. Some overviews about the different assimilation
methods in computational hemodynamics have been provided by D’Elia et al. [DEl10b] and
Chapelle et al. [Cha13]. The sequential methods are based on statistical estimates mostly
relying on Kalman filtering for linear problems [Bel14]. In the recent decades, generalisations
to Kalman filtering have been developed (and applied in computational hemodynamics for
nonlinear problems), which are also known as the extended or unscented Kalman filter [Fri10;
Hu12; Cin15; Pan17; Lal17]. In contrast, the variational data assimilation methods can be
considered as inverse problems including an objective function, which needs to be minimised
under the constraints that some partial differential equations (in this case the Navier-Stokes
equations) are satisfied. To establish this, the gradient of the objective function with respect
to control has to be evaluated. This can be usually achieved by two different approaches
which are known as either the sensitivity-based or adjoint-based methods. In the sensitivity
based approach, the gradient of the objective function is evaluated by the application of finite
differences with the aim to compute the derivative with respect to each single component of
the control. In such a case, small perturbations are performed on each component of the
control and the forward solution is computed for each of these perturbations [Gun02]. This
is a very time consuming process and, hence, is usually not applied in practical studies. The
adjoint-based methods rely on a backwards solution of the so-called adjoint equations which
are a consequence of optimality conditions [DEl12b; DEl12a; Gue14; Tia16]. In adjoint-based
methods, the solution of the forward problem is incorporated into the adjoint-equations. As

8
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a result of this, there is no longer need for computations of as many forward solutions as the
number of control parameters.

In this work, we propose an adjoint-based variational data assimilation method for 3-D
steady state blood flow simulations following the OD approach and using true data acquisitions
from 4-D flow MRI. The optimisation procedure is driven by the gradient of a given cost
functional, computed within a variational framework. A Lagrangian method is employed for
the calculation of the sensitivities from which the adjoint problem is derived. Further, the
proposed approach considers cost functionals in the flow-matching formulation including the
inlet and outlet boundaries (in addition to flow-matching in the volume of the domain). While
previous studies mostly count on validations with known numerical solutions in simplified 2-
D geometries, in this work we perform 3-D validation studies relying on both an analytical
solution based on the Hagen-Poiseuille flow and a numerical solution generated using the
physical phantom aorta. We also present a sensitivity analysis with respect to changes in
the optimisation parameters. Considering the noisy nature of 4-D flow MRI measurements,
a universal outlier detection scheme is applied prior to the mapping of the flow field in the
computational domain. Besides, a projection onto divergence-free space is employed to recover
back the solenoidal property of the measured flow field. An additional sensitivity analysis
with respect to changes in the flow-matching domain is developed, which is important in
determining the region-of-interest for the DA procedure. The optimisation solver was tested for
different initial flow guesses demonstrating the sensitivity in the numerical results. Finally, the
boundary flow control formulation and the preprocessing pipeline are combined to reconstruct
the flow field in near-wall regions in a glass replica of the human aorta. For the latter, the
methodology was tested for different flow regimes characterised by Reynolds numbers (Re)
up to 2100, and mesh analysis was performed with different numbers of cells. The proposed
strategy remarkably improves the flow field at the aortic root and reveals a great potential for
predicting clinically relevant hemodynamic phenomenology.

2.2 Mathematical Formulation

2.2.1 Optimisation Problem

Let us define a bounded Lipschitz domain Ω ⊂ R3 along with its boundary ∂Ω = Γi∪Γo∪Γw,
where Γi,Γo,Γw ⊂ R3 stand for the inlet, outlet and arterial wall boundaries respectively.
Figure 2.1(a) illustrates such a domain resembling an aortic vascular geometry (to be used
later in section 2.5). We further define a contracted subdomain Ωs ⊂ Ω with boundary
∂Ωs = Γsi ∪ Γso ∪ Γsw, where Γsi ⊂ Γi and Γso ⊂ Γo (see figure 2.1(b)). The incompressible
steady flow of a Newtonian fluid is considered in Ω. The inflow at Γi is prescribed by the
function g = g(x) : Γi → R3, whereas the density and dynamic viscosity of the fluid are
represented by ρ and µ respectively. At the outflow, Γo, a traction free boundary (i.e. a
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(a) (b) (c)

Figure 2.1: Computational domain. (a): Ω along with boundaries Γi : Inlet, Γo : Outlet and
Γw : Wall. (b): Flow-matching domain Ωs ⊂ Ω with boundaries ∂Ωs = Γsi ∪Γso ∪Γsw, which
is at a distance s (mm) from Γw. (c): Error measurement domain Ed, which is within d (mm)
distance from Γw.

homogeneous Neumann BC) is considered. This hypothesis is exact when the flow is fully
developed, and it is physiologically reasonable in the present context. We highlight the fact
that the function g is such that g|γi = 0, where γi is the boundary of surface Γi. In what
follows, L2(Ω) stands for the space of square integrable scalar functions in Ω, while H1(Ω) is
the space of square integrable vector functions whose first derivatives are also square integrable
functions in Ω. The blood flow velocity, u ∈ U∗, with

U∗ =
{
v ∈H1(Ω) | div v = 0, v|Γw = 0, v|Γi = g

}
, (2.2.1)

is solution of the steady state Navier-Stokes equations, which are written in variational form
as follows:

Find u ∈ U∗ such that,
∫

Ω

[
ρ(∇u)u · û+ 2µ∇su · ∇sû

]
dΩ = 0 ∀ û ∈ Û

∗
, (2.2.2)

where the strain rate tensor is defined as ∇s(·) = [∇(·) + (∇(·))T ]/2, and

Û
∗

=
{
v̂ ∈H1(Ω) | div v̂ = 0, v̂|Γw = 0, v̂|Γi = 0

}
. (2.2.3)

The constraints divu = 0 and u|Γi = g can be relaxed using Lagrange multipliers p and
r. Further, we introduce the space U =

{
v ∈H1(Ω) | v|Γw = 0

}
and the space H−

1
2 (Γi),

which is the dual space of H
1
2
00(Γi) =

{
g ∈H

1
2 (Γi) | g|γi = 0

}
(in the sense given by the

pairing 〈r,u〉
H− 1

2 (Γi)×H
1
2 (Γi)

=
∫

Γi
r · u dΓ). The problem (2.2.2) now becomes

PΩ : find (u, p, r) ∈ U × L2(Ω)×H−
1
2 (Γi), such that∫

Ω

[
ρ(∇u)u · û+ 2µ∇su · ∇sû− pdiv û− p̂ divu

]
dΩ (2.2.4)
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=

∫
Γi

r̂ · (u− g) dΓ +

∫
Γi

(r · û) dΓ ∀ (û, p̂, r̂) ∈ U × L2(Ω)×H−
1
2 (Γi) .

For the control flow problem, assume that some observations ũt ∈ Ω are available. We want
to find a velocity field u, such that it better matches the observations and, at the same time, is
constrained to be a solution of Problem PΩ. In what follows, ∇τ denotes the surface gradient,
whereas β and β1 are arbitrary parameters for a Tikhonov regularization, and α is a positive
real number. The parameters α, β and β1 will often be denoted as optimisation parameters.
Based on a user-defined cost function, O, the aforementioned flow-matching problem can be
cast as a mathematical optimisation problem, which reads

PM : Find g which minimises O(g) = O∗(u(g), g, ũt) such that PΩ holds, where

O(g) =
α

2

(∫
Ωs

|u(g)− ũt|2 dΩ +

∫
Γsi

|u(g)− ũt|2 dΓ +

∫
Γso

|u(g)− ũt|2 dΓ

)
+

+
β

2

∫
Γi

|g|2 dΓ +
β1

2

∫
Γi

|∇τ g|2 dΓ . (2.2.5)

The flow-matching metric is defined on Ωs, Γsi and Γso, which are considered as the trust
region of experimental observations (see figure 2.1(b)). The well-posedness of the problem
PM has been addressed by Guerra et al. [Gue15]. The user-defined cost function contains
two types of terms, those to enforce the matching between the model prediction and the
available observations, and those to deliver a regularized mathematical problem. Concerning
(2.2.5), the first three terms are responsible for the flow matching, while the latter two terms
provide a penalization for the control function not to grow unboundedly, and, at the same
time, to force a certain regularity over the control. The choices of these terms were also
motivated by Gunzburger et al. [Gun00].

2.2.2 Optimality Conditions

To obtain the necessary optimality conditions for the optimisation problem PM , and to
avoid the calculation of the derivative of the velocity field with respect to the function g,
it is convenient to recast the problem of constrained optimisation as a saddle point problem.
Correspondingly, we then construct the Lagrangian functional to relax the dependence of u
on g as follows:

L (g,u, p, r,λu,λp,λr) = O∗(u, g, ũt)−
∫

Γi

λr · (u− g) dΓ−
∫

Γi

r · λu dΓ

+

∫
Ω

[
ρ(∇u)u · λu + 2µ∇su · ∇sλu − pdivλu − λp divu

]
dΩ , (2.2.6)

with (g,u, p, r,λu, λp,λr) ∈H1
0 (Γi)×U ×L2(Ω)×H−

1
2 (Γi)×U ×L2(Ω)×H−

1
2 (Γi), where

H1
0 (Γi) is the space of traces over Γi of H1(Ω) functions that are zero over γi, the boundary
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of surface Γi. Further, let us consider the perturbations (̂·) to the fields (·) above, as (·) + τ (̂·)
(where τ is a real number that aids in the calculation of the Gâteaux derivative but that is
ultimately immaterial for the result), that is,

g → g + τ ĝ g, ĝ ∈H
1
2
00(Γi) , (2.2.7)

u→ u+ τ û u, û ∈ U , (2.2.8)

p→ p+ τ p̂ p, p̂ ∈ L2(Ω) , (2.2.9)

r → r + τ r̂ r, r̂ ∈H−
1
2 (Γi) , (2.2.10)

λu → λu + τ λ̂u λu, λ̂u ∈ U , (2.2.11)

λp → λp + τ λ̂p λp, λ̂p ∈ L2(Ω) , (2.2.12)

λr → λr + τ λ̂r λr, λ̂r ∈H−
1
2 (Γi) . (2.2.13)

The Gâteaux derivative of the Lagrangian functional is denoted as follows:〈
∂L

∂a
, â

〉
=

d

dτ
L (. . . , a+ τ â, . . .)

∣∣∣∣
τ=0

. (2.2.14)

Our goal is to compute the Gâteaux derivative of O with respect to perturbation in g,〈
∂O

∂g
, ĝ

〉
=

d

dτ
O(g + τ ĝ)

∣∣∣∣
τ=0

. (2.2.15)

The critical points of the Lagrangian (2.2.6) contain information on the aforementioned
Gâteaux derivative (2.2.15), and are characterised by the following variational equations

〈
∂L

∂(λu,λp,λr)
,

λ̂uλ̂p
λ̂r

〉 = 0 ∀ λ̂u ∈ U , λ̂p ∈ L2(Ω), λ̂r ∈H−
1
2 (Γi) , (2.2.16)

〈
∂L

∂(u, p, r)
,

ûp̂
r̂

〉 = 0 ∀ û ∈ U , p̂ ∈ L2(Ω), r̂ ∈H−
1
2 (Γi) , (2.2.17)

〈
∂L

∂g
, ĝ

〉
= 0 ∀ ĝ ∈H

1
2 (Γi) . (2.2.18)

The equations (2.2.16) and (2.2.17) describe the direct and the so-called adjoint equations
to solve for the state variables (u, p, r) and the adjoint variables (λu,λp,λr) respectively.
Finally, the equation (2.2.18) provides the optimality condition of the cost functional with
respect to perturbations in g. In particular, it also follows that〈

∂O

∂g
, ĝ

〉
=

〈
∂L

∂g
, ĝ

〉∣∣∣∣ (u,p,r) solution of direct problem
(λu,λp,λr) solution of adjoint problem

. (2.2.19)
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Let us now compute the Gâteaux derivatives (2.2.16)–(2.2.18). We first obtain the direct
problem by taking the derivative with respect to the variables (λu, λp,λr). Then, the following
variational problem is obtained:

Psta(g) : For g ∈H
1
2
00(Γi), determine (u, p, r) ∈ U × L2(Ω)×H−

1
2 (Γi) such that〈

∂L

∂λu
, λ̂u

〉
=

∫
Ω

[
ρ(∇u)u · λ̂u + 2µ∇su · ∇sλ̂u − pdiv λ̂u

]
dΩ

−
∫

Γi

r · λ̂u dΓ = 0 ∀ λ̂u ∈ U , (2.2.20)〈
∂L

∂λp
, λ̂p

〉
= −

∫
Ω
λ̂p divu dΩ = 0 ∀ λ̂p ∈ L2(Ω) , (2.2.21)〈

∂L

∂λr
, λ̂r

〉
= −

∫
Γi

λ̂r · (u− g) dΓ = 0 ∀ λ̂r ∈H−
1
2 (Γi) . (2.2.22)

The Euler-Lagrange equations associated with (2.2.20)-(2.2.21)-(2.2.22) are the classical Navier-
Stokes equations, which read as follows:

ρ(∇u)u− µ∆u+∇p = 0 in Ω , (2.2.23)

divu = 0 in Ω , (2.2.24)

u = 0 on Γw , (2.2.25)

u = g on Γi , (2.2.26)

(−pI + 2µ∇su)n = r on Γi , (2.2.27)

(−pI + 2µ∇su)n = 0 on Γo . (2.2.28)

Second, we obtain the adjoint problem by taking the derivative of the Lagrangian (2.2.6)
with respect to the state variables (u, p, r). The adjoint problem then reads as

Padj(u, ũ
t) : For ũt, and u, solution of (2.2.23)–(2.2.28),

determine (λu, λp,λr) ∈ U × L2(Ω)×H−
1
2 (Γi), such that〈

∂L

∂u
, û

〉
=

∫
Γo∪Γi

[
α (χΓso + χΓsi)(u− ũt) · û

]
dΓ−

∫
Γi

(
λr · û

)
dΓ

+

∫
Ω

[
αχΩs(u− ũt) · û+ ρ(∇û)u · λu + ρ(∇u)û · λu+

+ 2µ∇sû · ∇sλu − λp div û
]
dΩ = 0 ∀ û ∈ U , (2.2.29)〈

∂L

∂p
, p̂

〉
= −

∫
Ω
p̂ divλu dΩ = 0 ∀ p̂ ∈ L2(Ω) , (2.2.30)〈

∂L

∂r
, r̂

〉
= −

∫
Γi

r̂ · λu dΓ = 0 ∀ r̂ ∈H−
1
2 (Γi) , (2.2.31)
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where we considered the following indicator functions:

χΩs =

1 in Ωs ,

0 in Ω \ Ωs ,
χΓsi =

1 in Γsi ,

0 in Γi \ Γsi ,
χΓso =

1 in Γso ,

0 in Γo \ Γso .
(2.2.32a–c)

Applying standard variational arguments for (2.2.29)-(2.2.30)-(2.2.31) delivers the associated
Euler-Lagrange equations, as follows:

αχΩs(u− ũt)− ρ(∇λu)u+ ρ(∇u)Tλu − µ∆λu +∇λp = 0 in Ω , (2.2.33)

divλu = 0 in Ω , (2.2.34)

λu = 0 on Γw , (2.2.35)

λu = 0 on Γi , (2.2.36)

αχΓsi(u− ũt) + (−λpI + 2µ∇sλu)n = λr on Γi , (2.2.37)

αχΓso(u− ũt) + ρ(u · n)λu + (−λpI + 2µ∇sλu)n = 0 on Γo . (2.2.38)

Finally, let us compute the optimality condition, which states

Popt(λr) : For λr, solution of (2.2.33)–(2.2.38), determine g ∈H1
0 (Γi), such that〈

∂L

∂g
, ĝ

〉
=

∫
Γi

[
βg · ĝ + β1∇τg · ∇τ ĝ + λr · ĝ

]
dΓ = 0 ∀ ĝ ∈H1

0 (Γi) . (2.2.39)

The Euler-Lagrange equations associated with (2.2.39) are the following:

βg − β14τg = −λr on Γi , (2.2.40)

g = 0 on γi , (2.2.41)

where λr is solution of the adjoint problem Padj.
The well-posedness of the fully coupled non-linear system of necessary conditions given by

(2.2.20)-(2.2.21)-(2.2.22), (2.2.29)-(2.2.30)-(2.2.31) and (2.2.39) has not yet been yet addressed
in the literature to the best of the authors’ knowledge. In this regard, we rely on the well-
posedness result reported by Guerra et al. [Gue15] for the minimization problem (2.2.5).

2.2.3 Gradient Descent Algorithm

The procedure to solve the optimality conditions at once amounts to solving the nonlinear
system of coupled variational equations Psta, Padj and Popt (or their corresponding Euler-
Lagrange equations (2.2.23)–(2.2.28), (2.2.33)–(2.2.38) and (2.2.40)–(2.2.41)). This problem is
nonlinear and a possible way to find the stationary point for the optimisation problem PM is
to evaluate the Gâteaux derivative (2.2.19) to drive a descent-like iterative algorithm. In this
case, first, given a guess g, the forward problem, Psta, is solved to obtain the state variables,
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(u, p, r). Second, the adjoint problem, Padj, is evaluated using the solution, u, from the
direct problem. Then, using the adjoint variable, λr, obtained from the adjoint problem, the
gradient of the objective function with respect to the parameter g can be calculated from
(2.2.39) as follows:

DO(g)

Dg
= βg − β14τg + λr on Γi . (2.2.42)

To ensure an acceptable converging solution of the algorithm, it is usual to start by solving
the forward problem based on some initial guess, (u)0, for the flow field. Therefore, we
introduce a proper linearisation, P lin

sta, of the forward problem, Psta, as

P lin
sta(u

∗, g∗) : For u∗ and g∗, determine (u, p, r) such that∫
Ω

[
ρ(∇u)u∗ · λ̂u + 2µ∇su · ∇sλ̂u − p div λ̂u

]
dΩ−

−
∫

Γi

r · λ̂u dΓ = 0 ∀ λ̂u ∈ U , (2.2.43)

−
∫

Ω
λ̂p divu dΩ = 0 ∀ λ̂p ∈ L2(Ω) , (2.2.44)

−
∫

Γi

λ̂r · (u− g∗) dΓ = 0 ∀ λ̂r ∈H−
1
2 (Γi) . (2.2.45)

The optimality condition, (2.2.39), ensures that the derivative of the objective functional
with respect to the control parameters vanishes at the critical point. In the gradient descent
algorithm, however, the optimality condition is not satisfied until the algorithm converges.
That procedure is described in algorithm 1 below. The fields (·)k correspond to the fields (·)
at the k-th iteration. The parameter σ represents the step size, which is adjusted dynamically.
To test convergence, a small parameter ξ is prescribed as a tolerance to potentially exit the
algorithm, if necessary.

2.2.4 Numerical Methods

The direct and adjoint problems were approximated using the finite volume method. The
linearised problem, P lin

sta, was solved using the SIMPLE algorithm described by Patankar
et al. [Pat72]. According to this, the momentum equation (2.2.23) is solved (after proper
linearisation and discretisation) starting with an initial guess for pressure. In addition, a
pressure correction equation is derived from the continuity equation (2.2.23) obtaining the
pressure correction field, which is then used to update both the pressure and the velocity. To
solve the discretised momentum equation, we applied the Gauss-Seidel method. Then, the
discretised pressure correction equation was solved using a generalised geometric-algebraic
multi-grid (GAMG) solver using Gauss-Seidel iterations. The adjoint equations (2.2.33)–
(2.2.38) were discretised and solved in a similar way, following the SIMPLE algorithm and

15



Boundary Control in Computational Hemodynamics

using the same solvers as described for the solution of the direct problem. That is, Gauss-Seidel
iterations were used to solve the adjoint momentum equation (2.2.33) (after its corresponding
discretisation) and GAMG was used to solve the discretised adjoint pressure correction derived
from the adjoint continuity equation (2.2.34). The entire optimisation algorithm including the
direct and adjoint solvers was implemented using OpenFOAM [Wel98].

Algorithm 1 Steepest descent with dynamic step size
Given: α, β, β1 > 0 . Set optimisation parameters
Input : u0, g0, ũt . Provide initial guess and target flow
Output : uk . Flow field at last iteration k

1: procedure DataAssimilation(u0, g0, ũt)
2: σ ← 1, ξ ← 10−8 and k ← 0

3: (u0, ·, ·)←P lin
sta(u

0, g0) . Evaluate linearised problem (2.2.43)
4: cost0 ← O∗(u0, g0, ũt) . Evaluate cost function (2.2.5)
5: for k ← 1, n do
6: (·, ·,λkr)←Padj(u

k−1, ũt) . Evaluate adjoint problem (2.2.29)–(2.2.31)
7: sk ← −(βgk−1 − β14τgk−1 + λkr) . Set steepest descent direction (2.2.42)
8: repeat
9: gk ← gk−1 + σsk . Update control, using step size σ

10: (uk, ·, ·)←P lin
sta(u

k−1, gk)

11: costk ← O∗(uk, gk, ũt)

12: if costk ≥ costk−1 then
13: σ ← 0.5σ

14: end if
15: until costk < costk−1

16: if (
∣∣∣costk − costk−1

∣∣∣)/(costk) > ξ then
17: σ ← 1.5σ

18: else
19: return uk

20: end if
21: end for
22: end procedure

2.3 Preprocessing of Observational Data

The proposed approach was validated and tested based on data that were generated both
artificially and empirically. Generated artificial data were used to validate the approach both
on a simplified geometry with an available analytical solution (see section 2.4) as well as on a
physical glass replica of a human aorta. The latter geometry was used to generate a reference
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flow solution to be considered as the ground truth for validation purposes (see section 2.5.4).
The experimental data were generated with real measurements of flow MRI acquired for
the glass replica of the aorta (see section 2.5). Both kinds of observations contain either
some artificially added or realistic noise respectively. Hence, the data further require some
preprocessing prior to the application of the proposed optimisation algorithm. Let umri denote
the noisy data, which are either artificially generated or obtained from the MR scan. First of
all, a noise detection strategy (see section 2.3.1) was applied to the observed data, umri, to
eliminate potential spurious vectors, yielding a denoised flow field, u◦mri. Second, the vascular
domain was segmented from the (either artificial or experimental) MRI data and was registered
with the exact phantom geometry (for both the experimental scenario with the flow MRI scan
and the artificially generated reference flow solution on the phantom). For both artificial and
experimental data, the geometries were available as either a user-generated cylinder or the
surface data representing the 3-D print of the glass replica respectively. Furthermore, the
computational mesh was created from these exact geometries. The measured and denoised
velocity field, u◦mri, inside the segmented region of interest was mapped into the computational
mesh domain, using the transformation obtained from the registration step. This mapping
was performed using linear interpolation, yielding a denoised flow field in the computational
mesh domain, denoted as ūmri. Finally, a space projection was applied to ūmri to recover
back the divergence-free property of the flow data, which returns a flow field called ũ?. The
preprocessing steps can be tabularly summarised as follows:

umri
Outlier Detection−−−−−−−−−−→ u◦mri

Registration−−−−−−−→ ūmri
Space Projection−−−−−−−−−−→ ũ?

umri : Reconstructed flow field from 4-D flow MRI (or artificially generated),

u◦mri : Denoised flow field defined in observational domain (usually coarse mesh),

ūmri : Linearly interpolated flow field mapped in the computational domain (fine mesh),

ũ? : Divergence-free flow field defined in the computational domain.

2.3.1 Noise Detection

A variation of the usual median test, proposed by Westerweel et al. [Wes05] and initially
applied to PIV, was implemented and applied to MRI data, umri, for detecting the spurious
vectors in the measurements. The method utilises a normalization to the original median test
and considers the local fluctuations of the flow field. For a wide variety of documented flow
cases, Westerweel and Scarano verified the generality of the method for Re numbers ranging
from 10−1 to 107.

For a more formal description of the method, let us first introduce a set of 3-tuples,

NR = { (i, j, k) ∈ Z | −R ≤ i, j, k ≤ R ∧ R ∈ N } \ { (0, 0, 0) } . (2.3.1)
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Figure 2.2: For R = 1, the set Ux,N1 is shown with the 26 neighbours of Ux (not all neighbours
illustrated). Note that NR does not contain the tuple (0, 0, 0), hence Ux = Ux,(0,0,0) is not
included in Ux,N1 .

Second, we define Ux = Ux,(0,0,0) ∈ Rn to be the displacement vector at pixel position x and
Ux,NR

is the set of its [(2R+ 1)3 − 1] neighbours. Figure 2.2 illustrates the neighborhood for
R = 1. Additionally, let Ux,med be the median of Ux,NR

. The classical median test value is
defined as (MT)x,NR

= ‖Ux,med − Ux‖, which is passed if it is smaller than a user defined
threshold value εt. Furthermore, we define the set of residuals, rx,NR

, as

rx,NR
= { r ∈ R | r = ‖U −Ux,med‖ ∧ U ∈ Ux,NR

} , (2.3.2)

and, similarly, rx,med is defined to be the median of rx,NR
, which is used to normalise the

usual median test,

(NMT)x,NR
=
‖Ux,med −Ux‖
rx,med + ε

< εt . (2.3.3)

Under uniform flow conditions, the main normalization factor rx,med tends to yield zero:
hence, a small and acceptable local fluctuation level ε is applied to compensate for a poten-
tial division by zero and to account for remaining velocity fluctuations obtained from cross
correlation analysis. In practice, ε values between 0.1 and 0.2 might be used [Wes05; Raf07;
Gar11]. In our case, ε = 0.2 performed well for the available MR flow data. Furthermore,
εt = 2.25 is used as the validation threshold. Once the latter parameter is detected from
numerical experiments, it can be used for other data in similar flow regimes with the same
imaging modality.

Prior to the application of noise detection, the observations umri obtained from MRI meas-
urements are initially already divergence-free. This is ensured by the constraints applied
during the reconstruction process of the MRI data, which is out of the scope of this work.
After denoising, however, the detected spurious vectors are erased from the data, which res-
ults in a flow field u◦mri with gaps at certain positions within the observations. This clearly
violates the divergence-free property of the observed data, umri. One possible way to fill in
the gaps would be the use of some interpolation scheme. However, such schemes will not
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necessarily ensure a solenoidal flow field. Therefore, we rely on the application of a projection
over a divergence-free space at a later stage (see section 2.3.4) to automatically fill in the
aforementioned gaps and to recover back the divergence-free property of the flow field.

2.3.2 Segmentation and Registration

After the removal of outliers, the arterial structures, in which the analysis is to be performed,
are segmented from both the artificially generated flow data as well as the acquired MR meas-
urements. The experimental MRI data comprise the anatomical structures and the velocity
field data [Mar12], whereas the artificial flow data consist of the flow field generated either in
a cylindrical geometry or in the geometry of the phantom aorta. For validation studies in the
simplified domain, the flow data were used for segmentation of the cylindrical geometry (see
section 2.4), whereas for experimental and complementary validation studies, the anatomical
data from MR images were used to extract the vascular geometry from the aorta replica (see
section 2.5). The segmentation was performed using the snake evolution method available
in ITK-SNAP (www.itksnap.org) and was smoothed using the tools available in the VMTK
library (www.vmtk.org). This procedure is expected to suffer from the low resolution and
partial volume effects of flow MRI data.
For the comparison with experimental MRI data, high-resolution aortic surface data were

already available from the 3-D print of the glass replica. The latter were used to generate
the computational mesh for the exact geometry. However, after image acquisition and seg-
mentation, the flow data are misaligned with the exact geometry of the replica. Therefore, a
registration step was necessary to align the measured flow field with the exact geometry of the
replica. The rigid registration was performed using the iterative closest point (ICP) algorithm,
which aims to minimise the distance between two sets of points. The numbers of available
points in the point clouds of both the exact and the segmented geometries were approximately
1 600 000 and 12 000 respectively. Prior to the registration process, 5 000 points were randomly
sampled from each geometry, which were then used as the two point input clouds for the ICP
algorithm. The root mean square error between the registered point clouds was 0.001. In the
case of the artificially generated flow data in the cylindrical domain, no registration step was
required, since the geometry was already aligned with the segmented domain.

2.3.3 Mapping in the Computational Mesh

For both cases, the analytical geometry (cylinder) and the experimental geometry (glass replica
of aorta), the available exact geometries were used to generate the computational mesh domain,
which was used for the flow simulations. For both datasets, a hexahedral mesh was created
using OpenFOAM’s snappyHexMesh procedure. In the case of the experimental geometry,
the mesh was rigidly transformed into its corresponding segmentation using the mapping
obtained from the registration step. After mesh generation, the velocities, u◦mri, from the

19



Boundary Control in Computational Hemodynamics

denoised phase difference images (obtained from 4-D flow MRI and denoised with the universal
outlier detection scheme) with limited resolution (i.e. in a coarse observational domain) were
mapped into the fine hexahedral mesh (computational domain for CFD simulations with high
resolution) using the linear interpolation method available in ITK [Joh13]. As a result of
the combination of the linear interpolation and the previous noise detection process, the final
flow field (denoted by ūmri) in the CFD mesh was not divergence-free. The divergence-free
property was then recovered with the projection over a divergence-free space applied to the
velocity field in the CFD mesh as explained next.

2.3.4 Projection into Divergence-Free Space

Let ūmri ∈
(
L2 (Ω)

)3 be a given observed velocity field on a bounded Lipschitz domain Ω ∈ R3

with boundary ∂Ω. According to Helmholtz-Hodge decomposition (HHD), the velocity field
can be decomposed into the sum of its divergence-free, curl-free and gradient of harmonic
components, if the velocity is known at the boundary [Den03; Har12; Bha13]. In this work, we
reconstruct the divergence-free flow field by removing the gradient of the harmonic component
and solving the following problem:

P⊥(ūmri) : Given ūmri, find ũ? = ūmri −∇q, such that

∆q = ∇ · ūmri in Ω (2.3.4)

q = 0 on Γw and ∇q · n = 0 on ∂Ω\Γw .

The problem P⊥ differs from the HHD in terms of the applied BCs, but under certain modi-
fications the HHD can be recovered. Although the problem P⊥ does not directly correspond
to the HHD, it still represents a projection over a space of divergence-free flow fields.
The observations, ūmri, are assumed to be already modified by the application of the uni-

versal outlier detection scheme (as described in section 2.3.1) prior to its projection in the
CFD mesh. The projection (u◦mri → ūmri) is performed by linear interpolation. Problem
P⊥ is solved using OpenFOAM’s [Wel98] conjugate gradient solver (PCG) with simplified
diagonal-based incomplete Cholesky preconditioner (DIC). Figure 2.3 illustrates that the pro-
jection into the space of divergence-free vector fields (in the phantom replica of the human
aorta) recovers the divergence-free property of the flow field to a great extent.

2.4 Validation of the Methodology

To validate the approach and analyse its performance, we consider the flow of a fluid in a
cylindrical geometry, where an analytical solution of a fully developed flow is available. In
this work, first an analytical solution is generated for a fine hexahedral mesh of a cylinder.
Second, a much coarser voxel grid is used to simulate the MRI acquisition pipeline. For each
voxel, the MRI simulation is based on the averaged velocity field provided by the fine mesh.
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(a) (b)

Figure 2.3: Divergence of flow field in a phantom of a human aorta acquired with MRI: (a) Raw
data, before the application of divergence-free projection operator, P⊥ . (b) Divergence-free
flow field, after the application of P⊥ .

Furthermore, some artificial noise is added to the voxel data and, finally, these artificially
generated MRI data are put into the preprocessing pipeline described in section 2.3.

2.4.1 Poiseuille Flow

We consider the fully developed laminar flow of a Newtonian fluid in a cylinder of length L,
constant cross-sectional area A and diameter D (R = D/2 is the pipe radius). The solution
of the Navier-Stokes equations in this case yields

uext(r) =
∆PD2

16νρL

(
1− r2

R2

)
. (2.4.1)

From (2.4.1), and calling Uavr the average velocity, it can be derived that

uext(r) = 2Uavr

(
1− r2/R2

)
. (2.4.2)

Finally, taking Re = DUavr/ν, the analytical solution can be given in terms of the Reynolds
number and kinematic viscosity as

uext(r) =
2νRe

D

(
1− r2

R2

)
. (2.4.3)

2.4.2 Evaluation of Analytical Solution

During the MRI acquisition process, the velocities are spatially averaged. To simulate such
a framework, the exact solution from equation (2.4.3) needs to be spatially averaged to the
desired MRI voxel size. Since it is not possible to calculate the exact solution for an infinite
number of points, its evaluation was performed on each cell center of a fine hexahedral mesh
with 3 693 600 cells. The cylinder radius was R = 1.2 cm (diameter D = 2.4 cm) and the
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length was L = 6 cm (see figure 2.4(c)). As the solution described by the Hagen-Poiseuille
equation (2.4.1) is valid for laminar flow, the Reynolds number was chosen to be 2 000. Finally,
as a reasonable approximation of blood viscosity in the human aorta, the kinematic viscosity
was chosen to be ν = 4.8 cP. Under these conditions, the maximum flow velocity in the
aforementioned cylinder approximately results in |u|max ≈ 0.8 m/s.

2.4.3 Generation of Artificial MRI Data

The acquired velocities with flow MRI are proportional to the phase shift in the signal of spins
moving along a magnetic gradient field. Since the phase of a signal is limited to 2π radians,
so is also the range of velocities that can be detected uniquely. The highest velocity that is
likely to be encountered within the region of interest is held within a user-defined velocity
encoding (VENC). For velocity magnitudes higher than the VENC, the so-called velocity
aliasing effect (or phase wrap-around artifact) occurs, which prevents the unique assignment
of the velocities. The quality of flow MRI suffers from velocity noise, which is proportional
to the velocity encoding and inversely associated with the signal-to-noise ratio (SNR) in the
related phase difference images [Pel91]. As described by Pelc et al. [Pel91], the standard
deviation of the velocity can be approximated as

σu ≈ (0.45 ∗VENC)/SNR . (2.4.4)

Gudbjartsson et al. [Gud95] showed that in the existence of noise, the image intensity in phase-
contrast MRI is governed by the Rician distribution. For SNR greater than two, the noise
distribution is shown to be nearly Gaussian. The analytical solution evaluated in the fine mesh
was first averaged into an MRI grid of 2 mm voxel size in each direction, as shown in figure
2.4(a). Gaussian white noise was added thereafter on the averaged velocities, as shown in
figure 2.4(b). The VENC was chosen to be 120 cm/s in the longitudinal direction (z), whereas
it was 20 cm/s in the remaining directions (x and y). The standard deviation of the velocity
was chosen such that the noise amplitude corresponded to an SNR of 20. As the cylinder
is user-defined, the acquired flow field is already registered with the exact geometry. After
the addition of artificial noise, the thus-simulated MRI data follow the pre-processing pipeline
(with the exception of the registration stage) as described in section 2.3, before starting the
CFD simulation. In what follows, usnr will represent the noisy MRI measurements, which are
mapped into the computational domain and for which a decomposition is applied to project
the field over a divergence-free space as described in sections 2.3.3 and 2.3.4. The cylindrical
computational domain is illustrated in figure 2.4(c).

2.4.4 Optimisation with Exact Solution as Target Flow

First, we consider one case where the optimisation starts with a noisy flow field and is per-
formed against the exact solution. That is, the target flow field ũt in the objective function
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(a) Exact averaged solution (b) Artificial noisy solution (c) Flow Domain

Figure 2.4: Artificially generated velocity images (2 mm isotropic voxel size) of both the exact
solution (a) and the integrated noise with a SNR of 20 (b), before their mapping into the
computational flow domain (c).

(2.2.5) corresponds to uext given by (2.4.3). In addition, the initial condition, (u)0 = u0,
corresponds to the artificially generated divergence-free flow field, usnr, as described in sec-
tion 2.4.3. Thus, algorithm 1 is executed with the input parameters (usnr, gsnr,uext), where
gsnr = usnr on Γi. In what follows, we will denote uopt = ukopt as the solution returned by
the optimisation process after k iterations of algorithm 1. The mesh is set up with 118 800

cells including 114 840 hexahedras and 3 960 prisms. The size of the mesh is suitable to obtain
satisfactory results. Flow-matching domains, Ωs, Γsi and Γso (see figure 2.4(c)), cover the
lumen including both inlet and outlet boundaries. In what follows, we will give a meaning to
the subscript, s, in the flow-matching domain, Ωs. The subscript s prescribes the extent of
contraction of the whole domain Ω in millimetres (mm), as follows:

Ωs = {x ∈ Ω | ‖x− y‖≥ s (mm)∀y ∈ Γw } . (2.4.5)

In this set-up, we set s = 2. That is, the flow-matching domain Ωs is a contracted domain of
Ω such that the distance to Γw is at least 2 mm. Figure 2.4(c) shows the example of Ωs in the
cylinder. Furthermore, the optimisation parameters are α = 0.15, β = 10−4 and β1 = 10−8.
Figures 2.5(a), 2.5(b) and 2.5(c) illustrate the norms of the flow matching, ‖ũt − u‖fm, the
control, ‖g‖co, and the surface gradient of the control, ‖∇τ g‖sg, which are defined as follows:

‖ũt − u‖fm =

 100

avr
Ω
|ũt|

√ 1

VΩ

∫
Ω
|ũt − u|2 dΩ , (2.4.6)

‖g‖co =

 1

avr
Γi

|ũt|

√ 1

AΓi

∫
Γi

|g|2 dΓ , (2.4.7)

‖∇τ g‖sg =

 1

avr
Γi

|∇τ ũt|

√ 1

AΓi

∫
Γi

|∇τg|2 dΓ , (2.4.8)

23



Boundary Control in Computational Hemodynamics

0
1
2
3
4
5
6

0 10 20 30 40 50
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Figure 2.5: The norms from optimisation with parameters α = 0.15, β = 10−4, β1 = 10−8.
The norms are plotted against the number of iterations in the horizontal axis.

where VΩ is the volume of the entire domain, and AΓi is the area at inlet. The norms are
normalised against the average magnitude of target velocity or its surface gradient.

As shown in figure 2.5(b), the norm of the control, ‖g‖co, rapidly grows at the beginning,
forcing the noisy vectors towards their desired position and remaining almost constant after a
while. In figure 2.5(c), the sudden decrease in the norm of velocity surface gradient, ‖∇τ g‖sg,
shows the denoising process at inlet. Once a good approximation is reached, the velocities at
inlet are only being adjusted slightly during the rest of iterations. This is continued until a
sufficient flow matching is achieved in the entire domain as illustrated in figure 2.5(a).

Let us now focus on the results in the domain close to the cylinder wall. To confirm the
presented results also with respect to the accuracy in near-wall regions, we calculated both
the root mean square error, nRMSEd = nRMSEd(uext,uopt), and the flow direction error,
FDEd = FDEd(uext,uopt), defined by

nRMSEd(ut,uc) =

 100

avr
Ed

|ut|

√ 1

Vd

∫
Ed

|ut − uc|2 dEd , (2.4.9)

FDEd(ut,uc) =

√
1

Vd

∫
Ed

(
1− ut · uc
|ut||uc|

)2

dEd . (2.4.10)

In what follows, the subscript d stands for the evaluation of the error within the contracted
subdomain Ed ⊂ Ω with volume Vd, which is defined as

Ed = {x ∈ Ω | ∃y ∈ Γw, ‖x− y‖< d (mm) } . (2.4.11)

That is, we want to evaluate the errors in the domain Ed at near-wall regions (this domain
is not meant to be included in the flow-matching domain Ωs), where the nearest Euclidean
distance of all points in Ed is at most d mm apart from the wall, Γw. Figure 2.4(c) features the
contracted domain in the cylinder. It should be noted that both errors, (2.4.9) and (2.4.10),
are evaluated between the exact solution, uext, and the results obtained from the proposed
optimisation strategy, uopt, in the contracted region Ed. In addition, the error nRMSEd is
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normalised against the average velocity magnitude of the observations in Ed.
For d = 2, the initial errors nRMSE2(uext,usnr) and FDE2(uext,usnr) between the ex-

act solution, uext, and noisy observations, usnr, were 26.65% and 1.1 · 10−2 respectively.
After optimal control, the root mean square error, as a percentage of the average velocity
magnitude, was reduced to nRMSE2(uext,uopt) = 3.53%, and the flow direction error was
FDE2(uext,uopt) = 3.5 · 10−5.

Sensitivity Analyses with Respect to Changes in Optimisation Parameters

There have been some reported discussions in the literature concerning the choice of the
optimisation parameters for related control problems. In Lee [Lee11], the penalisation value
was set to 10−10 for a Neumann boundary control and validations were performed for a flow
problem in a 2-D square case. In Guerra et al. [Gue14], a 2-D geometry for a stenosed vessel
was considered, where the parameter related to the surface gradient term (denoted as β1 in
this work) was set to 10x with x ∈ {−5,−4,−2,−1, 0, 1}, whereas the other optimisation
parameters were maintained constant. Further works have also reported on the choice of
regularisation parameters in the related field [Fur98; DEl12a; Ber14; Gue15].
In this work, the parameter α was chosen on a trial and error basis. It was observed that

α should be between 0.15 and 0.5 depending on the data being used. Values larger than 0.5
enforce a more stringent flow-matching and the optimiser already stops at very early stages
of the iterations. For values smaller than 0.15, the optimiser needs more iterations because
the flow-matching term is more relaxed. In the latter case, as expected, the final solution gets
further away from the observations.
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Figure 2.6: Alteration in norms of flow-matching and control (solid lines in (a) and (b)) with
respect to changes in β, along with the constant norm of exact solution (dashed line in (b)),
where α = 0.15 and β1 = 10−8. The norms are plotted against the number of iterations in
the horizontal axis.

The differences in the response as a consequence of changes in the optimisation parameters,
β and β1, were examined in this work for the 3D case. First of all, we set α = 0.15, which
was experimentally found to be an appropriate parameter for this use case and was then used
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in the sensitivity analyses with respect to changes in β and β1. Second, we kept β1 = 10−8

fixed and modified β. Figures 2.6(a) and 2.6(b) show the flow-matching norm, ‖ũt − u‖fm,
and the control norm, ‖g‖co, for different β values. In addition, figure 2.6(b) also contains
the constant norm, ‖gext‖co, of the exact solution. We observed that for larger values, such
as β > 10−4, there was not enough control and the flow-matching was poor. This is because
the objective function was rapidly penalised at early stages of the optimisation, where the
optimiser needs larger controls in order to reduce the error. For smaller β values, however,
there was no hard penalization and the optimiser could apply larger controls as illustrated in
figure 2.6(b). In general, the values 10−4 and 10−5 delivered satisfactory results and β = 10−5

was observed to be the best choice.
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Figure 2.7: Alteration in norms of flow-matching and control (solid lines in (a), (b) and (c))
with respect to changes in β1, along with the constant norm of exact solution (dashed line in
(b)), where α = 0.15 and β = 10−5. The norms are plotted against the number of iterations
in the horizontal axis.

Furthermore, we fixed β at 10−5 and ran the optimiser with β1 set to 10−7, 10−8 and 10−9

(smaller values of β1 rendered unacceptable solutions because of the lack of smoothing effect
on noisy measurements). For different β1 values, figures 2.7(a) and 2.7(c) show the plots for
the flow-matching norm, ‖ũt − u‖fm, and the surface gradient norm, ‖∇τ g‖sg. Let us first
analyse the results between the values 10−7 and 10−8 for β1. It can be observed that the
norm of the surface gradient is further reduced for β1 = 10−8 over the successive iterations,
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and better flow matching is achieved. This can be explained by further investigation of the
control norm, ‖g‖co, along with the norm of the exact solution, ‖gext‖co, in figure 2.7(b). We
can observe that there is not enough control for β1 = 10−7. This shows that even if we are
able to remove the noise at the inlet (which is explained by the reduction in the value of the
surface gradient for β1 = 10−7), the controls are small and hence the velocities cannot be
properly optimised. Second, let us consider the results for β1 values of 10−8 and 10−9. Figure
2.7(a) shows that the flow-matching is achieved with an almost equally good quality. In figure
2.7(b), however, fluctuations along the iterations can be observed in the norm of controls for
β1 = 10−9. In addition, figure 2.7(c) shows that the fluctuations also have an effect on the
norm of the surface gradient, which is not as greatly reduced in early iterations as is the case
for β1 = 10−8.
Finally, our interpretations are also confirmed quantitatively in near-wall regions. Table

2.1 summarises the results from the sensitivity analysis comparing the root mean square
errors, nRMSE2, and the flow direction errors, FDE2, for varied optimisation parameters.
Our conclusion is that a value of β1 = 10−8 delivers sufficiently accurate results, and this
value will be used hereafter.

(β, β1)
(
10−3, 10−8

) (
10−4, 10−8

) (
10−5, 10−8

) (
10−5, 10−9

) (
10−5, 10−7

)
nRMSE2 4.53 % 3.53 % 3.41 % 3.68 % 8.40 %

FDE2 7.0 · 10−5 3.5 · 10−5 2.8 · 10−5 1.4 · 10−4 4.8 · 10−5

Table 2.1: Dimensionless root mean square (nRMSE2(uext,uopt)) and flow direction
(FDE2(uext,uopt)) errors measured within the near-wall (2 mm) domain (E2).

2.4.5 Optimisation with Noisy Solution as Target Flow

So far, we have been able to validate the proposed approach using an analytical solution.
Actually, an exact solution is not available or cannot be provided by measurements or exper-
iments. Here, the performance of the optimisation framework was evaluated considering the
artificially generated noisy measurements as the target flow. That is, we set ũt = usnr in the
objective function (2.2.5). In order to avoid lack of control, the initial flow field was low-pass
filtered with a cutoff frequency of 0.5. The low-pass filtered field is just a smoothed version of
the measurements. It reduces the edge contents and results in a blurred image. The degree of
the smoothness is proportional to the chosen cut-off frequency. Use of a blurred (smoothed or
low-pass filtered) version of the measurements as initial condition is not mandatory. However,
the motivation behind using it was the fact that, preferably, the flow-matching term in the
objective function (first-term in (2.2.5)) should not result in a null value at the very first itera-
tion (e.g. by the application of the measurements directly as initial condition). Moreover, the
choice of such an initial condition enables us to start with a guess close (in some sense) to the
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measurements (as opposed to the case of, e.g., potentially applying a zero-field as initial con-
dition) to avoid a significantly large number of iterations until the convergence. The resulting
flow field is represented by ulpf in Ω, and algorithm 1 was executed with the input parameters
(ulpf , glpf ,usnr), where glpf = ulpf on Γi. Motivated by the findings of the previous section,
parameters β and β1 were set to 10−5 and 10−8 respectively. Flow matching was performed
in Ω2. The parameter α was adjusted to 0.5 for this set-up. Under these conditions, the
quantitative results yielded 4.85% and 5.8 · 10−5 for nRMSE2 and FDE2 respectively.

Sensitivity Analyses with Respect to Changes in the Flow-Matching Domain

As described in section 2.4.3, the addition of artificial noise follows the same procedure at
each location in the flow domain and does not depend on the velocity magnitudes. Hence, the
near-wall regions with very low velocities contain almost no relevant signal, but mostly noise.
Moreover, near-wall regions also contain further errors due to partial volume effects. Hence,
such locations should rather be avoided in the flow-matching domain, Ωs. Therefore, a further
contraction in the subdomain was considered in addition. To account for it, we performed a
sensitivity analysis with respect to changes in the flow-matching domain Ωs using the same
parameters as specified above. The simulations were performed with s varying from 1.5 to 4.
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Figure 2.8: Illustration of (a): norms of control with respect to changes in flow-matching
domain, Ωs, and (b): root mean square errors at near-wall domain, Ed. The norms are
plotted against the number of iterations in the horizontal axis.

The norms of the control are shown in figure 2.8(a) for different values of s. It can be
observed that larger controls result for s = 2.5. The magnitude of the control g decreases if
Ωs is further contracted or extended. This can be also confirmed by nRMSEd in figure 2.8(b),
where the x-axis represents s. The errors in near-wall regions are further decreased for s = 2.5.
In addition, figure 2.8(b) illustrates the error measurements (y-axis) for different values of d
represented in different colours. In all cases, the optimisation framework delivers accurate
results at locations of the domain close to the lateral boundary (the wall). This is especially
interesting for the evaluation of WSSs, some of the most important parameters for diagnostic
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purposes in the cardiovascular field. Table 2.2 summarises the results in the near-wall domains
Ed defined for different distances from the wall (with d values ranging from 3 mm to 0.5 mm)
for varying flow-matching domains Ωs with s varying from 1.5 to 4. For example, for a flow-
matching domain Ω2.5, which is 2.5 mm apart from the wall Γw, the root mean square error
nRMSE2, which is evaluated within 2 mm distance of the wall Γw, is 4.52%, and FDE0.5

is 5.0 · 10−5. This improves the accuracy in comparison with the results from the previous
section, where the flow-matching domain was chosen to be Ω2. For s ≥ 3, the accuracy also
starts to drop. This is a remarkable finding for the choice of Ωs. In addition, contraction of
the flow-matching domain also in the longitudinal direction (e.g. exclusion of the locations at
and near the inlet/outlet boundaries from Ωs) also results in loss of accuracy. In this case,
the errors (achieved from the contractions in the longitudinal direction) increase to a similar
extent to that, given in table 2.2 for the radial contractions. In general, the flow-matching
domain should be constructed such that it contains almost all available information about the
flow field in the luminal area (reaching from inlet to outlet), whereas it should avoid using the
information at near-wall locations. We have shown that it is a very good choice to keep the
flow-matching domain 2.5 (mm) away from the vessel wall for this case.

s 1.5 2 2.5 3 3.5 4

nRMSE3 5.92 % 4.86 % 4.46 % 4.90 % 5.85 % 7.26 %

FDE3 6.1 · 10−5 4.8 · 10−5 4.2 · 10−5 4.4 · 10−5 4.7 · 10−5 5.0 · 10−5

nRMSE2 5.85 % 4.85 % 4.52 % 4.92 % 5.86 % 7.35 %

FDE2 7.5 · 10−5 5.8 · 10−5 5.0 · 10−5 5.3 · 10−5 5.7 · 10−5 6.0 · 10−5

nRMSE1 6.03 % 5.18 % 4.97 % 5.29 % 5.98 % 7.36 %

FDE1 1.0 · 10−4 7.9 · 10−5 6.9 · 10−5 7.3 · 10−5 7.7 · 10−5 8.2 · 10−5

nRMSE0.5 6.68 % 5.93 % 5.88 % 6.18 % 6.64 % 7.80 %

FDE0.5 1.3 · 10−4 1.0 · 10−4 8.7 · 10−5 9.2 · 10−5 9.8 · 10−5 1.0 · 10−4

Table 2.2: Dimensionless root mean square, nRMSEd(uext,uopt), and flow direction,
FDEd(uext,uopt), errors measured within the near-wall (d (mm)) domain, Ed, for varying
flow-matching domains, Ωs (s (mm) apart from the wall).

Comparison against classical CFD

Finally, the ability of the boundary control approach to reconstruct the measured flow field in
the entire domain was compared against the results delivered from the classical CFD strategy.
The latter is based on a single forward simulation, with Dirichlet BCs, applied (as usual) at
the inlet boundary. Then, the classical CFD implies solution of the problem Psta, as stated
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by the variational equations (2.2.20)-(2.2.21)-(2.2.22). Thus, using the initial guess usnr and
the BC u = usnr on Γi, the linearised problem P lin

sta(usnr, gsnr) was solved with gsnr = usnr

on Γi, iteratively until convergence was achieved. In what follows, the solution obtained from
a classical CFD approach will be denoted as ucfd. Motivated by the conclusion in section
2.4.5, the optimisation algorithm was employed to deliver the optimised solution uopt for
parameters α = 0.5, β = 10−5, β1 = 10−8 and s = 2.5. Furthermore, the optimisation was
performed against the noisy solution as target flow and initialised with the low-pass filtered
flow field, as described in section 2.4.5. We want to emphasise that, during the optimisation
procedure, there is no knowledge available about the exact solution at all.
Flow patterns were first inspected visually to obtain a qualitative interpretation. Figure 2.9

shows the flow patterns in the domain, obtained from the artificially generated noisy measure-
ments, usnr, the computations via the traditional CFD method, ucfd, the computations from
the proposed optimisation framework, uopt, and finally the exact solution, uext. It can be
appreciated that the optimised flow is the one that better resembles the exact solution. Espe-
cially, it features excellent qualitative agreement with the exact solution at the inlet boundary
and at locations near to the inlet, where the traditional CFD approach suffers from inaccuracy,
caused by the noisy BC.

Figure 2.9: Flow patterns for fields usnr, ucfd, uopt and uext illustrated at inlet (Γi), outlet
(Γo) and at a curved surface (A) immersed in the lumen. The colours representing the velocity
magnitudes are scaled to the range of 0 and 0.8, whereas the corresponding maximum velocities
were |usnr|max ≈ 0.853, |ucfd|max ≈ 0.777, |uopt|max ≈ 0.784 and |uext|max ≈ 0.8.
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Validation of the Methodology

To confirm the previous qualitative assessment, the simulation results from both the classical
CFD and the control approaches were quantitatively compared against the exact solution.
First, we evaluated nRMSEd and FDEd in the near-wall domain Ed for the values d = 2, d = 1

and d = 0.5. Table 2.3 shows that the velocity field was reconstructed by the optimisation
algorithm much more accurately at the wall boundary, in comparison with the classical CFD
approach. Noisy observations, usnr, deliver almost no relevant signal near the boundaries,
which can be observed by the huge and increasing errors for decreasing d values. In contrast,
however, nRMSEd is more rapidly decreased when applying the optimisation algorithm to
obtain uopt, as we get closer to wall boundary. This shows the feasibility of the optimisation
approach, especially for its accuracy at the boundaries. Furthermore, the flow direction errors
are decreased to a much greater extent for the optimised flow in comparison with the classical
CFD method. This also shows clearly that the noise at the inlet boundary is removed to a great
extent by the application of the control. In addition, it can be seen that FDEd is not further
decreased as we get close to the walls. This is expected, since the optimisation procedure
itself is a trade-off between decreasing the flow-matching errors in terms of magnitudes and
the flow direction errors based on the surface gradient. Both terms are included in the objective
function and are affected by the choice of parameters.

x = uext

nRMSEd(x,y) FDEd(x,y)

y = usnr y = ucfd y = uopt y = usnr y = ucfd y = uopt

d = 2 26.65 % 8.36 % 4.52 % 1.1 · 10−2 1.2 · 10−3 5.0 · 10−5

d = 1 61.30 % 11.79 % 4.97 % 1.6 · 10−2 1.7 · 10−3 6.9 · 10−5

d = 0.5 139.82 % 17.93 % 5.88 % 2.1 · 10−2 2.1 · 10−3 8.7 · 10−5

Table 2.3: Dimensionless root mean square (nRMSEd(uext,y)) and flow direction
(FDEd(uext,y)) errors for y = {usnr, ucfd, uopt }, measured within the near-wall (d mm)
domain (Ed). Optimisation is performed using measurements in the flow-matching volume
(Ωs), which is (s = 2.5 mm) apart from the wall boundary.

In addition, the computational cost of both the classical CFD method and the optimisation
procedure were evaluated and compared in terms of wall clock time (or execution time). The
classical CFD method using the SIMPLE algorithm required approximately 100 iterations to
reach the solution, and its execution time was 34 seconds. In turn, the data assimilation
process required approximately 50 iterations with an execution time of 82 seconds.
Finally, the maximum and average WSSs were calculated from the numerical results based

on the classical CFD and the optimisation procedure. These quantities were then compared
against the WSSs computed with the analytical solution. Figure 2.10 shows the box plots to
characterise the discrepancies between the WSS fields obtained from the exact solution, uext,
and from both the computations with classical CFD, ucfd, and the optimised solution, uopt.
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y = |WSSopt|

y = |WSScfd|

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
y − |WSSext|

Figure 2.10: Box plot illustrating the differences (|WSScfd| − |WSSext|) and (|WSSopt| −
|WSSext|) in the horizontal axis, where the labels WSScfd, WSSopt and WSSext represent
the wall shear stresses corresponding to the fields ucfd, uopt and uext respectively.

2.5 Data Assimilation in a Realistic Geometry

The proposed approach was tested for the flow-matching control problem in a more realistic
geometry obtained from a glass replica of a human aorta. The geometry consisted of aortic
root, ascending aorta, aortic arch without branches and descending aorta as illustrated in figure
2.1(a). First, a validation study was performed on the aorta based on a manufactured solution
used as the ground truth. The results from the assimilation procedure and the classical CFD
method were quantitatively compared against the ground truth (available reference solution).
Second, real flow data were gathered from the flow MRI scans to investigate the performance
of the solvers in real case scenarios. The optimisation results were first qualitatively compared
with measured data. In addition, and since there is no reference solution available in this
case, the results were quantitatively compared against the results when using the classical
CFD method prescribing Dirichlet BCs. The discrepancies between the solution obtained
from the data assimilation approach and the CFD solution were also examined in contrast to
the discrepancies encountered between both solutions in the manufactured scenario involving
the aorta phantom geometry. Furthermore, a sensitivity analysis with respect to changes
in the initial guess flow field was analysed and discussed in the real case scenario. Finally,
the proposed approach was tested under flow conditions with increasing Reynolds numbers
ranging approximately from 1 200 up to 2 100. For the highest Reynolds number, a mesh
sensitivity analysis was also carried out.

2.5.1 Experimental Setup

The in-vitro experiment was prepared in a scanner and control room including a 3T MRI
scanner from Philips. The glass replica, covered by a six-element cardiac coil, was placed
in the scanner and connected to a centrifugal pump (in the control room) with a maximum
pressure of 3.9 bar. The connection was made with a PVC tubing of total length 20 m with
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Figure 2.11: Experimental setup for the glass replica of human aorta.

an inner diameter of 19 mm. The inlet and outlet of the pipe were connected to a reservoir in
the control room creating an open circuit. A ball bearing valve was placed 1.5 m downstream
of the tube and was used to control the flow rate. Figure 2.11 shows the experimental setup.
The reservoir was filled with a mixture of 24 liter H2O, 40 gr carboxymethyl cellulose

carboxymethyl (CMC) and 10 gr sulfate. The aim of the CMC medium was to increase the
viscosity of the fluid to an approximately similar level to blood viscosity. On the other hand,
the sulfate acted as a contrast agent to increase the signal magnitude. For a temperature of
27◦ C, the mixture featured a viscosity of 3.5 cP.
Three different image acquisitions were performed to obtain data with increasing Reynolds

numbers. The maximum velocities in the obtained data were 1.06, 1.71 and 2.26 m/s and the
corresponding Reynolds numbers were 1 223, 1 860 and 2 105 respectively. Thus, the flow rates
were controlled such that the obtained data contained laminar flow. We highlight the fact
that the flow model does not account for turbulence and consideration of turbulence models
is matter of current research.
A 3-D spoiled gradient-echo sequence with flow encoding gradients was used for the flow-

MRI acquisitions. The eddy-current induced background phase was compensated by applic-
ation of linear phase correction. The acquisition parameters were chosen as flip angle 10o,
time of repetition and echo (TR/TE) 2.6/4.87 ms, field of view (FOV) [244× 244× 62] mm3

and voxel size [1.4× 1.4× 1.5] mm3. Furthermore, considering the increasing Reynolds num-
bers of the measured data, the corresponding VENCs were chosen as 120, 200 and 260 cm/s
respectively.

2.5.2 On the imaging resolution of flow-MRI

Flow MRI is primarily limited by the SNR, and the scanning parameters must be chosen such
that there is a trade-off between the acquisition time and the spatial/temporal resolution.
Besides, in patient specific cardiovascular acquisition, the optimised scan parameters must
take the variability of the cardiac period and/or shifts in patient position into account and
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ensure that physiological artifacts, such as respiratory motion, are minimised [Cal16a]. A
substantial decrease in the voxel size is not clinically feasible. This would increase the scan
time (potentially by several hours) which is not practical for a patient lying inside of the
MRI device. At the same time, this will result in a lower number of protons within the voxel
substantially decreased in size. Hence, the gathered signal will suffer more from noise and the
SNR will decrease.

Under normal clinical conditions, it is currently possible to acquire a 4-D flow dataset of
the heart and major vessels in approximately 10 minutes at a spatial resolution of 2.5 mm
(isotropic) with a temporal resolution of 30-40 ms [Cal16b]. In the work reported by Bock et al.
[Boc11], the authors used 2.1 mm isotropic voxel size for patient specific measurement of the
aorta. In addition, Cibis et al. [Cib15] performed MRI scans of patients with Fontan circulation
using a spatial resolution of 1.9−2.5×1.9−2.5×2.2−3.3 mm3 with coverage of the heart and
large arteries. Further studies have performed personalised acquisitions of the ventricle based
on a cross-sectional resolution between 1.9 and 2.5 mm [Vec16; Lar17]. However, the most
recent studies of flow MRI have investigated the feasibility towards even higher resolutions with
clinically feasible scan times. Schmitter et al. [Sch16] reported increased imaging resolutions,
such of 1.2 mm isotropic voxel size, using accelerated protocols.

Following the clinical feasibility and considering the recent improvements in terms of the
resolution, we have therefore used an approximately 1.5 mm isotropic voxel size in our acquis-
itions, which finally resulted in a resolution of 1.4× 1.4× 1.5 mm3.

2.5.3 Data Preprocessing

For the generation of the computational mesh, the aortic replica was first segmented (see
figure 2.12(a)) from the anatomical data and then smoothed (see figure 2.12(b)). Thereafter,
the available exact geometry (see figure 2.12(d)), with the region of interest that defines the
inlet/outlet boundaries highlighted, was registered with the smoothed geometry as shown in
figure 2.12(c). Section 2.3.2 provides more details about the applied segmentation and regis-
tration. Finally, a hexahedral mesh with 122 079 cells was created using the exact geometry
cut by the region of interest. Moreover, two additional hexahedral meshes with approximately
750 000 and 1 370 000 cells were created for a mesh sensitivity analysis. Figures 2.12(e)–2.12(f)
illustrate the computational mesh with 122 079 cells.

Having generated the computational mesh, the measured flow data followed into the prepro-
cessing pipeline as described in section 2.3. In what follows, uResnr withRe = { 1 223, 1 860, 2 105 }
will represent the flow fields derived after the application of divergence-free space projection:
that is, after solving the problem P⊥ described by the equation (2.3.4).
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(a) Segmented Domain (b) Smoothed Domain (c) Registration

(d) Exact Geometry (e) Mesh at Inlet (f) Mesh in Domain

Figure 2.12: Mesh generation from exact geometry (d) including the segmentation (a) of
domain from anatomical data, smoothing (b) and registration (c) of exact geometry with the
smoothed geometry. A region of interest (d) defines the computational domain for which a
hexahedral mesh with 122 079 cells is created (e), (f).

2.5.4 Validation of the Data Assimilation based on a Reference Solution in the Aorta

Due to the noisy nature of flow MRI scans, there exists no true reference solution in such
real case scenarios. This makes it difficult to provide an argumentation about the value of
the assimilation procedure. Therefore, we have first generated a numerical reference solution
on the computational mesh to validate the approach on the aortic geometry. The numerical
solution will be considered as the ground truth in the quantification of the errors.
The generation of the ground truth was based on a forward steady-state flow simulation
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with an idealised BC at the inlet, resembling a parabolic flow profile. A kinematic viscosity
of 4.5 cP was considered and the resulting flow field with Re = 1 780 had a maximum flow
velocity of 0.8 m/s. In what follows, the ground truth will be denoted as uext. An artificial
noise with an isotropic VENC of 0.9 m/s and an SNR of 10 (see section 2.4.3 for more details)
was added on top of the ground truth. Following our usual notation, the noisy flow field (after
being decomposed into its divergence-free components) will be denoted as usnr.

To analyse the performance of the optimisation procedure for such a realistic aortic geo-
metry, the assimilation was first performed against the ground truth. Thus, the target flow in
the objective function (2.2.5) was set as ũt = uext and the algorithm 1 was executed with the
input parameters (usnr, gsnr,uext), where gsnr = usnr on Γi. The resulting flow field will be
denoted as uext

opt in the sense of the solution of data assimilation performed against the ground
truth. A quantitative comparison of the assimilation procedure against the ground truth in
terms of nRMSEd(uext

opt,uext) yielded 0.8, 1.1 and 1.4% for d = 2, 1, 0.5 respectively. The
errors are relatively small, which shows the feasibility of the approach in a complex geometry.

However, in a real case scenario, a ground truth is usually not available and the assimilation
cannot be performed against an already known solution. In order to avoid any bias in favour
of one of the solvers (the optimisation or the classical CFD), the assimilation was additionally
performed against the noisy solution. That is, algorithm 1 was additionally executed with the
input parameters (usnr, gsnr,usnr). In this case, the resulting flow field will be denoted as
usnr
opt. The classical CFD method was also executed, where the Dirichlet BC and the initial

conditions were set to the flow field usnr, and the resulting flow field will be denoted as
ucfd. In this sense, both solvers have no information whatsoever about the ground truth
prior starting the simulations. The errors, nRMSE1(x,uext) and FDE1(x,uext), evaluated
for x = {ucfd, ,u

snr
opt, u

ext
opt}, were 6.81 %, 4.77 %, 1.10 % and 0.12, 0.10, 0.01 respectively.

This reveals that the optimisation solver still performs better in comparison with the classical
CFD method, even if one assimilates against a noisy solution. The rather small difference
between 6.81 % and 4.77 % can be explained by the fact that the errors within the close
proximity of the wall are evaluated in the entire domain. However, it should be noted that
in this aorta geometry the size of the entire domain is much larger than the region where
the BCs have a true impact. Indeed, after the development length, whatever the BC is, the
solution tends to become that of a fully developed flow, and the errors are masked by this
fact. In other words, as the optimisation controls the velocities at the inlet, it is expected that
more representative errors are encountered near the inlet location. To investigate this, the
same errors were evaluated near the aortic root inlet (within a close proximity of the inlet),
instead of taking the entire domain. Let us define a further contracted subdomain domain
Esd ⊂ Ed ⊂ Ω as follows:

Esd = {x ∈ Ω | ∃y ∈ Γw, ∃z ∈ Γi, ‖x− y‖< d (mm) ∧ ‖x− z‖< s (cm) } . (2.5.1)
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Correspondingly, the errors nRMSE4
d and FDE4

d are defined within 4 cm proximity of the
inlet in the corresponding domain E4

d and will be used in the rest of this work. The errors,
nRMSE4

1(x,uext) and FDE4
1(x,uext), evaluated for x = {ucfd, ,u

snr
opt, u

ext
opt}, were 34 %,

17 %, 5 % and 0.22, 0.18, 0.03 respectively. These results are also summarized on the left-
hand side of table 2.4. It can be observed that, compared with the results of the classical
CFD method, there is a significant improvement in the outcome provided by the assimilation
(against the noisy solution) in the close proximity of the inlet. This is a remarkable finding
for the improvement of the flow field, especially at the aortic root, which is a place where flow
disturbances can easily lead to pathological modifications of the arterial wall.

x −→ ucfd usnr
opt uext

opt d −→ 2 1 0.5

nRMSE4
1(x,uext) 34 % 17 % 5 % nRMSE4

d(ucfd,u
snr
opt) 23 % 30 % 34 %

FDE4
1(x,uext) 0.22 0.18 0.03 FDE4

d(ucfd,u
snr
opt) 0.11 0.13 0.15

Table 2.4: On the left: Root mean square errors (nRMSE4
1(x,uext)) and flow direction errors

(FDE4
1(x,uext)) evaluated within the close proximity (4 cm) of the inlet and the near-wall (1

mm) domain (E4
1) , where x =

{
ucfd, u

snr
opt, u

ext
opt

}
. On the right: The corresponding errors

(nRMSE4
d(ucfd,u

snr
opt)) and (FDE4

d(ucfd,u
snr
opt)) reporting the difference between the solutions

of the classical CFD, ucfd, and the data assimilation procedure, usnr
opt.

Furthermore, we examined the difference between the solutions of the optimisation, usnr
opt,

and the classical CFD, ucfd. The errors, nRMSE4
1(ucfd,u

snr
opt) and FDE4

1(ucfd,u
snr
opt), were

23 %, 30 %, 34 % and 0.11, 0.13, 0.15 respectively. Thus, the difference between the data
assimilation procedure and the classical CFD method is approximately 30 %, which clearly
emphasizes to what extent the data assimilation is able to alter the CFD solution. The
right-hand side of table 2.4 summarises the differences between the two solvers.

2.5.5 Numerical Results Based on Flow MRI Scans

Numerical results are first presented for Re = 1 223 based on the flow data denoted by uResnr

(as described in section 2.5.3), mapped on the computational mesh domain and projected into
a divergence-free space. In what follows, uResnr with Re = 1 223 will be simply denoted as usnr.
The target flow in the objective function (2.2.5) was set as ũt = usnr. A low-pass filtered flow
field of this target flow with a cut-off frequency of 4 was used as the initial guess, which will
be denoted as (u)0 = u4.0

lpf . The frequency was chosen such that the flow field, being low-pass
filtered, was not oversmoothed and remained close to the actual target field. The maximum
magnitude of low-pass filtered flow data was 0.98 m/s, whereas for the target flow it was 1.06

m/s. Flow matching was performed in Ωs with s = 2.5 and the parameters were β = 10−5,
β1 = 10−6 and α = 0.25. That is, algorithm 1 was executed in the domain as represented in
figure 2.1(a) with the input parameters (u4.0

lpf , g
4.0
lpf ,usnr), where g4.0

lpf = u4.0
lpf on Γi.
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| | | | | | | |

Figure 2.13: Streamlines for the magnitudes of different velocity fields. The observations
considered here are the measured data with Re = 1 223

The flow patterns predicted by the optimisation algorithm and the classical CFD method
were first qualitatively compared against the measured data by visual inspection. Figure 2.13
shows the streamlines corresponding to the different velocity fields. Figure 2.14 illustrates
the magnitude of the velocity field in a cross-sectional slice covering part of the ascending
and descending aorta. Furthermore, figure 2.15 highlights the warps of the velocity profile
for a set of transverse slices. It can be observed that the measured velocity field, usnr, and
the optimised solution, uopt, are reasonably similar, whereas the flow field predicted by the
classical CFD method is relatively far from the measured data.

| | | | | | | |

Figure 2.14: Velocity magnitude in a cross-sectional slice for the different velocity fields. The
observations considered here are the measured data with Re = 1 223

The results were also analysed quantitatively. However, the observations have a noisy nature
and there is no true reference solution available in this case. Respectively, we evaluated the
errors between ucfd and uopt to quantify the differences of the flow fields predicted by the clas-
sical CFD method and the optimisation strategy. The flow matching norm, ‖uopt − ucfd‖fm,
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| | | | | | | |

Figure 2.15: Warps of the magnitudes of velocity fields at a set of cross-sectional slices. The
observations considered here are the measured data with Re = 1 223

resulted in 39% of the average velocity magnitude of optimised solution. In addition, the
errors were evaluated at the aortic root in the close proximity of the inlet. For d = {2, 1, 0.5},
the errors nRMSE4

d(ucfd,uopt) were 46 %, 51 % and 60 % respectively. This shows that the
differences in the predictions grow on getting closer to the wall. The normalised difference,
‖WSScfd−WSSopt‖ (see equations (2.5.2) and (2.5.3)), between the WSS fields correspond-
ing to the velocity fields ucfd and uopt was 43.72%. Furthermore, figures 2.16(a) and 2.16(b)
illustrate the magnitudes of the WSS fields, WSScfd and WSSopt, and figure 2.16(c) shows
their normalised difference field. In addition, figures 2.17(a) and 2.17(b) illustrate the pressure
fields of the predictions from the classical CFD method and from the optimisation strategy
respectively, whereas figure 2.17(c) shows their normalised difference field.

(a) (b) (c)

Figure 2.16: (a), (b): Magnitude fields of wall shear stresses, |WSScfd| and |WSSopt|, corres-
ponding to the velocity fields ucfd and uopt, (c): Normalised difference field, 100

Nwss
|WSSopt−

WSScfd| on Γw, where Nwss is as described in (2.5.2). The observations considered here are
the measured data with Re = 1 223
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(a) (b) (c)

Figure 2.17: Pressure fields corresponding to predictions from classical CFD, pcfd, from op-
timisation strategy, popt, and their normalised difference field, 100

Np
|popt − pcfd| on ∂Ω, where

Np = 1
VΩ

∫
Ω
|popt+pcfd|

2 dΩ . The observations considered here are the measured data with
Re = 1 223.

Notably, the better qualitative agreement between the observations and the optimised solu-
tion, and quantitatively significant differences between the optimised solution and the predic-
tions from classical CFD, support the fact that the optimisation delivers a better solution when
compared with the classical CFD approach. The improvement in the flow field is especially
emphasised at the aortic root, which is one of the most important clinically relevant locations
for the development of pathological alterations of the anatomical structures underlying the
arterial wall.

Nwss =
1

AΓw

∫
Γw

|WSSopt + WSScfd|
2

dΓ , (2.5.2)

‖WSSopt −WSScfd‖ =
100

Nwss

√
1

AΓw

∫
Γw

|WSSopt −WSScfd|2 dΓ . (2.5.3)

2.5.6 Sensitivity with Respect to Changes in Initial Guess

To analyse the performance and sensitivity of the optimisation strategy with respect to changes
in the initial guess, different flow fields were generated from the observations to be applied as
the initial guess flow. The observations were low-pass filtered with different cutoff frequencies
3.5 and 4.5, denoted as u3.5

lpf and u
4.5
lpf respectively. The maximum velocity magnitude was 1.16

m/s for the flow field u3.5
lpf , whereas it was 0.84 m/s for u4.5

lpf . In addition, a zero flow field, u0,
was prepared as the initial guess, that is u0 = 0 in Ω. Under the same conditions as in section
2.5.5, algorithm 1 was executed with input parameters (u3.5

lpf , g
3.5
lpf ,usnr), (u4.5

lpf , g
4.5
lpf ,usnr),
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(usnr, gsnr,usnr) and (u0, gsnr,usnr), where g3.5
lpf = u3.5

lpf , g
4.5
lpf = u4.5

lpf and gsnr = usnr on Γi

correspondingly.

Visual inspection revealed no remarkable differences in the final optimised velocity fields.
Table 2.5 shows the flow-matching norms, the averaged WSS and the number of iterations for
the optimisation starting with initial conditions usnr, u0, u3.5

lpf , u
4.0
lpf and u

4.5
lpf respectively. The

numerical experiments with modified initial guesses provide clear evidence that, for the steady-
state problem, the data assimilation algorithm is converging to the unique solution of the
problem regardless of the initial solution provided. Both the qualitative and the quantitative
results indicate that there were no significant changes in the solution with respect to changes
in the initial guess provided to the optimisation algorithm. However, the number of iterations
to reach convergence was rather sensitive to this initial guess.

Init. Guess (u)0 = usnr (u)0 = u0 (u)0 = u3.5
lpf (u)0 = u4.0

lpf (u)0 = u4.5
lpf

Numb. Iters. 955 854 640 492 251

‖ũt − u‖fm 37.17 % 37.01 % 37.03 % 36.84 % 36.91 %

avr(|WSSopt|) 2.83 2.85 2.85 2.87 2.88

Table 2.5: Results of optimised solutions (number of iterations, flow-matching norm and av-
erage WSS) for different initial guesses usnr, u0, u3.5

lpf , u
4.0
lpf and u4.5

lpf .

2.5.7 Data assimilation for different Reynolds numbers

In what follows, the measured and preprocessed data will now be denoted as uResnr representing
the flow fields with different Reynolds numbers, as described in section 2.5.1. Using the
available data with increasing flow rates and setting the initial guesses to 0, algorithm 1
was executed with the input parameters (0, gResnr,u

Re
snr), where g

Re
snr = uResnr on Γi and Re =

{ 1 223, 1 860, 2 105 }. The results are summarised in table 2.6. It can be observed that the
errors between the solutions predicted by the classical CFD and the optimised flow grow for
increasing Reynolds number and they grow more when getting closer to the wall, which is also
consistent with the corresponding validations in table 2.4 of section 2.5.4.

For the observed data with Re = 2 105, the flow field is almost in a transitional region.
Therefore, we additionally performed a mesh analysis for the computations relying on the
flow field u2105

snr . The consistency of the assimilation on two different additional meshes with
750 000 and 1 370 000 cells was examined. Table 2.6 additionally summarises the errors for the
different meshes.In general, it can observed that the flow field predicted by the classical CFD
method diverges by approximately 50% from the solution provided by the optimised flow.
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x = ucfd, y = uopt nRMSE4
2(x,y) nRMSE4

1(x,y) nRMSE4
0.5(x,y)

Re = 1 223, cells: 122K 46 % 51 % 60 %

Re = 1 860, cells: 122K 49 % 58 % 66 %

Re = 2 105, cells: 122K 64 % 73 % 80 %

Re = 2 105, cells: 750K 53 % 58 % 69 %

Re = 2 105, cells: 1 370K 46 % 49 % 61 %

Table 2.6: Root mean square errors (nRMSE4
d(ucfd,uopt)) and flow direction errors

(FDE4
d(ucfd,uopt)) evaluated within the close proximity (4 cm) of the inlet and the near-

wall (d mm) domain (E4
d) for different Re numbers, where d = {2, 1, 0.5}.

2.6 Conclusion

In this work, an optimise-then-discretise approach was developed for the flow control problem
using 4-D flow MRI data in the context of computational hemodynamics. The methodology
was validated against an analytical solution as well as against experimental MRI measurements
performed in a glass replica of a human aorta.
The proposed control algorithm was analysed in detail in order to assess the capabilities of

the methodology to reconstruct blood flow in near-wall regions, targeting the computation of
hemodynamically relevant quantities such as the wall shear stress.
A critical aspect in the assimilation procedure is the size and location of the domain, Ωs,

where the flow-matching is performed. In general, Ωs should be constructed such that it
contains almost all available and reliable information about the flow field in the luminal area
(spanning the entire domain from inlet to outlet), whereas it should avoid using the information
at near-wall locations.
The method proved to deliver physically consistent flow fields with substantial reduction of

noise present in the 4-D flow MRI measurements, outperforming the predictive capabilities of
standard CFD approaches. The proposed approach provides a systematic strategy to improve
the model predictions regarding clinically relevant hemodynamic data.
Overall, the flow control algorithm demonstrated robustness and feasibility towards recon-

struction of flow fields from partial 4-D flow MRI measurements under different flow regimes
with increasing Reynolds number. Reconstruction of the more complex flow structures ob-
served in transient fluid dynamics and account for turbulence are out of the scope of the
present work, and are matters of current research.
The proposed method is the groundwork for the development of a frequency-based approach

for periodic flows. Therefore, this study is the first of a sequence addressing the dynamic case
in the forthcoming chapters.
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3 Analysis for Harmonic Approximation

The following material in present chapter is based on the books of Königsberger [Kön03;
Kön06] and additionally on other books about functional analysis and spectral methods
[Can88; Sax01; Mus14; Can15].

3.1 Method of Weighted Residuals

Most of the mathematical models describing a physical phenomena progressing in time can
be written in the following form

∂u

∂t
= f(t,u), (3.1.1)

where u denotes a state variable and the term ∂u
∂t describes its temporal derivative. The term

f(t,u) on the right hand side (RHS) usually contains spatial derivatives, non-linear terms
and source terms. Naturally, the evolution equation (3.1.1) must be complemented with some
boundary and initial conditions. In what follows, we will assume (without loss of generality)
that the boundary conditions (BCs) are periodic in time. Further, we will require that u
belongs to a Hilbert space H, which ensures the existence of a scalar product along with
an L2-Norm for u (to be utilized in section 3.2 to perform a Fourier analysis based on this
function space).
The method of weighted residuals (MWR) [Cra56] dictates the sense in which the evolution

equation (3.1.1) is to be satisfied, and when a certain approximation is performed, it delivers
an approximation ũ of the state variable u. The MWR offers several alternatives (as reviewed
by Finlayson et al. [Fin66]) to approximate the exact solution for the type of equations like
(3.1.1). For k = 1, 2, . . . , n, aforementioned approximation can be considered as being a
linear combination of some (in a way appropriately chosen and known) time-dependent basis
functions ϕk : R → C with certain spatially varying expansion coefficients ck : Ω → C3. The
expansion is written as

ũ(t,x) =
n∑

k=−n
ck(x)ϕk(t), (3.1.2)

where ũ must satisfy prescribed boundary conditions for all possible selection of the expansion
coefficients ck. The selection of basis functions ϕk defines the numerical methodology. The
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choice of infinitely differentiable global polynomials leads to the so-called spectral methods
[Hes07; Can07]. These are most notably the Fourier spectral methods [Che98; Bue14; Boy01],
Chebyshev spectral methods [Boy01; Bré18] and Legendre spectral methods [Mad81; Lee90],
which are distinguished by the choice of ϕk as trigonometric polynomials (see section 3.2),
Chebyshev polynomials or Legendre polynomials, respectively. In turn, the division of the
spatial domain of interest into smaller subdomains and the application of certain basis func-
tions with compact support results in well-known numerical methods, such as finite-elements,
finite-differences or finite-volumes.

The sense in which ũ satisfies the equation (3.1.1) depends upon the weighing of the residual
with appropriately chosen weight functions $k : R→ C. Thus, the residual R will not vanish
everywhere in the considered time domain. In fact, the goal is to have the quantity

R(ũ) =
∂ũ

∂t
− f(t, ũ). (3.1.3)

as small as possible, something that is expected to happen when n is increased in equation
(3.1.2)). Let us consider a time domain interval T := [−π, π] of length 2π. The MWR follows
from choosing a basis function ϕk for the field ũ and from weighting the residuals with some
functions $k. Finally, it is required that the integral of the weighted residuals on T is nullified
[Fin72]: ∫

T
R(ũ)$k(t)dt = 0. (3.1.4)

There are several alternatives for the choice of the weight functions $k(t). These methods
can be listed as the Galerkin approach, integral and sub-domain methods, method of least
squares, collocation methods and tau methods. A historical overview about these and other
possible choices along with their differences from or connections to each other can be found
in Finlayson et al. [Fin66]. In addition, a detailed list of references including the further
developments of these different approaches is provided by Finlayson [Fin13].

The construction of spectral methods is not only based on the choice of basis functions ϕk
as the global polynomial functions, but also on the particular choice of the weight functions
$k(t). The most commonly used and established spectral methods with respect to the choice
of weight function $k(t) are the Galerkin, tau or collocation approaches [Can88].

The spectral Galerkin approach considers infinitely differentiable polynomials as the weight
functions, which are essentially the same as the basis functions. As an example, consider
the trigonometric polynomials as the basis functions, thus ϕk = eikt. In this case (which is
essentially the Fourier spectral method) the Galerkin approach corresponds to the application

of trigonometric weight functions, $k =
1

2π
e−ikt, which satisfy the orthonormality condition∫

T ϕk(t)$l(t)dt = δkl, where δkl is the Kronecker delta function. The Galerkin approach
requires that (3.1.4) is satisfied for each weight function. In addition, usually the integration
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by parts is applied and the Galerking approach ensures that each BC in the resulting set of
equations is also satisfied individually. In contrast, the spectral tau methods are similar in the
way of enforcing the partial differential equations, but they differ in the fact that the weight
functions do not verify the BCs. This results in the necessity of introducing additional sets of
equations into the system, in order to enforce the BCs [Can06].
The spectral collocation approach introduces a set of sample points (the so-called collocation

points) and requires that (3.1.3) is satisfied at exactly these points [Mal85; Sun16; Gom16].
In this case, the weight functions are the Dirac delta functions correspondingly shifted at the
N collocation points

$k(t) = δ(t− tj), j = 1, 2, · · · , N, tj =
j2π

N

As a result of this, the integral expression (3.1.4) becomes∫
T

R(ũ)δ(t− tj)dt = 0, j = 1, 2, · · · , N (3.1.5)

which finally results in a set of N equations

{
R(ũ) = 0

} ∣∣
tj
, j = 1, 2, · · · , N (3.1.6)

A detailed review about the early developments and first uses of collocation approaches can
be found in Canuto et al. [Can06] (Chap. 1, Sec. 1.1, Para. 4).

3.2 Fourier Analysis

Linear combinations of basic trigonometric functions, such as cosine and sine waves, posed as
infinite sums are already well-known as candidate solutions to physical problems. Most notably
such decomposition was reported some centuries ago by Fourier and Bernoulli. Following their
findings, this field was further developed and established by many excellent mathematicians,
especially Weierstrass, Cauchy and Riemann. A historical overview about these developments
can be found in Bressoud [Bre06].

3.2.1 Fourier series

Decomposition of a function into linear combination of more basic functions can be best
analysed in the framework of Hilbert spaces. Let H := L2(−π;π) be an abstract Hilbert space,

where L2(V ) :=

{
f : A→ C |

∫
V
|f(t)|2dt <∞

}
. Further, we define the scalar product

〈a, b〉 :=
1

2π

∫ π

−π
a(t)b(t)dt. (3.2.1)
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For w ∈ H, a norm ‖·‖2 is induced on the space by the scalar product 〈·, ·〉

‖w‖2 :=
√
〈w,w〉 =

√
1

2π

∫ π

−π
|w|2 dt. (3.2.2)

In addition to the concept of a distance on H, also the concept of orthogonality is introduced
by the scalar product. Two vectors a, b are said to be orthogonal if 〈a, b〉 = 0.

For a locally integrable 2π-periodic function w ∈ H, the Fourier transformation is given by
the function ŵ : Z→ C, where

ŵ(k) =
1

2π

∫ π

−π
w(t)e−iktdt. (3.2.3)

With ŵ(k) = ŵk, the sequence (ŵk) stands for the Fourier coefficients, and is called the discrete
spectrum of w. The n-th Fourier polynomial, Snw, for w is defined by the trigonometric
expansion

Snw(t) :=

n∑
k=−n

ŵ(k)eikt. (3.2.4)

Most of the engineering problems deal with real functions. Hence, a corresponding repres-
entation of the Fourier polynomial would simplify the theoretical formulations, which then
leads to the derivation of final real equations for a considered problem. Such simplification
can be achieved by setting âk = ŵ(k) + ŵ(−k), b̂k = i(ŵ(k)− ŵ(−k)) and replacing eikt with
cos(kt) + i sin(kt) in (3.2.4). This results in

Snw(t) =
â0

2
+

n∑
k=1

âk cos(kt) + b̂k sin(kt), (3.2.5)

where âk and b̂k have the following integral representation

âk =
1

π

∫ π

−π
w(t) cos(kt)dt, k = 0, 1, 2, · · · , (3.2.6)

b̂k =
1

π

∫ π

−π
w(t) sin(kt)dt, k = 1, 2, · · · . (3.2.7)

Also, it follows that, if w is a real-valued function, then âk and b̂k become real numbers.

The sequence of the Fourier polynomials, Snw, results in the Fourier series

Sw(t) = lim
n→∞

Snw(t) =
â0

2
+

∞∑
k=1

âk cos(kt) + b̂k sin(kt). (3.2.8)

The limit exists in case of convergence, which is actually induced by the scalar product (3.2.1).
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If the Fourier series of w converges at a point t, the following equation holds

Sw(t) =
w(t−) + w(t+)

2
. (3.2.9)

At a point t of continuity, it is Sw(t) = w(t). The equation (3.2.9) follows from the ansatz of
Fejér and the fact that the mean of Fourier polynomials correspond to the Fejér polynomials
(as illustrated by Königsberger [Kön03]). A detailed convergence analysis is out of the scope of
this work. Interested readers are referred to [Kön03] for the point-wise convergence, uniform
convergence and quadratic mean convergence of the Fourier series.

3.2.2 Discrete Fourier Transform

For signals known at a finite number N of time samples tj =
2πj

N
with j = 1, 2, · · · , N , an

equivalent of the continuous Fourier transformation (3.2.3) can be represented by the discrete
Fourier transformation defined as

̂̂w(k) =
1

N

N∑
j=1

w(tj)e
−iktj . (3.2.10)

Concerning the orthogonality relations, (3.2.10) can be inverted and the resulting trigonomet-
ric polynomial (similar to (3.2.4)) serves as an interpolant of w at time instants tj ,

Inw(t) :=

n∑
k=−n

̂̂w(k)eikt. (3.2.11)

Further, let us define

̂̂ak := ̂̂w(k) + ̂̂w(−k), (3.2.12)̂̂
bk := i( ̂̂w(k)− ̂̂w(−k)). (3.2.13)

Inserting (3.2.10) in (3.2.12) yields the discrete cosine transform

̂̂ak =
1

N

N∑
j=1

w(tj)e
−iktj +

1

N

N∑
j=1

w(tj)e
iktj =

1

N

N∑
j=1

w(tj)
[
e−iktj + eiktj

]
=

1

N

N∑
j=1

w(tj)
[

cos(ktj)− i sin(ktj) + cos(ktj) + i sin(ktj)
]

=
2

N

N∑
j=1

w(tj) cos(ktj) (3.2.14)
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Following (3.2.13), the derivation of the discrete sine transform is analogous

̂̂
bk =

2

N

N∑
j=1

w(tj) sin(ktj). (3.2.15)

Finally, the interpolant (3.2.11) can be written in a more convenient way

Inw(t) =
̂̂a0

2
+

n∑
k=1

̂̂ak cos(kt) +
̂̂
bk sin(kt). (3.2.16)
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4 On the Potential of Harmonic Balance in
Cardiovascular Fluid Mechanics

Abstract

The application of fluid mechanics concepts in the domain of cardiovascular research has
turned out to be very valuable for the analysis of blood flow in the arteries and its interaction
with the arterial walls. The typical flow regime is unsteady and periodic in nature as dictated
by cardiac dynamics. Most studies featuring computational simulations have approached the
problem exploiting the traditional mathematical formulation in the time domain, an approach
that can be extremely time-consuming. This work presents the application and exploration of
the harmonic balance method as an alternative numerical modeling tool to resolve the dynamic
nature of blood flow. The method takes advantage of the pulsatile regime to transform the
original problem into a family of equations in frequency space, while the combination of the
corresponding solutions yields the periodic solution of the original problem. As a result of this
study we conclude that only a few harmonics are required for resolving the fluid flow accurately,
for the regimes encountered in the cardiovascular system, and the method is worth of further
investigation in this field. Also, the harmonic balance approach has been compared with a
traditional method in terms of computational effort and accuracy. Finally, a realistic set-up
based on a glass replica of human aorta is employed to illustrate the potential of harmonic
balance method in the context of cardiovascular fluid mechanics.

4.1 Introduction

In order to assess clinically relevant hemodynamic parameters, different imaging modalities,
particularly those capable of providing insights in the velocity components of the blood flow,
have received considerable attention [Hoc04; Ren06; Kat07; Mar12; Kol16]. Notably, phase-
contrast magnetic resonance imaging (also known as 4D flow MRI) has gained relevance as it
offers several advantages. Velocity measurements can be performed in-vivo and non-invasively.
Moreover, 4D flow MRI offers full-field velocity components of the blood flow, that is, full
three-dimensional spatial encoding as a time series data [Mar12].
However, 4D flow MRI is not able to accurately predict some flow related quantities, such

as wall shear stress, owing to its limitations such as low resolution and signal-to-noise ratio
(SNR). Furthermore, it also suffers from partial volume effects [Tha95]. In spite of this, 4D
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flow MRI can still provide useful information, when properly integrated with complementary
approaches to compensate its shortcomings. Computational fluid dynamics (CFD), relying on
partial differential equations, is based on first principles and can provide an accurate picture
of the blood flow phenomenology. In this regard, such mathematical formulation requires the
definition of boundary conditions (BCs) for the specific arterial district under consideration,
as well as for the specific patient under study. However, blood flow simulations based on CFD
are known to be quite sensitive to the BCs [Wak09].

In the last two decades, there has been a considerable amount of research addressing the
combination of the advantages offered by computational fluid dynamics (CFD) and 4D flow
MRI to estimate the blood flow in patient-specific settings [Zha03; Pap03; Mar04; Ray08;
Iso10; Gha16; Col18]. Many of such studies apply the measured velocity field as BC for the
CFD simulations. Two approaches to define these BCs have been considered. Either the
prescription of the flow rates retrieved from the observations or the prescription of point-
wise velocity data mapped at the boundaries. Initially these studies considered steady-state
scenarios for simplification purposes. However, the flow is heavily influenced by the pulsatile
nature of the heart beat, which results in unsteady and periodic flow phenomena. In this
sense, more recent studies considered transient CFD simulations supported by the observations
(either flow rate or point-wise velocity BCs) obtained from 4D flow MRI. In Zhao et al. [Zha03],
the quantification of pulsatile flow was studied in a carotid bifurcation phantom, where the
experiments were based on a set of 2D slices. The flow waveforms were applied as BCs.
Further studies also applied volumetric flow rates as inflow BCs, considering cerebral aneurysm
or carotid artery bifurcation [Ray08; Gha16]. A validation study of steady inspiratory flow
in models of human airways was reported by Collier et al. [Col18]. They use time-resolved
1D velocity profiles obtained from phase-contrast MRI at 2D slices and perform transient
CFD simulation based on the obtained flow rates. Moreover, the axial velocity component
was applied as BC for transient CFD studies in carotid bifurcation models [Pap03; Mar04],
whereas fully point-wise imposition of the velocity field was considered by Isoda et al. [Iso10] to
study the hemodynamics in intracranial aneurysm. In all of these studies CFD was combined
and compared with flow MRI in terms of clinically relevant parameters, such as the evaluation
of wall shear stresses (WSS).

When performing pulsatile flow simulations in computational hemodynamics, the traditional
approach consists in the time-discretisation of the PDEs using adequate numerical schemes
which require the definition of boundary conditions at every time instant. Sparsely measured
velocity profiles can be interpolated to generate velocity fields to be applied as dynamic BCs
for each time instant. Most of these studies simply apply linear interpolation [Zha03; Wak09;
Iso10; Mar04], whereas other studies did not mention how the measured data was interpolated
to prescribe the time-dependent velocity boundary conditions [Pap03; Ray08; Gha16; Col18].
In addition, Miyazaki et al. [Miy17] performed a validation study in the aortic arch using 4D
flow MRI and considered a spline interpolation for transient CFD simulations.
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With regards to the temporal discretisation, in this work we propose to employ an al-
ternative and effective approach which, up to the authors’ knowledge, is novel in the field of
computational hemodynamics. The proposed method is based on the Fourier decomposition of
the velocity field and enables the evaluation of its derivative with respect to time in frequency
space. Furthermore, it offers the crucial advantage that the new temporal discretisation can
be adjusted to be registered with the time instants corresponding to available observations.
This eliminates the necessity for completing the missing data for all time steps, as required
in conventional methods. Hence, simple linear interpolations (or similar strategies) of the
measured fields into the infinitesimal time steps are not needed. In fact, the proposed method
can be considered as an alternative interpolation approach, which proves to be accurate and
remarkably effective in terms of computational time.
In addition, and for comparison purposes, we describe a method to provide traditional time

discretisation schemes with the missing time dependent BCs. Instead of using a simple linear
interpolation, this method performs an inverse problem based on penalized regression spline.
As a result of this, the method aims to reconstruct the inflow BCs at all time instants present
in the time discretization, for which the observations are not available.
The proposed methods were tested and analysed in the context of an arterial geometry

corresponding to a 3D physical phantom aorta. First, periodic solutions were numerically
manufactured to be used as the ground truth for validation purposes. Second, a real 4D flow
MRI acquisition was performed using the phantom aorta. Finally, the proposed methods were
tested based on these observations and compared in terms of accuracy and effort.

4.2 Materials

A phantom made of glass is utilised to mimic the human aorta, covering the aortic root,
the ascending and descending aorta. Branches were not considered. This geometry has been
employed

• to manufacture numerical solutions, as explained in Section 4.4.1;

• as a phantom to perform time-resolved phase-contrast MRI acquisition (4D flow MRI),
as explained next.

The manufactured solution is merely used to validate the approach based on a numeric-
ally generated ground truth, whereas the 4D flow MRI acquisition is used as an additional
verification process, aimed to show the feasibility of the proposed methods using real in-vitro
dynamic flow measurements.

4.2.1 Experimental Setup for 4D flow MRI

In chapter 2, section 2.5 an experimental setup has been provided to perform steady-state flow
measurements. In the present section, the same environment and tools were used to perform
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a time-dependent in-vitro experiment in the glass replica of human aorta. A schematic view
of the experimental environment can be observed in Figure 2.11.

The working fluid was created with a mixture of 24 liter H2O, 46 gr carboxymethyl cellulose
(CMC) to increase the viscosity and 10 gr sulfate as a contrast agent to increase the signal
magnitude. The CMC medium correspondingly increased the viscosity of the working fluid to
an approximate level of blood viscosity in the aorta, which resulted in 4.5 cP at a temperature
of 29◦ C. Finally, the reservoir was filled with the working fluid.

A dynamic data acquisition with a 3D spoiled Gradient-Echo sequence and flow encoding
gradients was performed under laminar flow conditions. Linear phase correction was applied
to compensate for the background phase induced by eddy-current. Controlling the flow rates,
a Reynolds number of at most 1100 was achieved. The flow model in this work does not
account for turbulence, which is a matter of current research.

Concerning the acquisition parameters, time of repetition and echo (TR/TE) were 2.7/4.7

ms, velocity encoding (VENC) was 150
cm
s

and field of view (FOV) was [160×260×50] mm3.

The acquired voxel size was 1.5 mm3 isotropic, along with a time resolution of 33 ms. The
period of one heart cycle was chosen to be 0.825 seconds and 25 data were acquired per cardiac
cycle. Finally, the obtained volumetric flow rate resulted in a wave containing two peaks of
different magnitudes (see Figure 4.1(a)). The first peak is of higher magnitude (at the same
time the peak amplitude of the wave) and represents the systolic phase of the cardiac cycle.

4.2.2 Data Preprocessing and Geometry Generation

Image reconstruction from 4D flow MRI data acquisition yields 3D CINE magnitude images
(anatomical data) and three phase difference images (velocity data), corresponding to the
components of the 3D velocity field [Mar12]. Following the reconstruction process, obtained
raw measurements (anatomical and velocity data) underwent a set of preprocessing tasks,
which have been comprehensively described in sections 2.3 and 2.5.3. Hence, in-depth details
are skipped here for the sake of brevity.

Three computational meshes with different numbers of cells were generated using the avail-
able exact geometry from 3D print of the aortic replica. The cells of the meshes were mainly
made up of hexahedras, along with a smaller number of polyhedras, prisms and tetrahed-
ral elements. The total numbers of cells were approximately 215 000, 440 000 and 750 000,
whereby these computational meshes will be denoted as M2, M4 and M7 respectively.

It is worthy of note that the velocity data retrieved from the experimental setting is initially
not aligned with the exact geometry of the aortic replica. In order to map the measured
velocity components onto the computational geometry, a registration process is required. For
this purpose, the aortic replica was segmented from the anatomical data (which is already
aligned with the velocity data) and registered with the exact geometry. Applied methodologies
for registration and segmentation are described in detail in sections 2.3.2 and 2.5.3.
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The measured velocity components in the observational domain are denoted as umri. Owing
to the noise nature of phase-contrast flow MRI measurements, a universal outlier detection
scheme was applied on umri prior to the registration process. The resulting denoised flow field
in the observational domain, after the elimination of potential spurious vectors, is denoted
by u◦mri. Relying on the segmentation and registration processes explained in the previous
paragraph, the denoised flow field u◦mri was linearly mapped from the observational domain to
the computational mesh domain, rendering the velocity field ūmri. Finally, a projection into
a divergence-free space is applied to the field ūmri, resulting in a divergence-free flow field in
the computational domain, which is denoted as ũ?. This projection step was inspired by the
Helmholtz-Hodge decomposition (HHD). Applying the projection step is advantageous in two
aspects: first, it helps to fill in the gaps generated after the elimination of the detected outliers;
second, it recovers back the divergence-free property of the flow field which is otherwise lost on
account and nature of the acquisition and preprocessing stages. In what follows, only the flow
field ũ? is used as the so-called observational data for the application of the methodologies
proposed in this work. All the outlined preprocessing steps are described in detail in [Kol18],
and can be summarized as follows

umri
Outlier Detection
==========⇒ u◦mri

Registration
=======⇒ ūmri

Space Projection
==========⇒ ũ?

umri : Reconstructed flow field from 4D flow MRI,

u◦mri : Denoised flow field in observational domain (usually coarse mesh),

ūmri : Flow field mapped in the computational domain (fine mesh),

ũ? : Divergence-free flow field defined in the computational domain.

4.3 Methods

Let Ω ⊂ R3 be an open set with boundary ∂Ω = Γi ∪ Γo ∪ Γw. See Figure 4.1(b), where
Γi,Γo and Γw represent the inlet, outlet and wall boundaries respectively. An incompressible
Newtonian fluid is assumed to flow through Ω in the time interval T := [0;T ], as the result of
prescribed T -periodic inflow data at Γi. The velocity field prescribed at the inlet is charac-
terized by the function g = g(t,x) = g(t + mT,x) : T × Γi → R3 with m ∈ N. The density
and dynamic viscosity of the fluid are denoted as ρ and µ respectively.

4.3.1 Mathematical Model

Setting U =
{
v ∈H1(Ω) | v|Γw = 0

}
, the variational form of the Navier-Stokes equations,

in which the boundary datum g over Γi is enforced through a Lagrange multiplier, say r, can
be written as follows: for t ∈ T, given the initial guess u(0,x) = u(x){0}, find (u, p, r) ∈
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Figure 4.1: Flow rate waveform obtained from 4D flow MRI acquisition in the observational
flow domain Ω, whose boundaries are Γi : inlet, Γo : outlet and Γw : wall.

U × L2(Ω)×H−
1
2 (Γi), such that∫

Ω

[
ρ
∂u

∂t
· û+ ρ(∇u)u · û+ 2µ∇su · ∇sû− p div û− p̂ divu

]
dΩ (4.3.1)

=

∫
Γi

r̂ · (u− g) dΓ +

∫
Γi

(r · û) dΓ ∀ (û, p̂, r̂) ∈ U × L2(Ω)×H−
1
2 (Γi) .

Denoting
∂u

∂t
= ∂tu and integrating by parts in equation (4.3.1) yields

∫
Ω

[
ρ(∂tu) · û+ ρ(∇u)u · û− µ∆u · û+∇p · û

]
dΩ−

∫
Ω
p̂ divu dΩ

+

∫
∂Ω

[
− pn+ 2µ(∇su)n

]
· û dΓ (4.3.2)

=

∫
Γi

r̂ · (u− g) dΓ +

∫
Γi

(r · û) dΓ ∀ (û, p̂, r̂) ∈ U × L2(Ω)×H−
1
2 (Γi) .

Thus, the variational equation (4.3.1) implies the following strong formulation

ρ [ ∂tu+ (∇u)u ]− µ∆u+∇p = 0 in T× Ω , (4.3.3)

divu = 0 in T× Ω , (4.3.4)

u = 0 on T× Γw , (4.3.5)

u = g on T× Γi , (4.3.6)

(−pI + 2µ∇su)n = r on T× Γi , (4.3.7)

(−pI + 2µ∇su)n = 0 on T× Γo , (4.3.8)

u(0,x) = u(x){0} in Ω , (4.3.9)

where the strain rate tensor is defined as ∇s(·) = [∇(·) + (∇(·))T ]/2.
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4.3.2 Approaches to Time Discretization

When performing numerical simulations in the context of computational hemodynamics, a
typical approach is trying to take into account as many reliable measured values as possible.
In the present case, it was postulated that the velocity field is known on boundary Γi (see
equation (4.3.6) where the datum is g). In the case of transient problems, as in the present
study, such boundary condition is time-dependent. In real world problems, measured data is
provided only at a sparse set of time instants. Hence, an effective and reliable approach is
necessary for an efficient completion of the boundary data at missing time instants, based on
the measured data.
This work proposes two different approaches to tackle time-dependent fluid flow simulations

and compares the methods in terms of accuracy and efficiency. The first method is the classical
approach which relies on the traditional time discretization of the system of partial differential
equations seen in the previous section. In this case, the boundary data is constructed from the
sparse set of instant point measurements using cubic splines, rendering a continuous function
s. This approach will be termed as “the traditional method using penalized regression spline”.
The second strategy, and the main contribution of the present work, takes a different path

which proves to be computationally more efficient. It relies on a temporal discretization of the
momentum equation (4.3.3) based on a trigonometric polynomial in time. This method is also
known as the harmonic balance (HB) approach, which was previously applied in different fields
with preliminary results mostly based on 2D flow simulations or idealized cylindrical geomet-
ries [Sto72; Hal02; Bac05; Hal13; Gar13; Kar14; Cvi16]. To the best of authors’ knowledge,
the HB method is investigated in this work for the first time in the field of computational
hemodynamics.
In both methods, sparsely distributed dynamic acquisitions obtained from 4-D flow MRI

are employed as observational data. The main contribution of this work is the assessment of
the HB method to conduct hemodynamic simulations in the context of realistic geometries
and realistic boundary data. To this end, the traditional approach (using penalized regression
spline method) is employed to serve as reference method for comparison purposes, in terms of
accuracy and computational efficiency.

4.3.3 Traditional Method Using Penalized Regression Spline

Let ũ?(tk) be some set of measurements acquired at time instants tk, for k = 1, 2, · · · , N . The
penalized regression spline (PRS) method delivers a smooth function, denoted by s, as an
approximation of the observations ũ?(tk). The regression model functions are of class C2 and
correspond to cubic splines with uniformly distributed nodes. The approximation does not
aim to enforce an exact agreement with the observed data, as this would be inappropriate due
to the noisy nature of the MRI velocities. Instead, the PRS method is cast as a mathematical
optimization problem, which aims to minimize the sum of squared fitting error relaxed by a
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Tikhonov regularization term weighted by λ. The minimizer function defines a time dependent
signal s that plays the role of the datum, g, required at the inlet boundary in equation (4.3.6).
For each spatial position in Γi, the interpolation in time reads

s(t) = argmin
a in Ω

(∑
k

|ũ?(tk)− a(tk)|2 + λ

∫
|a′′(τ)|2dτ

)
for t ∈ T. (4.3.10)

This strategy defines a time continuous function and allows the definition of the BC (g = s

on Γi) at any time instant in the time-discrete problem when utilizing the traditional approach.

4.3.4 Harmonic Balance

In what follows, we will consider a time discretisation of the momentum equation (4.3.3),
which can be expressed in the following compact form

∂tu = f(t,u), (4.3.11)

where f = −
[
(∇u)u − ν∆u +

∇p
ρ

]
(with ν :=

µ

ρ
being the kinematic viscosity), which

encompasses the convective, diffusive, pressure forces, and possibly other force terms.
Equation (4.3.11) has the form of an evolution equation (see (3.1.1)). Hereinafter, the

theoretical material provided in chapter 3 will be systematically employed. Both sections 3.1
and 3.2 contain an abstract description aimed to present the theoretical framework in a general
form. Hence, for example, a 2π-periodic function in the time domain [−π;π] was considered
in chapter 3 along with its approximation based on complex valued expansion coefficients. In
the context of hemodynamic simulations, however, the dependent state variable of interest,
such as the velocity u, is actually a T -periodic real vector-valued function in time. Therefore,
in what follows, the time interval T := [0;T ] is considered instead and, in addition, real-valued
expansion coefficients are used for the approximation of u.
Let ϕk : R→ R and ck : Ω→ R3 be sequences of real valued basis functions and expansion

coefficients respectively. Further, let ũ(t,x) be an approximation of u (see (3.1.2)) as follows

ũ(t,x) =
2n+1∑
k=1

ck(x)ϕk(t). (4.3.12)

According to the method of weighted residuals (MWR) as explicitly described in section 3.1,
we are interested in weighting the momentum residual R(ũ) = ∂tũ − f(t, ũ) with several
weight functions $ : R→ R and requiring their integral to be identically zero,∫

T
R(ũ)$(t) dt = 0. (4.3.13)

The selection of the basis functions ϕk from the following set of trigonometric functions
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leads to Fourier spectral methods (this and other possible choices are described in section 3.1)

T := { 1, cos(ωt), sin(ωt), cos(2ωt), sin(2ωt), · · · , cos(nωt), sin(nωt) }, (4.3.14)

where T represents a complete L2-orthogonal system on T and ω = 2π
T is the angular frequency.

This choice corresponds to the n-th Fourier polynomial

ũ(t,x) =
ûc0(x)

2
+

n∑
k=1

[
ûck(x) cos(kωt) + ûsk(x) sin(kωt)

]
, (4.3.15)

where ûck for k = 0, 1, ..., n and ûsk for k = 1, ..., n form the discrete spectrum of u (the
readers are referred to section 3.2 for a mathematical description of the spectrum and the
derivation of (4.3.15)).

The Fourier spectral method is further distinguished by the choice of the weight function (or
arbitrary variation) $ in the weighted equation (4.3.13). In general, this choice distinguishes
the approaches which are usually named as the Galerkin, tau or collocation methods (section
3.1 describes these methods and their differences). In this work, the collocation Fourier spectral
method is employed, which considers the weight function to be the Dirac delta function $ =

δ(t− tj) shifted at the so-called collocation points

tj :=
j T

2n+ 1
, j = 1, 2, · · · , 2n+ 1. (4.3.16)

The time instants tj are equidistantly placed on T and their number is 2n + 1, which is in
correspondence with the number of terms in the Fourier polynomial (4.3.15). Following the
collocation approach, (4.3.13) becomes∫

T

[
∂tũ− f(t, ũ)

]
δ(t− tj) dt = 0. (4.3.17)

This forces the momentum residual R(ũ) to be exactly zero at each tj , yielding 2n+1 equations
(recall that −f(t,u) ≈ −f(t, ũ)){

∂tũ− f(t, ũ) = 0
} ∣∣∣

tj
, j = 1, 2, · · · , 2n+ 1. (4.3.18)

Finally, replacing (4.3.15) into (4.3.18) and applying the derivative, the following 2n + 1

equations are obtained in the frequency domain

n∑
k=1

[
− ûckkω sin(kωtj) + ûskkω cos(kωtj)

]
= f(tj , ũ(tj ,x)), j = 1, 2, · · · , 2n+ 1 (4.3.19)

Solving the equations in (4.3.19) would yield the Fourier coefficients (or the discrete spec-
trum) of ũ. The Fourier coefficients have to be computed numerically. However, there are
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serious challenges and obstacles in solving for the Fourier coefficients, essentially due to the
existence of non-linearities in the system [Can88]. Moreover, the evaluation of harmonic fluxes
requires O(n3) operations, which makes the problem (of solving for Fourier coefficients) com-
putationally very expensive and practically unfeasible [Hal02; Hal13]. In addition, since we are
interested in solving for the approximation ũ of the state variable u, the information gained
in the frequency domain must be effectively reconstructed in the time domain. The most
effective way to overcome all these difficulties lies in the application of the discrete Fourier
transformation (DFT) (see section 3.2.2). Using the DFT, a signal known at a finite num-
ber of time samples tj is transformed into its discrete spectrum, which is in a linear relation
to the signal. Therefore, this process can be inverted (through the iDFT), recovering back
the information in the time domain. For the approximation ũ, the inversion results in an
interpolant of the signal (see (3.2.16) for detailed derivation)

Inũ(t) =
̂̂uc0
2

+
n∑
k=1

̂̂uck cos(kωt) + ̂̂usk sin(kωt), (4.3.20)

where ̂̂uck and ̂̂usk are the discrete spectrum of ũ related to the DFT.

For i = 1, 2, · · · , 2n+1, let ũ i := ũ(ti,x) be the approximated velocity field at time instant
ti. The DFT of ũi for the discrete spectrum ̂̂uck and ̂̂usk are defined by the corresponding
discrete cosine and sine transforms as follows:

ûck ≈ ̂̂uck =
2

2n+ 1

2n+1∑
i=1

ũ i cos(kωti), (4.3.21)

ûsk ≈ ̂̂usk =
2

2n+ 1

2n+1∑
i=1

ũ i sin(kωti). (4.3.22)

Derivations of the discrete cosine and sine transforms are provided in section 3.2.2 followed
by the equations (3.2.14) and (3.2.15). Inserting the discrete spectrum (4.3.21) and (4.3.22)
related to the DFT into the equations in (4.3.19) and using the trigonometric identities,
sin(α± β) = sin(α) cos(β)± cos(α) sin(β), results in the following approximation,

n∑
k=1

[ 2kω

2n+ 1

2n+1∑
i=1

ũ i
(

sin(kωti) cos(kωtj)− cos(kωti) sin(kωtj)
) ]

= f(tj , ũ(tj ,x))

⇒ 2ω

2n+ 1

2n+1∑
i=1

n∑
k=1

kũ i sin(kω(ti − tj)) = f(tj , ũ(tj ,x)), j = 1, 2, · · · , 2n+ 1 (4.3.23)

Moreover, setting N = 2n+ 1 and defining the constants

cij =
2ω

N

n∑
k=1

k sin(kω(ti − tj)), i, j = 1, 2, · · · , N , (4.3.24)
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one finally observes in (4.3.23) the harmonically balanced momentum equations

N∑
i=1

ũ icij + (∇ũ j)ũ j − ν∆ũ j +
∇pj

ρ
= 0 , j = 1, 2, · · · , N, (4.3.25)

where (·)j represent the fields (·) at time instants tj .
Regarding the momentum equation (4.3.3), the frequency domain equations are now ex-

pressed in terms of the time domain state variables at each equidistantly placed time instant
tj . Furthermore, note that the time derivative term, transformed through the DFT, is respons-
ible for coupling the velocity fields ũ i, i = 1, 2, · · · , N , from all time instants. In this manner,
the original problem has been cast into the form of a set of coupled fluid flow problems, where
the coupling among equations is realized through a linear zero order term, which is defined
by the function Z : U ×

(
N ∩ [1;N ]

)
→ U as follows:

Z (v, j) =

N∑
i=1

vicij . (4.3.26)

Furthermore, each one of the transformed equations for j = 1, 2, · · · , N seen in (4.3.25)
is supplied with the corresponding BC, represented by gj , which is the observation of the
velocity field at the corresponding time tj . Finally, the set of coupled equations in (4.3.25)
yields the periodic solution of the original problem.
Finally, following the HB approach, the Euler-Lagrangian formulation of the temporally dis-

cretised incompressible Navier-Stokes equations reads: for j = 1, 2, · · · , N and gj ∈ H
1
2
00(Γi)

(the space of traces over Γi of H1(Ω) functions that are zero over the boundary γi of surface
Γi), determine (ũ j , pj , rj) ∈ U × L2(Ω)×H−

1
2 (Γi) such that

Z (ũ, j) + (∇ũ j)ũ j − ν∆ũ j +
∇pj

ρ
= 0 in Ω , (4.3.27)

divuj = 0 in Ω , (4.3.28)

uj = 0 on Γw , (4.3.29)

uj = gj on Γi , (4.3.30)

(−pjI + 2µ∇suj)n = rj on Γi , (4.3.31)

(−pjI + 2µ∇suj)n = 0 on Γo , (4.3.32)

j = 1, 2, · · · , N .

4.3.5 Numerical Methods

The finite volume method was adopted to approximate in space the partial differential equa-
tions (4.3.3)–(4.3.9) and (4.3.25). As seen in Section 4.3.4, the time discretisation of the
momentum equation (4.3.3) in the HB approach leads to the set of harmonically balanced
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momentum equations (4.3.25). For the PRS method (see Section 4.3.3), in contrast, the mo-
mentum equation was discretised in time using backward differentiation, an implicit scheme of
second order accuracy [Jas96, sec. 3.3.2]. The time steps were chosen such that the Courant
number was below 0.3.

Both methods, HB and PRS, rely on external solvers known as SIMPLE and PISO al-
gorithms [Pat72; Iss86]. According to this, first the pressure equation is derived from the
continuity equation (4.3.4) (in case of HB approach, several pressure equations are derived
from the continuity equations corresponding to the set of harmonically balanced momentum
equations (4.3.25) respectively) and thereafter the equations for momentum and pressure are
solved sequentially. This is achieved by first solving the momentum equations (after proper
linearisation and discretisation) relying on the pressure field from previous iteration (or on
an initial guess for pressure at the beginning of the solution process). In the next step, the
pressure field is corrected relying on the pressure equation derived from continuity. Following
this, the corrected pressure field is then used to update the velocity field.

For the set of harmonically balanced momentum equations (4.3.25), the SIMPLE algorithm
(as described by Patankar et al. [Pat72]) was employed to deal with the pressure-velocity
coupling (mentioned in previous paragraph) of each equation, separately. The coupling among
all the equations established by the zero order term (4.3.26) is achieved by using a block-Gauss-
Seidel iterative algorithm (see Section 4.3.6). In contrast, the PISO algorithm (as described
by Issa [Iss86]) was adopted for the treatment of PRS method (and also for the generation of
manufactured solutions).

For both methods, HB and PRS, the discretised pressure correction equations were solved
with a generalised geometric-algebraic multi-grid (GAMG) solver using Gauss-Seidel smooth-
ing. In addition, the discretised momentum equations were solved with a preconditioned
bi-conjugate gradient (PBiCG) method using a simplified diagonal-based incomplete LU pre-
conditioner (DILU). The proposed methods were all implemented using the open source CFD
library, OpenFOAM [Wel98].

4.3.6 Block-Gauss-Seidel Algorithm for Harmonic Balance Equations

The harmonically balanced equations for n harmonics consist in N = 2n + 1 fully coupled
velocity-pressure equations whose numerical solution is accounted for through an iterative
algorithm. For each of these N velocity-pressure equations, the coupling is achieved by the
SIMPLE algorithm employed in connection with the momentum and the pressure equations
(as briefly described in the previous section). This is commonly known as the pressure-velocity
coupling. The coupling among the N equations follows from the harmonic balance treatment
by which the temporal derivation (appearing only in the momentum equation) is replaced by
the zero order term Z appearing in (4.3.26). This will be named as the HB coupling in this
work. Under these considerations, the equation (4.3.25) is solved for each time instant tj ,
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whereas the temporal influence from neighbouring time instants is accounted for by Z .

The HB coupling among the N equations is numerically solved through the Gauss–Seidel
iterative method. That is, the pressure-velocity systems of equations are successively solved
each in its own SIMPLE loop, with always the latest available solution used for evaluating
the zero order term. Therefore, N pressure-velocity systems of equations are being solved
within N iterating SIMPLE loops. The calculation is considered converged when each of the
N equation sets are converged.

Spatial Discretisation of Harmonic Balance Equations

The finite volume method was adopted to approximate in space the time-discrete harmonic-
ally balanced partial differential equations (4.3.27)–(4.3.32). The discretisation is presented
following the notation introduced by Rusche [Rus02], by which the angle bracket operator [·]
denotes the implicit treatment of the encapsulated term. Other terms are treated explicitly.
The problem of solving the discretised form of the momentum equation (4.3.27) at tj reads

Puj (u, gj , p) : Given u, gj and p, determine uj such that[
(∇uj)uj

]
−
[
ν∆uj

]
= −∇p

ρ
−Z (u, j) in Ω (4.3.33)

uj = 0 on Γw (4.3.34)

uj = gj on Γi (4.3.35)

(∇uj)n = 0 on Γo (4.3.36)

It can be seen that the left hand side is calculated implicitly, while the zero order coupling
term is obtained explicitly.

Pressure is calculated based on discretised equation obtained by modifying the continuity
equations (4.3.28) for all time instants, following the procedure as presented by [Jas96]. In
what follows, (ap)

j denotes the diagonal coefficient of the discretised momentum equation at
time instant tj , whereas H(uj) represents the flux operator related to uj . The problem of
solving the discretised form of the obtained pressure equation at time instant tj reads

Ppj (u
j) : Given uj , determine pj such that[

∇ ·
(

1

(ap)j
∇pj

)]
= ∇ ·

(
H(uj)

(ap)j

)
in Ω (4.3.37)

∇pj · n = 0 on Γw (4.3.38)

∇pj · n = 0 on Γi (4.3.39)

pj = 0 on Γo (4.3.40)

The equation (4.3.37) follows from the continuity equation for each corresponding time instant.
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Coupled SIMPLE and HB Iterations

In what follows, the fields (·){k} will represent the fields (·) at k-th iteration of SIMPLE.
Conventionally, the solution procedure starts with the initial guesses p{0} and u{0} for the
pressure and the velocity fields respectively. At iteration k > 0, the momentum equation is
solved for u{k} using the fields p{k−1} and u{k−1} from the previous iteration. With the newly
acquired field u{k}, the pressure equation is then solved for p{k}. Furthermore, the velocity
field u{k} is corrected afterwards based on the new pressure field p{k}. At this point, the
convergence is checked and the procedure is repeated until the criterion is fulfilled.

The set of harmonically balanced momentum equations, see (4.3.25), establishes that the
velocity fields ũ i, i = 1, · · · , N , are coupled through the zero order term Z (summation
over velocity fields at different time instants multiplied by corresponding Fourier coefficients).
This system of equations can be decoupled through any iterative process. In this work, the
Gauss-Seidel method was employed to this aim.

Algorithm 2 Harmonic balance iterative procedure
Given: j = 1, 2, · · · , N . Indices of equidistantly placed time instants tj

Input : N = 2n+ 1 . Provide number of harmonics n

(uj){0}, (pj){0} . Provide initial guesses (·){0}

Output : (uj){k}, (pj){k} . Flow fields at last iteration k

1: procedure HarmonicBalanceLoop(u{0}, p{0}, N)

2: m← total number of iterations

3: v ← u{0} in Ω

4: g ← u{0} on Γi

5: for k ← 1,m do . HB iterations

6: for j ← 1, N do . Solve at each time instant

7: (uj){k} ←Puj (v, gj , (pj){k−1}) . Solve equations (4.3.33)–(4.3.36)

8: (pj){k} ←Ppj ((u
j){k}) . Solve equations (4.3.37)–(4.3.40)

9: Correct (uj){k} based on (pj){k}

10: vj ← (uj){k} . Update zero order term

11: end for

12: if each L1-norm (of equation residuals) < ξ then . Convergence criterion

13: return (uj){k}, (pj){k}

14: end if

15: end for

16: end procedure
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Specifically, only one single iteration of the SIMPLE algorithm is performed for each time
instant tj . Each time, when a single iteration of SIMPLE is accomplished for the time instant
tj (and during this process, the equations at all ti are idle), the new velocity field obtained at
time instant tj is immediately updated in the zero order term of the equations defined at all
other time instants ti. Thus, within the HB iterations, a single iteration of the SIMPLE loop
(as presented in the previous section) is performed for time instant tj . As all time instants are
iterated sequentially, all field variables (·)j go through the same number of SIMPLE iterations.
Therefore, one HB iteration implies solving N times the SIMPLE iterations, one for each of the
N harmonic equations. Consequently, one can distinguish between a single SIMPLE iteration
(once per time instant tj) and single HB iteration which consists of 2n + 1 single SIMPLE
iterations. This process continues until a convergence criterion is met based on the L1 norm
of solution residual, which is evaluated at the per-equation level. Therefore only when the L1

norm of all 2n + 1 equations is below a small value ξ (convergence criterion), the simulation
is considered to be converged. Algorithm 2 describes the harmonic balance method in terms
of a pseudo-code.

4.4 Numerical Experiments

Several numerical experiments were performed to compare the HB method with the traditional
approach in terms of accuracy and effort. In addition to 4D flow MRI data obtained from
phase-contrast flow acquisition (see Section 4.2.1), numerically manufactured solutions were
used as the ground truth for validation purposes. Numerical solutions obtained from the
traditional method using PRS and the HB approach were first compared with the ground truth
in terms of accuracy. Secondly, a convergence study with respect to mesh size was performed.
Furthermore, both methods were compared with each other in terms of computational effort.
Finally, both methods were provided with observational boundary data obtained from 4D flow
MRI acquisition.
The quantitative comparison between any pair of computed flow fields, say uc and a refer-

ence flow field ur, is performed using the following normalised root-mean square error integ-
rated over time

nRMSE(uc,ur) =

 100

avr
T,Ω
|ur|

√ 1

VΩ · T

∫
T

∫
Ω
|uc − ur|2 dΩ dt. (4.4.1)

4.4.1 Comparison using Manufactured Solutions

To generate the ground truth data, a dynamic fluid flow with periodic velocity boundary data
at the inlet was considered in the geometry of the aortic replica. The reference solutions
were numerically manufactured on two different meshes, M2 and M7 (the available meshes
are described in Section 4.2.2). The solution manufactured on the mesh M2 was only used
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to validate the methods HB and PRS, which were run on exactly the same mesh M2. An
additional reference solution was generated on the finer mesh M7 and was mapped onto two
different coarser meshes, M2 and M4.
The reference solutions were created using the same PISO-based solver, which was employed

for the PRS method and is described in Section 4.3.5. For a manufactured solution which
serves for validation purposes, it is usually convenient to consider a parabolic velocity profile
at the inlet. However, the geometry of the aortic replica used in the experiments has no
perfect cylindrical shape and as such it is not feasible to define a parabolic function at the
inlet analytically. Instead, we have performed a single steady-state flow MRI acquisition using
a similar setup as explained in Section 4.2.1 and utilised the obtained flow profile at the inlet
as boundary data. In order to reduce the measurement noise, we first smoothed the flow
field using low-pass filtering and then applied the resulting flow field as BC at the inlet. To
achieve a transient flow simulation, the acquired steady flow profile was dynamically adjusted
over time. This was achieved by multiplying each velocity component at the inlet with an
appropriately chosen analytical periodic function h(t) of period 0.8 s and base frequency 1.25.
The function contains two peaks of different magnitude in one cycle, which was similar to the
flow rates obtained from the dynamic experiments. The explicit form of h(t) is as follows

h(t) = 0.5
[
0.315 + 0.25

(
sin(2π1.25t+ 1.882π) + sin(2π2.5t+ 1.344π)

)]
. (4.4.2)

The simulations for the manufactured solutions were run for twenty periods, at which the
time-integrated normalised root-mean square error between the last two periods was below
10−11. Thus, a periodic state of equilibrium was reached.

Validation with a Single Mesh Geometry

As a first step, only a single mesh, M2, was employed to generate both the numerical reference
solution, as well as the solutions based on the methods HB and PRS. This ensures that
in the best case scenario the reference solution can be exactly recovered, and allows us to
investigate the accuracy of the proposed methods, HB and PRS. The flow field obtained from
the manufactured solution will be denoted by uext (considered to be the reference, or “exact”,
solution). The simulations were all run with 48 processors using the compute nodes from
Euler high performance computing cluster (located in Lugano) and evaluated in terms of
accuracy and computational effort. The accuracy is assessed through the nRMSE, whereas
the computational effort is reported in terms of the wall clock time (WCT) in seconds.
The reference flow solution was first sampled at certain time instants, which were then used

as the observational boundary data for the solvers HB and PRS. We want to emphasize that
the manufactured solution and the solution from PRS method were obtained from one and
exactly the same solver. The only difference was the fact, that the velocity BCs prescribed at
the inlet for the reference solution were defined from the analytical function (4.4.2), whereas

64



Numerical Experiments

uc u2
hb u5

hb u8
hb u10

hb u12
hb uprs

nRMSE(uc, uext) 13.22% 2.18% 0.75% 0.43% 0.29% 0.03%

WCT in sec. 217 s 458 s 788 s 960 s 1 190 s 13 737 s

Table 4.1: Root mean square errors (nRMSE(unhb,uext) and nRMSE(uprs,uext)) for the HB
approach with different number of harmonics 2 to 12 and for PRS method, evaluated against
exact solution uext. In addition, the corresponding wall clock times (WCT) in seconds.
Simulations were performed on mesh M2 using 48 processors.

for the PRS method the BCs were defined by the interpolation function (4.3.10) based on data
sampled from the reference solution at the set of time instants.
First of all, the HB method was considered, and the computational effort was evaluated in

terms of the number of harmonics n, which were 2, 5, 8, 10, 12 and 62. For this purpose, the
manufactured solution was sampled multiple times at 2n+1 equidistantly placed time instants
for each HB simulation, resulting in 5, 11, 17, 21, 25 and 125 data points (samples) per cycle
respectively. The samples were applied as initial guesses and BCs in order to drive the flow for
the set of harmonically balanced momentum equations (4.3.25). The different velocity fields
obtained as numerical solutions from the HB method will be denoted as unhb, where n is the
number of harmonics used in the expansion. Quantitatively, the solutions unhb were compared
with the manufactured solution uext in terms of nRMSE(unhb, uext), resulting in 13.22%,
2.18%, 0.75%, 0.43%, 0.29% and 0.23% respectively (these results are also summarised in
Table 4.1). We observed that at least 8 harmonics are needed for the HB method to recover
the velocity field with nRMSE below 1%. The errors rapidly dropped from using 2 to 12

harmonics (from 13.22% to 0.29%), whereas further increase in the number of harmonics over
12 did not drastically improve the flow field. In this case, nRMSE(u12

hb, uext) was 0.29%,
whereas nRMSE(u62

hb, uext) was 0.23%. The HB simulations were run for 1 000 Gauss-Seidel
iterations and the WCTs were 217 s, 458 s, 788 s, 960 s, 1 190 s and 10 335 s respectively.
Secondly, the manufactured solution sampled at 25 equidistantly placed time instants was

fed into equation (4.3.10) and the PRS method was applied. The obtained flow field will be
denoted as uprs, which offers solutions at the same time instants as the flow field u12

hb, enabling
a direct comparison between HB and PRS with 25 data points per cycle. The PRS simulation
was run for 12 periods until a periodic state of equilibrium was reached. Comparison against
the exact solution yielded nRMSE(uprs, uext) = 0.03% and the total WCT was 13 737 s.
In this case, the error is due to the approximation of the boundary data given by (4.3.10).
Table 4.1 summarises the results obtained from both the PRS method and the HB approach
using number of harmonics from 2 to 12.
Compared to the velocity field u12

hb obtained from HB, the accuracy of the velocity field uprs

obtained from PRS was higher. It is worth noting, that the PRS method was based on exactly
the same PISO solver as the one from which the manufactured solution uext was generated
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on exactly the same mesh. Hence, the accuracy of the PRS method is the highest that can
be expected. However, the WCT for PRS was around 11.5 times more than the WCT for HB
with 12 number of harmonics. In total, the PRS method needed ≈ 3.8 hours, whereas the HB
method with n = 12 needed below 20 minutes.

Finally, regarding the results obtained with the HB method, we conclude that the use of a
moderate number of harmonics, e.g. between 8 and 12, is enough to reconstruct the flow field
with an acceptable accuracy (errors below 1%). In addition, there is a huge gain in terms
of computational effort, which is essential for pulsatile blood flow simulations. Hereafter, we
make use of the HB method set with 12 harmonics. The corresponding HB solution is simply
referred to as uhb (instead of u12

hb).

Sensitivity to the Mesh Size Parameter

The proposed methods, HB and PRS, were verified in the previous section using a single mesh,
on top of which the reference solution was also created. However, this does not realistically
emulate a potential real case scenario, in which the observations are usually not obtained
from or available in the same geometrical mesh in which the computations are carried out.
To further verify the processes (in addition to the study presented in the previous section), a
much finer mesh, denoted byM7, was used in the present section to manufacture the numerical
reference solution. The velocity field obtained in such mesh is denoted as uext, which was
sampled at 25 time instants only. Then, this reference solution was mapped to the meshes
M2 and M4, and the computations using the HB and the PRS methods were performed in
these meshes. The reference velocity fields mapped onto M2 and M4 are denoted as u2

ext and
u4
ext respectively. A cell volume weighted interpolation method [Coe05] was used to map the

reference velocity field from the fine mesh, M7, onto the coarser meshes, M2 and M4. The
simulations with the HB and PRS methods in mesh M4 were run with 96 processors.

The velocity fields uhb and uprs numerically obtained from HB and PRS methods were
compared with the exact solution. In mesh M2, nRMSE(uprs, u2

ext) was 2.88%, whereas
nRMSE(uhb, u2

ext) was 2.93%. In mesh M4, the same metric evaluated against u4
ext were

1.47% and 1.51% for PRS and HB methods respectively. Remarkably, the HB method yields
almost the same accuracy as the PRS method, when compared with a reference solution con-
structed in a finer mesh. Furthermore, the error nRMSE(uhb, uprs) between these solutions
was 0.39% in M2 and 0.36% in M4. Despite the differences among the methods, which are
negligible, and the approximations provided by the HB can be considered of the same quality
as that provided by the PRS. Finally, the WCT in M4 were 23 052 s for the PRS method
and 1 512 s for the HB method, the latter being ≈ 15 times faster than the former. This is
a tremendous gain in terms of computational effort, taking into account that the HB method
provides a full 3D approximation to the problem. Table 4.2 summarises the presented results.
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nRMSE(uc, u2
ext) nRMSE(uc, u4

ext) WCT for uc

uc on mesh M2 on mesh M4 on mesh M4

uhb 2.93% 1.51% 1 512 s

uprs 2.88% 1.47% 23 052 s

Table 4.2: Root mean square errors (nRMSE(uhb,u
n
ext) and nRMSE(uprs,u

n
ext)) for HB and

PRS methods, evaluated against the reference solutions u2
ext and u4

ext mapped onto meshes
M2 and M4 respectively. In addition, the corresponding wall clock time (WCT) in seconds
is provided for each simulation on M4, for which 96 processors were employed.

4.4.2 Simulations with Boundary Data from 4-D Flow MRI

The performance and feasibility of both the HB and PRS methods was studied on M2 to
reconstruct the velocity fields obtained from the experiment (see Section 4.2.1). To this end,
observational boundary data of the velocity field, obtained from 4D flow MRI acquisition
protocol, is prescribed at the inlet. Computed flow patterns were first qualitatively compared
by visual inspection. The HB method proved to be able to reproduce the velocity field delivered
by the PRS method. Figure 4.2 illustrates the velocity profiles at different cross sections of
the arterial geometry (warping of velocity vector field) at the time instant corresponding to
the peak of the systole. Qualitatively, there was no appreciable difference between the fields
obtained from HB and PRS.

Figure 4.2: Warps and velocity magnitude (in [m/s] scaled to the same range) of the velocity
fields at a set of cross-sectional slices corresponding to the systolic phase of the heart cycle.
The fields are obtained from HB method (magnitude |uhb|), PRS method (magnitude |uprs|)
and pre-processed 4D flow MRI acquisition (magnitude |usnr|).

67



On the Potential of Harmonic Balance in Cardiovascular Fluid Mechanics

Finally, since no ground truth is available in the case of measured data, we quantitat-
ively compared the velocity fields delivered by methods HB and PRS, resulting in a metric
nRMSE(uhb,uprs) of 8.56%. As the simulations were performed on M2, the computational
efforts were the same as already reported for M2 in the previous sections.
Based on these results, we conclude that the HB numerical scheme reveals itself as a method

with a tremendous potential in computational hemodynamics. The proposed approach enables
pulsatile fluid flow simulations at a significantly smaller cost when compared with traditional
methods, without exhibiting deterioration of the approximate solution.

4.5 Conclusion

This work has investigated the HB method as a novel approach to perform pulsatile fluid
flow simulations in computational hemodynamics, facilitating the combination of CFD with
data obtained from 4D flow MRI. The HB method has been described and compared with
a traditional time-discretisation method to dynamically reconstruct observational boundary
data defined at a sparse set of time instants. These methods have been compared in terms of
accuracy and computational cost.
The first method, named as the “traditional method using penalized regression spline”, is

based on a traditional time discretisation scheme and, as such, proves to be a time consuming
process. Penalized regression spline presents an inverse problem to continuously reconstruct
the boundary velocity data at time instants where the observations are not available.
The second approach, named as the “harmonic balance” method, takes a different path and

relies on a frequency-based temporal discretisation scheme. Thereby, the velocity field is de-
composed into its Fourier series and the method operates in the frequency domain. Harmonic
balance approach is being reported for the first time in a study combining CFD with 4D flow
MRI and it shows a significant improvement regarding the trade-off between computational
cost and accuracy for applications in computational hemodynamics. Based on our experi-
ments, the harmonic balance method was about 15 times faster compared to the conventional
transient simulations.
Our experience dictates that only a moderate number of harmonics is required to accurately

resolve the periodic fluid flow problem. This makes the method extremely useful, for example,
in data assimilation procedures based on 4D flow MRI acquisitions, where the fluid flow
problem has to be solved many times. Regarding the number of time instants at which data
is acquired per cardiac cycle, the method can be easily adjusted such that the discretised
momentum equations are temporally registered with the measurements. In case of 4D flow
MRI, our experience indicates that it requires observational data at a number of time instants
between 17 and 25. This corresponds to a number of harmonics of at least 8, which is a region
in which the method has proved to be satisfactorily accurate.
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5 Fourier-Spectral Dynamic Data Assimilation:
Interlacing CFD with 4D flow MRI

5.1 Introduction

In adjoint based data assimilation, the adjoint equations require the solution of the state vari-
ables from the original problem. This makes it to a challenge for especially the time dependent
problems, where the solution of the state variables must be known at each infinitesimal time
step. In time dependent problems, the adjoint equations posses a backward-in-time nature,
thus, their solution require to follow a path starting from the last time and ending at the
initial time of the considered problem. Hence, when attempting to perform dynamic (adjoint
based) data assimilation, all the trajectories of the state variables must be solved and stored in
the memory. This can be achieved, for example, using the traditional time-stepping schemes
for the solution of the original state equations. However, the necessity for the storage of all
trajectories of the state variables and the backward-in-time nature of the adjoint formula-
tion rapidly make it to an extremely difficult problem to be solved. The space needed for
the memory is proportional to the run-time of the forward solution. In spite of ever increas-
ing memory capabilities of large clusters, the practical application of the traditional adjoint
formulation is quite limited.

In order to manage the difficulties with the storage requirements, the application of certain
algorithms have been proposed, usually known as checkpointing [Gri00; Cha01; Cao02]. In
such algorithms, the direct problem is first solved to save the solution of the state variables at
predefined number of checkpoints, instead of at each infinitesimal time instants. The check-
points are usually equidistantly placed, however, extensions of such algorithms also consider
dynamic checkpointing [Wan09; Aup17]. Thereafter, the direct problem is run for a second
time between the two last available checkpoints, where the state variables are then saved at
each infinitesimal time steps (between those points). In order to run backwards in time for the
adjoint solution, the adjoint equations are solved between the successive checkpoints. Each
time the adjoint solution reaches the next available checkpoint, the state variables between
the last two checkpoints are then removed from the memory and the process is repeated until
the adjoint equations are fully solved. In other words, the direct problem must be solved
two times (dynamic forward solution) and the adjoint problem only once, in order to finish
a single iteration of the optimisation process. For example, in chapter 4 and table 4.2, it
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was reported that approximately 6.5 hours were needed for one forward solution (based on
the experimental setup explained in chapter 4). Depending on the size of the computational
mesh and the number of time steps needed for an accurate solution, several days might even
be needed to accomplish one single iteration of the optimisation process. In addition, several
hundreds of iterations are usually required to find an optimal solution (see chapter 2).
So far there has been an attempt to perform variational adjoint-based transient data assim-

ilation in computational hemodynamics using 4D flow MRI measurements in 3D geometries by
Funke et al. [Fun19]. However, in order to perform a dynamic data assimilation, the authors
were forced to extremely reduce the size of the problem (in such a way, that no checkpointing
algorithms were required) by considering a coarse mesh and a time step of 0.004625 s. Using
such time steps, however, accurate flow simulations cannot be expected at the aortic root and
the ascending aorta, where the Reynolds numbers grow large. This is due to the reason, that
the blood is pumped by the heart with considerably high velocities. In addition, finer mesh
sizes are required for reasonable evaluation of the WSSs. The size-related limitations were
already mentioned by the authors in their work. Especially for convection dominated prob-
lems with large Reynolds numbers, using the traditional time-stepping schemes for dynamic
data assimilation is absolutely impracticable and nearly impossible or difficult to be achieved.
In this work, a new method is proposed to perform variational (adjoint-based) dynamic

data assimilation. In contrast to the traditional time-stepping schemes, the novel approach
relies on the harmonically balanced equations (as described in chapter 4) expressed in the
frequency domain for time discretisation. In what follows, the new method will be referred as
the Fourier-spectral dynamic data assimilation.
This work enables accurate characterisation of the dynamic flow field in quite feasible wall

clock times, which are otherwise difficult or impossible to be achieved using currently avail-
able DA strategies relying on traditional time-stepping schemes. The method naturally avoids
storage related problems, and hence, the application of additional algorithms (such as check-
pointing) are not required. Further, the work addresses the limited resolution of MR velocity
encoding in shear layers and aims to interlace 4D flow MRI with CFD to enable accurate
quantification of WSSs. Compared to the raw measurements, the proposed approach signi-
ficantly improves the reconstructed flow field at the aortic root, which is one of the most
important clinically relevant locations where flow disturbances can easily lead to pathological
modifications of the arterial wall. Thus the new method has a great potential for revealing
clinically relevant hemodynamic phenomena.

5.2 Mathematical Optimisation

An unsteady incompressible flow of a Newtonian fluid is considered in the time interval T :=

[0;T ] through an open set Ω with boundary ∂Ω = Γi ∪ Γo ∪ Γw as illustrated in figure 2.1(a).
Let Ωs ⊂ Ω be a contracted subdomain with boundary ∂Ωs = Γsi ∪Γso ∪Γsw, where Γsi ⊂ Γi

70



Mathematical Optimisation

and Γso ⊂ Γo. Figure 2.1(b) illustrates the contracted domain Ωs and its formal definition is
provided in (2.4.5). The fluid flow is stimulated by some T -periodic inflow data prescribed at
Γi, which is characterized by the function g = g(t,x) = g(t + mT,x) : T × Γi → R3 with
m ∈ N. The blood flow velocity u ∈ U with U =

{
v ∈H1(Ω) | v|Γw = 0

}
is a solution of

the incompressible Navier-Stokes equations expressed in the following variational formulation:

PT×Ω : Find (u, p, r) ∈ U × L2(Ω)×H−
1
2 (Γi) such that,∫

T

∫
Ω

[
ρ
(∂u
∂t

+ (∇u)u
)
· û+ 2µ∇su · ∇sû− p div û− p̂divu

]
dΩdt (5.2.1)

=

∫
T

∫
Γi

r̂ · (u− g) dΓdt+

∫
T

∫
Γi

(r · û) dΓdt ∀ (û, p̂, r̂) ∈ U × L2(Ω)×H−
1
2 (Γi) .

The spaces (H1(Ω), L2(Ω),H−
1
2 (Γi)), the fluid parameters (ρ, µ) and the strain rate tensor

∇s are as defined in sections 4.3 and 4.3.1.

Let us assume, that some T-periodic observations uobs ∈ Ω are available. The optimal
control problem aims at finding the velocity field u, such that the sum of the misfits between
uobs and u is minimised based on some user defined cost function OT×Ω. At the same time,
the problem is constrained such that u is a solution of Problem PT×Ω. In what follows,
∇τ denotes the surface gradient, whereas β and β1 are arbitrary parameters for a Tikhonov
regularization, and α is a positive real number. The flow-matching problem reads

PO : Find g which minimises OT×Ω(u(g), g,uobs) such that PT×Ω holds, where

OT×Ω(u(g), g,uobs) =
α

2

(∫
T

∫
Ωs

|u(g)− uobs|2 dΩdt+

∫
T

∫
Γsi∪Γso

|u(g)− uobs|2 dΓdt

)
+

+

(
β

2

∫
T

∫
Γi

|g|2 dΓdt+
β1

2

∫
T

∫
Γi

|∇τ g|2 dΓdt

)
. (5.2.2)

The flow-matching metric is defined on Ωs, Γsi and Γso, which are considered as the trust
region of experimental observations (see figure 2.1(b)). The motivation for the choice of such
an objective function, along with the choices of each term, has been provided in section 2.2.1,
with the difference that, in the chapter 2, a steady-state fluid flow was considered without the
integration over time. The time-dependent problem PO defines a regularized optimisation,
whose well-posedness has been addressed by Guerra et al. [Gue15].

In what follows, we recast the problem of constrained optimisation as a saddle point problem
by introducing a Lagrangian functional to relax the dependence of u on g. Denoting ∂u

∂t = ∂tu,
the Lagrangian functional reads

LT×Ω(g,u, p, r,λu,λp,λr) = OT×Ω(u, g,uobs)−
∫
T

∫
Γi

λr · (u− g) dΓdt−
∫
T

∫
Γi

r · λu dΓdt

+

∫
T

∫
Ω

[
ρ
(
∂tu+ (∇u)u

)
· λu + 2µ∇su · ∇sλu − p divλu − λp divu

]
dΩdt , (5.2.3)
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with (g,u, p, r,λu, λp,λr) ∈H
1
2
00(Γi)×U ×L2(Ω)×H−

1
2 (Γi)×U ×L2(Ω)×H−

1
2 (Γi), where

H
1
2
00(Γi) is the space of traces over Γi of H1(Ω) functions that are zero over the boundary γi

of surface Γi. Its noteworthy to highlight the fact that the function g is such that g|γi = 0.
The evaluation of the Gâteaux derivative of OT×Ω (see equation (2.2.15)), with respect to

perturbation in g, provides information about the necessary condition to have a minimum at
g. On the other hand, the critical points of the Lagrangian (5.2.3) contain information on the
aforementioned Gâteaux derivative (2.2.15), and are characterised by

〈
∂LT×Ω

∂(λu,λp,λr)
,


λ̂u

λ̂p

λ̂r


〉

= 0 ,

〈
∂LT×Ω

∂(u, p, r)
,


û

p̂

r̂


〉

= 0 ,

〈
∂LT×Ω

∂g
, ĝ

〉
= 0 ,

(5.2.4a–c)

where the perturbations (̂·) to the fields (·) are as defined in (2.2.7)–(2.2.13).
The evaluation of the equations (5.2.4a–c) yields the state system of equations, the adjoint

equations and the optimality conditions respectively. Similar sets of equations have been
derived and solved in the chapter 2 without the presence of the time integration. The discret-
isation presented in the chapter 2 was only performed spatially, since a time derivative term
was not present in the equations, whereas the followed strategy was named as ”optimise-then-
discretise” approach. In contrast, this chapter presents a transient problem, which makes it
necessary to consider an additional discretisation process in time (in addition to the spatial
discretisation), in order to solve the equations (5.2.4a–c) numerically.
In what follows, a slightly different strategy will be considered for the adoption of the

temporal discretisation, which will be denoted as the ”temporally-discretise-then-optimise-
then-spatially-discretise” approach.

5.2.1 Temporal Discretisation using the Harmonic Balance Approach

In section 4.3.4, the temporally discretised and harmonically balanced momentum equations
(4.3.25) have already been derived based on the Fourier-spectral collocation approach, where
n was the number of harmonics and N = 2n+ 1. The application of the HB method in (5.2.3)
yields the following temporally discretised Lagrangian functional:

LΩ(g,u, p, r,λu,λp,λr) = OΩ(u, g,uobs)−
∑
j

∫
Γi

λjr · (uj − gj) dΓ−
∑
j

∫
Γi

rj · λju dΓ

+
∑
j

∫
Ω

[
ρ
( N∑
i=1

uicij + (∇uj)uj
)
· λju + 2µ∇suj · ∇sλju − pj divλju − λjp divuj

]
dΩ ,

(5.2.5)
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where OΩ is the temporally discretised cost function (provided in (5.2.7)) and (·)j represent
the fields (·) at time instants

tj :=
j T

N
, j = 1, 2, · · · , N. (5.2.6)

Furthermore, cij = 2ω
N

∑n
k=1 k sin(kω(ti − tj)) is as derived in section 4.3.4 (see equation

(4.3.24)), where ω = 2π
T is the angular frequency.

Assuming that some observations ujobs ∈ Ω are available at discrete and equidistantly
spaced time instants tj (in case of 4D flow MRI, such data are actually gathered from T-
periodic averaging of the measurements to obtain ujobs at time instants tj for j = 1, · · · , N).
The constratined optimal control problem now aims at finding the velocity fields uj , such
that the sum of the misfits between each ujobs and uj is minimised based on the temporally
discretised cost function

OΩ(u(g), g,uobs) =
α

2

∑
j

(∫
Ωs

|uj(g)− ujobs|
2 dΩ +

∫
Γsi∪Γso

|uj(g)− ujobs|
2 dΓ

)
+

+
∑
j

(
β

2

∫
Γi

|gj |2 dΓ +
β1

2

∫
Γi

|∇τ gj |2 dΓ

)
. (5.2.7)

Finally, we are now interested in computing the Gâteaux derivatives of the temporally
discretised Lagrangian functional, as follows:

〈
∂LΩ

∂(λju,λ
j
p,λ

j
r)
,


λ̂ju

λ̂jp

λ̂jr


〉

= 0 ,

〈
∂LΩ

∂(uj , pj , rj)
,


ûj

p̂j

r̂j


〉

= 0 ,

〈
∂LΩ

∂gj
, ĝj
〉

= 0 .

(5.2.8a–c)

For j = 1, 2, · · · , N , the first and second equations in (5.2.8a–c) describe the direct and the
so-called adjoint equations to solve for the state variables (uj , pj , rj) and the adjoint variables
(λju,λ

j
p,λ

j
r) respectively. Finally, the last equation in (5.2.8a–c) provides the optimality

conditions of the cost functional with respect to perturbations in gj . In particular, it can be
observed that the Gâteaux derivatives of the objective functional are contained in the Gâteaux
derivatives of the Lagrangian functional as follows:〈

∂OΩ

∂gj
, ĝj
〉

=

〈
∂LΩ

∂gj
, ĝj
〉∣∣∣∣ (uj ,pj ,rj) solution of direct problem

(λj
u,λ

j
p,λ

j
r) solution of adjoint problem

, j = 1, 2, · · · , N . (5.2.9)
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5.2.2 Optimality Conditions

Derivation of the Direct Problem

Let us now compute the Gâteaux derivatives (5.2.8a–c). We first obtain the direct problem
by taking the derivative with respect to the variables (λju, λ

j
p,λ

j
r). Then, the following state

problems are obtained for j = 1, 2, · · · , N :

Pj
sta(g

j ,ui) : For gj ∈H
1
2
00(Γi) and ui ∈ U , where i = 1, 2, · · · , N with i 6= j,

determine (uj , pj , rj) ∈ U × L2(Ω)×H−
1
2 (Γi) such that〈

∂LΩ

∂λju
, λ̂ju

〉
=

∫
Ω

[
ρ
( N∑
i=1

uicij + (∇uj)uj
)
· λ̂ju + 2µ∇suj · ∇sλ̂ju − pj div λ̂ju

]
dΩ

−
∫

Γi

rj · λ̂ju dΓ = 0 ∀ λ̂ju ∈ U , (5.2.10)〈
∂LΩ

∂λjp
, λ̂jp

〉
= −

∫
Ω
λ̂jp divuj dΩ = 0 ∀ λ̂jp ∈ L2(Ω) , (5.2.11)〈

∂LΩ

∂λjr
, λ̂jr

〉
= −

∫
Γi

λ̂jr · (uj − gj) dΓ = 0 ∀ λ̂jr ∈H−
1
2 (Γi) . (5.2.12)

Integrating by parts in equation (5.2.10) yields

〈
∂LΩ

∂λju
, λ̂ju

〉
=

∫
Ω

[
ρ
( N∑
i=1

uicij + (∇uj)uj
)
· λ̂ju +−µ∆uj · λ̂ju +∇pj · λ̂ju

]
dΩ

+

∫
∂Ω

[
− pjn+ 2µ(∇suj)n

]
· λ̂ju dΓ−

∫
Γi

rj · λ̂ju dΓ = 0 ∀ λ̂ju ∈ U , (5.2.13)

The Euler-Lagrange equations associated with the variational problem Pj
sta are the following

Navier-Stokes equations, discretised in time based on the HB method:

ρ
∑N

i=1 u
icij + ρ(∇uj)uj − µ∆uj +∇pj = 0 in Ω , (5.2.14)

divuj = 0 in Ω , (5.2.15)

uj = 0 on Γw , (5.2.16)

uj = gj on Γi , (5.2.17)

(−pjI + 2µ∇suj)n = rj on Γi , (5.2.18)

(−pjI + 2µ∇suj)n = 0 on Γo , (5.2.19)

j = 1, · · · , N .

Derivation of the Adjoint Problem

Second, the adjoint problem is obtained by taking the derivative of the Lagrangian (5.2.5)
with respect to the state variables (uj , pj , rj) for j = 1, 2, · · · , N . That is, the critical points
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in the second equation in (5.2.8a–c) are evaluated and the adjoint problem then reads as

Pj
adj(u

j ,ujobs) : For ujobs, and u
j , solution of (5.2.14)–(5.2.19),

determine (λju, λ
j
p,λ

j
r) ∈ U × L2(Ω)×H−

1
2 (Γi), such that〈

∂LΩ

∂uj
, ûj
〉

=

∫
Γo∪Γi

[
α (χΓso + χΓsi)(u

j − ujobs) · û
j
]
dΓ−

∫
Γi

(
λjr · ûj

)
dΓ

+

∫
Ω

[
αχΩs(u

j − ujobs) · û
j + ρ

( N∑
i=1

cjiû
j + (∇ûj)uj + (∇uj)ûj

)
· λju+

+ 2µ∇sûj · ∇sλju − λjp div ûj
]
dΩ = 0 ∀ ûj ∈ U , (5.2.20)〈

∂LΩ

∂pj
, p̂j
〉

= −
∫

Ω
p̂j divλju dΩ = 0 ∀ p̂j ∈ L2(Ω) , (5.2.21)〈

∂LΩ

∂rj
, r̂j
〉

= −
∫

Γi

r̂j · λju dΓ = 0 ∀ r̂j ∈H−
1
2 (Γi) , (5.2.22)

where we considered the indicator functions χΩs , χΓsi and χΓso as defined in (2.2.32a–c).
Applying standard variational arguments for (5.2.20)-(5.2.21)-(5.2.22) delivers the associated
Euler-Lagrange equations, as follows:

ρ
[(∑N

i=1 cji+(∇uj)T
)
λju− (∇λju)uj

]
−µ∆λju+∇λjp = αχΩs(u

j
obs−u

j) in Ω , (5.2.23)

divλju = 0 in Ω , (5.2.24)

λju = 0 on Γw , (5.2.25)

λju = 0 on Γi , (5.2.26)

(2µ∇sλju − λjpI)n− λjr = αχΓsi(u
j
obs − u

j) on Γi , (5.2.27)

ρ(uj · n)λju + (2µ∇sλju − λjpI)n = αχΓso(ujobs − u
j) on Γo . (5.2.28)

j = 1, · · · , N .

Derivation of the Optimality Condition

Finally, let us compute the optimality condition by taking the derivative of the Lagrangian
(5.2.5) with respect to the control variables gj . That is, the critical points in the last equation
in (5.2.8a–c) are evaluated and results in the problem

Pj
opt(λ

j
r) : For λjr, solution of (5.2.23)–(5.2.28), determine gj ∈H

1
2
00(Γi), such that〈

∂LΩ

∂gj
, ĝj
〉

=

∫
Γi

[
βgj · ĝj + β1∇τgj · ∇τ ĝj + λjr · ĝj

]
dΓ = 0 ∀ ĝj ∈H

1
2 (Γi) .

(5.2.29)
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The Euler-Lagrange equations associated with (5.2.29) are the following:

βgj − β14τgj = −λjr on Γi , (5.2.30)

gj = 0 on γi , (5.2.31)

j = 1, · · · , N .

5.2.3 Gradient Descent Algorithm for Dynamic Data Assimilation

The procedure to solve the optimality conditions at once amounts to solving the nonlinear
system of coupled variational equations Pj

sta, Pj
adj and Pj

opt (or their corresponding Euler-
Lagrange equations (5.2.14)–(5.2.19), (5.2.23)–(5.2.28) and (5.2.30)–(5.2.31)). This problem
is nonlinear and a possible way to find the stationary point for the optimisation problem PO

is to evaluate the Gâteaux derivatives (5.2.9) to drive a descent-like iterative algorithm. In
this case, first, given the guesses gj for j = 1, 2, · · · , N , the forward problem Pj

sta is solved
to obtain the state variables, (uj , pj , rj). Second, the adjoint problem, Pj

adj, is evaluated
using the solutions, uj , from the direct problem. At this stage, in order to achieve a faster
computation of the adjoint states, the summation term

∑N
i=1 cji in the adjoint momentum

equation (5.2.23) has been suppressed in the implementation, since the final solution was not
remarkably affected by this term. Then, using the adjoint variables, λjr, obtained from the
adjoint problem, the gradients of the objective function with respect to the parameters gj can
be calculated from (5.2.29) as follows:

DOΩ

Dgj
= βgj − β14τgj + λjr on Γi . (5.2.32)

To ensure an acceptable converging solution of the algorithm, it is usual to start by solving
the forward problem based on some initial guesses, (uj){0}, for the flow fields at time instats
tj . Therefore, we introduce a proper linearisation, Pj

sta-lin, of the forward problem, Pj
sta, as

Pj
sta-lin(ũj , g̃j ,ui) : For ũj , g̃j and ui, where i = 1, 2, · · · , N with i 6= j,

determine (uj , pj , rj) such that〈
∂LΩ

∂λju
, λ̂ju

〉
=

∫
Ω

[
ρ

N∑
i=1

uicij · λ̂ju + ρ(∇uj)ũj · λ̂ju + 2µ∇suj · ∇sλ̂ju
]
dΩ

−
∫

Ω
pj div λ̂ju −

∫
Γi

rj · λ̂ju dΓ = 0 ∀ λ̂ju ∈ U , (5.2.33)〈
∂LΩ

∂λjp
, λ̂jp

〉
= −

∫
Ω
λ̂jp divuj dΩ = 0 ∀ λ̂jp ∈ L2(Ω) , (5.2.34)〈

∂LΩ

∂λjr
, λ̂jr

〉
= −

∫
Γi

λ̂jr · (uj − g̃j) dΓ = 0 ∀ λ̂jr ∈H−
1
2 (Γi) . (5.2.35)

The optimality conditions (5.2.29) ensure that the derivatives of the objective functional
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Algorithm 3 Multiple steepest descent optimisation with dynamic step sizes
Given : α, β, β1 > 0 . Set optimisation parameters
Input : N = 2n+ 1 . Provide number of harmonics n

j = 1, 2, · · · , N . Indices of equidistantly placed time instants tj
(uj){0}, (gj){0},ujobs . Provide initial guesses (·){0} and target fields

Output : u{k} . Flow field at last iteration k
1: procedure DynamicDataAssimilation(u{0}, g{0},uobs, N)
2: ξ ← 10−8, k ← 0 and σj ← 1 for j = 1, 2, · · · , N
3: for j ← 1, N do
4: ((uj){k}, ·, ·)←Pj

sta-lin((uj){0}, (gj){0},ui) . Evaluate (5.2.33)–(5.2.35)
5: update ui using new (uj){k} for i = j

6: end for
7: cost{k} ← OΩ(u{k}, g{0},uobs) . Evaluate cost function (5.2.7)
8: for k ← 1,∞ do
9: converged← true

10: for j ← 1, N do
11: (·, ·, (λjr){k})←Pj

adj((u
j){k−1},ujobs) . Evaluate problem (5.2.23)–(5.2.28)

12: (sj){k} ← β14τ (gj){k−1}−β(gj){k−1}− (λjr){k} . Set steepest descent (5.2.32)
13: repeat
14: (gj){k} ← (gj){k−1} + σj(sj){k} . Update control, using step size σj

15: ((uj){k}, ·, ·)←Pj
sta-lin((uj){k−1}, (gj){k},ui)

16: cost{k} ← OT(u{k}, g{k},uobs)

17: if cost{k} ≥ cost{k−1} then
18: σj ← 0.5σj

19: end if
20: until cost{k} < cost{k−1}

21: if (
∣∣∣cost{k} − cost{k−1}

∣∣∣)/(cost{k}) > ξ then

22: σj ← 1.5σj

23: converged← false
24: end if
25: update ui using new (uj){k} for i = j

26: end for
27: if (converged) then
28: return u{k}

29: end if
30: end for
31: end procedure
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with respect to the control parameters vanish at the critical points. In the gradient descent
algorithm, however, the optimality conditions are not satisfied until the algorithm converges.
That procedure is described in algorithm 3. The fields (·){k} correspond to the fields (·) at the
k-th iteration. The parameters σj , being adjusted dynamically, represent the step sizes for
the j-th harmonic balance iteration of each optimisation procedure. To test the convergence,
a tolerance parameter ξ is prescribed to exit the algorithm, if necessary.
It should be noted, that the spatial discretisation of the equations described in the present

chapter and the numerical methods applied to solve the aforementioned problems are the same
as presented in the chapter 2 in section 2.2.4.

5.3 Results

Numerical computations are performed using the same computational mesh geometries M2,
M4 and M7 introduced in section 4.2.2. The combination of the HB method with the inverse
problem proposed in section 5.2, is analysed in terms of accuracy and computational effort.
The ground truth data are available flow fields, which have been numerically manufactured

as detailed in section 4.4.1. First, the validation is performed relying on two quantitative error
evaluations between the ground truth data and the computed solutions based on different mesh
sizes. The first quantity for the error computation is the root mean square error (normalised
against the reference solution),

nRMSEX(uc,ur) =

 100

avr
T,X
|ur|

√ 1

VX · T

∫
T

∫
X
|uc − ur|2 dX dt , (5.3.1)

where T is the period, X is the domain with volume VX , in which the error is being evaluated,
uc is some computed field and ur is the reference solution. The second quantity for the error
computation is the flow direction error

FDEX(uc,ur) =

√
1

VX · T

∫
T

∫
X

(
1− uc · ur
|uc||ur|

)2

dXdt . (5.3.2)

The flow fields obtained from the HB method combined with the proposed inverse problem
will be denoted as uopt

hb (in the sense of adopting the HB method in the optimisation process).
In addition, the HB approach is also evaluated as a conventional forward method without
considering the inverse problem, whereas the flow fields obtained in that way will be denoted as
ufor
hb (in the sense of adopting the HB method only for a single conventional forward solution).

Both fields are compared with the same ground truth data in terms of (5.3.1) and (5.3.2).
Furthermore, the proposed inverse problem and the forward problem are applied along

with some observations, which have been obtained from real 4D flow MRI measurements (as
described in section 4.2.1). The flow field, uopt

hb , obtained from the assimilation process against
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the real acquisitions, and the field, ufor
hb , obtained from the forward solution, are both compared

with the measured flow field by visual inspection. In addition to such qualitative analysis,
the fields uopt

hb and ufor
hb are also quantitatively compared with each other to demonstrate the

extent of their differences.
Finally, it is worth to note that all the preprocessing steps, as described in section 2.3, were

also applied in this chapter to the corresponding observations.

5.3.1 Validation

Based on some artificially generated flow MRI data, the proposed approach is first validated
by comparing its solution against a numerical reference solution, which represents the ground
truth. For the purpose of realistically mimicking an experimental set-up of a conventional
CFD-MRI based study, three different domains are considered, which will be labeled as the
world domain, the MRI domain and the CFD domain. In a real-case scenario, the world do-
main would represent the patient-specific and infinitely resolved flow field in a human aorta,
whereas the MRI domain represents the measured noisy flow field in a coarsely resolved grid
(usually with a voxel-size of 2 mm isotrop as described in section 2.5.2). Finally, the CFD
domain corresponds to a computational mesh for the numerical simulations, which is conceiv-
ably finer than the grid in the MRI domain (but of course much coarser than the resolution of
the world domain). Since an infinite resolution can not be afforded, the finest available mesh,
M7, is used in the present section as a representative of the world domain. In addition, the
meshes M2 and M4 are used to represent the MRI and CFD domain respectively.

Preparations for the Validation of the Dynamic Data Assimilation

A reference numerical solution was manufactured in M7 (as described in 4.4.1) with periodic
flow rates based on the two-peaks sinusoidal function h(t) (4.4.2) with a period of 0.8 s. The
obtained solution was sampled at 2n + 1 equidistantly placed time instants, where n = 12 is
the number of harmonics, which was chosen according to the findings of the chapter 4. The
first sample is the reference flow field at time 0.8

2n+1 = 0.032 s, whereas the last sample is the
reference flow field at time 0.8 s.
The samples in the world domain (mesh M7) were all mapped into the MRI domain (mesh

M2) using a linear interpolation. This process is illustrated in figure 5.1 by the mapping from
M7 (on the top) into M2 (on the left-bottom corner). An artificial noise with an isotropic
VENC of 0.75 m/s and an SNR of 10 (see section 2.4.3 for more details) was added on top of
the interpolated flow fields in the MRI domain.
A noise detection algorithm, as described in section 2.3.1, was employed to detect the

potential spurious vectors in the noisy flow fields. Thereafter, the samples in the MRI domain
are mapped from M2 into the CFD domain M4. This is illustrated on the bottom left and
right corners of figure 5.1.
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Figure 5.1: Preparations for the validation of the proposed approach, prior to performing the
dynamic data assimilation.

Having mapped the flow fields into the CFD domain, the proposed approach was employed
based on the artificially generated observations in M4 using the algorithm 3. For a proper
evaluation of the proposed method, an additional reference solution was also generated in M4,
which was used as the ground truth. The errors nRMSEX and FDEX were then computed
between the flow fields obtained from the inverse problem and the ground truth. These steps
can be summarised as follows:

• Generate the reference solution (see section 4.4.1) in the finest mesh M7 (world domain)

• Sample the reference solution at 2n+ 1 equidistantly placed time instants

• Linearly map the sampled solution from M7 into the coarsest mesh M2 (MRI domain)

• Add some artificial noise (see section 2.4.3) to the flow fields in the MRI domain M2.

• Apply the noise detection scheme (see section 2.3.1) to the noisy flow fields in M2

• Map the denoised flow fields from M2 into the fine mesh M4 (CFD domain).

• Run the CFD simulations in M4 using both the HB method computing a single forward
solution described in the chapter 4 and the HB method combined with the inverse
problem computing an optimised solution described in the present chapter, denoting the
obtained flow fields by ufor

hb and uopt
hb respectively.
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• Additionally generate a reference solution in M4, denoting it by uext

• Evaluate the errors nRMSEX(ufor
hb ,uext) and nRMSEX(uopt

hb ,uext) (see equation (5.3.1))

• Evaluate the errors FDEX(ufor
hb ,uext) and FDEX(uopt

hb ,uext) (see equation (5.3.2))

Numerical Results

In what follows, the noisy observations available in M4 will be represented by usnr in Ω. For
the dynamic data assimilation procedure, algorithm 3 was executed with the input parameters
(usnr, gsnr,usnr, 25), where gsnr = usnr on Γi. Thus, the initial guesses were usnr and gsnr,
whereas the target flow field for the flow-matching term in the objection function (5.2.7)
was set to the same flow field usnr (this corresponds to the application of MRI data as the
observations for the flow-matching and as the initial guesses). The flow field obtained from the
dynamic data assimilation process will be denoted by uopt

hb . The flow matching was performed
in Ωs with s = 2. That is, the flow-matching domain Ωs is a contracted domain of Ω such
that the distance to Γw is at least 2 mm. Motivated by the findings of chapter 2 in table
2.1, optimisation parameters β and β1 were set to 10−5 and 10−8 respectively. Parameter α
was set to 1. Furthermore, using the same data,usnr, the HB method was also employed as
a single forward simulation without adopting the assimilation process (and the obtained flow
field is denoted by ufor

hb ).
For the evaluation of the errors nRMSEX and FDEX (equations (5.3.1) and (5.3.2)), the

domain X = E4
2 (as described in (2.5.1)) will be considered in what follows. Thus, nRMSEE

4
2

and FDEE
4
2 evaluate the normalised root-mean square error and the flow direction error in

the domain E4
2 , which corresponds to the domain in near-wall regions (within a distance of 2

mm from the wall boundary) at the aortic root in the close proximity of the inlet (within a
distance of 4 cm from the inlet boundary). This choice of the error evaluation in the domain
E4

2 is motivated by the fact that, the aortic root is a clinically relevant place, where the arterial
walls are prone to pathological modification. This is due to the flow disturbances in the close
proximity of the inlet. In addition, the errors were also evaluated in the whole domain Ω.
Under these conditions, the numerical results are summarised in table 5.1.
It can be observed that, compared with the results obtained from the HB method as a

forward simulation only, there is a significant improvement in the outcome provided by the
assimilation (against the noisy solution) in the close proximity of the inlet. This is a remarkable
finding for the improvement of the flow field, especially at the aortic root.

5.3.2 Dynamic Data Assimilation in Different Mesh Resolutions

For the purpose of further validation of the proposed approach, different mesh geometries
are considered for the assimilation procedure. In addition to the assimilation in mesh M4

presented as the CFD domain in the previous section, the other two meshes M2 and M7 are
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(x,y) nRMSEE
4
2 (x,y) FDEE

4
2 (x,y) nRMSEΩ(x,y) FDEΩ(x,y)

(usnr,uext) 16.76% 0.367 6.90% 0.166

(ufor
hb ,uext) 3.75% 0.095 1.66% 0.042

(uopt
hb ,uext) 2.39% 0.055 1.59% 0.027

Table 5.1: Root mean square errors and flow direction errors evaluated in the domains E4
2

and Ω. The errors are evaluated against the ground truth uext for the noisy flow field usnr

and the flow fields ufor
hb and uopt

hb , obtained from the harmonic balance and the dynamic data
assimilation methods respectively.

also considered for performing the assimilation in the present section. Since the observations
with the artificial noise were already available in M2, there is no need for additional mappings
of the flow fields and the assimilation can be performed based on the available observations in
M2. However, since a ground truth was missing in M2, and additional reference solution is
manufactured for the purpose of error evaluations using a ground truth in M2. In addition,
the noisy observations are mapped from M2 into M7, where a ground truth was already
available as described in the previous section. The assimilation is then performed also in M7,
the finest mesh available. The numerical results using mesh geometries with different numbers
of cells are summarised in table 5.2.

(x,y) nRMSEE
4
2 (x,y) FDEE

4
2 (x,y) nRMSEΩ(x,y) FDEΩ(x,y)

(usnr,uext) 26.47% 0.488 10.40% 0.228

M2 (ufor
hb ,uext) 8.15% 0.141 6.93% 0.157

(uopt
hb ,uext) 3.50% 0.068 1.97% 0.035

(usnr,uext) 16.76% 0.367 6.90% 0.166

M4 (ufor
hb ,uext) 3.75% 0.095 1.66% 0.042

(uopt
hb ,uext) 2.39% 0.055 1.59% 0.027

(usnr,uext) 17.67% 0.381 7.40% 0.174

M7 (ufor
hb ,uext) 3.87% 0.096 1.74% 0.044

(uopt
hb ,uext) 2.49% 0.061 1.42% 0.027

Table 5.2: Root mean square errors and flow direction errors evaluated in the domains E4
2

and Ω for the flow fields in computational mesh geometries M2, M4 and M7. The errors are
evaluated against the ground truth uext for the noisy flow field usnr and the flow fields ufor

hb

and uopt
hb , obtained from the harmonic balance and the dynamic data assimilation methods

respectively.

82



Results

The feasibility and accuracy of the proposed dynamic data assimilation method combined
with the harmonic balance approach was shown using different mesh geometries. It was
observed that the assimilation procedure is unbiased against meshes with different number of
cells, most importantly also in the close proximity of the inlet.

5.3.3 Dynamic Data Assimilation using 4D flow MRI Acquisition

For the optimal control problem, the proposed approach was tested in a realistic scenario
using flow data gathered from 4D flow MRI scans. The same flow data presented in section
4.2.1 were used, and hence, the details of the experimental set-up and the description of the
applied preprocessing steps are skipped in the present section.

Simulations were performed with both methods, HB as a forward simulation only and
HB combined with data assimilation, and compared with the MRI data or with each other.
Flow patterns obtained from both methods were first compared with the MRI data by visual
inspection. Figure 5.2 shows two slices illustrating the magnitude of the velocities inside of
the domain Ω, obtained from the noisy MRI measurements, denoted as usnr (in the middle
of the figure), and from the computations using the data assimilation, denoted as uopt

hb (on
the left side), and using the HB method as a forward simulation, denoted as ufor

hb (on the
right side) respectively. The presented slices correspond to the time instant at peak systole,
where the velocities reach their highest magnitudes. One slice was placed at the aortic root
and was oriented such that the velocity profiles in the close proximity of the inlet are clearly
visible. Another slice was placed at the aortic arch to additionally illustrate the obtained flow
patterns at a moderate distance from the inlet.

∣∣uopt
hb

∣∣ ∣∣usnr

∣∣ ∣∣ufor
hb

∣∣

Figure 5.2: Slices for the magnitudes of different velocity fields at the aortic root and arch.
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Furthermore, figure 5.3 illustrates the streamlines of the flow fields in the whole domain.
Both the slices and the streamlines obviously show that the noise-free flow field obtained
from the assimilation process is fairly close to the noisy flow field measured with 4D flow
MRI, whereas the flow field obtained from a conventional forward simulation, without the
optimisation of the velocities, is largely different compared to the measurements.

∣∣uopt
hb

∣∣ ∣∣usnr

∣∣ ∣∣ufor
hb

∣∣
Figure 5.3: Streamlines for the magnitudes of different velocity fields.

Since there is no ground truth available in this case, the flow fields obtained from both meth-
ods were quantitatively compared with each other to demonstrate the extent of their difference
from each other. In the whole domain, Ω, evaluation of the errors yielded nRMSEΩ(ufor

hb ,u
opt
hb ) =

21.66% and FDEΩ(ufor
hb ,u

opt
hb ) = 0.229, whereas in the close proximity of the inlet, the errors

were nRMSEE
4
2 (ufor

hb ,u
opt
hb ) = 30.08% and FDEE

4
2 (ufor

hb ,u
opt
hb ) = 0.314.

Notably, the better qualitative agreement between the observations and the optimised solu-
tion, and quantitatively significant differences between the optimised solution and the pre-
dictions from conventional forwards CFD simulation, support the fact that the optimisation
delivers a better solution when compared with the conventional CFD approach.

5.4 Conclusion

In this work, a novel approach was developed for dynamic data assimilation, interlacing com-
putational fluid dynamics with phase-contrast magnetic resonance imaging. The proposed ap-
proach follows a temporally-discretise-then-optimise-then-spatially-discretise strategy, whereas
a Fourier-spectral method was employed for the temporal discretisation, which was then in-
tegrated in an inverse problem.
The methodology was validated against a manufactured numerical solution as well as against

experimental 4D flow MRI measurements performed in a glass replica of a human aorta. The
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proposed algorithm was examined in detail to estimate the efficiency of the methodology for
reconstructing the blood flow at the aortic root and in near-wall regions.
The new method proved to deliver physically consistent flow fields, with substantial reduc-

tion of noise present in the 4D flow MRI measurements, outperforming the predictive capab-
ilities of conventional CFD approaches. The novel approach provides a systematic strategy
to improve the model predictions regarding clinically relevant hemodynamic data, such as the
wall shear stresses.
The proposed approach considerably improves the flow field at the aortic root, which is

one of the most important clinically relevant locations for the development of pathological
alterations of the anatomical structures underlying the arterial wall. Hence, the new method
reveals a great potential for predicting clinically relevant hemodynamic phenomenology.
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6 Summary of Findings

In this work, a new and efficient method has been introduced to perform transient data
assimilation in computational hemodynamics. The proposed approach (also named as the
Fourier-spectral dynamic data assimilation), relies on harmonically balanced equations ex-
pressed in the frequency domain, which are incorporated into the assimilation process. The
frequency domain equations result in a time discretisation, which differentiates the proposed
approach from conventional methods based on traditional time-stepping schemes. Concerning
the assimilation process, the variational approach has been followed to compute the gradient
of an objective function (with respect to control) based on the harmonically balanced adjoint
equations expressed in the frequency domain.

The methodology has been validated against numerically generated solutions (which serve
as a reference flow) and against experimental 4D flow MRI measurements performed in a
glass replica of a human aorta. The proposed algorithms have been examined in detail to
estimate the efficiency of the methodology for reconstructing the blood flow at the aortic
root and in near-wall regions. The new method has proven to deliver physically consistent
flow fields, with substantial reduction of noise present in the 4D flow MRI measurements,
outperforming the predictive capabilities of conventional CFD approaches. The novel approach
provides a systematic strategy to improve the model predictions regarding clinically relevant
hemodynamic data, such as the wall shear stresses.

In order to achieve a full control over the flow being reconstructed using the new approach,
a few simplification assumptions have been made. First of all, the flow has been considered to
be Newtonian. Secondly, in the experimental setup, the physical phantom (made from glass)
was rigid and hence there has been no wall motion to be considered. Performing fluid-structure
interaction studies based on the proposed approach would be very appealing as a matter of
future research. Another limitation of the experimental setup is the lack of additional branches
at the aortic arch. However, for studies with the aim to evaluate the WSSs at the aortic root,
it needs investigation whether or not the integration of the locations around the aortic arch
is required in the assimilation process. In the presented experiments, the centrifugal pump in
the control room had to be connected with the physical phantom in the scanner room using
long pipes. This resulted in the fact, that the backflow effect (which can be generated by the
pump) could not be observed (due to long pipes) in the physical phantom. Finally, owing to
these capabilities and limitations of the experimental setup, the inflow considered at the inlet
did not contain the backflow of the R-wave.
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Based on the presented results, it can be concluded that the harmonic balance numerical
scheme reveals itself as a method with a tremendous potential in computational hemodynam-
ics. The proposed approach enables pulsatile fluid flow simulations at a significantly smaller
cost when compared with traditional methods, without exhibiting deterioration of the approx-
imate solution. The method shows a significant improvement regarding the trade-off between
computational cost and accuracy for applications in computational hemodynamics. Based on
the present experiments, the harmonic balance method was about 15 times faster compared
to the conventional transient simulations.
The experience dictates that only a moderate number of harmonics is required to accurately

resolve the periodic fluid flow problem. Regarding the number of time instants at which (4D
flow MRI) data is acquired per cardiac cycle, the method can be easily adjusted such that the
discretised momentum equations are temporally registered with the measurements. In case of
4D flow MRI, the experience indicates that it requires observational data at a number of time
instants between 17 and 25. This corresponds to a number of harmonics of at least 8, which
is a region in which the method has proved to be satisfactorily accurate.
In addition, the harmonic balance approach has been efficiently incorporated into a vari-

ational adjoint-based optimal flow control. For large, convection dominated problems, Fourier-
spectral dynamic data assimilation (the new method) performs within very affordable and feas-
ible wall clock times, which are otherwise nearly impossible or quite difficult to be achieved
using the conventional methods.
The work considerably improves the flow field at the aortic root, which is one of the most

important clinically relevant locations for the development of pathological alterations of the
anatomical structures underlying the arterial wall. Hence, the new method reveals a great
potential for predicting clinically relevant hemodynamic phenomenology.
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